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We describe some modifications of the 
LAPACK  dense linear-algebra algorithms using 
recursion. Recursion leads to automatic 
variable blocking. LAPACK’s  level-2  versions 
transform into level-3 codes by using 
recursion. The new recursive codes are written 
in FORTRAN 77, which does not  support 
recursion as  a  language  feature.  Gaussian 
elimination with  partial pivoting and  Cholesky 
factorization are  considered. Very clear 
algorithms emerge with  the use  of recursion. 
The recursive codes do exactly the same 
computation as the LAPACK  codes,  and  a 
single recursive code replaces both the level-2 
and level-3 versions  of the corresponding 
LAPACK  codes.  We present an  analysis  of the 
recursive algorithm in terms of both FLOP 
count and storage usage.  The matrix operands 
are more “squarish” using recursion. The total 
area  of the submatrices used in the recursive 
algorithm is less than the total area used 
by the LAPACK level-3 right-/left-looking 
algorithms. We quantify the difference; we also 
quantify how the FLOPS are  computed.  Also, 
we show that  the algorithms exhibit high 
performance on RISC-type  processors. In fact, 

except for small matrices, the recursive 
version outperforms the level-3 LAPACK 
versions  of DGETRF and DPOTRF on an 
RS/6000’” workstation. For the level-2 
versions, the performance gain approaches 
a factor of 3.  We also demonstrate that a 
change to the LAPACK  DLASWP routine can 
improve the performance of both the recursive 
version  and DGETRF by more than 15 percent. 

1. Introduction 
Recursion  leads  to  automatic  variable blocking for  dense 
linear-algebra  algorithms, e.g., the  algorithms in ESSL, 
IMSL, LAPACK,  MATLAB, and NAG [l-51. By variable 
we mean  that  the block  size changes  during execution of 
the  algorithm; we are not  referring  to  the blocking of the 
variables of the  algorithm. Blocking for  the memory 
hierarchy is extremely important. Explicit  blocking 
parameters  should  be  combined with recursion if one 
wants  to  obtain  near-optimal  results  for  dense  linear- 
algebra  codes  on today’s RISC-type  processors. However, 
we do  not  combine  these blocking parameters with 
recursion in this  paper. Our aim is to exhibit the implicit 
blocking that  recursion  imparts  to  certain  algorithms  and 
also  to  demonstrate its simplicity. We do this by closely 
examining the two LAPACK level-2 codes DGETF2 and 
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DPOTF2. Our form of recursion  contains many forms of 
fixed blocking: right-looking,  left-looking, JKI,  etc. [6, 71. 
Additionally, we include variable-size square blocking, 
a form of which has  been shown by Toledo [SI to  be 
superior  to right-looking  blocking for  general matrix 
factorization.  Our recursive codes  are  written in 
FORTRAN 77, which does  not  support  recursion.  This is 
accomplished by explicitly handling  the  recursion in the 
FORTRAN 77 code.  Using  recursion on the  LAPACK 
level-2 codes  DGETF2  and  DPOTF2  automatically  turns 
them  into level-3  codes; the new recursive codes call only 
the level-3  BLAS  (basic linear-algebra  subprogram) 
routines  DGEMM,  DTRSM,  and  DSYRK. Additionally, 
the new level-2 codes  (named  RGETF2  and  RPOTF2) 
outperform  the  LAPACK level-3 codes  for  the two 
example codes.  To us, the clarity of the recursive form 
of the  algorithm  appears  to  be  superior  to  that of the 
nonrecursive  form. If the  performance  trend in the two 
example codes is nearly  universal, one  has a strong 
argument  to  replace all level-2 and level-3 codes with their 
level-2  recursive counterparts,  codes with only level-3 
BLAS  calls.’ 

In  the 1970s the  algorithms of dense  linear  algebra  were 
implemented in a  systematic way by the  LINPACK [9] 
project  and  were  kept  machine-independent  partly  through 
the  introduction of the level-1  BLAS routines. Almost  all 
of the  computation was done by calling  level-1 BLAS. 
For  each  machine,  the  set of level-1  BLAS  would be 
implemented in  a  machine-specific manner  to  obtain high 
performance. 

We briefly  review the concepts  behind level-2 and level-3 
codes.  The  introduction in the  late 1970s and  early 
1980s of vector  machines  brought  about  the  development 
of LAPACK level-2 algorithms  for  dense  linear  algebra. 
A  level-2 code is typified by the main  level-2  BLAS, which 
is the  multiplication of a  matrix by a vector.  These  codes 
were  meant  to give improved  performance  over  the  dense 
linear-algebra  codes in LINPACK, which were  based on 
level-1  BLAS.  A  typical  level-1  BLAS is a vector  dot 
product or the  adding of a multiple of one  vector  to 
another  vector.  Later on, in the  late 1980s and  early 
1990s, with the  introduction of RISC-type  microprocessors 
and  other  machines with cache-type  memories, we saw the 
development of LAPACK level-3 algorithms  for  dense 
linear  algebra. A  level-3 code is typified by the main 
level-3 BLAS, which is the  multiplication of a  matrix by a 
matrix. (The suffix i in level i refers  to  the  number of 
nested  “do  looks”  required  to  do  the  computation of the 
BLAS.)  Like the level-2 codes,  the level-3 codes  were 
meant  to  improve  performance over  existing level-2 and 
level-1 codes on these  newer machines. 

’ For RGETFZ there are calls to the level-1 BLAS routines IDAMAX and 
DSCAL. 
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For  general LU decomposition,  one  factors  an M by N 
matrix A using partial pivoting; LU = PA. The Cholesky 
algorithm  factors  an N by N positive definite symmetric 
matrix A; either U’U = A or LLT = A. For both RGETF2 
and  RPOTF2, our recursion  produces a  binary tree with 
N - 1 nodes of depth k + 1,  where  2k” < N 5 2k. 
At  each level i, 2”’  calls are  made  to level-3 BLAS. 

In  the Cholesky algorithm  (analogous  results  hold  for 
Gaussian  elimination),  at level i each BLAS problem is 
square of size nL = LN/2‘+’1 or ni + 1. In going from 
level i to i + 1,  the  number of BLAS  calls doubles  and 
each  problem size is halved. Hence,  the  total  number of 
FLOPS  done  at  each level goes down by a factor of  4. 
Suppose  the  MFLOP  rate  were  constant  at  each level; 
then  the  computation  time would follow a geometric  series 
with ratio r = 114. However,  the  MFLOP  rate of a square 
level-3  BLAS  is only “constant”  when  the  problem size 
becomes  larger  than a  block  size NB, which depends  on 
architecture  considerations  [lo].  As  the  problem size  falls 
below NB  and  approaches 1, the  MFLOP  rate  drops off 
drastically. This partly  explains why our recursive method 
performs poorly for small  matrices. In  these  cases our 
algorithms  make  most of their calls to level-3  BLAS, 
where  each call has  a small-square  problem size. We 
mention  that we can avoid this  performance  problem by 
“pruning  the  tree”  at a  high enough level, Le., by calling  a 
factor  kernel.  For  large  problems  the  geometric  nature of 
the  recursion  “takes  over,”  as  the  performance  results 
demonstrate. 

This  paper  introduces  the  total  area of the BLAS 
operands  as  the basis of a new set of measures of the 
efficiency of a dense  linear-algebra  code.  We  denote 
the  measures by LLTA,  RLTA, and RTA, which stand 
respectively for  left-looking  total  area, right-looking total 
area,  and recursive total  area.  The new measures  are used 
in Sections 2 and 3 to  quantify  just how  much variable 
blocking  improves upon left-/right-looking  blocking. To  be 
more specific, let N = nNB so that A is represented as an 
n by n matrix of square blocks of size NB.  Both  the 
right-/left-looking and  the recursive algorithms consist of 
n block factor  steps  and n - 1 calls to level-3  BLAS. The 
total FLOP count for all calls to level-3 BLAS at the n - 1 
stages is the  same  for all of the  algorithms.  However, 
the  operands  (submatrices of A) of the BLAS  calls are 
always nearly square  for  the recursive algorithm. Since the 
FLOP  count is maximized for  square  operands  one  can 
expect the  total  area of the  operands  for  the recursive 
algorithm  to  be less than or equal  to  the  total  area of the 
operands  for  the right-/left-looking algorithms.  This  turns 
out  to  be  true.  In  fact,  for Cholesky, as n increases, 
the  ratio LLTAIRTA approaches 1 + N/9.  For  LU 
factorization,  as n increases,  the  ratio RLTAIRTA 
approaches 4N/(3 log, N ) .  
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In  Section 2, we describe  the recursive  Cholesky 
algorithm by detailing  and verifying the claims made in 
the  above  paragraphs.  In  Section 3, we describe recursive 
general  factorization.  This  algorithm is similar to  the 
recursive FORTRAN 90 algorithm of Toledo [8]. General 
factorization is done  on  an M by N matrix. Recursion 
works on  the  column  dimension N .  At  recursion level i, 2‘ 
calls are  made  to  DTRSM  and 2‘ calls to  DGEMM. As in 
Cholesky, each call to  DTRSM is on a square  problem of 
size nl or ni + 1. DGEMM  has  three matrix dimensions- 
m,  n, and k .  Each of the 2‘, n, k dimensions is either 
n, or n, + 1. However, the m dimensions  are  variable. 
Nonetheless,  the  total  computation  at  each level again 
follows a variable  “geometric  progression” whose ratio is 
r > 1/2.  In  Section 4, we give some  performance  results 
comparing  the new  recursive algorithms  to  LAPACK 
algorithms  DGETF2,  DGETRF,  and  DPOTF2,  DPOTRF 
on an  IBM RS/6000* workstation.  These  results show that 
the recursive versions  outperform  both  the level-2 and 
level-3  versions of LAPACK when the  matrices  do  not fit 
into level-1 cache.  For  large  problems,  the  performance 
gains are  between 2.5 and 3.0 over  level-2 codes  and 1.02 
to 1.10 over level-3 codes.  The  improvement given by our 
version of DLASWP versus the  LAPACK version is more 
than 15% for  large  matrices. 

Starting with LINPACK  and  continuing with LAPACK, 
the  algorithms of dense  linear  algebra  were  kept  machine- 
independent  through  the use of the BLAS. As  machines 
became  more complex in the design of their memory 
hierarchies, it became necessary to  increase  the  scope of 
the BLAS routines  from level 1 to levels  2 and 3. The 
algorithms in LINPACK  were  redesigned;  the  result was 
LAPACK. However, modularity  between  the BLAS 
routines  and  the  algorithms was preserved.  Nonetheless, 
there is a  basic pattern  to  the calling of BLAS  in  many 
dense  linear-algebra algorithms, which is typified by right- 
looking  matrix factorization.  The  pattern is this: For as 
long as any columns  remain  to  be  factored,  factor  the next 
block of k columns followed by a rank k update of all 
trailing columns. The  LAPACK level-3 codes call a  level-2 
routine  to  perform  the  factor  step  and a  level-3 routine  to 
perform  the  rank k update.  Hence,  the  operands of the 
level-3  BLAS  calls are  related.  This  then suggests that 
modularity  between  LAPACK  code design and its  BLAS 
calls should  be re-examined. 

This  paper  further  demonstrates  that  the BLAS  calls  in 
many dense  linear-algebra  algorithms  are  related,  and it 
raises  a question as to  whether  that  relationship  can  be 
exploited.  The answer appears  to  be  both yes and no. The 
yes answer  requires  that a change  be  made in the way 
the original  matrix is stored. If this is done,  the BLAS 
routines must be  changed  to reflect the new storage 
arrangement.  The  “new”  storage  format is not actually 
new, in the  sense  that it  has been  advocated by many 
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High-level description of the recursive Cholesky algorithm. 

authors  at  various  times.  The  format is a  blocked format, 
which is a  special case of the block-cyclic format,  and  that 
suggests  a key observation:  The  various calls to  the BLAS 
routines of a dense  linear-algebra  code  encounter  the 
same  submatrix  operands over and over  again. To  take 
advantage of this  fact,  one  can  rearrange  the  storage 
format of the original  matrix to blocked format  just  once, 
so that  each BLAS call receives  its submatrices  stored in 
an  optimal way. Then, on completion of the  dense  linear- 
algebra  algorithm, it is necessary only to  rearrange  the 
blocked storage  format of the matrix  back to  the original, 
column-oriented  FORTRAN  storage  format. 

Currently,  some BLAS implementations  do exactly this. 
The matrix operands  are  copied  to a more  suitable  data 
structure  and  then  the BLAS is executed on this copy. 
However,  this  copy procedure,  although very effective, 
has  to  be  done  for every  call. The  repeated copy can  be 
avoided if the original data  are in the  copied  form  to 
begin with. So, having the  input  data  to a  BLAS 
in an  optimal  form actually makes  the design and 
implementation of the BLAS simpler.  In  essence,  the 
memory-management  aspect of the BLAS is no  longer 
present.  The  burden  has  been shifted to  the  algorithm 
designer to provide an appropriate blocking parameter NB. 
However, for  dense  linear  algebra this is already being done. 

The no answer refers  to  perhaps  being  unable  to  add 
the blocked data typed to  the  FORTRAN  or C language 
and/or  to suitably modify the  current BLAS to  accept 
blocked submatrix  operands. Also,  as mentioned,  the 
LAPACK design can  be  changed,  thereby  keeping  the 
original  FORTRANK  input  data  structures.  The  latter 
approach is perhaps  more realistic. 

2. Recursive  Cholesky factorization 
In Figure 1, we give the  algorithm.  For simplicity we 
assume  that  the N by N matrix A is positive definite  and 
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1 Main loop of LAPACK routine DPOTRF (uplo = 'U). 

is stored  as  upper  triangular (uplo = 'U). We  use  the 
colon  notation  to  describe  submatrices,  as in [ l l] .  

In  the else clause  there  are two  recursive  calls, one  on 
matrix A(l:Nl,  l:Nl), the  other  on matrix A(Jl:N,  Jl:N), 
and a  call to  the level-3  BLAS routines  DTRSM  and 
DSYRK.  To  handle  the  recursion explicitly in FORTRAN 
77, we store  three  integers (ZSW, J ,  N) for  each  recursion 
level i. ZSW denotes a switch having  values 0, 1, 2, 
denoting  whether  one  should  make  the first  recursive  call, 
the  second recursive  call, or return  from  the  current 
recursion level; J denotes  its  diagonal  position in the 
global  matrix A and N denotes  the  current size of the 
submatrix. The  space  needed  for  the  stack is minuscule. 
To  handle  matrices  up  to size N = 2k" requires  space  for 
3 log, N integers. 

Analysis of recursive Cholesky factorization 
Suppose we are  at recursive  level i and  the  current 
problem size  is n. According to  Figure 1, one  executes  the 
else clause unless n = 1. In Figure 2, we depict this 
situation  as a node  (at level i) in  a tree with two branches 
to level i + 1 which denote  the two recursive calls. In 
between  these recursive  calls there  are calls to  DTRSM 
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and  DSYRK.  Thus,  at  each  node  that is not a leaf there is 
one call each  to  DTRSM  and  DSYRK.  The size of the 
DTRSM  problem is n l  by n2, and  the size of the  DSYRK 
problem is n2 by n l .  If n is even,  DTRSM  and  DSYRK 
perform n13 multiply-adds (MAS),  and nl(n1 + 2)n/2 
MAS if n l  is odd. 

The number of M A S  needed  to Cholesky-factor an n by n 
matrix is n(nz - 1)/6, and  the  number of MAS needed 
to Cholesky-factor the n l  by n l  and n2 by n2 submatrices 
is n(nz  - 4)/24 (if n is even)  and n(n2  - 1)/24 (if n is 
odd). 

Let nL = LN/~'J. At level i there will be 2' nodes,  each 
of which has size ni or n, + 1. Let ai be  the  number of 
nodes of size ni and 0, be  the number of nodes of size n, + 1. 
Note  that a,ni + pi(n, + 1) = N, and  since ai + 0, = 2', 
we have pi = N - 2'n,. What we have just  stated 
follows easily using induction.  For i = 0, n,  = N, a,, = 1, 
and p, = 0. Suppose  the  result is true  for j = i .  There 
are two cases, depending  on  whether nj is even  or  odd. 
Suppose n, is even. Then nj+, = nj/2 and  each aj node is 
doubled. Similarly, the pj nodes all  have  size nj + 1 and 
its two children  become size nj+l and size nj+, + 1 at level 
j + 1. Hence, aj+, = 2aj + pj and p,,, = pj. Also, N = 

ajn, + pj(nj + 1) = 2ajnj+l + pjnj+l + p,(n,,, + 1) = 

aj+lnj+l + p,+,(n,+, + 1). If nj is odd, then nj+] = (nj - 1)/2 
and I t , + ]  + 1 = (nj  + 1)/2. The aj nodes split into 
nodes of size n,+l and nj+l + 1, while the pj nodes  double 
with  size nj+l + 1. Hence, cui+, = a,, pj+, = a, + 2pj, 
and it  easily follows that N = a,+ln,+l + fij+,(n,,, + 1) 
and a,+, + pj+, - . This  completes  the  induction 
proof. For any N > 0 there exists k such that 2k" < N 5 2k. 
For  these N ,  the binary tree will have depth k + 1. 
Each of the leaves corresponds  to  the if clause of Figure 
1. At level k - 1, nk-l  = 1 and N = 2k-' + p k - , .  This 
means  that  there  are ak-,  leaves at level k - 1 and 2Pk-1 
leaves at level k .  We have just  proved  Theorem 1. 

Theorem 1 
The recursive  Cholesky factor  algorithm gives rise to a 
binary tree with N leaves. There  are k + 1 levels, where k 
is defined by 2k" < N 5 2k, i = 0, . . . , k. Let n, = h/2'1. 
At  each level i there  are 2' nodes,  and ai of these 
nodes  denote a  Cholesky factor  problem of size nt .  The 
remaining pi  = 2' - ai nodes  denote Cholesky factor 
problems of size nt  + 1. Also, c u p ,  + &(nl + 1) = N. 
At level i = k - 1, n, = 1 and pi > 0 unless N = 2k 
when nk = 1 and ak = N. Assuming N # 2k, there  are 
ai leaves at level i and 2pi leaves at level k .  

In  going  from level i to level i + 1, the  number  of 
Cholesky factorizations  doubles,  but  their size is halved. 
This  means  that  the  total  number of FLOPS  decreases by 
a factor of 4 in  going  down one  tree level. More precisely, 
when n is even,  the  factor  ratio is 4 + 12/(n2 - 4); it is 
exactly 4 if n is odd. Since MAS are conserved, we conclude 

- 2i+' 
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that n(n' - 1)/6 = n3/8 + n(n' - 4)/24 (n  even)  and 
n(n' - 1)/6 = n(n  - l ) ( n  + 1)/8 + n(n' - 1)/24 
( n  odd) must be  identities (which  they are).  These 
identities succinctly quantify  the  MA  count of the else 
clause.  DTRSM  and  DSYRK  consume exactly three  times 
the  number of MAS of the two recursive  calls if n is odd, 
and  an  MA of ratio 3 + 12/(n2 - 4) if n is even. These 
assertions  lead  to  Theorem 2. 

Theorem 2 
Let TMA(i) be  the  Total  MA  count  at level i of the 2' 
Cholesky subproblems of sizes nl and  nt + 1 where 
n, = LN/2'1. Also, let TTS(i) be  the  Total of the 
dTrsm  plus dSyrk MA  counts  at level i .  We have 
TMA(i) 2 4TMA(i + 1)  and TTS(i) 2 3TMA(i + 1). 

Comparison of left-looking  blocking  versus  recursive  blocking 
Let N = nNB so that A is represented  as  an n by n 
block  matrix of block  size NB. The left-looking and  the 
recursive algorithms consist of n block-factor steps  and 
n - 1 calls to  DTRSM  and  DSYRK. Additionally, the 
left-looking algorithm calls DGEMM n - 2  times. 
Consider  the n block-factor steps.  Both  the left-looking 
and  the recursive algorithms access the  same  operands, 
which are  the  diagonal blocks. Since they  require a total 
of only n blocks, we do  not  include  them below  in the 
formulas  for LLTA and RTA. (Please  refer  to  the 
Introduction,  where LLTA and RTA are defined.) Here 
we use a new concept of BLAS operand  total  area  to 
measure  the efficiency of a dense  linear-algebra  algorithm. 
The  total  FLOP  count  for all  calls  is the  same  for  both 
algorithms.  Each call to  DTRSM,  DSYRK, or DGEMM 
can  be  considered a series of block  matrix operations  on 
square blocks of size NB. Each of these block operations 
is either a DSYRK,  DTRSM, or DGEMM  operation.  We 
now compute  the  total  area of the  operands of the n - 1 
DTRSM,  DSYRK,  and  DGEMM calls for  both  the left- 
looking and  the recursive algorithms.  The  operands  for 
the recursive algorithm  are nearly square.  For a fixed area 
the  FLOP  count is maximized for  square  operands. Since 
both  algorithms  do  the  same  number of FLOPS,  one  can 
expect that  the  total  area of the  operands  for  the recursive 
algorithm is less than or equal  to  the  total  area of the 
operands  for  the left-looking algorithm.  For n > 2, this 
turns  out  to  be  true.  And  for N = 2, the  operands of the 
left-looking and recursive algorithms  are  the  same.  In 
Figure 3, we give the  LAPACK left-looking algorithm 
DPOTRF,  and, in Figure 4, the  LAPACK level-:! 
algorithm  DPOTF2.  Suppose we set NB = 1 in DPOTRF. 
Then  the call to  DSYRK  becomes  the  DDOT  computation 
of DPOTF2. Similarly, the  DGEMM  and  DTRSM calls  in 
DPOTRF  become  the  DGEMV  and  DSCAL  computations 
of DPOTF2.  Thus,  routine  DPOTF2 is a  special case of 
routine  DPOTRF; namely, the  case N B  = 1. In Figure 5, 
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1 Matrices  processed by DPOTRF at step J .  

we give a computational  snapshot of the processing done 
by DPOTRF  at block step J = jNB + 1 of Figure 3. 
DSYRK  updates  triangular matrix D = D - BTB, where 
matrices B and D have  sizes jNB by N B  and N B  by NB. 
DGEMM  updates matrix C = C - BAT, where  matrices 
A and C have  sizes jNB by (n  - j - l ) N B  and NB by 
(n  - j - 1)NB.  DTRSM solves DTC = C. During block 
step J ,  B and D are used as DSYRK operands; B, A, and C 
are used  as DGEMM  operands;  and D and C are  used  as 
DTRSM  operands.  Hence, A is used once, while B, C, and 
D are  each used twice. The  total  area of the  operands 
used is [ ( j  + 2)(n - j + 1)  - 2]NB2 for 1 < j < n - 1. 
For j = 0, DTRSM  uses nNB2 area,  and  for j = n - 1, 
DSYRK  uses nNBZ area.  Summing from j = 0 to n - 1 
gives 

LLTA(N) = n(n  - l)(n + 10)NB2/6 .   (1)  

Now we compute  the  total  area of the  operands  for  the 
recursive  Cholesky algorithm.  Between two recursive  calls 
(problem size  in N = n N B )  there is a  call to  DTRSM 
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; Comparison of total areas for LLD and RD for n = 8. 

with triangle size N1 = (n/2)NB  and  rectangle size N1 by 
N2 = N - N1.  The call to  DTRSM is followed by a  call 
to  DYSRK with the  same  N1 by N2  rectangle  and a 
triangle of size N2.  The  total  area is NI(N1 + l ) l 2  
+ 2NlN2 + N2(N2 + 1)12. It follows that  the recursive 
total  area satisfies the  equation 

RTA(n) = 2RTA(k) + k(3k + 1) n even = 2k, (2) 

RTA(n) = RTA(k) + RTA(k + 1) 

by the left-looking algorithm.  For  large n the  ratio 
LLTAIRTA approaches 1 + Nl9.  This  fact  can  be 
deduced  from  (1)  and (4). This limit has  more  meaning 
for level-2 codes,  because  then n = N. 

The analysis  can also  be used to  compare  the  data 
movement  between a  level-2 and a level3  LAPACK  code. 
Take  the  above example of N = 800. Using Equation (1) 
with n = 800  and  NB = 1 and n = 8,  NB = 100,  one 
can  compute  that  the  LLTA level-2,  level-3 ratio is 51.36. 
Similarly, the  LLTA level-2, RTA ratio is 89.89, and  the 
LLTA level-3, RTA ratio is 1.75. The  results of this 
section are now stated as Theorem 3. 

Theorem 3 
Let N = nNB.  The Cholesky LAPACK left-looking 
algorithm  DPOTRF  (DPOTF2  when  NB = 1) makes 
n - 1 calls to  DSYRK  and  DTRSM  and n - 2  calls to 
DGEMM.  The  total  area of the  matrix  operands  for  these 
calls is LLTA(N).  The recursive  Cholesky factor  algorithm 
makes n - 1 calls to  DSYRK  and  DTRSM.  The  total 
area of the matrix operands  for  these calls is RTA(N). 
For n > 2,  RTA(N) < LLTA(N).  The  LLTA(N)/RTA(N) 
ratio is approximately (n  + 10)/[9 + 3k/(n - l ) ] ,  where 
k = log, n. 

3. Recursive LU factorization with partial 

+ (3k + l ) (k  + 1) n odd = 2k + 1. 
pivoting 

(3)  In Figure 7 we give the  algorithm.  Without loss of - I 

Let n = Ciao ni2'  be  the  base-2  representation  of n and  generality, we assume  that A is M by N where M 2 N. 
L = 1 + Llog, nJ. Then, using (2)  and  (3),  one finds [If N > M ,  apply the  algorithm  to  A,, = A(l  : M ,  1 : M ) .  

It  returns  PA,, = L,,U,,.  Let  A,, = A(I:M, M + 1:N) .  
Now solve L,,X = PA,,  for X . ]  In  the else clause  there 
are two recursive  calls, one  on matrix A(l  : M ,  1 : Nl) ,   the  
other  on  matrix A(J1 : M ,  J1: N).  There  are two calls to 
DLASWP on matrices A( 1 : M ,  J1: N)  and A( J1 :  M ,  1 : N1) 

We  can  use  the  same  three  integers (ZSW, J ,  N) 
In  particular, if n is a  power of 2, n = 2k,  then  at  each  recursion level i to  handle  the  recursion 

3n2/2 - n/2  - 2L + Ln 

(4) and  a call to  level3 BLAS routines DTRSM  and  DGEMM. 
n, rO 

RTA(N) = [3(22k" - 2k") + k * 2k"]NB2. 

Using Equations  (1)  and (4), we compute  the  data in 
Table 1 for  the  values of LLTA,  RTA,  and  LLTAIRTA. 
Table 1 shows that  RTA(n) < LLTA(n)  when n > 2. It is 
instructive to  consider,  as in Figure 6 ,  a particular value 
for n ,  say n = 8,  and exhibit the  distribution of the matrix 
operand blocks that sum to TA. For n = 8 and  NB = 100 
one would be  computing  the Cholesky factor of an 800 by 
800  matrix  using  a  blocked algorithm  where  the blocks are 
square of order 100. 

The block submatrix U, of Figure 6 is used  LLD(i, j) or 
RD(i, j) times as  a  matrix operand by DGEMM,  DTRSM, 
or  DSYRK  when  DPOTRF  or recursive  Cholesky is 
executed.  Table 1 shows that when n > 10,  the recursive 
algorithm uses fewer  than half the  number of blocks used 

explicitly in FORTRAN 77. ZSW = 0 means  make first 
recursive  call, ZSW = 1 means  perform a fonvard- 
interchange, solve, update,  and  make  the  second recursive 
call, and ISW = 2 means  perform a  backward interchange 
and  return; J denotes  the  diagonal  position of N in the 
global  matrix A; and N denotes  the  current  column 
dimension of the  submatrix. 

Analysis of recursive L U  factorization 
The analysis is not as simple as  in  Cholesky factorization 
because  there is a variable M in addition  to  the  recursion 
variable N. According to  Figure 7, we execute  the else 
clause  unless N = 1. In Figure 8, we depict  this  situation 
as a node  (at level i) in  a tree with two branches  to level 
i + 1 which denote  the two  recursive calls. Between  these 
recursive  calls there  are calls to  DLASWP,  DTRSM,  and 
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I High-level description of the recursive LU algorithm. 

Table 1 Values of RTA,  LLTA, and LLTAIRTA for various n. 

n 
RTA(n)  
L L T A ( n )  
LLTAIRTA 

n 
R T A ( n )  
L L T A ( n )  
LLTAIRTA 

n 
RTA(n)  
L L T A ( n )  
L L TAIR  TA 

n 
R T A ( n )  
L L T A ( n )  
LLTAIRTA 

n 
RTA(n)  
L L T A ( n )  
LLTAIRTA 

2 
4 
4 

1.00 

11 
187 
385 

2.06 

20 
618 

1900 
3.07 

3 4 5 6 7 8 
12 22 37 54 74 96 
13 28 50 80 119 168 

1.08 1.27 1.35 1.48 1.61 1.75 

12 13 14 15 16 17 
222 261 302 346 392 445 
484 598 728 875 1040 1224 
2.18 2.29 2.41 2.53 2.65 2.75 

30 40 50 60 70 80 
1382 2456 3828 5494 7472 9752 
5800 13000 24500 41300 64400 94800 
4.20 5.29 6.40 7.52 8.62 9.72 

200 300 400 500 
60512 135858 241224 376522 

1393000 4634500 10906000 21207500 
23.020 34.113 45.211 56.325 

700 800 900 
737454 962848 1218222 

57900500 86292000 122713500 
78.514 89.622 100.732 

9 10 
124 154 
228 300 
1.84 1.95 

18 19 
500 558 

1428 1653 
2.86  2.96 

90 100 
12332 15206 

133500 181500 
10.83 11.94 

600 
542016 

36539000 
67.413 

1000 
1503544 

168165000 
111.846 

DGEMM.  After  completion of the  second recursive  call, m by n matrix is n(n - l)[rn - (n  + 1)/3]/2, and  the 
there is a second call to  DLASWP.  In this analysis we number of MAS needed  to  LU-factor  both  the (m ,  n l )  
neglect the cost of the two calls to  DLASWP.  We  can and (rn - n l ,   n2 )  submatrices is n(n - 2)[m - ( 5 n  + 
see  then  that  at  each  node  that is not a  leaf, there  are 4)/12]/4 if n is even  and (n  - l){(n - 1)m - [ ( 5 n  - 
two calls to  DLASWP  and single  calls to  DTRSM  and 3)(n + 1)]/12}/4 if n is odd.  When n = 2k, the  MA  cost 
DGEMM.  The  number of MAS  needed  to  LU-factor  an of both  DTRSM  and  DGEMM is k 2 [ m  - ( k  + 1)/2], and 
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Part of a tree diagram that describes the recursive LU factorization 
algorithm; n l  + n2 = n and n l  = n/2. 

when n = 2k + 1,  the  MA cost of both  DTRSM  and 
DGEMM is k(k + l)[m - (k + 1)/2].  Again,  the MAS 
are  conserved so that we have the  identity  that  the 
number of MAS needed  to  factor  an (n ,  m )  problem 
equals  the  number of MAS needed  to  perform  DTRSM 
and  DGEMM  plus  the  number of MAS needed  to  factor 
both  an (m, n l )  and  an ( m  - nl ,   n2)  problem. 

Let ni = LN/2']. At level i there will be 2' nodes,  each 
of which will have column  dimension n, or nL + 1. Let ai 
be  the  number of nodes of size ni and Pi be  the  number 
of nodes of size n, + 1. Again we have that ai + Pi = 2', 
aini + &(ni + 1) = N and Pi = N - 2'ni. However, 
the 2' ms at level i are  variable,  because  the m size of the 
right branch in Figure 8 depends  on n,. Let M(aL)  be  the 
set of the ai ms and M ( P I )  be  the  set of the Pi ms. If n, is 
even, then aitl = 2 5  + pi, Pi+l = Pi, M(aj+,) = M(a, )  
U {M(a i )  - ni/2) U M ( P , )  and M ( P , + , )  = { M ( P , )  - 
ni/2}. If ni is odd,  then a,+, = a,, Pi+, = a, + 2P,, 

- (nl - 1)/2} U {M@J - (ni + 1)/2}.  This specification 
follows from  Figure 8. We now use  induction  to  establish 
these  results.  For i = 0, no = N, a. = 1, Po = 0, M ( a o )  
= { M } ,  and M ( P o )  = 0. We  want to show that aini + 
P,(n, + 1) = N ,  where ai + p, = 2'. We also indicate 
how the 2' different mi change.  Suppose  the  result is true 
for j = i. The  result aI+lnL+l + P , + , ( ~ Z ~ + ~  + 1) follows 
exactly as it did in Section 2. The  result  about M(ai+,) 
and M(Pt+,) is straightforward.  Suppose ni is even.  Let 
m E M(a,).  According  to  Figure 8, there will be two ms 
at level i + 1, namely m and m - n,/2. If m E M(Pt), then, 
since n, + 1 is odd, its left  branch will have n,+l = n1/2; 
thus,  this m belongs  to M ( a , + , ) .  The right branch of 
(m,  ni )  will have njtl = n,/2 + 1,  and so this m produces 
for Pi+, a value m - n,/2.  Suppose n, is odd.  Let 
m E M(a,).  The  left  branch  has  node ( m ,  (nl - 1)/2), so 
m E M(aitl). The right branch  has an n value n,+l + 1 and 
an m value [m - (ni - 1)/2]. Hence, this m value belongs 
to M@,+,). Finally, let m E M(P,) .  The n value of both 
children is n,+l + 1 = (ni + 1)/2,  The  corresponding m 

M(a'+J = W a J ,  and M(P,+,) = W P , )  u { W a J  

F. G. GUSTAVSON 

values are m and m - (ni + 1)/2.  Both of these  values 
belong  to M ( P E + , ) .  The  argument in Section 2 about 
recursion  variable n at level k ,  where k is defined by 
2k" < N I 2k, is the  same  here.  We have thus  proved 
the following theorem. 

Theorem 4 
The recursive LU-factor  algorithm gives rise  to a  binary 
tree with N leaves. There  are k + 1 levels, where k is 
defined by 2k" < N 5 2k, i = 0, + . . , k .  Let ni = LN/2'1. 
At  each level i there  are 2' nodes,  and ai of these  nodes 
is an (m, n,) LU-factor  problem  where m E M(aj ) .  The 
remaining Pi = 2' - ai nodes is an (m,  ni + 1)  LU- 
factor  problem  where m E M(P,) .  At level i = k - 1, 
ni = 1 and Pi > 0 unless N = 2k,  and  then nk = 1 and 
ak = N .  Assuming N # 2k,  there  are ai leaves at level i 
and 2Pi leaves at level k. 

In going from level i to level i + 1, the  number of LU 
factorizations  doubles,  but  each of their n sizes is halved. 
The m sizes are  variable  at  both level i and level i + 1. 
Thus, all we can say is that  the  total  FLOP  count  at level i 
for all 2' LU-factor  problems is more  than twice the  total 
FLOP  count of all 2"' LU-factor  problems  at level i + 1. 
This  result follows from examining the  MA  count  for  an 
(m, n )  problem versus the  MA  count  for its two children. 
The ( m ,  n )  MA  count is n(n - l)[m - (n  + 1)/3]/2, 
and if n is even,  the  MA  count  for  the  children is 
n(n - 2)[m - (5n + 4)/12]/4. For n odd, the  MA count  for 
the children is (n - l)'[m - (5n - 3)(n + 1)/12(n - 1)]/4. 
In either  case, by inspection,  the ( m ,  n )  MA  count  for 
each  node is more  than twice the  count  for  the  children. 
This  establishes  the following theorem. 

Theorem 5 
Let TMA(i) be  the  total  MA  count  at level i of the 2' LU 
subproblems of sizes (mj j ,  n,) and (mtj ,  n, + l ) ,  where 
ni = h / 2 ' ]  and 1 I j I 2'. Also, let TTG(i) be  the  Total 
of the  MA  counts  at level i for  dTrsm  plus  dGemm.  We 
have TMA(i) 2 2TMA(i + 1)  and TTG(i) 2 TMA(i + 1). 

The  interpretation of Theorem 5 is that  the  FLOP 
count  decreases  according  to a variable  geometric  series of 
ratio r > 1/2  as  one  goes down one level  in the  recursion 
tree. 

Comparison of right-looking  blocking versus recursive 
blocking for LU factorization 
Let N = nNB so that A is represented as an n by n block 
matrix of block  size NB.  Both  the right-looking and  the 
recursive algorithms consist of n block-factor  steps  and 
n - 1 calls to  both  DTRSM  and  DGEMM.  Consider  the 
n block-factor steps.  Both  the right-looking and  the 
recursive algorithms access the  same  operands, which are 
the n diagonal  column blocks.  Since they  require a total 
of only n column blocks, we do  not include them below in the 
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I Main loop of LAPACK routine DGETRF. 

formulas  for RLTA and RTA. (Please  refer  to  the 
Introduction,  where RLTA and RTA are  defined.)  Here 
we are using  a new concept of BLAS operand  total  area 
to  measure  the efficiency of a dense  linear-algebra 
algorithm.  The  total  FLOP  count  for all these calls is the 
same  for  both  algorithms.  Each call to  DTRSM  or 
DGEMM can be  considered a series of block  matrix 
operations  on  square blocks of size NB. Each block 
operation is either a DTRSM  or a DGEMM call. We now 
compute  the  total  area of the  operands of the n - 1 
DTRSM  and  DGEMM calls for  both  the right-looking and 
the recursive algorithms.  The  operands  for  the recursive 
algorithm  are nearly square.  For a fixed area  the  FLOP 
count is maximized for  square  operands.  Since  both 
algorithms  do  the  same  number of FLOPS,  one  can expect 
that  the  total  area of the  operands  for  the recursive 
algorithm is less than  or  equal  to  the  total  area of the 
operands  for  the right-looking algorithm.  For n > 3, this 
turns  out  to  be  true. 

In Figure 9, we show the  LAPACK right-looking 
algorithm  DGETRF.  Note  that if one calls DGETRF with 
NB = 1, then functionally the calls to  DTRSM  and 
DGEMM  become, respectively,  a no-operation  and a  call 
to  DGER. Also, the two  calls to  DLASWP  become a 
no-operation  and a  call to  DSWAP.  Hence,  the following 
analysis  also applies  to  DGETF2 if one  sets NB = 1. In 

Figure 10, we detail  the  DGETRF  computation  during a 
single  block step J = jNB + 1, 0 5 j < n of Figure 9. 
After  factorization of the  column  panel  at J ,  J (which we 
neglect in this analysis), there is a call to  DLASWP  to 
interchange pivot rows in B, C. Both  the right-looking and 
the recursive algorithms access the  same  total  area of 
operands in their calls to DLASWP; namely, n(n - 1)NB’ 
total  area.  However,  the  pattern of access is different 
for  the two algorithms. For  DGETRF,  at each block step J ,  
the two calls to  DLASWP access (n - 1)NB2 area. 
For recursive LU, at  each  tree  node  (see  Figure 8) 
the two  calls to  DLASWP access 2N1N2NB2 area. 
On  the basis of these  remarks, we may neglect  these 
contributions  to  the  total  area. Next DTRSM is called 
with matrix operands D, B [DTRSM sizes are NB and 
(n - j - l ) N B ] ,  followed by a call to  DGEMM with matrix 
operands A, B, C [DGEMM sizes are (m - j - 1)NB, 
(n - j - 1)NB,  NB]. DTRSM solves DB = B, where D is unit 
lower triangular  and  DGEMM  updates C = C - AB. 
Hence A, C, D are  each used once, while B is used 
twice. The  total  area of the  operands  used is [n  - j + 
( m  - j ) ( n  - j )  - 1]NB2 for 0 5 j < n.  Summing  from 
j = 0 to n - 1 gives 

RLTA(M, N )  = { [n (n  + l ) / 2 ] ( m  - n/3 + 4/3) 

- m - I INB’.  
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RTA(m, 1)  = 0; 

RTA(m, 2k + 1) = RTA(rn, k )  + RTA(m - k ,  k + 1) 

+ 5k(k + 1)/2 + (2k + l ) (m - k ) .   (7 )  

Using (6) and (7) we can find a partial  solution  for RTA. 
Let L = 1 + bog, nl.  Then 

RTA(M, N )  = { [ ( L  + 1)n - 2L]m + f ( n ) } ~ ~ ~ ,  (8) 

where 

f ( 2 k )  = 2k[k ( -2*2k  + 1) + 5 ( 2 k  - 1)]/4. (9) 

In  particular, if n = 2k is a  power of 2 and m = n ,  then 

RTA(N, N )  = 2k-2[k(2k+' + 1) + 5(2k - 1) ]NB2.  (10) 

Using (5), (6), and (7),  we compute  the  data in Table 2 
Matrices urocessed bv DGETRF at step J .  for  the values of RLTA(m, n ) ,  RTA(m, n ) ,  and 

RLTA(m,  n)/RTA(m, n) .  Table 2  shows that RTA(m, n )  
< RL,TA(m, n )  when n > 3. It is instructive to consider, as ~, 

in Figure 11, a particular  value  for (m ,  n )  and exhibit the 
distribution of the  matrix  operand blocks that  sum  to TA. 
This  pattern is general.  For (m,  n )  = (10, 8) and NB = 

100, one would be  computing  the  LU  factorization of a 
1000 by 800 matrix  using a blocked  algorithm  where  the 
blocks are  square of order 100. The block submatrix AL, is 
used RLD(i, j )  or RD(i, j )  times  as a  matrix operand by 
either  DTRSM  or  DGEMM  when  either  DGETRF  or 
RGETRF is executed.  Table 2 shows that  for n = 17 the 
recursive algorithm  uses fewer than half the  number  of 
blocks used by the right-looking algorithm.  An 
approximation  to (8) when M = N is 

RTA(N, N )  = 0.25n[log2 n(2n + 1) + 5 ( n  - 1)]NB2.  (11) 

Thus,  for any N the  ratio of RLTAIRTA is approximated 
by using  (11). This analysis can also be  used  to  compare 
the  data  movement  between a level 2- and a  level-3 code. 
Take  the above  example of (M, N )  = (1000, 800). Using 
Equation (5) with ( m ,  n )  = (1000, 800) and NB = 1 and 
(m,  n )  = (10, 8), N B  = 100,  one  can  compute  that  the 
RLTA level-2,  level-3 ratio is 78.201. Similarly, the level-2 

Comparison of total areas for RLD and RD for rn, n = 10,8. 

Now we  compute  the  total  area  for recursive LU. 
Between two  recursive  calls [problem size is (M,  N )  = 
(mNB, nNB)]  there is a  call to  DTRSM with triangle size 

RLTA,  RTA ratio is 106.994, and  the level-3 RLTA,  RTA 
ratio is 1.368. The  results of this section  are now stated as 
Theorem 6. 

N1 = (n /2)NB and  rectangle size N1 by N2 = N - N1. 
The call to  DTRSM is followed by a  call to  DGEMM 
with rectangles M - N1 by N1, N1 by N2,  and M - N1 
by N2. The  total  area is Nl (N1 + 1)/2 + 2NlN2 
+ N ( M  - Nl).  Let n = 2k or 2k + 1 be  even  or  odd. 
It follows that recursive total  area RTA satisfies the 
following equations: 

RTA(m, 2k) = RTA(m, k )  + RTA(m - k ,   k )  n > 3, RTA(M, N )  < RLTA(M, N ) ,  and  the 

Theorem 6 
Let (M,  N )  = (mNB, nNB).  The  LU right-looking 
LAPACK  algorithm  DGETRF  (DGETF2  when NB = 1) 
and  the recursive LU  algorithm  make n - 1 calls to  both 
DTRSM  and  DGEMM.  The  total  area of the  matrix 
operands  for  these calls is respectively RLTA(M,  N)  
and RTA(M, N ) ;  see  Equations (5) and (8), (9).  For 

RLTA(N,   N)/RTA(N,   N)  ratio is approximately 
+ k[2m + (k + 1)/2],  (6)  4n/(3 log, n) .  
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Table 2 Values of RTA,  RLTA, and RLTAIRTA for various m ,  n. 

m ,  n 
RTA(m,  n) 
RLTA(m,  n) 
RL TAIRTA 

m ,  n 
RTA(m,  n) 
RLTA(m, n) 
RL TAIR  TA 

m ,  n 
RTA(m,  n) 
RLTA(m,  n) 
RLTAIRTA 

m ,  n 
RTA(m,  n) 
RLTA(m,  n) 
RL TAIRTA 

m ,  n 
RTA(m,  n) 
RLTA(m, n) 
R L TA  lR  TA 

m ,  n 
RTA(m,  n) 
RLTA(m,  n) 
RLTAIRTA 

m ,  n 
RTA(m,  n) 
RLTA(m,  n) 
RL TAIRTA 

m ,  n 
RTA(m,  n) 
RLTA(m, n) 
RLTAIRTA 

2 2  
5 
5 

1 .oo 
11,l l  

359 
560 
1.56 

20,20 
1373 
3059 
2.23 

4 2  
9 
9 

1 .oo 

3,3 434 5 s  6,6 727 6 8  9,9 10,10 
16 33 57 89 127 172 225 289 
16 35 64 1 05 160 23 1 320 429 

1.00 1.06 1.12 1.18 1.26 1.34 1.42 1.48 

12,12 13,13 14,14 15,15 16,36 17,17 18,18 19,19 
439 524 618 719 828 946 1080 1219 
715 896 1105 1344 1615 1920 2261 2640 
1.63 1.71 1.79 1.87 1.95 2.03 2.09 2.17 

30,30 40,40 50,50 60,60 70,70 80,80 90,90 100,100 
3343 6316 10275 15191 21227 28492 36768 46125 
9889 22919 44149 7.5579 119209 177039 251069 343299 
2.96 3.63 4.30 4.98 5.62 6.21 6.83 7.44 

200,200 300,300 400,400 500,500 600,600 
204500 485749 897900 1434981 2123048 

2706599 9089899 21493199 41916499 72359799 
13.235 18.713 23.937 29.210 34.083 

700,700 800,800 900,900 1000,1000 
2949567 3911200 5007675 6239212 

114823099 171306399 243809699 334332999 
38.929 43.799 48.687 53.586 

6,3 8,4 10,5 12,6 14,7 16,8 18,9 20,10 
31 65 117 185 267 364 486 629 
31 71 134 225 349 511 716 969 

1 .oo 1.09 1.15 1.22 1.31 1.40 1.47 1.54 

40,20 60,30 80,40 100,50 200,100 
3133 7783 14956 24575 113325 
7239 23809 55679 107849 848199 
2.31 3.06 3.72 4.39 7.48 

400,200 600,300 800,400 1000,500 
513300 1232149 2293100 3678981 

6726599 22634899 53573199 104541499 
13.105 18.370 23.363 28.416 

4. Experimental  results 
The recursive DPOTF2  and  DGETF2  algorithms which we 
name  RPOTF2  and  RGETF2 have been  implemented  and 
tested.  See  Appendix A and  Appendix B for  algorithms 
RPOTF2  and  RGETF2. We wish to verify our  conjecture 
that  DPOTF2  and  RGETF2  outperform  both  DPOTF2, 
DPOTRF  and  DGETF2,  DGETRF  for  large matrices. In 
all experiments we use M = N and LDA = M + 1. This 
experimental verification demonstrates  that  the  variable 
square blocking that  recursion  automatically  imparts  to 
the  algorithm  does  indeed lead to  higher  performance 
than  conventional fixed blocking of the right- or  left- 
looking variety.’ Please  note  that level-3 codes  use 
blocking and  our recursive versions  do  not. Two  examples 
make  this  point  clear.  Suppose we consider N = 1000. 
For  DGETRF, this is the  TPP  (Toward  Peak 
Performance)  benchmark [12]. The  default block  size of 
LAPACK is 64. DGETRF  makes 16  calls to  DGETF2, 15 
*DGETRF uses a right-looking algorithm; DPOTRF uses a left-looking algorithm. 
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calls to  DTRSM  and  DGEMM,  and 30 calls to DLASWP. 
On  the  other  hand,  the  experiments use pure  recursion; 
Le., the block  size is 1. Thus,  there  are 999 calls to 
DTRSM,  DGEMM, 1998  calls to  DLASWP,  and 1000 
calls to  IDAMAX  and  DSCAL. Now suppose N = 50. 
Here  DGETRF  makes a  single  call to  DGETF2,  whereas 
RGETF2  makes 49 calls to  DTRSM,  DGEMM, 98  calls to 
DLASWP,  and 50 calls to  IDAMAX  and  DSCAL.  Our 
point is that  for  peak  performance  one must include 
explicit blocking  with recursion  (see also the  last 
paragraph of the  Introduction).  This is especially true  for 
small matrices,  where level-3 performance  drops off 
drastically because of the  nature of the cubic function  and 
the calling overheads  and  error checking. The  point we 
have just  made  helps explain our  performance  results  and 
demonstrates  our main  conclusion: The  automatic  variable 
blocking that  recursion  imparts  to  these two algorithms 
leads  to higher performance  than  conventional fixed 
blocking of the  right-  or left-looking  variety. 
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MFLOP performance  versus  matrix  order of  five algorithms for . .  

MFLOP  performance  versus  matrix  order of four  algorithms  for 
Cholesky  factorization.  (Case uplo = 'U'.) The plot points (X, 0, +, *) 
are for  DPOF,  RpOTF2,  DPOTRF,  and  DPOTF2, respectively. 

A single set of experiments was done  on  an IBM 
RS/6000 workstation; see Figures 12, 13, and 14. The 
results establish experimentally our main conclusion stated 
above. We  now  briefly describe algorithms RPOTF2 and 
RGETF2.  The coding style is that of LAPACK. In  fact, we 
took  the public-domain LAPACK codes DPOTF2 and 

748 DGETF2 and  imbedded the recursive codes of Figures 1 

and 7 into  those  routines. Also, we have added many 
detailed comments. We have also modified LAPACK 
auxiliary routine DLASWP by interchanging the  order of 
the two do loops that make up this code. (As mentioned, 
this gives rise to  a  performance gain of more  than 15% for 
large matrices.) The performance times were obtained 
using the real-time clock in the machine;  hence, all times 
are wall-clock times and therefore system overheads are 
included. In [8], Toledo describes a similar experiment, 
but  for only one matrix size, N = 1000. He uses 
LDA = 1007 and 1024. For LDA = 1024, the effective 
cache size shrinks dramatically as many congruence-class 
slots go unused. In this case, it is  very beneficial to use 
the purely recursive version of the algorithm. In a  second 
experiment,  Toledo  considers  matrices of order N = 200 
to 2000. It was  only for matrices  at or above size n = 300 
that his recursive algorithm began to show superiority over 
DGETRF. Our experiments show that  the crossover is 
around n = 100. For  DGETF2  the crossover also occurs 
around size 100. Our experiments plot performance of 
matrices 50 to 1000 in  steps of 50. We made two to four 
runs and took the minimum of the wall-clock times. 
In Figure  12 we compare DGETF2,  DGETRF(C,  R), 
RGETF2, and DGEF.  The choppiness in the graphs is 
partly due to  a  bad LDA problem; e.g., DGETRF(R) 
for n = 350. For Cholesky, we consider  both values of 
uplo = 'L' and ' U ' ,  and we compare RPOTF2 results to 
DPOTF2, DPOTRF and ESSL DPOF. (See Figures 13 
and 14.) For uplo = 'U ' ,  routine RPOTF2 outperforms 
DPOTF2, DPOTRF when the matrix size exceeds 
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n = 100  and  at  about n = 200. The gain over  DPOTF2 
approaches 3 and  the gain  over DPOTRF  approaches 1.02 
as N approaches 1000. Routine  RPOTF2 always has less 
performance  than  the ESSL DPOF; its  gain approaches 
0.98 as n approaches 1000. For  uplo = 'L', the  results 
are similar. The crossover points  are  around 150 and 250 
for  DPOTF2  and  DPOTRF.  The gains approach 2.5 and 
1.05 over  DPOTF2  and  DPOTRF  as N approaches 1000. 
For  ESSL  DPOF  the  gain  approaches 0.97. 

Here is a further  explanation of these results. Variable 
blocking that is produced by recursion is superior if it is 
combined with blocking. Nonetheless,  the  ESSL  routines 
DGEF  and  DPOF  outperform  the recursive  versions. Now, 
the  ESSL  routines  use a large block  size that is greater 
than 100 and  hence  make few calls to  DTRSM,  DGEMM, 
and  their  factor  kernels.  For small matrix sizes, ESSL 
routines  outperform  the recursive routines by wide 
margins. The purely  recursive routines  do  not  make  up 
this loss. 

To verify this point, we make a minor  change  to 
RPOTF2  and  RGETF2 by introducing a  blocking 
parameter NB. For n 5 NB, a factor  kernel is called; 
otherwise  the  algorithm is the  same.  This  minor  change 
results in  excellent performance  for n values I N B  and 
better  performance  for n > NB.  We  substituted  the  factor 
kernels  from ESSL. With  this  change  the  performance of 
RPOTF2  and  RGETF2  becomes  about  equal to that of 
DPOF  and  DGEF  from ESSL. 

5. Conclusions 
Routines  RPOTF2  and  RGETF2  should  be  used in  place 
of the  LAPACK  DPOTF2  and  DGETF2  routines.  One 
could modify these recursive routines  to  include a factor 
kernel.  At  present,  these  routines  factor a 1 by 1 matrix 
or  an rn by 1 matrix. In  their  present  form  there is no 
blocking parameter  to  choose.  Thus, a user  cannot  make a 
poor blocking  choice. We have  shown that level-2 routines 
can possibly be  made level-3 by introducing  recursion. 
This is certainly  true  for  the Cholesky algorithm  and  for 
general  LU  factorization. 

The  use of recursion  for  dense  linear-algebra  algorithms 
is a  powerful  blocking technique.  When it  is combined 
with explicit  blocking of the memory hierarchy it becomes 
even  more powerful, although we have not  considered  that 
aspect in this paper.  Instead we have concentrated  on 
pure  recursion  and  the  automatic  variable blocking that is 
implicit in using  it. The  results  are surprisingly good.  In 
fact, they outperform  the  corresponding level-3 LAPACK 
routines. However, for small matrices,  recursion  suffers 
and  hence it alone  does  not  present a  universal  answer. 

As  a  by-product of this work, we have  discovered  a way 
to  improve a library such  as LAPACK by taking  advantage 
of the  relationship  between  submatrix  operands of 
multiple BLAS  calls  in  a LAPACK  algorithm.  The BLAS 

routines have to  be modified to  accept block submatrix 
operands. A new BLAS implementation may become 
simpler,  and  perhaps it will be possible to provide  a 
generic version of these BLAS routines with LAPACK. 
Currently  the  GEMM-based BLAS group  at  the University 
of Umea  and J. Wasnieski at  Uni-C in Denmark  are 
considering such  a project. 
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Appendix  A: RPOTF2 

SUBROUTINE  RPOTF2( UPLO, N, A, LDA, INFO 
implicit none 

* 
* . .  Scalar  Arguments . .  

CHARACTER UPLO 
INTEGER INFO, LDA, N 

* . .  
* . .  Array  Arguments . .  

DOUBLE  PRECISION A( O:LDAfl,O:* ) 
* . .  
* 

* 
* RPOTF2 computes  the  Cholesky  factorization of 
* a  real symmetric  positive  definite  matrix A. 
* 
* The factorization  has  the  form 
* A = U '  * u , if UPLO = ' u ' ,  or 
* A = L  * L', if UPLO = 'L', 
* where U is an upper  triangular  matrix 
* and  L  is  lower  triangular. 

* This  is  a new recursive  version of DPOTF2 
* ( done  in  F77 1 .  
* The key  idea is to  produce  a  mostly 
* level-3  component by introducing 
* recursion.  Recursion  introduces  variable 
* blocking, which is  more  general  than  fixed 
* blocking. Hence, this  code  will  probably 
* outperform  the  level-3  version  DPOTRF. 

* ALGORITHM DESCRIPTION ( UPLO = 'u' case 

* 

* 

* 
* IF ( N = 1 ) THEN 
* 
* compute A = UT*U; i.e., compute  sqrt 
* or  issue  non-P.D. message; 
* 
* ELSE 
* 
* partition A into  three  block  matrices All, 
* A12, and A22, where All = A (  l:n,l:n ) ,  
* A12 = A (  l:n,n+l:N ) ,  and 
* A22 = A (  n+l:N,n+l:N ) ,  and  n  is  about N/2. 
* Perform four computations: 749 
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* 
* (1) Cholesky  factor ( All ) = ( UllT \ U11 ) 
* ( recursive  call ) 
* 
* (2) compute  U12 : A12 = UllT** (-1) * A12 
* ( DTRSM ) 
* 
* (3) update A22 : A22 = A22 - U12T * U12 
* ( DSYRK ) 

* (4) Cholesky  factor ( A22 ) = ( U22T \ U22 ) 

* 

* ( recursive  call ) 
* 
* ENDIF 
* 
* Notes : 

* i) Recursion  leads  to  automatic  variable 

* ii) Calls  to  DTRSM  and  DSYRK  routines 

* 

* blocking. 

* automatically  make  this  code  level 3. 
* In essence, blocking is implicit. 
* DTRSM  and  DSYRK  are  each  called 
* N - 1 times. 
* iii) The  recursion  tree  has  N  leaves. 
* 
* iv) 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* v) 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* vi) 
* 
* 
* 
* vii) 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

Each leaf has size 1. 
The stack keeps track of  the  current  col 
dimension m of A  and  its  position 
J on the  diagonal. Also needed  is 
isk(l,isp), which has  values 0,l to 
signify  that  computation (1) is, or 
computations (2), (31, ( 4 )  are 
to be done  next. 
Note  that  computations (1) and (4) are 
recursive calls, so that  recursion 
level  isp  needs  to know where to 
resume  after the return  from  recursion 
level  isp + 1. 
Most of the  FLOPS  are  performed  at  the 
top  of  the tree.  For  level 0 ,  
N**3/4 FLOPS are done  in  one  call  each 
to  DTRSM  and  DSYRK. At level i, 
N**3/8**(i+l) FLOPS are performed 
by each of  the  2**i calls  to 
( m = n = k = N/2**(i+l) ) DTRSM  and 
DSYRK. 
The total  FLOPS  count at this  level  is 
2*2**i*N/8** (i+l) = N/4** (itl) . 
At the  lowest level, the  matrix  sizes 
are  1 by 1. For each  level  up  the  tree 
the  matrix  sizes  double  and  the  number 
of calls  is  halved. 
For small  matrices  the  FLOP  rate of 
level-3  codes  reduces  drastically 
( reason  for "liteQ BLAS ) .  Hence, at  the 
lower  levels  the  FLOP  rate  starts  to 
drop off dramatically. To overcome 
this, one  should  stop  recursion  when 
N/2**(i+l) <= constant  and  replace  the 
subtree  computation  with  a  single  call 
to a  factor  kernel.  This  is  what  a 
level-3  code  would  do. 

* Arguments 

* UPLO (input) CHARACTER*l 
* ======= 

* Specifies  whether  the  upper  or  lower 
* triangular  part of the  symmetric 
* matrix A is stored: 
* = 'u': Upper  triangular; 

750 * = Lower  triangular. 

* 
* N  
* 
* 
* 
* A  
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* LDA 
* 
* 
* 
* INFO 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

* 
* 

* 
* 
* 

* 
* 

* 
* 

* 
* 

* 
* 
* 
* 
* 

(input ) INTEGER 
The number of  rows and  columns of the 
matrix A. N >= 0 .  

(input/output) DOUBLE  PRECISION array, 
dimension(  O:LDAfl,  0:Nkl).  On entry, 
the  symmetric  matrix  A.  If  UPLO = ' U ' ,  
the  upper  triangular  part of A 
is  used  and  the  part of A  below 
the  diagonal is  not  referenced; 
if UPLO = ' L ' ,  the  lower  triangular 
part  of A is  used  and  the  part  of  A 
above  the  diagonal  is  not  referenced. 
On exit, the factor  U  or L from the 
Cholesky  factorization. 

(input) INTEGER 
The leading  dimension of the  array A. 
LDA >= max(1,N). 

(output) INTEGER 
= 0: successful exit; 
< 0: if INFO = -k, the kth argument 

had an illegal 
value; 

of order K is 
not positive 
definite, and 
the factorization 
could  not  be 
completed. 

> 0: if INFO = k, the  leading  minor 

""""~"""""""""~"~~ 
"""""""""""""""" 

..  Parameters . .  
DOUBLE  PRECISION 
PARAMETER 

$ 
. .  
. .  Local  Arrays , .  
LOGICAL  UPPER 
INTEGER  isk (3,o : 

size 2** 
. .  
. .  Local  Scalars 
INTEGER 

LOGICAL 
. .  External  Functi 

EXTERNAL 

ONE, ZERO 
( ONE = l.OD+O, 
ZERO = O.OD+O ) 

20) ! handle  matrices  to 
20 

ons . . 
LSAME 
LSAME 

. .  External  Subroutines . .  
EXTERNAL DSYRK, DTRSM, XERBLA 

. .  Intrinsic  Functions . .  
INTRINSIC MAX, DSQRT 

. .  

. Executable  Statements . .  

Test  the  input  parameters. 

INFO = 0 
UPPER = LSAME ( UPLO, ' U ' 
IF(  .NOT.UPPER .AND. 

$ ( .NOT.LSAME( UPLO, 'L' ) ) ) THEN 
INFO = -1 

ELSE  IF ( N.LT. 0 ) THEN 
INFO = -2 
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ELSE IF( LDA.LT.MAX( 1, N ) ) THEN 
INFO = -4 

END  IF 
IF( INFO.NE.0 ) THEN 

CALL  XERBLA( 'RPOTF2', "INFO ) 
RETURN 

END  IF 

isk(l,isp)=l 
m = m l  ! J  already  set 
goto 1 

ELSE  IF( isk(l,isp).EQ.l )then 

IF( UPPER ) THEN 

Solve  for A( J:J1"1,Jl:Jl+m2-1 ) .  
This is computation (2). 

CALL DTRSM( 'Left',  'Upper', 
$ 
$ 
$ 

'Transpose', 'Non-unit', 
ml,  m2, ONE, A( J, J ) ,  
LDA, A( J, J1 1 ,  LDA ) 

* 
* 
* 

Quick  return if possible. 

IF( N.EQ.0 ) 
$ RETURN 

Initialize  variables  for  recursion. 
* 
* 
* 

isp = -1 
J = O  
m = N ! Recursion  matrix  is  input  matrix A. 

CALL RPOTF2( UPLO, m, A( J, J ) ,  

Push  the  stack  isk. 
Ida, INFO ) 

Update  for A(  Jl:Jl+rn2-1,Jl:Jl+m2-1 ) .  
This  is  computation (3). 

CALL DSYRK( 'upper', 'Transpose', 
$ 
$ 

m2, ml, +NE,  A( J, J1 ) ,  
LDA, ONE, A( J1, J1 1 ,  LDA ) 

1 isp=isp+l ! Make  recursive  call by 
pushing  down  stack. 

isk(l,isp)=O 
isk(2,isp)=J 
isk(3,isp)=m 

A  branch  to  label  2  happens  ONLY 
during  intermediate  recursion 
with isk(1,isp) > 0 and  m > 1. Hence, 
we will  continue  execution of this 
intermediate  recursion. 

ELSE 

Solve  for A( Jl:Jl+m2"1,J:J1"1 ) 

This  is  computation (2). 

CALL DTRSM( 'Right',  'Lower', 
$ 'Transpose',  'Non-unit', 
$ m2, ml, ONE, A( J, J ) ,  
$ LDA, A( J1, J ) ,  LDA ) 

Update  for A( Jl:Jl+m2-1,Jl:Jl+rn2-1 ) 
This  is  computation (3). 

$ 
$ 
$ A( J1, J1 ) ,  LDA 1 

CALL DSYRK( 'Lower',  'No transpose', 
m2,  ml, +NE, 
A( J1, J ) ,  LDA, ONE, 

2  continue 

IF( m.EQ.l ) then ! lowest  recursion  level. 

Compute  pivot  and  test  for  non-positive- 
definiteness. 

END  IF 

Set up RPOTF2 ( UPLO, m2, A ( J1,  J1 ) , 

call by setting  return  value 
and new values  for J and m. 
This  is  computation ( 4 ) .  

isk(l,isp)=2 
m = m2 
J = J1 
goto 1 

$ Ida, INFO ) 

IF( A( J, J  ).LE.ZERO  )then 
INFO = J + 1 ! origin  1 
isp = 0 ! force  immediate  return 

A (  J, J ) = DSQRT( A( J, J ) ) 

ELSE ! here  m > 1 and  the  recursion is 
intermediate. 

ELSE 

END  IF 

Set  recursion  variables J1, ml, and m2. 
At level isp, four  computations  will  be 
done  as isk(1,isp) takes  the  values 0,l. 
For each of these  values  one  makes  a 
recursive  call by branching out. 
Exit  from  this  clause  occurs  only  when 
isk(1,isp) = 2. 

* 
* 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

END  IF 

END  IF 

Rtn  from  call  RPOTF2( UPLO, m, A( J, J ) ,  

pop the  stack isk and  return  to  the  next 
recursion  level. 

LDA, INFO ) . 
ml =m/ 2 
m2 =m-ml 
Jl=J+ml 

IF( isk(l,isp).EQ.O )then 

$ 
Set  up  RPOTF2( UPLO, ml, A( J, J ) ,  

call  by setting  return  value 
and new values  for J and  m. 
This  is  computation (1). 

Ida, INFO ) 

* 
* 

isp-isp-1 
IF( isp.GE.0 )then 
J-isk (2, isp) 
mesk(3,isp) 
goto  2 

END  IF 
if (isp.GE.O)goto 2 751 
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RETURN 
* 
* End  of  RPOTF2 
* 

END 

Appendix B: RGETFP 

$ 
SUBROUTINE  RGETF2 ( M,  N,  A, LDA, IPIV, 

implicit none 
INFO ) 

* 
* . .  Scalar  Arguments . .  
* . .  
* . .  Array  Arguments . .  

INTEGER INFO, LDA, M, N 

INTEGER IPIV( 0:* ) ! origin 0 
DOUBLE  PRECISION A( 0:LDA-1,O: * ) ! 

* origin 0 
* . .  
* 
* Purpose 
* ===== 
* 
* RGETF2  computes an LU factorization of a 
* general  M-by-N  matrix  A  using  partial 
* pivoting  with row interchanges. 

* The  factorization  has  the  form 
* A = P * L * U ,  
* where P  is  a  permutation matrix, L is  lower 
* triangular  with  unit  diagonal  elements 
* (lower trapezoidal if m > n), and  U is upper 
* triangular (upper trapezoidal if m < n). 

* This  is  a new recursive  version  of  DGETF2 
* ( done  in  F77 ) . 
* The key  idea is to  produce  a  mostly  level-3 
* component by introducing  recursion. 
* Recursion  introduces  variable  blocking, 
* which  is  more  general  than  fixed  blocking. 
* Hence, this  code  will  probably  outperform 
* the  level-3  version  DGETRF. 

* 

* 

* 
* ALGORITHM  DESCRIPTION 

* Wlog  assume  M >= N . If N > M, 
* apply  algorithm  to  All = A( l:M,l:M ) .  
* It  returns  P * A11 = L11 * U11. 
* Let  A12 =A( 1:M,M+l:N ) .  Now compute 
* U12 = Ll1**  (-1) * P * A12. 

* 

* 
* IF ( N <= 1 ) THEN 

* compute  P*A = L*U; i .e., find  the pivot, 
* interchange it, and  scale; 

* ELSE 

* 

* 

* 
* partition  A  into  four  block  matrices All, 
* A12, A21, and A22, where 
* All =A( l:n,l:n ) ,  A12 =A( l:n,n+l,N ) ,  
* A21 =A( n+l:M,l:N ) ,  and 
* A22 =A( n+l:M,n+l:N ) ,  
* and  n is about N/2. 
* Perform six computations: 

* (1) factor  P1 * ( All ) = ( L11 \ U11 ) 
) 

* 

* ( A21 ) ( L21 
* 
* 752 

( recursive  call ) 
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* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

(2 ) forward 
pivot ( A12 ) : ( A12 ) = P1 * ( A12 ) 

( A22 ) ( A22 ) ( A22 ) 
( DLASWP 

(3) compute  U12 : A12 = Lll**(-l) * A12 
( DTRSM ) 

(4) update  A22 : A22 = A22 - Ll1 * U12 
( DGEMM ) 

( 5 )  factor  P2 * A22 = ( L22 \ u22 ) 
( recursive  call ) 

(6) back  pivot  A21 : A21 = P2 * A23 
( DLASWP ) 

END1  F 

Notes : 

i)  Recursion  leads  to  automatic  variable 
blocking. 

ii)  Calls  to  DTRSM  and  DGEMM  routines 
automatically  make  this  code  level 3. 
In essence,  blocking  is  implicit. 

iii) The recursion  tree has ceil( min(m,n) ) 
leaves.  At  each  leaf ns = 1. 

iv) The stack keeps track of  the current 
col  dimension ns of A  and  its  position 
J on the  diagonal.  Also  needed  is 
isk(l,isp), which has values 0,1,2 to 
signify  that  computation (1) is, 
computations (2),  (3), ( 4 ) ,  ( 5 )  are, 
or  computation (6) is  to  be  done 
next.  Note  that  computations (1) and ( 5 )  
are  recursive calls, so that  recursion 
level  isp  needs  to know where to 
resume  after  the  return  from  recursion 
level  isp + 1. 

M (input) INTEGER 
The  number of rows  of  the  matrix A. 
M >= 0. 

N (input) INTEGER 
The  number of columns  of  the 
matrix A. N >= 0. 

A (input/output) DOUBLE  PRECISION 
array, dim. (O:LDA-l,O:N-l). 
On entry, the  m X n  matrix  to be 
factored. On exit, the  factors 
L and U; the  unit  diagonal 
elements of L are  not  stored. 

LDA ( input ) INTEGER 
The leading  dimension of the 
array A. LDA >= max(1,M). 

IPIV (output) INTEGER array, dimension 
(O:min(M,N)-1). 
The pivot  indices. Row i of the 
matrix  was  interchanged  with row 
IPIV(i). 

INFO  (output ) INTEGER 
= 0: successful  exit; 
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* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

* 
* 

* 
* 
* 

* 
* 

* 

* 
* 

* 
* 
* 
* 
* 

* 
* 
* 

* 
* 
* 

< 0: if INFO = -k, the kth argument 
had an illegal * 
value; * 

> 0: if  INFO = k,  U(k,k) is  exactly * 
zero. The 
factorization * 
has  been completed, * 

* 

but the  factor 
U is exactly 
singular, and 
division by zero 
will  occur if  it 
is used to solve 
a  system  of 
equations  or to 
compute  the 
inverse of  A. 

"""""""""""""""" ""_""""""_""""""" 

. .  Parameters . .  
DOUBLE  PRECISION ONE, ZERO 
PARAMETER ( ONE = l.OD+O , 

$ ZERO = O.OD+O ) 
. .  
INTEGER 
. .  Local  Arrays . .  

isk(3,0:20) ! 
min(M,N) <= 2**20 

. .  

. .  Local  Scalars . .  
INTEGER 

$ 
J, JP, isp, J1,  ns, 
nls, n2s 

DOUBLE  PRECISION t 
. .  
. .  EXTERNAL  FUNCTIONS . .  
INTEGER  I  DAMAX 
EXTERNAL  IDAMAX 
. .  External  Subroutines . .  
EXTERNAL DGEMM, DLASWP, DTRSM, 

$ DSCAL, XERBLA 
EXTERNAL push, POP 

INTRINSIC 
. .  Intrinsic  Functions . .  
. .  

MAX, MIN 
. .  
. .  Executable  Statements 

Test  the  input  parameters. 

INFO = 0 
IF(  M.LT.0 ) THEN 

INFO = -1 
ELSE  IF(  N.LT.0 ) THEN 

INFO = -2 
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN 

INFO = -4 
END  IF 
IF ( 1NFO.NE. 0 ) THEN 

CALL  XERBLA( 'RGETF2', "INFO ) 
RETURN 

END  IF 

Quick return if possible. 

IF( M.EQ.0  .OR.  N.EQ.0 ) 
$ RETURN 

Initialize  variables  for  recursion. 

isp = -1 
J = 0  

* 
* 
* 
* 
* 
* 
* 

* 
* 
* 
* 

* 
* 
* 
* 
* 
* 
* 
* 
* 

* 
* 
* 
* 
* 
* 
* 

* 

* 
* 
* 

ns = MIN(  M ,N ) ! recursion  matrix is 
M rows by ns cols 

CALL  RGETF2 ( M-J, ns, A ( J, J ) , 

Push  the  stack  isk. 
LDA, IPIV( J ) , INFO ) 

1 call  push( J, ns, isp, isk) 

A  branch  to  label 2 happens  ONLY 
during  intermediate  recursion  with 
isk(1,isp) = 1 or  2  and ns > 1. 
Hence, we will  continue  execution 
of this  intermediate  recursion. 

2 CONTINUE 

IF( ns.LE.1 ) THEN ! lowest  recursion  level 

Find  pivot,  check  for  singularity, 
interchange  and  scale. 

JP = J + IDAMAX( M-J, A( J, J ) ,  1 ) 

$ - 1  ! origin 0 
IPIV( J ) = JP + 1 ! origin  1 

IF( A( JP, J ) .NE.ZERO ) THEN 
IF( JP.NE. J ) THEN 

t = A (  J, J ) 
A( J, J ) =A(JP, J ) 
A(JP, J = t 

END  IF 
IF(  M-1-J.GT.0 ) 

$ 
CALL DSCAL( M-1-J,ONE/A( J, 3 ) ,  

A( J+1, J ) ,  1 ) 
ELSE 
INFO = J + 1 ! origin 1 

END  IF 

ELSE ! Here ns > 1  and  the  recursion 
is intermediate. 

Set  recursion  variables J1, nls, and  n2s. 
At level isp, six  computations  will 
be done  as isk(1,isp) takes  the 
values 0,1,2. For  values 0 and 1 one 
makes  a  recursive  call by branching 
out. Exit  from  this  clause  occurs 
only  when isk(1,isp) = 2. 

nls = ns/2 ! fixed  blocking 
n2s = ns - nls 
J1 = J + nls 

IF( isk(l,isp).EQ.O ) THEN ! RGETF2 

Set up RGETF2( M-J, nls, A( J, J ) ,  

call by setting  return  value  and 
new values  for J and ns. 
This is computation (1). 

isk(1,isp) = 1  ! Set  return value 
to 1 on the  current  stack. 
ns = nls ! J is  already  set. 
GOTO  1 ! Call  is  made  there. 

ELSEIF( isk(l,isp).EQ.l ) THEN 
Do computations DLASWP, DTRSM, 

LDA, IPIV( J 1 ,  INFO ) 

DGEMM, RGETF2 
753 
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* 

* 
* 
* 

* 
* 

754 * 

Forward  pivot  cols Jl:Jl+n2s-l Of 

This  is  computation (2). 

CALL  DLASWP( n2s, A( 0, J1 1 ,  LDA, 

A( J:M-1, Jl:Jl+n2s-l ) .  

$ J+1,  J1, IPIV, 1 ) 

Compute u( J:J+nls-1, Jl:Jl+n2s-l) 
= 1**-1*a 

This  is  computation (3). 

CALL DTRSM( ‘Left’,  ‘Lower’, 
$ ‘NO transpose‘, ‘Unit’, 
$ nls, n2s, ONE, A( J, J ) ,  
$ LDA, A( J, J1 ) ,  LDA ) 

Update A(  J1: Jl+M-l, J1: Jl+nZs-l) 

This  is  computation ( 4 ) .  

CALL DGEMM( ‘NO transpose’, 
‘No transpose‘, 

= a - l*u. 

$ 
$ 
$ 
$ A( J, J1 1 ,  LDA, ONE, 
$ A( J1, J1 ) ,  LDA) 

M- J1, n2s, nls, 
-ONE, A( J1, J ) ,  LDA, 

Set up RGETF2( M”J1, n2S, A( J1, J1 ) ,  
LDA, IPIV( J1 ) ,  INFO ) 

call by setting  return  value  and 
new values  for J and ns. 
This  is  computation ( 5 ) .  

isk(1,isp) = 2 ! Set  return  value 
to 2 on the  current  stack. 
ns = n2s 
J = J 1  
GOT0 1 ! Call  is  made  there. 

ELSE ! Back  pivot  and  return. 

Back  pivot  cols J to J1-1 of 
A( Jl:M-l, J:Jl-1). 
This  is  computation ( 6 ) .  

CALL DLASWP( nls, A(O, J ) ,  
$ LDA, J1+1, Jl+n2s, 
$ IPIV, 1 ) 

END  IF 

END  IF 

Rtn  from  call  RGETF2( M-J, ns, A( J, J ) 
LDA, IPIV( J ) , 
INFO 1 .  

Pop  the  stack  isk  and  return  to  the 
next  recursion  level. 

Call  pop( isp, isk, J, ns ) 
IF(  isp.GE.0  )GOTO 2 

IF(  N.GT.M ) THEN 

Forward  pivot  cols M :N - 1 of a 

CALL DLASWP( N-M , A(O,M ) ,  LDA, 
$ 1,  M, IPIV, 1 ) 

Compute u(0:M -1,M :N - 1) = 1**-1*a 

* CALL DTRSM( ‘Left‘,  ‘Lower‘, 
$ ‘No transpose’, ‘Unit‘, 
$ M, N-M, ONE, A, LDA, 
$ A(O,M ) ,  LDA) 
END  IF 

* 
return 

* 
* End  of  recursive  RGETF2 
* 

end 
subroutine push(js,ns,sp,stack) 
implicit  none 
integer*4 sp,js,ns,stack(3,0:*) 
sp=sp+l 
stack(l,sp)=O 
stack(a,sp)=js 
stack (3, sp) =ns 
return 
end 
subroutine pop(sp,stack,js,ns) 

integer*4 sp,js,ns,stack(3,0:*) 
sp=sp-1 ! recursive return 
if (sp. ge. 0) then 

* implicit none 

js=stack(2,sp) 
ns=stack(3, sp) 

endi f 
return 
end 
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