
A two-step
computation of
cyclic redundancy
code CRC-32
for ATM networks

by R. J. Glaise

In the field of telecommunications, among the
numerous cyclic redundancy codes in use,
ATM CRC-32 is difficult to compute because it
is based on a polynomial of degree 32 that has
many more terms (15) than any other CRC
polynomial in common use. CRC checking and
generation are generally carried out on a per-
byte basis, in an attempt to cope with the
dramatic increase of the data throughput of
higher-speed lines. More calculations are
needed to process a new incoming byte of
data if the number of terms of the polynomial
is large, because more bits of the current
intermediate result must be combined to
calculate each bit of the next one. This tends
to counteract the intrinsic speed advantage of
the per-byte computation by requiring that
more processing be done at each cycle. This
paper describes a method that overrides
the intrinsic complexity of the CRC-32
computation. It permits expediting AAL5
messages, which must be segmented into
ATM cells, with CRC-32 computed at one end,
and reassembled from cells, with CRC-32
checked for data integrity at the destination.
The calculation is in two steps: 1) A first
division is done on the entire message (until

the last cell is received or segmented) by a
much simpler polynomial. 2) A second division,
on the remainder of the first division by the
regular CRC-32 polynomial, is performed only
once, in order to obtain the final result.

Introduction
Messages transported through an Asynchronous Transfer
Mode (ATM) network must be segmented into short,
fixed-length packets, called cells, at the source and
reassembled at the destination. Several “adaptation layers”
are defined by the ATM standards [l], which specify how
the process is carried out. ATM Adaptation Layer 5
(AALS) is the simplest way of handling the segmentation
and reassembly process itself. It also makes better use of
the bandwidth, because, unlike the other adaptation
layers, it does not require overhead in any of the cells,
except for some bytes in the information field of the last
one. For these reasons, AAL5 tends to be the preferred
method for breaking messages into cells. Because data
integrity must be ensured end to end, a standard cyclic
redundancy checking (CRC) technique is utilized on the
entire message, and a frame check sequence (FCS) is added
to the data and transported with the last cell. At the
remote end, while reassembly is performed, the message is
checked for data integrity. The polynomial chosen by the
relevant standards bodies to implement the AAL5 CRC is

Topyright 1997 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,
of thrs paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other

portion of this paper must be obtained from the Editor.

0018-8646/97/$5.00 Q 1997 IBM

IBM J. RES. DEVELOP. VOL. 41 NO. 6 NOVEMBER 1997 R. J. GLAISE

the same 32-degree polynomial used for the fiber
distributed data interface (FDDI) [2]:

G*(x) = x3* + xZ6 + xZ3 + x** + x16 +x1* + X ” + X ” + x8

+ X 7 + X 5 + X 4 + X 2 + X + 1

The large number of terms (15) of this polynomial makes
it more difficult to implement than the other CRCs in use,
especially when higher-speed lines are considered. Hence,
the intent of AAL5 to provide a simple and efficient
segmentation and reassembly (SAR) process is somewhat
offset by the need to compute and check a complex
degree-32 CRC. This paper proposes a method of
simplifying the computation in order to facilitate
implementation of circuitry for high-speed CRC
computation in standard CMOS technology.

State of the art
Contrary to CRC standards (see for example [2]), each of
which describes its particular CRC implementation in the
form of a linear feedback shift register (LFSR), in which
only one bit at a time can be handled, all of the methods
for expediting CRC calculation known to the author tend
to propose byte-wise processing. (One of the very first
papers on this is [3]. Although it was published much later,
[4] is more frequently cited in the relevant literature.)

However, we assert that the method of [5] , which
proposes eliminating the shift-register model and handling
the computation directly according to the mathematical
basis of CRCs (the algebra of polynomials) permits
achieving much better results as far as hardware
implementation is concerned. In [5], the per-byte (8-bit
byte) computation described requires the equivalent of
114 two-input XORs and an eight-input XOR operator to
compute the next bit values.

This may still be too much, however, for the very high-
speed computation required to process AAL5 ATM
connections flowing through OC-12 lines, for instance.
One byte is received approximately every 13 ns for an
OC-12 line (622 X lo6 bits/s) and every 3 ns for an OC-48
line (2.4 X lo9 bits/s). Although not all of the traffic of
such lines is likely to be AAL5 connections that must be
segmented or reassembled, such numbers tend to indicate
that the instantaneous processing capability may have to
be very high not to degrade the overall performance at a
network node.

Simplifying the calculation
All of the methods for computing CRCs known to the
author, including the one of [5] , have in common the
process of dividing the message by the CRC polynomial
G(x) chosen by the relevant standardization group to
perform the calculation. The new concept developed in this

706 paper consists of carrying out this calculation in two steps:

1. Checking and generating the CRC is done with another
polynomial, M(x), M(x) = G(x) X P(x), except at the
final step. This polynomial must be a multiple of the
CRC polynomial G(x), in order that the remainder of
the first division of the message by M(x) be divisible, in
turn, by G(x). P(x) is a polynomial of degree as low as
possible to keep the degree of M(x) low, while it must
be chosen so that the resulting polynomial, M(x), has
fewer terms than G(x) in order to simplify the first
division. The desirable structure for M(x), to make
calculation easier, is further discussed in the next
section.

2. The result of the first division, performed on all of the
ATM cells constituting the message, is a Jixed-length
vector with degree equal to that of M(x). This vector
must then be divided only once by G(x) to obtain the
final result.

Making M(x) “simple”
The polynomial M(x) = G(x) X P(x) is said to be a
simple polynomial if it has fewer terms than G(x). Not
any simple polynomial is satisfactory, however, because it
is desirable to have the terms well spread out between the
maximum (the degree of the polynomial) and minimum
(xo, or 1) terms. If the calculation is carried out on a per-
byte basis, the powers of the terms should ideally be
at least 8 bits apart, so as not to “overlap” in the
calculation.’ For instance, the following multiple of the
CRC-32 polynomial G(x),

M(x) = x123 + X’*O + X B 0 + x74 + x53 + x45 + 1

(see Footnote 2),

which has only seven terms, is not as good as the
following (referred to hereafter as
“23 = x123 + x l l l + x9* + xg4 + x64 + x46 + x23 + 1

(see Footnote 3),

which has, however, one more term. This is because in this
second instance, the powers of the terms are all at least
8 bits apart. With this polynomial, the first division can be
carried out 8 bits at a time with only two-input XORs by
the state machine shown in Figure 1. The method is the
one described in [5], in which calculations are done in the
algebra of polynomials modulo G*(x). Computing is done
here modulo so that the result of any operation is a
vector that is no more than 123 bits long.

Another way of describing how to select M (x) is as follows: Of those polynomials
M (x) = G (x) x P (x) with terms at least 8 apart, choose the one with the fewest
terms. If more than one of these exist, select the one with the lowest degree.

of x : 91 88 85 81 78 76 75 72 67 66 65 64 61 58 56 51 48 47 46 40 39 38 37 36 35
M (x) = C * (x) X P (x) , where P (x) is the polynomial with the following powers

3;&21_30 27 23 18 16 12 11 9 7 5 3 1 0.
C*(x) X P (x) , where P (x) is the polynomial with the following powers

of x : 91 85 82 81 75 73 70 69 66 65 62 61 59 57 55 54 53 52 49 45 41 40 38 37 36
33 32 31 28 27 26 24 18 16 12 11 9 7 5 3 1 0.

IBM J. RES, DEVELOP. VOL. 41 NO. 6 NOVEMBER 1997 R. J . GLAISE

To implement the state machine of Figure 1 requires
only 56 two-input XORs and 123 latches. The other 67 bits
of the next intermediate result are simply shifted bits (by
eight positions) of the current result. This permits the
state machine to operate at a very high rate, so that the
calculation can keep up with the very high speed of optical
communication lines commonly used nowadays. This speed
is achieved at the expense of more bits to process in
parallel and the need to store a wider vector (123 bits
instead of 32) with the intermediate result of the
computation in progress. This is not really a drawback at
present, when gate arrays with more than 100 000 gates
are commonly available. Hence, the proposed scheme
allows one to trade the size of the vector used to
manipulate (and store in latches) for processing speed.

input and four-input XORs) can be used while the
required processing speed is achieved. Two other
polynomials to implement the above computation scheme
are listed in Table 1, along with MIz3 and G*(x) .

Other compromises are possible if wider XORs (three-

Final division
According to the scheme described here, the final division
must still be carried out with G(x). Because this second
and final division is now applied to a short, fixed-length
vector (regardless of the length of the initial message),
techniques that are not generally practicable with
CRCs, because the message can be of any size, may be
considered. Among them, the simplest consists of
implementing the method always used with error-
correcting codes (ECCs) employed to improve memory
reliability, thus working on a fixed-size word. A matrix
can be devised (the H matrix, in ECC jargon) and
implemented in the form of a combinatorial array that
performs the final division. The input to the array is the
remainder of the first division (for instance, a 123-bit
vector if MlZ3 is selected), and the output is the 32-bit
vector remainder of the division by C*(x) .

G(x). The method for doing it can be found in [6] and
in many other publications that deal with ECCs. For
instance, the corresponding H matrix for is given in
Table 2. The 53-bit input vector that is the result of the
division by M53 (indexed 0 to 52) is applied to the 53-
column matrix so as to compute a bit value for each of the
32 rows. The 1s in each matrix row represent the bits of
the input vector for which parity must be computed in
order to get the 32-bit vector (indexed 0 to 31) that is the
result of the division by G * (x) . The column labeled
“XOR inputs” in Table 2 indicates how many bits of the
input must be combined to compute the bit of the
corresponding row. A 13-input XOR is required. The
speed of such an array can by no means match the cycle
time of the state machine previously described; the

Such an array of logic is straightforward to derive from

IBM J. RES. DEVELOP. VOL. 41 NO. 6 NOVEMBER IY97

State machine to compute the remainder of the first division by
The calculation is done one byte at a time, based on the

method described in [5].

Table 1 Polynomials to implement the first division and
maximum N-input XOR required.

Polynomials M(x) Maximum size
of XOR needed

”23 = x123 + + x92 + x84

+ x64 + x46 + X Z 3 + 1
Two-input

M 5 3 = *53 + x38 + X 3 h + x 3 3 + x30

+ x27 + x25 + x 7 + x 3 + 1
Four-input

G * (x) as implemented in [SI Eight-input

equivalent of several cycles is necessary to generate the
result. Taking into consideration, however, that this
calculation is done only once at the end, one realizes
that the overall computation is much faster than with
traditional methods, even if short messages (down to
single-cell messages) are considered.

Method summary
The whole computation scheme is summarized hereafter
for MIz3. As an example, let us assume that the message
is one kilobyte long. The state machine cycle time to
process one byte can be as low as 10 ns (a 100-MHz state
machine) with a two-input XOR. Thus, the 48 bytes of

R. J . GLAISE

707

Table 2 Combinatorial array (H matrix) to perform the final division by M53

53-bit input vector XOR
(remainder of division by Mj3) inputs

52
1

8
1 1 . . . 1.11

. 1 . . . 1.11

. 1 . . . 1.11
1 1...1.11..1.....1............................
11 1 . . . 1.11
111 1 . . . 1.11
.111.1 . . . 1..1....11........1.........................

6- F;
6
6
7

8
9

9 ,
1.111.1 . . . 1 1 0 9 &

11.111.1 . . . 1 . . 1....11........1....................... 11 g 0

. . 11 . . . 1 . . 11 9

1 . . . 11 . . . 1..11...1...............1................... v

1.1 . . . 11 . . . 1 . . 11 9 b
.1.1 . . . 11 . . . 1..11...1...............1................ 9 g
1.1.11 . . 1 . . 111.111 l............... 12 .P E:

11.1.11 . . 1 . . 111.111 l.............. 1 3 '5 v1

.11.1.11 . . 1..111.111...................1............. 13 - B

.. 11.1.11 . . 1 . . 111.111 l 1 3 $
1 . . 1111.1 . . 1....11.11....................1........... 12
.1 . . 1.11 . . . 1...1.11.1.....................1.......... 18 5
. . 1 111.1 . . . 11.11 l 18 ;

.. 9 .z .11.1.1.11.1

. . . 11 . . . 1 . . 11 7 2

.1 . . . 11 . . . 1..11...1...............1.................. 8 Q

7 m

8 -

. . . 1 111.1 . . . 11.11 . 18

1 1..1..11111.11..........................1...... 11
11 1 . . 1..11111.11..........................1..... 12
111 . . 1 . . 11 . . 1.1.111.1 . l 1 3
.111.11 . . . 1111 . . . 111 13
. . 111.11 . . . 1111 . . . 111 . 1 3
. . . 11 . . 111.1.11 11 . 1. 11
. . . . 1 . . . 1.11 1 7 + o

.e

. . . . 11 1.11.1.11.1 . 1 1 0 e?; E

each ATM cell are calculated in 480 ns (one cell every
700 ns at 622 megabits per second). The complete
message, which comprises 21 cells, requires roughly 10 ps
plus the final division, which can be done in five cycles
or less (i.e., 50 ns maximum). Thus, the final division
accounts for only 0.5% of the total calculation time in this
first example. For a single-cell message (the worst case),
which is processed in 480 ns, the final division accounts
for approximately 10% of the total computation time. The
two-step scheme described in this paper is summarized in
Figure 2 for

The three polynomials given in Table 1 are the best that
708 the author was able to find in an exhaustive search up to

degree 128 of multiples of G (x) . (Only those multiples
with consecutive terms having exponents differing by 8 or
more were retained. Polynomials M71 and M53 are actually
by-products of this search, which was conducted only to
find the polynomial of lowest possible degree that permits
the first division to be performed per 8-bit byte while
requiring only two-input XORs. M'23 is the result of this
search.) The use of a two-input operator guarantees that
the state machine is intrinsically the fastest possible. An
improvement of the scheme described in this paper could
come only from a polynomial of degree less than 123, with
fewer terms, which would require less hardware but
provide no speed advantage.

R. J. GLAISE IBM J. RES. DEVELOP. VOL. 41 NO. 6 NOVEMBER 1997

Summary and conclusion
This paper describes a method of computing the AALS
ATM CRC-32 at very high speed. The division is first
carried out with a polynomial M (x) different from the one
chosen by the standards, so as to ease the calculation
while cells are being received or transmitted. When the
last cell is processed, a final (slower) single division by the
CRC-32 polynomial G*(x) must be performed to finish
the calculation. This scheme, which is possible because
M (x) is a simple multiple of G*(x), permits performing
most of the calculation with a very fast state machine that
is able to match the very high throughput needed to
handle AALS connections transported on optical lines,
like OC-12 (622 megabits per second), for which one
ATM cell must be processed every 700 ns. The new
scheme still allows the use of standard submicron CMOS
technology, while a higher-performance one would
normally be necessary to make the calculation with
traditional methods by means of the polynomial G*(x)
alone.

References
1. “Recommendation 1.363 on ATM Adaptation Layers,”

International Telecommunication Union (ITU),
Telecommunication Standardization Sector, Geneva,
Switzerland, July 1992.

2. “Fiber Distributed Data Interface (FDDI),” I S 0 9314-2,
International Organization for Standardization, Geneva,
Switzerland, 1989.

3. A. M. Patel, “A Multi-Channel CRC Register,” Proceedings
of the Spring Joint Computer Conference, 1971, pp. 11-14.

4. A. Perez, “Byte-Wise CRC Calculations,” IEEE Micro, pp.
40-46 (June 1983).

5. R. J. Glaise and X. Jacquart, “Fast CRC Calculation,”
Proceedings of the IEEE International Conference on
Computer Design (ICCD), Cambridge, MA, 1993, pp.
602-605.

2nd ed., The MIT Press, Cambridge, MA, 1972.
6. W. W. Peterson and E. J. Weldon, Error-Correcting Codes,

Received May 30, 1996; accepted for publication January
20, 1997

Two-step computation of CRC-32 with MIz3.

Rene J. Glaise IBM Networking Hardware Division,
La Gaude Laboratory, 06610 La Gaude, France
(rjg@vnet.ibm.com). Mr. Glaise is a Senior Development
Engineer who has long worked on error-correcting codes and
storage controllers for the memories of the communication
controllers developed at both the La Gaude (France) and
Raleigh (North Carolina) laboratories. More recently, he has
been involved in the development of an ATM adapter for the
IBM Nways switches, for which he has received an IBM
Outstanding Technical Achievement Award. Since joining
IBM in 1971, just after graduating from the Conservatoire
National des Arts et Mttiers in Caen, France, he has received
six IBM Invention Achievement Awards. His current interests
include methods for expediting CRC calculations in data-
communication products, along with the design and
implementation of powerful search devices.

709

IBM J . RES. DEVELOP. VOL. 41 NO. 6 NOVEMBER 1997

