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We describe some modifications of the
LAPACK dense linear-algebra algorithms using
recursion. Recursion leads to automatic
variable blocking. LAPACK’s level-2 versions
transform into level-3 codes by using
recursion. The new recursive codes are written
in FORTRAN 77, which does not support
recursion as a language feature. Gaussian
elimination with partial pivoting and Cholesky
factorization are considered. Very clear
algorithms emerge with the use of recursion.
The recursive codes do exactly the same
computation as the LAPACK codes, and a
single recursive code replaces both the level-2
and level-3 versions of the corresponding
LAPACK codes. We present an analysis of the
recursive algorithm in terms of both FLOP
count and storage usage. The matrix operands
are more “squarish” using recursion. The total
area of the submatrices used in the recursive
algorithm is less than the total area used

by the LAPACK level-3 right-/left-looking
algorithms. We quantify the difference; we also
quantify how the FLOPS are computed. Also,
we show that the algorithms exhibit high
performance on RISC-type processors. In fact,

except for small matrices, the recursive
version outperforms the level-3 LAPACK
versions of DGETRF and DPOTRF on an
RS/6000™ workstation. For the level-2
versions, the performance gain approaches

a factor of 3. We also demonstrate that a
change to the LAPACK DLASWP routine can
improve the performance of both the recursive
version and DGETRF by more than 15 percent.

1. Introduction

Recursion leads to automatic variable blocking for dense
linear-algebra algorithms, e.g., the algorithms in ESSL,
IMSL, LAPACK, MATLAB, and NAG [1-5]. By variable
we mean that the block size changes during execution of
the algorithm; we are not referring to the blocking of the
variables of the algorithm. Blocking for the memory
hierarchy is extremely important. Explicit blocking
parameters should be combined with recursion if one
wants to obtain near-optimal results for dense linear-
algebra codes on today’s RISC-type processors. However,
we do not combine these blocking parameters with
recursion in this paper. OQur aim is to exhibit the implicit
blocking that recursion imparts to certain algorithms and
also to demonstrate its simplicity. We do this by closely
examining the two LAPACK level-2 codes DGETF2 and
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DPOTF2. Our form of recursion contains many forms of
fixed blocking: right-looking, left-looking, JKI, etc. [6, 7].
Additionally, we include variable-size square blocking,

a form of which has been shown by Toledo [8] to be
superior to right-looking blocking for general matrix
factorization. Our recursive codes are written in
FORTRAN 77, which does not support recursion. This is
accomplished by explicitly handling the recursion in the
FORTRAN 77 code. Using recursion on the LAPACK
level-2 codes DGETF2 and DPOTF2 automatically turns
them into level-3 codes; the new recursive codes call only
the level-3 BLAS (basic linear-algebra subprogram)
routines DGEMM, DTRSM, and DSYRK. Additionally,
the new level-2 codes (named RGETF2 and RPOTF2)
outperform the LAPACK level-3 codes for the two
example codes. To us, the clarity of the recursive form
of the algorithm appears to be superior to that of the
nonrecursive form. If the performance trend in the two
example codes is nearly universal, one has a strong
argument to replace all level-2 and level-3 codes with their
level-2 recursive counterparts, codes with only level-3
BLAS calls.'

In the 1970s the algorithms of dense linear algebra were
implemented in a systematic way by the LINPACK [9]
project and were kept machine-independent partly through
the introduction of the level-1 BLAS routines. Almost all
of the computation was done by calling level-1 BLAS.

For each machine, the set of level-1 BLAS would be
implemented in a machine-specific manner to obtain high
performance.

We briefly review the concepts behind level-2 and level-3
codes. The introduction in the late 1970s and early
1980s of vector machines brought about the development
of LAPACK level-2 algorithms for dense linear algebra.
A level-2 code is typified by the main level-2 BLAS, which
is the multiplication of a matrix by a vector. These codes
were meant to give improved performance over the dense
linear-algebra codes in LINPACK, which were based on
level-1 BLAS. A typical level-1 BLAS is a vector dot
product or the adding of a multiple of one vector to
another vector. Later on, in the late 1980s and early
1990s, with the introduction of RISC-type microprocessors
and other machines with cache-type memories, we saw the
development of LAPACK level-3 algorithms for dense
linear algebra. A level-3 code is typified by the main
level-3 BLAS, which is the multiplication of a matrix by a
matrix. (The suffix i in level i refers to the number of
nested “do looks” required to do the computation of the
BLAS.) Like the level-2 codes, the level-3 codes were
meant to improve performance over existing level-2 and
level-1 codes on these newer machines.

* For RGETF2 there are calls to the level-1 BLAS routines IDAMAX and
DSCAL.
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For general LU decomposition, one factors an M by N
matrix A using partial pivoting; LU = PA. The Cholesky
algorithm factors an N by N positive definite symmetric
matrix A; either U'U = A or LL” = A. For both RGETF2
and RPOTF2, our recursion produces a binary tree with
N — 1 nodes of depth k + 1, where 2*™' < N = 2%,

At each level i, 2! calls are made to level-3 BLAS.

In the Cholesky algorithm (analogous results hold for
Gaussian elimination), at level i each BLAS problem is
square of size n, = LN/27 ] or n;, + 1. In going from
level i to i + 1, the number of BLAS calls doubles and
each problem size is halved. Hence, the total number of
FLOPS done at each level goes down by a factor of 4.
Suppose the MFLOP rate were constant at each level;
then the computation time would follow a geometric series
with ratio r = 1/4. However, the MFLOP rate of a square
level-3 BLAS is only “constant” when the problem size
becomes larger than a block size NB, which depends on
architecture considerations [10]. As the problem size falls
below NB and approaches 1, the MFLOP rate drops off
drastically. This partly explains why our recursive method
performs poorly for small matrices. In these cases our
algorithms make most of their calls to level-3 BLAS,
where each call has a small-square problem size. We
mention that we can avoid this performance problem by
“pruning the tree” at a high enough level, i.e., by calling a
factor kernel. For large problems the geometric nature of
the recursion “takes over,” as the performance results
demonstrate.

This paper introduces the total area of the BLAS
operands as the basis of a new set of measures of the
efficiency of a dense linear-algebra code. We denote
the measures by LLTA, RLTA, and RTA, which stand
respectively for left-looking total area, right-looking total
area, and recursive total area. The new measures are used
in Sections 2 and 3 to quantify just how much variable
blocking improves upon left-/right-looking blocking. To be
more specific, let N = nNB so that A is represented as an
n by n matrix of square blocks of size NB. Both the
right-/left-looking and the recursive algorithms consist of
n block factor steps and n — 1 calls to level-3 BLAS. The
total FLOP count for all calls to level-3 BLAS at then — 1
stages is the same for all of the algorithms. However,
the operands (submatrices of A) of the BLAS calls are
always nearly square for the recursive algorithm. Since the
FLOP count is maximized for square operands one can
expect the total area of the operands for the recursive
algorithm to be less than or equal to the total area of the
operands for the right-/left-looking algorithms. This turns
out to be true. In fact, for Cholesky, as n increases,
the ratio LLTA/RTA approaches 1 + N/9. For LU
factorization, as » increases, the ratio RLTA/RTA
approaches 4N/(3 log, N).
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In Section 2, we describe the recursive Cholesky
algorithm by detailing and verifying the claims made in
the above paragraphs. In Section 3, we describe recursive
general factorization. This algorithm is similar to the
recursive FORTRAN 90 algorithm of Toledo [8]. General
factorization is done on an M by N matrix. Recursion
works on the column dimension N. At recursion level i, 2°
calls are made to DTRSM and 2’ calls to DGEMM. As in
Cholesky, each call to DTRSM is on a square problem of
size n, or n, + 1. DGEMM has three matrix dimensions—
m, n, and k. Each of the 2'. n, k dimensions is either
n, or n, + 1. However, the m dimensions are variable.
Nonetheless, the total computation at each level again
follows a variable “geometric progression” whose ratio is
r > 1/2. In Section 4, we give some performance results
comparing the new recursive algorithms to LAPACK
algorithms DGETF2, DGETRF, and DPOTF2, DPOTRF
on an IBM RS/6000* workstation. These results show that
the recursive versions outperform both the level-2 and
level-3 versions of LAPACK when the matrices do not fit
into level-1 cache. For large problems, the performance
gains are between 2.5 and 3.0 over level-2 codes and 1.02
to 1.10 over level-3 codes. The improvement given by our
version of DLASWP versus the LAPACK version is more
than 15% for large matrices.

Starting with LINPACK and continuing with LAPACK,
the algorithms of dense linear algebra were kept machine-
independent through the use of the BLAS. As machines
became more complex in the design of their memory
hierarchies, it became necessary to increase the scope of
the BLAS routines from level 1 to levels 2 and 3. The
algorithms in LINPACK were redesigned; the result was
LAPACK. However, modularity between the BLAS
routines and the algorithms was preserved. Nonetheless,
there is a basic pattern to the calling of BLAS in many
dense linear-algebra algorithms, which is typified by right-
looking matrix factorization. The pattern is this: For as
long as any columns remain to be factored, factor the next
block of k columns followed by a rank k update of all
trailing columns. The LAPACK level-3 codes call a level-2
routine to perform the factor step and a level-3 routine to
perform the rank k& update. Hence, the operands of the
level-3 BLAS calls are related. This then suggests that
modularity between LAPACK code design and its BLAS
calls should be re-examined.

This paper further demonstrates that the BLAS calls in
many dense linear-algebra algorithms are related, and it
raises a question as to whether that relationship can be
exploited. The answer appears to be both yes and no. The
yes answer requires that a change be made in the way
the original matrix is stored. If this is done, the BLAS
routines must be changed to reflect the new storage
arrangement. The “new” storage format is not actually
new, in the sense that it has been advocated by many
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Cholesky  factor A(1l:N, 1:N)

if (N=1) then
A(1l,1) = SORT(A(1,1)}

else
Nl =-N/2Z
N2 = N=Ni
J1 = N141

Cholesky factor (A{I:N1, 1:N1)) .
golve A(1:N1, 1:N1) X = A(1sN1, J13N) {(DTRSM)
update A(JL:N, JL1iN) = K(J1:N, J1:N) —x° X (DSYRK)
Cholegky fagtor (A(J1¢N; JLiN))

end if

High-level description of the recursive Cholesky algorithm.

authors at various times. The format is a blocked format,
which is a special case of the block-cyclic format, and that
suggests a key observation: The various calls to the BLAS
routines of a dense linear-algebra code encounter the
same submatrix operands over and over again. To take
advantage of this fact, one can rearrange the storage
format of the original matrix to blocked format just once,
so that each BLAS call receives its submatrices stored in
an optimal way. Then, on completion of the dense linear-
algebra algorithm, it is necessary only to rearrange the
blocked storage format of the matrix back to the original,
column-oriented FORTRAN storage format.

Currently, some BLAS implementations do exactly this.
The matrix operands are copied to a more suitable data
structure and then the BLAS is executed on-this copy.
However, this copy procedure, although very effective,
has to be done for every call. The repeated copy can be
avoided if the original data are in the copied form to
begin with. So, having the input data to a BLAS
in an optimal form actually makes the design and
implementation of the BLAS simpler. In essence, the
memory-management aspect of the BLAS is no longer
present. The burden has been shifted to the algorithm
designer to provide an appropriate blocking parameter NB.
However, for dense linear algebra this is already being done.

The no answer refers to perhaps being unable to add
the blocked data typed to the FORTRAN or C language
and/or to suitably modify the current BLAS to accept
blocked submatrix operands. Also, as mentioned, the
LAPACK design can be changed, thereby keeping the
original FORTRAN/C input data structures. The latter
approach is perhaps more realistic.

2. Recursive Cholesky factorization

In Figure 1, we give the algorithm. For simplicity we
assume that the N by N matrix A is positive definite and
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Part of a tree diagram that describes the recursive Cholesky

f
% algorithm (nl + n2 = n and nl = n/2).

(ONE, A, 7),108)

% Main loop of LAPACK routine DPOTRF (uplo = 'U").

is stored as upper triangular (uplo = 'U'). We use the
colon notation to describe submatrices, as in [11].

In the else clause there are two recursive calls, one on
matrix A(1:N1, 1:N1), the other on matrix A(J1:N, J1:N),
and a call to the level-3 BLAS routines DTRSM and
DSYRK. To handle the recursion explicitly in FORTRAN
77, we store three integers (ISW, J, N) for each recursion
level i. ISW denotes a switch having values 0, 1, 2,
denoting whether one should make the first recursive call,
the second recursive call, or return from the current
recursion level; J denotes its diagonal position in the
global matrix A; and N denotes the current size of the
submatrix. The space needed for the stack is minuscule.
To handle matrices up to size N = 2°"' requires space for
3 log, N integers.

® Analysis of recursive Cholesky factorization

Suppose we are at recursive level i and the current
problem size is n. According to Figure 1, one executes the
else clause unless » = 1. In Figure 2, we depict this
situation as a node (at level i) in a tree with two branches
to level i + 1 which denote the two recursive calls. In
between these recursive calls there are calls to DTRSM
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and DSYRK. Thus, at each node that is not a leaf there is
one call each to DTRSM and DSYRK. The size of the
DTRSM problem is nl by n2, and the size of the DSYRK
problem is n2 by nl. If r is even, DTRSM and DSYRK
perform #1° multiply-adds (MAs), and n1(nl + 2)n/2
MAs if rl is odd.

The number of MAs needed to Cholesky-factor an n by n
matrix is n(n’> — 1)/6, and the number of MAs needed
to Cholesky-factor the n1 by nl and n2 by n2 submatrices
is n(n® — 4)/24 (if n is even) and n(n®> — 1)/24 (if n is
odd).

Letn, = LN/2']. At level i there will be 2° nodes, each
of which has size n, or n, + 1. Let o, be the number of
nodes of size n, and B, be the number of nodes of size n, + 1.
Note that an, + B,(n, + 1) = N, and since a, + B, = 2/,
we have B, = N — 2ini. What we have just stated
follows easily using induction. Fori = 0, n, = N, o) = 1,
and B, = 0. Suppose the result is true for j = i. There
are two cases, depending on whether n, is even or odd.
Suppose n; is even. Then n,,, = n/2 and each a; node is
doubled. Similarly, the B, nodes all have size n; + 1 and
its two children become size n ., and size n,,| + 1 at level
j + 1. Hence, a;,, = 2o, + B, and B, = B;. Also, N =
an, + Bn, + 1) = 2an,, + Bn,, + Bin,, + 1) =
a,n., + B (., +1).Ifn is odd, thenn,, = (n, — 1)/2
and n,, | + 1= (n; + 1)/2. The o; nodes split into
nodes of size i and n., + 1, while the B; nodes double
with size n, + 1. Hence, o, = a, BJ.H =a + 2B].,
and it easily follows that N = a, ;n.., + B, (n,, + 1)
and o, + B, = 2/*!. This completes the induction
proof. For any N > 0 there exists k such that 2?7 <N=2~
For these N, the binary tree will have depth k& + 1.

Each of the leaves corresponds to the if clause of Figure
1. Atlevel k — 1,n, = land N = 2 + g, . This
means that there are «,_, leaves at level k — 1 and 28,
leaves at level k. We have just proved Theorem 1.

Theorem 1

The recursive Cholesky factor algorithm gives rise to a
binary tree with N leaves. There are k + 1 levels, where k
is defined by 28 ' <N =2%,i=0,---,k Letn, = LN/2'L.
At each level i there are 2' nodes, and o, of these
nodes denote a Cholesky factor problem of size n,. The
remaining B, = 2 — «, nodes denote Cholesky factor
problems of size n, + 1. Also, an, + B,(n, + 1) = N.
Atleveli =k — 1,n, = 1 and B, > 0 unless N = 2*
whenn, = 1 and @, = N. Assuming N # 2%, there are
«, leaves at level i and 23, leaves at level k.

In going from level i to level i + 1, the number of
Cholesky factorizations doubles, but their size is halved.
This means that the total number of FLOPS decreases by
a factor of 4 in going down one tree level. More precisely,
when n is even, the factor ratio is 4 + 12/(n° — 4); it is
exactly 4 if n is odd. Since MAs are conserved, we conclude
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that n(n> — 1)/6 = n’/8 + n(n> — 4)/24 (n even) and
n(n® — 1)/6 = n(n — 1)(n + 1)/8 + n(n® — 1)/24

(n odd) must be identities (which they are). These
identities succinctly quantify the MA count of the else
clause. DTRSM and DSYRK consume exactly three times
the number of MAs of the two recursive calls if # is odd,
and an MA of ratio 3 + 12/(n” — 4) if n is even. These
assertions lead to Theorem 2.

Theorem 2

Let TMA(i) be the Total MA count at level i of the 2'
Cholesky subproblems of sizes n, and n, + 1 where

n, = LN/2']. Also, let TTS(i) be the Total of the
dTrsm plus dSyrk MA counts at level i. We have
TMA(i) = 4TMA(G + 1) and TTS(i) = 3TMA(i + 1).

o Comparison of left-looking blocking versus recursive blocking
Let N = nNB so that A is represented as an # by n

block matrix of block size NB. The left-looking and the
recursive algorithms consist of n block-factor steps and

n — 1 calls to DTRSM and DSYRK. Additionally, the
left-looking algorithm calls DGEMM n — 2 times.
Consider the n block-factor steps. Both the left-looking
and the recursive algorithms access the same operands,
which are the diagonal blocks. Since they require a total
of only n blocks, we do not include them below in the
formulas for LLTA and RTA. (Please refer to the
Introduction, where LLTA and RTA are defined.) Here
we use a new concept of BLAS operand total area to
measure the efficiency of a dense linear-algebra algorithm.
The total FLOP count for all calls is the same for both
algorithms, Each call to DTRSM, DSYRK, or DGEMM
can be considered a series of block matrix operations on
square blocks of size NB. Each of these block operations
is either a DSYRK, DTRSM, or DGEMM operation. We
now compute the total area of the operands of the n — 1
DTRSM, DSYRK, and DGEMM calls for both the left-
looking and the recursive algorithms. The operands for
the recursive algorithm are nearly square. For a fixed area
the FLOP count is maximized for square operands. Since
both algorithms do the same number of FLOPS, one can
expect that the total area of the operands for the recursive
algorithm is less than or equal to the total area of the
operands for the left-looking algorithm. For n > 2, this
turns out to be true. And for N = 2, the operands of the
left-looking and recursive algorithms are the same. In
Figure 3, we give the LAPACK left-looking algorithm
DPOTREF, and, in Figure 4, the LAPACK level-2
algorithm DPOTF2. Suppose we set NB = 1 in DPOTRF.
Then the call to DSYRK becomes the DDOT computation
of DPOTF2. Similarly, the DGEMM and DTRSM calls in
DPOTRF become the DGEMV and DSCAL computations
of DPOTF?2. Thus, routine DPOTF?2 is a special case of
routine DPOTRF; namely, the case NB = 1. In Figure 5,
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Main loop of LAPACK routine DPOTF2 (uplo = 'U").

Matrices processed by DPOTRF at step J.

we give a computational snapshot of the processing done
by DPOTREF at block step J = jNB + 1 of Figure 3.
DSYRK updates triangular matrix D = D — BB, where
matrices B and D have sizes jNB by NB and NB by NB.
DGEMM updates matrix C = C — BA”, where matrices
A and C have sizes jNB by (n — j — 1)NB and NB by

(n —j — 1)NB. DTRSM solves D'C = C. During block
step J, B and D are used as DSYRK operands; B, A, and C
are used as DGEMM operands; and D and C are used as
DTRSM operands. Hence, A is used once, while B, C, and
D are each used twice. The total area of the operands
used is [(j + 2)(n —j + 1) — 2]JNB*for 1 <j <n — 1.
For j = 0, DTRSM uses nNB? area, and forj=n -1,
DSYRK uses nNB’ area. Summing fromj = 0ton — 1
gives

LLTA(N) = n(n — 1)(n + 10)NB%6. )

Now we compute the total area of the operands for the
recursive Cholesky algorithm. Between two recursive calls

(problem size in N = nNB) there is a call to DTRSM 741
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Comparison of total areas for LLD and RD forn = 8.

with triangle size N1 = (n/2) NB and rectangle size N1 by
N2 = N — N1. The call to DTRSM is followed by a call
to DYSRK with the same N1 by N2 rectangle and a
triangle of size N2. The total area is N1(N1 + 1)/2

+ 2NIN2 + N2(N2 + 1)/2. It follows that the recursive
total area satisfies the equation

RTA(n) = 2RTA(k) + k(3k + 1)  n even = 2k, (2)
RTA(n) = RTA(k) + RTA(k + 1)
+ Bk+ Dk +1) nodd =2k + 1. 3)

Letn = £, n,2" be the base-2 representation of n and
L=1+ Llog2 nl. Then, using (2) and (3), one finds

RTA(N) = [3n2/2 —n/2-2+1Ln

NB’. 4)

- ni2i<i/2 + > n}.)

nz0 i>i

In particular, if n is a power of 2, n = 2%, then
RTA(N) = [32*' = 2% + k- 2" 'INB”.

Using Equations (1) and (4), we compute the data in
Table 1 for the values of LLTA, RTA, and LLTA/RTA.
Table 1 shows that RTA(r) < LLTA(n) when n > 2. It is
instructive to consider, as in Figure 6, a particular value
for n, say n = 8, and exhibit the distribution of the matrix
operand blocks that sum to 7A. For n = 8 and NB = 100
one would be computing the Cholesky factor of an 800 by
800 matrix using a blocked algorithm where the blocks are
square of order 100.

The block submatrix U, of Figure 6 is used LLD(i, j) or
RD(i, j) times as a matrix operand by DGEMM, DTRSM,
or DSYRK when DPOTREF or recursive Cholesky is
executed. Table 1 shows that when n > 10, the recursive
algorithm uses fewer than half the number of blocks used
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by the left-looking algorithm. For large n the ratio
LLTA/RTA approaches 1 + N/9. This fact can be
deduced from (1) and (4). This limit has more meaning
for level-2 codes, because then n = N.

The analysis can also be used to compare the data
movement between a level-2 and a level-3 LAPACK code.
Take the above example of N = 800. Using Equation (1)
with n = 800 and NB = 1 and n = 8, NB = 100, one
can compute that the LLTA level-2, level-3 ratio is 51.36.
Similarly, the LLTA level-2, RTA ratio is 89.89, and the
LLTA level-3, RTA ratio is 1.75. The results of this
section are now stated as Theorem 3.

Theorem 3

Let N = nNB. The Cholesky LAPACK left-looking
algorithm DPOTRF (DPOTF2 when NB = 1) makes

n — 1 calls to DSYRK and DTRSM and » — 2 calls to
DGEMM. The total area of the matrix operands for these
calls is LLTA(N). The recursive Cholesky factor algorithm
makes n — 1 calls to DSYRK and DTRSM. The total
area of the matrix operands for these calls is RTA(N).
For n > 2, RTA(N) < LLTA(N). The LLTA(N)/RTA(N)
ratio is approximately (n + 10)/[9 + 3k/(n — 1)], where
k = log, n.

3. Recursive LU factorization with partial
pivoting

In Figure 7 we give the algorithm. Without loss of
generality, we assume that A is M by N where M = N.
[Ift N > M, apply the algorithm to 4, = A(1:M, 1:M).
It returns PA,, = L U,,. Let A, = A(1:M, M + 1:N).
Now solve L. X = PA , for X.] In the else clause there
are two recursive calls, one on matrix A(1: M, 1:N1), the
other on matrix A(J1:M, J1:N). There are two calls to
DLASWP on matrices A(1:M, J1:N) and A(J1:M, 1:N1)
and a call to level-3 BLAS routines DTRSM and DGEMM.
We can use the same three integers (ISW, J, N)

at each recursion level i to handle the recursion

explicitly in FORTRAN 77. ISW = 0 means make first
recursive call, ISW = 1 means perform a forward-
interchange, solve, update, and make the second recursive
call, and ISW = 2 means perform a backward interchange
and return; J denotes the diagonal position of N in the
global matrix A; and N denotes the current column
dimension of the submatrix.

® Analysis of recursive LU factorization

The analysis is not as simple as in Cholesky factorization
because there is a variable M in addition to the recursion
variable N. According to Figure 7, we execute the else
clause unless N = 1. In Figure 8, we depict this situation
as a node (at level i) in a tree with two branches to level
i + 1 which denote the two recursive calls. Between these
recursive calls there are calls to DLASWP, DTRSM, and
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£ PA(1:M, 1:N) =

High-level description of the recursive LU algorithm.

Table 1 Values of RTA, LLTA, and LLTA/RTA for various 7.

n 2 3 4 5 6 7 8 9 10
RTA(n) 4 12 22 37 54 74 96 124 154
LLTA(n) 4 13 28 50 80 119 168 228 300
LLTA/RTA 1.00 1.08 1.27 1.35 1.48 1.61 1.75 1.84 1.95
n 11 12 13 14 15 16 17 18 19
RTA(n) 187 222 261 302 346 392 445 500 558
LLTA(n) 385 484 598 728 875 1040 1224 1428 1653
LLTA/RTA 2.06 2.18 2.29 241 2.53 2.65 2.75 2.86 2.96
n 20 30 40 50 60 70 80 90 100
RTA(n) 618 1382 2456 3828 5494 7472 9752 12332 15206
LLTA(n) 1900 5800 13000 24500 41300 64400 94800 133500 181500
LLTA/RTA 3.07 4.20 5.29 6.40 7.52 8.62 9.72 10.83 11.94
n 200 300 400 500 600
RTA(n) 60512 135858 241224 376522 542016
LLTA(n) 1393000 4634500 10906000 21207500 36539000
LLTA/RTA 23.020 34.113 45.211 56.325 67.413
n 700 800 900 1000
RTA(n) 737454 962848 1218222 1503544
LLTA(n) 57900500 86292000 122713500 168165000
LLTA/RTA 78.514 89.622 100.732 111.846
DGEMM. After completion of the second recursive call, m by n matrix is n(n — 1)}[m — (n + 1)/3])/2, and the
there is a second call to DLASWP. In this analysis we number of MAs needed to LU-factor both the (m, nl)
neglect the cost of the two calls to DLASWP. We can and (m — nl, n2) submatrices is n(n — 2)[m — (5n +
sec then that at each node that is not a leaf, there are 4)/12)/4 if n is even and (n — 1){(n — 1)m — [(5n —
two calls to DLASWP and single calls to DTRSM and 3)(n + 1)]/12}/4 if n is odd. When n = 2k, the MA cost
'DGEMM. The number of MAs needed to LU-factor an of both DTRSM and DGEMM is k’[m — (k + 1)/2], and 743
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(m, n)

(m,nl) m—nl.nd)

Part of a tree diagram that describes the recursive LU factorization
algorithm; nl + #2 = n and nl = n/2.

when n = 2k + 1, the MA cost of both DTRSM and
DGEMM is k(k + 1)[m — (k + 1)/2]. Again, the MAs
are conserved so that we have the identity that the
number of MAs needed to factor an (n, m) problem
equals the number of MAs needed to perform DTRSM
and DGEMM plus the number of MAs needed to factor
both an (m, nl) and an (m ~ nl, n2) problem.

Letn, = [N/2']. At level i there will be 2' nodes, each
of which will have column dimension n, or n, + 1. Let o,
be the number of nodes of size n; and B, be the number
of nodes of size n, + 1. Again we have that o, + B, = 2,
an, + B,(n, + 1) = N and B, = N — 2'n,. However,
the 2’ ms at level i are variable, because the m size of the
right branch in Figure 8 depends on n,. Let M(«,) be the
set of the «, ms and M(B,) be the set of the B, ms. If n, is
even, then «, = 2o, + B, B,, = B, M(«,,,) = M(«)
U {M(a,) — n,/2} UM(B,) and M(B,,,) = {M(B,) -
n/2}. If n, is odd, then o,,, = @, B,,, = o, + 28,
M(e,,,) = M(a), and M(B,,,) = M(B) U {M(a)
= (n, — 1)/2} U {M(B,) — (n, + 1)/2}. This specification
follows from Figure 8. We now use induction to establish
these results. Fori = 0, n, = N, a, = 1, B, = 0, M(a,)
= {M}, and M(B,) = &. We want to show that an, +
Bi(n, + 1) = N, where o, + B, = 2', We also indicate
how the 2' different m, change. Suppose the result is true
for j = i. The result o, ,n,,, + B,,,(n,,, + 1) follows
exactly as it did in Section 2. The result about M(e,,,)
and M(B,.,) is straightforward. Suppose #, is even. Let
m € M(a,). According to Figure 8, there will be two ms
at level i + 1, namely m and m — n/2. If m € M(B)), then,
since n, + 1 is odd, its left branch will have n,,, = n,/2;
thus, this m belongs to M(a,, ). The right branch of
(m, n,) will have n,,, = n,/2 + 1, and so this m produces
for B, a value m — n,/2. Suppose n, is odd. Let
m € M(w,). The left branch has node (m, (n, — 1)/2), so
m € M(a,,,). The right branch has an n value n,,, + 1 and
an m value [m — (n, — 1)/2]. Hence, this m value belongs
to M(B,,,). Finally, let m € M(B,). The n value of both
children is n,,, + 1 = (n, + 1)/2. The corresponding m
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values are m and m — (n, + 1)/2. Both of these values
belong to M(,.,). The argument in Section 2 about
recursion variable n at level k, where k is defined by
2" < N = 2%, is the same here. We have thus proved
the following theorem.

Theorem 4

The recursive LU-factor algorithm gives rise to a binary
tree with N leaves. There are k + 1 levels, where & is
defined by 2" < N =2 i=0,--, k Letn, = LN/2'].
At each level i there are 2’ nodes, and a; of these nodes
is an (m, n,) LU-factor problem where m € M(e,). The
remaining g, = 2 - o, nodes is an (m, n, + 1) LU-
factor problem where m € M(B,). At leveli = k — 1,
n, =1and B, > 0 unless N = 2%, and then n,=1and
@, = N. Assuming N # 2%, there are o, leaves at level i
and 28, leaves at level k.

In going from level i to level i + 1, the number of LU
factorizations doubles, but each of their n sizes is halved.
The m sizes are variable at both level i and level i + 1.
Thus, all we can say is that the total FLOP count at level i
for all 2' LU-factor problems is more than twice the total
FLOP count of all 2*' LU-factor problems at level i + 1.
This result follows from examining the MA count for an
(m, n) problem versus the MA count for its two children.
The (m, n) MA count is n(n — 1)[m — (n + 1)/3)/2,
and if n is even, the MA count for the children is
n(n — 2)[m — (5n + 4)/12)/4. For n odd, the MA count for
the children is (n — 1)’[m — (5n — 3)(n + 1)/12(n — 1)]/4.
In either case, by inspection, the (m, n) MA count for
each node is more than twice the count for the children.
This establishes the following theorem.

Theorem 5

Let TMA(I) be the total MA count at level i of the 2' LU

subproblems of sizes (m,, n,) and (m,, n, + 1), where

n, =|N/2'Jand 1 = j = 2'. Also, let TTG(i) be the Total

of the MA counts at level i for dTrsm plus dGemm. We

have TMA() = 2TMA( + 1) and TTG(i) = TMA( + 1).
The interpretation of Theorem 5 is that the FLOP

count decreases according to a variable geometric series of

ratio r > 1/2 as one goes down one level in the recursion

tree.

® Comparison of right-looking blocking versus recursive
blocking for LU factorization

Let N = nNB so that A is represented as an n by n block
matrix of block size NB. Both the right-looking and the
recursive algorithms consist of # block-factor steps and

n — 1 calls to both DTRSM and DGEMM. Consider the
n block-factor steps. Both the right-looking and the
recursive algorithms access the same operands, which are
the n diagonal column blocks. Since they require a total

of only 7 column blocks, we do not include them below in the
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do J=1,MIN(M,N),NB
JB=MIN(MIN(M,N)—J+1,NB)

call DGETF2(M—J+1,JB,A(J,J3),LDA,IPIV(J),INFO)

do I=J,MIN(M,J+JB—1)
IPIV(I)=J — 1 + IPIV(I)
end do

~

call DLASWP(J—1,A,LDA,;J,J+JB1,1IPIV, 1)

if( J+JIB.LE.N ) then

call DLASWP(N-J-JB+1,A(1,J+JB),LDA,J,J+JB—1,1IP1V,1)
call DTRSM{'L', 'L','N';'0,J8,N-J-JB+1,0NE,A(J,J),LDA,

$ A{J,Jd+JIB),LDA)

if( J+JIB.LE.M ) then

call DGEMM('N','N' M~J-JB+1 N-J~JB+1,dB,~ONE,A(J+IB,J),
$ IDA,A(J,d, +JB),LDA,ONE,A(J+JdB,J+JB),LDA)

end if
end if
end do

Main loop of LAPACK routine DGETRF.

formulas for RLTA and RTA. (Please refer to the
Introduction, where RLTA and RTA are defined.) Here
we are using a new concept of BLAS operand total area
to measure the efficiency of a dense linear-algebra
algorithm. The total FLOP count for all these calls is the
same for both algorithms. Each call to DTRSM or
DGEMM can be considered a series of block matrix
operations on square blocks of size NB. Each block
operation is either a DTRSM or a DGEMM call. We now
compute the total area of the operands of the n — 1
DTRSM and DGEMM calls for both the right-looking and
the recursive algorithms. The operands for the recursive
algorithm are nearly square. For a fixed area the FLOP
count is maximized for square operands. Since both
algorithms do the same number of FLOPS, one can expect
that the total area of the operands for the recursive
algorithm is less than or equal to the total area of the
operands for the right-looking algorithm. For n > 3, this
turns out to be true.

In Figure 9, we show the LAPACK right-looking
algorithm DGETREF. Note that if one calls DGETRF with
NB = 1, then functionally the calls to DTRSM and
DGEMM become, respectively, a no-operation and a call
to DGER. Also, the two calls to DLASWP become a
no-operation and a call to DSWAP. Hence, the following
analysis also applies to DGETF?2 if one sets NB = 1. In
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Figure 10, we detail the DGETRF computation during a
single block step J = jNB + 1, 0 < j < n of Figure 9.
After factorization of the column panel at J, J (which we
neglect in this analysis), there is a call to DLASWP to
interchange pivot rows in B, C. Both the right-looking and
the recursive algorithms access the same total area of
operands in their calls to DLASWP; namely, n(n — 1)NB’
total area. However, the pattern of access is different

for the two algorithms. For DGETREF, at each block step J,
the two calls to DLASWP access (n — 1) NB’ area.

For recursive LU, at each tree node (see Figure 8)

the two calls to DLASWP access 2NIN2NB’ area.

On the basis of these remarks, we may neglect these
contributions to the total area. Next DTRSM is called
with matrix operands D, B [DTRSM sizes are NB and

(n — j — 1)NB], followed by a call to DGEMM with matrix
operands A, B, C [DGEMM sizes are (m — j — 1)NB,

(n —j — 1)NB, NB]. DTRSM solves DB = B, where D is unit
lower triangular and DGEMM updates C = C — AB.
Hence A, C, D are each used once, while B is used

twice. The total area of the operands used is [n — j +
(m — j)(n — j) — 1]NB’ for 0 < j < n. Summing from
j=0ton — 1 gives

RLTAM, N) ={[n(n + 1)/2](m — n/3 + 4/3)

- m —1}NB”. (5)

F. G. GUSTAVSON
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% Matrices processed by DGETRF at step J.

Comparison of total areas for RLD and RD for m, n = 10, 8.

Now we compute the total area for recursive LU.
Between two recursive calls [problem size is (M, N) =
(mNB, nNB)] there is a call to DTRSM with triangle size
N1 = (n/2)NB and rectangle size N1 by N2 = N — N1.
The call to DTRSM is followed by a call to DGEMM
with rectangles M — N1 by N1, N1 by N2, and M — N1
by N2. The total area is N1(N1 + 1)/2 + 2NIN2
+ N(M — N1). Letn = 2k or 2k + 1 be even or odd.

It follows that recursive total area RTA satisfies the
following equations:

RTA(m, 2k) = RTA(m, k) + RTA(m — k, k)

+ k[2m + (k +1)/2), (6)
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RTA(m, 1) =0;
RTA(m, 2k + 1) = RTA(m, k) + RTA(m — k, k + 1)
+ 5k(k +1)/2+ 2k+ D{m —-k). (7)

Using (6) and (7) we can find a partial solution for RTA.
LetL =1+ l_log2 nl. Then

RTAM, N) = {[(L + 1)n — 2"Im + f(n)}NB?, (8)
where

2% = 2"k(-2-2F+ 1) + 52" - 1))/4. 9)
In particular, if n = 2" is a power of 2 and m = n, then
RTAN, N) = 2" k(2" + 1) + 5(2* - 1)INB™. (10)

Using (5), (6), and (7), we compute the data in Table 2
for the values of RLTA(m, n), RTA(m, n), and
RLTA(m, n)/RTA(m, n). Table 2 shows that RTA(m, n)
< RLTA(m, n) when n > 3. It is instructive to consider, as
in Figure 11, a particular value for (m, n) and exhibit the
distribution of the matrix operand blocks that sum to 7A4.
This pattern is general. For (m, n) = (10, 8) and NB =
100, one would be computing the LU factorization of a
1000 by 800 matrix using a blocked algorithm where the
blocks are square of order 100. The block submatrix A, is
used RLD(i, j) or RD(i, j) times as a matrix operand by
either DTRSM or DGEMM when either DGETRF or
RGETREF is executed. Table 2 shows that for n = 17 the
recursive algorithm uses fewer than half the number of
blocks used by the right-looking algorithm. An
approximation to (8) when M = N is

RTA(N, N) = 0.25n[log, n(2n + 1) + 5(n — )INB®.  (11)

Thus, for any N the ratio of RLTA/RTA is approximated
by using (11). This analysis can also be used to compare
the data movement between a level 2- and a level-3 code.
Take the above example of (M, N) = (1000, 800). Using
Equation (5) with (m, r) = (1000, 800) and NB = 1 and
(m, n) = (10, 8), NB = 100, one can compute that the
RLTA level-2, level-3 ratio is 78.201. Similarly, the level-2
RLTA, RTA ratio is 106.994, and the level-3 RLTA, RTA
ratio is 1.368. The results of this section are now stated as
Theorem 6.

Theorem 6

Let (M, N) = (mNB, nNB). The LU right-looking
LAPACK algorithm DGETRF (DGETF2 when NB = 1)
and the recursive LU algorithm make n — 1 calls to both
DTRSM and DGEMM. The total area of the matrix
operands for these calls is respectively RLTA(M, N)

and RTA(M, N); see Equations (5) and (8), (9). For

n >3, RTA(M, N) < RLTA(M, N), and the

RLTA(N, N)/RTA(N, N) ratio is approximately

4n/(3 log, n).
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Table 2 Values of RTA, RLTA, and RLTA/RTA for various m, n.

m, n 2,2 33 4,4 5,5 6,6 7,7 8,8 9,9 10,10
RTA(m, n) 5 16 33 57 89 127 172 225 289
RLTA(m, n) 5 16 35 64 105 160 231 320 429
RLTA/RTA 1.00 1.00 1.06 1.12 1.18 1.26 1.34 1.42 1.48
m, n 11,11 12,12 13,13 14,14 15,15 16,16 17,17 18,18 19,19
RTA(m, n) 359 439 524 618 719 828 946 1080 1219
RLTA(m, n) 560 715 896 1105 1344 1615 1920 2261 2640
RLTA/RTA 1.56 1.63 1.71 1.79 1.87 1.95 2.03 2.09 2.17
m, n 20,20 30,30 40,40 50,50 60,60 70,70 80,80 90,90 100,100
RTA(m, n) 1373 3343 6316 10275 15191 21227 28492 36768 46125
RLTA(m, n) 3059 9889 22919 44149 75579 119209 177039 251069 343299
RLTA/RTA 2.23 2.96 3.63 4.30 4.98 5.62 6.21 6.83 7.44
m, n 200,200 300,300 400,400 500,500 600,600
RTA(m, n) 204500 485749 897900 1434981 2123048
RLTA(m, n) 2706599 9089899 21493199 41916499 72359799
RLTA/RTA 13.235 18.713 23.937 29.210 34.083
m, n 700,700 800,800 900,900 1000,1000
RTA(m, n) 2949567 3911200 5007675 6239212
RLTA(m, n) 114823099 171306399 243809699 334332999
RLTA/RTA 38.929 43.799 48.687 53.586
m, n 4,2 6,3 8,4 10,5 12,6 14,7 16,8 18,9 20,10
RTA(m, n) 9 31 65 117 185 267 364 486 629
RLTA(m, n) 9 31 71 134 225 349 511 716 969
RLTA/RTA 1.00 1.00 1.09 1.15 1.22 1.31 1.40 1.47 1.54
m, n 40,20 60,30 80,40 100,50 200,100
RTA(m, n) 3133 7783 14956 24575 113325
RLTA(m, n) 7239 23809 55679 107849 848199
RLTA/RTA 231 3.06 3.72 4.39 7.48
m, n 400,200 600,300 800,400 1000,500
RTA(m, n) 513300 1232149 2293100 3678981
RLTA(m, n) 6726599 22634899 53573199 104541499
RLTA/RTA 13.105 18.370 23.363 28.416

4. Experimental results

The recursive DPOTF2 and DGETF?2 algorithms which we
name RPOTF2 and RGETF2 have been implemented and
tested. See Appendix A and Appendix B for algorithms
RPOTF2 and RGETF2. We wish to verify our conjecture
that DPOTF2 and RGETF2 outperform both DPOTF2,
DPOTRF and DGETF2, DGETREF for large matrices. In
all experiments we use M = N and LDA = M + 1. This
experimental verification demonstrates that the variable
square blocking that recursion automatically imparts to
the algorithm does indeed lead to higher performance
than conventional fixed blocking of the right- or left-
looking variety.” Please note that level-3 codes use
blocking and our recursive versions do not. Two examples
make this point clear. Suppose we consider N = 1000.
For DGETREF, this is the TPP (Toward Peak
Performance) benchmark [12]. The default block size of
LAPACK is 64. DGETRF makes 16 calls to DGETF2, 15

’DGETREF uses a right-looking algorithm; DPOTRF uses a left-looking algorithm.
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calls to DTRSM and DGEMM, and 30 calls to DLASWP.
On the other hand, the experiments use pure recursion;
i.e., the block size is 1. Thus, there are 999 calls to
DTRSM, DGEMM, 1998 calls to DLASWP, and 1000
calls to IDAMAX and DSCAL. Now suppose N = 50.
Here DGETRF makes a single call to DGETF2, whereas
RGETF2 makes 49 calls to DTRSM, DGEMM, 98 calls to
DLASWP, and 50 calls to IDAMAX and DSCAL. Our
point is that for peak performance one must include
explicit blocking with recursion (see also the last
paragraph of the Introduction). This is especially true for
small matrices, where level-3 performance drops off
drastically because of the nature of the cubic function and
the calling overheads and error checking. The point we
have just made helps explain our performance results and
demonstrates our main conclusion: The automatic variable
blocking that recursion imparts to these two algorithms
leads to higher performance than conventional fixed
blocking of the right- or left-looking variety.

F. G. GUSTAVSON
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% MFLOP performance versus matrix order of five algorithms for
i LU factorization. The plot points (X, o, +, *, ¢} are for DGEF,
RGETF2, DGETRF(C), DGETRF(R), and DGETF?2, respectively.

MFLOP performance versus matrix order of four algorithms for
Cholesky factorization. (Case uplo = 'U".) The plot points (X, o, +, *)
are for DPOF, RPOTF2, DPOTREF, and DPOTF?2, respectively.

A single set of experiments was done on an IBM
RS/6000 workstation; sce Figures 12, 13, and 14. The
results establish experimentally our main conclusion stated
above. We now briefly describe algorithms RPOTF2 and
RGETF2. The coding style is that of LAPACK. In fact, we
took the public-domain LAPACK codes DPOTF2 and
DGETF?2 and imbedded the recursive codes of Figures 1
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MFLOP performance versus matrix order of four algorithms for
Cholesky factorization. (Case uplo = 'L') The plot points (X, o, +, ¥)
are for DPOF, RPOTF2, DPOTRF, and DPOTF2, respectively.

and 7 into those routines. Also, we have added many
detailed comments. We have also modified LAPACK
auxiliary routine DLASWP by interchanging the order of
the two do loops that make up this code. (As mentioned,
this gives rise to a performance gain of more than 15% for
large matrices.) The performance times were obtained
using the real-time clock in the machine; hence, all times
are wall-clock times and therefore system overheads are
included. In [8], Toledo describes a similar experiment,
but for only one matrix size, N = 1000. He uses

LDA = 1007 and 1024. For LDA = 1024, the effective
cache size shrinks dramatically as many congruence-class
slots go unused. In this case, it is very beneficial to use
the purely recursive version of the algorithm. In a second
experiment, Toledo considers matrices of order N = 200
to 2000. It was only for matrices at or above size n = 300
that his recursive algorithm began to show superiority over
DGETRF. Our experiments show that the crossover is
around n = 100. For DGETF2 the crossover also occurs
around size 100. Our experiments plot performance of
matrices 50 to 1000 in steps of 50. We made two to four
runs and took the minimum of the wall-clock times.

In Figure 12 we compare DGETF2, DGETRF(C, R),
RGETF2, and DGEF. The choppiness in the graphs is
partly due to a bad LDA problem; e.g., DGETRF(R)

for n = 350. For Cholesky, we consider both values of
uplo = 'L' and 'U', and we compare RPOTF?2 results to
DPOTEF2, DPOTREF and ESSL DPOF. (See Figures 13
and 14.) For uplo = 'U’, routine RPOTF2 outperforms
DPOTF2, DPOTRF when the matrix size exceeds
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n = 100 and at about n = 200. The gain over DPOTF2
approaches 3 and the gain over DPOTREF approaches 1.02
as N approaches 1000. Routine RPOTF2 always has less
performance than the ESSL DPOF; its gain approaches
0.98 as n approaches 1000. For uplo = 'L', the results

are similar. The crossover points are around 150 and 250
for DPOTF2 and DPOTRF. The gains approach 2.5 and
1.05 over DPOTF2 and DPOTRF as N approaches 1000.
For ESSL DPOF the gain approaches 0.97.

Here is a further explanation of these results. Variable
blocking that is produced by recursion is superior if it is
combined with blocking. Nonetheless, the ESSL routines
DGEF and DPOF outperform the recursive versions. Now,
the ESSL routines use a large block size that is greater
than 100 and hence make few calls to DTRSM, DGEMM,
and their factor kernels. For small matrix sizes, ESSL
routines outperform the recursive routines by wide
margins. The purely recursive routines do not make up
this loss.

To verify this point, we make a minor change to
RPOTF2 and RGETF2 by introducing a blocking
parameter NB. For n = NB, a factor kernel is called;
otherwise the algorithm is the same. This minor change
results in excellent performance for n values <NB and
better performance for n > NB. We substituted the factor
kernels from ESSL. With this change the performance of
RPOTF2 and RGETF2 becomes about equal to that of
DPOF and DGEF from ESSL.

5. Conclusions

Routines RPOTF2 and RGETF?2 should be used in place
of the LAPACK DPOTF2 and DGETF?2 routines. One
could modify these recursive routines to include a factor
kernel. At present, these routines factor a 1 by 1 matrix
or an m by 1 matrix. In their present form there is no
blocking parameter to choose. Thus, a user cannot make a
poor blocking choice. We have shown that level-2 routines
can possibly be made level-3 by introducing recursion.
This is certainly true for the Cholesky algorithm and for
general LU factorization.

The use of recursion for dense linear-algebra algorithms
is a powerful blocking technique. When it is combined
with explicit blocking of the memory hierarchy it becomes
even more powerful, although we have not considered that
aspect in this paper. Instead we have concentrated on
pure recursion and the automatic variable blocking that is
implicit in using it. The results are surprisingly good. In
fact, they outperform the corresponding level-3 LAPACK
routines. However, for small matrices, recursion suffers
and hence it alone does not present a universal answer.

As a by-product of this work, we have discovered a way
to improve a library such as LAPACK by taking advantage
of the relationship between submatrix operands of
multiple BLAS calls in a LAPACK algorithm. The BLAS
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routines have to be modified to accept block submatrix
operands. A new BLAS implementation may become
simpler, and perhaps it will be possible to provide a
generic version of these BLAS routines with LAPACK.
Currently the GEMM-based BLAS group at the University
of Umea and J. Wasnieski at Uni-C in Denmark are
considering such a project.
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Appendix A: RPOTF2

SUBROUTINE RPOTF2( UPLO, N, A, LDA, INFO )
implicit none

* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER INFO, LDA, N
*
* .. Array Arguments ..

DOUBLE PRECISION A( O:LDA+1,0:* )

* Purpose

RPOTF2 computes the Cholesky factorization of
a real symmetric positive definite matrix A.

The factorization has the form
A =U'*U, if UpLO = 'U', or
A =1L *1L', if upLO = 'L',
where U is an upper triangular matrix
and L is lower triangular.

This is a new recursive version of DPOTF2
( done in F77 ).

The key idea ig to produce a mostly
level-3 component by introducing
recursion. Recursion introduces variable
blocking, which is more general than fixed
blocking. Hence, this code will probably
outperform the level-3 version DPOTRF.

ALGORITHM DESCRIPTION ( UPLO = 'U' case )
IF ( N =1 ) THEN

compute A = UT*U; i.e., compute sgrt
or issue non-P.D. message;

ELSE

partition A into three block matrices All,

Al2, and A22, where A1l =A( 1l:n,l:n ),

Al2 =A( 1l:n,n+l:N )}, and

A22 = A( nt+l:N,n+1:N ), and n is about N/2.

Perform four computations: 749
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(1) Cholesky factor ( All )
( recursive call )

i

( UllT \ U1l )
(2) compute U12 : Al2 = UL1T**(—1) * Al2
( DTRSM )

(3) update A22
( DSYRK )

A22 = A22 — Ul2T * Ul2

(4) Cholesky factor ( A22 ) = ( U22T \ U22 )
( recursive call )

ENDIF
Notes

i) Recursion leads to automatic variable
blocking.

ii) Calls to DTRSM and DSYRK routines
automatically make this code level 3.
In essence, blocking is implicit.
DTRSM and DSYRK are each called
N ~ 1 times.

iii) The recursion tree has N leaves.

Fach leaf has size 1.

iv) The stack keeps track of the current col
dimension m of A and its position
J on the diagonal. Also needed is
isk(l,isp), which has values 0,1 to
signify that computation (1) is, or
computations (2), (3), (4) are
to be done next.

Note that computations (1) and (4) are
recursive calls, so that recursion
level isp needs to know where to
resume after the return from recursion
level isp + 1.

V) Most of the FLOPS are performed at the
top of the tree. For level O,

N**3/4 FLOPS are done in one call each
to DTRSM and DSYRK. At level i,
N**3/8**% {1+1) FLOPS are performed

by each of the 2**i calls to

(m=n =k =N/2**(i+1) ) DTRSM and
DSYRK.

The total FLOPS count at this level is
2¥FXIHFN/Gr* (14+1) = N/4**(1+1).

vi) At the lowest level, the matrix sizes
are 1 by 1. For each level up the tree
the matrix sizes double and the number
of calls is halved.

vii) For small matrices the FLOP rate of
level-3 codes reduces drastically
( reason for ®lite? BLAS ). Hence, at the
lower levels the FLOP rate starts to
drop off dramatically. To overcome
this, one should stop recursion when
N/2**(141) <= constant and replace the
subtree computation with a single call
to a factor kernel. This is what a
level-3 code would do.

Arguments

UPLO (input) CHARACTER*1
Specifies whether the upper or lower
triangular part of the symmetric
matrix A 1s stored:
= 'U': Upper triangular;
= 'L': Lower triangular.

***************>(-*3(-)(-*3(-3(-)(—)(-)(->(->(->(->(-’(‘>('>(->(->(->('>(->(->6)(-)(->(->('>Q->(-*******X—*)&*****************
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* ok
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*

E . T S

INFO

(input) INTEGER
The number of rows and columns of the
matrix A. N >= 0.

(input/output) DOUBLE PRECISION array,
dimension( 0:LDA+1, 0:Nzl). On entry,
the symmetric matrix A. If UPLO = 'U’,
the upper triangular part of A

is used and the part of A below

the diagonal is not referenced;

if UPLO = 'L', the lower triangular
part of A is used and the part of A
above the diagonal is not referenced.
Oon exit, the factor U or L from the
Cholesky factorization.

LDA (input) INTEGER

The leading dimension of the array A.
LDA >= max(1,N).

(output) INTEGER
= 0: successful exit;
< 0: if INFO = -k, the kth argument
had an illegal
value;
> 0: if INFO =k, the leading minor
of order K is
not positive
definite, and
the factorization
could not be
completed.
Parameters
DOUBLE PRECISION ONE, ZERQO
PARAMETER { ONE = 1.0D+0,
3 ZERO = 0.0D+0 )

Local Arrays
LOGICAL UPPER
INTEGER isk(3,0:20) ! handle matrices to
size 2**20

Local Scalars
INTEGER J, m, ml, m2, J1, isp

External Functions
LOGICAL LSAME
EXTERNAL LSAME

External Subroutines
EXTERNAL DSYRK, DTRSM, XERBLA

Intrinsic Functions
INTRINSIC MAX, DSQRT

Executable Statements

Test the input parameters.

INFO = 0
UPPER = LSAME( UPLO, 'U’
IF{ .NOT.UPPER .AND.
$ ( .NOT.LSAME( UPLO, 'L' } ) ) THEN
INFO = —1
ELSE IF( N.LT.0 ) THEN
INFO = —2
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ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = —4

END IF

IF( INFO.NE.O ) THEN
CALL XERBLA( 'RPOTF2', —INFO )
RETURN

END IF

* Quick return if possible.
*

IF( N.EQ.O )
$ RETURN

Initialize variables for recursion.

* ok *

igp = -1
J =0

m =N
CALL RPOTF2( UPLO, m, A( J, J ),

lda, INFO )
Push the stack isk.

LI

1 isp=isp+1 ! Make recursive call by
pushing down stack.
isk(1l,isp) =0
isk(2,isp)=d
isk(3,isp)=m

A branch to label 2 happens ONLY
during intermediate recursion

with isk(l,isp) > 0 and m > 1. Hence,
we will continue execution of this
intermediate recursion.

* % % O ¥ % Ok

2 continue

IF( m.EQ.1 )} then ! lowest recursion level.

Compute pivot and test for non-positive-
definiteness.

* * % %

IF( A( J, J ).LE.ZERO )then
INFO =J + 1 ! origin 1
isp = 0 ! force immediate return
ELSE
A( J, J ) =DSQRT( A( J, J ) )
END IF
ELSE ! here m > 1 and the recursion is
intermediate.

Set recursion variables J1, ml, and m2.
At level isp, four computations will be
done as isk{l,isp) takes the values 0,1.
For each of these values one makes a
recursive call by branching out.

Exit from this clause occurs only when
isk(1l,isp) = 2.

* % * Ok ok o X X *

ml=m/2
m2=m-ml
Jl=J+ml

IF( isk(l,isp).EQ.0 )then

*  oF

Set up RPOTF2( UPLO, ml, A( J, J ),
$ lda, INFO )

call by setting return value

and new values for J and m.

This is computation {(1).

*
*
*
*
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isk(1l,isp)=1
m=ml ! J already set
goto 1
ELSE IF{ isk(l,isp).EQ.1 )then
IF( UPPER ) THEN

Solve for A( J:J1-1,J1:J14+m2-1 ).
This is computation (2).

CALL DTRSM( 'Left', 'Upper',
'Transpose’, 'Non-unit',
ml, m2, ONE, A{ J, J )},
LDA, A( J, J1 ), LDA )

Update for A{ J1:J1+4m2-1,J31:J1+m2-1 ).

This is computation (3).

CALL DSYRK( 'Upper', 'Transpose',
m2, ml, -ONE, A( J, J1 },
LDA, ONE, A( J1, J1 ), LDA )
ELSE

Solve for A( J1:J14+m2—1,J:J1—-1 ).

This is computation (2).

CALL DTRSM( 'Right', 'Lower',
'Transpose', 'Non-unit',
m2, ml, ONE, A( J, J ),
LDA, A( J1, J ), LDA )

Update for A{ J1:J1+4m2-1,J1:J1+m2—1 ).
This is computation (3).

CALL DSYRK( 'Lower', 'No transpose',
m2, ml, —-ONE,

A( J1, J ), LDA, ONE,
A{ J1, J1 ), LbA )

END IF

Set up RPOTF2{( UPLO, m2, A( J1, J1 ),

lda, INFO )

call by setting return value

and new values for J and m.

This is computation (4).

isk(l,isp) =2

m = m2

J =J1

goto 1

END IF
END IF

Rtn from call RPOTF2( UPLO, m, A( J, J ),
LDA, INFO ).

Pop the stack isk and return to the next

recursion level.

igsp=isp—-1
IF( 1isp.GE.O )then
J=isk(2,1isp)
m=isk(3,1isp)
goto 2
END IF
if(isp.GE.0)goto 2 751
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RETURN
End of RPOTF2
END

Appendix B: RGETF2

SUBROUTINE RGETF2( M, N, A, LDA,
$ INFO )
implicit none

IPIV,

* .. Scalar Arguments
INTEGER INFO, LDA, M, N

*

* .. Array Arguments
INTEGER IPIV( O0:* } ! origin 0
DOUBLE PRECISION A( 0:LDA-1,0:* ) |

* origin O

*

*

*  Purpose

*

RGETF2 computes an LU factorization of a
general M-by-N matrix A using partial
pivoting with row interchanges.

The factorization has the form

A =P *L *TU,
where P is a permutation matrix, L is lower
triangular with unit diagonal elements
(lower trapezoidal if m > n), and U is upper
triangular (upper trapezoidal if m < n).

This is a new recursive version of DGETF2

( done in F77 ).

The key idea is to produce a mostly level-3
component by introducing recursion.
Recursion introduces variable blocking,
which is more general than fixed blocking.
Hence, this code will probably outperform
the level-3 version DGETRF.

ALGORITHM DESCRIPTION

Wlog assume M >= N If N > M,

apply algorithm to All = A( 1:M,1:M ).
It returns P * All =111 * Ull.

Let Al2 = A( 1:M,M+1:N ). Now compute
Ul2 = L11l**(-1) * P * Al2.

IF ( N <=1 ) THEN

compute P*A = L*U; i.e., find the pivot,
interchange it, and scale;

ELSE

partition A into four block matrices All,
Al2, A21, and A22, where

All =A( 1:n,1l:n ), Al2 =A( 1:n,n+1,N ),
A21 A( n+1:M,1:N ), and

A22 =A( n+1:M,n+1:N ),

and n is about N/2.

Perform six computations:

(1) factor P1 * ( All ) = ( L11 \ U1l )
(a21 ) ( L21 )
( recursive call )

% % % kR Ok ok ok o ok R Sk Ok OF %k ok %k ok 2k b % Ok k% ok ok ok kb F ok % 3k % % ok % ok ok ¥ F % %k F % F
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(2)

ENDIF

Notes

i)

ii)

1ii)

iv)

forward
pivot ( Al2 ) ( Al2 ) =Pl * ( Al2
( A22 ) ( A22 ) ( A22 )

( DLASWP )

compute Ul2 : Al2 = L11**(—1) * Al2
( DTRSM )

update A22 : A22 = A22 — L11 * Ul2
( DGEMM )

factor P2 * A22 = ( L22 \ U22 )
( recursive call )

back pivot A21 : A21 = P2 * A21
( DLASWP )

Recursion leads to automatic variable
blocking.

Calls to DTRSM and DGEMM routines
automatically make this code level 3.
In essence, blocking is implicit.

The recursion tree has ceil( min(m,n) )
leaves. At each leaf ns = 1.

The stack keeps track of the current
col dimension ns of A and its position
J on the diagonal. Also needed is
isk(1l,isp), which has values 0,1,2 to
signify that computation (1) is,
computations (2), (3), (4), (5) are,

or computation (6) is to be done

next. Note that computations (1) and (5)
are recursive calls, so that recursion
level isp needs to know where to
resume after the return from recursion
level isp + 1.

Arguments

LDA

IPIV

INFO

(input)} INTEGER
The number of rows of the matrix A.
M >= 0.

(input) INTEGER
The number of columns of the
matrix A. N >= 0.

(input/output) DOUBLE PRECISION
array, dim. (0:LDA—1,0:N—1).

On entry, the m X n matrix to be
factored. On exit, the factors

I, and U; the unit diagonal
elements of L are not stored.

(input) INTEGER
The leading dimension of the
array A. LDA >=max(1l,M).

(output) INTEGER array, dimension
(0:min(M,N)~1).

The pivot indices. Row 1 of the
matrix was interchanged with row
IPIV(i).

(output) INTEGER
= 0: successful exit;
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* < Q0: if INFO = —k, the kth argument
* had an illegal
* value;
* > 0: if INFO =k, U(k,k) is exactly
* zero. The
* factorization
* has been completed,
* but the factor
* U is exactly
* singular, and
* division by zero
* will occur if it
* is used to solve
* a system of
* equations or to
* compute the
* inverse of A.
*
* 3 3
*
* Parameters
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0 ,
S ZERO = 0.0D+0 )
* ..
* .. Local Arrays
INTEGER isk(3,0:20) !
* min{M,N) <= 2**20
*
* .. Local Scalars
INTEGER J, JP, isp, J1, ns,
$ nls, n2s
DOUBLE PRECISION t
*
* .. EXTERNAL FUNCTIONS
INTEGER IDAMAX
EXTERNAL IDAMAX
* .. External Subroutines
EXTERNAL DGEMM, DLASWP, DTRSM,
$ DSCAL, XERBLA
EXTERNAL push, pop
*
* Intrinsic Functions
INTRINSIC MAX, MIN
*
* Executable Statements
*
* Test the input parameters.
*
INFO = 0
IF( M.LT.0 ) THEN
INFO = —1
ELSE IF( N.LT.0 ) THEN
INFO = —2
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = —4
END IF
IF( INFO.NE.Q ) THEN
CALL XERBLA({ 'RGETF2‘', —INFO )
RETURN
END IF
*
* Quick return if possible.
*
IF{ M.EQ.0 .OR. N.EQ.O0 )
$ RETURN
*
* Initialize variables for recursion.
*
isp = —1
J =0
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ns = MIN( M ,N ) ! recursion matrix is

M rows by ns cols

CALL RGETF2( M—J, ns, A( J, J ),
LDA, IPIV{( J ), INFO )

Push the stack isk.

call push( J, ns, isp, isk)

A branch to label 2 happens ONLY

during intermediate recursion with

isk(1l,isp) =1 or 2 and ns > 1.

Hence, we will continue execution

of this intermediate recursion.

CONTINUE
lowest recursion level

IF( ns.LE.1 ) THEN !

Find pivot, check for singularity,
interchange and scale.

Jp =J 4 IDAMAX( M—J, A( J, J ), 1)
~1 ' origin 0

IPIV( J ) =JP +1 ! origin 1

IF( A( Jp, J ).NE.ZERO ) THEN

IF( JP.NE.J ) THEN
t =A(J, J)
A( J, J) =A(p, J)
A(JP, J ) =t

END IF

IF( M—1—J.GT.0
CALL DSCAL( M—1—J,0NE/A( J, J ),

A(J+1, J), 1)
ELSE
INFO =J + 1 ! origin 1
END IF
ELSE ! Here ns > 1 and the recursion

is intermediate.

Set recursion variables J1, nls, and n2s.
At level isp, six computations will
be done as isk(1l,isp) takes the

values 0,1,2. For values 0 and 1 one
makes a recursive call by branching
out. Exit from this clause occurs
only when isk(l,isp) = 2.

nls = ns/2 ! fixed blocking

n2s = ns — nls

Jl =J + nls

IF( isk(1l,isp).EQ.0 ) THEN ! RGETF2

Set up RGETF2( M—J, nls, A( J, J ),
LDA, IPIV( J ), INFO )

call by setting return value and

new values for J and ns.

This is computation (1).

isk(l,isp) =1 ! Set return value
to 1 on the current stack.

ns =nls ! J is already set.

GOTO 1 ! Call is made there.

ELSEIF( isk(l,isp).EQ.1 ) THEN
Do computations DLASWP, DTRSM,
DGEMM, RGETF2
753
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Forward pivot cols J1:J1+n2s—1 of
A( J:M—1, J1:J1+n2s—1 ).
This is computation (2).

* F Ak

CALL DLASWP( n2s, A( 0, J1 ), LDA,
$ J+1, J1, IPIV, 1 )
*
* Compute u( J:J+nls—1, J1:J1+n2s-1)
* = 1**_l*a'
* This is computation (3).
*
CALL DTRSM( 'Left', 'Lower',
$ 'No transpose', 'Unit',
$ nls, n2s, ONE, A( J, J ),
S LDA, A( J, J1 ), LDA )
*
* Update A( Jl: J1+M-1, Jl: Jl+n2s—1)
* = a — 1*u.
* This is computation (4).
*
CALL DGEMM( 'No transpose',
S 'No transpose',
$ M— J1, n2s, nls,
$ —ONE, A( J1, J ), LDA,
$ A( J, J1l ), LDA, ONE,
$ A( J1, J1 ), LDA)
*
* Set up RGETF2( M—J1, n2s, A( J1, J1
* LDA, IPIV( Jl ), INFO )}
* call by setting return value and
* new values for J and ns.
* This is computation (5).
*
isk(1l,isp) = 2 ! Set return value
* to 2 on the current stack.
ns = n2s
J =J1
GOTO 1 ! Call is made there.
ELSE ! Back pivot and return.
*
* Back pivot cols J to Jl-1 of
* A( Jl:M-1, J:J1-1).
* This is computation (6).
*
CALL DLASWP( nls, A(0, J ),
$ Lpa, Jl+1, Jl+n2s,
$ IpIV, 1 )
END IF
END IF
*
* Rtn from call RGETF2( M—J, ns, A( J, J ),
* LDA, IPIV{( J ),
* INFO ).
* Pop the stack isk and return to the
* next recursion level.
% .
Call pop( isp, isk, J, ns )
IF( isp.GE.0 )GOTO 2
IF( N.GT.M ) THEN
*
* Forward pivot cols M :N — 1 of a.

CALL DLASWP( N—M , A(O,M ), LDA,
$ 1, M, IPIV, 1)

*

Compute u{(0:M —1,M :N — 1) = 1**—1*a

F. G. GUSTAVSON

CALL DTRSM( 'Left', 'Lower',
$ 'No transpose', 'Unit',
S M, N—M, ONE, A, LDA,
$ A(0,M ), LDA)
END IF
return

End of recursive RGETF2

end
subroutine push(js,ns, sp,stack)
implicit none
integer*4 sp,js,ns,stack(3,0:%)
sp=spt+l
stack(1l,sp)=0
stack(2,sp)=3js
stack(3,sp) =ns
return
end
subroutine pop(sp,stack,js,ns)
implicit none
integer*4 sp,js,ns,stack(3,0:*)
sp=sp—1 ! recursive return
if (sp.ge.0)then
js=stack(2, sp)
ns=stack (3, sp)
endif
return
end
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