Designer-level

by B. Wile

verification using
TIMEDIAG/GENRAND

TIMEDIAG/GENRAND is a tool set used on
various portions of the CMOS processor for
the IBM S/390® Parallel Enterprise Server
Generation 4 to assist in designer-level logic
verification. The concept of surrounding the
logic design (hereafter referred to simply as
“logic”) under test with irritator behaviorals, a
methodology developed and proven effective
on larger simulation models, is moved to the
designer level without the overhead of writing
multiple behaviorals. Rather than writing
source-level (e.g., VHDL, C code, etc.)
behaviorals, the method creates an external
stimulus to the design by using a series of
generalized timing diagrams that obey the
interface protocols of the logic under test.
These timing diagrams are entered using the
TIMEDIAG (timing diagram) editor. The effort
required for logic verification is thus limited to
understanding and laying out the interfaces to
the design—a task that must be done for any
well-designed unit of logic, regardless of
whether or not it is being verified at the
designer level. Once the timing diagrams are
written, GENRAND (general random driver) is
invoked to run simulation on the design.
GENRAND randomly initiates the timing
diagrams that obey the interface protocol,
causing many different input and output
permutations. This simulation is very effective
in testing the logic implementation.

Introduction
The burden of verifying a single designer’s logic has often

fallen upon the individual designer. While substantial
focus is put on testing larger portions of a logic design
(e.g., an entire processor), it is often more efficient to
remove logic design defects earlier in the process. But in
order to verify many single functional logic macros within
a design, a tool set must be supplied to the logic designers
that allows for easy simulation of one’s own design while
maximizing the coverage.

In this paper, the TIMEDIAG/GENRAND tool set,
developed to assist in designer-level logic verification, is
described. The models on which the tool set is based are
discussed, along with the requirements for solving the
problems of designer-level verification. The features of
TIMEDIAG/GENRAND are detailed, followed by a
representative application used during implementation of
the S/390* G4 system.

® The irritator behavioral/test-case driver model

A classic method of verifying logic is the use of irritator
behaviorals. In this model, the logic under test is
“surrounded” by dummy logic whose purpose is to drive
the inputs and check the outputs of the logic under test.
Because this dummy logic, or “behavioral,” is used solely
for logic verification, the choice of source language is
not restricted to the design language. In later stages of
verification, behaviorals are replaced with the real design
that was being emulated. But by using behaviorals first at
a lower level of simulation, a verification expert can exert
greater control over the smaller piece of logic, thereby

©Copyright 1997 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,
of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor. 581

0018-8646/97/$5.00 © 1997 IBM

B. WILE

IBM J. RES. DEVELOP. VOL. 41 NO. 4/5 JULY/SEPTEMBER 1997

582

testing more permutations and states in less time. Using
irritator behaviorals is a highly effective method for
verification [1].

A “behavioral” generally consists of two parts that work
hand in hand: the interface protocol handler and the
driver. The interface protocol handler is prompted by the
driver to provide a specific stimulus to the logic under
test. When the logic responds to the stimulus, the
interface protocol handler receives the response and
packages it back to the driver.

The driver can be thought of as the “brains” of the
behavioral. It decides what to send into the logic and
verifies the correctness of the output. A typical driver uses
a probability table to choose which legal stimulus it will
initiate. The checking logic that must be built into the
driver can be far trickier to implement. Because the
complexity of the logic under test generally increases with
its size, a driver’s checking logic on a large model is often
quite complex. This is less of a problem with smaller,
designer-level models, where fewer permutations and less
complexity make for simpler prediction of outputs.
However, it is a key to designer simulation, because a
good methodology will be able to capitalize on the simpler
checking requirements.

The interface protocol handler is the interpreter
between the driver portion of the behavioral and the logic
under test. With regard to the logic under test, the
behavioral emulates the interface actions of the real logic
that will surround the logic under test. When the driver
portion of the behavioral “decides” to send a sequence,
it is up to the interface protocol handler to create the
correct signals for the logic. The interface protocol
handler also monitors the outputs of the logic, packaging
output sequences back to the driver so that it can check
for correctness.

® The challenges of designer-level verification

The challenge of applying the irritator behavioral model
to designer-level logic verification is less a technical
challenge than a time-to-market concern. A quality
irritator behavioral model is quite effective, but takes
time to plan and implement. While it is a cost-effective
approach to verifying large portions of logic, writing
individual irritator behavioral models for testing each
designer’s logic is not feasible.

Without the power of irritator behaviorals, designers
traditionally test their logic with a series of hard-coded
test cases. But writing hard-coded test cases to verify one’s
own logic creates a series of problems:

o Simplistic test cases are created. Hard-coded test cases
generally verify basic scenarios, but do not stress the
logic hard enough to cover complex interactions. It takes
substantial effort to create a large number of test cases

B. WILE

that thoroughly test the logic with multiple interactions
and permutations.
A new test-case language must be mastered in order to
write effective hard-coded test cases. The user must
learn a test-case language that allows manipulation of
signals, monitoring events, and clocking.
Maintenance of test buckets can be time-consuming.
Many hard-coded test cases are timing- and signal-name-
dependent. If a cycle is added within the logic, or the
name of an interface signal changes, many test cases
may have to be updated.
A catch-22 problem occurs with the designer writing the
test cases to test his own logic. Consider a case in which
a designer believes his logic accounts for all valid
permutations that can occur. If he has in fact missed a
case, how can he be expected to write a test case that
will uncover his own oversight?

® TIMEDIAG and GENRAND as irritator behaviorals
TIMEDIAG and GENRAND ate intended to address the
challenges associated with performing quality designer-
level verification. They can be used to solve the problems
associated with hard-coded test cases:

o Complex scenarios are created under GENRAND.
It drives many different timing diagram permutations
at different times throughout a test case. Window
conditions, created by changing the timing on the
initiation of sequences, are stressed. This helps solve the
catch-22 problem as well, because the designer no longer
has to dream up different scenarios—GENRAND does
it instead.
» No new language has to be learned. The timing diagram
format is familiar to designers.
There is little maintenance with TIMEDIAG and
GENRAND. If a signal name changes or a timing
sequence is updated, all that is required is the use of
TIMEDIAG to update the sequence. There are no
buckets of test cases to change.

TIMEDIAG and GENRAND employ the irritator
behavioral model at the designer level. This methodology
takes advantage of the less complex environment, which
makes the checking algorithms simpler. The random driver
algorithms are built into GENRAND, freeing the designer
from concerns about invoking sequences.

TIMEDIAG is a timing diagram editor. The file that is
created by TIMEDIAG, when read by GENRAND, can
be thought of as roughly equivalent to the interface
protocol handler of the irritator behavioral model. This
TIMEDIAG file contains one or more timing diagrams
that describe the interfaces to the logic under test.
GENRAND is the driver portion of the verification model.
After reading the TIMEDIAG file, GENRAND uses

IBM J. RES. DEVELOP. VOL. 41 NO. 4/5 JULY/SEPTEMBER 1997

pseudorandom algorithms to decide which interface
actions to initiate. When results are returned, GENRAND
checks the correctness of the outputs and takes
appropriate action by initiating further stimulus,
responding to outstanding requests, or flagging errors

Or miscompares.

TIMEDIAG

TIMEDIAG is a tool that facilitates the creation of a file
containing the information needed by GENRAND to drive
the interfaces to the logic under test. Graphically, this
information appears as timing diagrams that the user
creates and edits. A TIMEDIAG file can contain any
number of timing diagrams. Since the timing diagram
format is straightforward and familiar, TIMEDIAG is also
a good source of interface documentation.

Each timing diagram, in its simplest form, is a matrix of
cycles and signal names. The cycle numbers CO, C1, - - -,
CN span the top of the matrix. The signal names and bit
ranges constitute the rows of the matrix. Each of the
values within the matrix is simply the value of that signal
on that cycle. Each signal name is identified as an input to
the logic or an output from the logic. Input signals have
their cycle values entered into the logic by the test driver
(GENRAND), while output signals have their cycle values
checked for correctness by the test driver.

TIMEDIAG supplies all of the basics needed to edit
each timing diagram matrix. A user can add, delete, copy,
move, or change signal names. Cycles can also be added,
deleted, copied, or moved. Finally, each cycle value in the
matrix can be edited or copied from another value. Each
diagram represents a generalized interface sequence. A
given timing diagram is considered generalized because
TIMEDIAG does not require exact cycle timings or
constants for cycle values (variables, signals, and functions
are allowed). Instead, TIMEDIAG includes features that
allow the user to specify a sequence that may cover many
permutations of an interface protocol.

® TIMEDIAG features

Three basic features allow a user to create general timing
diagrams: function values, limitors, and looping/recurring
cycles.

Function values

TIMEDIAG allows for many different data types and
functions to represent cycle values. While constant values
are the simplest form, signal names and arithmetic
operators can also be used to represent the value of a
signal on a given cycle. Furthermore, a set of built-in
functions such as the “random value” function and the
“choose from a list of values” function are supplied. If
none of these built-in functions adequately describes a

IBM J. RES. DEVELOP. VOL. 41 NO. 4/5 JULY/SEPTEMBER 1997

cycle value, a user-defined function written in C can be
dynamically linked into TIMEDIAG/GENRAND.

Limitors

A cornerstone of the representation of an interface is the
statement of the time at which it is legal to initiate the
timing diagram sequence. TIMEDIAG defines this as a
limitor. Each timing diagram has a limitor that may be
independent or may be coupled to other timing diagrams.
The limitor concept is especially important when running
simulation, because GENRAND uses the limitors to
decide which timing diagrams it can legally initiate on any
given cycle.

TIMEDIAG uses four select buttons to help the user
define a limitor. The first button, none, states that the
timing diagram sequence may occur at any time and may
be pipelined—there are no restrictions on when a “none”
timing diagram may be initiated. The second select button,
the condition limitor, uses a Boolean expression to
evaluate whether or not the timing diagram may be
initiated. If the statement evaluates to “true” on a given
cycle, the timing diagram sequence may be initiated.

The Boolean expression may be simple (example:
AVAILABLE = '1'B) or complex [example: X = '1'B &
(Y > 2|Z < 3)]. The third select button, the delay limitor,
states that there must be a gap of some number of cycles
between the initiation of two instances of timing diagrams
that share the same delay limitor variable. This is useful in
cases where, for example, a two-cycle gap is required
between commands. The last select button, the max
limitor, prevents the timing diagram from having more
than some number of outstanding instances. For example,
if a timing diagram were not allowed to be pipelined, the
max limitor would be used with a value of 1. An example
limitor update screen appears in Figure 3 (shown later).

It is legitimate for more than one of the last three
select buttons (condition, delay, and max) to be used in a
single limitor. As an example, consider an interface that
can accept a command but may require up to 20 cycles to
respond to that command. If the logic has four command
buffers to hold outstanding commands but needs two
cycles between each command in order to load the buffer,
the proper limitor would be a “max of 4” and a “delay of
2.” This same logic might have an “unavailable” line
as an output, which, when set to '1'B, meant that no
commands could be accepted. The condition limitor with
“UNAVAILABLE = '0'B” would also be used in that case.

Timing diagram limitors can be used to couple timing
diagrams or to prevent other timing diagrams from
initiating. Multiple timing diagrams can be “coupled” by

e Using the same signal in both condition limitors.
» Using the same delay variable in both delay limitors.

« Using the same outstanding variable in both max limitors. 583

B. WILE

The limitor is further defined with a probability slide

bar. This value provides GENRAND with the desired
likelihood of initiating the diagram on a given cycle when
the limiting conditions are true.

Recurring/looping cycles

Recurring or looping cycles help describe an interface
where the timing between events is not fixed. In general, a
recurring cycle says, “wait in this state until some event
occurs” or “wait in this state for some number of cycles.”
Therefore, a recurring cycle is defined by its end
condition.

TIMEDIAG allows for three possible end conditions:
1) wait for a condition to occur; 2) loop for a fixed
number of cycles; or 3) loop for a (bounded) random
number of cycles.

GENRAND

The general random driver program (GENRAND)
provides the stimulus and verification for logic simulation.
GENRAND uses the TIMEDIAG file as input, and then
interfaces with the simulator to drive inputs and check
outputs. GENRAND uses random algorithms to choose
which interface sequences it drives. The interface
sequences that are actually driven are based on the
generalized timing diagrams that describe the legal
interface protocols.

GENRAND does not determine the sequences before
run time. Instead, GENRAND runs along with the
simulator, using the timing diagram limitors and a random
number generator to decide whether or not a timing
diagram will be initiated on a given cycle. Once initiated,
GENRAND emulates the timing diagram sequence in the
following cycles until the timing diagram is completed.
GENRAND continues to drive multiple timing diagrams
until it either detects an error or runs to a predetermined
quiesce cycle. The effect of this is that multiple window
conditions are tested throughout a successful test
case.

® Timing diagram instances

GENRAND uses the TIMEDIAG file to learn the
interface protocols. The program then initiates interface
sequences as specified in the timing diagrams (each
interface sequence is an “instance” of that timing
diagram), at random intervals as allowed by interface
protocol. In fact, the same timing diagram will probably be
initiated multiple times in a given simulation run. The
simulation cycle in which an instance is initiated is not
decided by the cycle labels (CO, C1, etc.) in the timing
diagram. It is randomly chosen using the limitor
conditions and the slide bar probability. However, the
cycle labels in the timing diagrams can be mapped to the

B. WILE

starting simulation cycle of a given instance. An instance
of a timing diagram becomes “outstanding” or
“bookmarked” when GENRAND randomly decides to
initiate that timing diagram and the protocol allows for it.
This instance is then bookmarked at timing diagram cycle
C0. The bookmark remains open (and the instance thus
remains outstanding) through the following simulation
cycles until the last cycle of the timing diagram is
executed.

Under GENRAND simulation, pipelining of a given
timing diagram can occur if the protocol allows it.
Therefore, multiple instances of the same timing diagram
can be bookmarked at once, with each possibly in a
different portion (Cx cycle) of the timing diagram. The
random occurrence of instances creates the desired
complex environment. In order to track the instances,
GENRAND creates a file that includes statistics about the
occurrences of each timing diagram during the course
of a run. A trace of the timing diagram instances can
optionally be created as well. These tools are very helpful
for problem debugging, which can be performed by
recreating the same test case (by reusing the initial 32-bit
seed).

TIMEDIAG/GENRAND usage for S/390 CMOS
processor development
With the verification effort for the /390 G4 CMOS
processor and L2 chips focused on the designer macro
level [2], TIMEDIAG and GENRAND were used
extensively for the S/390 G4 processor development.
TIMEDIAG/GENRAND was used on about 50% of the
L2 control macros and on about 25% of the processor
control macros. The L2 usage was greater because
of the “requester” orientation of the cache control
chip.

An example of the designer-level verification using
TIMEDIAG and GENRAND is described next.

® Operand fetch control verification with
TIMEDIAG/GENRAND
Traditionally, among the most difficult portions of logic
to verify have been the instruction unit’s operand fetch
controls (OFC). The OFC interfaces mainly with the
instruction unit’s address adder and operand buffer
controls, and with the buffer control element (BCE).
Instructions are decoded and sent to the address adder,
where operand addresses and request commands are sent
to the OFC. The OFC allocates operand buffers, requests
the data from the BCE, then monitors the BCE response
and the return of data to the operand buffers. Figure 1
shows the flow of control through the OFC.

For the S/390 G4 CMOS processor, the OFC logic was
tested using TIMEDIAG/GENRAND. The effort took one

IBM J. RES. DEVELOP. VOL. 41 NO. 4/5 JULY/SEPTEMBER 1997

person about two months to complete. Three weeks of
initial setup were followed by five weeks of testing and
timing diagram enhancements. The strategy used to create
timing diagrams for OFC verification was to write separate
timing diagrams for each type of request. There were
three main categories of timing diagrams, with an overall
total of fourteen timing diagrams. The first category was
for initial operand buffer requests from the address adder.
Five separate timing diagrams were used for these initial
operand requests: fetch, store, store-fetch, storage-to-
storage request part one, and storage-to-storage request
part two. The second main category of timing diagrams
were the BCE interface diagrams, of which there were
also five. Each of these diagrams represented one of the
possible manners in which the BCE could respond to the
OFC request: immediate, immediate lost, delayed by two
cycles, delayed by two cycles and lost, and delayed long.
The final category of timing diagrams represented
checking and miscellaneous functions. The four timing
diagrams in this category were “always,” continuation
fetch checking, incremental fetch request checking, and
operand buffer release checking. Figure 2 shows the
TIMEDIAG main window, which contained the fourteen
timing diagrams.

® Address adder initial request timing diagrams

The five initial request timing diagrams emulated the
request protocol from the address adder to the OFC
(transfer 1 in Figure 1). After an instruction was decoded,
the address adder generated the appropriate request type
(fetch, store, store—fetch, storage-to-storage request part
one, and storage-to-storage request part two). The
operand fetch controls are not privy to the actual
instruction that was decoded; the OFC has to know only
the type of instruction. Furthermore, the implementation
of the OFC allows for any sequence of requests, with the
sole exception that a storage-to-storage request.part one
must be followed by part two of the storage-to-storage
request. Therefore, the timing diagrams were set up to
allow for fetch, store, store—fetch, and storage-to-storage
part one to be chosen at random. When a storage-to-
storage part one occurred, these four commands were
locked out until the storage-to-storage part two timing
diagram was initiated. The only other restrictions on the
initiation of the address adder request timing diagrams
were that only one request could be initiated per cycle,
and that the following three OFC signal settings must be
true:

aa_ofc_available=1
aa_ofc_block_reg=0

aa_ofc_hold=0

IBM J. RES. DEVELOP. VOL. 41 NO. 4/5 JULY/SEPTEMBER 1997

Address -LL» @

adder Operand ® Buffer
fetch control
control @ 1 t

logic ©) (BCE)

‘Write

© OB EENO O

| Operand !

Write lf:frle: i Operand
trol .

oo | controls | uffers

Flow of control through the OFC: (1) Address adder sends operand
request to OFC after decoding; (2) OFC calculates operand
address, buffer availability, and further buffer requirements, then
sends first request to the BCE for processing; (3) BCE responds to
operand request and sends data (for fetch-type operations only); (4)
if further operand requests are required (long operand, page or line
crossings), OFC sends follow-up requests to BCE; (5) BCE
responds to follow-up requests (fetch data written to operand
buffers); (6) operand buffer controls inform OFC logic when
previously allocated buffer has been freed.

These signals indicated to the address adder the
availability of the OFC to accept any further requests.
This availability is based on the OFC’s internal three-deep
stack that holds unfinished operand requests. While the
original source of all unfinished requests was the address
adder, the stack could be filled by a single command if the
address and length of the command were such that
multiple BCE requests were required. Therefore, all of the
address adder request timing diagrams had randomly
selected addresses and lengths. This resulted in requests
that spanned the logical possibilities, including line and
page crossing as well as doubleword boundary crossing.
Boundary crossings caused the OFC to calculate further
BCE requests and operand buffer allocations.

The three signals that indicate OFC availability were
the main limiting factor on the time at which GENRAND
could initiate any of the initial request timing diagrams
on a particular cycle. These signals are reflected in the
conditional text of each of the initial request timing
diagram limitors (see Figure 3). Four of the five initial
request timing diagram limitors (excluding storage-to-
storage part two) also had a gating signal condition
[td_need_ss2(0) = 0] which prevented any of these four
timing diagrams from initiating between a storage-to-
storage part one and part two. This signal was a “program
variable” in that it existed only in the timing diagrams and

B. WILE

586

File

Actions Options

Timing Diagrams for Entity: OFC,td

bce_immed
bece_imd_lost
bce_dly_long
bce_dly_2
bece_d2_lost
aa_fth
aa_stofet
aa_ssl
aa_ss?2

| aa_store

| always

| opbuf_release
cf _check
ai_check

New Timing Diagram

Parity Page

Member Lists

P " "

not in the real logic model. When GENRAND drove the
simulation run, this signal was set to a '1'B in the first
cycle of the storage-to-storage part one timing diagram
and was reset in the first cycle of the part two timing
diagram. This effectively locked out initiation of any other
address adder request timing diagram during that period.
In addition to the signal conditions in the limitors of
the address adder request timing diagrams, a delay limitor
was used to prevent two different address adder requests
from initiating on the same cycle. Had this case been

B. WILE

TIMEDIAG main window for OFC testing. The window lists all of the timing diagrams used for OFC verification. Any of the listed diagrams
can be edited, copied, etc. The buttons at the bottom allow for creation of new timing diagrams, consolidation of parity input data, and
creation of “lists of values” that can be used in the timing diagrams.

allowed, two request timing diagrams would have logically
ORed their requests together, thereby creating “garbage”
on the request buses. Another “program variable”
(td_aa_lr) was used in the delay field of all five request
timing diagram limitors. When GENRAND chose to
initiate one of the five request timing diagrams (the
limitor conditions had to be true), td_aa_Ir was
immediately set to '1'B until the beginning of the next
cycle, effectively locking out the other four timing
diagrams for that cycle.

IBM J. RES. DEVELOP. VOL. 41 NO. 4/5 JULY/SEPTEMBER 1997

Limitor For Page: aa_fth

Check 1 or more . . .

1 None

F: Condition |%d_need_ss2(0)=0%aa_ofc_available=1taa_o

cycles Counter: |id_aa_lr

outstanding Counter:

1 Ignore Quiesce
% selected to run

Cycle Frequency Ratio: |} Cycle Frequency Offset:

Cancel

Limitor definition window for address adder request timing diagrams. The limitor definition window gives the user the ability to describe the
conditions that dictate when the timing diagram can be initiated. The slide bar allows the user to change the probability of an instance of the
timing diagram being run under GENRAND. This full conditional limitor reads: td_need_ss2(0) = 0 & aa ofc _available = 1 &
aa_ofc_block_req = 0 & aa_ofc_hold = 0, stating the conditions that must be true for an address adder request timing diagram to be
initiated. For the storage-to-storage part two timing diagram, the td_need_ss2(0) condition was '1". The delay portion of the limitor prevented
a second address adder requester from being initiated in a given cycle.

ST ————

The address adder request timing diagrams were fairly is the actual request cycle. Three “program variables”
simple. They consisted of four cycles, one of which was (td_rnd_addr$, td_rnd _oplen$, and td_rnd_end_addr$)
a looping (recurring) cycle that waited for the BCE are used to create and hold the random address and
response and data to return (transfer 3 in Figure 1). operand length for this request. GENRAND chose
The address adder fetch request timing diagram is shown a valid random address and operand length for each
in Figure 4. The first cycle of the timing diagram instance. 587

IBM J. RES. DEVELOP. VOL. 41 NO. 4/5 JULY/SEPTEMBER 1997 B. WILE

File Limitor Functions Facility Cuycles Options Help

FComment for aa_fth: Initiate a random logical request

€1 c2 3
1 td_rnd_addr$ ¢ o 3 . *
I td_rnd_oplen$ ¢ 02 D .
1 td_rnd_end_addr$ (0: 31
1 aa_addr_len_add (23: 28 X
1 aa_addr_len_add_1 ¢ 0: O X
1 aa_addr_len_add_8 S TR) .
1 aa_fetch_mod « 0 o .
1 aa_op_cntrl < 0: 4) .
1 aa_opnd_length ¢ 0 2 ‘ R =
Functions
1 aa_opnd_lr ¢ e » ‘
I bce_bzy_log ¢ 0 O . Cycle Values
kd_rnd_addr$¢0:31)

1 data_e_busy { 0: 0) . l" -rnea
I data_o_busy 4 03 0) X
1 ded_op_len_q { 02 4) Y
I first_op_q_ext (02 o X
0 iq_rotate_ant (1: 3 X
0 ofc_instr_lst_vld { 02 0 X
0 ofc_instr_2nd_vld (0: [‘
0 opbfr_data_last { 02 0 —

X RIFC
0 opbfr_write_id { [+ 2) e

X 2IFC
0 opnd_takes_incr (03 0)

X
0 opnd_x_page (0: Iy

X
0 rot_4_opbfr_wr { 15 B

Address adder fetch timing diagram editing window. The timing diagram editing window, shown here with the cycle value update screen,
allows the user to create timing diagrams in a familiar format. Only the first four characters of the cycle value are shown in the main timing
diagram, but all characters can be seen in the cycle value update screen [currently selected is aa_addr_add(0:31) in cycle CO]. The vertical
bars in the middle of the timing diagram represent a recurring/looping cycle. The X' cycle values represent a “don’t care” condition.

ﬁ
|
i
|

B. WILE IBM J. RES. DEVELOP. VOL. 41 NO. 4/5 JULY/SEPTEMBER 1997

The second cycle of the address adder request timing
diagrams was used solely to check the value of
iq_rotate_amt, which is calculated on the basis of the
operand length and the low-order bits in the random
address. The third cycle in the address adder request
timing diagrams reflected the variable time needed to wait
for the BCE to respond to the request. The final cycle
performed much of the checking of the control lines from
the OFC to the operand buffers when the data returned.

© BCE interface timing diagrams

After the OFC received an initial request from the
address adder, one or more operand requests would be
sent from the OFC to the BCE (transfers 2 and 4 in
Figure 1). The number of required OFC-to-BCE operand
requests depended on factors such as whether or not the
operand crossed a doubleword boundary, line boundary,
or page boundary, as well as the type of command (store
or fetch operation). Fetch operations required additional
OFC-to-BCE requests for every doubleword that the
operand crossed. These additional requests were
designated as “continuation fetches” because the BCE
already has ownership of the line after the initial request
is complete. If the fetch operand spans a line boundary,
an “address increment” fetch is sent by the OFC to the
BCE in order to bring the new line into the BCE and
operand buffers. Page crossings for fetches required that
an additional page alert command be sent to the BCE.
For store operations, requests to the BCE were carried
out only once for each line of the operand, so that the
BCE gained exclusive access on the line(s) and prepared
for store data.

The BCE can respond to the operand request in one of
five ways. Each of these response possibilities was coded
in an individual timing diagram. The five possible response
types were as follows:

1. Immediate response: The BCE already has the data
and, for fetches, will gate the data into the operand
buffers two cycles after the request.

2. Immediate lost: The BCE is ignoring the request
through the lack of acknowledgment two cycles after
the request. The OFC must resend the request.

3. Delayed by two cycles: The BCE has the data, but
cannot gate the data into the operand buffers until four
cycles after the request.

4. Delayed by two cycles and lost: The BCE ignores the
request through the lack of acknowledgment four cycles
after the request. Two cycles after the request, the
BCE has raised the delayed_by_2 signal.

5. Delayed long: The BCE must access the data from the
L2. The response will be delayed indefinitely. The BCE
will raise the req_advance signal one cycle before the
data are finally gated to the operand buffers.

IBM J. RES. DEVELOP. VOL. 41 NO. 4/5 JULY/SEPTEMBER 1997

To implement these responses, the five timing diagrams
performed as a BCE behavioral. One of the five timing
diagrams was randomly chosen on the cycle in which
the OFC sent the request to the BCE. Therefore, the
GENRAND program knew which type of response the
OFC was going to get from the BCE as soon as the
request was sent. This “insider knowiedge” simplified the
timing diagrams’ ability to monitor the OFC requests for
correctness. The early decision on which type of BCE
response to send also trivialized the coding of the limitors
for the five BCE response timing diagrams. Each
diagram’s limitor simply monitored the random choice
(a value between 1 and 5, where 1 = Immediate, etc.).
The BCE response timing diagram, “delayed long,” is
shown in Figure 5. In this timing diagram, the BCE
initially gives a delayed_by_2 response to the OFC request,
followed two cycles later by the req_delayed signal,
indicating that the BCE must access the data line from the
L2. The recurring cycle at C4 reflects the unpredictable
wait time on the L2 access. For OFC verification
purposes, this recurring cycle was coded to loop for
between 4 and 15 cycles. (An actual value was chosen
randomly by GENRAND each time the instance was
encountered.) Finally, the req_advance and log_req_done
(logical request done) were raised to indicate that the
access was completed successfully. Two “program
variables” (td_log_req_donel and td_next_req_tossed) were
used to assist timing diagram verification control. The
other signals in the timing diagram allowed for random
variations in the sequence, which reflect all of the possible
interface scenarios from the BCE.

& Checking timing diagrams
Four different checking timing diagrams were written to
assist in the OFC verification. Each of these diagrams
checked the outputs of the OFC for correctness under
different conditions.

The “always” timing diagram was used to check for
error conditions and invalid states on the OFC outputs.
It also drove some miscellaneous inputs that were not
related to the address adder or BCE interfaces. This
timing diagram was designated “always” because the
limitor was set to 100% probability and had no limiting
conditions. This timing diagram contained only one cycle,
so GENRAND initiated and completed the “always”
timing diagram on every cycle. The “opbuf_release” timing
diagram monitored the release of the six operand buffers.
Since the release of the operand buffers was determined
by logic outside the OFC and other modeled interfaces,
this timing diagram also drove the operand buffer reset
lines which indicated that the instruction corresponding to
the buffer was complete. The number of cycles that passed
before the buffer reset was varied. The final two timing

diagrams verified the correctness of continuation fetches 589

B. WILE

590

File Limitor Functions Facility Cycles Options’ Help

Comment, for bce_dlu_long: BCE response: to logical request with a delayed by 2 and request delayed
co Ct €2 ¢3 4 (5 06 (7

1 delayed_by 2 ¢ 0 0 T 1 0

I req.delayed ¢ 060 |1 0 e
I req_advance ¢ e 0 td_l JT—l

I log_req_done ¢ 0 0 0 i
I td_log_req_donel € 6 X [T 1

I td_next_req_tossed ¢« & 0 |1 1 1 1 1 1 1 L__
I data_e_busy R W X

1 data_o_busy ¢ 0 W %‘l X

1 td_ur_vids ¢ o0 [ean L Jccav]eat | et L—tzww

Rt i

% BCE timing diagram for “delayed long” response to OFC.

and address increment requests that were spawned by the cycle basis. This is the typical scoping tool provided with

OFC due to the length of the address adder request. software simulators. The second trace is generated by the

Continuation fetches were checked in “cf_check,” while GENRAND program to track the timing diagram

address increment requests were verified in “ai_check.” instances, as well as any “program variable” values.

The main verification performed in both of these timing Together, the traces are valuable tools for debugging

diagrams was for address and request correctness to the design.

ensure that the OFC was not sending erroneous requests Errors, usually in the form of miscompares on OFC

to the BCE. As with the address adder request timing outputs, stopped the simulation run immediately.

diagrams, “cf_check” and “ai_check” also verified the Miscompares were clearly displayed, along with

write controls from the OFC to the operand buffers. information about which timing diagram and cycle had the
miscompare with the actual versus expected signal values.

8 GENRAND simulations of the OFC Typical internal OFC problems were exposed as

For early debugging, the initial GENRAND test cases unexpected continuation fetches or incorrect addresses

verified each address adder request individually sent to the BCE.

(GENRAND allows for disabling of timing diagrams by
setting the limitor rate slide bar to 0%). Similarly, the five & Results

BCE response sequences were initially verified one at a Initially, short GENRAND test cases of less than 100
time. This allowed GENRAND to create less “devious” cycles uncovered six design errors. An additional ten
test cases for initial debug of the OFC. Later, as each of errors were discovered over the next few weeks, using
the timing diagrams was verified, all combinations and simulation runs of up to 10000 cycles. Furthermore,
sequences were enabled. four performance problems were found using the

GENRAND simulation can create two different types of TIMEDIAG/GENRAND methodology. Performance
traces. The first is actually generated by the simulator and problems, which are transparent to architectural-level test
shows the real model signal and latch values on a cycle-by- cases, were found by TIMEDIAG/GENRAND testing

B. WILE IBM J. RES. DEVELOP. VOL. 41 NO. 4/5 JULY/SEPTEMBER 1997

because the interfaces are closely monitored for expected
timings on the outputs and responses. When the OFC was
later incorporated into the unit-level and chip-level
verification environments, no basic design problems were
uncovered.

Using prior methods of designer-level verification, such
as handwritten implementation tests, it would not have
been possible to find many of the problems uncovered
using TIMEDIAG/GENRAND. While static test cases
verify general protocols or specific boundary conditions,
the GENRAND algorithms test multiple cases of the
protocols and allow for a full range of interaction among
multiple interfaces.

The use of TIMEDIAG/GENRAND on the operand
fetch controls was considered to be a time-to-market
savings because the two months of time spent by one
verification engineer early in the process returned a time
savings in two areas. First, the knowledge of the OFC
gained during the use of TIMEDIAG/GENRAND was
carried forward to the processor-level verification, where
the prior learning was used to assist in the integration of
the OFC with the rest of the instruction unit and to debug
areas that interfaced with the OFC. Second, processor-
level and system-level verification were able to proceed
more rapidly than previously because the OFC, as well as
other designer-level tested logic designs, was functional
soon after integration into the larger models.

Concluding remarks

It is expected that future improvements in
TIMEDIAG/GENRAND will include the ability to cross-
check the consistency of two interfacing functions’ timing
diagram files and allow for individual timing diagrams to
be driven by different clocks. The expected improvements,
along with the introduction of other low-level
methodologies such as formal verification, should assist
verification engineers in testing the ever-increasing
complexity of processor and system designs.

Acknowledgments

The algorithms used in TIMEDIAG and GENRAND were
refined through numerous discussions with Ed Kaminski
and Dean Bair. Their help in coding TIMEDIAG and
GENRAND brought the tool to life for the many
engineers who have used it since. The assistance of Mark
Check and John Liptay in creating the timing diagrams
used on their operand fetch controls helped bring the
complex logic into the mainstream simulation
environments ahead of schedule.

*Trademark or registered trademark of International Business
Machines Corporation.

IBM J. RES. DEVELOP. VOL. 41 NO. 4/5 JULY/SEPTEMBER 1997

References

1. D. F. Ackerman, M. H. Decker, J. J. Gosselin, K. M.
Lasko, M. P. Mullen, R. E. Rosa, E. V. Valera, and
B. Wile, “Simulation of the IBM Enterprise System/9000
Models 820 and 900,” IBM J. Res. Develop. 36, No. 4,
751-764 (July 1992).

2. B. Wile, M. P. Mullen, C. Hanson, D. G. Bair, K. M.
Lasko, P. J. Duffy, E. J. Kaminski, Jr., T. E. Gilbert, S. M.
Licker, R. G. Sheldon, W. D. Wollyung, W. J. Lewis, and
R. J. Adkins, “Functional Verification of the CMOS S/390
Parallel Enterprise Server G4 System,” IBM J. Res.
Develop. 41, No. 4/5, 549-566 (1997, this issue).

Received December 10, 1996; accepted for publication
May 23, 1997

Bruce Wile [BM System/390 Division, 522 South Road,
Poughkeepsie, New York 12601 (bwile@vnet.ibm.com). Mr.
Wile is currently a Senior Engineer and Verification Manager
in §/390. He has worked in verification since joining IBM in
1985, and was the verification team leader for the $/390 G4
(CMOS 4) system. Mr. Wile’s previous verification
experiences included storage controller element simulation for
the S/390 bipolar ES/9000 machines including the 6-way, 8-
way, and 10-way multiprocessor systems. He was previously
verification team leader for the 10-way IBM ES/9000 system.
Mr. Wile received a B.S. in computer science from
Pennsylvania State University in 1984. He received an IBM
Excellence Award in 1992 and an IBM Team Award in 1993,
and in 1995 an IBM Invention Achievement Award for
inventions and patent submissions pertaining to the
TIMEDIAG/GENRAND tool set.

591

B. WILE

