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multilayers 

Two  layers  of magnetic materials separated 
by a nonmagnetic "spacer" layer display an 
exchange coupling between the separated 
magnetic layers,  as detailed by the papers  on 
experimental aspects of magnetic multilayers 
in  this issue.  Here  we describe from a 
personal perspective the current theoretical 
understanding of  exchange coupling in 
magnetic multilayers. The understanding 
by this point is quite good,  and involves 
contributions from a number of  authors, 
of which we review a  key  subset. The 
organization of the paper is as follows. After 
an introduction to RKKY coupling, the next 
section discusses the effects of  a realistic 
band structure (with emphasis on the  work 
of  Herman et ai., Bruno  and  Chappert,  and 
Stiles).  The following section, which introduces 
quantum wells, covers the work of Mathon 
et al., Bruno et al., and this author.  Finally,  we 
include a discussion of the predictability of 
amplitude,  period,  and  phase, including the 
effects of disorder. 

Introduction 
The  theory of exchange coupling in magnetic multilayers 
has its basis in the  interactions  found  between two 

magnetic  impurities in a metal.  Taking  the simplest case 
of spin-l/2  (and avoiding  issues of crystal electric fields 
and  spin-orbit  coupling), hybridization between  the 
s-p conduction  electrons of the host metal  and  the 
d-  (or f-) electrons of the  magnetic impurity produces  an 
effective on-site exchange  coupling at  the  impurity site. 
For s-p/d hybridization,  the sign of the  interaction is 
typically antiferromagnetic, as the  conduction  electrons 
attempt  to  screen  the  spin of the  impurity in their midst. 
Rather  than  forming a  negative spin-l/2  at  the impurity 
site, however, the  electrons  instead  spin-polarize in 
concentric rings around  the impurity. The  source of the 
rings of alternating  polarization is that a true  delta- 
function in space would require, in Fourier  k-space, all the 
k-vectors  from 0 to infinity to  be equally weighted, viz., 
S(r) J:", dk elkr * 1. Since the host is a metal,  there  are, 
however, k-vectors only from 0 to  the  Fermi wave vector. 
The system thus  cannot  form a  localized screening of the 
impurity spin,  but  does  the closest alternative possibility, 
which results in an  opposite  alignment close in which 
overscreens  the impurity,  followed by a parallel  alignment 
further away which overcompensates in the  opposite 
direction,  and so on with decreasing  amplitude  out  to 
infinity. This is shown in Figure 1. 

where A, is n divided by a characteristic wave vector of 
the  Fermi  surface.  For  the  simple  case of a free-electron 
band  structure,  there is only one wave vector,  the  Fermi 

The periodicity of the  alternations of polarization is A,, 
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RKKY  coupling  between  two  spin-1/2  magnetic  moments 
separated by a distance r, in three  dimensions. Alternatively, the 
figure  can  be  viewed as the  negative of the  electron  spin 
polarization as a function of distance around a single magnetic 
moment. A positive value corresponds to ferromagnetic  RKKY 
coupling  or down-spin electron polarization, with unspecified units 
for both. Note that the value at k,r = 0 is sensitive to the band 
edges,  and  diverges  in  three  dimensions  with  increasing 
bandwidth. The  distance r is scaled by the  Fermi wave vector. 
Inset: the  same plot, with expanded vertical scale. 

wave vector of order 1 A”, and A, is around 3 8 , .  Thus, 
within distances of 3 8, from  the  impurity,  the  conduction 
electrons  are  aligned  antiferromagnetically with the 
impurity, from 3 to 6 8, ferromagnetically,  and so on.  The 
amplitude decay goes as l/r3  for  three  dimensions,  and 
varies with the  geometry.  Such oscillations  in spin 
polarization have been  seen  experimentally [l]. 

Interactions  between two impurities  arise when  they 
are close enough  to have appreciable  overlap of their 
oscillatory screening  polarizations. If a second impurity 
is within the spin-down region of the first impurity’s 
conduction  electron  polarization,  it is favored  to  point 
oppositely  to  the  polarization,  and  thus  ferromagnetically 
with the first impurity. If the  second  impurity is further 
away, in the ring of spin-up,  the  second impurity prefers 
to  point down, or  antiferromagnetically with the first 
impurity.  Thus,  there is an  interaction  between two 
impurities  induced by the  spin-polarized  conduction 
electrons with  which  they interact.  The  interaction  takes 
the  same  distance  dependence  as  the  spin  polarization,  but 
is of opposite sign. This  interaction of magnetic  spins 
mediated by conduction  electrons is designated  as  the 
RKKY  interaction,  after  Ruderman,  Kittel, Kasuya, and 

Yoshida [2],  who  independently  discovered  it. A typical 
RKKY plot  for a free-electron  conduction  band is 
illustrated by Figure 1. 

We  can  express  the  interaction of two  spin-1/2 
impurities in  a sea of conduction  electrons in  a  simple 
Hamiltonian  form: 

H = E k n k  + J [ ; ~ ( ; J  - SI + ;c(;,) S,]. 
k 

In  second-quantized  notation,  for  example, 
v k  clpckp and 

;c(;,) = e l ( k - k ’ ) i  t x U 
C k p  2 ‘k’p’ ’ 

pp’kk‘ 

with ti with Pauli spin matrices.  Taking  the exchange 
coupling J to  be small compared  to  the  Fermi  energy 
characteristic of the first term,  one  can  perform a 
perturbation expansion  in J /eF .  The  leading-order  term is 
of the  form -J’s, & f ( r ) ,  wheref(r) = / l2kF/ i . ,  - ;,I] 
has  the  form of Figure  1,  and  for  free  electrons in three 
dimensions  can  be  written as 

f(x) OC 
sin(x) - x cos(x) 

x4 

Of course,  Equation (3) is just a perturbation  expression,. 
and  the  first-order  term  at  that.  Sometimes  Equation (3) 
is cited as the  “RKKY  interaction,”  but  this is incorrect. 
The  RKKY  interaction is the exchange coupling which 
arises  between two (or  more)  spins  interacting via spin 
polarization of conduction electrons-whether J be small 
or  large,  perturbative  or  not,  and  summed  to all orders. 
In  the  cases  when J is small,  however, the exchange 
interaction  calculated  according  to  the  prescription  above 
is a good  approximation. 

For  magnetic  atoms in  layers, the physical interaction 
arises  from  both  the  interfacial  and  the bulk magnetic 
atoms  interacting with the  conduction  electrons in which 
they are  immersed.  The  interactions  between  each 
magnetic  spin  and all other  atoms  must  be  superposed. 
Those  at  the  interfaces have the  strongest  effect,  both 
because  they  are closest to  the  other layer ( l / r3  effect, 
which when  integrated  over a  layer becomes l/r2)  and 
because  they  are  more  immersed in the  spin  sea of the 
spacer  conduction  electrons.  For a rougher  interface,  there 
is even more mixing of magnetic  and  nonmagnetic  atoms. 
Because of the  presumed  translational symmetry of the 
system  in directions  parallel  to  the layers, the  interaction 
sum between  each  magnetic  atom  and all other  magnetic 
atoms  reduces  to  the  sum  along a line within one layer of 
interactions with all other  atoms. A further simplification 
is typically achieved by assuming no spin-flip: that  each 
magnetic  moment is ferromagnetically  aligned with  every 
other  atom in the  same  layer. Sums of interactions within 
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a  magnetic layer are  thus  avoided.  Yet  a  further 
simplification is to  assume,  rather  than  discrete spins, a 
continuous  constant spin  density  within each layer. The 
sums  over the  second  magnetic layer thus  become 
integrals. 

Either  integrals  or  discrete  sums of the system with a 
spherical  Fermi  surface give a  total RKKY interaction  for 
multilayers  with  many of the  characteristics of impurities 
in bulk: The exchange interaction  between layers  oscillates 
as a  function of distance  between  the layers, with a 
periodicity A, = aik,. The  amplitude of the  interaction 
falls off as a  function of distance,  but with a  more 
complicated  envelope  than l/r3-roughly 1/r2 - l / r 3  [3]. 
And  the physical basis of the  interaction is still the  spin- 
polarization of the  intervening  conduction  electrons. 

most  salient  disagreement with the above description, 
discovered early  on, is the  difference in periodicity.  As 
discussed in other  papers in this issue,  typical periodicities 
are  closer  to 11 8, than 3 A, a discrepancy that  led  to  the 
enhancements in the  theory discussed  in the following 
sections. 

In  comparison  to  real multilayer systems, of course,  the 

Realistic  band  structure 
From  the previous  section we conclude  that  the periodicity 
of exchange  coupling  oscillation depends  on wave vectors 
of the  Fermi  surface. Since the  Fermi  surface of real 
materials is not  a  sphere, it became  clear  that  an  accurate 
period must include realistic band-structure  effects. Two 
notable  approaches used were  those of Herman (with 
Van  Shilfgaarde)  and of Bruno  and  Chappert  and  later 
Stiles, described below. (We  note  once again that in  this 
paper we are reviewing primarily current  understanding, 
not  a full history of the  theory. Many more  theorists could 
be  included in this and  other  sections; however,  as ways 
in which band-structure  tools  were used to enhance  our 
understanding,  the works  below are, in the  opinion of this 
author, exemplary.) 

F. Herman Herman  and his collaborators,  Van Shilfgaard 
and,  earlier,  Sticht,  performed  state-of-the-art,  (nearly) 
self-consistent,  density-functional total energy calculations 
[4-61. These  calculations involve setting  up  a  unit cell 
which is then periodically repeated  to infinity. (The 
systems are  thus  true multilayers, rather  than sandwiches.) 
Because of the  large  number of states involved, the 
magnetic layers are  seldom  taken  to  be  more  than two or 
three  atomic layers  thick (compared to the 20 layers and 
more of experiment).  This  thickness is sufficient to  form  a 
magnetic  moment in the layer. Spacer layers are 
incremented  one  atomic layer at  a  time in order  to  model 
increasing  spacer  width.  For  a given spacer  width,  the 
magnetic layers are first all  aligned ferromagnetically,  and 
the  energy levels of the system are  calculated  and  then 

summed over all occupied  states, making it possible to 
obtain  the  total  energy of the  ferromagnetic system 

Next, for  the  antiferromagnetic  configuration, 
every other  magnetic layer is fixed to lie  in the  opposite 
direction,  and  the  total  energy again calculated (E,,,,,,). 
Subtracting  the  second  total energy from  the first 
(E,,,,, - E,,,,,,) gives a  measure of the exchange  energy. 
A positive  value indicates  ferromagnetic  coupling 
preferred,  and  a negative, antiferromagnetic. 

As can be imagined,  the  number of states  for  each 
system is very large,  and  each  sum ETOT,F or E,,,,,, is an 
extremely large  number,  compared  to  their  difference.  The 
accuracy of the  subtraction must be  done  to  one  part in 
lo6 or  better.  Nonetheless,  Herman  and  collaborators 
obtained  interesting  results [5, 61. What  they  found was an 
oscillating  exchange, in which the sign of the  coupling 
alternated  for every additional  spacer layer. The  ostensible 
periodicity  was thus  a  lattice spacing, or  around  the 
familiar  3 8, once  more. However, the  amplitude  envelope 
did not decay  in a  monotonic  fashion,  and  upon fitting 
their  numerical  results  to two oscillations with different 
amplitudes,  periods,  and  phases,  they  found  a  good fit. 
One  period,  the  dominant  one, was small, 2-3 8 , .  The 
other  period, with smaller  amplitude, was quite  large, 
12-15 A or  more,  depending  on  the  material  and 
crystallographic orientation. 

It was not  until several years  later  that  experiments  at 
NIST [7] and  elsewhere showed that  a  second periodicity 
did  occur in many real  samples  as well, with one  period 
short  and  the  other  period long. The  better  the  interface 
quality, the  larger  the  amplitude of the  short-range 
oscillation, which is not  seen in samples  where  the  surface 
roughness  averages over  any small-period oscillation. 

The  work by Herman  et al. is valuable  in that it pointed 
out  the  strong  materials  dependence of the  coupling 
period.  The work was also  among  the first to  calculate 
different oscillation periods  for  different crystallographic 
orientations in the  same  material.  Another  valuable 
contribution involved subsequent  calculations  on alloys, in 
which the  band  structure of the alloy was determined by 
continuously interpolating  between  the  band  structures of 
the two constituent  elements, with  weighing proportional 
to  the  relative  percentage of each  element in the alloy. 
Exchange coupling  periods  thus  calculated  bore  a  strong 
correspondence  to  those  measured by Parkin  et al.  in the 
same systems  [4]. 

P. Bruno and C. Chappert Concurrently with the work 
of Herman  et al., Bruno  and  Chappert [8] undertook  a 
generalized analytic approach with an explicitly RKKY 
formalism. They  also used features of the  Fermi  surface 
in various crystallographic orientations  to  predict  long 
periods  and  multiple  periods.  Their  use of experimentally 
determined  Fermi  surfaces  enabled  them  to  make explicit 27 
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predictions  for  Cu, Ag, and  Au  spacer layers, which were 
found  (for Ag and  Au)  to  agree very closely with later 
measured  experimental  periods [7] (agreement  even  closer 
than  that  obtained by theoretically  calculated  Fermi 
surfaces).  The  strong  agreement  provided,  at  an early 
stage, convincing indications  that  the RKKY interaction 
was the  correct  interaction  for  these systems. Bruno  and 
Chappert  also  made  useful  remarks  about  the  role of 
roughness  to filter out  the  short  periods,  and  about  the 
difficulty of correct  determination of the  phase.  Their 
work  has  had  considerable  historical  impact;  the 
methodology was clearly  laid out,  enabling  other 
researchers  to  complete  important extensions. 

M. Stiles Stiles  provided  considerable  depth  to  the 
Fermi  surface analysis approach [9], and many of his ideas 
and  calculational  data  form  the basis of current  thinking 
about  Fermi  surface  contributions.  It was not  clear  from 
the  total  energy  and previous  analytic calculations which 
features of the  Fermi  surface  were giving rise  to which 
periods (if indeed it was the  vectors of the  Fermi  surface 
that gave the  longer  periods).  Stiles  performed  state-of- 
the-art  calculations of the  Fermi  surfaces of a  wide range 
of spacer  materials.  In  separate analysis, he  found  the 
conditions  for  the key k-vectors  responsible  for  the 
exchange  coupling; then,  for every Fermi  surface  he 
elucidated  the  particular  k-vectors  that would be  relevant 
for  that  material.  For every  crystal direction,  there  are 
typically a large  number of candidate  k-vectors k, 
and,  hence,  periods rrlk,; to give some  idea of the 
predominance of some  over  the  others,  he  weighted  the 
period by the  degree of representation of its extrema1 
orbit on the  Fermi  surface. Still, this  often gave  a 
prediction of many periodicities  for  each crystal direction, 
in contradiction  to  experimental  observations of one  or 
at  most two. To obtain  the exchange coupling exactly 
necessitates  integrals of matrix elements of the wave 
functions,  quantities  that  are difficult to  obtain accurately. 
Variants of the  Stiles  approach  were  used by other 
authors,  as is shown  below. 

Quantum wells 
The  geometrical effects of finite-thickness  layers  have one 
result in addition  to  the  above RKKY description, namely 
quantum wells. Theories  postulating  variants of quantum 
wells  in magnetic multilayers appeared fairly early 
(see discussion of theories below), but  the definitive 
experimental  proof  came with the inverse photoemission 
measurements of F. Himpsel [lo]. He  measured  the 
photoemission intensity of Cu on Co as  a function of Cu 
thickness, and  observed oscillations  every few additional 
Cu layers. He ascribed  the successive peaks  to  the 
formation of new bound  states in the  quantum well that 

28 formed in the  copper.  Other  groups  soon followed,  with 

evidence  for  quantum wells  in FelAu, FeIAg, CoICu, and 
other systems [ll]. As  proposed by Jones  and  Hanna [12] 
and  others,  the  source of the wells was  a misalignment in 
the  bottom of the  conduction  bands of two adjacent layers 
of dissimilar materials when the chemical potentials  were 
aligned. Of course,  this  means  that  not all  systems  have 
wells in the spacer-some have wells in the  magnetic 
layer, and  some have wells for  one spin direction  and 
barriers  for  another. However, quantum wells are now an 
accepted  fact in magnetic multilayers, and it is of interest 
to discuss what effect they have on  the exchange  coupling. 

One  matter  that is clear is that  quantum wells, as a 
geometrical  feature  alone,  cannot  be  the  sole  source of 
exchange  coupling. The proof of this is the exchange 
coupling observed  between two separated  magnetic 
impurities in  a nonmagnetic  metal,  where  the  geometry 
clearly does  not  support a well (and  the  bound  states, if 
any, at  each  delta-function  scatterer play no essential 
role in the exchange coupling).  Moreover, dissimilar 
nonmagnetic  metals  placed in juxtaposition likewise have  a 
mismatch of bands,  but no coupling  between  nonmagnetic 
metals  arises.  Exchange  coupling  between  separated 
magnetic layers  occurs because of the spin polarization of 
intervening  conduction  electrons,  and  associated  magnetic 
scattering of conduction  electrons with the  moments in the 
magnetic layer. Quantum wells cause  bound  states in 
addition,  and  the  focus of the  theories below is on the 
effect of quantum wells on  the oscillation period, 
amplitude,  and  phase. 

B. Jones and C. Hanna Although  Mathon  et al. 
published  work [13] on infinitely  high quantum wells at  an 
early  stage,  Jones  and  Hanna [12, 141 were  among  the first 
to  consider  quantum wells of a  finite height  applied  to 
magnetic sandwiches. Their  mechanism, of a  mismatch 
of electronic  structure  between two materials  placed 
in contact, is currently  the  accepted  explanation of 
quantum wells in magnetic multilayers. Moreover,  they 
showed how a new feature such  as quantum wells can  be 
straightforwardly  incorporated  into a traditional RKKY 
calculation.  The  first-order  term in an RKKY calculation 
is the  perturbative  effect of the exchange coupling on the 
nonmagnetic  Hamiltonian.  The  leading  term, which is of 
second  order  in  the exchange coupling J ,  has  the  form 

where (J/n)’f(r; ,   r j )  is termed  the RKKY interaction 
between  spins i and j, and n is the  density of conduction 
electrons.  Denoting  the  conduction-electron wave 
functions  that  diagonalize  the  unperturbed  Hamiltonian 
by $k(r), one  obtains 
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{ $ ~ , ( r ~ ~ ~ ( r , ) $ ~ ( r ~ $ k , ( r ~  + h’c’) 
f(r,, r,) = y 2 (5) 

k,k’ Ek - Ek’ 

Pk < st 
EL > F F  

Logarithmic  contributions  at  those wave vectors such 
that - E ~ ,  = E~ give oscillations with wave vector(s) 
q, = 2kF,t.  Thus,  from  Equation ( 3 ,  a knowledge of 
the wave functions  and  energies of the  “unperturbed” 
(nonmagnetic)  part of the  Hamiltonian is sufficient to give 
a  good  estimate of the  RKKY coupling. 

For  a  quantum-well system, the wave functions $k(r) 
are  straightforward  to  calculate exactly for  free-electron 
bands.  The  eigenstates  are  products $x$y$z. Parallel  to 
the  interfaces, $x and $” are  plane waves. Perpendicular 
to  the  interfaces, $z is oscillatory for  fi2k1/2m  greater 
than  the  height of the well, with a wave vector kl that is 
discontinuous in space  and  forms  a  continuum in energy. 
For  perpendicular  momentum which is not  large  enough 
to  escape  the well, the  eigenstates  are  bound,  and decay 
exponentially outside  the well. Their  energy  spectra  are 
discrete.  Although technically  all states of the system are 
quantum-well  states, since  they form  an  orthonormal  set in 
a  quantum-well system, it is typically the  bound  states  that 
are given greatest  focus, since  they are  not  present in the 
absence of a well. The  bound  states,  although finite in 
number,  contribute  to  the exchange  coupling  with a 
strength  comparable  to  that of the  continuum  states, 
because  the wave functions  are  normalized essentially 
to  the width of the well, and  therefore have a finite 
magnitude.  The  continuum  states, meanwhile, although 
much greater in number,  are  each  normalized  to  the 
system size, and  thus  the  amplitude of an individual 
eigenstate  goes  to  zero in the  thermodynamic limit. 

number of effects on  the exchange  coupling. First of all, 
there is a  phase shift imposed, with an effective  delay  in 
the well with the  introduction of bound  states.  Second,  the 
amplitude  can  be  enhanced  over RKKY coupling without 
quantum wells. If quantum wells are  chosen on the basis 
of the  band  structure of the  constituent  materials,  the 
quantum-well  period  ends  up  being  the  same as that 
derived  from analysis of the  Fermi  surface, however. Thus, 
the main  effect of quantum wells is primarily to  enhance 
the  amplitude of observable oscillations, but  also  to  make 
the initial phase  more  indeterminate.  (The effect of 
disorder is discussed further  at  the  end of this  paper.)  An 
example of the  effects of a relatively  small quantum well is 
shown in Figure 2. 

The  quantum-well  states,  bound  and  continuous, have a 

G. Mathon and collaborators The  theory of Mathon  and 
collaborators  has evolved over several years [13, 15, 161. 
Its  current,  and most comprehensive,  form is as follows 
[16]. Quantum wells are  formed by the exchange 
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potentials of the  magnetic layers, which spin-split the 
bands,  and  are  an  independent  potential  regardless of the 
orientation of the  opposite layer, a view in accord with 
most current  thinking. Exchange coupling  between two 
magnetic layers is expressed in terms of thermodynamic 
potentials, which are  themselves  a  weighted  integral of 
spectral density. The  net  are  sums over energy  and  k,,, 
which would need many k-points  for  convergence. 
Arguing,  as Stiles [9] and  others have, that oscillation 
periods w/k, arise  from  extremal  radii k, of the bulk 
spacer  Fermi  surface in the  direction  perpendicular  to  the 
layers, a  stationary  phase  method is used  to  evaluate  the 
sums  at  just  those  extremal  k-points (typically “bellies” 
and  “necks”).  Thus,  the possible  oscillation periods  are 
determined by the  same  Fermi  surface analysis  as, for 
example, the work by Stiles. However, this method  also 
obtains  amplitudes.  To  obtain  the weighting for  each  kL- 
point,  the  spectral density is calculated.  It is found  to  be 
broad  and oscillatory for  some  k,,  narrow  and high around 
others.  Broad, low resonances give small contribution 
to  the exchange  coupling,  while delta-function-like 
contributions  determine  the  observable exchange periods. 
Narrow  delta-function-like  spectral  densities  are  just  those 
arising from tightly  confined quantum well states, so it is 
the  k-directions  corresponding  to  quantum wells which 
give the  dominant  periodicities.  Mathon  et al. make  the 
additional  argument  that relying on  monolayer  spacers  for 
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estimates of predominant  periods is misleading, because 
a full  quantum well forms only from bulk-like band 
structures of several  layers or  more.  Mathon  et al.  also 
have  a  so-called torque  method, which involves full 
converged  sums over k-states,  and which has  good 
agreement with the  method  described above. 

P. Bruno Bruno  recasts  the  equations of exchange 
coupling in the  presence of quantum wells in terms 
of reflection and transmission  coefficients [17, 181 (a 
technique  Stiles  also  used),  and by exchanging the  order 
of integration,  obtains  some analytic  expressions. This 
method of calculation is in fact exactly equivalent  to  the 
perturbative  method of Jones  and  Hanna (since  reflection 
coefficients obviously depend  on  properties of the 
eigenstates).  Rather  than a physical explanation in terms 
of spin-polarized  conduction  electrons in the  spacer,  the 
reflection  coefficient methodology  can  be  interpreted in 
terms of a quantum  interference  mechanism.  The  standing 
waves of RKKY  can of course  be  re-expressed as  a 
superposition of traveling waves, each reflecting off one 
interface.  The  methodology of Bruno  et al. simplifies the 
calculations  and allows the  calculation of oscillation 
dependence  on  ferromagnetic thickness and  on  overlayer 
thickness as well. Exchange coupling with varying 
ferromagnetic layer  thickness results in an oscillation 
period which depends  on  the  ferromagnetic  Fermi  surface. 
Varying  overlayer  thickness results in weak  oscillations 
with the periodicity of the  overlayer  material [15]. The 
facts  that  the  eigenfunctions of the  whole system depend 
necessarily on  the  Fermi  surface of each  constituent layer, 
and  that any sum over  a finite  number of k-vectors gives 
oscillations that reflect extrema1 features of the  Fermi 
surface(s),  make it straightforward  to  understand  that 
varying the width of one layer or  another merely 
explores  that  part of a larger  phase  space.  Mathon  and 
collaborators [19]  have  also obtained similar results. 

Effects of disorder 
Real  interfaces  are of course  not atomically smooth,  and 
the  question  naturally  arises as to  the effect of an  uneven 
interface  on  the  various  calculations discussed above. If 
the exchange coupling oscillates  with spacer width,  a 
variable  spacer  distance  tends  to  average over  oscillation 
periods  on  either  side of the  average.  For a short 
oscillation period, this tends  to  average it out  entirely  for 
a large  enough  amount of roughness.  The  longer  periods 
of 10 8, and  more  are much  less affected.  The effects of 
roughness in real systems thus explain  two discrepancies 
of total energy calculations such as  those of Herman  et al. 
[6], which showed that  shorter-period oscillations  have 
much  larger  amplitude  than  do  longer-period oscillations 
(in contradiction  to many experiments)  and which gave 
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experiment overall. Roughness averaging in real  materials 
reduces  the  amplitude of all periods,  and  reduces  the 
amplitude of short-period oscillations  much more  than 
that of long-period oscillations.  Since  averaging is done 
over spacer  widths  both  longer  and  shorter  than  the 
average, the  actual  period  remains  unchanged. 
Calculations of delta  function  scatterers  at  the  interface 
by Jones  and  Hanna [12] showed that  interface  scattering 
caused  instead  an  additional  phase  shift, in addition  to any 
quantum well phase shift present. 

Exchange  coupling  in real systems 
Finally we come  to  the  question of theoretical 
predictability of exchange coupling in real systems. The 
best-known quantities  are  the oscillation periods, which 
can be predicted with ever-increasing accuracy for a range 
of materials, including  alloy spacers, by examination 
of the  Fermi  surface.  The fall-off with  distance of the 
envelope of the oscillation is also well understood.  The 
predominance of quantum wells in exchange-coupled 
systems is well established.  The  amplitude is less  clearly 
predictable,  since it decreases with increasing  interface 
roughness  and  changes with the existence of quantum 
wells. However,  empirical  studies  do well here,  and 
samples of similar  quality  usually  have  similar amplitudes, 
with the  amplitude  between  different systems varying 
within  fairly well-known bounds.  Moreover, as sample 
quality increases with time,  there is a slow but  steady 
convergence  toward  calculated  amplitudes.  Least 
predictable is the  phase of the oscillation,  since there is 
fairly strong  dependence  on  disorder,  although  models of 
interface  disorder by various  groups  are giving increasingly 
better fits even here. 

Concluding remarks 
Exchange coupling  in  magnetic multilayers is at  this  point 
a fairly well-settled  field, with many strong  contributions 
in the  literature.  It is hoped  that this review of some of 
the key theoretical  contributions will give an  indication of 
the  range of theoretical  understanding achieved  in this 
field. 
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