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Sparse-matrix  vector  multiplication  is  an 
important kernel  that  often  runs  inefficiently 
on  superscalar RISC processors.  This  paper 
describes  techniques  that  increase  instruction- 
level  parallelism  and  improve  performance. 
The  techniques  include  reordering to reduce 
cache  misses  (originally  due to Das et al.), 
blocking  to  reduce  load  instructions,  and 
prefetching to prevent  multiple  load-store  units 
from  stalling  simultaneously.  The  techniques 
improve  performance  from  about 40 MFLOPS 
(on a  well-ordered  matrix) to more  than 100 
MFLOPS on a  266-MFLOPS  machine.  The 
techniques are applicable to other  superscalar 
RISC processors as well,  and  have  improved 
performance on a Sun  UltraSPARC" I 
workstation,  for  example. 

1. Introduction 
Sparse-matrix  vector  multiplication is an  important 
computational  kernel in  many iterative  linear solvers (see 
[l], for  example).  Unfortunately, on many computers this 
kernel  runs slowly relative  to  other  numerical  codes such 
as  dense-matrix  computations.  This  paper  proposes new 
techniques  for improving the  performance of sparse-matrix 

vector  multiplication  on  superscalar  RISC  processors. 
We  experimentally analyze these  techniques,  as well as 
techniques  that have been  proposed by others,  to show 
that  they  can  improve  performance by more  than a factor 
of 2 on many  matrices. 

Three main factors  contribute  to  the  poor  performance 
of sparse-matrix  vector  multiplication  on  modern 
superscalar  RISC  processors.  First,  the lack of data 
locality causes a large  number of cache misses. Typically, 
accesses to  the  data  structures  that  represent  the  sparse 
matrix A have no temporal locality' whatsoever,  but  they 
have good  spatial locality (i.e., there is no data  reuse,  but 
accesses are in  a stride-1  loop). Accesses to  the  dense 
vector x being multiplied  do  reuse  data,  but  the access 
pattern  depends on the sparsity structure of A. One 
technique  that  can  reduce  the  number of cache misses  is 
to  reorder  the  matrix  to  reduce  the  number of cache 
misses on x. This  technique was proposed by Das  et  al. 
[ 2 ] ,  analyzed  in certain  cases by Temam  and Jalby [3], and 
further investigated by Burgess and  Giles [4]. We study 
this  technique  further in Section 2, and we also  show that 
the effectiveness of the  proposed new techniques  depends 
on it. 

I We say that  a  sequence of memory accesses has temporal locality if the  same 
memory locations  are accessed repeatedly  and  the  repetitions  are close together 
within the  sequence. We say that  the  sequence has spatial locality If adjacent 
memory  locations  are accessed close together. 
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A sparse-matrix vector multiplication code for matrices stored in a 
compressed-row format. The N nonzeros  of  the n-by-n matrix A 
are compressed into a single vector a in a row-wise ordering; the 
column indices of  these nonzeros are compressed into an integer 
vector colind. The vector rowptr stores the first index of each row of 
A in the vectors a and colind, and its last element contains N + 1. 

A second  factor  that limits performance is the  tendency 
of multiple  load/store  functional  units  to miss on  the  same 
cache  line. Many superscalar  RISC  processors have at 
least two load/store units. On  such  processors,  when  one 
unit is stalled  because of a cache miss, the  other  unit(s) 
can  continue  to  load  data  from  the  cache.  Unfortunately, 
in stride-1  loops  the  other  units  soon try to  load  data  from 
the  cache  line  that  caused  the first miss. Consequently, all 
units  are  often  stalled  on  the  same  cache line. The miss 
is compulsory  because  the accesses  have no  temporal 
locality, so one  unit  must  spend  time waiting for  the miss 
to  be serviced. However,  the misses generated by the 
other  units  are  not compulsory, and we show  in Section 2 
how to  prevent  them by using prefetching.  These  cache 
misses can  also  be  prevented by a  simple hardware- 
assisted prefetching  mechanism, which is described in 
Section 4. 

Finally, sparse-matrix  vector  multiplication  codes 
typically perform a large  number of load  instructions 
relative  to  the  number of floating-point  operations  they 
perform.  This  phenomenon  occurs  because of poor  data 
locality, which makes it difficult to  reuse  data  already in 
registers,  and  also  because  the  code must load row or 
column indices  in addition  to floating-point data.  The 
large  number of load  instructions places  a heavy load  on 
the  load/store  units  that  serve as the  interface  between  the 
register files and  the  cache,  and  on  the  integer  ALUs  that 
compute  the  addresses  to  be  loaded.  (These  ALUs  are 
sometimes  part of the  load/store  units  and  sometimes 
part of the  integer  execution  units.) On most current 
processors,  these  units  are  often  the  bottleneck in sparse- 
matrix vector  multiplication.  The  floating-point units are 

71 2 therefore  underutilized.  We  present in Section 2 two 

techniques  that  address  this issue; the first is a  blocking 
technique  that  reduces  the  number of load  instructions, 
and  the  second is a technique  that  eliminates indexing 
instructions. Blocking  in sparse-matrix  vector 
multiplication was used in somewhat  different  forms 
in [5, 61. 

separately,  they  are most  effective when  combined.  In 
particular,  reordering  the matrix can  enhance  or  degrade 
the effect of blocking.  Also, without  the  reduction in the 
number of cache misses on x that  reordering yields, our 
prefetching  technique is ineffective on  large  matrices. 

Our  techniques  are  also  applicable  to  other  superscalar 
RISC  processors.  We  describe  the  techniques in the next 
section  and  comment,  where  appropriate, on their 
applicability to  other  current  superscalar processors. One 
of the  techniques,  prefetching, is difficult to  implement 
in the  irregular  loops  that  comprise  the  sparse-matrix 
vector  multiplication  code.  Section 3  explains how we 
implemented  this  technique. 

We have implemented  our  techniques  and  evaluated 
them on an IBM superscalar  RISC  workstation with  a 
POWER2*  processor using  a suite of 13 matrices. The 
matrices  are all structurally symmetric, but  the  code is 
general  and  does  not exploit symmetry. (A matrix vector 
code  for symmetric matrices  can  load  fewer coefficients 
and  therefore  run  more efficiently.) Section 5 presents  our 
experimental results. The  results show that  the  techniques 
are viable and  that  they significantly enhance  performance. 
Our  conclusions  from  this  research  are  presented in 
Section 6. 

Although  the  techniques  that we propose  can  be  applied 

2. Algorithmic  techniques 
Consider  the typical sparse-matrix  vector  multiplication 
code shown  in Figure 1. The  code  assumes  that  the matrix 
is stored in  a compressed-row format,  but  the  same 
considerations apply to  other  storage  formats  that  support 
general sparsity patterns.  The  inner  loop of the  code  loads 
a(jp),colind(jp),andx(colind(jp)),andperforms 
one multiply-add operation. While a and colind are 
loaded using  a stride-1 access pattern, x (colind( j p )  ) 
may be any element of x. 

There  are  four  potential  performance  problems in this 
code.  The accesses to a and colind generate many cache 
misses, one  per  cache  line  (because  the  stride-1 access 
ensures  that  the  entire  line is used  before it is evicted 
from  the  cache).  Depending  on  the  number of nonzeros in 
A and on the  details of the  iterative  algorithm in  which 
the  matrix  vector  multiplication is used,  these  cache misses 
can  occur in the first-level cache  or in a cache  further 
away from  the  processor.  The accesses to x can have poor 
spatial  and  temporal locality, and  can  hence  generate  even 
more  cache misses. The  ratio of data values loaded  into 
registers  per  floating-point  operation is 1.5, which means 
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that  the code’s performance is limited by the  performance 
of the processor’s loadlstore  units. Finally, the conversion 
of colind ( j p )  from  an  integer index to a  byte  offset 
from  the beginning of x, required on most processors  for 
indirect  addressing,  requires  the  integer  ALUs  to  perform 
an  additional  instruction in every iteration.  This  section 
describes  four  techniques  that  can  cope with these 
problems. 

Reducing  cache  misses  through  bandwidth  reduction 
The  bandwidth of a sparse matrix is the maximum 
distance, in diagonals,  between two nonzero  elements of 
the  matrix.  Matrix-reordering  algorithms  that  reduce  the 
bandwidth of a  matrix  have been  proposed  since  the  late 
1960s as a way to  reduce fill and  work in sparse-matrix 
factorizations.  The first such technique, which is based 
on a breadth-first  traversal of the  graph underlying the 
matrix,  was invented by Cuthill  and  McKee [7] (see [SI for 
a contemporary  description). A  simple  modification of 
their  technique, which reverses  the  ordering  produced by 
the Cuthill-McKee algorithm, was later  found  to  be  even 
more efficient  in sparse  factorizations. 

matrices using  a bandwidth-reducing  technique in order  to 
reduce  the  number of cache misses generated by accesses 
to x. Temam  and Jalby [3] analyzed the  number of cache 
misses as a function of the  bandwidth  for  certain  cache 
configurations. The  technique was  investigated further 
by Burgess and  Giles [4], who  extended it to  other 
unstructured-grid  computations. Burgess and  Giles 
experimentally  studied several reordering  strategies, 
including  reverse Cuthill-McKee and a greedy blocking 
method.  They  found  that  reordering  improved 
performance  relative  to a random  ordering,  but  they  did 
not find any sensitivity to  the  particular  ordering  method 
used. 

set of matrices. Our  experiments,  described in detail in 
Section 5, essentially validate  the  results of Burgess and 
Giles. We have found  that  compared  to a random 
ordering,  bandwidth  reduction  and  nested-dissection 
orderings  reduce  cache misses and  improve  performance. 
Performance  can  improve by more  than a factor of 3 on 
large matrices. 

without blocking or  prefetching,  the  particular  ordering 
method  does  not  matter much to  the  performance of 
matrix  vector  multiplication.  Conscquently,  reordering 
methods  should  be  selected on the basis of the  reordering 
speed  and  the  effect on ordering-sensitive  preconditioners, 
such as  incomplete  LU.  When  the  bandwidth-reduction 
technique is combined with  blocking and  prefetching, 
however, different  ordering  methods yield different 
performance results. We have found  that in this  situation 

Das  et al. [2] proposed  the  reordering of sparse 

We have performed  additional  experiments with  a larger 

When  the  bandwidth-reduction  technique is used alone 

Cuthill-McKee ordering is usually the  best choice. It is a 
fast  algorithm  and  has  benefits in preconditioning as well, 
as explained in Section 6. 

Because  sparse-matrix  vector  multiplication  uses  large 
data  structures  and  has  poor  data locality, reducing  cache 
misses is an  important goal for  this  code,  even on 
processors in which out-of-order execution can cover the 
cache-miss  latency  in other  codes. 

Reducing  the  number of load instructions  through 
blocking 
We  reduce  the  number of load  instructions  the  code 
performs by splitting  the  general  sparse matrix A into a 
sum of two or  three  matrices,  some of which are block 
matrices.  It is reasonable  to expect the matrix to  contain 
dense blocks, because such matrices  arise in many 
application  areas  (for  example,  equations  defined on grids 
with more  than  one  variable  per grid point). Multiplying  a 
block sparse matrix by a vector  can  reduce  the  number of 
loads over unblocked  multiplication in three  different 
ways. First, blocking enables  the  code  to  load  fewer row 
or  column indices into registers, because only one index 
per block is required,  rather  than  one  per  nonzero. 
Second,  elements of x are  loaded  once  and  used k times 
when  the  matrix is blocked into  k-by4 blocks (this is a 
form of register blocking). Third, since the  POWER2 
processor  has a load-quad  instruction  that  loads two 
consecutive floating-point  doublewords  into two registers, 
1-by-2  blocks allow the  processor  to  load  the two nonzeros 
in a and  the two elements of x using  only two, rather  than 
four,  load  instructions. 

We  therefore scan the matrix in a preprocessing  phase 
and  extract all the 2-by-2 blocks that we find, and  then all 
the 1-by-2 blocks that we find. The  extraction is done in  a 
“greedy”  fashion  that  extracts all the blocks that  are  found 
in  a row-wise scanning of the  matrix.  For 2-by-2 blocks, 
this greedy  algorithm is not always optimal,  in  the  sense 
that  it may find fewer 2-by-2 blocks than possible. The 
greedy algorithm is optimal  for 1-by-2  blocks. To preserve 
data locality  in  accesses to x, we do  not multiply by the 
2-by-2 blocks, then by the 1-by-2 blocks, and  then by the 
remaining  unblocked  nonzeros.  Instead, we process row 
after row, where in each row i we perform  both  the 
multiplication by the  unblocked  nonzeros in row i and 
the  multiplication by the blocked nonzeros in  rows i 
a n d i  + 1. 

On  processors  without a quad-load  instruction 
(practically  all other  current  RISC  processors),  some of 
the benefit of 1-by-2  blocks can  be realized by replacing 
them with 2-by-1 blocks. These  require only three floating- 
point  loads,  because  the  element of x can  be  loaded  once 
and  used twice. 

The  balance  between  the  capabilities of the  loadhtore 
units  and  the  floating-point  units in other  superscalar 71 3 
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processors is the  same as or  worse  than  the  balance in 
the  POWER2 processor’. The  POWER2  processor 
can  perform  four  FLOPS (by issuing multiply-add 
instructions)  and  load  four 64-bit words (by issuing two 
quad-load  instructions)  in every cycle. Digital’s Alpha 
21164 [9] and Sun’s UltraSPARC**  [lo] both have floating- 
point  units that can issue one  add  and  one multiply 
instruction every cycle. The Alpha  can issue two load 
instructions  and  load two words, giving the  same  balance 
as the  POWER2,  but  the  UltraSPARC  can issue  only one 
load  instruction  per cycle, giving a  worse balance.  We 
therefore  conclude  that  reducing  the  number of loads is 
at  least  as  important on other  processors as  it  is on the 
POWER2. 

Our  approach  to blocking is novel  in that our algorithm 
attempts  to find many  small, completely  dense blocks. 
Other  researchers have proposed  algorithms  that  attempt 
to find larger  (and  hence  fewer)  dense blocks and/or 
blocks that  are  not  completely  dense. 

Aganval,  Gustavson,  and  Zubair [5] describe  an 
algorithm  designed  for  vector  processors.  Their  algorithm 
tries  to find a few large, relatively dense blocks. They 
divide the rows of the matrix into blocks, and  attempt  to 
find one fairly dense  rectangular block  in  every  block of 
rows. The  other  nonzeros in the block of rows remain 
unblocked (they may be  coalesced  into  dense  diagonals, 
however). This  scheme works  well on vector  processors in 
which the  vector  startup  cost is  significant. 

small  blocks  would suffice to  obtain  good  performance, 
and  that  the most important objective is to block  as  many 
of the  nonzeros as  possible, even if the blocks are small. 
In  addition,  the small vector  startup  cost  on RISC 
machines  implies  that it is probably not beneficial to  use 
dense blocks that  contain many zeros.  The  extra  time it 
takes  to  load  these  structural  zeros  into  cache  and  into 
registers is likely to mask any performance  benefit  that 
larger  dense blocks  might afford.  (A simple analysis 
shows,  however, that allowing one  zero in  a 2-by-2 block 
might improve  performance slightly on the  POWER2 
processor.) 

PETSc, a toolkit  for scientific computations [6], uses a 
blocked sparse-matrix  vector  multiplication  subroutine  that 
attempts  to find blocks of rows with the  same  nonzero 
structure.  Our  approach is therefore similar to  that of 
PETSc in that  both  approaches  require  the blocks to  be 
completely  dense,  but  there is an  important  difference. 
Our  algorithm  can block  most of the  nonzeros in  a matrix 
even  when  no two rows have identical  structure,  whereas 
PETSc  cannot.  The  penalty  that  our  algorithm pays for 
the  extra flexibility is quite small: Our 2-by-2 blocked 

On the  other  hand, we realized  that  on  RISC  processors 

2 By balance we refer to number of data values that can be loaded in a cycle 
relative to the number of floating-point operations that can be performed in a 

71 4 cycle. 

algorithm  loads only one  column  index  per six floating- 
point words loaded. In addition,  PETSc allows different 
numbers of rows in different blocks,  which can  cause  more 
run-time  overhead  than fixed-size blocks. 

Prefetching in irregular loops 
Traditionally,  prefetching  has  been  considered  to  be a 
technique  for hiding  latency,  in the  sense  that  prefetching 
can  prevent memory-access  latency from  degrading 
performance,  as  long  as  memory  bandwidth is sufficient to 
keep  the processing units busy (see [11-131, for  example). 
In many codes,  for example dense-matrix  vector 
multiplication,  the  ratio of floating-point  to  load 
instructions is quite high. This high ratio allows the 
algorithm  to  hide  the latency of cache misses by 
prefetching  cache  lines early. The  fact  that  the  loadistore 
unit is stalled  for many cycles is negligible, because  there 
are only a few load  instructions  relative  to  floating-point 
instructions. 

In matrix vector  multiplication, especially  with sparse 
matrices,  the  ratio of floating-point to  load  instructions is 
low, less than  one.  The memory bandwidth  required  to 
keep  the processing units busy is therefore high. Since 
most  computers  do  not have  sufficient memory  bandwidth, 
loading  data  from  memory  becomes  the  bottleneck  that 
determines  performance in  this computation.  It is not 
important  here  whether  the  loadistore  unit stalls early 
(with prefetching)  or  late  (without),  since it is needed all 
the  time. 

We  can still use  prefetching, however, not  to  hide 
latency but  to improve memory  bandwidth.  As  far as we 
know, this  use of prefetching is novel. In  particular, we 
use prefetching  to  prevent  multiple  loadhtore  units  from 
stalling on the  same  cache  line. Since most of the  cache 
misses are  generated by accesses to two vectors  that  are 
accessed  in the  same  stride-1  loop,  multiple  load/store 
units  can miss on  the  same  cache  line.  One  unit misses on 
the first  word  in  a line  and stalls. The  second  unit  tries  to 
load  the next  word  in the  vector  and also  stalls. This  can 
happen  even when  two  vectors are accessed, if the  second 
unit  loads a  word  in cache  from  the  second  vector  and 
then misses on the first. When two units  stall  on  the  same 
line, the effective memory-to-cache  and  cache-to-register 
bandwidths  are  reduced.  It is possible,  using prefetching, 
to avoid this  behavior. 

Our strategy is to  prefetch  elements of a and c o l i n d  
before  they  are used. The  prefetching  instruction always 
misses and  hence  stalls  one of the  loadistore  units.  The 
other  unit, however, continues  without stalling  as long  as 
there  are no cache misses on x or y, which are  rare  once 
the  matrix  has  been  reordered.  The  details  are  quite 
complicated, however, and  are  explained in Section 3. 

The  use of prefetching  to  prevent  multiple  loadistore 
units  from stalling on  the  same  cache  line is likely to have 
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a  beneficial  effect on  other  RISC  processors  that have 
multiple  load/store units. 

Eliminating  integer-to-pointer  conversions 
The expression x ( colind ( jp) ) is compiled  into  an 
instruction  sequence  that  loads colind ( jp) into a 
register  and  at  least two more  load  instructions  that  load 
x(colind( jp) ) .  The expression colind( jp) can  be 
loaded in one  instruction, since colind is accessed 
in a stride-1  loop, by an  instruction  that  loads it and 
increments  the  pointer  to colind( jp) by the size 
of one  integer.  Loading x (colind ( j p )  ) requires two 
instructions,  because  the  instruction  that  loads a word with 
a given offset from  the beginning of x requires a  byte 
offset,  not a  word  offset. The expression colind ( j p )  
must  therefore  be  multiplied by the size of a word  in bytes 
to yield a  byte  offset. 

This  multiplication is done by an  arithmetic shift 
instruction  that  executes in one cycle on one of the 
integer  ALUs.  On  processors  where  the  integer ALUs also 
compute  the  addresses  for  load  instructions,  such  as  the 
IBM POWER2  and  the Digital Alpha 21164, this  extra 
integer  instruction places additional  overhead on the 
fixed-point units, which are  already  overloaded  with  load 
instructions3. 

We  can avoid this  overhead by performing a 
preprocessing  phase  in which  we replace the integer indices 
with pointers  to  elements of x. We show  in Section 5 
that  this  optimization  alone  can  improve  performance by 
as much as  38%.  This  optimization was also used in the 
IBM  implementation of the  NAS  benchmarks [14]. 

on  the  column-indices  vector  out of the  inner  loop  of 
Figure 1. This  optimization  can, in principle  at  least,  be 
performed by a compiler  that is capable of interprocedural 
analysis. Such a compiler  optimization may be possible 
only if the  iterative  algorithm  and  the matrix vector 
multiplication  kernel  are compiled at  the  same  time. 
It  also  requires  the  compiler  either  to recognize that 
the  column  indices  are  not  used  elsewhere  and  can  be 
overwritten by pointers,  or  to  allocate a  large temporary 
array  to  store  the  pointers. 

On processors  with a dedicated  virtual-address  adder, 
such as Sun’s UltraSPARC,  this  optimization is likely 
to have no effect at all because  the  load  and shift 
instructions  do  not  compete  for  the  same  functional  units. 
Experiments  on  an  UltraSPARC  workstation,  described in 
Section 5, verify that this optimization  has  no effect on 
the  performance of the  code on that  processor. 

This  optimization  amounts to removing  a transformation 

One of the referees of this paper regards this behavior of the POWER2 
Architecture“ as an architectural flaw: “Since the floating-point load instructions 
specify the data length (single, double,  etc.) in the instruction format, the 
instruction unit can pass this information to the addressing unit, which should 
handle the shift implicitly. This, in fact, was done on the IBM 3701390 Vector 
Facility.” 

3. Prefetching  in an irregular loop 
To implement  our  prefetching  strategy, we need  to 
perform a single  prefetch  instruction  after a certain 
number of iterations of the  inner  loop in Figure 1, or in 
its  blocked counterparts.  We  assume  that  cache  lines  on 
our  target  machine  contain  32  doublewords  or 64 integers. 
Ideally, we would prefetch  one  cache  line of a every 
32  iterations  and  one  cache  line of colind every 64 
iterations. A simpler  scheme is to  prefetch  both  vectors 
every 32  iterations.  The  prefetch in iteration jp would be 
for a ( j p + 6 4 )  (two  cache  lines  ahead),  and  the  prefetch 
in iteration jp’ = jp+16 would be for colind(jp’+l28) 
(also two cache  lines  ahead).  The  constants  depend on the 
cache  configuration,  but  we  use  these  numbers  here  for 
illustration. 

It is difficult to  implement such  a precise  strategy,  or 
even  the  simpler  one,  without  introducing  extra  overhead 
into  the  inner  loop.  The  problem is that  the  number of 
iterations  that  the  inner  loop  performs  depends  on  the 
length of row i, which is usually different  for  different 
rows. Sorting rows by length is not a  viable option, 
because  it conflicts with  ordering rows and  columns  for 
data locality. Padding rows with zeros so that  their  length 
is divisible by 16 is also not  attractive,  because  computing 
on these  padding  zeros  can  constitute a  significant 
overhead  for very sparse  matrices. 

To  overcome this problem, we use  an  approximation. 
The main idea is to  unroll  the  inner  loop, say 32 times, 
and  to place one  prefetching  instruction  for a before  the 
first unrolled  instance  and  another  for colind after 16 
instances. If rows are very long, this would implement  our 
simple prefetching strategy. This  approximation  does  not 
implement  our  strategy of prefetching every 32  iterations 
when rows are  short. If the row ends  shortly  after a 
prefetch  for a, the  prefetching  at  the beginning of the next 
row usually  stalls the  second  load/store  unit on the  same 
cache line. When rows are  shorter  than 16 elements, 
colind is not  prefetched.  Nevertheless,  our  experiments, 
shown  in Section 5,  demonstrate  that  the  technique is 
effective. 

To  preserve  the  semantics of the original loop, we 
compare j  p to rowpt r ( i + 1 ) after every unrolled 
instance  and skip the  rest of the  instances if jp is greater. 
This  ensures  that  we  do  not  step beyond the  end of a 
sparse row as a result of the unrolling. 

Even this approximation  to  precise  algorithmic 
prefetching is difficult to  implement  in a high-level 
language like  C or  FORTRAN.  The difficulty revolves 
around  the  need  to  compare jp to rowptr ( i + 1 ) and 
conditionally branch  without slowing down the  iterations. 
Our solution is to  compile  the  algorithm, which is written 
in  C,  into assembly language,  then modify the assembly 
language  and compile  it into  object  code.  We  perform  the 
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unrolling,  the  insertion of prefetching  instructions,  and  the 
conditional  branching in  assembly language.  Working in 
assembly language allows us to exploit the  branch-on- 
counter  instruction  and  to  unroll  this  irregular  loop 
without any overhead.  We have been  able  to  perform 
these modifications  in  assembly language in about  one 
day  on  both  an  IBM  POWER2  workstation  and a Sun 
UltraSPARC  workstation. 

4. Hardware-assisted  prefetching 
We  propose a simple  hardware-assisted  prefetching 
mechanism  that  can  handle  prefetching in both  regular 
and  irregular loops. We  propose two new instructions 
called prefetch-start and prefetch-stop. Both 
instructions  serve as hints  to  the  processor,  just like 
regular  prefetch  instructions,  and  both  take  one  argument, 
the  name r of an  integer  register.  The prefetch-start 
instruction  indicates  to  the  processor  that  the  register r 
serves  as a pointer in  a stride-1 loop. Therefore,  the 
hardware  should  attempt  to  prefetch  cache  lines  that  are 
ahead of the  current  value of r. The prefetch-stop 
instruction  indicates  that  the  register r is no  longer  used 
as  a pointer in  a loop,  and  that  prefetching  based  on its 
content  should  stop.  Prefetching in iteration  structures 
more complex than  stride-1  loops  can  perhaps  be 
supported by variants of the prefetch-start 
instruction. 

One possible implementation is to  generate a  signal 
when  an  addition  to r generates a carry  from  bit k to  bit 
k + 1 in r, where  cache  lines  are  2k bytes  wide. This 
signal is then  used  to  trigger  prefetching  for a cache  line 
ahead of the  current  value of r .  This  scheme  ensures  that 
the  prefetching signal is generated when  a  small increment 
(at  most a cache  line)  to r causes it to  point  to a  new 
cache line. 

This  form of hardware-assisted  prefetching  has  several 
advantages over regular  prefetching  instructions  that  are 
inserted by the  compiler,  or  even by hand.  Hardware- 
assisted prefetching  works equally well in regular  and 
irregular  loops,  because  it  eliminates  the  need  to  prefetch 
every fixed number of inner  iterations.  Hardware-assisted 
prefetching  enables  precise  prefetching using  a  single 
machine-code binary, even  when  that  binary is executed 
on machines with several  cache-line sizes. For example, 
machines with IBM  POWER2  processors  come in at  least 
three  primary  cache configurations, which require  different 
prefetching  rates  because  they have different  cache-line 
sizes. 

5. Experimental  results 
In  this  section we present  the  results of the extensive 
experiments we carried  out in order  to assess the 
effectiveness of our strategy. Most of the  experiments 

71 6 were  performed  on a superscalar  IBM RS/6000* 

workstation.  We  repeated  some of the  experiments  on a 
Sun UltraSPARC  workstation in order  to  determine how 
general we can expect the  techniques  to  be.  We believe 
that  most of our findings  would also apply to  other  RISC 
processors. 

Experimental  platform 
The  experiments  were  carried  out  on  an RS/6000 
workstation with  a  66.5-MHz POWER2  processor [15], a 
256KB, four-way  set-associative data  cache, a  256-bit-wide 
memory bus, and 512  megabytes of main memory. The 
POWER2  processor  has  32  architected  and 54 physical 
floating-point registers, two floating-point units, two 
integer  units  that also serve as load/store units, and a 
branch  unit.  The  floating-point  units  are  each  capable of 
executing one multiply-add instruction in  every cycle for a 
peak  performance of 266 million floating-point  operations 
per  second  (MFLOPS).  For  data in the  cache,  the  integer 
units are  each  capable of loading  or  storing in one cycle 
one  integer  register,  one  floating-point  register,  or  even 
two floating-point  registers using  a  so-called quad-load  or 
quad-store  instruction.  The  cache is capable of servicing 
hits  under a miss, so that  one  integer  unit  can  continue  to 
load  and  store  data  to  and  from  the  cache while the  other 
is waiting for a cache miss to  be serviced. The  separate 
branch  unit  enables  the  processor  to  perform many branch 
instructions  without stalling the  other execution units  at 
all. These so-called zero-cycle branches include virtually  all 
unconditional  branches  and  branch-on-counters,  the kind 
of branch  instruction  used  in  the  innermost  loop of a set 
of nested  FORTRAN  do-loops. 

To put our results  in  perspective, we note  that  on  this 
machine  the  dense-matrix  multiplication  subroutine 
(DGEMM) in the  IBM  Engineering  and Scientific 
Subroutine Library (ESSL) achieves performance of about 
250 MFLOPS  when  applied  to  matrices  that  do  not fit in 
the  cache.  The  performance of the ESSL dense-matrix 
vector  multiplication  subroutine  (DGEMV) on this 
machine is about 170 MFLOPS  when  applied  to  large 
matrices. 

The  performance of the  algorithms was assessed  using 
measurements of both  running  time  and  cache misses. 
Time was measured using the machine’s real-time clock, 
which has a resolution of one cycle. The  number of cache 
misses was measured using the  POWER2  performance 
monitor [16]. The  performance  monitor is a hardware 
subsystem  in the  processor  capable of counting  cache 
misses and  other  processor events. Both  the  real-time 
clock and  the  performance  monitor  are oblivious to  time 
sharing.  To minimize the risk that  measurements may be 
influenced by other  processes, we ran  the  experiments 
when  no  other users used  the  machine  (but it was 
connected  to  the  network).  We  later verified that  the 
measurements  were valid by comparing  the real-time-clock 
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Table 1 Characteristics of the test-suite matrices. The Boeing matrices are all stiffness structural engineering matrices from 
Roger Grimes of Boeing, and the NasGraph matrices are from the 1994 partitioning benchmarks of NASA's Numerical 
Aerodynamics Simulations Department. 

Matrix Dimension Nonzeros Source Model 

bcsstk32 
msc10848 

msc23052 

ct20stif 
crystk02 
crystk03 
bcsstk35 

bcsstk36 

bcsstk37 
cojack 

hsctl 

PWt 
rock1 

44609 
10848 

23052 

52329 
13965 
24696 
30237 

23052 

25503 
188384 

31736 

36519 
133904 

2014701 
1229778 

1154814 

2698463 
968583 

1751178 
1450163 

1143140 

1140977 
875446 

253816 

253069 
214086 

Boeing 
Boeing 

Boeing 

Boeing 
Boeing 
Boeing 
Boeing 

Boeing 

Boeing 
NasGraph 

NasGraph 

NasGraph 
NasGraph 

Model of an automobile chassis 
Test matrix KNUCKLEF8.0UT2 

from MSC/NASTRAN+ 
Test matrix SHOCKF8.0UT2 

from MSCiNASTRAN 
CT20 engine block 
FEM crystal-free vibration 
FEM crystal-free vibration 
Automobile seat frame and body 

Automobile shock absorber 

Track ball 
Cooling water jacket of a BMW 

engine 
Large model of a high-speed 

civil transport 
Unstructured grid 
Large model of a rock 

attachment 

assembly 

measurements with the  user  time  reported by the 
getrusage system  call on  an  experiment-by-experiment 
basis. All  measurements  reported  here (except ordering 
and blocking times)  are  based on an  average of ten 
executions. 

We  coded most of the  algorithms in  C and  compiled 
them using the  IBM x lc  C compiler  Version 1.3. We used 
compiler  options - 0 3  and -qarch=pwr2, which cause 
the  compiler  to  optimize  the  code  and  to utilize 
instructions specific to  the  POWER2  processor, most 
significantly quad-loads.  Under  these  optimization  options, 
the  compiler  unrolls  the  inner  loop so that it  usually 
contains  four multiply-adds. We  implemented  prefetching 
by modifying the  compiler's assembly-language output. 
Specifically, we unrolled  the  inner  loops  further by hand 
by a factor of 8 and placed one  prefetching  instruction in 
the beginning of this  unrolled  loop  for  an  element of a 
and  another in the  middle of the  loop,  after 16 
multiply- adds,  for  an  element of the  pointer  vector 
colind. 

Methodology and test matrices 
The  algorithms  were  tested  on a suite of 13 sparse, 
symmetric  stiffness  matrices. Nine of the  matrices  are 
structural  engineering  matrices  from Boeing, which were 
donated by Roger  Grimes  to  the Hanvell-Boeing  matrix 
collection or  to  Tim Davis's matrix c~llection.~  The  four 
other  matrices  are  from  the 1994 partitioning  benchmarks 

Roger  Grimes is with Boeing  Computer Services, Seattle, Washington; Tim Davis 
is with the University of Florida, http:ilw.w.w.cise.ufl.edu/-davi.~. 

of NASA's Numerical  Aerodynamics  Simulations 
Department.  The  characteristics of the  test  matrices  are 
described in Table 1. We  use  structurally symmetric 
matrices  from two sources. Matrices  that  were  contributed 
by Grimes  represent  three-dimensional  structures with 
several degrees of freedom  (variables)  per grid point, 
typically at  least  three.  They  seem  to have been  ordered 
using  a band-  or  profile-ordering  algorithm  applied  to  the 
original  grid, so that all of the  degrees of freedom 
associated with a  single  grid point  remain  contiguous. 
Matrices  from  the  NasGraph collection  also represent 
three-dimensional models, but  haveonly  one  degree of 
freedom  per grid point. As a consequence, they are 
sparser  and  do  not have contiguous  dense blocks. We  do 
not know how they  were  ordered  before  they  were  placed 
in the matrix collection. 

For  each matrix, we measured  the  performance of all 
combinations of ten  different matrix vector  multiplication 
codes  and five different  orderings.  The  ten  codes  are 
described in Table 2. The five orderings  are  random 
ordering, a nested-dissection-type  ordering  (denoted by 
WGPP),  reverse Cuthill-McKee (RCM), Cuthill-McKee 
(CM),  and  the  original  ordering of the matrix  as stored 
in the matrix  collection. The  WGPP  (Watson  Graph- 
Partitioning  and  Sparse-Matrix-Ordering  Package) 
ordering  code was written by Gupta [17, 181. 

In  each  experiment we measured  the  running  time of 
the matrix vector  multiplication  code,  the  number of load 
instructions of various kinds  it performed,  and  the  number 
of cache  and  TLB misses. Each  measurement is an 71 7 
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bcsstk32  msc10848  msc23052  ct20stif  crystk02 crystk03 bcsstk35  bcsstk36  bcsstk37 cojack hsctl pwt  rock1 

1-by-1  blocking 1-by-2 blocking  2-by-2  blocking 

The  performance  in  millions of floating-point operations  per  second  (MFLOPS) of the  sparse-matrix  vector  multiplication codes. The 
performance  on each test  matrix is represented by 10 bars,  one for each code. The 10 bars  are  organized into three  groups,  one  for  1-by-1 
blocking (i.e., no  blocking),  one for 1-by-2  blocking,  and  one for 2-by-2  and 1-by-2 blocking.  Each  group  is  represented by a different color. 
The  leftmost  bar  with  no  blocking  represents  the  performance of C code with integer indices.  The  next  three  bars,  as  well  as  the  three  bars in 
the  other  two  groups,  represent  the  performance of C code with  pointer  indices,  assembly  language code with  pointer  indices,  and  assembly 
language code with  pointer  indices  and  prefetching.  The original orderings of the  matrices  in  the  matrix  collections  are  used. 

Table 2 Characteristics of the matrix vector  multiplication codes. 

No. Mnemonic Language Indices Blocking Prefetching 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

C-I-1x1-N 
C-P-1x1-N 
A-P-1x1-N 
A-P-1x1-P 
C-P-1x2-N 
A-P-1x2-N 
A-P-1x2-P 
C-P-2x2-N 
A-P-2x2-N 
A-P-2x2-P 

C 
C 

Assembly 
Assembly 

C 
Assembly 
Assembly 

C 
Assembly 
Assembly 

Integers 
Pointers 
Pointers 
Pointers 
Pointers 
Pointers 
Pointers 
Pointers 
Pointers 
Pointers 

No 
No 
No 
No 

1-by-2 
1-by-2 
1-by-2 

2-by-2 and 1-by-2 
2-by-2 and 1-by-2 
2-by-2 and 1-by-2 

No 
No 
No 
Yes 
No 
No 
Yes 
No 
No 
Yes 

average  over  ten  multiplications.  The first ten To assess the cost of reordering and blocking the matrices 
multiplications  were  not  used  at all, in order  to  eliminate relative to the potential benefits, we recorded the running time 
any  influences of cold starts  that  are usually not significant of the ordering and blocking algorithm we used to preprocess 
in iterative  algorithms. All of the  matrices  were  too  large the matrices. These measurements are of single  runs. 
to  remain in the  cache  between multiplications.  Since 
the  cache  can  hold 32 768 doublewords, in some of the Effects of blocking and prefetching 
experiments  the  vector x could fit within the  cache  and Figure 2 shows the  performance of the  ten codes. The 

71 8 remain  there  between multiplications. matrices  are all ordered in the original ordering  from  the 
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matrix collections, which proved to  be  the  best or close to 
the  best  ordering  for all of them  (see below for  more 
details  on  the effect of ordering).  The most striking 
feature  that  emerges  from  the figure is that  the  behavior 
of the  nine  Boeing  matrices is very different  from 
the  behavior of the  four  NasGraph  matrices.  This 
difference, which is mostly due  to  differences in the 
sparseness of the  matrices, is explored below  in more 
detail. 

Each of the  algorithmic  improvements we have 
introduced  boosts  performance  on  the  Boeing matrices. 
Replacing  integer  indices with pointers  increases 
performance  from  about 40 MFLOPS  to  about 52-55 
MFLOPS. With no blocking, the  extra  unrolling in the 
assembly-language code improves performance by 5 to 6 
additional  MFLOPS.  Prefetching improves performance 
by another 5 to 6 MFLOPS.  With blocking, there is 
essentially no  difference  between C and assembly-language 
versions. The 1-by-2 blocking with no  prefetching improves 
performance  to 70-77 MFLOPS,  and  prefetching 
combined with 1-by-2  blocking boosts  performance  to 
78-98 MFLOPS.  The 2-by-2 blocking  with no prefetching 
gives similar performance. Finally, 2-by-2 blocking 
combined with prefetching yields performance of  93-104 
MFLOPS. 

On  the  NasGraph  matrices, using pointers, unrolling, 
and  prefetching all help,  but blocking does  not improve 
performance.  In  fact, in  most cases blocking degrades 
performance.  On  these matrices, the  best-performing  code 
yields  a performance of only 23-39 MFLOPS,  and  the 
differences  between  the  different  codes  are  smaller  than 
the  differences in the Boeing  matrices.  Since the 
NasGraph  matrices  are much sparser  than  the  Boeing 
matrices, blocking the  multiplication  code  introduces 
overhead  without delivering  a  significant  benefit. Figure 3 
shows the  correlation  between  the  sparseness of the 
matrices  and  the benefit  yielded by blocking and 
prefetching.  The most probable  reason  that  the  NasGraph 
matrices do  not benefit from blocking is that  they 
represent  models with only one  degree of freedom  per 
grid point. As a consequence,  the underlying graphs have 
only a few cliques, so the  number of dense blocks is small 
no  matter how the  matrices  are  ordered. 

Effects of ordering 
Figure 4 shows the  effect of reordering  matrices  on  the 
matrix vector  multiplication codes. In all cases  the 
performance  on  ordered  matrices is better  than  on 
randomly  permuted matrices. The  differences  are 
especially large on large  matrices, such  as  bcsstk32, 
ct20stif,  cojack, and  ,rockl. Figure 5 shows the  correlation 
between  the  order of the matrix and  the  improvement in 
performance  due  to  ordering. Since the  plot  indicates  that 
the Boeing matrices benefit more  from  ordering  than  the 

Scatter plot of the percentage speedup  in running time due  to 
blocking and prefetching versus the average density of the matrix. 
Each  mark  represents  one  matrix,  with  Boeing  matrices 
represented by + and NasGraph matrices by X. The  speedup  is 
computed as (T,  - T2)/T, ,  where TI is the running time with no 
blocking  and  no  prefetching,  and T2 is the running  time  with 
blocking and prefetching. The original ordering of the matrices is 
used. 

NasGraph  matrices, we hypothesize that  the benefit of 
ordering  depends  both on the  order of the matrix and  on 
its  density. 

Without blocking, the  various  ordering  methods yield 
roughly the  same  performance.  This level of performance 
is similar to  the level that is achieved by the original 
ordering of the  test matrices. When blocking is used,  the 
performance  on  the  NasGraph  matrices  degrades slightly, 
but  the  performance  on  the  Boeing  matrices improves. 
With blocking, different  ordering  methods yield different 
performance levels. The  random  ordering is still always 
worst,  followed by the  RCM  ordering,  the  WGPP 
ordering,  the  CM  ordering,  and finally the  original 
ordering. 

Figure 6 explains the  variations in performance of 
the blocked codes with various  ordering  methods.  We 
analyze  mostly the  denser Boeing matrices,  because  the 
performance  impact of blocking on  the  sparser  NasGraph 
matrices is marginal. The figure  shows that  the  random 
and reverse-Cuthill-McKee orderings  result in matrices 
with no  or very few 2-by-2 and 1-by-2 blocks. Therefore, 
using  a  blocked code with a randomly  permuted matrix or 
a  matrix which has  been  RCM-ordered  does  not  improve 719 
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Performance in  MFXOPS  of four assembly-language matrix  vector multiplication codes. The top two depict the performance with no 
blocking and the bottom two with  both 2-by-2 and 1-by-2 blocking. The graphs on the left do not use prefetching; the graphs on the right do. 
Each  graph shows the performance on each matrix, using five different orderings represented by different colors. 

performance.  The  WGPP  ordering  creates  more blocks. 
In the  Boeing  matrices, 44-70% of the  nonzeros  are in 
blocks;  most of them  are usually in the  smaller 1-by-2 
blocks. The Cuthill-McKee orderings  result in many more 
nonzeros in  blocks, between 73 and 97%. The  fraction  that 
is in 2-by-2 blocks is better  than with the  WGPP  ordering, 
but  it is still sometimes less than  one half. In the original 
ordering,  even  more  nonzeros  are in  blocks, and  the vast 
majority of them  are in 2-by-2 blocks. 

The  differences  between  the  fractions of nonzero blocks 
in the  different  orderings  can  be  traced  to  several  factors. 
The original ordering yields better blocking than all of 
the  other  orderings,  probably  since it  was applied  to 
grid points  rather  than individual degrees of freedom 

' (variables). Consequently,  dense blocks  in the matrix that 
was produced by the grid generator  remained  dense. 
When we applied  the  other  orderings  to  the  matrices, 
some of these  dense blocks disappeared.  The  differences 

720 between  the Cuthill-McKee and  the reverse-Cuthill- 

McKee may be  due  to  the  fact  that  our blocking algorithm 
is greedy  and  scans  the matrix from  top  to  bottom  and 
from  left  to right  within rows. 

Cost of reordering and blocking 
Figure 7 shows the  time it takes  to  reorder  the  randomly 
permuted  test  matrices.  The  time is shown relative  to  the 
basic  matrix vector  multiplication  time (C-I - 1x1-N) 
with a randomly  permuted matrix. The Cuthill-McKee and 
reverse Cuthill-McKee orderings  take  one  to  three  times 
longer than matrix vector multiplication; therefore, they are 
well worth  their cost. The  WGPP  ordering  costs 20 to 
200 times  more  than matrix vector  multiplication.  (This 
ordering  code was designed  as a  fill-reducing mechanism 
for  direct  factorizations, which are  much  more expensive 
than single  matrix vector multiplications.) It is therefore 
not  appropriate  for  our  application. 

Figure 7 also  shows the  time  it  takes  to block the 
reordered  test  matrices  into 2-by-2 and 1-by-2  blocks. 
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The  time is shown relative  to  the basic  matrix vector 
multiplication  time (C-I-1x1-N) with a randomly 
permuted matrix. The blocking usually costs 4 to 15 
times  more  than basic  matrix vector multiplications. The 
graph shows that in  several experiments blocking took 
significantly more  time  than  that  because of paging. The 
fact  that this phenomenon  occurs only when  blocking 
follows an  ordering  step (in which additional memory is 
allocated) shows that  the  problem is indeed paging and 
memory  management. 

We now estimate  the  number of matrix vector 
multiplications  that must be performed following  a 
blocking step  to pay for  the  cost of blocking. We  assume 
that blocking costs  15  times  more  than basic  matrix vector 
multiplication,  and  about 25 times  more  than  the best 
unblocked  code (A+P+lxl+P with prefetching).  We 
also  assume  that blocking reduces  the matrix vector 
multiplication  time by one  third, which is a  conservative 
estimate  for  the  Boeing  matrices.  From  these  assumptions 
it follows that if the matrix is used in more  than 75 
multiplications,  blocking will reduce  the overall running 
time. 

Comparison  to a direct solver 
To  put our results in  a broader  perspective, we compare 
them  to  the  performance of a multifrontal,  sparse  direct 
solver. The solver  was written by Anshul  Gupta, who 
provided us with the timings below. Directly solving a 
linear system Ax = 6 ,  where A is our  test matrix  bcsstk32 
with one  right-hand  side,  took 15.7 seconds (on the  same 
machine used for  the  rest of the  experiments). Of the 15.7 
seconds,  ordering  the matrix took 4.5 seconds, symbolic 
factorization  took 1.5 seconds,  numerical  factorization 
took 9.3 seconds,  and  the  triangular solve took 0.36 
seconds. The  number of floating-point operations in the 
factorization was 1630 million, giving a computational  rate 
of about 175 MFLOPS  for  the  numerical  factorization 
alone  and 104 MFLOPS  for  the  entire  solution. 

In  comparison,  our  best matrix vector  multiplication 
code  took 0.0433 seconds on the  same matrix. The  cost of 
the  numerical  factorization is therefore  equivalent  to  that 
of about 215 matrix vector multiplications. The  total cost 
of the  direct  solution, 15.7 seconds, is equivalent  to  1.7 
seconds  for  reordering  and blocking plus 323  matrix vector 
multiplications. 

Portability experiments 
We have repeated  some of the  experiments  reported 
above  on  another  superscalar  RISC  computer, a Sun 
UltraSPARC  workstation.  The  machine  has a  143-MHz 
UltraSPARC I processor with a  16KB direct-mapped 
primary  data  cache, a secondary off-chip  512KB cache, a 
288-bit-wide  memory  bus, and 96 megabytes of memory. 
The  UltraSPARC I processor has 32 floating-point registers 

1 Scatter  plot  of  the  relative  reduction  in  running  time  due  to 
ordering versus the  order of the matrix. Each mark represents one 

1 matrix, with Boeing matrices represented by + and NasGraph 
-? matrices by X. The reduction in running time is computed as I (T3 - T4)/T3, where T3 is the  running  time  with  blocking  and I prefetching using a  random ordering, and T4 is  the running time 

a with blocking and prefetching using the original ordering. 

and  can issue one  floating-point multiply and  one floating- 
point  add  per cycle. We used the  IBM  GNU C compiler 
and used the -03 and -funroll-loops optimization 
options  (preliminary  testing showed that  the  GNU C 
compiler  produced  faster  code  than  the Sun C compiler). 

The C language  subroutines  compiled  and  ran  without 
a problem.  It  took  about a  day to  produce assembly- 
language versions of the  routines  and  to  introduce 
prefetching  into  them. 

Our  performance  results, which are  based on the 
performance of the msc10848 and msc23052 matrices, 
can  be  summarized as follows. The basic  C  version on 
randomly  permuted  matrices  ran  at 10.6-11.4 MFLOPS. 
The  same version on  the original ordering of the  matrices 
ran  at 16.5-16.8 MFLOPS.  The  relative  improvement  due 
to  reordering  alone is larger  than on the  POWER2 
machine  (for  the  same  matrices),  because of the  smaller 
size of the  primary  cache on the  UltraSPARC I. Replacing 
integer indices with pointers  did  not  improve  performance, 
and  neither  did  prefetching; also, these  optimizations  did 
not slow down the  algorithm. Blocking the  matrices  into 
2-by-2 and 1-by-2  blocks improved  performance  to 
20.8-22.2 MFLOPS. 721 
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nonzeros in 2-by-2 blocks, and the solid portion the fraction of  the remaining nonzeros that are blocked in 1-by-2 blocks. The levels of 
blocking when  only 1-by-2 blocks are used are slightly higher than the combined levels shown here. 

The  integer-to-pointer  conversion  did  not  help, probably 
because  the  UltraSPARC I has a dedicated  address  adder, 
so address  calculations  and  integer-to-pointer  conversions 
(Le., shift instructions) do  not  compete  for  the  same 
functional  units.  The  most likely reason  that  prefetching 
did  not  improve  performance is that  the  UltraSPARC I 
has only one  load/store  unit,  whereas  the  prefetching 
techniques  are  meant  to  prevent  multiple  units  from 
stalling on  the  same  cache  line. 

experiments verify that  our  techniques, with the possible 
exception of prefetching,  are  general  and  should  improve 
performance on most  superscalar  RISC machines. 
We  note  that  the  overall  performance level in  these 
experiments, which may seem low compared  to  the  peak 
performance of the  processor, is  in fact  quite similar to 
the  performance of similar numerical  codes  on  the 
UltraSPARC. For example, the double-precision dot product 
subroutine in the  FORTRAN BLAS [19], as well as  the 
same  subroutine in the  Sun  Performance Library, runs  at 
less than 20 MFLOPS on this  machine.  The main reason 
for this performance level seems  to  be  the small primary 

The  performance  improvements shown by our 

722 cache  coupled with the  short  cache  lines (16 bytes). 

6. Conclusions 
We have presented  four  techniques  for  accelerating 
sparse-matrix  vector  multiplication on superscalar  RISC 
processors.  One of the  techniques,  precomputing 
addresses  for  indirect  addressing, is trivial but  important. 
The  technique of reordering  the matrix to  reduce  its 
bandwidth  and  hence  reduce  cache misses has  been 
proposed by Das  et al. [2] and investigated further in  two 
other  papers [3, 41. We have explored it further  and  found 
that  the Cuthill-McKee technique yields  excellent results 
on a  variety of matrices. Two other  techniques, 
representing  nonzeros in  small dense blocks and 
prefetching  to allow cache-hits-under-miss processing, are 
novel (others have proposed  representing  nonzeros in 
larger blocks [5, 61). They,  too,  improve  performance 
significantly on many  matrices. On an  IBM RS/6000 
workstation,  the  combined effect of the  four  techniques 
can  improve  performance  from  about 15 MFLOPS  to 
more  than 95 MFLOPS,  depending on the size and 
sparseness of the matrix. 

Our  techniques, with the  exception of prefetching,  are 
general  for  superscalar  RISC  architectures.  The  ordering 
and blocking techniques  should  improve  performance  on 
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most RISC  processors,  as shown by our  experiments  and 
the  experiments of Burgess and  Giles [4]. Replacing 
integers with pointers  should  improve  performance on 
RISC  machines  that  use  the  same  functional  units  for 
address  calculations  and  for shifts. The  code  that 
implements  these  three  techniques is portable.  The 
prefetching  technique  should  improve  performance  on 
superscalar  RISC  processors  that have more  than  one 
load/store unit. Our implementation  method  for  this 
technique  can  be  duplicated  on  most  machines,  but  the 
technique  cannot be considered  portable. 

Although even  basic  matrix vector  multiplication  codes 
perform  better  when  the  matrices  are  not extremely sparse 
(< lo  nonzeros  per row), highly optimized  codes  are  even 
more sensitive to the  sparseness of the  matrices. 

Reordering  sparse  matrices using the Cuthill-McKee 
ordering  has  another benefit  in sparse  iterative solvers. 
When a conjugate  gradient solver uses  an  incomplete 
Cholesky preconditioner,  the  ordering of the matrix  affects 
the  convergence  rate. Duff and  Meurant [20] compared 
the convergence rate of an incompletely  Cholesky- 
preconditioned  conjugate  gradient with 17 different 
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