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Improving the
memory-system
performance

of sparse-matrix
vector multiplication

Sparse-matrix vector multiplication is an
important kernel that often runs inefficiently

on superscalar RISC processors. This paper
describes techniques that increase instruction-
level parallelism and improve performance.
The techniques include reordering to reduce
cache misses (originally due to Das et al.),
blocking to reduce load instructions, and
prefetching to prevent multiple load-store units
from stalling simultaneously. The techniques
improve performance from about 40 MFLOPS
(on a well-ordered matrix) to more than 100
MFLOPS on a 266-MFLOPS machine. The
techniques are applicable to other superscalar
RISC processors as well, and have improved
performance on a Sun UltraSPARC™ |
workstation, for example.

1. Introduction

Sparse-matrix vector multiplication is an important
computational kernel in many iterative linear solvers (see
[1], for example). Unfortunately, on many computers this
kernel runs slowly relative to other numerical codes such
as dense-matrix computations. This paper proposes new
techniques for improving the performance of sparse-matrix

vector multiplication on superscalar RISC processors.
We experimentally analyze these techniques, as well as
techniques that have been proposed by others, to show
that they can improve performance by more than a factor
of 2 on many matrices.

Three main factors contribute to the poor performance
of sparse-matrix vector multiplication on modern
superscalar RISC processors. First, the lack of data
locality causes a large number of cache misses. Typically,
accesses to the data structures that represent the sparse
matrix A have no temporal locality' whatsoever, but they
have good spatial locality (i.e., there is no data reuse, but
accesses are in a stride-1 loop). Accesses to the dense
vector x being multiplied do reuse data, but the access
pattern depends on the sparsity structure of A. One
technique that can reduce the number of cache misses is
to reorder the matrix to reduce the number of cache
misses on X. This technique was proposed by Das et al.
[2], analyzed in certain cases by Temam and Jalby [3], and
further investigated by Burgess and Giles [4]. We study
this technique further in Section 2, and we also show that
the effectiveness of the proposed new techniques depends
on it.

! We say that a sequence of memory accesses has temporal locality if the same
memory locations are accessed repeatedly and the repetitions are close together
within the sequence. We say that the sequence has spatial locality if adjacent
memory locations are accessed close together.
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A sparse-matrix vector multiplication code for matrices stored in a
compressed-row format. The N nonzeros of the n-by-n matrix A
are compressed into a single vector a in a row-wise ordering; the
column indices of these nonzeros are compressed into an integer
vector colind. The vector rowptr stores the first index of each row of
A in the vectors a and colind, and its last element contains N + 1.

A second factor that limits performance is the tendency
of multiple load/store functional units to miss on the same
cache line. Many superscalar RISC processors have at
least two load/store units. On such processors, when one
unit is stalled because of a cache miss, the other unit(s)
can continue to load data from the cache. Unfortunately,
in stride-1 loops the other units soon try to load data from
the cache line that caused the first miss. Consequently, all
units are often stalled on the same cache line. The miss
is compulsory because the accesses have no temporal
locality, so one unit must spend time waiting for the miss
to be serviced. However, the misses generated by the
other units are not compulsory, and we show in Section 2
how to prevent them by using prefetching. These cache
misses can also be prevented by a simple hardware-
assisted prefetching mechanism, which is described in
Section 4.

Finally, sparse-matrix vector multiplication codes
typically perform a large number of load instructions
relative to the number of floating-point operations they
perform. This phenomenon occurs because of poor data
locality, which makes it difficult to reuse data already in
registers, and also because the code must load row or
column indices in addition to floating-point data. The
large number of load instructions places a heavy load on
the load/store units that serve as the interface between the
register files and the cache, and on the integer ALUs that
compute the addresses to be loaded. (These ALUs are
sometimes part of the load/store units and sometimes
part of the integer execution units.) On most current
processors, these units are often the bottleneck in sparse-
matrix vector multiplication. The floating-point units are
therefore underutilized. We present in Section 2 two
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techniques that address this issue; the first is a blocking
technique that reduces the number of load instructions,
and the second is a technique that eliminates indexing
instructions. Blocking in sparse-matrix vector
multiplication was used in somewhat different forms

in [5, 6].

Although the techniques that we propose can be applied
separately, they are most effective when combined. In
particular, reordering the matrix can enhance or degrade
the effect of blocking. Also, without the reduction in the
number of cache misses on x that reordering yields, our
prefetching technique is ineffective on large matrices.

Our techniques are also applicable to other superscalar
RISC processors. We describe the techniques in the next
section and comment, where appropriate, on their
applicability to other current superscalar processors. One
of the techniques, prefetching, is difficult to implement
in the irregular loops that comprise the sparse-matrix
vector multiplication code. Section 3 explains how we
implemented this technique.

We have implemented our techniques and evaluated
them on an IBM superscalar RISC workstation with a
POWER?2* processor using a suite of 13 matrices. The
matrices are all structurally symmetric, but the code is
general and does not exploit symmetry. (A matrix vector
code for symmetric matrices can load fewer coefficients
and therefore run more efficiently.) Section 5 presents our
experimental results. The results show that the techniques
are viable and that they significantly enhance performance.
Our conclusions from this research are presented in
Section 6.

2. Algorithmic techniques

Consider the typical sparse-matrix vector multiplication
code shown in Figure 1. The code assumes that the matrix
is stored in a compressed-row format, but the same
considerations apply to other storage formats that support
general sparsity patterns. The inner loop of the code loads
a(jp), colind(jp), and x(colind(jp)), and performs
one multiply-add operation. While a and colind are
loaded using a stride-1 access pattern, x (colind(jp))
may be any element of x.

There are four potential performance problems in this
code. The accesses to a and colind generate many cache
misses, one per cache line (because the stride-1 access
ensures that the entire line is used before it is evicted
from the cache). Depending on the number of nonzeros in
A and on the details of the iterative algorithm in which
the matrix vector multiplication is used, these cache misses
can occur in the first-level cache or in a cache further
away from the processor. The accesses to x can have poor
spatial and temporal locality, and can hence generate even
more cache misses. The ratio of data values loaded into
registers per floating-point operation is 1.5, which means
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that the code’s performance is limited by the performance
of the processor’s load/store units. Finally, the conversion
of colind(jp) from an integer index to a byte offset
from the beginning of x, required on most processors for
indirect addressing, requires the integer ALUs to perform
an additional instruction in every iteration. This section
describes four techniques that can cope with these
problems.

® Reducing cache misses through bandwidth reduction
The bandwidth of a sparse matrix is the maximum
distance, in diagonals, between two nonzero elements of
the matrix. Matrix-reordering algorithms that reduce the
bandwidth of a matrix have been proposed since the late
1960s as a way to reduce fill and work in sparse-matrix
factorizations. The first such technique, which is based
on a breadth-first traversal of the graph underlying the
matrix, was invented by Cuthill and McKee [7] (see [8] for
a contemporary description). A simple modification of
their technique, which reverses the ordering produced by
the Cuthill-McKee algorithm, was later found to be even
more efficient in sparse factorizations.

Das et al. [2] proposed the reordering of sparse
matrices using a bandwidth-reducing technique in order to
reduce the number of cache misses generated by accesses
to x. Temam and Jalby [3] analyzed the number of cache
misses as a function of the bandwidth for certain cache
configurations. The technique was investigated further
by Burgess and Giles [4], who extended it to other
unstructured-grid computations. Burgess and Giles
experimentally studied several reordering strategies,
including reverse Cuthill-McKee and a greedy blocking
method. They found that reordering improved
performance relative to a random ordering, but they did
not find any sensitivity to the particular ordering method
used.

We have performed additional experiments with a larger
set of matrices. Our experiments, described in detail in
Section 5, essentially validate the results of Burgess and
Giles. We have found that compared to a random
ordering, bandwidth reduction and nested-dissection
orderings reduce cache misses and improve performance.
Performance can improve by more than a factor of 3 on
large matrices.

When the bandwidth-reduction technique is used alone
without blocking or prefetching, the particular ordering
method does not matter much to the performance of
matrix vector multiplication. Consequently, reordering
methods should be selected on the basis of the reordering
speed and the effect on ordering-sensitive preconditioners,
such as incomplete LU. When the bandwidth-reduction
technique is combined with blocking and prefetching,
however, different ordering methods yield different
performance results. We have found that in this situation
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Cuthill-McKee ordering is usually the best choice. It is a
fast algorithm and has benefits in preconditioning as well,
as explained in Section 6.

Because sparse-matrix vector multiplication uses large
data structures and has poor data locality, reducing cache
misses is an important goal for this code, even on
processors in which out-of-order execution can cover the
cache-miss latency in other codes.

® Reducing the number of load instructions through
blocking

We reduce the number of load instructions the code
performs by splitting the general sparse matrix A into a
sum of two or three matrices, some of which are block
matrices. It is reasonable to expect the matrix to contain
dense blocks, because such matrices arise in many
application areas (for example, equations defined on grids
with more than one variable per grid point). Multiplying a
block sparse matrix by a vector can reduce the number of
loads over unblocked multiplication in three different
ways. First, blocking enables the code to load fewer row
or column indices into registers, because only one index
per block is required, rather than one per nonzero.
Second, elements of x are loaded once and used k times
when the matrix is blocked into k-by-/ blocks (this is a
form of register blocking). Third, since the POWER2
processor has a load-quad instruction that loads two
consecutive floating-point doublewords into two registers,
1-by-2 blocks allow the processor to load the two nonzeros
in a and the two elements of x using only two, rather than
four, load instructions.

We therefore scan the matrix in a preprocessing phase
and extract all the 2-by-2 blocks that we find, and then all
the 1-by-2 blocks that we find. The extraction is done in a
“greedy” fashion that extracts all the blocks that are found
in a row-wise scanning of the matrix. For 2-by-2 blocks,
this greedy algorithm is not always optimal, in the sense
that it may find fewer 2-by-2 blocks than possible. The
greedy algorithm is optimal for 1-by-2 blocks. To preserve
data locality in accesses to x, we do not multiply by the
2-by-2 blocks, then by the 1-by-2 blocks, and then by the
remaining unblocked nonzeros. Instead, we process row
after row, where in each row i we perform both the
multiplication by the unblocked nonzeros in row i and
the multiplication by the blocked nonzeros in rows i
andi + 1.

On processors without a quad-load instruction
(practically all other current RISC processors), some of
the benefit of 1-by-2 blocks can be realized by replacing
them with 2-by-1 blocks. These require only three floating-
point loads, because the element of x can be loaded once
and used twice.

The balance between the capabilities of the load/store

units and the floating-point units in other superscalar 713
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processors is the same as or worse than the balance in
the POWER2 processor’. The POWER2 processor

can perform four FLOPS (by issuing multiply-add
instructions) and load four 64-bit words (by issuing two
quad-load instructions) in every cycle. Digital’s Alpha
21164 [9] and Sun’s UltraSPARC** [10] both have floating-
point units that can issue one add and one multiply
instruction every cycle. The Alpha can issue two load
instructions and load two words, giving the same balance
as the POWER?2, but the UltraSPARC can issue only one
load instruction per cycle, giving a worse balance. We
therefore conclude that reducing the number of loads is
at least as important on other processors as it is on the
POWER?2.

Our approach to blocking is novel in that our algorithm
attempts to find many small, completely dense blocks.
Other researchers have proposed algorithms that attempt
to find larger (and hence fewer) dense blocks and/or
blocks that are not completely dense.

Agarwal, Gustavson, and Zubair [5] describe an
algorithm designed for vector processors. Their algorithm
tries to find a few large, relatively dense blocks. They
divide the rows of the matrix into blocks, and attempt to
find one fairly dense rectangular block in every block of
rows. The other nonzeros in the block of rows remain
unblocked (they may be coalesced into dense diagonals,
however). This scheme works well on vector processors in
which the vector startup cost is significant.

On the other hand, we realized that on RISC processors
small blocks would suffice to obtain good performance,
and that the most important objective is to block as many
of the nonzeros as possible, even if the blocks are small.
In addition, the small vector startup cost on RISC
machines implies that it is probably not beneficial to use
dense blocks that contain many zeros. The extra time it
takes to load these structural zeros into cache and into
registers is likely to mask any performance benefit that
larger dense blocks might afford. (A simple analysis
shows, however, that allowing one zero in a 2-by-2 block
might improve performance slightly on the POWER?2
processor.)

PETSc, a toolkit for scientific computations [6], uses a
blocked sparse-matrix vector multiplication subroutine that
attempts to find blocks of rows with the same nonzero
structure. Our approach is therefore similar to that of
PETSc in that both approaches require the blocks to be
completely dense, but there is an important difference.
Our algorithm can block most of the nonzeros in a matrix
even when no two rows have identical structure, whereas
PETSc cannot. The penalty that our algorithm pays for
the extra flexibility is quite small: Qur 2-by-2 blocked

2 By balance we refer to number of data values that can be loaded in a cycle
relative to the number of floating-point operations that can be performed in a
cycle.
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algorithm loads only one column index per six floating-
point words loaded. In addition, PETSc allows different
numbers of rows in different blocks, which can cause more
run-time overhead than fixed-size blocks.

® Prefetching in irregular loops

Traditionally, prefetching has been considered to be a
technique for hiding latency, in the sense that prefetching
can prevent memory-access latency from degrading
performance, as long as memory bandwidth is sufficient to
keep the processing units busy (see [11-13], for example).
In many codes, for example dense-matrix vector
multiplication, the ratio of floating-point to load
instructions is quite high. This high ratio allows the
algorithm to hide the latency of cache misses by
prefetching cache lines early. The fact that the load/store
unit is stalled for many cycles is negligible, because there
are only a few load instructions relative to floating-point
instructions.

In matrix vector multiplication, especially with sparse
matrices, the ratio of floating-point to load instructions is
low, less than one. The memory bandwidth required to
keep the processing units busy is therefore high. Since
most computers do not have sufficient memory bandwidth,
loading data from memory becomes the bottleneck that
determines performance in this computation. It is not
important here whether the load/store unit stalls early
(with prefetching) or late (without), since it is needed all
the time.

We can still use prefetching, however, not to hide
latency but to improve memory bandwidth. As far as we
know, this use of prefetching is novel. In particular, we
use prefetching to prevent multiple load/store units from
stalling on the same cache line. Since most of the cache
misses are generated by accesses to two vectors that are
accessed in the same stride-1 loop, multiple load/store
units can miss on the same cache line. One unit misses on
the first word in a line and stalls. The second unit tries to
load the next word in the vector and also stalls. This can
happen even when two vectors are accessed, if the second
unit loads a word in cache from the second vector and
then misses on the first. When two units stall on the same
line, the effective memory-to-cache and cache-to-register
bandwidths are reduced. It is possible, using prefetching,
to avoid this behavior.

Our strategy is to prefetch elements of a and colind
before they are used. The prefetching instruction always
misses and hence stalls one of the load/store units. The
other unit, however, continues without stalling as long as
there are no cache misses on x or y, which are rare once
the matrix has been reordered. The details are quite
complicated, however, and are explained in Section 3.

The use of prefetching to prevent muitiple load/store
units from stalling on the same cache line is likely to have
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a beneficial effect on other RISC processors that have
multiple load/store units.

® Eliminating integer-to-pointer conversions

The expression x (colind(jp)) is compiled into an
instruction sequence that loads colind(jp) into a
register and at least two more load instructions that load
x(colind(ip)). The expression colind(jp) can be
loaded in one instruction, since colind is accessed

in a stride-1 loop, by an instruction that loads it and
increments the pointer to colind(jp) by the size

of one integer. Loading x (colind (jp)) requires two
instructions, because the instruction that loads a word with
a given offset from the beginning of x requires a byte
offset, not a word offset. The expression colind(jp)
must therefore be multiplied by the size of a word in bytes
to yield a byte offset.

This multiplication is done by an arithmetic shift
instruction that executes in one cycle on one of the
integer ALUs. On processors where the integer ALUs also
compute the addresses for load instructions, such as the
IBM POWER?2 and the Digital Alpha 21164, this extra
integer instruction places additional overhead on the
fixed-point units, which are already overloaded with load
instructions’.

We can avoid this overhead by performing a
preprocessing phase in which we replace the integer indices
with pointers to elements of x. We show in Section 5
that this optimization alone can improve performance by
as much as 38%. This optimization was also used in the
IBM implementation of the NAS benchmarks [14].

This optimization amounts to removing a transformation
on the column-indices vector out of the inner loop of
Figure 1. This optimization can, in principle at least, be
performed by a compiler that is capable of interprocedural
analysis. Such a compiler optimization may be possible
only if the iterative algorithm and the matrix vector
multiplication kernel are compiled at the same time.

It also requires the compiler either to recognize that
the column indices are not used elsewhere and can be
overwritten by pointers, or to allocate a large temporary
array to store the pointers.

On processors with a dedicated virtual-address adder,
such as Sun’s UltraSPARC, this optimization is likely
to have no effect at all because the load and shift
instructions do not compete for the same functional units.
Experiments on an UltraSPARC workstation, described in
Section 5, verify that this optimization has no effect on
the performance of the code on that processor.

3 One of the referees of this paper regards this behavior of the POWER2
Architecture* as an architectural flaw: “Since the floating-point load instructions
specify the data length (single, double, etc.) in the instruction format, the
instruction unit can pass this information to the addressing unit, which should
handle the shift implicitly. This, in fact, was done on the IBM 370/390 Vector
Facility.”
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3. Prefetching in an irregular loop

To implement our prefetching strategy, we need to
perform a single prefetch instruction after a certain
number of iterations of the inner loop in Figure 1, or in
its blocked counterparts. We assume that cache lines on
our target machine contain 32 doublewords or 64 integers.
Ideally, we would prefetch one cache line of a every

32 iterations and one cache line of colind every 64
iterations. A simpler scheme is to prefetch both vectors
every 32 iterations. The prefetch in iteration jp would be
for a(jp+64) (two cache lines ahead), and the prefetch
in iteration jp' =jp+ 16 would be for colind (jp'+128)
(also two cache lines ahead). The constants depend on the
cache configuration, but we use these numbers here for
illustration.

It is difficult to implement such a precise strategy, or
even the simpler one, without introducing extra overhead
into the inner loop. The problem is that the number of
iterations that the inner loop performs depends on the
length of row 1, which is usually different for different
rows. Sorting rows by length is not a viable option,
because it conflicts with ordering rows and columns for
data locality. Padding rows with zeros so that their length
is divisible by 16 is also not attractive, because computing
on these padding zeros can constitute a significant
overhead for very sparse matrices.

To overcome this problem, we use an approximation.
The main idea is to unroll the inner loop, say 32 times,
and to place one prefetching instruction for a before the
first unrolled instance and another for colind after 16
instances. If rows are very long, this would implement our
simple prefetching strategy. This approximation does not
implement our strategy of prefetching every 32 iterations
when rows are short. If the row ends shortly after a
prefetch for a, the prefetching at the beginning of the next
row usually stalls the second load/store unit on the same
cache line. When rows are shorter than 16 elements,
colind is not prefetched. Nevertheless, our experiments,
shown in Section 5, demonstrate that the technique is
effective.

To preserve the semantics of the original loop, we
compare jp to rowptr (i+1) after every unrolled
instance and skip the rest of the instances if jp is greater.
This ensures that we do not step beyond the end of a
sparse row as a result of the unrolling.

Even this approximation to precise algorithmic
prefetching is difficult to implement in a high-level
language like C or FORTRAN. The difficulty revolves
around the need to compare jp to rowptr{i+1) and
conditionally branch without slowing down the iterations.
Our solution is to compile the algorithm, which is written
in C, into assembly language, then modify the assembly
language and compile it into object code. We perform the
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unrolling, the insertion of prefetching instructions, and the
conditional branching in assembly language. Working in
assembly language allows us to exploit the branch-on-
counter instruction and to unroll this irregular loop
without any overhead. We have been able to perform
these modifications in assembly language in about one

day on both an IBM POWER?2 workstation and a Sun
UltraSPARC workstation.

4. Hardware-assisted prefetching

We propose a simple hardware-assisted prefetching
mechanism that can handle prefetching in both regular
and irregular loops. We propose two new instructions
called prefetch-start and prefetch-stop. Both
instructions serve as hints to the processor, just like
regular prefetch instructions, and both take one argument,
the name r of an integer register. The prefetch-start
instruction indicates to the processor that the register r
serves as a pointer in a stride-1 loop. Therefore, the
hardware should attempt to prefetch cache lines that are
ahead of the current value of r. The prefetch-stop
instruction indicates that the register r is no longer used
as a pointer in a loop, and that prefetching based on its
content should stop. Prefetching in iteration structures
more complex than stride-1 loops can perhaps be
supported by variants of the prefetch-start
instruction.

One possible implementation is to generate a signal
when an addition to r generates a carry from bit k to bit
k + 1in r, where cache lines are 2* bytes wide. This
signal is then used to trigger prefetching for a cache line
ahead of the current value of r. This scheme ensures that
the prefetching signal is generated when a small increment
(at most a cache line) to r causes it to point to a new
cache line.

This form of hardware-assisted prefetching has several
advantages over regular prefetching instructions that are
inserted by the compiler, or even by hand. Hardware-
assisted prefetching works equally well in regular and
irregular loops, because it eliminates the need to prefetch
every fixed number of inner iterations. Hardware-assisted
prefetching enables precise prefetching using a single
machine-code binary, even when that binary is executed
on machines with several cache-line sizes. For example,
machines with IBM POWER?2 processors come in at least
three primary cache configurations, which require different
prefetching rates because they have different cache-line
sizes.

5. Experimental results

In this section we present the results of the extensive
experiments we carried out in order to assess the
effectiveness of our strategy. Most of the experiments
were performed on a superscalar IBM RS/6000*
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workstation. We repeated some of the experiments on a
Sun UltraSPARC workstation in order to determine how
general we can expect the techniques to be. We believe
that most of our findings would also apply to other RISC
processors.

® FExperimental platform

The experiments were carried out on an RS/6000
workstation with a 66.5-MHz POWER?2 processor [15], a
256KB, four-way set-associative data cache, a 256-bit-wide
memory bus, and 512 megabytes of main memory. The
POWER? processor has 32 architected and 54 physical
floating-point registers, two floating-point units, two
integer units that also serve as load/store units, and a
branch unit. The floating-point units are each capable of
executing one multiply-add instruction in every cycle for a
peak performance of 266 million floating-point operations
per second (MFLOPS). For data in the cache, the integer
units are each capable of loading or storing in one cycle
one integer register, one floating-point register, or even
two floating-point registers using a so-called quad-load or
quad-store instruction. The cache is capable of servicing
hits under a miss, so that one integer unit can continue to
load and store data to and from the cache while the other
is waiting for a cache miss to be serviced. The separate
branch unit enables the processor to perform many branch
instructions without stalling the other execution units at
all. These so-called zero-cycle branches include virtually all
unconditional branches and branch-on-counters, the kind
of branch instruction used in the innermost loop of a set
of nested FORTRAN do-loops.

To put our results in perspective, we note that on this
machine the dense-matrix multiplication subroutine
(DGEMM) in the IBM Engineering and Scientific
Subroutine Library (ESSL) achieves performance of about
250 MFLOPS when applied to matrices that do not fit in
the cache, The performance of the ESSL dense-matrix
vector muitiplication subroutine (DGEMYV) on this
machine is about 170 MFLOPS when applied to large
matrices.

The performance of the algorithms was assessed using
measurements of both running time and cache misses.
Time was measured using the machine’s real-time clock,
which has a resolution of one cycle. The number of cache
misses was measured using the POWER?2 performance
monitor [16]. The performance monitor is a hardware
subsystem in the processor capable of counting cache
misses and other processor events. Both the real-time
clock and the performance monitor are oblivious to time
sharing. To minimize the risk that measurements may be
influenced by other processes, we ran the experiments
when no other users used the machine (but it was
connected to the network). We later verified that the
measurements were valid by comparing the real-time-clock
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Table 1 Characteristics of the test-suite matrices. The Boeing matrices are all stiffness structural engineering matrices from
Roger Grimes of Boeing, and the NasGraph matrices are from the 1994 partitioning benchmarks of NASA’s Numerical

Aerodynamics Simulations Department.

Matrix Dimension Nonzeros Source Model

besstk32 44609 2014701 Boeing Model of an automobile chassis

msc10848 10848 1229778 Boeing Test matrix KNUCKLEF8.0UT?2
from MSC/NASTRAN'

msc23052 23052 1154814 Boeing Test matrix SHOCKF8.OUT2
from MSC/NASTRAN

ct20stif 52329 2698463 Boeing CT20 engine block

crystk02 13965 968583 Boeing FEM crystal-free vibration

crystk03 24696 1751178 Boeing FEM crystal-free vibration

besstk35 30237 1450163 Boeing Automobile seat frame and body
attachment

besstk36 23052 1143140 Boeing Automobile shock absorber
assembly

besstk37 25503 1140977 Boeing Track ball

cojack 188384 875446 NasGraph Cooling water jacket of a BMW
engine

hsctl 31736 253816 NasGraph Large model of a high-speed
civil transport

pwt 36519 253069 NasGraph Unstructured grid

rockl 133904 214086 NasGraph Large model of a rock

measurements with the user time reported by the
getrusage system call on an experiment-by-experiment
basis. All measurements reported here (except ordering
and blocking times) are based on an average of ten
executions.

We coded most of the algorithms in C and compiled
them using the IBM x1c C compiler Version 1.3. We used
compiler options —03 and -~qarch=pwr2, which cause
the compiler to optimize the code and to utilize
instructions specific to the POWER?2 processor, most
significantly quad-loads. Under these optimization options,
the compiler unrolls the inner loop so that it usuélly
contains four multiply-adds. We implemented prefetching
by modifying the compiler’s assembly-language output.
Specifically, we unrolled the inner loops further by hand
by a factor of 8 and placed one prefetching instruction in
the beginning of this unrolled loop for an element of a
and another in the middle of the loop, after 16
multiply— adds, for an element of the pointer vector
colind.

® Methodology and test matrices

The algorithms were tested on a suite of 13 sparse, -
symmetric stiffness matrices. Nine of the matrices are
structural engineering matrices from Boeing, which were
donated by Roger Grimes to the Harwell-Boeing matrix
collection or to Tim Davis’s matrix collection.* The four
other matrices are from the 1994 partitioning benchmarks

4 Roger Grimes is with Boeing Computer Services, Seattle, Washington; Tim Davis
is with the University of Florida, hutp://w.w.w.cise.ufl.edu/~davis.
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of NASA’s Numerical Aerodynamics Simulations
Department. The characteristics of the test matrices are
described in Table 1. We use structurally symmetric
matrices from two sources. Matrices that were contributed
by Grimes represent three-dimensional structures with
several degrees of freedom (variables) per grid point,
typically at least three. They seem to have been ordered
using a band- or profile-ordering algorithm applied to the
original grid, so that all of the degrees of freedom
associated with a single grid point remain contiguous.
Matrices from the NasGraph collection also represent
three-dimensional models, but have only one degree of
freedom per grid point. As a consequence, they are
sparser and do not have contiguous dense blocks. We do
not know how they were ordered before they were placed
in the matrix collection.

For each matrix, we measured the performance of all
combinations of ten different matrix vector multiplication
codes and five different orderings. The ten codes are
described in Table 2. The five orderings are random
ordering, a nested-dissection-type ordering (denoted by
WGPP), reverse Cuthill-McKee (RCM), Cuthill-McKee
(CM), and the original ordering of the matrix as stored
in the matrix collection. The WGPP (Watson Graph-
Partitioning and Sparse-Matrix-Ordering Package)
ordering code was written by Gupta [17, 18].

In each experiment we measured the running time of
the matrix vector multiplication code, the number of load
instructions of various kinds it performed, and the number

of cache and TLB misses. Each measurement is an 717
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The performance in millions of floating-point operations per second (MFLOPS) of the sparse-matrix vector multiplication codes. The
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blocking (i.e., no blocking), one for 1-by-2 blocking, and one for 2-by-2 and 1-by-2 blocking. Each group is represented by a different color.
The leftmost bar with no blocking represents the performance of C code with integer indices. The next three bars, as well as the three bars in
the other two groups, represent the performance of C code with pointer indices, assembly language code with pointer indices, and assembly
language code with pointer indices and prefetching. The original orderings of the matrices in the matrix collections are used.

Table 2 Characteristics of the matrix vector multiplication codes.

No. Mnemonic Language Indices Blocking Prefetching
1 C—-I~-1X1-N C Integers No No
2 C—P—1X1-N C Pointers No No
3 A—-P—1X1—-N Assembly Pointers No No
4 A—P—1X1-P Assembly Pointers No Yes
5 C-P—1X2-N C Pointers 1-by-2 No
6 A—P—1X2-N Assembly Pointers 1-by-2 No
7 A—P—1X2-P Assembly Pointers 1-by-2 Yes
8 C—P—2X2-N C Pointers 2-by-2 and 1-by-2 No
9 A—P—2X2-N Assembly Pointers 2-by-2 and 1-by-2 No

10 A—P—2X2-P Assembly Pointers 2-by-2 and 1-by-2 Yes

average over ten multiplications. The first ten
multiplications were not used at all, in order to eliminate
any influences of cold starts that are usually not significant
in iterative algorithms. All of the matrices were too large
to remain in the cache between multiplications. Since

the cache can hold 32 768 doublewords, in some of the
experiments the vector x could fit within the cache and
remain there between multiplications.

S. TOLEDO

To assess the cost of reordering and blocking the matrices
relative to the potential benefits, we recorded the running time
of the ordering and blocking algorithm we used to preprocess
the matrices. These measurements are of single runs.

® Effects of blocking and prefetching
Figure 2 shows the performance of the ten codes. The
matrices are all ordered in the original ordering from the

IBM J. RES. DEVELOP. VOL. 41 NO. 6 NOVEMBER 1997




matrix collections, which proved to be the best or close to
the best ordering for all of them (see below for more
details on the effect of ordering). The most striking
feature that emerges from the figure is that the behavior
of the nine Boeing matrices is very different from

the behavior of the four NasGraph matrices. This
difference, which is mostly due to differences in the
sparseness of the matrices, is explored below in more
detail.

Each of the algorithmic improvements we have
introduced boosts performance on the Boeing matrices.
Replacing integer indices with pointers increases
performance from about 40 MFLOPS to about 52-55
MFLOPS. With no blocking, the extra unrolling in the
assembly-language code improves performance by 5 to 6
additional MFLOPS. Prefetching improves performance
by another 5 to 6 MFLOPS. With blocking, there is
essentially no difference between C and assembly-language
versions. The 1-by-2 blocking with no prefetching improves
performance to 70-77 MFLOPS, and prefetching
combined with 1-by-2 blocking boosts performance to
78-98 MFLOPS. The 2-by-2 blocking with no prefetching
gives similar performance. Finally, 2-by-2 blocking
combined with prefetching yields performance of 93-104
MFLOPS.

On the NasGraph matrices, using pointers, unrolling,
and prefetching all help, but blocking does not improve
performance. In fact, in most cases blocking degrades
performance. On these matrices, the best-performing code
yields a performance of only 23-39 MFLOPS, and the
differences between the different codes are smaller than
the differences in the Boeing matrices. Since the
NasGraph matrices are much sparser than the Boeing
matrices, blocking the multiplication code introduces
overhead without delivering a significant benefit. Figure 3
shows the correlation between the sparseness of the
matrices and the benefit yielded by blocking and
prefetching. The most probable reason that the NasGraph
matrices do not benefit from blocking is that they
represent models with only one degree of freedom per
grid point. As a consequence, the underlying graphs have
only a few cliques, so the number of dense blocks is small
no matter how the matrices are ordered.

o FEffects of ordering

Figure 4 shows the effect of reordering matrices on the
matrix vector multiplication codes. In all cases the
performance on ordered matrices is better than on
randomly permuted matrices. The differences are
especially large on large matrices, such as bcsstk32,
ct20stif, cojack, and rockl. Figure 5 shows the correlation
between the order of the matrix and the improvement in
performance due to ordering. Since the plot indicates that
the Boeing matrices benefit more from ordering than the

IBM J. RES. DEVELOP. VOL. 41 NO. 6 NOVEMBER 1997

Speedup (%)

0 20 40 60 80 100 120
Average number of nonzeros pet row

Scatter plot of the percentage speedup in running time due to
blocking and prefetching versus the average density of the matrix.
Each mark represents one matrix, with Boeing matrices
represented by + and NasGraph matrices by X. The speedup is
computed as (7; — T,)/T,, where T, is the running time with no
blocking and no prefetching, and T, is the running time with
blocking and prefetching. The original ordering of the matrices is
used.

NasGraph matrices, we hypothesize that the benefit of
ordering depends both on the order of the matrix and on
its density.

Without blocking, the various ordering methods yield
roughly the same performance. This level of performance
is similar to the level that is achieved by the original
ordering of the test matrices. When blocking is used, the
performance on the NasGraph matrices degrades slightly,
but the performance on the Boeing matrices improves.
With blocking, different ordering methods yield different
performance levels. The random ordering is still always
worst, followed by the RCM ordering, the WGPP
ordering, the CM ordering, and finally the original
ordering.

Figure 6 explains the variations in performance of
the blocked codes with various ordering methods. We
analyze mostly the denser Boeing matrices, because the
performance impact of blocking on the sparser NasGraph
matrices is marginal. The figure shows that the random
and reverse-Cuthill-McKee orderings result in matrices
with no or very few 2-by-2 and 1-by-2 blocks. Therefore,
using a blocked code with a randomly permuted matrix or
a matrix which has been RCM-ordered does not improve
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Performance in MFLOPS of four assembly-language matrix vector multiplication codes. The top two depict the performance with no
blocking and the bottom two with both 2-by-2 and 1-by-2 blocking. The graphs on the left do not use prefetching; the graphs on the right do.
Each graph shows the performance on each matrix, using five different orderings represented by different colors.

performance. The WGPP ordering creates more blocks.

In the Boeing matrices, 44-70% of the nonzeros are in
blocks; most of them are usually in the smaller 1-by-2
blocks. The Cuthill-McKee orderings result in many more
nonzeros in blocks, between 73 and 97%. The fraction that
is in 2-by-2 blocks is better than with the WGPP ordering,
but it is still sometimes less than one half. In the original
ordering, even more nonzeros are in blocks, and the vast
majority of them are in 2-by-2 blocks.

The differences between the fractions of nonzero blocks
in the different orderings can be traced to several factors.
The original ordering yields better blocking than all of
the other orderings, probably since it was applied to
grid points rather than individual degrees of freedom
(variables). Consequently, dense blocks in the matrix that
was produced by the grid generator remained dense.
When we applied the other orderings to the matrices,
some of these dense blocks disappeared. The differences
between the Cuthill-McKee and the reverse-Cuthill-

5. TOLEDO

McKee may be due to the fact that our blocking algorithm
is greedy and scans the matrix from top to bottom and
from left to right within rows.

& Cost of reordering and blocking
Figure 7 shows the time it takes to reorder the randomly
permuted test matrices. The time is shown relative to the
basic matrix vector multiplication time (C—I—1x1—N)
with a randomly permuted matrix. The Cuthill-McKee and
reverse Cuthill-McKee orderings take one to three times
longer than matrix vector multiplication; therefore, they are
well worth their cost. The WGPP ordering costs 20 to
200 times more than matrix vector multiplication. (This
ordering code was designed as a fill-reducing mechanism
for direct factorizations, which are much more expensive
than single matrix vector multiplications.) It is therefore
not appropriate for our application.

Figure 7 also shows the time it takes to block the
reordered test matrices into 2-by-2 and 1-by-2 blocks.
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The time is shown relative to the basic matrix vector
multiplication time (C~I—1x1—N) with a randomly
permuted matrix. The blocking usually costs 4 to 15
times more than basic matrix vector multiplications. The
graph shows that in several experiments blocking took
significantly more time than that because of paging. The
fact that this phenomenon occurs only when blocking
follows an ordering step (in which additional memory is
allocated) shows that the problem is indeed paging and
memory management.

We now estimate the number of matrix vector
multiplications that must be performed following a
blocking step to pay for the cost of blocking. We assume
that blocking costs 15 times more than basic matrix vector
multiplication, and about 25 times more than the best
unblocked code (A+P+1x1+P with prefetching). We
also assume that blocking reduces the matrix vector
multiplication time by one third, which is a conservative
estimate for the Boeing matrices. From these assumptions
it follows that if the matrix is used in more than 75
multiplications, blocking will reduce the overall running
time.

& Comparison to a direct solver

To put our results in a broader perspective, we compare
them to the performance of a multifrontal, sparse direct
solver. The solver was written by Anshul Gupta, who
provided us with the timings below. Directly solving a
linear system Ax = b, where A4 is our test matrix besstk32
with one right-hand side, took 15.7 seconds (on the same
machine used for the rest of the experiments). Of the 15.7
seconds, ordering the matrix took 4.5 seconds, symbolic
factorization took 1.5 seconds, numerical factorization
took 9.3 seconds, and the triangular solve took 0.36
seconds. The number of floating-point operations in the
factorization was 1630 million, giving a computational rate
of about 175 MFLOPS for the numerical factorization
alone and 104 MFLOPS for the entire solution.

In comparison, our best matrix vector multiplication
code took 0.0433 seconds on the same matrix. The cost of
the numerical factorization is therefore equivalent to that
of about 215 matrix vector multiplications. The total cost
of the direct solution, 15.7 seconds, is equivalent to 1.7
seconds for reordering and blocking plus 323 matrix vector
multiplications.

® Portability experiments

We have repeated some of the experiments reported
above on another superscalar RISC computer, a Sun
UltraSPARC workstation. The machine has a 143-MHz
UltraSPARC I processor with a 16KB direct-mapped
primary data cache, a secondary off-chip 512KB cache, a
288-bit-wide memory bus, and 96 megabytes of memory.
The UltraSPARC I processor has 32 floating-point registers
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Scatter plot of the relative reduction in running time due to
ordering versus the order of the matrix. Each mark represents one
matrix, with Boeing matrices represented by + and NasGraph
matrices by X. The reduction in running time is computed as
(T; — T)/T,, where T, is the running time with blocking and
prefetching using a random ordering, and 7, is the running time
with blocking and prefetching using the original ordering.

and can issue one floating-point multiply and one floating-
point add per cycle. We used the IBM GNU C compiler
and used the —03 and —funroll-loops optimization
options (preliminary testing showed that the GNU C
compiler produced faster code than the Sun C compiler).

The C language subroutines compiled and ran without
a problem. It took about a day to produce assembly-
language versions of the routines and to introduce
prefetching into them.

Our performance results, which are based on the
performance of the msc10848 and msc23052 matrices,
can be summarized as follows. The basic C version on
randomly permuted matrices ran at 10.6-11.4 MFLOPS.
The same version on the original ordering of the matrices
ran at 16.5-16.8 MFLOPS. The relative improvement due
to reordering alone is larger than on the POWER?2
machine (for the same matrices), because of the smaller
size of the primary cache on the UltraSPARC 1. Replacing
integer indices with pointers did not improve performance,
and neither did prefetching; also, these optimizations did
not slow down the algorithm. Blocking the matrices into
2-by-2 and 1-by-2 blocks improved performance to
20.8-22.2 MFLOPS.
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Fraction of matrix nonzeros that is blocked in 2-by-2 and 1-by-2 blocks. The graph shows the fraction of nonzeros in blocks for five different
orderings of each matrix (the first two usually result in very low levels of blocking). The striped portion of each bar represents the fraction of
nonzeros in 2-by-2 blocks, and the solid portion the fraction of the remaining nonzeros that are blocked in 1-by-2 blocks. The levels of

blocking when only 1-by-2 blocks are used are slightly higher than the combined levels shown here.

The integer-to-pointer conversion did not help, probably
because the UltraSPARC I has a dedicated address adder,
so address calculations and integer-to-pointer conversions
(i.e., shift instructions) do not compete for the same
functional units. The most likely reason that prefetching
did not improve performance is that the UltraSPARC I
has only one load/store unit, whereas the prefetching
techniques are meant to prevent multiple units from
stalling on the same cache line.

The performance improvements shown by our
experiments verify that our techniques, with the possible
exception of prefetching, are general and should improve
performance on most superscalar RISC machines.

We note that the overall performance level in these
experiments, which may seem low compared to the peak
performance of the processor, is in fact quite similar to
the performance of similar numerical codes on the
UltraSPARC. For example, the double-precision dot product
subroutine in the FORTRAN BLAS [19], as well as the
same subroutine in the Sun Performance Library, runs at
less than 20 MFLOPS on this machine. The main reason
for this performance level seems to be the small primary
cache coupled with the short cache lines (16 bytes).
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6. Conclusions
We have presented four techniques for accelerating
sparse-matrix vector multiplication on superscalar RISC
processors. One of the techniques, precomputing
addresses for indirect addressing, is trivial but important.
The technique of reordering the matrix to reduce its
bandwidth and hence reduce cache misses has been
proposed by Das et al. [2] and investigated further in two
other papers [3, 4]. We have explored it further and found
that the Cuthill-McKee technique yields excellent results
on a variety of matrices. Two other techniques,
representing nonzeros in small dense blocks and
prefetching to allow cache-hits-under-miss processing, are
novel (others have proposed representing nonzeros in
larger blocks [5, 6]). They, too, improve performance
significantly on many matrices. On an IBM RS/6000
workstation, the combined effect of the four techniques
can improve performance from about 15 MFLOPS to
more than 95 MFLOPS, depending on the size and
sparseness of the matrix.

Our techniques, with the exception of prefetching, are
general for superscalar RISC architectures. The ordering
and blocking techniques should improve performance on
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most RISC processors, as shown by our experiments and Although even basic matrix vector multiplication codes
the experiments of Burgess and Giles [4]. Replacing perform better when the matrices are not extremely sparse
integers with pointers should improve performance on (<10 nonzeros per row), highly optimized codes are even
RISC machines that use the same functional units for more sensitive to the sparseness of the matrices.

address calculations and for shifts. The code that Reordering sparse matrices using the Cuthill-McKee
implements these three techniques is portable. The ordering has another benefit in sparse iterative solvers.
prefetching technique should improve performance on When a conjugate gradient solver uses an incomplete
superscalar RISC processors that have more than one Cholesky preconditioner, the ordering of the matrix affects
load/store unit. Our implementation method for this the convergence rate. Duff and Meurant [20] compared
technique can be duplicated on most machines, but the the convergence rate of an incompletely Cholesky-
technique cannot be considered portable. preconditioned conjugate gradient with 17 different 723
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orderings on four model problems. In their tests the
Cuthill-McKee and the reverse Cuthill-McKee resulted
in convergence rates that were best or close to best.
Although it is possible to use different orderings for
preconditioning and matrix vector multiplication, doing so
requires permuting a vector twice in every iteration. This
extra step renders each iteration more expensive. Using

a Cuthill-McKee or similar ordering for both steps
eliminates the need to permute vectors in every

iteration, leads to few cache misses in the matrix vector
multiplication step (and very likely in the preconditioning
step as well), enables blocking, and accelerates
convergence.

Our proposed hardware-assisted prefetching can
eliminate the somewhat complicated coding technique that
we used to implement prefetching in the irregular loop
over the sparse rows of the matrix. Mowry [13] compared
compiler-based software-directed prefetching to
prefetching by hardware with no software intervention, as
proposed by Lee [21], Porterfield [12], and Baer and Chen
[22]. Our proposal lies somewhere between the two
extremes. It enjoys very little instruction overhead, since
the prefetching instructions are outside, rather than inside,
the inner loop. It does not suffer from excessive memory
contention overhead, because prefetching is enabled and
disabled by software. Finally, our proposal enables
prefetching in irregular loops, which Mowry did not
consider. The main disadvantages of our proposal are the
need to augment the instruction set and the hardware
cost. A more detailed study is required, however, in order
to assess the effectiveness of our proposed hardware-
assisted prefetching scheme.
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