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In the field of  telecommunications,  among  the 
numerous cyclic redundancy  codes in use, 
ATM CRC-32 is difficult to compute  because it 
is based  on a polynomial  of  degree 32 that has 
many  more  terms (15) than any other CRC 
polynomial in common  use. CRC checking  and 
generation  are  generally  carried  out  on  a  per- 
byte  basis, in an attempt to cope with the 
dramatic  increase  of  the  data  throughput  of 
higher-speed  lines.  More  calculations are 
needed to process  a new incoming  byte  of 
data if the  number  of  terms  of  the  polynomial 
is large,  because  more bits of  the  current 
intermediate result must  be  combined to 
calculate  each bit of  the  next one.  This tends 
to counteract the intrinsic speed  advantage  of 
the  per-byte  computation  by  requiring  that 
more  processing  be  done  at  each  cycle.  This 
paper  describes  a  method that overrides 
the intrinsic complexity  of the CRC-32 
computation. It permits  expediting AAL5 
messages, which must  be  segmented into 
ATM cells, with CRC-32 computed at one  end, 
and  reassembled from cells, with CRC-32 
checked for data integrity at the destination. 
The calculation is  in two steps: 1) A first 
division is done  on  the  entire  message  (until 

the  last cell is received  or  segmented)  by a 
much  simpler  polynomial. 2) A second  division, 
on the remainder  of  the first division  by  the 
regular CRC-32 polynomial, is performed  only 
once, in order to obtain the final result. 

Introduction 
Messages transported  through  an  Asynchronous  Transfer 
Mode  (ATM)  network must be  segmented  into  short, 
fixed-length packets, called  cells, at  the  source  and 
reassembled  at  the  destination. Several “adaptation  layers” 
are defined by the  ATM  standards [l], which specify how 
the  process is carried  out.  ATM  Adaptation Layer 5 
(AALS) is the simplest way  of handling  the  segmentation 
and reassembly process itself. It  also  makes  better  use of 
the  bandwidth,  because, unlike the  other  adaptation 
layers, it  does  not  require  overhead in any of the cells, 
except for  some bytes in the  information field of the  last 
one.  For  these  reasons, AAL5 tends  to  be  the  preferred 
method  for  breaking messages into cells. Because  data 
integrity must  be  ensured  end  to  end, a standard cyclic 
redundancy  checking (CRC) technique is utilized on the 
entire message, and a frame check sequence (FCS) is added 
to  the  data  and  transported with the  last cell. At  the 
remote  end, while reassembly is performed,  the message is 
checked  for  data integrity. The polynomial chosen by the 
relevant  standards  bodies  to  implement  the AAL5 CRC is 
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the  same  32-degree polynomial used  for  the  fiber 
distributed  data  interface  (FDDI) [2]: 

G*(x) = x3* + xZ6 + xZ3 + x** + x16 +x1* + X ”  + X ”  + x8 

+ X 7 + X 5 + X 4 + X 2 + X + 1  

The  large  number of terms (15) of this  polynomial makes 
it more difficult to  implement  than  the  other  CRCs  in  use, 
especially when  higher-speed  lines  are  considered.  Hence, 
the  intent of AAL5 to  provide a  simple and efficient 
segmentation  and reassembly (SAR)  process is somewhat 
offset by the  need  to  compute  and  check a  complex 
degree-32  CRC.  This  paper  proposes a method of 
simplifying the  computation in order  to  facilitate 
implementation of circuitry for  high-speed  CRC 
computation in standard  CMOS technology. 

State of the art 
Contrary  to  CRC  standards  (see  for example  [2]), each of 
which describes  its  particular  CRC  implementation  in  the 
form of a linear  feedback shift register  (LFSR), in which 
only one  bit  at a time  can  be  handled, all of the  methods 
for  expediting  CRC  calculation known to  the  author  tend 
to  propose byte-wise processing. (One of the very first 
papers on this is [3]. Although it was published much later, 
[4]  is more  frequently  cited  in the relevant literature.) 

However, we assert  that  the  method of [ 5 ] ,  which 
proposes  eliminating  the  shift-register  model  and  handling 
the  computation directly according  to  the  mathematical 
basis of CRCs  (the  algebra of polynomials) permits 
achieving much  better  results  as  far  as  hardware 
implementation is concerned.  In [5], the  per-byte (8-bit 
byte)  computation  described  requires  the  equivalent of 
114 two-input XORs and  an  eight-input XOR operator to 
compute  the next  bit values. 

This may still be  too  much, however, for  the very high- 
speed  computation  required  to  process AAL5 ATM 
connections flowing through  OC-12  lines,  for  instance. 
One byte is received approximately every 13 ns for  an 
OC-12  line (622 X lo6 bits/s) and every  3 ns for  an  OC-48 
line (2.4 X lo9 bits/s). Although  not all of the traffic of 
such lines is likely to  be  AAL5  connections  that  must  be 
segmented  or  reassembled, such numbers  tend  to  indicate 
that  the  instantaneous processing  capability may have to 
be very high not  to  degrade  the overall performance  at a 
network  node. 

Simplifying the calculation 
All of the  methods  for  computing  CRCs known to  the 
author, including the  one of [ 5 ] ,  have  in common  the 
process of dividing the message by the  CRC polynomial 
G(x) chosen by the  relevant  standardization  group  to 
perform the calculation. The new concept  developed in this 

706 paper consists of carrying out this calculation in two steps: 

1. Checking  and  generating  the  CRC is done with another 
polynomial, M(x), M(x) = G(x) X P(x), except at  the 
final step.  This polynomial  must be a multiple of the 
CRC polynomial G(x), in order  that  the  remainder of 
the first division of the message by M(x) be divisible,  in 
turn, by G(x). P(x) is a  polynomial of degree as low as 
possible to  keep  the  degree of M(x) low, while  it must 
be  chosen so that  the  resulting polynomial, M(x), has 
fewer terms  than G(x) in order  to simplify the first 
division. The  desirable  structure  for M(x), to  make 
calculation  easier, is further discussed  in the next 
section. 

2. The  result of the first division, performed  on all of the 
ATM cells constituting  the message, is a Jixed-length 
vector with degree  equal  to  that of M(x). This  vector 
must then  be divided only once by G(x) to  obtain  the 
final result. 

Making M(x) “simple” 
The polynomial M(x) = G(x) X P(x) is said  to  be a 
simple  polynomial if it has fewer terms  than G(x). Not 
any simple  polynomial is satisfactory,  however, because  it 
is desirable  to have the  terms well spread  out  between  the 
maximum (the  degree of the polynomial) and  minimum 
(xo, or 1) terms. If the  calculation is carried  out  on a per- 
byte  basis, the  powers of the  terms  should ideally be 
at  least 8  bits apart, so as  not  to  “overlap” in the 
calculation.’ For  instance,  the following multiple of the 
CRC-32 polynomial G(x), 

M(x) = x123 + X’*O + X B 0  + x74 + x53 + x45 + 1 

(see  Footnote  2), 

which has only seven terms, is not  as  good  as  the 
following (referred  to  hereafter as 
“23 = x123 + x l l l  + x9* + xg4 + x64 + x46 + x23 + 1 

(see  Footnote  3), 

which has,  however, one  more  term.  This is because in this 
second  instance,  the  powers of the  terms  are all at  least 
8 bits  apart.  With  this polynomial, the first division can  be 
carried  out 8 bits  at a time with  only two-input XORs by 
the  state  machine shown in Figure 1. The  method is the 
one  described in [5], in which calculations  are  done in the 
algebra of polynomials modulo G*(x). Computing is done 
here  modulo so that  the  result of any operation is a 
vector  that is no  more  than  123  bits long. 

Another way of describing how to select M ( x )  is as follows: Of those polynomials 
M ( x )  = G ( x )  x P ( x )  with terms at least 8 apart, choose the one with the fewest 
terms. If more than one of these exist, select the one with the lowest degree. 

of x :  91 88 85 81 78  76 75 72  67  66 65 64 61 58  56  51  48 47 46  40 39 38  37  36 35 
M ( x )  = C * ( x )  X P ( x ) ,  where P ( x )  is the polynomial with the following powers 

3;&21_30 27 23 18 16  12 11 9  7  5  3 1 0. 
C*(x )  X P ( x ) ,  where P ( x )  is the polynomial with the following powers 

of x :  91 85 82 81 75 73 70 69 66 65 62 61  59 57 55 54  53  52 49 45 41  40 38 37 36 
33  32 31 28 27 26  24 18 16 12 11 9  7 5 3 1 0. 
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To  implement  the  state machine of Figure 1 requires 
only 56 two-input XORs and 123 latches. The  other 67 bits 
of the next intermediate result are simply shifted  bits (by 
eight positions) of the  current  result.  This  permits  the 
state  machine  to  operate at  a very high rate, so that  the 
calculation can keep  up with the very high speed of optical 
communication  lines commonly  used  nowadays. This  speed 
is  achieved at  the  expense of more  bits  to  process in 
parallel  and  the  need  to  store a  wider vector (123 bits 
instead of 32)  with the  intermediate  result of the 
computation in  progress. This is not really  a drawback  at 
present, when gate  arrays with more  than 100 000 gates 
are  commonly available. Hence,  the  proposed  scheme 
allows one  to  trade  the size of the  vector  used  to 
manipulate  (and  store in latches)  for processing speed. 

input  and  four-input XORs) can  be used  while the 
required processing speed is achieved. Two other 
polynomials to  implement  the above computation  scheme 
are listed in Table 1, along with MIz3 and G*(x) .  

Other  compromises  are possible if wider XORs (three- 

Final  division 
According to  the  scheme  described  here,  the final division 
must  still be  carried  out with G(x).  Because  this  second 
and final division is now applied  to a short, fixed-length 
vector (regardless of the  length of the initial message), 
techniques  that  are  not generally practicable with 
CRCs, because  the message can  be of any size, may be 
considered.  Among  them,  the simplest  consists of 
implementing  the  method always used with error- 
correcting  codes (ECCs) employed  to improve  memory 
reliability, thus working on a fixed-size word.  A  matrix 
can  be devised (the H matrix,  in ECC jargon)  and 
implemented in the  form of a combinatorial  array  that 
performs  the final division. The  input  to  the  array is the 
remainder of the first division (for  instance, a  123-bit 
vector if MlZ3 is selected),  and  the  output is the 32-bit 
vector  remainder of the division by C*(x) .  

G(x). The  method  for  doing it  can be  found in [6] and 
in many other  publications  that  deal with ECCs. For 
instance,  the  corresponding H matrix for is given in 
Table 2. The 53-bit input  vector  that is the result of the 
division by M53 (indexed 0 to 52) is applied  to  the 53- 
column matrix so as to  compute a  bit  value for  each of the 
32 rows. The 1s in each matrix row represent  the  bits of 
the  input  vector  for which parity must be  computed in 
order  to  get  the 32-bit vector (indexed 0 to 31) that is the 
result of the division by G * ( x ) .  The  column  labeled 
“XOR inputs” in Table 2 indicates how many bits of the 
input must be  combined  to  compute  the bit of the 
corresponding row. A 13-input XOR is required.  The 
speed of such an  array can by no  means  match  the cycle 
time of the  state  machine previously described;  the 

Such  an  array of logic is straightforward  to  derive  from 

IBM J. RES. DEVELOP. VOL. 41  NO. 6 NOVEMBER IY97 

State machine  to compute the remainder of the first division by 
The calculation is done one byte at a time, based  on the 

method described in [5]. 

Table 1 Polynomials to implement  the  first  division  and 
maximum  N-input XOR required. 

Polynomials M(x) Maximum size 
of XOR needed 

”23 = x123 + + x92 + x84 

+ x64 + x46 + X Z 3  + 1 
Two-input 

M 5 3  = *53 + x38 + X 3 h  + x 3 3  + x30 

+ x27 + x25 + x 7  + x 3  + 1 
Four-input 

G * ( x )  as implemented  in [SI Eight-input 

equivalent of several cycles is necessary to  generate  the 
result.  Taking  into  consideration, however, that this 
calculation is done only once at  the  end, one  realizes 
that  the overall computation is much faster  than with 
traditional  methods,  even if short messages  (down to 
single-cell  messages) are  considered. 

Method summary 
The  whole  computation  scheme is summarized  hereafter 
for MIz3. As an example, let us assume  that  the message 
is one kilobyte  long. The  state  machine cycle time  to 
process  one byte  can be as low as 10 ns (a 100-MHz state 
machine) with a  two-input XOR. Thus,  the 48 bytes of 
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Table 2 Combinatorial array (H matrix) to perform the final division by M53 

53-bit input vector XOR 
(remainder of division by Mj3)  inputs 

52 
1 

8 
1 . . . . .  1 . . .  1.11 . .  ...................................... 

. . . . . .  1 . . .  1.11 . .  ..................................... 

. . . . . . .  1 . . .  1.11 . .  .................................... 
1 . . . . . . .  1...1.11..1.....1............................ 
11 . . . . . . .  1 . . .  1.11 . .  .................................. 
111 . . . . . . .  1 . . .  1.11 . .  ................................. 
.111.1 . . .  1..1....11........1......................... 

6- F; 
6 
6 
7 

8 
9 

9 ,  
1.111.1 . . .  1 . .  ........................................ 1 0  9 & 

11.111.1 . . .  1 . .  1....11........1....................... 11 g 0 

. .  11 . . .  1 . .  11 . . .  ...................................... 9 

1 . . .  11 . . .  1..11...1...............1................... v 

1.1 . . .  11 . . .  1 . .  11 . . .  .................................. 9 b  
.1.1 . . .  11 . . .  1..11...1...............1................ 9 g  
1.1.11 . .  1 . .  111.111 . . . . . . . . . . . . . . . . . . .  l............... 12 .P E: 

11.1.11 . .  1 . .  111.111 . . . . . . . . . . . . . . . . . . .  l.............. 1 3  '5 v1 

.11.1.11 . .  1..111.111...................1............. 13 - B 

..  11.1.11 . .  1 . .  111.111 . . . . . . . . . . . . . . . . . . .  l . . . . . . . . . . . .  1 3  $ 
1 . .  1111.1 . .  1....11.11....................1........... 12 
.1 . .  1.11 . . .  1...1.11.1.....................1.......... 18 5 
. .  1 . . . .  111.1 . . .  11.11 ....................... l . . . . . . . . .  18 ; 

.. . . . . . .  9 .z .11.1.1.11.1 ................................. 

. . .  11 . . .  1 . .  11 . . .  ..................................... 7 2  

.1 . . .  11 . . .  1..11...1...............1.................. 8 Q  

7 m  

8 -  

. . .  1 . . . .  111.1 . . .  11.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18 

1 . . . . .  1..1..11111.11..........................1...... 11 
11 . . . . .  1 . .  1..11111.11..........................1..... 12 
111 . .  1 . .  11 . .  1.1.111.1 . . . . . . . . . . . . . . . . . . . . . . . . . . .  l . . . .  1 3  
.111.11 . . .  1111 . . .  111 ................................. 13 
. .  111.11 . . .  1111 . . .  111 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 3  
. . .  11 . .  111.1.11 . . . .  11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1. 11 
. . . .  1 . . .  1.11 . .  ...................................... 1 7 + o  

.e 

. . . .  11 . . . .  1.11.1.11.1 . . . . . . . . . . . . . . . . . . . . . . . .  1 . . . . . . .  1 0  e?; E 

each  ATM cell are  calculated  in 480 ns (one cell every 
700 ns at 622 megabits  per  second).  The  complete 
message,  which comprises 21 cells, requires roughly 10 ps  
plus  the final  division, which can be  done in five cycles 
or less (i.e., 50 ns maximum). Thus,  the final division 
accounts  for only 0.5% of the  total  calculation  time in this 
first example.  For a single-cell  message (the worst case), 
which is processed in 480 ns, the final division accounts 
for  approximately 10% of the  total  computation  time.  The 
two-step  scheme  described in this  paper is summarized in 
Figure 2 for 

The  three polynomials given in Table 1 are  the best that 
708 the  author was able  to find in an exhaustive search  up  to 

degree  128 of multiples of G ( x ) .  (Only those  multiples 
with consecutive terms having exponents differing by 8 or 
more  were  retained. Polynomials M71 and M53 are actually 
by-products of this search, which was conducted only to 
find the polynomial of lowest  possible degree  that  permits 
the first division to  be  performed  per 8-bit  byte  while 
requiring only two-input XORs. M'23 is the  result of this 
search.)  The  use of a two-input operator  guarantees  that 
the  state  machine is intrinsically the  fastest possible. An 
improvement  of  the  scheme  described in  this paper  could 
come only from a  polynomial of degree less than 123, with 
fewer terms, which would require less hardware  but 
provide no speed  advantage. 
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Summary  and  conclusion 
This  paper  describes a method of computing  the AALS 
ATM  CRC-32  at very high speed.  The division is first 
carried  out with a  polynomial M ( x )  different  from  the  one 
chosen by the  standards, so as to  ease  the  calculation 
while  cells are  being received or transmitted.  When  the 
last  cell  is processed, a final (slower)  single division by the 
CRC-32 polynomial G*(x) must  be  performed  to finish 
the  calculation.  This  scheme, which is possible because 
M ( x )  is a  simple multiple of G*(x), permits  performing 
most of the  calculation with a very fast  state  machine  that 
is able  to  match  the very high throughput  needed  to 
handle AALS connections  transported  on  optical lines, 
like  OC-12 (622 megabits  per  second),  for which one 
ATM cell  must be  processed every 700 ns. The new 
scheme still allows the  use of standard  submicron  CMOS 
technology, while a higher-performance  one would 
normally be necessary to  make  the  calculation with 
traditional  methods by means of the polynomial G*(x) 
alone. 
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