Use of the
transform exit
seqguence
in printing and

as a framework

for the solution

by S. D. Mastie

of complex problems

This paper is both a review of previous
research and development and a description
of new work for the IBM PSF/2 and PSF/6000™
printing products. These products are best
characterized as complex queue drivers,
originally designed to allow fast printers

to be driven directly from the existing print
subsystems of 0S/2® and AIX®, respectively.
The new work extends the capability of these
products by providing a framework that
broadly redefines the way in which “print
queues” can relate to printers, other queues,
and other programs, without requiring any
changes to the spooling system. This technical
advance is based on the twin ideas of the
transform exit and the transform exit
sequence, which are examined in detail. Using
this technology, both PSF/2 and PSF/6000
treat the largest mainframe-attached printers
as “local desktop printers,” allowing LAN
communities to print directly on mainframe
printers from LAN applications. Other

interesting uses of this technology include
routing print jobs to the printers appropriate
for their data types, improvements in printer
throughput, automated print-job archiving,

and improved system management, each of
which is covered in some detail in the paper.
Although some of these solutions can also

be provided by extending the capabilities of
the spooling systems and some have been
addressed in particular environments and
applications, the transform exit sequence
framework does not depend on changes to the
spooling system, allowing it to be used in a wide
variety of current and future operating systems.

Introduction

Historically, printers and print queues have often enjoyed
a simple relationship: one printer per queue, and one
queue driver to bind the two together by sending print
jobs from the queue to the printer. As long as the data
type of the job on the print queue is one that the printer

©Copyright 1997 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,

of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

0018-8646/97/$5.00 © 1997 IBM

IBM J. RES. DEVELOP. VOL. 41 NO. 6 NOVEMBER 1997

S. D. MASTIE

679




680

Table 1 Abbreviations used in the paper.

AIX: Advanced Interactive Executive (IBM UNIX)

AFP: Advanced Function Presentation (architecture specifying document structure and page content)

APL: Application Programming Interface (interface to application program)

ASCII: American Standard Coded Information Interchange (a code for unformatted print files)

IPDS: Intelligent Printer Data Stream (two-way printer dialog and page-description language used by
IBM printers and PSF products)

LAN: Local area network

JES: Job entry subsystem (IBM MVS print job queuing system)

MVS: Multiple virtual storage (mainframe operating system)

NT: New Technology (a Microsoft operating system)

05/2: Operating System/2 (an IBM operating system)

PDL: Page Description Language (describes data format)

PS: PostScript (page description language developed by Adobe)

PSF: Print Services Facility (queue driver for IPDS printers)

RIP: Raster image processing (creating images from PostScript)

SNA: Systems Network Architecture (often used for cross-system distributed printing)

VM: Virtual Machine (mainframe operating system)

VSE: Virtual Storage Extended (mainframe operating system)

can handle, this paradigm allows printers to be unaware
of the specifics of the operating system, application
program(s), or queuing system. Not surprisingly, this
paradigm is very pervasive: One finds it on all of the
major IBM operating systems, including MVS, VM, VSE,
AS/400*, AIX*, and OS/2*, and most major non-IBM
operating systems as well, including Windows**,
WIN-95**, NT** NetWare**, Banyan Vines**, and
many varieties of UNIX**. (Table 1 provides a list of
abbreviations common to the printing literature.) In

the case of the IBM operating systems, sophisticated
Intelligent Printer Data Stream* (IPDS*) printers could
be attached by the use of a Print Services Facility* (PSF*)
software product as the queue driver. This allowed
continuous two-way printer communications for the first
time but still left the paradigm intact: There was usually
one queue per printer, and PSF bound the two together.

The PSF/2 introduction of the transform exit and
transform exit sequence extended this. This new
technology enabled PSF/2 to provide important new
solutions to otherwise unsolved printing problems, and a
clean way to address issues such as forms scheduling,
which were previously solved only in specific operating
system environments. It has already been ported to AIX
in the PSF/6000* product and can be applied to other
operating systems as well.

The transform exit provides four essential functions:
data-type detection, open API support, substitution
variables, and a “terminal” designation. Data-type
detection (often called “sniffing”) allows conditional
processing by data type. Open API support allows
practically any program or filter to be executed by the
transform exit when print jobs of the appropriate data
type(s) arrive on the print queue. Substitution variables

S. D. MASTIE

allow APIs to be invoked in an operating-system-
independent way, by externalizing information as variables
that are dynamically resolved for each print job by the
transform exit before calling the API. Designating a
transform exit as “terminal” allows the API invocation

to be one-way, completing the queue’s processing of the
data in lieu of sending the data to a physical printer.

The transform exit sequence provides rules for linking
individual transform exits into a sequence to be executed,
so that the output of one transform exit can become the
input to another. This allows individual transform exits to
be linked in an object-oriented manner as building blocks
of complex solutions, unaware of the broader context in
which they are imbedded. The transform exit sequence
is a new programming language, in which the individual
“instructions” are transform exits that are called in
sequence. The input to a transform exit sequence program
comprises the print jobs that arrive on the print queue.

® Organization of paper
First we present a historical overview of the printing
paradigm and relevant prior art, in order to establish the
terminology and framework for evaluation of the new work.
The main body of the paper, which follows, is composed
of three broad sections: the transform exit, the transform
exit sequence, and applications of the technology. The first
of these sections, on the transform exit, focuses on the
technology, terminology, and functions of individual
transform exits. The expressive capability of the transform
exit is shown in terms of problems that can be solved by
the use of a single transform exit. The second section,
on transform exit sequences, advances the ideas of the
transform exit by providing the rules and framework for
linking multiple individual transform exits. The final

IBM J. RES. DEVELOP. VOL. 41 NO. 6 NOVEMBER 1997




section, on applications of the technology, presents sample
applications of the transform exit and transform exit
sequence.

The concluding section suggests areas needing further
study.

® Historical overview of the print paradigm, and prior art
While many of the concepts and terms used throughout
the paper are nearly universal in nature (an example
is “print queue”), the OS/2 desktop is used wherever
possible to specifically illustrate the concepts. The reader
is invited to generalize beyond this, to other environments,
as appropriate.

Printing can be decomposed into three high-level steps:

1. Formatting the data.
2. Moving the data to the print queue.
3. Moving the data from the print queue to the printer.

The first step is generally performed by an application
program, which uses a print driver to help create data the
printer can understand. The second step is done by the
print driver and the spooling system of the particular
operating system to get the print job onto the print queue.
The final step is the delivery of the print data to the
printer by a queue driver. The queue driver is controlled
by the spooling system. For example, if the queue is held,
the queue driver is typically not called until after the
queue is released. Pictorially, the print driver, queue,
queue driver, and dataflow relationships can be
represented as shown in Figure 1. Each of these steps
occurs during printing, but they can be overlapped and
interrelated, reflecting the great variety among printers,
print and queue drivers, and application programs.

We first consider the printer. From its perspective,
sometimes called the “printer’s-eye” view, information
arrives which comprises printing controls and data to be
processed and printed. Printers can understand only some
of the many possible formats of data, generally called page
description languages (PDLs). Among the more common
ones are HP:PCL** (Hewlett-Packard’s Page Control
Language, for HP** LaserJet** and compatible printers),
PS (Adobe’s PostScript** language), and IPDS (IBM’s
Intelligent Printer Data Stream). Generally, these PDLs
organize the pages and the data within the pages so that
the printer knows how to create the page images. Each
page image is composed of pixels (also called pels, for
picture elements). Some printers support only one PDL;
most newer printers support a wide variety of them, along
with common forms of simple, unformatted data without
explicit page boundaries such as ASCII files and MVS
1403 data. Unfortunately, no printer can support all of the
types of data that exist; the universe of possibilities is
immense and growing constantly. If one sends data to a

IBM J. RES. DEVELOP. VOL. 41 NO. 6 NOVEMBER 1997

Application
program

Print driver

Printdata -

L ey

Print quene

T Y A

Basic printing process.

printer in a PDL that it does not understand, it will
probably produce many pages of garbage, even for a small
file, as anyone who has sent the wrong type of data
already knows.

The fact that each printer understands only a limited
number of PDLs has profoundly shaped the historical
printing paradigm. Because the universe of possible data
types is continually increasing and printers need structured
PDLs to render the pages properly, the evolution of most
queue drivers has led to a very simple approach: They
merely take print jobs from the queue and send them
directly to the printer, even if the printer cannot
understand the PDLs of some of the print jobs. Figure 1
shows such a queue driver and how it fits into the overall
printing process.

Not that all queue drivers are simple, by any means.
PSF/MVS, for example, can be viewed as a queue driver
for the MVS JES (Job Entry Subsystem) spooling system,
connecting to IPDS printers via S$/370* channel, SNA, or

S. D, MASTIE




682

Application

| Application | Application

Print driver

- Print driver ‘
‘ (HPPCL-4)

(AFP)

3
Drint driver
; (PS)

| PBunt

| pm |

lqueuel ese 3

DS . - ‘ P§
queue driver ‘ dri . | aqueuedriver |
__IPDS -—g ‘P‘;‘%— PostSeript
. ‘ ‘ Token ring input
‘ Tatellisent |- L b
printer

© Patallel port input
. @ Ethemet input

as shown in Figure 1.

TCP/IP protocols. Recognizing the importance of having
the data formatted correctly on the printer, the PSF/MVS
designers established a new way of dealing with the
universe of possible data. In addition to preventing data
from printing incorrectly whenever possible, PSF/MVS
introduced post-spool formatting of data; i.e., the queue
driver may change the data before delivering the data to
the printer, as opposed to pre-spool formatting by the
application and print driver, which is still more common.
This technology allowed unstructured data such as fixed-
length, 72-column records to be composed into more
aesthetically pleasing output, without requiring any
changes to existing mainframe application programs that
generated the original data. Not only does this allow print
format changes without application program changes, but
it also allows the printer to receive a single type of PDL
(IPDS in this case) from the queue driver, even though
multiple forms of data arrive on the queue. This important
advance, driven by the printer’s-eye view, added great
utility to printers, while keeping the printers themselves
relatively simple [1]. Still, it generally conformed to the

S. D. MASTIE

Intelligent printer receiving three kinds of print data from three
different applications, print drivers, and print queues. The data
arrive via three different communication technologies and three
different drivers. Any single application-to-printer path is the same

old paradigm: a single queue (JES) and a single queue
driver (PSF) feeding a single printer (IPDS), so that the
printer can maintain its myopic printer’s-eye view of the
universe of possible data types. Also, any data type not
recognized and handled by the queue driver still results
in either no output or incorrect output.

Printers have evolved and advanced greatly since the
development of PSF/MVS, and newer printers generally
accept and understand many PDLs. In addition, the
“smartest” printers have a limited ability to detect the
PDL type of each print job and adjust their emulation
modes accordingly. Known as AES (Automatic Emulation
Switching) [2], this advance has been extended to allow
some printers to handle multiple PDLs arriving
simultaneously from different input sources. Figure 2 is
a diagram of such an intelligent printer. Note that this
allows multiple print queues to feed a single printer, but
each queue is still bound to a physical device, as is each
queue driver. Other advances in spooling systems allow a
single queue to spread jobs across multiple queue drivers
[3]. This one-to-many relationship between a queue and
physical printers is generally called a “printer pool.” A
printer pool does allow an application program and print
driver to print to any of a collection of printers, but each
queue driver is still bound to a physical device, with few
or no intelligent criteria to control the distribution of the
jobs: Each of the n printers gets every nth print job, even
when one of the printers becomes disabled, and there is
no capacity to add adjustable, user-defined criteria such as
allowing large jobs to go only to a particular printer, or all
jobs of a certain data type to a particular printer that can
handle that data type. These ideas are refined significantly
by the ISO DPA 10175 work, which adds significant
intelligence and capability to the spooling system itself [4].
Implementations of this work such as the IBM PSM
(Printing Systems Manager) product for AIX, or the
Xerox PrintXchange product, are able to do intelligent
print pooling based on flexible routing criteria. ISO DPA
10175 actually extends the printing paradigm significantly
by redefining what the functions of the spooling system
can be, in order to permit interoperability and exchange
of print jobs between heterogeneous printing systems.
However, even this new work leaves the model for the
queue driver portion of the paradigm intact: From the
perspective of any single queue driver, there is still a
single queue of print jobs and a single printer to send
them to. This attests to how profoundly the need to print,
and the ensuing queues, queue drivers, and PDLs, have
shaped the way our computing systems look and behave.

The reach of this printing paradigm for queue drivers
extends even beyond the queue. As has been stated above,
in general the data that are put on the queue are sent
directly to the printer by the queue driver. Therefore,
inappropriate data types that reach a print queue still fail.

IBM J. RES. DEVELOP. VOL. 41 NO. 6 NOVEMBER 1997




This has propagated the responsibility for producing valid
print data back to the clients and application programs,
which has led directly to the development of the print
driver. A print driver generates properly formatted data
for a particular printer directly from the output of an
application program. Some applications still do such
formatting themselves, but with advanced LAN operating
systems such as Windows and OS/2, a framework is
provided that allows all print drivers to be available to

all of the application programs running on the desktop.
This means that print drivers now offer consistent PDL
generation from practically any application program: The
printer manufacturer creates an appropriate driver for
each new printer, and the operating system provides the
underpinnings that allow this print driver to be loaded and
used consistently from any application program. This has
certainly advanced the state of the art, since it allows all
desktop application programs to format and print correctly
on a particular printer. However, just a quick glance at
the sheer numbers of LAN print drivers for Windows or
0S/2 tells a critical tale: Each of these drivers is subtly
different in order to create a PDL that is acceptable to

its particular printer. It is practically universal today that
when the carton of a new printer is opened, a diskette is
found inside that provides the new print driver that is
needed. The good news is that this paradigm advance has
freed the application-program writers from worrying about
the printers; all of the print drivers are available to all of
the application programs via the homogeneous printing
interfaces provided by the operating system. In theory, this
enables all printers to be available from all application
programs. In practice, however, it still falls to the user to
select a print driver that is appropriate for the target
printer or get garbage output.

The mainframe analogies to this are very clear as well.
At one time, all mainframe application programs did their
own internal formatting, which required the application
programs themselves to be changed for each printer or
page-layout change. This problem was mitigated by the
addition of post-spool formatting [for example, by a queue
driver such as PSF using an AFP* (Advanced Function
Presentation™) Pagedef and Formdef], to protect
mainframe software programs from change by insulating
them from the details of formatted page layout. Known as
conditional processing, the ability to change page layout
and support new printers without requiring changes to the
software applications is to mainframe software what
print drivers are to workstation software. In each case,
application programs can make use of new printers and
formatting options without being changed themselves.

This concludes the overview of the print paradigm,
with enough history to allow the evaluation of the new
technology of the transform exit and transform exit
sequence and how these have been implemented in PSF/2

IBM J. RES. DEVELOP. VOL. 41 NO. 6 NOVEMBER 1997

and PSF/6000. That the basic paradigm for printing holds
for nearly every computing operating system, and that it
allows print jobs to be printed successfully on devices from
low-end dot matrix printers to high-end laser printers
testifies to its flexibility. However, pervasive problems
remain in getting correct output, and the technology of
the transform exit sequence is a new approach to dealing
with many of these print-related problems. The transform
exit sequence technology can be implemented completely
within the queue driver as it has in PSF/2 and PSF/6000.
This makes it widely useful as a technology, since

it can be implemented within existing operating systems
and spooling systems. This also makes the technology
completely complementary with pre-spool conversion
techniques such as the filters of UNIX and AIX, and
broader spooling system extensions, such as the ISO DPA
10175 standard.

The transform exit sequence addresses the problem
of inappropriate print data being sent to a printer by
allowing such data to be detected and handled gracefully:
If one sends PostScript to an HP:PCL printer by way
of a PSF/2 or PSF/6000 queue driver, the PostScript is
converted by means of a transform exit sequence into the
HP:PCL data that the printer can handle. The conversion
can be done either locally or on a remote machine, as
preferred. Although the filters of UNIX and AIX provide
broad data transformation capability, they are different
from the transform exit sequence. Filters are normally
invoked explicitly from the command line to do a
particular data conversion before the data are enqueued
for printing. This should be contrasted with the post-spool
nature of the transform exit sequence, which allows
appropriate conversions to be done automatically and
conditionally when a print job of a particular data type
arrives on the print queue. Also, the transform exit
sequence can be applied to operating systems where filters
are unavailable.

Another variation of data-type awareness is exposed by
the following problem: How can a print administrator set
up a single queue for a networked user community so that
the queue routes print jobs of different data types to the
physical printers capable of handling them? Addressed in
ISO DPA 10175, this problem may also be solved by
means of a transform exit sequence in PSF/2 or PSF/6000,
so that all PostScript jobs that arrive are sent to one
printer, all HP:PCL jobs that arrive are sent to a second
printer, and so forth. Since the transform exit sequence
operates post-spool within a queue driver, it has no
dependencies on spooling system changes or the specific
capabilities of a single operating system, making this class
of data-type routing problem solvable in a wide variety of
existing environments.

Printers have a small number of input bins (also called

trays). Many printers support dozens of different media 683

S. D. MASTIE




684

sizes and weights, but only one medium type at a time
can be loaded in a given bin. This fact leads to another
illuminating problem: How can a print administrator make
available to the user community all of the media that a
printer actually supports, while making sure that if a
particular medium is not loaded when it is needed, the job
that needs it is held (until the medium becomes available
again) rather than printed on an incorrect medium? A
closely related scheduling problem is this: How can a print
administrator assess the number of print jobs that are held
awaiting the availability of a particular medium that is not
currently loaded in the printer (in order to efficiently
schedule media changes) or obtain an enumeration of all
of the media types required by pending print jobs? These
related problems are outside the scope of what can be
addressed by means of filters. They can be addressed by
means of an ISO DPA 10175 approach, but they can also
be solved by the use of transform exit sequences to define
multiple logical queues for the single physical printer. This
allows administrators to manage devices effectively by
releasing only those queues that match the media actually
loaded in the printer, even in environments where a new
spooling system is inappropriate. Note also that the arrival
of a print job in a particular queue can be used as the
criterion for an alert to the administrator, providing an
automatic indication that a medium change will be
required to handle a particular print job. This application
is discussed in more depth in the last subsection on
multiple logical queues later in the paper.

Most significantly, the transform exit sequence is an
extensible framework that permits additional solutions
in the future. Current uses of the technology include
conversion of print jobs and then uploading them from
desktops to mainframe printer queues, conversion of
PostScript files in the background to avoid printing delays
on the physical printer, and calling application programs
so that the user may view the print jobs before they are
printed or in lieu of printing them at all. Each of these
solutions is examined in the section on applications. For
some of these solutions, a “print queue” becomes merely a
front-end queuing system to the transform exit sequence
framework and is used to enqueue, convert, and redirect
data for purposes not related to printing per se.

Transform exit

Since the transform exit can be viewed as an extension of
the concept of filters, we begin by reviewing filters. Filters,
which allow the conversion of data from one type to
another, are widely used in UNIX, AIX, and other
workstation environments to enhance the utility of
particular printers. Assume that a filter called “AtoB”
converts data type A into data type B. If a particular
printer accepts data of type B only, this AtoB filter can be
used to transform (or “filter,” in the vernacular of UNIX)

S. D. MASTIE

data of type A into type B before the data are enqueued,
allowing the data to print. If we assume that such a
printer is attached to local port LPT1 and the data of type
A are located in the file c:/typea.out,l the data can be
printed if the following command is issued:

AtoB c:/typea.out > LPT1.

This invokes the AtoB filter, supplies the file of type A
data as input, and pipes the result of the filter (type B
data) directly to local port LPT1.

The transform exit extends the ideas of filters by
allowing filters and other programs to be invoked
selectively, on the basis of data-type criteria, whenever an
appropriate job arrives on a print queue. The specification
of a transform exit has the following form:

transform exit = name, terminal,
(data-type qualification;), body.

The name of the transform exit must be unique. Although
it is not strictly required, it makes keeping track of
multiple transform exits simpler. ‘

If the transform exit is flagged as terminal, no further
processing will be done on the print job after the body
of the transform exit is executed. The Boolean terminal
indicator is necessary to solve some classes of problems.
It is false by default, meaning that the queue driver will
normally attempt to print the results of the execution of
the transform exit body. If it is set to true, the transform
exit is called a “terminal transform,” and the queue driver
will not attempt to print the job after executing the body
of the transform exit.

The data-type qualification is an optional logical
expression that, if present, causes the transform exit body
to be executed for a print job if and only if the data type
of the print job matches the expression. The expression
can be a single data type or multiple data types combined
using logical AND(&) and OR(!) operators. The data-
type qualification is expressed with the use of tokens to
represent the kinds of data that must be detected. Within
PSF/2, the following tokens are valid: AFP, ASCII, PS,
PCL, and METAFILE. These can be combined using
logical operators, for example, to define a transform exit
which is to be executed if a print job is either of two
different data types. If any data-type qualification is given,
a delimiter must follow and precede the body.

The body is the filter or program to be executed by the
queue driver if any data-type qualifications are met for a
particular print job. For example, this might be a filter to
convert the data to another form. With regard to the filter
example AtoB introduced earlier, AtoB requires the fully
qualified file name as input. Since the actual file will

1 We use UNIX notation here, since filters are widely used in UNIX.

IBM J. RES. DEVELOP. VOL. 41 NO. 6 NOVEMBER 1997




vary with each new print job on the spooling system,
substitution variables are provided by the transform exit to
allow tokens to represent data that vary. These tokens are
resolved by the transform exit before the body of the
transform exit is executed.

As an example of use, we define a transform exit to put
the existing AtoB filter to work, so that it will be called
automatically by the queue driver for any PostScript job
that arrives on a print queue but will not be called for any
non-PostScript print job. If it is called, we want to print
the result of the AtoB transformation. To call AtoB, we
need two substitution variables: one (“%i” in PSF/2) to
tell AtoB where to access the current print job if it
matches the PS-only criteria, and another (“%0” in PSF/2)
to tell AtoB where to put the filtered data so that the data
can be printed. The substitution variables %i and %o are
for input and output, respectively. Then, if AtoB is located
in the c:\filters subdirectory, the following transform exit
specification can be used:

transform exit = AtoB for PostScript Only, False, PS;
c:\filters\AtoB %i > %o.

Once a transform exit is defined, it may be associated with
multiple print queues—it does not have to be redefined
for each queue.

A transform exit is run when a print job arrives on a
queue with which the transform exit is associated. All
transform exits must be executed by the queue driver
before any data are sent to the printer, because any
transform exit can change the data, or even pass control
of the printing process to a different application program
or print queue if it is a terminal transform.

This actual execution of a transform exit involves four
essential parts, discussed below: data-type detection, open
API support, substitution variables, and terminal transforms.

® Data-type detection

During transform exit execution, data-type detection is the
ability to inspect a print job on the print queue, associate
it with some member of a set (all members of the set
constitute the universe of all known data types), and
compare it to the data-type qualification (if any) of the
transform exit definition. This concept requires that all
print jobs be classifiable into some taxonomic hierarchy of
data types. For reference, the following are the data types
that PSF/2 version 2.00 can detect:

» AFP = any Mo:DCA-P print job [5].

e ASCII = any ASCII print job.

o MF = any OS/2 metafile print job [2].

e PS = any PostScript print job [6].

* PCL = any HP:PCL-4 or HP:PCL-5 print job [7].
» OTHER = none of the above.

IBM J. RES. DEVELOP. VOL. 41 NO. 6 NOVEMBER 1997

Then,
U = {AFP, ASCII, MF, PS, PCL, OTHER},

where U is the universe of all possible data types. The
data type OTHER includes all data types other than those
for which data-type-detection heuristics or algorithms have
been implemented.

Classification according to some sets U, including this
one, involves the resolution of ambiguity, since some print
jobs can be associated with multiple data types. PostScript
print jobs, for example, are often ASCII files that contain
the PostScript programming language [8]. Therefore, when
both ASCII and PostScript are members of the set U, the
ambiguity must be resolved. In general, ambiguity between
any two or more members of U must be resolved as part
of data-type detection.

The approach implemented in PSF/2 was to remove any
ambiguity by associating each print job with one and only
one member of the set U. Another approach is to allow
classification of a print job as a subset of the members of
U, for example, {PS, ASCII} in the case of an ASCII
print job that contains PostScript. For PSF/2, however,
print-job accounting requirements (the total number of
pages printed for each data type) and other transform exit
applications were best served by associating each print job
with only a single data type. Therefore, the implications
of subset classification are left as future work, and
henceforth, data-type detection is assumed to be the
classification of a print job as one and only one member
of the set U.

An ASCII file that contains PostScript can be treated as
PostScript (the PostScript program should be run to
produce the appropriate images) or treated as ASCII
(which results in a listing of the PostScript program). If
explicit information is available indicating which of these
two output formats is desired, PSF/2 makes use of that
information in lieu of detection. In the absence of such
information, any job on the print queue that tests
positively as both ASCII and PostScript is classified as
PostScript only.

In summary, a given transform exit can be unconditional
(applicable to all data types) or data-type conditional.
Unconditional transform exits can be executed
immediately without data-type detection. Data-type-
conditional transform exits require that the data type
of each print job be determined and compared to the
data-type qualifications of the transform exit, and
any ambiguity in the classification must be resolved
before this comparison is made. Resolution of the
ambiguity between the members of a set U which is
different from that used by PSF/2 is left as future

work. 685

S. D. MASTIE




686

& Open API support

An API, or application programming interface, is defined
as an interface that allows data and/or control to be
passed from one application program to another. The
transform exit provides a framework for making use of
any available API (i.e., invoking any available program)
from the print queue. OS/2, for example, allows most
application programs that have been compiled to run
under DOS, Windows 3.1, or OS/2 to be started by simply
invoking them from any OS/2 window. OS/2 also supports
invocation of REXX or command language (*.CMD)
programs. Therefore, the support for transform exits in
PSF/2, which is based on OS/2, allows any of these types
of application programs to be invoked from a transform
exit, and a “print” queue can now represent almost any
desktop application.

As one example, consider the AFP Workbench*,
which runs under either Windows or OS/2, and allows
documents to be viewed, among other document-related
functions. According to default naming. conventions,
c:\fld\fidwinvw.exe would be the Windows version of the
Workbench program. The command

c:\fid\fildwinvw c:\myfile.out

would start the Windows Workbench in a WIN-OS/2
context from any WIN-OS/2 or OS/2 window and would
cause the file c:\myfile.out to be viewed. Therefore, this
same command can be the body of a transform exit to
build a viewer queue for previewing print jobs.

Similarly, all system commands, such as COPY, PRINT,
and TYPE, as well as other application programs, can
be included in the body of a transform exit.

Finally, we observe that the transform exit provides an
excellent framework for customization. Consider the task
of writing a new accounting program that is to add up the
number of bytes of the PostScript jobs that are printed on
a particular printer. The transform exit approach allows
the accounting program to be coded in whatever language
the individual prefers, added to a transform exit, and be
called for PostScript jobs only.

& Substitution variables

Substitution variables are tokens that a transform exit
makes available to the body of the transform exit. They
represent information about the print job that might be
needed by the body of the transform exit. These variables
are resolved dynamically for each print job and are
automatically substituted into the application program
calls in the body of the transform exit. Because the
transform exit makes these substitution variables available,
many application programs can be accessed via a
transform exit much more easily than if they had to be
aware of the underlying queuing system that manages
print jobs. For example, on OS/2 and most other queuing

S. D. MASTIE

systems, the identifier assigned by the queuing system
varies for each print job. Also, it is often necessary to call
an application program from a transform exit in order to
do something for every print job (or perhaps every print
job of a certain data type). For such cases, a substitution
variable is made available to represent the concept of the
job (the particular job being printed at this moment),
which allows the body of the transform exit to be coded
just once and remain constant. The transform exit then
resolves this variable appropriately for each print job and
dynamically substitutes the correct value into the call to
the application program, making the transform exit work
consistently for multiple print jobs having different
identifiers. Substitution variables let transform exit
definitions be specified in terms of variables that are
resolved dynamically by the transform exit execution.

8 Terminal transforms

By definition, a terminal transform is a transform exit that,
once executed, results in no further transformations of the
data being performed and in the original source print job
being removed from the print queue.

A terminal transform can be absolute or conditional. An
absolute terminal transform is terminal regardless of the
data-type classification of an individual print job, while a
conditional terminal transform is terminal for only the
type of data specified by the data-type qualification.

The terminal transform, when combined with the other
capabilities of a transform exit (the data-type detection,
open APIs, and substitution variables), allows “print”
queues to represent almost any application program,
whether or not it has anything to do with a physical
printer. That is because a terminal transform cleans up
the queue after the transform exit has passed control of
the “print” job to an entirely new application, allowing
sophisticated data management function to be made
available for print jobs with no cluttering of the spooling
system. Thus, the concepts of an archive queue, Lotus
Notes* queue, AFP Workbench viewer queue, and pre-
flight PostScript viewer queue become possible, each
involving transformation and redirection of the data to
something other than a printer. All of these queues could
have been functionally implemented with the transform
exit capabilities examined previously, but without the
terminal transform capability, a copy of each print job
would be held in the print queue. This characteristic is
generally undesirable, as it leaves such print jobs in the
queue until they are cleaned up, by manual intervention
or a periodically executed cleanup program. While this
may be adequate for some tasks, others require that a
print queue be “self-cleaning” after print jobs are passed
on to the appropriate application program. The terminal
transform allows this, by letting the transform exit
itself control whether there is any further processing to be

IBM J. RES. DEVELOP. VOL. 41 NO. 6 NOVEMBER 1997




done on the (possibly transformed) print data. A simple
example illustrates this: Some applications of transform
exits require print jobs to be archived while printing, yet
others require that print jobs be archived instead of
printed. The two transform exits required for these
disparate functions can be identical syntactically in how
they invoke the archive process from the body of the
transform exit, but the second one requires the transform
exit to be terminal. Being terminal or not is therefore an
essential element of a transform exit.

This concept is explored further in the transform exit
sequence discussion that follows and is featured
prominently in the sample applications section.

® Transform exit summary

In summary, a transform exit is defined using a new
syntax, is associated with a print queue, and is executed
when print jobs arrive on that queue. The actual execution
of a transform exit consists of four essential capabilities:
data-type detection, open API support, substitution
variables, and terminal transforms. Comparisons to the
function provided by filters indicate that a transform exit
extends the usefulness of filters by allowing a filter to be
run for only certain data types, and insulates a filter from
the variations among the print jobs on the queue. This
replaces the old print paradigm by allowing “print” queues
to be defined for practically any task, even tasks having
nothing to do with any physical printer, such as archiving
or viewing print data. There is prior art for building
customized queue drivers for particular tasks not related
to a physical printer: for example, building a “fax queue.”
Also, prior art exists for building “print drivers” that
create and file data rather than actually printing data. This
new work, however, is different: It allows not just one
particular task to be built into a customized print driver,
but is instead a framework that allows any API to be
invoked for appropriate print jobs. The data-type
detection allows these APIs to be invoked conditionally
for only certain type(s) of data, and the substitution
variables allow application programs to be invoked without
knowledge of the queuing specifics of the queuing system
being used. This permits Windows applications to be
called from an OS/2 print queue, for example, without
their requiring any knowledge of the OS/2 print job
queuing system (or even that the file passed in as input
must be a print job). Finally, the idea that a transform exit
may be a terminal transform permits the definition of
functional queues that clean up the print queue after each
print job or keep a copy of each print job, as desired.

Transform exit sequence

An essential idea from object-oriented programming—the
reuse of functions by several applications—applies here as
well. Why not extend the idea of a transform exit to allow

IBM J. RES. DEVELOP. VOL. 41 NO. 6 NOVEMBER 1997

multiple transform exits to be used as functional kernels
that can be linked together to form entirely new
programs?

To provide this capability, the idea of the transform exit
sequence is introduced. The transform exit sequence is
perhaps best viewed as a new programming language, the
individual instructions of which are transform exits. This
extension allows transform exits to become building blocks
for more powerful applications. A transform exit sequence
has the following attributes:

e A transform exit sequence is made up of 0 or more
individual transform exits.

The output of one transform exit in the sequence is the
input to the next.

Conditional transform exits (i.e., those with data-type
qualifications) are skipped if their conditions are not
met, allowing the output from one transform exit to skip
past transform exits that are not applicable and become
the input to a later transform exit that is applicable.

A transform exit sequence is terminated upon
completion of the last transform exit in the sequence or
upon encountering a terminal transform exit (including a
conditional terminal transform exit whose condition is
met).

This extension allows filters to be imbedded within
transform exits and easily combined with other filters (also
in transform exits), thus creating powerful transformation
capabilities. Filters can be chained together without
transform exits, of course, but putting them together in a
transform exit sequence avoids any problems due to
inappropriate data types reaching any of the filters.

For example, consider the following four transform
exits, for which the names, data-type qualifications,
and bodies are shown, along with brief comments
describing them:

AtoB: A; c:\filters\AtoB %i %o
/* Convert data type A to type B */
BtoC: B; c:\filters\BtoC %i %0
/* Convert data type B to type C */
CtoD: C; c:Milters\CtoD %i %o
/* Convert data type C to type D */
DOIT: D; e:\apps\doit %i
/* Call doit, with data type D */

Note that the name of each transform exit is a mnemonic
that represents the transformation or function. Transform
exit AtoB, for example, calls filter c:\filters\AtoB if and
only if the input data type is A. The result of this filter
has data type B, which is returned to the next transform

S. D. MASTIE

687




688

exit in the sequence. Similarly, transform exit DOIT calls
application program e:\apps\doit if and only if the input
data type to this final transform exit is D.

These four transform exits, organized into a transform
exit sequence in the order given, should be contrasted
with a similar solution using linked filters. For example,
consider the four filters being linked in the following
manner:

AtoB input.fil > BtoC > CtoD > doit.

This calls the filter AtoB to process the input input.fil,
the result of which is then piped into BtoC, which in turn
pipes its result into CtoD, which finally pipes its result
into the doit application program. If the input were of
type A, this would perform the desired series of filter
operations very well. However, if the input were not of
type A, but instead of type B, C, or D, in all likelihood,
none of these specific filters could handle inappropriate
data types. Consequently, the standard solution using the
technology of filters would be the use of subsets of this
filter chain, one subset for each possible input data type.
For example, the subchain BtoC input.fil > CtoD > doit
would handle data of type B and would avoid the need for
filter AtoB to handle input of type B. In contrast, in the
framework provided by the transform exit sequence, all
input data types are handled, and none of the filters is
called for incorrect data types.

The transform exit sequence allows individual functions
to be brought together into integrated solutions. Consider,
for example, a printer that handles only HP:PCL-4 input.
Because PSF/2 provides PostScript-to-AFP conversion and
AFP-to-PCL conversion, the HP:PCL-4 printer has the
ability to print PostScript files with no need for any
additional PostScript option card or memory. All
PostScript print jobs are delivered to the printer as
HP:PCL-4 data. Similarly, the usefulness of application
programs can be extended by means of a transform exit
sequence. The AFP Workbench, for example, supports
only AFP and ASCII data, but when invoked in the
proper context from a transform exit sequence, the AFP
Workbench is an excellent “PostScript viewer.”

Another example of the usefulness of the transform exit
sequence is seen when considering the task of redirecting
print jobs to a remote print queue. Although many data
types might be enqueued on an OS/2 (or other) print
queue, only a narrow range of data types can be exported
to a particular remote printer and printed successfully. For
example, an IBM AS/400 system printer typically supports
only SCS (SNA character set) and AFP data, which
creates problems when simple redirection implementations
send PostScript and other inappropriate print jobs to the
printer. A transform exit sequence, however, allows
multiple transform exits to be linked together to provide
more efficient redirection by converting any inappropriate

S. D. MASTIE

data types (or at least identifying them if there is no
appropriate conversion available) before they are sent.

Finally, consider that a transform exit sequence allows
a LAN administrator to harness functions from many
different vendors and sources. Because the transform exit
sequence is made up of individual transform exits, each
of which can make use of any application program that
can be invoked from a command line, a transform exit
sequence allows otherwise disparate functions from
different products and vendors to be “wired together”
to form an appropriate solution.

Applications of the technology

The applications described here share two traits: The first
is that these are real applications of the technology, not
theoretical, and at least one PSF/2 user is currently using
the technology of the transform exit sequence as shown
to solve real-world problems in a production printing
environment. The second is that these applications were
long desired, but the users had been unable to implement
them in a post-spool environment before the technology
of the transform exit sequence became available. Other
technical solutions to some of these problems exist, but
the fact that so many new printing applications could be
created by the IBM Corporation using this technology
attests to its flexibility and uniqueness.

® Data-type router

Figure 3 shows a single queue that distributes data to
different printer queues according to type. PostScript is
routed to one queue, HP:PCL to a second, and all other
data types to a third. This is a powerful arrangement,
which allows a print administrator to define a single print
queuc and make that single queue available to the LAN
community, while using whatever printers are appropriate
for the different data types. This prevents the accidental
routing of inappropriate data to a printer by an individual
user. It is not possible, for example, for PostScript to be
routed accidentally to an HP:PCL printer. Instead, all jobs
go to the single queue and are routed to the printer that
can best handle that type of data. This configuration also
lets the administrator change the printers being used, with
no effect on where members of the user community send
their print jobs.

This solution is done with a transform exit sequence
that uses three terminal transform exits: one routes
PostScript to its printer; the second routes HP:PCL; and
the third routes whatever is left. The first two transform
exits are conditionally terminal. For example, the
PostScript transform exit could be interpreted to mean “If
the print job is PostScript, forward it to the PS queue and
remove it from this one.” Files of a data type other than
PostScript are not terminated but instead are handled by
the next transform exit in the transform exit sequence.

IBM J. RES. DEVELOP. VOL. 41 NO. 6 NOVEMBER 1997




The final transform exit is unconditionally terminal and
sends whatever remains to the third printer.

® Convert, upload, and print

The application of the technology shown in Figure 4
allows printers on an IBM MVS system or an IBM AS/400
system to be accessible by a LAN community. (The figure
is a simplification of the full solution.) Because the print
queues for the mainframe printers are managed from the
LAN print server, they are indistinguishable from local
LAN printers to anyone but the print administrator. This
allows the LAN administrator to make use of whatever
printers are appropriate for the LAN community,
including those attached to large mainframe or midrange
computers. As described previously, appropriate transform
exits prevent incorrect data from being uploaded to the
mainframe printers, transforming data when possible

into a format that will print successfully on the target
printer. Uploaded data are reblocked, as required, into
appropriate mainframe format (into “5A” records on the
IBM MVS system, for example) and submitted to the
appropriate mainframe print queue. The uploading of the
data is performed by the preferred API for the particular
system (often based on Client-Access redirection for
AS/400, and either CM/2 or TCP/IP LPR to upload to an
IBM MVS system) built into a terminal transform exit.

® Off-line PostScript

The next solution allows overall printer throughput to be
maximized for high-volume PostScript applications. As
shown in Figure 5, two logical queues are defined, one
driving the high-speed printer, and the other handling the
raster image processing (RIP) of all PostScript jobs in the
background. This configuration prevents a fast printer
from being slowed down by the PostScript RIP; the printer
can be printing other data while the PostScript RIP is
performed. (A variation of this application aids scheduling
by delaying large print jobs submitted during peak load
times until a more suitable time, such as second shift.)
When the PostScript RIP is complete, the converted job is
sent to the real print queue, where it can be printed very
quickly on a high-speed laser printer—much faster in most
cases than the original PostScript could have been printed.
This solution requires only a single transform exit on the
queue for the physical printer, to route any PostScript

to the background print queue. The background queue
has a transform exit sequence that does the appropriate
PostScript RIP and uses a terminal transform exit to send
the resultant converted file to the real print queue, where
it is printed.

® Many logical queues for a single physical printer

A certain LAN community identified 14 different media
that were needed at various times, yet the only available

IBM J. RES. DEVELOP. VOL. 41 NO. 6 NOVEMBER 1997

Any job that is
not PS.or PCL

A single print queue distributes jobs to printers according to job
data type. A transform exit sequence in the queue driver allows
data to be routed to appropriate printers.

Application of transform exit sequences in which mainframe
printers appear in LAN print queues to a client in the LAN.

S. D. MASTIE

689




690

%. A background PostScript RIP can improve printer performance. By

E not sending PostScript jobs to the pre-RIP queue, the main print

{ queue does not delay the physical printer with the PostScript RIP.
The pre-RIP queue completes the PostScript RIP in the background
and sends the converted data back to the main print queue when the
job is ready to print.

laser printer had only a single input bin. A solution

other than purchasing many more printers was required.
Figure 6 shows the solution to this problem based on the
transform exit sequence technology, which simulates 14
media available simultaneously from a printer with only a
single physical input bin. A different logical print queue
is defined for each medium and feature that is required.
The mnemonic names (such as “A4” for A4-sized paper,
“green” for green paper), not a part of the transform exit
sequence solution, help the LAN community direct print
jobs to the correct print queues with minimal training.
Arriving print jobs that require the medium currently
loaded in the printer (A4 in the figure) are sent directly
to the printer. Arriving print jobs that require another
medium generate an alert signal to the operator that a
change of medium will be required, and are moved to

a held queue that is visible only to the operator and

will be released when the medium has been changed
appropriately. Looking over the held queues, the operator
can quickly determine how many jobs are pending for
each of the media not loaded and can schedule the
physical medium changes (and corresponding print queue
holds and releases) accordingly. Though manually
intensive if frequent requests are made for unavailable
media, this solution allows a print administrator to extend
the utility of a single printer by building logical queues for
all media that have to be made available to the user
community.

S. D. MASTIE

Technically, this application is a straightforward use of
the transform exit sequence technology, with individual
transform exits routing jobs, alerting the operator,
preconverting PostScript and other data types, and
changing print-job attributes, as appropriate. Each of the
user-accessible print queues has a transform exit sequence
that sends the print job to the corresponding operator-
controlled print queue after any appropriate data
conversions have been made. If this corresponding queue
is held, an alert signal is sent to the administrator as a
result of a transform exit calling an application program
that generates the alert signal. Also, certain features such
as “three copies” of the medium currently loaded can be
implemented without alerts or operator intervention. For
example, within PSF/2, the transform exit body “APRINT
%i dest = oper_queue copies = 3” will submit the print
job to the queue called “oper_queue” and cause three
copies to be printed [9].

% Support for virtual media in a single-bin printer using transform
I exits.

IBM J. RES. DEVELOP. VOL. 41 NO. 6 NOVEMBER 1997




The effect of this from the end user’s perspective is to
magnify the actual capabilities of the printer: Although
only one medium is ever actually loaded at a time, the
printer appears to support all required media types at all
times. From the printer operator’s perspective, any user
request that requires a medium change results in an alert
signal, and the use of a number of held queues allows
greatly improved scheduling and management of the
printer. Note too that this solution is easily extended to
include additional physical printers, should total workload
require additional printers to be added to the configuration.
Also, the solution could be extended to explicit media
selection (as opposed to implicit by print queue name)
in the future.

Conclusions

The transform exit and the transform exit sequence have
enabled new classes of solutions without requiring any
changes to the operating system or spooling system.

This new technology allows APIs to be imbedded

within transform exits, allowing the APIs to be called
automatically when certain types of jobs arrive on a print
queue. Multiple transform exits can be linked sequentially
as building blocks to create a transform exit sequence,
which is executed when a job arrives on a “print” queue;
however, the flexibility of the transform exit sequence
enables a broad range of solutions having nothing to do
with printing per se.

This technology does not eradicate all existing print
problems, but it has been proven to provide solutions
to many problems in LAN printing environments, as
implemented within PSF/2. This is not the only approach
to solving these problems, and intelligent spooling systems
based on the ISO DPA 10175 standard hold promise for
making many of these solutions more widely available in
the future. On the other hand, because the transform exit
sequence technology does not depend on any spooling
system or operating system, it can be used by queue
drivers today in a wide variety of existing environments. It
is also a framework on which additional function can be
provided, suggesting that future improvements based on
this work can be expected.

Of particular interest for future work would be an
improvement in data-type-detection algorithms and
heuristics. These might even be replaceable themselves,
instead of being bound to the transform exit framework.
Currently, a transform exit definition can express actions
to be taken on the basis of data types but cannot influence
which heuristics or algorithms should be used for making
the data-type determination. Detecting and handling
errors—syntactic or execution—can also be difficult within
a transform exit sequence framework, since it can be
difficult to detect whether the API call failed (i.e., the
body of the transform exit was syntactically incorrect)

IBM J. RES. DEVELOP. VOL. 41 NO. 6 NOVEMBER 1997

or the application program itself had a problem during
processing. Applicability of this work to operating systems
other than OS/2 and AIX also deserves to be examined,
since it should be generally applicable beyond its current
scope of implementation.

Acknowledgments

Thanks to Art Roberts, for always finding a way to do the
right thing, and to the many others who have contributed
so much to the PSF/2 project over the years. Thanks also
to my family for the support that made these advances
possible.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Microsoft
Corporation, Novell, Inc., Banyan Systems Inc., X/Open Co.
Ltd., Hewlett-Packard Co., or Adobe Systems, Inc.

References

1. R. J. Howarth and B. G. Platte, “The Continuing Evolution
of AFP,” IBM Syst. . 32, No. 4, 665 (1993).

2. B. Curran and D. Kerr, OS/2 Warp Administrator’s Survival
Guide, 1st Ed., ISBN 0-672-30744-8, Sam’s Publishing, 201
W. 103rd St., Indianapolis, IN 46290, 1995.

3. Ibid., pp. 511-515, 525.

4. “Information Technology Text and Office Systems
Document Printing Applications Part 2: Protocol
Specification,” ISO/IEC DIS 10175-2, International
Standards Organization, 1995; available from the American
National Standards Institute, 11 W. 42nd St., New York,
NY 10036.

5. R. Hohensee, Mo:DCA-P Reference, IBM Publication
SC31-6802-03, IBM Information Development, Dept. 588,
IBM Boulder, P.O. Box 1900, Boulder, CO 80301, 1996.

6. Adobe Systems, PostScript® Language Reference Manual,
15th printing, ISBN 0-201-10174-2, Addison-Wesley
Publishing Co., Inc., Reading, MA, 1990, p. 156.

7. PCL 5 Printer Language Technical Reference Manual, Order
No. 5961-0509, Hewlett-Packard Co., P.O. Box 1145,
Roseville, CA 95678, 1992, p. 42.

8. Adobe Systems, PostScript® Language Tutorial and
Cookbook, 1st printing, ISBN 0-201-10189-0, Addison-
Wesley Publishing Co., Inc., Reading, MA, 1986.

9. A Guide to Using PSF/2, 1st Ed., IBM Publication
(G544-5225-00, IBM Information Development, Dept. 588,
IBM Boulder, P.O. Box 1900, Boulder, CO 80301, 1995,

p. 125.

Received June 4, 1996, accepted for publication
August 5, 1997

S. D. MASTIE

691



692

Scott D. Mastie IBM Printing Systems Company,

6300 Diagonal Highway, Boulder, Colorado 80301
(mastie@us.ibm.com). Mr. Mastie holds a Master’s degree in
computer science from the National Technological University
and a Bachelor of Science degree in computer science from
the University of Michigan Honors College. He has been
working in IBM AFP (Advanced Function Presentation)
software development for twelve years. Mr. Mastie has worked
in diverse printing areas, including mainframe, workstation,
cross-systems distributed printing, PostScript, and POD (print-
on-demand). His current technical interests include enhancing
digital printing technology to address the diverse requirements
of high-volume offset-press applications. His author credits
include a chapter on PSF/2 in the OS/2 WARP Administrator’s
Survival Guide, contributions to the IBM Technical Disclosure
Bulletin, and XPLOR global conference proceedings.

Mr. Mastie is a member of XPLOR and ASQC.

S. D. MASTIE

IBM J. RES. DEVELOP. VOL. 41 NO. 6 NOVEMBER 1997




