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their equivalences

To represent fractals by means of L systems,
a graphic interpretation of the L system

is required. Two families of graphic
interpretations have been used: turtie graphics
and vector graphics. Both are proved to be
equivalent for two interesting families of

L systems that include many of the fractals in
the literature. The equivalence theorems make
it possible to start from one L system in one
of the families and obtain other systems that
represent the same fractal. Sometimes a
fractal that has previously been assumed not
to be representable by any L system in one of
the families can be shown to be representable
in this way. Another point shown is the fact
that supposed deficiencies in L systems,
which have prompted the proposal of
extensions, are really deficiencies in the
graphic translation scheme.

Introduction

This paper examines two kinds of objects: fractal objects
(mathematical constructs) and L systems (a class of formal
grammars). Both are known to be intimately related, in

the sense that some types of fractals are easily represented
by L systems by means of a given graphic interpretation.
However (and this is not always done in the literature),
one must distinguish clearly between the L system itself
and the graphic interpretation that generates the fractal;
otherwise deficiencies in the latter may be ascribed to the
former.

The paper introduces the relationship between fractals
and L systems, describes the two most-used graphic
interpretations, uses them to classify the set of fractals,
and proves the equivalence between two interesting
classes. Some examples of the derivation of equivalent
L systems are given.

Fractals

Fractal objects, as defined in 1975 by Mandelbrot [1, 2],
have certain special properties, such as self-similarity
{containing copies of themselves), underivability at every
point, and a Hausdorff dimension greater than their
geometric dimension. They are appropriate for the
description of natural shapes, and have been used
successfully to code and compress images [3-5]. Fractals
have been generated or represented by many different
means, including the following:
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« Recursive mathematical families of equations. In the
Mandelbrot set, the fractal curve is the limit between
the domains of convergence and divergence.

% Recursive transformations (generators) applied to an
initial shape (the initiator).

& Fractional Brownian movements.

In this paper, we are interested primarily in the second
family of fractal objects, which have been variously
represented by means of L systems and their different
extensions, geometric recursion systems, iterated function
systems, mutually recursive function systems, and the like.

L systems
In 1968, Lindenmayer [6] defined a new type of grammar,
the paralle! derivation grammar, which differs from
normal Chomsky grammars because derivation is not
sequential (a single rule is applied at every step), but
parallel (as many rules as possible are applied at every
step).

Parallel derivation grammars, also called L systems, can
be classified in various ways:

» Context-sensitive (IL) systems.

« Context-free (OL) systems.

» Deterministic (DL) systems.

« Propagative (PL) systems.

~ Systems with extensions (EL systems).
« Systems with tables (TL systems).

These types may be combined. For example, a DOL system
is a deterministic context-free L system; a PDOL system is
propagative, deterministic, and context-free; an EIL
system is context-sensitive with extensions; and so forth.

A DOL system is defined as the three-fold (3, P, w) in
which 2 is an alphabet (a finite non-empty set of symbols);
P is a set of production rules of the form A ::= x, where
A € X is a symbol in the alphabet and x € 3* is a
(possibly empty) word or string of symbols in the
alphabet; and w € 2* is the starting word or axiom.

In a DOL system, every symbol appears exactly once on
the left side of a production rule. This restriction makes
the system deterministic.

A DOL scheme is the two-fold (2, P) of an alphabet
and a set of production rules, and represents the family of
all DOL systems which share those two components but
differ in the axiom.

An example of a DOL system is L-system 1:

({F,+,-},P,F+ +F+ +F),

where P is the following set of production rules:
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F.=F—-F+ +F-F,

+ =+

>

A derivation of a word in a DOL system is the new word
obtained when each symbol in the first word is replaced by
the right part of the production rule whose left part is that
symbol. In the previous example, we obtain the following
derivation from the axiom:

F+ +F+ +F>F—-F+ +F-F+ +F-F+ +F
-F+ +F-F+ +F-F.

The word thus obtained can become the starting point of
a new derivation, and so on.

L systems have been successfully applied in the
simulation of biologic processes such as plant growth,
development of leaves, and pigmentation of snail shells [7].

Fractals and L systems

L systems are appropriate to represent fractal objects
obtained by means of recursive transformations [8]. The
initiator maps to the axiom of the L system, the generator
becomes the production rule set, while recursive
applications of the generator to the initiator correspond
to successive derivations of the axiom. Something else is
needed, however: a graphic interpretation that makes it
possible to convert each of the words generated by the

L system into a visible fractal object.

It is very important to separate the L system from its
associated graphic interpretation. Otherwise, a problem in
the latter may be mistaken for a deficiency in the former.
This has happened before in the literature in this area,
with the result that extensions to L systems have been
proposed [9, 10] in cases where classic L systems are
actually appropriate if a suitable graphics interpretation
is used.

Two different families of graphic interpretations of
L systems have been used, turtle graphics and vector
graphics; we describe these in the next two sections.

Turtle graphics
Created in 1980 by Papert [11], a turtle graphic is the trail
left by an invisible “turtle,” whose state at every instant is
defined by its position and the direction it is facing. The
state of the turtle changes as it moves a step forward, or
as it rotates through a given angle in the same position.
Turtle graphics interpretations can exhibit various levels
of complexity. In the simplest one, the alphabet of a DOL
system consists of just three symbols:

3={F, +,-}.

The graphics interpretation of a word is as follows:
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F  The turtle moves one step forward, in the direction
in which it is looking, leaving a visible trail. We call
F a draw letter.

+ The turtle rotates through a positive angle a.

— The turtle rotates through a negative angle a.

With this interpretation, if we take a = 60 degrees,
L-system 1 generates the well-known Koch snowflake
curve.

Additional rules complicate the turtle graphics and
make it possible to generate fractals of different families.
For instance:

 Uppercase letters different from F have no graphic
representation and leave the state of the turtle
unchanged. In the following, we call such letters
nongraphic letters.
« Lowercase f makes the turtle move a step forward, with
no visible trail. In the following, we call letters such as f
move letters.
An opening parenthesis pushes the state of the turtle
into a stack; a closing parenthesis pops the top of the
stack and restores the turtle state. This rule makes it
possible to represent branching fractals. Of course, we
are interested only in strings where opening and closing
parentheses are paired according to the usual syntax
rules (a closing parenthesis without a previous opening
one would generate an empty stack exception).
Additional draw and move letters may be defined to act
the same as F and f.
The symbol ! makes the turtle rotate 180 degrees.
Braces { } indicate that the area enclosed in the braces
must be filled with some color.
Other symbols may be defined to change colors.

In this paper, we are interested in all of the indicated
extensions except the last three.

In summary, a given fractal may be represented by
means of four components: an L system, a concrete turtle
interpretation, a distance step, and an angle step. The
distance step is unnecessary if appropriate scale factors
are applied.

Turtle graphics are very flexible. Appropriate extensions
make it possible to represent complex information
(branching, color filling, and so forth). On the other hand,
this representation is inherently slow; the turtle state at
any point is a nontrivial function of the complete history
of previous turtle movements. Therefore, a string must be
converted sequentially into pixel positions by means of a
complex loop.

Vector graphics
In this family of interpretations, every symbol in the
alphabet of the L system is associated with a vector in a
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rectangular Cartesian system. A word (a string of symbols)
is represented by the catenation of the vectors of the
symbols that make the word.

In the simplest case, a fractal may be defined by two
components: an L system, and a mathematical application
V:3 — R’ (the vector interpretation). We assume that
all vectors associated with the symbols in the alphabet
produce visible movements. The graphic representation
of each derivation of the L system is a set of straight,
connected segments.

This vector interpretation allows us to represent
branching fractals, since it is always possible to return to
the start of the branch if for every symbol in the alphabet
there is another symbol associated with the opposite
vector. However, a different vector interpretation is
needed to build fractals that are not connected, such as
the Cantor sets. This can be covered by means of a strict
extension to the vector interpretation, which replaces V
with the mathematical application V : 3 — {0, 1} X %%,
which includes, for each symbol, a visibility coefficient
(a 0 or a 1), indicating that the vector displacement should
be visible (1) or invisible (0). This extension also makes
it possible to represent branching fractals.

Vector graphics are less flexible than turtle graphics.
Complex extensions, such as area filling and coloring, are
not easy. On the other hand, vector composition is a
straightforward operation and can be performed with a
very simple loop, which means that vector graphics are
usually faster than turtle graphics.

A graphic classification of DOL systems and
schemes
We propose a classification of DOL systems and schemes,
using as criteria the graphic representations to which they
must be subjected in order to represent fractal curves.

In the following, we consider the turtle graphics
interpretation (T, «), defined as follows.

The alphabet of the L system can be expressed as the
union of the four disjoint subsets N, D, M, {+, —, (, )}.

» + increases the turtle angle by a.

« — decreases the turtle angle by a.

 ( pushes the turtle state into a stack.

) pops and restores the turtle state from the stack.

* A € N leaves the turtle state unchanged.

e F € D moves the turtle one step forward, in the
direction of its current angle, leaving a visible trail.

e f € M moves the turtle one step forward, in the
direction of its current angle, with no visible trail.

* a = 2kw/n, where k and »n are two integers.

We call TGDOL to the set of all the DOL systems
(schemes) that represent some fractal (family of fractals)

by means of the turtle graphics interpretation (7, «). 729
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We call VGDOL to the set of all the DOL systems
(schemes) that represent some fractal (family of fractals)
by means of a vector graphics interpretation.

Definition I ~ Two L systems are fractal-equivalent if they
represent the same fractal curve by means of some graphic
interpretation.

Definition 2 Two L schemes are fractal-equivalent if, for
each L system in the first scheme (i.e., a given axiom),
there exists a fractal-equivalent L system in the second
scheme (with a possibly different axiom).

As we see later, two L systems may be fractal-equivalent
while their respective L schemes are not. Two DOL
systems may be fractal-equivalent in any combination
(i.e., both may be TGDOL, or VGDOL, or one each).

Given an L system in TGDOL or VGDOL that
represents a fractal with a given graphic interpretation,
we are interested in finding a fractal-equivalent L system
in the opposite set, for the following reasons:

« Since vector graphics are usually faster than turtle
graphics, given a TGDOL system, we may be interested
in finding a fractal-equivalent VGDOL system for
performance reasons.

« Since turtle graphics are more fiexible than vector
graphics, given a VGDOL system, we may be interested
in finding a fractal-equivalent TGDOL system if we want
to fill areas or apply different colors to different sections
of the fractal.

A general transformation algorithm from any TGDOL
scheme to a fractal-equivalent VGDOL scheme may not
be possible. However, we have proved an equivalence
theorem between two interesting subsets of both sets,
which we define as follows.

Definition 3 A string under a turtle graphics
interpretation is said to be angle-invariant if the direction
of the turtle at the beginning of the string is the same

as its direction at the end of the string.

Since the only symbols in the turtle graphics
interpretations we are considering that change the turtle
direction are + — ), a string in an L system in TGDOL,
whose incremental angle « is 2k#/n, is angle-invariant if
parentheses are paired in the usual way (we are only
interested in this) and the number of plus signs minus the
number of minus signs outside the parenthesis blocks is
either zero (the simplest case) or a multiple of # (which
would allow for an integer number of full circles). Inside
paired parentheses, there are no restrictions to the
number or combinations of + — signs.
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Definition 4 An L scheme in TGDOL is said to be angle-
invariant if the right-hand side of all its rules is an angle-
invariant string.

We call AITGDOL the set of all angle-invariant schemes
in TGDOL. Most of the interesting TGDOL systems in the
literature (but not all) are AITGDOL. As an example of a
TGDOL system that is not AITGDOL, let us mention the
following (L-system 2):

({F7G7+,_}aP7F)7

where P is the following set of production rules:

Fu=F+QG,
G =F-G,
+ =+,

Using the typical turtle graphics interpretation, with

{F, G} the set of draw symbols and o = 90 degrees, this
L system describes the well-known dragon fractal. It is
clear that the strings F + G and F — G are not angle-
invariant. However, we show later (applying one of our
equivalence theorems) that there exists an AITGDOL
system that is fractal-equivalent to L-system 2.

Definition 5 A set of real numbers is said to be
rationally related if the quotient of any two of them is a
rational number.

For any rationally related set of real numbers, there
must exist a real number 7 such that all the numbers in
the set are integer multiples of r. (The proof is trivial.)

Definition 6 An L scheme in VGDOL with a vector
graphics interpretation VI is said to be rationally related
if both the set of the modules and the set of the angles
of all the vectors in VI are rationally related.

For any finite rationally related scheme with a vector
graphics interpretation VI, there exist two real numbers
r and « such that all the modules of the vectors in VI
are positive integer multiples of r, and all the angles of
the vectors in VI are positive integer multiples of «.

We call RRVGDOL the set of all rationally related
schemes in VGDOL. Most of the interesting VGDOL
systems in the literature are RRVGDOL. (We have not
found one that is not.)

The two sets AITGDOL and RRVGDOL are interesting,
in the sense that many fractals usually represented by
L systems belong to them. We now prove that those sets
are fractal-equivalent.
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Theorem 1
For every AITGDOL system which represents a fractal with
the usual turtle graphics interpretation and o = 2km/n,
there exists a fractal-equivalent RRVGDOL system.

For every AITGDOL scheme which represents a set of
fractals with the usual turtle graphics interpretation and
a = 2km/n, there exists a fractal-equivalent RRVGDOL
scheme.

® Constructive proof

Informal description

The algorithm we propose starts from an AITGDOL
system and builds a fractal-equivalent RRVGDOL system.
Every symbol in the AITGDOL system splits into n
varieties in the RRVGDOL system (one per possible angle
in the turtle state). All vectors in the target system are
unitary (their module is 1), and all their angles are a
multiple of «; therefore, the resulting system is
RRVGDOL. The strings generated by each variety are
rotated appropriately. A plus sign in a string (a rotation
of o) becomes a change from variety i to variety i + 1 for
every symbol after the sign. A minus sign changes variety
i to variety i — 1. In this way, the direction of movement
of the turtle is replicated by the vectors. The effect of
parenthesis pairs (branching) is simulated by moving back
to the branching point with a second set of opposite
vectors (n per symbol). This set is unnecessary if

there are no parentheses in the rules of the source
system.

Formal description
Assume the following AITGDOL system:

L=(3P,w),

S =NUDUMU{+, —, ()},

N = a set of nongraphic letters,
D = a set of draw letters,

M = a set of move letters,

and

+ 5=+ €P,

—u= - EP,

(==( €p,

) n=1) €EP,

s =x(s)EP foralls € NUD U M, where x(s) € 3*,

We build another L system and a vector interpretation
represented by the two-fold (L', V), where
L' = (3, P\, w') is a DOL system, such that for each
seENUDUM,
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s()ESGEZ),
s"(H) €3GEZ),

s'(i) =C'[x(s),i,0] € P,
s"(@) = C"x(s),i,0]e P,

where C'[x, i, k] : 2* X an — 3'*, where Z  is a finite
group of n elements (the set of integers modulo n). The
transformation C' is recursively defined as follows:

C'A L kl=A for all i, k;

Cls,i,k]=s'i + k) forallseENUD U M;

Clsy, i, kI =Cls, i, kJ.CLy, i, k]
forallseENUD UM,y € 3*

C[ +,i,k]l=xforalli, k;

C[—,i,k]=xrforalli k;

C[ +y, i k]=Cly, i k+1]

Cl -y, i, k1=Cly, i,k —1]

Cl(x), i, k] = C'[x, i, k].C"[ f(x), i, k]

where f(x) is what remains of x after we have eliminated
all parenthesis pairs and whatever is inside them.

The transformation C" is defined exactly as C', replacing
every occurrence of s'(f) with s"(i) and vice versa.

The axiom is w' = C'[w, 0, 0].

Finally, the vector interpretation V is defined as follows:

for ally € 3%,
forally € 3*;

eForalls € N,andalli € Z,
V(') = V") = (0, 0, 0);
sFPoralls € D,andalli € Z ,
V(s'(i)) = (1, cos(i.a), sinfi.a)),
V(s"({)) = (1, —cos(i.a), —sin(i.a));
sForalls e M,and alli € Z ,
V(s'(i)) = (0, cos(i.a), sin(i.a)),
V(s"(i)) = (0, —cos(i.a), —sin(i.a)),
where the vector (v, x, y) consists of a visibility » € {0, 1}

and two Cartesian coordinates x, y.

If 3 does not include the two parentheses, the set of
symbols s"(i) can be eliminated from L'.
It is easy to prove, by inspection of the algorithm, that
the fractal curve represented by (L', V) is the same as
that represented by L with the standard turtle graphics
interpretation. The second part of the theorem (its
application to schemes) is trivial, since for every system
(axiom) used with the source scheme, the alphabet and
the production rules in the target system are the same 731
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D ::=DCED,
E ::= EDFE,
F ::= FEAF,

where we have renamed the symbols in the new alphabet
in the following way:

A =F(0),
B=F\(1),
C=r(Q),
D =F'(3),
E=F(4),
F=F(5).

V is the following vector interpretation:

Symbol Visibility  x y

1
0.5
-0.5
-1
-05 -
0.5 -

Graphic representation of the fifth derivation of the DOL system
for the Koch snowflake curve.

Sl R NE- RN
e e e
- w © N N O

where r is one half of the square root of 3.
It is easy to see that this system represents the same
fractal whose fifth iteration appears in Figure 1.

and only the target axiom changes (i.e., all of the target
systems belong to the same scheme).

Application example for Theorem 1

We have seen that L-system 1 generates the Koch
snowflake curve with the simplest turtle graphics
interpretation, and a = 60 degrees. Its axiom is
F + + F + + F, and its rules are

Theorem 2
For every RRVGDOL system which represents a fractal with
a vector graphics interpretation, there exists a fractal-
equivalent AITGDOL system.

For every RRVGDOL scheme which represents a set of
F:=F—F+ +F-F, fractals with a vector graphics interpretation, there exists a
fractal-equivalent AITGDOL scheme.

+iu= 4+,

e ® Constructive proof

In this case, n = 6, k = 1. Applying the algorithm Informal description

above, this system can be converted to the equivalent The algorithm we propose starts from an RRVGDOL
(L', V) two-fold, where L' is the following DOL system and builds a fractal-equivalent AITGDOL system.
system: Every symbol in the RRVGDOL system splits into two

varieties in the AITGDOL system, one that propagates the

({4,B,C, D, E, F}, P, ACE). derivations of the original symbol, and another that

P is the set of production rules disappears in the next derivation, whose purpose is to
draw the vector to its full length. (If all of the vectors are
A = AFBA, the same length, the second variety is not needed.) All
B ::= BACB, symbols in the target system start by moving the turtle
angle to the corresponding vector angle (with the
732 C :=CBDC, appropriate number of + or — signs), then generate the
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vector drawing or movement, and finally return to the null
angle (with the opposite set of + and — signs). The result
is obviously an AITGDOL system without branching
(parentheses).

Formal description
Assume the following RRVGDOL system:

L:(E’P7W)7

with the vector graphics interpretation V: 3 — {0, 1} X R
Remember that for any RRVGDOL scheme there exist
two real numbers, r and «, such that all the modules of
the vectors are positive integer multiples of r, and all their
angles are positive integer multiples of a.

We perform the following operations:

« Convert every vector in V to polar coordinates. This
gives us a set of modules R and a set of angles 4.

« Compute the two numbers r and a.

« Build the DOL system L' = (2', P', w'), such that for
eachs € 3,5 € 2, 5" € X, and for each s ::= x(s) € P,

s' = Clx(s), als)] € P,
s"i=AEP,

where a(s) is the angle of the vector associated
with symbol s in V(s), and the transformation
Clx, p] : 3* X R — 3'* is recursively defined as follows:

C[A, p] = A for all p,
Cls,pl=A.B.C,

for all s € 2, where s is not associated with the null
vector, and

a(s) Z p : a string of (a(s) — p)/a + signs,
a(s) <p :astring of (p — als))/a — signs;

B =s' catenated to a string of (r(s)/r) ~ 1 copies
of symbol s";

B a(s) Z p : a string of (a(s) — p)/a — signs,
" Yals) <p:astringof (p — a(s))/a + signs.
Cls,pl =5,

for all s € 3, where s is associated with the null vector,
and

Cls.y, pl = Cls, pl.Cly, p],
foralls € 3,y € 3*.

« We separate the set X' in the following way:
2=NUDUMU{+, -},

where
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N = {s',s"| s is associated with the null vector} (non-
graphic letters);

D = {s',s" | s has 1 visibility and is not associated with
the null vector} (draw letters);

M = {s',s" | s has 0 visibility and is not associated with
the null vector} (move letters).

« We add the following rules to P"

+ =+ EP,

—u=-€ePp.

» The axiom is w' = C[w, 0].

It is easy to see that the fractal curve represented by
the original two-fold (L, V) is also represented by the
three-fold (L', T, «), where T is the standard turtle
graphics interpretation and « (the value used above) is the
elemental angle step. The second part of the theorem (its
application to schemes) is trivial, since for every system
(axiom) used with the source scheme, the alphabet and
the production rules in the target system are the same
and only the target axiom changes (i.e., all of the target
systems belong to the same scheme).

Application example for Theorem 2

The L system obtained by the application of Theorem 1
can now be subject to the algorithm of Theorem 2 to build
a different equivalent DOL system with turtle graphics
interpretation. By inspection of the six vectors, we find
that r = 1 and @ = 60 degrees or n/3 radians. %' =

{4, B',C, D, E', F', +, —}. Applying the algorithm,

we find that P' contains the following production rules:

A'=A'-F+ +B -4,
B :i=B'-A'+ +C B,
C'5=C-B'+ +D'-C,
D':=D'-C+ +E-D,
E:=E-D+ +F-E,
Fi=F-E+ +A4-F,

+ =+

5

All of the symbols 4', B', C', D', E', F' are draw symbols. The
sets of move and nongraphic symbols are empty in this case.

The axiom becomes A" + + C'———~E' + + .

It is clear that this system also represents the same
fractal whose fifth iteration is shown in Figure 1. In fact,
it is easy to see by direct observation that all of the draw
symbols are really the same, and this system is fractal-

equivalent to the original one. 733
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. The same fractal may be generated by means of the
- equivalent DOL system, ({4, B}, P, A), where P is the
following set of rules:

‘ - A = ABA,

B ::= BBB,

with the vector interpretation

Graphic representation of the axiom and the first five derivations Symbol

‘ Visibility x y
of the DOL system for the Cantor set.

The two preceding fractals can be obtained from

(e - each other by application of the two equivalence
: EELLEY £ #LEBEER
i s W masapias theorems.
Blssgas e C
i 5 T 0 8 R sReE
5 1 1 o L-system 2 (representing the dragon fractal) is not an
ERERESERR HpEuaanEn BRBGHANEHER .
® GnnsuEmampE s mps Dewsnagian AITGDOL system, and therefore Theorem 1 is not
P upnsnesmasill Dusw o acaone g

applicable. However, by observation of the derivations of

prousam s LEEL the fractal, we can find the following fractal-equivalent
e . . - ='u ‘ '" :- VGDOL system:
g L LE] ) L. 1.
o .o S gt A = 4B,
Mt et reee o
g e _ Bu=CB,
B B
HEE L) L3
‘ C :=CD,
D :=AD,

with the vector interpretation
Graphic representation of the tenth derivation of the DOL system

for the dragon fractal. Symbol Visibility x y

Other examples

Three of the next four examples have been designed by
different authors and are common in the literature. The
third one is our own.

AW
_—
S = O =
-0 =k O

This system is RRVGDOL. Therefore, Theorem 2 is
applicable, which makes it possible to obtain the
following fractal-equivalent AITGDOL system:

({F7G’+’_}’P’F)7

¢ The Cantor set of the third order is represented by the
following DOL system:

(F, f}, P, F),

where P is the set of production rules:

where P is the following set of production rules:

F:=F+G-,
F=HF, G:i= +H-G,
=1 H:=H+I-,
with the standard turtle graphics interpretation, where F = +F-1I,
is a draw symbol, f is a move symbol, and the value of « PR

is immaterial. Figure 2 shows the axiom and the first
734 five derivations of this system. — = =
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Figure 3 shows the tenth derivation of this system.
It should be observed that, although L-system 2 is
fractal-equivalent to the two systems given above, the
corresponding schemes are not equivalent. (The last two
are equivalent, of course, since they are the result of the
application of Theorem 2.) Therefore, schemes may not
be equivalent even when some systems in them are.
We have not proved that an AITGDOL scheme fractal-
equivalent to L-system 2 does not exist, but we do have
a strong suspicion that this is the case.

The PDOL scheme

A :=ABB,
B ::= BC,
C ::=CD,
D ::=DAC,

with axiom CCCC, a vector graphic interpretation, and
the vector definition

Symbol Visibility  x y

A 1 8 0
B 1 0 0.75
C 1 -4 0
D 1 0 -0.75

generates a fractal curve whose tenth derivation is
uncannily similar to a human hand (see Figure 4).

By applying Theorem 2, we obtain the following
L system, which generates the same fractal with a
turtle graphics interpretation:

o« r =025

¢ a = 90 degrees or m/2 radians.

. 2' — {Al, All, Bl’ B", Cl’ C"’ Dl’ D"’ +, _}‘
+ P’ contains the following production rules:

A' 1= A'4"" + BB'B'"B'B'B"~,

B' = BB"'B" + C'C"" -,

C' u=CC" + DD'D'-,

D' = D'D'D" + A4 —~C'C"" 4,

A" =,
B" =,
C" = A,
D" = A,
+ =+

where the exponents represent symbol repetition.

o All of the symbols A', A", B', B", C', C", D', D" are
draw symbols.
The sets of move and nongraphic symbols are empty
in this case.
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Graphic representation of the tenth derivation of a DOL system for
a human hand. :

« The axiom is ++C'C"’C'C"°C'C"C'C"P -,
where each set of C" includes 15 items.

If we apply Theorem 1 to the previous result, we get
another fractal-equivalent RRVGDOL system, where
all the vectors have the same module.

The DOL system
({A7 Fa +, ) (’ )}7 P7A)7
where P is the set of rules

A = F = ((4) + (4)) + F( + F(A4)) — (A),
F ::=FF,

+ = 4,
(=
) =),

represents a fractal whose fifth derivation is shown in
Figure 5, taking « = 22.5 degrees. Both 4 and F are
draw letters. This system is not AITGDOL, but we
mention it because, in a paper published in 1986,
Prusinkiewicz [10] asserted that this fractal, and others
like it, could not be represented by means of OL
systems, and proposed an extension (pL systems) to
make it possible. The fact that we have been able to
represent it with a DOL system indicates that the
extension may be unnecessary; OL systems are
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Fifth derivation of a DOL system for a bush, supposedly impossible
to represent by means of DOL systems.

sufficiently powerful to represent these curves. The
restriction was not in them, but in the turtle graphics
interpretation.

Conclusions

DOL systems, given an appropriate graphic interpretation,
are quite powerful in their ability to represent large
families of fractal curves, even some that previous authors
have assumed to require nonstandard extensions. It is thus
important to isolate the DOL system from its graphic
interpretation, which can be very different and belong
either to the turtle or the vector family.

We have proved a fractal-equivalence theorem between
two families of L systems, one associated with a turtle
graphics interpretation, the other with vector graphics.
The two families are interesting because most of the
fractals in the literature can be represented by means of
them. The two theorems make it possible to obtain
representations in those families for fractals that were
assumed not to belong to them.
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