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of fractal 
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their  equivalences 

To represent fractals by  means  of L systems, 
a  graphic interpretation of the L system 
is required.  Two  families  of  graphic 
interpretations have  been  used: turtle graphics 
and  vector  graphics. Both are  proved to be 
equivalent for two interesting  families of 
L systems that include many  of the fractals in 
the  literature. The  equivalence  theorems  make 
it possible to  start from one L system in one 
of the  families  and  obtain  other  systems that 
represent  the  same  fractal.  Sometimes  a 
fractal that has  previously  been  assumed not 
to be  representable  by  any L system in one of 
the  families  can  be  shown to be  representable 
in this way. Another point shown  is the fact 
that supposed  deficiencies in L systems, 
which have prompted  the  proposal  of 
extensions,  are  really  deficiencies in the 
graphic  translation scheme. 

Introduction 
This  paper  examines two  kinds of objects: fractal  objects 
(mathematical  constructs)  and L systems (a class of formal 
grammars).  Both  are known to  be  intimately  related, in 

the  sense  that  some types of fractals  are easily represented 
by L systems by means of a given graphic  interpretation. 
However  (and  this is not always done in the  literature), 
one must  distinguish  clearly between  the L system itself 
and  the  graphic  interpretation  that  generates  the  fractal; 
otherwise deficiencies  in the  latter may be  ascribed  to  the 
former. 

The  paper  introduces  the  relationship  between  fractals 
and L systems, describes  the two most-used  graphic 
interpretations,  uses  them  to classify the  set of fractals, 
and proves the  equivalence  between two interesting 
classes. Some  examples of the  derivation of equivalent 
L systems are given. 

Fractals 
Fractal objects, as defined  in 1975 by Mandelbrot [l, 21, 
have certain special properties,  such as  self-similarity 
(containing  copies of themselves), underivability at every 
point,  and a Hausdorff  dimension  greater  than  their 
geometric  dimension.  They  are  appropriate  for  the 
description of natural  shapes,  and have been  used 
successfully to  code  and  compress  images [3-51. Fractals 
have been  generated  or  represented by many different 
means, including the following: 
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Recursive mathematical families of equations.  In  the F : : =  F - F +   + F - F ,  
Mandelbrot  set,  the  fractal curve is the limit between 
the  domains of convergence and divergence. 

+ : := + ,  
Recursive transformations  (generators)  applied  to  an .. - - .. - . - 

initial shape  (the  initiator). A derivation of a  word in a DOL system is the new word 
obtained when each symbol in the first word is replaced by 
the right part of the  production  rule whose  left part is that 

Fractional Brownian  movements. 

In this paper, we are interested primarily in the second ’ symbol. In  the previous  example, we obtain  the following 
family of fractal objects, which have been variously derivation from  the axiom: 
represented by means of L  systems and  their  different 
extensions, geometric recursion systems, iterated  function 
systems, mutually  recursive function systems, and  the like. - F +   S F - F +   + F - F .  

F +   + F +   + F + F - F +   + F - F +   + F - F +   + F  

L systems The word thus  obtained  can  become  the  starting  point of 
a new derivation,  and so on. 

simulation of biologic processes  such  as plant growth, 
development of leaves, and pigmentation of snail shells [7]. 

In 1968, Lindenmayer [6] defined  a new type of grammar, 
the  parallel derivation grammar, which differs from 
normal Chomsky grammars  because  derivation is not 
sequential  (a single rule is applied  at every step),  but 

L systems have been successfully applied in the 

parallel  (as many rules  as possible are applied at every 
step). 

be classified in various ways: 
Parallel derivation grammars, also  called  L systems, can 

Context-sensitive (IL) systems. 
Context-free (OL) systems. 
Deterministic  (DL) systems. 
Propagative (PL) systems. 
Systems with extensions (EL systems). 
Systems with tables (TL systems). 

These types may be combined. For example,  a DOL system 
is a deterministic  context-free L  system;  a PDOL system is 
propagative, deterministic,  and  context-free;  an  EIL 
system is context-sensitive with extensions; and so forth. 

A DOL system is defined as  the  three-fold (2, P ,  w) in 
which 8 is an  alphabet  (a finite  non-empty set of symbols); 
P is a set of production  rules of the  form A :: = x, where 
A E 8 is a symbol in the  alphabet  and x E 8* is a 
(possibly empty) word or string of symbols in  the 
alphabet;  and w E X* is the  starting word or axiom. 

the left  side of a production rule. This restriction makes 
the system deterministic. 

A DOL scheme is the two-fold (2, P )  of an  alphabet 
and a set of production  rules,  and  represents  the family of 
all DOL systems which share  those two components  but 
differ in the axiom. 

In a DOL system, every symbol appears exactly once on 

An example of a DOL system is L-system 1: 

Fractals and L systems 
L systems are  appropriate  to  represent  fractal  objects 
obtained by means of recursive transformations [8]. The 
initiator  maps  to  the axiom of the L system, the  generator 
becomes the  production  rule  set, while recursive 
applications of the  generator  to  the  initiator  correspond 
to successive derivations of the axiom. Something  else is 
needed, however: a graphic  interpretation  that makes it 
possible to convert each of the words generated by the 
L  system into a visible fractal object. 

It is very important  to  separate  the L system from  its 
associated graphic  interpretation.  Otherwise, a problem in 
the  latter may be  mistaken  for a deficiency in the  former. 
This  has  happened  before in the  literature in this area, 
with the result that extensions to L  systems have been 
proposed [9, 101 in cases where classic L systems are 
actually appropriate if a suitable graphics interpretation 
is used. 

Two different families of graphic  interpretations of 
L systems have been  used,  turtle graphics and  vector 
graphics; we describe these in the next two sections. 

Turtle graphics 
Created  in 1980 by Papert  [ll], a turtle graphic is the  trail 
left by an invisible “turtle,” whose state  at every instant is 
defined by its  position and  the  direction  it is facing. The 
state of the  turtle  changes  as it moves  a step  forward,  or 
as it rotates  through a given angle in the  same position. 

Turtle graphics interpretations  can exhibit various levels 
of complexity. In  the simplest one,  the  alphabet of a DOL 
system consists of just  three symbols: 

( {F ,  + , - }, P,  F + + F + + F ) ,  8 = {F ,  +, - 1. 
728 where P is the following set of production rules: The graphics interpretation of a  word is as follows: 

M. ALFONSECA AND  A. ORTEGA IBM J. RES. DEVELOP. VOL. 41 NO. 6 NOVEMBER 1991 



F The  turtle  moves  one  step  forward,  in  the  direction 
in  which  it is looking,  leaving a visible  trail. W e  call 
F a draw letter. 

+ The  turtle  rotates  through a positive  angle a. 
- The  turtle  rotates  through a negative  angle a. 

With  this  interpretation, if we take a = 60 degrees, 
L-system 1 generates  the well-known  Koch  snowflake 

Additional  rules  complicate  the  turtle  graphics  and 
make it  possible to  generate  fractals of different families. 
For  instance: 

curve. 

Uppercase  letters  different  from F have no  graphic 
representation  and leave the  state of the  turtle 
unchanged.  In  the following, we call such  letters 
nongraphic letters. 
Lowercase f makes  the  turtle move  a step  forward, with 
no visible trail. In  the following, we call letters such asf 
move letters. 
An  opening  parenthesis  pushes  the  state of the  turtle 
into a  stack;  a  closing parenthesis  pops  the  top of the 
stack  and  restores  the  turtle  state.  This  rule  makes it 
possible to  represent  branching  fractals. Of course, we 
are  interested only  in strings  where  opening  and closing 
parentheses  are  paired according to  the  usual syntax 
rules  (a closing parenthesis  without a previous  opening 
one would generate  an empty stack  exception). 
Additional draw and move letters may be defined to  act 
the  same  as F and f.  
The symbol ! makes  the  turtle  rotate 180 degrees. 
Braces { } indicate  that  the  area enclosed  in the  braces 

Other symbols may be defined to  change colors. 
must  be filled with some color. 

In  this  paper, we are  interested in  all of the  indicated 
extensions except the  last  three. 

In summary,  a given fractal may be  represented by 
means of four  components:  an L  system,  a concrete  turtle 
interpretation, a distance  step,  and  an  angle  step.  The 
distance  step is unnecessary if appropriate  scale  factors 
are  applied. 

Turtle  graphics  are very flexible. Appropriate extensions 
make  it possible to  represent complex information 
(branching,  color filling, and so forth).  On  the  other  hand, 
this  representation is inherently slow; the  turtle  state  at 
any point is a nontrivial  function of the  complete history 
of previous turtle  movements.  Therefore, a string  must  be 
converted  sequentially  into pixel positions by means of a 
complex loop. 

Vector  graphics 
In  this family of interpretations, every symbol in the 
alphabet of the L system is associated with  a vector  in a 

rectangular  Cartesian system. A  word (a  string of symbols) 
is represented by the  catenation of the  vectors of the 
symbols that  make  the word. 

In  the simplest case, a fractal may be defined by two 
components:  an L system, and a mathematical  application 
V : X ”+ ! R 2  (the  vector  interpretation).  We  assume  that 
all vectors  associated with the symbols in the  alphabet 
produce visible movements.  The  graphic  representation 
of each  derivation of the L system  is  a set of straight, 
connected  segments. 

This  vector  interpretation allows us to  represent 
branching  fractals, since  it is always possible to  return  to 
the  start of the  branch if for every symbol in the  alphabet 
there is another symbol associated with the  opposite 
vector. However,  a different  vector  interpretation is 
needed  to  build  fractals  that  are  not  connected,  such  as 
the  Cantor sets. This  can  be  covered by means of a strict 
extension to  the  vector  interpretation, which replaces V 
with the  mathematical  application V : X + (0, 1) X %*, 
which includes, for  each symbol,  a visibility coefficient 
(a 0 or a l), indicating that  the vector displacement  should 
be visible (1) or invisible (0). This extension also  makes 
it possible to  represent  branching  fractals. 

Vector  graphics  are less flexible than  turtle graphics. 
Complex  extensions, such as  area filling and coloring, are 
not easy. On  the  other  hand,  vector  composition is  a 
straightforward  operation  and  can  be  performed with a 
very simple loop, which means  that  vector  graphics  are 
usually faster  than  turtle graphics. 

A graphic  classification of DOL systems  and 
schemes 
We  propose a  classification of  DOL systems and schemes, 
using as  criteria  the  graphic  representations  to which they 
must  be  subjected in order  to  represent  fractal curves. 

In  the following, we consider  the  turtle  graphics 
interpretation ( T ,  a), defined  as follows. 

The  alphabet of the L  system can  be  expressed as the 
union of the  four disjoint subsets N ,  D, M ,  { +, -, (, )}. 

+ increases  the  turtle  angle by a. 
- decreases  the  turtle angle by a. 
( pushes  the  turtle  state  into a  stack. 
) pops  and  restores  the  turtle  state  from  the stack. 

A E N leaves the  turtle  state  unchanged. 
F E D moves the  turtle  one  step  forward, in the 

f E M moves the  turtle  one  step  forward, in the 

a = 2k.rr/n, where k and n are two integers. 

direction of its  current angle,  leaving  a visible trail. 

direction of its current  angle, with no visible trail. 

We call TGDOL to  the  set of all the DOL systems 
(schemes)  that  represent  some  fractal (family of fractals) 
by means of the  turtle  graphics  interpretation ( T ,  a) .  



We call VGDOL to  the  set of all the DOL systems 
(schemes) that  represent  some  fractal (family of fractals) 
by means of a vector graphics interpretation. 

Definition 1 Two  L systems are fractal-equivalent if they 
represent  the  same  fractal curve by means of some  graphic 
interpretation. 

Definition 2 Two  L  schemes are fractal-equivalent if, for 
each L system in the first scheme (i.e., a given axiom), 
there exists a  fractal-equivalent  L system in the second 
scheme (with  a possibly different axiom). 

while their respective  L  schemes are  not. Two DOL 
systems may be fractal-equivalent in any combination 
(i.e., both may be TGDOL, or VGDOL, or  one  each). 

represents a fractal with  a given graphic  interpretation, 
we are  interested in finding a  fractal-equivalent  L system 
in  the  opposite  set,  for  the following reasons: 

As we see  later, two L systems may be  fractal-equivalent 

Given an L system in TGDOL or VGDOL that 

Since vector graphics are usually faster  than  turtle 
graphics, given a TGDOL system, we may be  interested 
in finding a  fractal-equivalent VGDOL system for 
performance  reasons. 
Since turtle graphics are  more flexible than  vector 
graphics, given a VGDOL system, we may be  interested 
in finding a  fractal-equivalent TGDOL system if we want 
to fill areas  or apply different colors to  different  sections 
of the  fractal. 

A general  transformation algorithm from any TGDOL 
scheme  to a  fractal-equivalent VGDOL scheme may not 
be possible.  However, we have  proved an equivalence 
theorem  between two interesting subsets of both sets, 
which we define  as follows. 

Definition 3 A  string under a turtle graphics 
interpretation is  said to  be angle-invariant if the  direction 
of the  turtle  at  the beginning of the string is the  same 
as its  direction  at  the  end of the string. 

interpretations we are considering that  change  the  turtle 
direction  are + - ), a string in an L system in TGDOL, 
whose incremental angle a is 2kr /n ,  is angle-invariant if 
parentheses  are  paired in the usual way (we are only 
interested in this) and  the  number of plus signs minus the 
number of minus signs outside  the  parenthesis blocks is 
either  zero  (the simplest case)  or a  multiple of n (which 
would allow for  an  integer  number of full  circles). Inside 
paired  parentheses,  there  are no restrictions  to  the 

Since the only symbols in the  turtle graphics 

730 number  or combinations of + - signs. 
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Definition 4 An  L scheme in TGDOL is said to  be angle- 
invariant if the  right-hand side of all its  rules is an angle- 
invariant  string. 

We call AITGDOL the  set of all angle-invariant  schemes 
in TGDOL. Most of the  interesting TGDOL systems in the 
literature  (but  not all) are AITGDOL. As an example of a 
TGDOL system that is not AITGDOL, let us mention  the 
following (L-system 2): 

( IF,  G ,  + , - 1, P,  F ) ,  

where P is the following set of production rules: 

F : : = F + G ,  

+ ::= + ,  

Using the typical turtle graphics interpretation, with 
{ F ,  G }  the  set of draw symbols and a = 90 degrees, this 
L system describes the well-known dragon fractal. It is 
clear that  the strings F + G and F - G are  not angle- 
invariant.  However, we show later (applying one of our 
equivalence theorems)  that  there exists an AITGDOL 
system that is fractal-equivalent to L-system 2. 

Definition 5 A set of real  numbers is said to be 
rationally  related if the  quotient of any two of them is a 
rational  number. 

For any rationally related  set of real  numbers,  there 
must exist a real  number r such that all the  numbers in 
the  set  are  integer multiples of r. (The proof is trivial.) 

Definition 6 An  L scheme in VGDOL with a vector 
graphics interpretation VI is said to  be rationally  related 
if both  the  set of the  modules  and  the  set of the angles 
of all the vectors in VI are rationally related. 

For any finite  rationally related  scheme with a vector 
graphics interpretation VI, there exist two real  numbers 
r and a such that all the modules of the vectors in VI 
are positive integer multiples of r ,  and all the angles of 
the  vectors in VI are positive integer multiples of a. 

We call RRVGDOL the  set of all rationally related 
schemes in  VGDOL. Most of the  interesting VGDOL 
systems in the  literature  are RRVGDOL. (We have not 
found  one  that is not.) 

The two sets AITGDOL and RRVGDOL are  interesting, 
in the  sense  that many fractals usually represented by 
L systems belong to  them. We now prove that  those  sets 
are fractal-equivalent. 
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Theorem 1 
For every AITGDOL system  which represents a fractal with 
the usual turtle graphics interpretation and a = 2krr/n, 
there exists a  fractal-equivalent RRVGDOL  system. 

For every AITGDOL scheme which represents a  set of 
fractals with the usual turtle graphics interpretation and 
a = 2krr/n, there exists a  fractal-equivalent RRVGDOL 
scheme. 

Constructive proof 

Informal description 
The  algorithm we propose  starts  from  an AITGDOL 
system and builds  a fractal-equivalent  RRVGDOL system. 
Every symbol in the AITGDOL  system  splits into n 
varieties in the RRVGDOL system (one  per possible angle 
in the  turtle  state). All vectors in the  target system are 
unitary  (their  module is l), and all their  angles  are a 
multiple of a; therefore,  the  resulting system is 
RRVGDOL. The  strings  generated by each variety are 
rotated  appropriately. A plus sign in a string  (a  rotation 
of a )  becomes a change  from variety  i to variety i + 1 for 
every symbol after  the sign. A minus sign changes variety 
i to variety  i - 1. In  this way, the  direction of movement 
of the  turtle is replicated by the vectors. The effect of 
parenthesis  pairs  (branching) is simulated by moving back 
to  the  branching  point with a second  set of opposite 
vectors ( n  per symbol). This  set is unnecessary if 
there  are  no  parentheses in the  rules of the  source 
system. 

Formal description 
Assume  the following  AITGDOL  system: 

JL = (2, p ,  w), 

2 = N U  D U A4 U {+, -, (, )}, 
N = a set of nongraphic  letters, 
D = a set of draw  letters, 
M = a set of move  letters, 

and 

+ ::= + EP, 

E p ,  

( ::= ( EP,  

) ::= ) E P ,  

- ::= - 

s :: = x(s) E P for all s E N U D U M ,  where&) E X*. 
We build another L  system and a vector  interpretation 

represented by the two-fold (L', V), where 
L' = (XI, PI, w') is a DOL system, such  that  for  each 
s E N U D U M ,  

s'(i) E Z'(i E Z,,), 

s"(i) E Z'(i E Zn), 

s'(i) ::= C'[x ( s ) ,  i, 01 E P' ,  

s"(i) ::= C"[x(s), i, 01 E P' ,  

where C'[x, i, k ]  : Z *  X Z," + Z'*, where Zn is a  finite 
group of n elements  (the  set of integers  modulo n) .  The 
transformation C' is recursively  defined  as follows: 

C'[h,  i, k ]  = h for  all i, k ;  

C'[s, i, k ]  = s'(i + k )  for  all s E N  U D U M ;  

C'[s.y, i, k ]  = C'[s, i, k].C'[y, i, k ]  

f o r a l l s E N U D U M , y E Z * ;  

C'[  f, i, k ]  = A for  all  i, k ;  

C'[  -, i, k ]  = h for all  i, k ;  

C'[  +.y,  i, k ]  = C'[y, i, k + 11 for  ally E Z*; 
C'[ -.y, i, k ]  = C'[y,  i, k - 1 1  for  ally E Z*; 

C'[(.x.), i, k ]  = C'[x, i, k] .C"[ f ( x ) ,  i, k]";  

where  f(x) is what  remains of x after  we have eliminated 
all parenthesis  pairs  and  whatever is inside them. 

The  transformation C" is defined exactly as C', replacing 

The axiom is w' = C'[w, 0, 01. 
Finally, the  vector  interpretation V is defined as follows: 

every occurrence of s'(i) with s"(i)  and vice versa. 

For all s E N ,  and all i E Zn ,  

V(s'(i)) = V(s"(i)) = (0, 0, 0); 

For all s E D,  and all  i E Z n ,  

V(s'(i)) = ( 1 ,  cos(i.a),  sin(i.a)), 

V(s"(i)) = ( 1 ,  -cos(i.a),  -sin(i.a)); 

For all s E M ,  and all  i E Zn, 

V(s'(i)) = (0, cos(i.a),  sin(i.a)), 

V(s"(i)) = (0, -cos(i.a),  -sin(i.a)), 

where the vector (v, x, y) consists of a visibility v E (0, 1 )  
and two Cartesian  coordinates  x, y. 

If Z does  not  include  the two parentheses,  the  set of 

It is easy to  prove, by inspection of the  algorithm,  that 
symbols s"(i) can be  eliminated  from L'.  

the  fractal curve represented by (L ' ,  V) is the  same  as 
that  represented by L  with the  standard  turtle  graphics 
interpretation.  The  second  part of the  theorem (its 
application  to  schemes) is trivial,  since for every system 
(axiom)  used with the  source  scheme,  the  alphabet  and 
the  production  rules in the  target system are  the  same 
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D ::= DCED, 

E ::= EDFE, 

F ::= FEAF, 

where we have renamed  the symbols  in the 
in the following way: 

A = F ' ( O ) ,  

B = F ' ( l ) ,  

c = F'(2) ,  

D = F'(3) ,  

E = F'(4), 

F = F'(5).  

V is the following vector  interpretation: 

Symbol  Visibility x Y 

A 1 1 0 
B 1 0.5 r 
c 1 -0.5 Y 

Graphic representation of the fifth derivation of the DOL system 1 -1 0 
E 1 -0.5 - r 
F 1 0.5 - Y 

new alphabet 

and only the  target axiom changes (Le., all of the  target 
systems belong  to  the  same  scheme). 

Application  example  for  Theorem 1 
We have seen  that L-system 1 generates  the Koch 
snowflake  curve with the simplest turtle  graphics 
interpretation,  and a = 60 degrees.  Its axiom is 
F + + F + + F,  and its rules  are 

F : : = F - F +   + F - F ,  

+: := + ,  
- - . 

In this  case, n = 6, k = 1. Applying the  algorithm 
above, this system can  be  converted  to  the  equivalent 
(L' ,  V) two-fold, where L' is the following DOL 
system: 

({A, B ,   C ,   D ,   E ,   F I ,   P , A C E ) .  

P is the  set of production  rules 

A : :  = AFBA,  

B ::= BACB,  

732 C ::= CBDC, 

where r is one half of the  square  root of 3. 

fractal whose fifth iteration  appears in Figure 1. 
It is easy to  see  that this  system represents  the  same 

Theorem 2 
For every RRVGDOL system which represents a fractal  with 
a vector graphics interpretation, there exists a  fractal- 
equivalent AITGDOL system. 

fractals  with  a vector graphics interpretation, there exists a 
fractal-equivalent AITGDOL scheme. 

Constructive proof 

Informal description 
The  algorithm we propose  starts  from  an RRVGDOL 
system and  builds a fractal-equivalent AITGDOL  system. 
Every symbol in the  RRVGDOL system  splits into two 
varieties in the AITGDOL  system, one  that  propagates  the 
derivations of the  original symbol, and  another  that 
disappears in the next derivation, whose purpose is to 
draw  the  vector  to its  full length. (If  all of the  vectors  are 
the  same  length,  the  second variety is not  needed.) All 
symbols in the  target system start by moving the  turtle 
angle to  the  corresponding  vector angle  (with the 
appropriate  number of + or - signs), then  generate  the 

For every RRVGDOL scheme  which represents a set of 
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vector drawing or  movement,  and finally return  to  the null 
angle  (with the  opposite set of + and - signs). The result 
is obviously an AITGDOL  system  without branching 
(parentheses). 

Formal description 
Assume  the following RRVGDOL system: 

L = (X,  P,  w), 

with the vector graphics interpretation V : 2 -+ (0, l} X 8'. 
Remember  that for any  RRVGDOL scheme  there exist 
two real  numbers, r and a, such that all the  modules of 
the  vectors  are positive integer  multiples of r, and all their 
angles are positive integer  multiples of a. 

We  perform  the following operations: 

Convert every vector in V to  polar  coordinates.  This 
gives us a set of modules R and a set of angles A .  
Compute  the two numbers r and a. 
Build the DOL system L' = (C', P' ,  w'), such that  for 
each s E 2, s' E 2 ,  s" E X', and  for each s : : = x(s) E P, 

s' : := C [ x ( s ) ,  .(s)] E P', 

s" ::= A E P' ,  

where a(s)  is the  angle of the  vector  associated 
with symbol s in V(s), and  the  transformation 
C[x,  p ]  : C* X 8 + 2'* is recursively defined as follows: 

C [ h , p ]  = h for allp, 

C[s, p ]  = A.B.C, 

for all s E X, where s is not  associated with the null 
vector,  and 

A = {  

C = {  

a(s)  2 p  : a string of (a ( s )  - p ) / a  + signs, 
( ~ ( s )  < p  : a string of ( p  - a(s) ) /a  - signs; 

B = st catenated  to a string of (r(s) /r)  - 1 copies 
of symbol s"; 

a(s)  z p  : a string of (a ( s )  - p ) / a  - signs, 
a(s) < p  : a string of ( p  - a(s) ) /a  + signs. 

C[S, PI = s', 

for all s E X,  where s is associated with the null vector, 
and 

C[S.Y, PI = C[S, Pl .C[Y,  PI,  

for all s E 2, y E X*.  

We  separate  the  set X' in the following way: 

X ' = N U D U M U {  +, -}, 
where 

N = {st,  s" I s is associated  with  the  null  vector} (non- 

D = {SI, s" I s has 1 visibility and is not  associated  with 

M = {SI, s" 1 s has 0 visibility and is not  associated  with 

graphic letters); 

the  null  vector} (draw letters); 

the  null  vector} (move letters). 

We  add  the following rules  to P': 

+ ::= + EP', 

- - EP' 

The axiom is w' = C[w, 01. 

It is easy to  see  that  the  fractal curve represented by 
the original two-fold ( L ,  V) is also  represented by the 
three-fold (L ' ,  T ,  a ) ,  where T is the  standard  turtle 
graphics  interpretation  and (Y (the  value used above) is the 
elemental angle step.  The  second  part of the  theorem (its 
application  to  schemes) is trivial,  since for every system 
(axiom)  used  with the  source  scheme,  the  alphabet  and 
the  production  rules in the  target system are  the  same 
and only the  target axiom changes (Le., all of the  target 
systems  belong to  the  same  scheme). 

Application  example  for  Theorem 2 
The L system obtained by the  application of Theorem 1 
can now be  subject  to  the  algorithm of Theorem 2 to build 
a different  equivalent DOL system with turtle  graphics 
interpretation. By inspection of the six vectors, we find 
that r = 1 and (Y = 60 degrees  or ~r/3 radians. 2' = 

{A' ,  B' ,  C', D' ,  E ' ,  F ' ,  +, -1. Applying the  algorithm, 
we find that P' contains  the following production rules: 

A' : : = A '  -I;' + + B' - A ' ,  

B' ::= B' -A '  + + C' - B' ,  

C' : :=  C' - B' + + D' - C', 

D' ::= D' - C' + + E '  - D' ,  

E ' : : = E " D ' +   + F " E ' ,  

F' : : = F " E ' +  +A"F', 

+ ::= + ,  

All  of the symbols A', B', C', D', E ,  F '  are draw symbols. The 
sets of  move and nongraphic symbols are empty  in  this case. 

The axiom becomes A' + + C'- - - -E'  + + . 
It is clear  that this  system also  represents  the  same 

fractal whose fifth iteration is  shown  in Figure 1. In fact, 
it  is easy to  see by direct  observation  that all of the  draw 
symbols are really the  same,  and this  system is fractal- 
equivalent  to  the original one. 733 
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Graphic representation of the axiom and the first five derivations 
of the DOL system for the Cantor set. 

Graphic representation of the tenth derivation of the DOL system 
for the dragon fractal. 

Other examples 
Three of the next four examples  have been  designed by 
different  authors  and  are  common in the  literature.  The 
third  one is our own. 

The  Cantor  set of the  third  order is represented by the 
following DOL system: 

( {F,  f 1, P,  F ) ,  

where P is the  set of production rules: 

F ::= FfF,  

f ::=fff, 
with the  standard  turtle  graphics  interpretation,  where F 
is a draw symbol, f is a  move  symbol, and  the  value of a 
is immaterial. Figure 2 shows the axiom and  the first 
five derivations of this system. 

The  same  fractal may be  generated by means  of  the 
equivalent DOL system, ( {A ,  B } ,  P , A ) ,  where P is the 
following set of rules: 

A : : = A B A ,  

B ::= BBB, 

with the  vector  interpretation 

Symbol Visibility x y 

A 1 1 0  
B 0 1 0  

The two preceding  fractals  can  be  obtained  from 
each  other by application of the two equivalence 
theorems. 

L-system 2 (representing  the  dragon  fractal) is not  an 
AITGDOL  system, and  therefore  Theorem 1 is not 
applicable. However, by observation of the  derivations of 
the  fractal, we can find the following fractal-equivalent 
VGDOL system: 

A : : = A B ,  

B ::= CB, 

C : := CD,  

D : : = A D ,  

with the  vector  interpretation 

Symbol  Visibility x y 
~~ ~ 

A 1 1 0  
B 1 0 1  
c 1 -1 0 
D 1 0 -1 

This system is RRVGDOL. Therefore,  Theorem 2 is 
applicable, which makes  it possible to  obtain  the 
following fractal-equivalent AITGDOL  system: 

({F,  G, + , - }, P,  F ) ,  

where P is the following set of production rules: 

F : : = F + G - ,  

G ::= + H - G ,  

H : : = H + I - ,  

I : : =  + F - I ,  

+ ::= + ,  
- - 
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Figure 3 shows the  tenth  derivation of this system. 
It  should  be  observed  that,  although L-system 2 is 
fractal-equivalent  to  the two systems given above, the 
corresponding  schemes  are  not  equivalent.  (The  last two 
are  equivalent, of course,  since they are  the  result of the 
application of Theorem 2.) Therefore,  schemes may not 
be  equivalent  even when some systems  in them  are. 
We have not  proved  that  an AITGDOL scheme  fractal- 
equivalent  to L-system 2 does  not exist, but we do have 
a strong suspicion that this is the  case. 

The PDOL scheme 

A ::=ABB, 

B ::= BC, 

C ::= CD, 

D ::= DAC, 

with axiom CCCC, a vector  graphic  interpretation,  and 
the  vector definition 

Symbol  Visibility x y 

A 1 8 0  
B 1 0 0.75 
C 1 -4 0 
D 1 0 -0.75 

generates a fractal curve whose  tenth  derivation is 
uncannily  similar to a human  hand  (see Figure 4). 

By applying Theorem 2, we  obtain  the following 
L  system, which generates  the  same  fractal with a 
turtle  graphics  interpretation: 

r = 0.25. 
a = 90 degrees  or n-I2 radians. 

P' contains  the following production rules: 
C' = {A', A",  B',  B", C', C", D',  D", +, - }. 

A!  ::= ~ ' ~ 1 1 3 1  + BIBUBUBIB!!B!!- 
BI ::= BIBtIBII + ClCll'5-, 
Cl ::= ClCll'5 + DIDIIDII-, 
DI ::= DIDIIDII + A I A I I ~ ~ - - C I C I I ~ ~ + ,  
A" ::= A, 
B" ::= A, 
C" ::= A, 
D" ::= A, 
+ ::= +, 
- - 

where  the  exponents  represent symbol repetition. 
All of the symbols A', A", B',  B", C', C", D', D" are 
draw symbols. 
The  sets of move and  nongraphic symbols are  empty 
in this case. 

1 Graphic representation of the tenth derivation of a DOL system for 
J a human hand. * 

. The axiom  is + +C'C"'5ClCl115CtCl115C1C1115- -, 
where  each  set of C" includes 15 items. 

If  we apply Theorem 1 to  the previous result, we get 
another  fractal-equivalent  RRVGDOL system, where 
all the  vectors  have  the  same  module. 

where P is the  set of rules 

A ::= F - ((A) + (A)) + F( f F(A)) - (A), 
F ::= FF, 
+ ::= f ,  
- - 
( ::= (, 
) ::= ), 

represents a fractal whose fifth derivation is shown in 
Figure 5 ,  taking a = 22.5 degrees.  Both A and F are 
draw letters.  This system is not AITGDOL, but we 
mention it because, in  a paper  published in 1986, 
Prusinkiewicz [lo] asserted  that this fractal,  and  others 
like  it, could  not  be  represented by means of OL 
systems, and  proposed  an extension (pL systems) to 
make it  possible. The  fact  that we have been  able  to 
represent it with a DOL system indicates  that  the 
extension may be unnecessary; OL systems are 
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Fifth  derivation  of a DOL system for a bush,  supposedly  impossible 
to represent  by  means of DOL systems. 

sufficiently powerful to  represent  these curves. The 
restriction was not in them,  but in the  turtle  graphics 
interpretation. 

Conclusions 
DOL systems, given an  appropriate  graphic  interpretation, 
are  quite powerful in their ability to  represent  large 
families of fractal curves, even  some  that  previous  authors 
have assumed  to  require  nonstandard extensions. It is thus 
important  to  isolate  the DOL system from its graphic 
interpretation, which can  be very different  and  belong 
either  to  the  turtle  or  the  vector family. 

two families of L systems, one  associated with  a turtle 
graphics  interpretation,  the  other with vector graphics. 
The two families are  interesting  because most of the 
fractals in the  literature  can  be  represented by means of 
them.  The two theorems make it  possible to  obtain 
representations in those families for  fractals  that  were 
assumed not  to  belong  to  them. 

We have proved a fractal-equivalence  theorem  between 
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