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TIMEDIAG/GENRAND is a tool set  used  on 
various portions of  the CMOS processor for 
the IBM S/390@ Parallel  Enterprise  Server 
Generation 4 to assist in designer-level logic 
verification. The concept  of  surrounding  the 
logic design  (hereafter  referred to simply  as 
“logic”)  under test with irritator behaviorals,  a 
methodology  developed  and  proven  effective 
on  larger  simulation  models, is moved to the 
designer  level without the overhead of writing 
multiple behaviorals.  Rather  than writing 
source-level (e.g.,  VHDL, C  code,  etc.) 
behaviorals, the method  creates an external 
stimulus to the  design  by  using  a  series  of 
generalized timing diagrams that obey the 
interface protocols of the logic under  test. 
These timing diagrams  are  entered  using the 
TlMEDlAG (timing diagram)  editor.  The effort 
required for logic verification is thus limited to 
understanding  and  laying  out the interfaces to 
the design-a task  that  must  be  done for any 
well-designed unit of logic,  regardless  of 
whether  or not it is being  verified  at the 
designer  level.  Once  the timing diagrams  are 
written, GENRAND  (general random  driver) is 
invoked to run simulation  on the design. 
GENRAND randomly initiates the timing 
diagrams that obey the  interface  protocol, 
causing  many  different  input  and  output 
permutations.  This  simulation is very  effective 
in testing the logic implementation. 

Introduction 
The  burden of verifying a  single  designer’s  logic has  often 
fallen  upon  the individual designer. While substantial 
focus is put on testing  larger  portions of a  logic  design 
(e.g., an  entire  processor), it is often  more efficient to 
remove logic design defects  earlier in the process. But in 
order  to verify many  single functional logic macros within 
a  design,  a tool  set must be  supplied  to  the logic designers 
that allows for easy simulation of one’s own design  while 
maximizing the  coverage. 

In this  paper,  the  TIMEDIAGIGENRAND  tool  set, 
developed  to assist  in  designer-level logic verification, is 
described.  The  models  on which the tool set is based  are 
discussed, along with the  requirements  for solving the 
problems of designer-level  verification. The  features of 
TIMEDIAG/GENRAND  are  detailed, followed by a 
representative  application used during  implementation of 
the S/390* G4 system. 

9 The irritator behavioralltest-case driver model 
A classic method of verifying logic is the  use of irritator 
behaviorals. In  this  model,  the logic under  test is 
“surrounded” by dummy logic whose  purpose is to drive 
the  inputs  and  check  the  outputs of the logic under  test. 
Because this dummy logic, or  “behavioral,” is used solely 
for logic verification, the choice of source  language is 
not  restricted  to  the design language. In later  stages of 
verification, behaviorals  are  replaced with the  real design 
that was being  emulated.  But by using behaviorals first at 
a  lower level of simulation, a  verification expert  can  exert 
greater  control  over  the  smaller  piece of logic, thereby 

Wopyright 1997 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each 
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, hut no other portions, 
of this paper may he copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other 

portion of this paper must he obtained from the Editor. 

0018-8646/97/$5.00 0 1997 IBM 

IBM J. RES. DEVELOP. VOL. 41 NO. 415 JULY/SEPTEMBER 1997 B. WILE 



testing  more  permutations  and  states in  less time.  Using 
irritator  behaviorals is a highly effective method  for 
verification [l]. 

hand in hand:  the  interface  protocol  handler  and  the 
driver.  The  interface  protocol  handler is prompted by the 
driver  to provide  a specific stimulus  to  the logic under 
test.  When  the logic responds  to  the  stimulus,  the 
interface  protocol  handler receives the  response  and 
packages  it  back to  the driver. 

The  driver  can  be  thought of as the  “brains” of the 
behavioral.  It  decides  what  to  send  into  the logic and 
verifies the  correctness of the  output. A  typical  driver  uses 
a  probability table  to  choose which legal stimulus it will 
initiate.  The checking logic that  must  be  built  into  the 
driver can  be  far  trickier  to  implement.  Because  the 
complexity of the logic under  test generally increases with 
its  size,  a  driver’s  checking logic on a large  model is often 
quite complex. This is less of a problem with smaller, 
designer-level  models, where fewer permutations  and less 
complexity make  for  simpler  prediction of outputs. 
However, it is a key to  designer  simulation,  because a 
good  methodology will be  able  to  capitalize  on  the  simpler 
checking requirements. 

The  interface  protocol  handler is the  interpreter 
between  the  driver  portion of the  behavioral  and  the logic 
under  test.  With  regard to the logic under  test,  the 
behavioral  emulates  the  interface  actions of the  real logic 
that will surround  the logic under  test.  When  the  driver 
portion of the  behavioral  “decides”  to  send a sequence, 
it is up  to  the  interface  protocol  handler  to  create  the 
correct signals for  the logic. The  interface  protocol 
handler  also  monitors  the  outputs of the logic, packaging 
output  sequences back to  the  driver so that it can check 
for  correctness. 

A “behavioral” generally  consists of two parts  that work 

The challenges of designer-level verification 
The  challenge of applying the  irritator  behavioral  model 
to designer-level logic verification is less  a technical 
challenge  than a time-to-market  concern. A  quality 
irritator  behavioral  model is quite effective, but  takes 
time  to  plan  and  implement.  While it is a  cost-effective 
approach  to verifying large  portions of logic, writing 
individual irritator  behavioral  models  for  testing  each 
designer’s  logic is not  feasible. 

Without  the power of irritator  behaviorals,  designers 
traditionally  test  their logic with  a series of hard-coded 
test cases. But writing hard-coded  test  cases  to verify one’s 
own logic creates a series of problems: 

Simplistic test cases are  created.  Hard-coded  test  cases 
generally verify basic scenarios,  but  do  not  stress  the 
logic hard  enough  to cover  complex interactions.  It  takes 

582 substantial  effort  to  create a large  number of test  cases 

that  thoroughly  test  the logic with multiple  interactions 
and  permutations. 
A new test-case language must be  mastered in order  to 
write  effective hard-coded  test cases. The  user must 
learn a test-case  language  that allows manipulation of 
signals, monitoring  events,  and clocking. 

Many hard-coded  test  cases  are timing- and  signal-name- 
dependent. If a cycle is added within the logic, or  the 
name of an  interface signal changes, many test  cases 
may have to  be  updated. 
A catch-22 problem  occurs with the  designer writing the 
test cases to  test his own logic. Consider a case in which 
a designer believes his logic accounts  for all valid 
permutations  that  can  occur. If he  has in fact missed  a 
case, how can  he  be expected to  write a test  case  that 
will uncover his own oversight? 

Maintenance of test  buckets  can  be time-consuming. 

TIMEDIAG and GENRAND as irritator behaviorals 
TIMEDIAG  and  GENRAND  are  intended  to  address  the 
challenges associated with performing quality designer- 
level verification. They  can  be  used  to solve the  problems 
associated with hard-coded  test cases: 

Complex scenarios are  created  under  GENRAND. 
It drives  many different timing diagram  permutations 
at  different  times  throughout a test  case. Window 
conditions,  created by changing the timing on the 
initiation of sequences,  are  stressed.  This helps solve the 
catch-22 problem  as well, because  the  designer no longer 
has  to  dream up different scenarios-GENRAND does 
it instead. 
No new language has  to  be  learned.  The timing diagram 

There is little maintenance with TIMEDIAG  and 
format is familiar  to designers. 

GENRAND. If a  signal name  changes or a  timing 
sequence is updated, all that is required is the  use of 
TIMEDIAG to update  the  sequence.  There  are  no 
buckets of test  cases  to  change. 

TIMEDIAG  and  GENRAND employ the  irritator 
behavioral  model  at  the  designer level. This  methodology 
takes  advantage of the less  complex environment, which 
makes  the checking algorithms  simpler.  The  random  driver 
algorithms  are built into  GENRAND,  freeing  the  designer 
from  concerns  about invoking sequences. 

TIMEDIAG is a  timing diagram  editor.  The file that is 
created by TIMEDIAG, when read by GENRAND,  can 
be  thought of as  roughly equivalent  to  the  interface 
protocol  handler of the  irritator  behavioral  model.  This 
TIMEDIAG file contains  one  or  more timing diagrams 
that  describe  the  interfaces  to  the logic under  test. 
GENRAND is the  driver  portion of the verification model. 
After  reading  the  TIMEDIAG file, GENRAND  uses 
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pseudorandom  algorithms  to  decide which interface 
actions  to  initiate.  When  results  are  returned,  GENRAND 
checks the  correctness of the  outputs  and  takes 
appropriate action by initiating  further  stimulus, 
responding  to  outstanding  requests,  or flagging errors 
or  miscompares. 

TIMEDIAG 
TIMEDIAG is a  tool  that  facilitates  the  creation of a file 
containing  the  information  needed by GENRAND  to drive 
the  interfaces  to  the logic under  test. Graphically, this 
information  appears  as timing diagrams  that  the  user 
creates  and  edits.  A  TIMEDIAG file can  contain any 
number of timing diagrams. Since the timing diagram 
format is straightforward  and  familiar,  TIMEDIAG is also 
a good source of interface  documentation. 

Each timing diagram, in its  simplest form, is a matrix of 
cycles and signal names.  The cycle numbers C0, C1, . . . , 
CN span  the  top of the matrix. The signal names  and bit 
ranges  constitute  the rows of the matrix. Each of the 
values  within the matrix is simply the value of that signal 
on  that cycle. Each signal name is identified  as  an input  to 
the logic or  an  output  from  the logic. Input signals  have 
their cycle values entered  into  the logic by the  test  driver 
(GENRAND), while output signals  have their cycle values 
checked  for  correctness by the  test driver. 

TIMEDIAG  supplies all of the basics needed  to  edit 
each  timing  diagram matrix. A  user can add,  delete, copy, 
move, or  change signal names. Cycles can  also  be  added, 
deleted,  copied,  or moved. Finally, each cycle value in the 
matrix can  be  edited  or  copied  from  another value. Each 
diagram  represents  a  generalized  interface  sequence.  A 
given timing diagram is considered  generalized  because 
TIMEDIAG  does  not  require exact cycle timings or 
constants  for cycle values  (variables,  signals, and  functions 
are  allowed).  Instead,  TIMEDIAG  includes  features  that 
allow the  user  to specify a  sequence  that may cover  many 
permutations of an  interface  protocol. 

TIMEDIAG features 
Three basic features allow a  user  to  create  general timing 
diagrams: function values,  limitors, and  looping/recurring 
cycles. 

Function  values 
TIMEDIAG allows for many different  data types and 
functions  to  represent cycle values.  While constant values 
are  the simplest form, signal names  and  arithmetic 
operators  can  also  be used to  represent  the  value of a 
signal on  a given cycle. Furthermore,  a set of built-in 
functions such  as the  “random  value”  function  and  the 
“choose  from  a list of values” function  are  supplied. If 
none of these built-in functions  adequately  describes  a 
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cycle value, a  user-defined  function  written in C can be 
dynamically  linked into  TIMEDIAG/GENRAND. 

Limitors 
A  cornerstone of the  representation of an  interface is the 
statement of the  time  at which it is legal to  initiate  the 
timing diagram  sequence.  TIMEDIAG defines  this  as a 
limitor.  Each timing diagram  has  a  limitor  that may be 
independent  or may be  coupled  to  other timing  diagrams. 
The limitor concept is especially important when running 
simulation,  because  GENRAND  uses  the  limitors  to 
decide which timing diagrams it can legally initiate  on any 
given cycle. 

TIMEDIAG uses four  select  buttons  to  help  the  user 
define a  limitor.  The first button, none, states  that  the 
timing diagram  sequence may occur  at any time  and may 
be pipelined-there are  no  restrictions  on  when  a  “none” 
timing diagram may be  initiated.  The  second  select  button, 
the condition limitor, uses a  Boolean expression to 
evaluate  whether  or  not  the timing diagram may be 
initiated. If the  statement  evaluates  to  “true”  on  a given 
cycle, the timing diagram  sequence may be  initiated. 
The  Boolean expression may be simple  (example: 
AVAILABLE = ’ 1 ‘ B )  or complex [example: X = ‘ 1 ‘ B  & 
(Y > 212 < 3)]. The  third  select  button,  the delay limitor, 
states  that  there must be  a  gap of some  number of cycles 
between  the  initiation of two instances of timing diagrams 
that  share  the  same delay  limitor  variable. This is useful in 
cases  where,  for  example,  a two-cycle gap is required 
between  commands.  The last select  button,  the max 
limitor, prevents  the timing diagram  from having more 
than  some  number of outstanding instances. For example, 
if a timing diagram were not allowed to  be  pipelined,  the 
max limitor  would be used with a value of 1. An example 
limitor update  screen  appears in Figure 3 (shown later). 

It is legitimate  for  more  than  one of the last three 
select  buttons  (condition, delay, and max) to  be used in a 
single  limitor.  As an example, consider  an  interface  that 
can  accept  a  command  but may require  up  to 20 cycles to 
respond  to  that  command. If the logic has  four  command 
buffers  to hold outstanding  commands  but  needs two 
cycles between  each  command in order  to  load  the  buffer, 
the  proper  limitor would be  a “max of 4” and  a  “delay of 
2.” This  same logic might  have an  “unavailable”  line 
as an  output, which, when set  to ‘1 ‘B ,  meant  that no 
commands could be  accepted.  The  condition  limitor with 
“UNAVAILABLE = ‘ 0  ‘B” would also be used in that case. 

Timing diagram  limitors can be used to  couple timing 
diagrams  or  to  prevent  other timing diagrams  from 
initiating.  Multiple timing diagrams  can  be  “coupled” by 

Using the  same signal in both  condition limitors. 
Using the  same delay variable in both delay limitors. 
Using the same  outstanding variable in both rnax limitors. 
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The  limitor is further defined with a  probability  slide 
bar.  This  value provides GENRAND with the  desired 
likelihood of initiating  the  diagram on a given cycle when 
the limiting conditions  are  true. 

Recurringllooping cycles 
Recurring or looping cycles help  describe  an  interface 
where  the timing between  events is not fixed. In  general, a 
recurring cycle says, “wait  in  this state until some  event 
occurs” or “wait in this state  for  some  number of cycles.” 
Therefore, a recurring cycle is defined by its end 
condition. 

TIMEDIAG allows for  three possible end  conditions: 
1) wait for a condition  to  occur; 2) loop  for a fixed 
number of cycles; or 3) loop  for a (bounded)  random 
number of cycles. 

GENRAND 
The  general  random  driver  program  (GENRAND) 
provides the  stimulus  and verification for logic simulation. 
GENRAND  uses  the  TIMEDIAG file as  input,  and  then 
interfaces with the  simulator  to drive inputs  and  check 
outputs.  GENRAND  uses  random  algorithms  to  choose 
which interface  sequences it  drives. The  interface 
sequences  that  are actually  driven are  based  on  the 
generalized timing diagrams  that  describe  the legal 
interface  protocols. 

GENRAND  does  not  determine  the  sequences  before 
run  time.  Instead,  GENRAND  runs  along with the 
simulator, using the timing diagram  limitors  and a random 
number  generator  to  decide  whether  or  not a  timing 
diagram will be  initiated  on a given cycle. Once  initiated, 
GENRAND  emulates  the timing diagram  sequence in the 
following cycles until  the timing diagram is completed. 
GENRAND  continues  to drive multiple timing diagrams 
until it either  detects  an  error or runs to a predetermined 
quiesce cycle. The  effect of this is that  multiple window 
conditions  are  tested  throughout a  successful test 
case. 

Timing diagram instances 
GENRAND  uses  the  TIMEDIAG file to  learn  the 
interface  protocols.  The  program  then  initiates  interface 
sequences  as specified  in the timing diagrams  (each 
interface  sequence is an  “instance” of that  timing 
diagram),  at  random  intervals as  allowed by interface 
protocol. In fact,  the  same timing diagram will probably be 
initiated  multiple  times in  a given simulation  run.  The 
simulation cycle in  which an  instance is initiated is not 
decided by the cycle labels (CO, C1,  etc.) in the timing 
diagram.  It is randomly  chosen using the  limitor 
conditions  and  the slide bar probability. However,  the 
cycle labels  in the timing diagrams  can  be  mapped  to  the 

starting  simulation cycle of a given instance.  An  instance 
of a  timing diagram  becomes  “outstanding” or 
“bookmarked” when GENRAND  randomly  decides  to 
initiate  that timing diagram  and  the  protocol allows for  it. 
This  instance is then  bookmarked  at  timing  diagram cycle 
CO. The  bookmark  remains  open  (and  the  instance  thus 
remains  outstanding)  through  the following simulation 
cycles until the last cycle of the timing diagram is 
executed. 

Under  GENRAND  simulation, pipelining of a given 
timing diagram  can  occur if the  protocol allows it. 
Therefore,  multiple  instances of the  same timing diagram 
can be  bookmarked  at  once, with each possibly in  a 
different  portion (Cx cycle) of the timing diagram.  The 
random  occurrence of instances  creates  the  desired 
complex environment.  In  order  to  track  the  instances, 
GENRAND  creates a file that  includes  statistics  about  the 
occurrences of each timing diagram  during  the  course 
of a run. A trace of the timing diagram  instances  can 
optionally  be  created as well. These  tools  are very helpful 
for  problem debugging, which can be  performed by 
recreating  the  same  test  case (by reusing  the initial  32-bit 
seed). 

TIMEDIAG/GENRAND usage  for SI390 CMOS 
processor  development 
With the verification effort  for  the S/390 G4  CMOS 
processor  and L2 chips  focused on the  designer  macro 
level [2], TIMEDIAG  and  GENRAND  were  used 
extensively for  the S/390 G4  processor  development. 
TIMEDIAG/GENRAND was used on  about 50% of  the 
L2 control  macros  and on about 25% of the  processor 
control macros. The  L2 usage was greater  because 
of the  “requester”  orientation of the  cache  control 
chip. 

TIMEDIAG  and  GENRAND is described next. 
An example of the designer-level  verification  using 

Operand fetch control verification with 
TIMEDIAGIGENRAND 
Traditionally,  among  the most difficult portions of logic 
to verify have been  the  instruction unit’s operand  fetch 
controls  (OFC).  The  OFC  interfaces mainly with the 
instruction unit’s address  adder  and  operand  buffer 
controls,  and with the  buffer  control  element  (BCE). 
Instructions  are  decoded  and  sent  to  the  address  adder, 
where  operand  addresses  and  request  commands  are  sent 
to  the  OFC.  The  OFC  allocates  operand buffers, requests 
the  data  from  the  BCE,  then  monitors  the  BCE  response 
and  the  return of data  to  the  operand buffers. Figure 1 
shows the flow  of control  through  the  OFC. 

For  the S/39O G4  CMOS  processor,  the  OFC logic  was 
tested using TIMEDIAG/GENRAND.  The  effort  took  one 
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person  about two months  to  complete.  Three weeks of 
initial setup  were followed by five weeks of testing  and 
timing diagram  enhancements.  The  strategy  used  to  create 
timing diagrams  for  OFC verification was to  write  separate 
timing diagrams  for  each type of request.  There  were 
three main categories of timing diagrams, with an  overall 
total of fourteen timing  diagrams. The first category was 
for  initial  operand  buffer  requests  from  the  address  adder. 
Five separate timing diagrams  were  used  for  these  initial 
operand  requests:  fetch,  store, store-fetch, storage-to- 
storage  request  part  one,  and  storage-to-storage  request 
part two. The  second main category of timing diagrams 
were  the  BCE  interface  diagrams, of which there  were 
also five. Each of these  diagrams  represented  one of the 
possible manners in which the  BCE  could  respond  to  the 
OFC  request:  immediate,  immediate lost,  delayed by two 
cycles, delayed by two cycles and lost, and  delayed long. 
The final category of timing diagrams  represented 
checking and  miscellaneous  functions.  The  four timing 
diagrams in  this category  were “always,” continuation 
fetch checking, incremental  fetch  request checking, and 
operand  buffer  release checking. Figure 2 shows the 
TIMEDIAG main  window, which contained  the  fourteen 
timing  diagrams. 

Address  adder initial request timing diagrams 
The five initial request timing diagrams  emulated  the 
request  protocol  from  the  address  adder  to  the  OFC 
(transfer 1 in Figure 1). After  an  instruction was decoded, 
the  address  adder  generated  the  appropriate  request type 
(fetch,  store, store-fetch, storage-to-storage  request  part 
one,  and  storage-to-storage  request  part two). The 
operand  fetch  controls  are  not privy to  the  actual 
instruction  that was decoded;  the  OFC  has  to know only 
the  type of instruction.  Furthermore,  the  implementation 
of the  OFC allows for any sequence of requests, with the 
sole  exception  that a storage-to-storage  request  .part  one 
must be followed by part two of the  storage-to-storage 
request.  Therefore,  the timing diagrams  were  set up to 
allow for  fetch,  store, store-fetch, and  storage-to-storage 
part  one  to be chosen  at  random.  When a storage-to- 
storage  part  one  occurred,  these  four  commands  were 
locked out until the  storage-to-storage  part two timing 
diagram was initiated.  The only other  restrictions on the 
initiation of the  address  adder  request timing diagrams 
were  that only one  request could be  initiated  per cycle, 
and  that  the following three  OFC signal settings must be 
true: 

aa-ofc-available=l 

aa_ofc-block-req=@ 

aa-ofc-hold=@ 

P adder 
Operand 

fetch 
control 
logic 

I 
Operand ~ 

controls I 
buffer I Operand 

I I 

Flow of control through the  OFC: (1) Address adder sends operand 
f request to OFC  after  decoding; (2) OFC  calculates  operand [ address, buffer availability, and further buffer requirements, then 

sends first request to the BCE  for processing; (3) BCE responds to 
operand request and  sends  data (for fetch-type operations only); (4) 1 if further operand requests are required (long operand, page or line 
crossings),  OFC  sends  follow-up  requests  to  BCE; ( 5 )  BCE 1 responds  to  follow-up  requests  (fetch  data  written to operand 
buffers); ( 6 )  operand  buffer  controls  inform  OFC  logic  when 

These signals indicated  to  the  address  adder  the 
availability of the  OFC  to  accept any further  requests. 
This availability is based on the OFC’s internal  three-deep 
stack  that  holds unfinished operand  requests.  While  the 
original source of all  unfinished requests was the  address 
adder,  the  stack could be filled by a  single command if the 
address  and  length of the  command  were such that 
multiple  BCE  requests  were  required.  Therefore, all of the 
address  adder  request timing diagrams  had randomly 
selected  addresses  and lengths. This  resulted in requests 
that  spanned  the logical  possibilities,  including line  and 
page crossing  as well as  doubleword  boundary crossing. 
Boundary crossings caused  the  OFC  to  calculate  further 
BCE  requests  and  operand  buffer allocations. 

The  three signals that  indicate  OFC availability were 
the  main limiting factor on the  time  at which GENRAND 
could  initiate any of the initial request timing diagrams 
on a particular cycle. These signals are reflected  in the 
conditional text of each of the initial request timing 
diagram  limitors  (see Figure 3). Four of the five initial 
request timing diagram  limitors (excluding storage-to- 
storage  part two) also  had a gating signal condition 
[td_need_ss2(0) = 01 which prevented any of these  four 
timing diagrams  from  initiating  between a storage-to- 
storage  part  one  and  part two. This signal was a “program 
variable” in that it  existed  only  in the timing diagrams  and 585 
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File - Actions - Options - Help 
Timing Diagrams f o r  Entity: OFC+td 
bce, i mmed 
bce-imd-lost 
bce-dly-long 
bce-dly-2 
bce,d2,lost 
aa-fth 
aa-stofet 
aa-ssl 
aa-ss2 
aa-store 
a1 ways 
opbuf ,re 1 ease 
cf  ,check 
ai  ,check 

not in the real logic model.  When  GENRAND  drove  the 
simulation run, this signal was set to  a ‘1  ‘B in the first 
cycle of the  storage-to-storage  part  one timing diagram 
and was reset in the first cycle of the  part two timing 
diagram.  This effectively locked out  initiation of any other 
address  adder  request timing diagram  during  that  period. 

In addition  to  the signal conditions in the  limitors of 
the  address  adder  request timing diagrams,  a delay limitor 
was used to  prevent two different  address  adder  requests 

586 from  initiating  on  the  same cycle. Had this case  been 

allowed, two request  timing  diagrams would  have logically 
ORed  their  requests  together,  thereby  creating  “garbage” 
on the  request buses. Another  “program  variable” 
( t d - u u l r )  was used in the delay field of all five request 
timing diagram limitors. When  GENRAND  chose  to 
initiate  one of the five request timing diagrams  (the 
limitor conditions  had  to  be  true), t d - u a l r  was 
immediately  set  to ‘1 ‘ B  until  the  beginning of the next 
cycle, effectively locking out  the  other  four timing 
diagrams  for  that cycle. 
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Limitor definition window for address adder request timing diagrams. The limitor definition window gives the user the ability to describe the 
i conditions that dictate when the timing diagram can be initiated. The  slide bar allows the user to change the probability of  an instance of the 
’ timing  diagram  being run under GENRAND. This  full  conditional  limitor  reads: td_need_ss2(0) = 0 & an ufc-available = I & f aa-ofc-block-req = 0 & na-oft-hold = 0, stating the conditions that must be true for  an address adder request timing diagram to be 
f initiated. For the storage-to-storage part two timing diagram, the rd..need..ss2(0) condition was ‘1’. The delay portion of the limitor prevented 
1 a second address adder requester from being initiated in a given cycle. 

The  address  adder  request timing diagrams were  fairly is the  actual  request cycle. Three  “program  variables” 
simple. They consisted of four cycles, one of which was (td-rnd-addr$, td-rnd _oplen$, and td-rnd-end-addr$) 
a looping (recurring) cycle that waited for  the BCE are  used to create  and hold the  random  address  and 
response  and  data  to  return  (transfer 3 in Figure 1). operand  length  for this request.  GENRAND  chose 
The  address  adder  fetch  request timing diagram is shown a valid random  address  and  operand  length  for  each 
in Figure 4. The first cycle of the timing diagram instance. 
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The  second cycle of the  address  adder  request timing 
diagrams was used solely to  check  the  value of 
iq-rotate-amt, which is calculated  on  the basis of the 
operand  length  and  the  low-order  bits in the  random 
address.  The  third cycle in the  address  adder  request 
timing  diagrams  reflected  the  variable  time  needed  to wait 
for  the  BCE  to  respond  to  the  request.  The final cycle 
performed much of the checking of the  control  lines  from 
the  OFC  to  the  operand  buffers  when  the  data  returned. 

BCE interface timing diagrams 
After  the  OFC received an initial request  from  the 
address  adder,  one or more  operand  requests would be 
sent  from  the  OFC  to  the  BCE  (transfers 2 and 4 in 
Figure 1). The  number of required  OFC-to-BCE  operand 
requests  depended on factors  such  as  whether  or  not  the 
operand  crossed a doubleword  boundary,  line  boundary, 
or  page  boundary, as well as the  type of command  (store 
or  fetch  operation).  Fetch  operations  required  additional 
OFC-to-BCE  requests  for every doubleword  that  the 
operand crossed. These  additional  requests  were 
designated as “continuation  fetches”  because  the  BCE 
already  has  ownership of the  line  after  the  initial  request 
is complete. If the  fetch  operand  spans a line  boundary, 
an  “address  increment”  fetch is sent by the  OFC  to  the 
BCE in order  to  bring  the new line  into  the  BCE  and 
operand buffers. Page crossings for  fetches  required  that 
an  additional  page  alert  command  be  sent  to  the  BCE. 
For  store  operations,  requests  to  the  BCE  were  carried 
out only once  for  each  line of the  operand, so that  the 
BCE  gained exclusive access on  the  line(s)  and  prepared 
for  store  data. 

The  BCE can respond  to  the  operand  request in one of 
five ways. Each of these  response possibilities  was coded 
in an individual timing diagram. The five possible response 
types were as follows: 

1. Immediate  response:  The  BCE  already  has  the  data 
and,  for  fetches, will gate  the  data  into  the  operand 
buffers two cycles after  the  request. 

2. Immediate lost: The  BCE is ignoring  the  request 
through  the lack of acknowledgment two cycles after 
the  request.  The  OFC must resend  the  request. 

3. Delayed by two cycles: The  BCE  has  the  data,  but 
cannot  gate  the  data  into  the  operand  buffers  until  four 
cycles after  the  request. 

4. Delayed by two cycles and lost: The  BCE  ignores  the 
request  through  the lack of acknowledgment  four cycles 
after  the  request. Two cycles after  the  request,  the 
BCE  has  raised  the delayed-by-2 signal. 

5. Delayed long: The  BCE must  access the  data  from  the 
L2. The  response will be  delayed indefinitely. The  BCE 
will raise  the reg-advance signal one cycle before  the 
data  are finally gated  to  the  operand buffers. 

To  implement  these  responses,  the five timing diagrams 
performed  as a BCE  behavioral.  One of the five timing 
diagrams was randomly  chosen  on  the cycle in which 
the  OFC  sent  the  request  to  the  BCE.  Therefore,  the 
GENRAND  program knew  which  type of response  the 
OFC was going to  get  from  the  BCE as soon  as  the 
request was sent.  This  “insider knowiedge”  simplified the 
timing  diagrams’  ability to  monitor  the  OFC  requests  for 
correctness.  The  early  decision  on which type of BCE 
response  to  send also  trivialized the coding of the  limitors 
for  the five BCE  response timing  diagrams. Each 
diagram’s limitor simply monitored  the  random choice 
(a  value  between 1 and 5,  where 1 = Immediate,  etc.). 

The  BCE  response  timing  diagram,  “delayed long,”  is 
shown in Figure 5. In  this timing diagram,  the  BCE 
initially gives a delayed-by-2 response  to  the  OFC  request, 
followed two cycles later by the reg-delayed signal, 
indicating  that  the  BCE  must access the  data  line  from  the 
L2. The  recurring cycle at  C4 reflects the  unpredictable 
wait time  on  the L2 access. For  OFC verification 
purposes, this recurring cycle was coded  to  loop  for 
between 4 and 15 cycles. (An  actual value  was chosen 
randomly by GENRAND  each  time  the  instance was 
encountered.) Finally, the reg-advance and log-reg-done 
(logical request  done)  were  raised  to  indicate  that  the 
access was completed successfully. Two “program 
variables” (td-log-reg-donel and td-next-reg-tossed) were 
used  to assist  timing diagram verification control.  The 
other signals  in the timing diagram allowed for  random 
variations  in  the  sequence, which reflect  all of the possible 
interface  scenarios  from  the  BCE. 

Checking timing diagrams 
Four  different checking  timing diagrams  were  written  to 
assist  in the  OFC verification. Each of these  diagrams 
checked  the  outputs of the  OFC  for  correctness  under 
different  conditions. 

The “always” timing diagram was used to  check  for 
error  conditions  and invalid states on the  OFC  outputs. 
It also drove  some  miscellaneous  inputs  that  were  not 
related  to  the  address  adder  or  BCE  interfaces.  This 
timing diagram was designated “always” because  the 
limitor was set  to 100% probability  and  had  no limiting 
conditions.  This timing diagram  contained only one cycle, 
so GENRAND  initiated  and  completed  the “always” 
timing diagram  on every cycle. The “opbuf-release”  timing 
diagram  monitored  the  release of the six operand buffers. 
Since the  release of the  operand  buffers was determined 
by logic outside  the  OFC  and  other  modeled  interfaces, 
this  timing diagram  also  drove  the  operand  buffer  reset 
lines which indicated  that  the  instruction  corresponding  to 
the  buffer was complete.  The  number of cycles that passed 
before  the  buffer  reset was varied.  The final two timing 
diagrams verified the  correctness of continuation  fetches 589 
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and  address  increment  requests  that  were spawned by the 
OFC  due  to  the  length of the  address  adder  request. 
Continuation  fetches  were  checked in “cf-check,” while 
address  increment  requests  were verified  in “ai-check.” 
The main  verification performed in both of these timing 
diagrams was for  address  and  request  correctness  to 
ensure  that  the  OFC was not  sending  erroneous  requests 
to  the  BCE.  As with the  address  adder  request timing 
diagrams, “cf-check” and “ai-check” also  verified the 
write controls  from  the  OFC  to  the  operand buffers. 

GENRAND simulations of the OFC 
For early  debugging, the  initial  GENRAND  test  cases 
verified each  address  adder  request individually 
(GENRAND allows for disabling of timing  diagrams by 
setting  the  limitor  rate  slide  bar  to 0%). Similarly, the five 
BCE  response  sequences  were initially  verified one  at a 
time.  This allowed GENRAND  to  create less “devious” 
test  cases  for  initial  debug of the  OFC.  Later,  as  each  of 
the timing diagrams was verified, all combinations  and 
sequences  were  enabled. 

GENRAND  simulation  can  create two different types of 
traces.  The first is actually generated by the  simulator  and 

590 shows the  real  model signal and latch  values on a cycle-by- 
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cycle basis. This is the typical  scoping tool  provided with 
software  simulators.  The  second  trace is generated by the 
GENRAND  program  to  track  the  timing  diagram 
instances, as well as  any “program  variable” values. 
Together,  the  traces  are valuable tools  for debugging 
the design. 

outputs,  stopped  the  simulation  run  immediately. 
Miscompares  were clearly  displayed, along with 
information  about which timing diagram  and cycle had  the 
miscompare with the  actual versus expected signal  values. 
Typical internal  OFC  problems  were exposed  as 
unexpected  continuation  fetches  or  incorrect  addresses 
sent  to  the  BCE. 

Errors, usually in the  form of miscompares on OFC 

Results 
Initially, short  GENRAND  test  cases of less than 100 
cycles uncovered six design errors.  An  additional  ten 
errors  were discovered over  the next few weeks,  using 
simulation  runs of up  to 10000 cycles. Furthermore, 
four  performance  problems  were  found using the 
TIMEDIAGiGENRAND methodology. Performance 
problems, which are  transparent  to  architectural-level  test 
cases, were  found by TIMEDIAG/GENRAND  testing 
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because  the  interfaces  are closely monitored  for expected References 
timings on  the  outputs  and  responses.  When  the  OFC was 1. D. F. Ackerman,  M.  H.  Decker, J .   J .  Gosselin,  K.  M. - 
later  incorporated  into  the unit-level and chip-level Lasko, M. P.  Mullen,  R. E. Rosa, E. V.  Valera,  and 
verification environments, no  basic  design problems  were 

B. Wile,  “Simulation  of  the  IBM  Enterprise  Systemi9000 
Models 820 and 900,” IRM J.  Res. Develoo. 36, No. 4, 

uncovered. 751-764 (July 1992). 
Using prior  methods of designer-level  verification,  such 2. B. M. p .  c. D. G. Bair, K. M. 

as handwritten  implementation  tests, it would not have 
Lasko,  P. J. Duffy, E. J. Kaminski, Jr., T. E. Gilbert, S .  M. 
Licker,  R. G. Sheldon, W. D.  Wollyung,  W. J. Lewis,  and 

been possible to find many of the  problems  uncovered R. J .  Adkins,  “Functional  Verification of the  CMOS Si390 
using TIMEDIAG/GENRAND. While static  test  cases Parallel  Enterprise  Server  G4  System,” IRM J .  Res. 
verify general  protocols  or specific boundary  conditions, 

Develop. 41, No. 41.5, 549-566  (1997,  this  issue). 

the  GENRAND  algorithms  test  multiple  cases of the 
protocols  and allow for  a full range of interaction  among 
multiple  interfaces. 

The  use of TIMEDIAG/GENRAND  on  the  operand 
fetch  controls was considered to be  a  time-to-market 
savings because  the two months of time  spent by one 
verification engineer  early in the  process  returned  a  time 
savings in two areas.  First,  the knowledge of the OFC 
gained  during  the use of TIMEDIAG/GENRAND was 
carried  forward  to  the processor-level  verification, where 
the  prior  learning was used to assist in the  integration of 
the OFC with the  rest of the  instruction unit and  to  debug 
areas  that  interfaced with the  OFC.  Second,  processor- 
level and system-level verification  were able  to  proceed 
more rapidly than previously because  the  OFC, as well as 
other designer-level tested logic designs, was functional 
soon  after  integration  into  the  larger  models. 
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Concluding remarks 
It is expected that  future  improvements in 
TIMEDIAG/GENRAND will include  the ability to cross- 
check the consistency of two interfacing functions’  timing 
diagram files and allow for individual  timing diagrams  to 
be driven by different clocks. The  expected  improvements, 
along with the  introduction of other low-level 
methodologies such  as formal verification, should assist 
verification engineers in testing  the  ever-increasing 
complexity of processor  and system  designs. 

Acknowledgments 
The  algorithms used in TIMEDIAG  and  GENRAND were 
refined through  numerous discussions with Ed Kaminski 
and  Dean Bair. Their  help in coding TIMEDIAG  and 
GENRAND  brought  the tool to life for  the many 
engineers who  have  used it since. The assistance of Mark 
Check  and  John Liptay in creating  the timing diagrams 
used on  their  operand  fetch  controls  helped bring the 
complex logic into  the  mainstream  simulation 
environments  ahead of schedule. 

*Trademark  or  registered  trademark of International  Business 
Machines  Corporation. 

591 

IBM J. RES. DEVELOP. VOL. 41 NO. 41.5 JULYiSEPTEMBER 1997 B. WILE 


