Theory

of exchange
coupling

iIn magnetic
multilayers

by B. A. Jones

Two layers of magnetic materials separated
by a nonmagnetic “spacer” layer display an
exchange coupling between the separated
magnetic layers, as detailed by the papers on
experimental aspects of magnetic multilayers
in this issue. Here we describe from a
personal perspective the current theoretical
understanding of exchange coupling in
magnetic multilayers. The understanding

by this point is quite good, and involves
contributions from a number of authors,

of which we review a key subset. The
organization of the paper is as follows. After
an introduction to RKKY coupling, the next
section discusses the effects of a realistic
band structure (with emphasis on the work
of Herman et al., Bruno and Chappert, and
Stiles). The following section, which introduces
quantum wells, covers the work of Mathon

et al., Bruno et al., and this author. Finally, we
include a discussion of the predictability of
amplitude, period, and phase, including the
effects of disorder.

Introduction
The theory of exchange coupling in magnetic multilayers
has its basis in the interactions found between two

magnetic impurities in a metal. Taking the simplest case
of spin-1/2 (and avoiding issues of crystal electric fields
and spin-orbit coupling), hybridization between the

s—p conduction electrons of the host metal and the

d- (or f-) electrons of the magnetic impurity produces an
effective on-site exchange coupling at the impurity site.
For s—p/d hybridization, the sign of the interaction is
typically antiferromagnetic, as the conduction electrons
attempt to screen the spin of the impurity in their midst.
Rather than forming a negative spin-1/2 at the impurity
site, however, the electrons instead spin-polarize in
concentric rings around the impurity. The source of the
rings of alternating polarization is that a true delta-
function in space would require, in Fourier k-space, all the
k-vectors from 0 to infinity to be equally weighted, viz.,
8(r) = [ dk ™ - 1. Since the host is a metal, there are,
however, k-vectors only from 0 to the Fermi wave vector.
The system thus cannot form a localized screening of the
impurity spin, but does the closest alternative possibility,
which results in an opposite alignment close in which
overscreens the impurity, followed by a parallel alignment
further away which overcompensates in the opposite
direction, and so on with decreasing amplitude out to
infinity. This is shown in Figure 1.

The periodicity of the alternations of polarization is A,
where A is o divided by a characteristic wave vector of
the Fermi surface. For the simple case of a free-electron
band structure, there is only one wave vector, the Fermi
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RKKY coupling between two spin-1/2 magnetic moments
separated by a distance r, in three dimensions. Alternatively, the
figure can be viewed as the negative of the electron spin
polarization as a function of distance around a single magnetic
moment. A positive value corresponds to ferromagnetic RKKY
coupling or down-spin electron polarization, with unspecified units
for both. Note that the value at kv = 0 is sensitive to the band
edges, and diverges in three dimensions with increasing
bandwidth. The distance r is scaled by the Fermi wave vector.
Inset: the same plot, with expanded vertical scale.

wave vector of order 1 Afl, and A, is around 3 A. Thus,
within distances of 3 A from the impurity, the conduction
electrons are aligned antiferromagnetically with the
impurity, from 3 to 6 A ferromagnetically, and so on. The
amplitude decay goes as 1/7° for three dimensions, and
varies with the geometry. Such oscillations in spin
polarization have been seen experimentally [1].
Interactions between two impurities arise when they
are close enough to have appreciable overlap of their
oscillatory screening polarizations. If a second impurity
is within the spin-down region of the first impurity’s
conduction electron polarization, it is favored to point
oppositely to the polarization, and thus ferromagnetically
with the first impurity. If the second impurity is further
away, in the ring of spin-up, the second impurity prefers
to point down, or antiferromagnetically with the first
impurity. Thus, there is an interaction between two
impurities induced by the spin-polarized conduction
electrons with which they interact. The interaction takes
the same distance dependence as the spin polarization, but
is of opposite sign. This interaction of magnetic spins
mediated by conduction electrons is designated as the
RKKY interaction, after Ruderman, Kittel, Kasuya, and
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Yoshida [2], who independently discovered it. A typical
RKKY plot for a free-electron conduction band is
illustrated by Figure 1.

We can express the interaction of two spin-1/2
impurities in a sea of conduction electrons in a simple
Hamiltonian form:

H=Y en, +JG.GF) 8, +5.()-8,] (1)
k

In second-quantized notation, for example,
n =2 ¢le and

mk TkuT kp
o,
A i(k—K')r T [
5(7) = 2 e' "cku 5 G 2)
wu'kk’

with ¢ with Pauli spin matrices. Taking the exchange
coupling J to be small compared to the Fermi energy
characteristic of the first term, one can perform a
perturbation expansion in J/e,. The leading-order term is
of the form —J°S, - §,f(r), where f(r) = f[2k.[F, — 7]
has the form of Figure 1, and for free electrons in three
dimensions can be written as

sin(x) — x cos(x)

flx) o« —————. G)
x

Of course, Equation (3) is just a perturbation expression, -
and the first-order term at that. Sometimes Equation (3)
is cited as the “RKKY interaction,” but this is incorrect.
The RKKY interaction is the exchange coupling which
arises between two (or more) spins interacting via spin
polarization of conduction electrons—whether J be small
or large, perturbative or not, and summed to all orders.
In the cases when J is small, however, the exchange
interaction calculated according to the prescription above
is a good approximation.

For magnetic atoms in layers, the physical interaction
arises from both the interfacial and the bulk magnetic
atoms interacting with the conduction electrons in which
they are immersed. The interactions between each
magnetic spin and all other atoms must be superposed.
Those at the interfaces have the strongest effect, both
because they are closest to the other layer (1/r° effect,
which when integrated over a layer becomes 1/r”) and
because they are more immersed in the spin sea of the
spacer conduction electrons. For a rougher interface, there
is even more mixing of magnetic and nonmagnetic atoms.
Because of the presumed translational symmetry of the
system in directions parallel to the layers, the interaction
sum between each magnetic atom and all other magnetic
atoms reduces to the sum along a line within one layer of
interactions with all other atoms. A further simplification
is typically achieved by assuming no spin-flip: that each
magnetic moment is ferromagnetically aligned with every
other atom in the same layer. Sums of interactions within
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a magnetic layer are thus avoided. Yet a further
simplification is to assume, rather than discrete spins, a
continuous constant spin density within each layer. The
sums over the second magnetic layer thus become
integrals.

Either integrals or discrete sums of the system with a
spherical Fermi surface give a total RKKY interaction for
multilayers with many of the characteristics of impurities
in bulk: The exchange interaction between layers oscillates
as a function of distance between the layers, with a
periodicity A, = w/k.. The amplitude of the interaction
falls off as a function of distance, but with a more
complicated envelope than 1/r’—roughly 1/7* — 1/r° [3].
And the physical basis of the interaction is still the spin-
polarization of the intervening conduction electrons.

In comparison to real multilayer systems, of course, the
most salient disagreement with the above description,
discovered early on, is the difference in periodicity. As
discussed in other papers in this issue, typical periodicities
are closer to 11 A than 3 A, a discrepancy that led to the
enhancements in the theory discussed in the following
sections.

Realistic band structure

From the previous section we conclude that the periodicity
of exchange coupling oscillation depends on wave vectors
of the Fermi surface. Since the Fermi surface of real
materials is not a sphere, it became clear that an accurate
period must include realistic band-structure effects. Two
notable approaches used were those of Herman (with

Van Shilfgaarde) and of Bruno and Chappert and later
Stiles, described below. (We note once again that in this
paper we are reviewing primarily current understanding,
not a full history of the theory. Many more theorists could
be included in this and other sections; however, as ways

in which band-structure tools were used to enhance our
understanding, the works below are, in the opinion of this
author, exemplary.)

F. Herman Herman and his collaborators, Van Shilfgaard
and, earlier, Sticht, performed state-of-the-art, (nearly)
self-consistent, density-functional total energy calculations
[4-6]. These calculations involve setting up a unit cell
which is then periodically repeated to infinity. (The
systems are thus true multilayers, rather than sandwiches.)
Because of the large number of states involved, the
magnetic layers are seldom taken to be more than two or
three atomic layers thick (compared to the 20 layers and
more of experiment). This thickness is sufficient to form a
magnetic moment in the layer. Spacer layers are
incremented one atomic layer at a time in order to model
increasing spacer width. For a given spacer width, the
magnetic layers are first all aligned ferromagnetically, and
the energy levels of the system are calculated and then
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summed over all occupied states, making it possible to
obtain the total energy of the ferromagnetic system

(E o). Next, for the antiferromagnetic configuration,
every other magnetic layer is fixed to lie in the opposite
direction, and the total energy again calculated (E
Subtracting the second total energy from the first
(Erorr — Eqorar) gives a measure of the exchange energy.
A positive value indicates ferromagnetic coupling
preferred, and a negative, antiferromagnetic.

As can be imagined, the number of states for each
system is very large, and each sum ETOT,F or Epor,p 1S an
extremely large number, compared to their difference. The
accuracy of the subtraction must be done to one part in
10° or better. Nonetheless, Herman and collaborators
obtained interesting results [5, 6]. What they found was an
oscillating exchange, in which the sign of the coupling
alternated for every additional spacer layer. The ostensible
periodicity was thus a lattice spacing, or around the
familiar 3 A once more. However, the amplitude envelope
did not decay in a monotonic fashion, and upon fitting
their numerical results to two oscillations with different
amplitudes, periods, and phases, they found a good fit.
One period, the dominant one, was small, 2-3 A. The
other period, with smaller amplitude, was quite large,
12-15 A or more, depending on the material and
crystallographic orientation.

It was not until several years later that experiments at
NIST [7] and elsewhere showed that a second periodicity
did occur in many real samples as well, with one period
short and the other period long. The better the interface
quality, the larger the amplitude of the short-range
oscillation, which is not seen in samples where the surface
roughness averages over any small-period oscillation.

The work by Herman et al. is valuable in that it pointed
out the strong materials dependence of the coupling
period. The work was also among the first to calculate
different oscillation periods for different crystallographic
orientations in the same material. Another valuable
contribution involved subsequent calculations on alloys, in
which the band structure of the alloy was determined by
continuously interpolating between the band structures of
the two constituent elements, with weighing proportional
to the relative percentage of each element in the alloy.
Exchange coupling periods thus calculated bore a strong
correspondence to those measured by Parkin et al. in the
same systems [4].

TOT,AF) '

P. Bruno and C. Chappert  Concurrently with the work
of Herman et al., Bruno and Chappert [8] undertook a
generalized analytic approach with an explicitly RKKY
formalism. They also used features of the Fermi surface
in various crystallographic orientations to predict long
periods and multiple periods. Their use of experimentally

determined Fermi surfaces enabled them to make explicit 27
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predictions for Cu, Ag, and Au spacer layers, which were
found (for Ag and Au) to agree very closely with later
measured experimental periods [7] (agreement even closer
than that obtained by theoretically calculated Fermi
surfaces). The strong agreement provided, at an early
stage, convincing indications that the RKKY interaction
was the correct interaction for these systems. Bruno and
Chappert also made useful remarks about the role of
roughness to filter out the short periods, and about the
difficulty of correct determination of the phase. Their
work has had considerable historical impact; the
methodology was clearly laid out, enabling other
researchers to complete important extensions.

M. Stiles  Stiles provided considerable depth to the
Fermi surface analysis approach [9], and many of his ideas
and calculational data form the basis of current thinking
about Fermi surface contributions. It was not clear from
the total energy and previous analytic calculations which
features of the Fermi surface were giving rise to which
periods (if indeed it was the vectors of the Fermi surface
that gave the longer periods). Stiles performed state-of-
the-art calculations of the Fermi surfaces of a wide range
of spacer materials. In separate analysis, he found the
conditions for the key k-vectors responsible for the
exchange coupling; then, for every Fermi surface he
elucidated the particular k-vectors that would be relevant
for that material. For every crystal direction, there are
typically a large number of candidate k-vectors k,

and, hence, periods m/k ; to give some idea of the
predominance of some over the others, he weighted the
period by the degree of representation of its extremal
orbit on the Fermi surface. Still, this often gave a
prediction of many periodicities for each crystal direction,
in contradiction to experimental observations of one or

at most two. To obtain the exchange coupling exactly
necessitates integrals of matrix elements of the wave
functions, quantities that are difficult to obtain accurately.
Variants of the Stiles approach were used by other
authors, as is shown below.

Quantum wells

The geometrical effects of finite-thickness layers have one
result in addition to the above RKKY description, namely
quantum wells. Theories postulating variants of quantum
wells in magnetic multilayers appeared fairly early

(see discussion of theories below), but the definitive
experimental proof came with the inverse photoemission
measurements of F. Himpsel [10]. He measured the
photoemission intensity of Cu on Co as a function of Cu
thickness, and observed oscillations every few additional
Cu layers. He ascribed the successive peaks to the
formation of new bound states in the quantum well that
formed in the copper. Other groups soon followed, with
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evidence for quantum wells in Fe/Au, Fe/Ag, Co/Cu, and
other systems [11]. As proposed by Jones and Hanna [12]
and others, the source of the wells was a misalignment in
the bottom of the conduction bands of two adjacent layers
of dissimilar materials when the chemical potentials were
aligned. Of course, this means that not all systems have
wells in the spacer—some have wells in the magnetic
layer, and some have wells for one spin direction and
barriers for another. However, quantum wells are now an
accepted fact in magnetic multilayers, and it is of interest
to discuss what effect they have on the exchange coupling.
One matter that is clear is that quantum wells, as a
geometrical feature alone, cannot be the sole source of
exchange coupling. The proof of this is the exchange
coupling observed between two separated magnetic
impurities in a nonmagnetic metal, where the geometry
clearly does not support a well (and the bound states, if
any, at each delta-function scatterer play no essential
role in the exchange coupling). Moreover, dissimilar
nonmagnetic metals placed in juxtaposition likewise have a
mismatch of bands, but no coupling between nonmagnetic
metals arises. Exchange coupling between separated
magnetic layers occurs because of the spin polarization of
intervening conduction electrons, and associated magnetic
scattering of conduction electrons with the moments in the
magnetic layer. Quantum wells cause bound states in
addition, and the focus of the theories below is on the
effect of quantum wells on the oscillation period,
amplitude, and phase.

B. Jones and C. Hanna  Although Mathon et al.
published work [13] on infinitely high quantum wells at an
early stage, Jones and Hanna [12, 14] were among the first
to consider quantum wells of a finite height applied to
magnetic sandwiches. Their mechanism, of a mismatch

of electronic structure between two materials placed

in contact, is currently the accepted explanation of
quantum wells in magnetic multilayers. Moreover, they
showed how a new feature such as quantum wells can be
straightforwardly incorporated into a traditional RKKY
calculation. The first-order term in an RKKY calculation
is the perturbative effect of the exchange coupling on the
nonmagnetic Hamiltonian. The leading term, which is of
second order in the exchange coupling J, has the form

J 2
AE = —(;> > fr,r)5,-3 (4)

where (J/n)zf(rl., r,) is termed the RKKY interaction
between spins i and j, and # is the density of conduction
electrons. Denoting the conduction-electron wave
functions that diagonalize the unperturbed Hamiltonian
by ¢, (r), one obtains
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Logarithmic contributions at those wave vectors such

that ¢, — ¢, = &, give oscillations with wave vector(s)

g, = 2k, . Thus, from Equation (5), a knowledge of

the wave functions and energies of the “unperturbed”
(nonmagnetic) part of the Hamiltonian is sufficient to give
a good estimate of the RKKY coupling.

For a quantum-well system, the wave functions 4, (r)
are straightforward to calculate exactly for free-electron
bands. The cigenstates are products b, Parallel to
the interfaces, ¢, and ¢, are plane waves. Perpendicular
to the interfaces, ¢ is oscillatory for hzkf/ 2m greater
than the height of the well, with a wave vector & that is
discontinuous in space and forms a continuum in energy.
For perpendicular momentum which is not large enough
to escape the well, the eigenstates are bound, and decay
exponentially outside the well. Their energy spectra are
discrete. Although technically all states of the system are
quantum-well states, since they form an orthonormal set in
a quantum-well system, it is typically the bound states that
are given greatest focus, since they are not present in the
absence of a well. The bound states, although finite in
number, contribute to the exchange coupling with a
strength comparable to that of the continuum states,
because the wave functions are normalized essentially
to the width of the well, and therefore have a finite
magnitude. The continuum states, meanwhile, although
much greater in number, are each normalized to the
system size, and thus the amplitude of an individual
eigenstate goes to zero in the thermodynamic limit.

The quantum-well states, bound and continuous, have a
number of effects on the exchange coupling. First of all,
there is a phase shift imposed, with an effective delay in
the well with the introduction of bound states. Second, the
amplitude can be enhanced over RKKY coupling without
quantum wells. If quantum wells are chosen on the basis
of the band structure of the constituent materials, the
quantum-well period ends up being the same as that
derived from analysis of the Fermi surface, however. Thus,
the main effect of quantum wells is primarily to enhance
the amplitude of observable oscillations, but also to make
the initial phase more indeterminate. (The effect of
disorder is discussed further at the end of this paper.) An
example of the effects of a relatively small quantum well is
shown in Figure 2.

G. Mathon and collaborators  The theory of Mathon and
collaborators has evolved over several years [13, 15, 16].
Its current, and most comprehensive, form is as follows
[16]. Quantum wells are formed by the exchange
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potentials of the magnetic layers, which spin-split the
bands, and are an independent potential regardless of the
orientation of the opposite layer, a view in accord with
most current thinking. Exchange coupling between two
magnetic layers is expressed in terms of thermodynamic
potentials, which are themselves a weighted integral of
spectral density. The net are sums over energy and k|,
which would need many k-points for convergence.
Arguing, as Stiles [9] and others have, that oscillation
periods w/k, arise from extremal radii k, of the bulk
spacer Fermi surface in the direction perpendicular to the
layers, a stationary phase method is used to evaluate the
sums at just those extremal k-points (typically “bellies”
and “necks”). Thus, the possible oscillation periods are
determined by the same Fermi surface analysis as, for
example, the work by Stiles. However, this method also
obtains amplitudes. To obtain the weighting for each k-
point, the spectral density is calculated. It is found to be
broad and oscillatory for some &, narrow and high around
others. Broad, low resonances give small contribution

to the exchange coupling, while delta-function-like
contributions determine the observable exchange periods.
Narrow delta-function-like spectral densities are just those
arising from tightly confined quantum well states, so it is
the k-directions corresponding to quantum wells which
give the dominant periodicities. Mathon et al. make the
additional argument that relying on monolayer spacers for 29
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estimates of predominant periods is misleading, because
a full quantum well forms only from bulk-like band
structures of several layers or more. Mathon et al. also
have a so-called torque method, which involves full
converged sums over k-states, and which has good
agreement with the method described above.

P. Bruno  Bruno recasts the equations of exchange
coupling in the presence of quantum wells in terms

of reflection and transmission coefficients [17, 18] (a
technique Stiles also used), and by exchanging the order
of integration, obtains some analytic expressions. This
method of calculation is in fact exactly equivalent to the
perturbative method of Jones and Hanna (since reflection
coefficients obviously depend on properties of the
eigenstates). Rather than a physical explanation in terms
of spin-polarized conduction electrons in the spacer, the
reflection coefficient methodology can be interpreted in
terms of a quantum interference mechanism. The standing
waves of RKKY can of course be re-expressed as a
superposition of traveling waves, each reflecting off one
interface. The methodology of Bruno et al. simplifies the
calculations and allows the calculation of oscillation
dependence on ferromagnetic thickness and on overlayer
thickness as well. Exchange coupling with varying
ferromagnetic layer thickness results in an oscillation
period which depends on the ferromagnetic Fermi surface.
Varying overlayer thickness results in weak oscillations
with the periodicity of the overlayer material [15]. The
facts that the eigenfunctions of the whole system depend
necessarily on the Fermi surface of each constituent layer,
and that any sum over a finite number of k-vectors gives
oscillations that reflect extremal features of the Fermi
surface(s), make it straightforward to understand that
varying the width of one layer or another merely

explores that part of a larger phase space. Mathon and
collaborators [19] have also obtained similar results.

Effects of disorder

Real interfaces are of course not atomically smooth, and
the question naturally arises as to the effect of an uneven
interface on the various calculations discussed above. If
the exchange coupling oscillates with spacer width, a
variable spacer distance tends to average over oscillation
periods on either side of the average. For a short
oscillation period, this tends to average it out entirely for
a large enough amount of roughness. The longer periods
of 10 A and more are much less affected. The effects of
roughness in real systems thus explain two discrepancies
of total energy calculations such as those of Herman et al.
[6], which showed that shorter-period oscillations have
much larger amplitude than do longer-period oscillations
(in contradiction to many experiments) and which gave
an amplitude nearly an order of magnitude larger than
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experiment overall. Roughness averaging in real materials
reduces the amplitude of all periods, and reduces the
amplitude of short-period oscillations much more than
that of long-period oscillations. Since averaging is done
over spacer widths both longer and shorter than the
average, the actual period remains unchanged.
Calculations of delta function scatterers at the interface

by Jones and Hanna [12] showed that interface scattering
caused instead an additional phase shift, in addition to any
quantum well phase shift present.

Exchange coupling in real systems

Finally we come to the question of theoretical
predictability of exchange coupling in real systems. The
best-known quantities are the oscillation periods, which
can be predicted with ever-increasing accuracy for a range
of materials, including alloy spacers, by examination

of the Fermi surface. The fall-off with distance of the
envelope of the oscillation is also well understood. The
predominance of quantum wells in exchange-coupled
systems is well established. The amplitude is less clearly
predictable, since it decreases with increasing interface
roughness and changes with the existence of quantum
wells. However, empirical studies do well here, and
samples of similar quality usually have similar amplitudes,
with the amplitude between different systems varying
within fairly well-known bounds. Moreover, as sample
quality increases with time, there is a slow but steady
convergence toward calculated amplitudes. Least
predictable is the phase of the oscillation, since there is
fairly strong dependence on disorder, although models of
interface disorder by various groups are giving increasingly
better fits even here.

Concluding remarks

Exchange coupling in magnetic multilayers is at this paint
a fairly well-settled field, with many strong contributions
in the literature. It is hoped that this review of some of
the key theoretical contributions will give an indication of
the range of theoretical understanding achieved in this
field.
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