
The role
of two-cycle
simulation
in the S/390
verification
process

by Gary A. Van Huben

Microprocessor design techniques have
evolved to a point where large systems, such
as S/390@ servers, can be constructed using
relatively few, but very complex, application-
specific integrated circuits (ASICs). Delivery of
a quality design in a timely fashion requires
that several design activities progress
simultaneously, with different types of
verification used within the various design
disciplines. This paper discloses a simulation
method capable of functionally verifying a
physical implementation of the design at a
system level. The aggressive design schedule
undertaken on the S/390 Parallel Enterprise
Server G4 program required additional
advances in simulation beyond those
employed in the development of the IBM
Enterprise System/9000@ (ES/9000@) processor
family. A new type of cycle simulation was
developed to supplement the incumbent
strategy of using conventional cycle simulation
to verify system function combined with
Boolean equivalence tools to perform logical-
to-physical comparisons. This two-cycle
simulation method was invented to verify areas

such as logic built-in self-test (LBIST), array
built-in self-test (ABET), clock trees, firmware
level-sensitive scan design (LSSD) rings, and
large custom arrays, which are typically
omitted by existing system verification
methods. The creation of the two-cycle
simulation model is discussed, along with
several uses of the model and the types of
errors uncovered.

Introduction
One of the greatest problems surrounding large submicron
logic design projects today is the need to begin detailed
physical design of various components while the system-
level function is still being developed. This is particularly
apparent in large array designs where early floorplanning,
layout, and wiring analysis may cause several iterations of
the array design while the functional designers attempt to
simulate the interaction of the array controller with the
rest of the system. A common method for handling this
situation is to build a simulation model comprising the
actual control logic coupled to an array macro. As the
design matures, the array macro is updated to describe
the array behavior with greater accuracy. In today’s

Wopyright 1997 by International Business Machmes Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,

portion of this paper must be obtained from the Editor.

0018-8€46/97/$5.00 Q 1997 IBM

IBM J. RES. DEVELOP. VOL. 41 NO. 415 JULYiSEPTEMBER 1997 GARY A. VAN HUBEN

environment, time-to-market schedules do not include
sufficient time to update and maintain macros for all
components that require early detailed physical design.

surrounds verification of nonmainline functions such as
clocks and scan rings, where the behavior tends to be
abstracted or completely omitted from the register transfer
language (RTL) description. This is especially prevalent
in synthesized designs, where it is more desirable to allow
the synthesis and post-physical-design tools to perform
clock-balancing and scan-ring optimization. During the
development of the ES/9000* processor family, these
portions of the physical design were verified using specialized
tools which performed connection and electrical checks, but
never verified their operation during system-level functions.

One common approach to solving these verification
problems is the use of a circuit simulator to functionally
verify the operation of a physical design. This approach
has limitations, such as size and speed, which render it
impractical in large S/390* systems comprising millions of
gates. At the same time, the problem cannot be ignored,
since today’s technology advances allow large arrays and
control logic to fit on the same ASIC. This increases the
importance of finding problems prior to releasing the
design to manufacturing, since a single problem in an
array or clock circuit may render the system useless or
nonfunctional in a hardware test environment. The
remainder of the paper focuses on several uses of a two-
cycle simulation model to verify various functions of the
S/3Y0 Parallel Enterprise Server G4 machine.

Array verification
One of the differentiating factors in the G4 program was
the close interaction between the array and logic design
teams. Historically, arrays used in S/3Y0 processors were
treated as commodities where high-level behavioral
macros were used in simulation models. The actual array
designs were not truly verified in the system environment
until engineering hardware was exercised on the test floor.
Several factors in the G4 program rendered the array
verification a critical link to the success of the project. For
example, the performance of the machine relies heavily on
the implementation of the large arrays, especially the L1
and L2 caches. Since so much of the system function
depends on the interaction of the arrays with the
surrounding logic, i t was imperative to accurately verify
their function in a system environment prior to the initial
tape-out. In response to this need, a plan was established
to verify three aspects of the array design: “black box,”
internal array behavior, and array built-in self-test.

“Bluck box” Verification
As stated earlier, parallel design efforts played a key role

Another problem facing logic designers of large ASICs

594 in the success of the G4 program. For example, logic

simulation models were built as soon as sufficient I/O
information was available for the arrays. This meant that a
simplistic functional macro was essentially substituted for
several hierarchical levels of array design. As the array
design matured, changes were made which were intended
to improve the physical design while preserving the logical
behavior. Once this deviation occurred, the macro
representation used in the regular cycle-simulation model
became a “black box.” It thus became the responsibility
of the two-cycle model to verify these black boxes. For
example, the data buses associated with the L2 cache were
logically arranged in such a manner that the first 64 bits
represented the data and the last 8 bits represented the
error checking and correction (ECC) bits. All schematics
which interfaced with the L2 cache black box assumed this
convention. However, the cache-array designers found it
beneficial to scramble the bits in order to optimize timing
and wiring. Thus, a two-cycle model, which incorporated
the actual array schematics, was built to find mistakes in
which the incoming data were scrambled differently from
the outgoing data. Since many people were involved in the
detailed implementation of the black boxes, it was not
surprising that several mistakes of this kind were found.

A second aspect of the black box which required
verification was the logical timing of the read and write
operations. For example, many of the arrays utilized an
array clock which was aligned with a trigger clock. In
order to prevent write-through and LBIST problems, L1-
only latches were inserted between the array interface and
the actual static random-access memories (SRAMs). These
L1-only latches were used for the data path, the address,
and the write-enable signals. For a write operation to
occur in the real design, it necessitated both an L1 (latch)
clock and the array clock to propagate the data from the
interface through the L1 latches and into the SRAM. With
respect to the logic design, this translated into data being
written one full cycle after presentation to the array
interface. These characteristics had to be properly
modeled in the black box macro behavior for use in the
regular single-cycle simulation model. Sometimes these
characteristics were miscommunicated or improperly
coded in the high-level behavior, thus rendering the
results of the single-cycle simulation model invalid. Once
again, it was the responsibility of the two-cycle model to
verify that the arrays were operating in synergy with the
surrounding control logic.

The above approach was taken because most of the
black box was still in the conceptual design stage when
the need arrived for a functional single-cycle simulation
model. Certainly, an alternate approach is available for
situations where the underlying design is understood at
the time a simulation model is required. In this case, the
black box could be defined as the actual arrays and
registers, but would exclude the support logic and any

GARY A. VAN HUBEN IBM J. RES. DEVELOP. VOL. 41 NO. 415 JULYLSEPTEMBER 1997

physical design changes such as data scrambling. For
example, consider a macro which consists of an SRAM,
the support logic (for decoding address bits, enabling read
and write modes, multiplexing data ports, etc.), and
observation registers used for hardware debugging. In the
G4 design methodology, most of the design was unknown
at the time a functional simulation model was required.
Therefore, the entire macro was treated as a black box; a
simple array behavioral description was written to emulate
the correct logical function, but it omitted much of the
detail. Once the real design was available, a two-cycle
model ensured that the underlying detail did not break
any of the logical assumptions imparted in the black box
behavior. However, if the underlying detail is known, or
will be available in the required time, the alternate
approach would include the entire design in the single-
cycle model and would actually exercise the address
decoders, data port multiplexors, etc., but would black-box
the RAM and registers using a simplified single-cycle latch
and array primitive. Eventually a two-cycle model may be
desired to verify the real latch and RAM designs, but the
surrounding support and debugging logic will already have
been verified. This approach provides the advantage of
maintaining only a single macro design to service both
simulation environments. The substitution of latch and
array primitives can be handled by the tools themselves.
However, if the underlying macro detail is significant, or
the macro is subject to constant iteration, the single-cycle
functional simulation may experience a productivity delay
due to either reduced performance or constant churn.
Each candidate for black-boxing must be evaluated
independently on the basis of the goals, schedules,
characteristics, complexity of the design under
consideration, and the maturity of the simulation
environment. Depending on these factors, one approach
may be more desirable than the other.

Internal array behavioral verijicution
Once the array interface issues (such as data scrambling
and logical timing) were verified, emphasis was placed on
qualifying the behavioral representation of the internal
array design. In the G4 project, each array macro was
represented by an accurate VHDL [l] description. Unlike
the high-level black box behaviors which modeled basic
read and write operations, these behaviors described
all aspects of the array design, including responses to
nonmainline stimuli such as ABIST, LBIST, scan, and
device leakage (IDDQ) testing. The smaller arrays, such
as the buffers and register files, were verified using the
exhaustive array verification process discussed in a
companion paper in this issue [2]. However, the large
arrays such as the directories and caches used the
following deterministic array verification process to qualify
the behaviors. Qualification of these behaviors was

deemed critical in ensuring that the simulation results
were achieved against accurate behavioral representations
of the array circuit designs.

The first step in the deterministic array verification
(DAV) consisted of creating a series of test vectors for the
internal circuit simulator (Parch) in order to exercise the
physical design of the arrays. This step was performed by
the array designers using test vectors whose outcome was
known or predictable. This step was iterated until the
array designers felt they had enough test vectors to satisfy
them that the actual array circuitry was performing
properly.

process which takes Parch test patterns and converts them
to simulation test cases using an internal simulation
application program interface called SIMAPI. These
SIMAPI test cases could be used to exercise an
independent two-cycle model constructed from the
detailed array behavior. Since the Parch test patterns
contained both the input stimulus and the output
responses of the array I/O, they could produce self-
checking SIMAPI test cases by using the output responses
as expected results. A third step consisted of a derivative
of the two-cycle simulation model build process in which
pieces of the process were extracted and customized for
building automated stand-alone array models. All three
steps were integrated into the DAV process, which also
included several data management techniques to ensure
synchronization of the input Parch test patterns and array
behavior with the generated array two-cycle model and
SIMAPI simulation test cases.

The deterministic array verification process proved
to be very valuable in locating inaccuracies in the array
behaviors. Some examples of the kinds of problems
encountered include the following:

The next step necessitated development of a special

Array behavior when multiple late-select lines (which
are normally orthogonal) were activated simultaneously.
Array behavior when normally orthogonal operational
modes were activated simultaneously. An example of
this would be pulsing the scan clocks while ABIST was
active.
Array behavior during an unusual or illegal clock or
control sequence.

Although this technique does not guarantee that every
conceivable operation works correctly, careful generation
of Parch test patterns does result in thorough validation.
Furthermore, this technique provides the critical
verification link between the physical design and a
behavioral description capable of participating in high-
speed cycle simulation. By centering the system
verification strategy around cycle simulation, the
dependency on slower circuit and event simulators is 595

3UBEN IBM J . RES. DEVELOP. VOL. 41 NO. 415 J IULYBEPTEMBER 1997 GARY A. VAN I

reduced, and more sophisticated system-level functions
can be exercised.

Array built-in self-test (ABZST)
Once the behavioral descriptions of the arrays are
qualified either through exhaustive or deterministic array
verification, complex functions such as array built-in self-
test (ABIST) can be simulated. Using a combination of
the two-cycle model in conjunction with powerful
simulation engines such as ZFS (the internal cycle
simulator), the G4 project was able to simulate entire
ABIST sequences on all of the large arrays in the system.
Some arrays were exercised using a suite of ABIST
programs, each averaging several thousand cycles, while
other arrays required one or two programs which ran
several hundred thousand cycles. This approach not only
enabled verification of the ABIST logic and the arrays, but
the simulations concluded that the clock logic was working
properly, multiple copies of the same array macros ran
identically, and all interconnections were properly wired.

Perhaps one of the most interesting uses of the ABIST
simulation was in the area of multiple-input shift-register
(MISR) signature predictions for those arrays which were
included in an early-release test chip. By the time the
array behaviors and two-cycle model were validated, the
arrays on the test chip had been thoroughly examined in
the laboratory. Sufficient ABIST exercises had been run in
the laboratory to produce what were believed to be
“golden” MISR signatures. These same ABIST programs
were injected into the two-cycle model to ensure that
the same MISR signatures could be obtained through
simulation. This exercise served as an ABIST certification
process for the two-cycle model which proved beneficial in
two ways. The primary benefit came when the design was
modified in a way which changed the MISR signatures.
The two-cycle model was used to predict the new
signatures so that manufacturing would know, upon
producing the first wafer of the new tape-out, whether the
arrays were defective. A secondary benefit occurred in the
latter stages of the project, when changes were made to
the array design which were not intended to change the
MISR signatures. Once again, the two-cycle model was
used to immediately confirm that the expected MISR
signatures were still the “golden” signatures.

Scan-ring simulation
Unlike its predecessors, the G4 machine was heavily
dependent upon LSSD scanning for many aspects of
power-on, system reset, and hardware initialization.
Therefore, it was critical to find a means of verifying the
thousands of registers linked on the scan chain. The two-
cycle model enabled new types of verification tests to be
developed to certify the scan operation at several levels

596 of the design. Although it is possible for a single-cycle

simulation model, using simple latch models, to test
the scan connections, the two-cycle model affords one
the opportunity to simulate an actual scan operation
interacting with the real system clocks. This level of detail
requires an accurate multiclock latch model which can
accept all of the necessary clock connections and mimic
the Ll-to-L2 transitions during the proper clock phases.
Opportunities exist in this environment to detect
nonscannable pieces of the design due to errors in the
clock connections or mistakes in the clock-sequencing
logic. Since it is still beyond the practical limits of cycle
simulators to emulate all of the scanning necessary to
power-on the entire machine, the problem was attacked
in a piecewise fashion.

First, the scan chain on each chip was simulated to
ensure that every shift-register latch (SRL) was properly
connected. For both the processor and L2 chips, the
architectural verification program (AVP) or random test-
case simulation environment made possible a clever
approach to verifying the scan operation. The chip would
run several thousand cycles of normal system operation,
and at a random point simulation would pause. The
system mode registers would be saved, and the chip would
be placed into scan mode. The chip’s scan clocks would be
pulsed once for each register on the chip, with the chip
scan-out pin wrapped back to the scan-in pin. In effect,
the entire scan ring was rotated until data in a particular
register propagated through every other register and back
to their starting point. Once completed, the chip would be
restored to system mode and the system clocks would
resume. As long as the scan rings were connected
properly, the random or AVP test-case simulation would
continue flawlessly, with the scan operation having no
impact. In order to ensure that the chip was really
scanning, the scan-out pin was monitored for a random
data pattern. In addition, the test was also run using an
incorrect number of scan-clock pulses to ensure that the
random simulation failed.

Upon reaching system simulation, a final scan-ring
check was made to certify the interconnections among all
of the chips, as well as proper operation of the clock chip.
This test usually consisted of loading a known data pattern
into a predetermined position in the scan chain. After
instructing the clock chip to perform the required number
of scan-clock pulses, the data stream was monitored for
the expected pattern. A combination of the exhaustive
scan-ring test at the chip level, coupled with the
certification of the clock operation and scan connections
at the system level, provided the necessary confidence
that the hardware could be initialized via scanning.

Logic built-in self-test (LBIST)
Although the concept of logic built-in self-test (LBIST)
has been around for many SI390 generations, none of the

GARY A. VAN HUBEN IBM J. RES. DEVELOP. VOL. 41 NO. 415 JULYISEPTEMBER 1997

prior verification environments afforded the opportunity
to test the logic design in a system configuration prior to
tape-out. Not only did the two-cycle model permit the
LBIST logic to be exercised to the point of generating a
full-system signature, but it assisted greatly in ensuring
that the clock control logic could sequence the processor
and L2 chips through an LBIST operation.

Another application of the LBIST verification was to
use the two-cycle model to cross-check the test-pattern
generation model. This proved to be very beneficial, since
many pieces of the test-pattern generation methodology
were developed during the G4 project. With the rising
costs of processing test data on wafers at the foundries,
efforts to minimize the generation of erroneous test data
translated to real savings in development expense. This
was achieved by generating LBIST signatures on the two-
cycle model in a system environment, and comparing them
with similarly generated signatures on the test-pattern
generation model. Initially, a goal of attaining ten
matching signatures was established. As a result of this
endeavor, errors were discovered in the test pattern
generation tools, as well as in the macros used to
represent nonstandard components such as arrays, and in
the custom latches in the processor. Upon rectifying these
modeling discrepancies, an environment was created to
permit golden LBIST MISR predictions for the G4 chip set.

Rounding out the LBIST verification was another type
of test known as an ac-skewed load test, in which the L1
and L2 portions of a latch are loaded with orthogonal
values. The trigger clock is applied first, and is followed
on the next cycle by the latch clock. This type of test is
normally used with real hardware to ensure that the L2
can perform the required transition during the C2 cycle
and can physically deliver the new state to the next L1 in
the scan ring on the following C1 cycle. Since the two-
cycle model ignores physical timing constraints, it plays
no part in verifying the ac functionality of the machine.
However, it proved valuable in detecting modeling
problems with the latches and arrays. These escaped
functional simulation, because functional simulation always
starts with matching data in the L1 and L2 portions of a
latch. This exercise further assisted in instilling the proper
confidence level in the behavioral representation of many
of the fundamental design components.

Clock verification
Errors in the design of clock logic often result in hardware
engineering changes, yet prior S/390 machines neglected
to simulate the gate-level design of the clock logic at the
system level. Although it is true that certain components
of the clock circuitry, such as phase-locked loops, cannot
be simulated in a cycle simulator, much of the design in
the complex S/390 clock environment lends itself well to
two-cycle simulation.

IBM J. RES. DEVELOP, VOL. 41 NO. 415 JULYiSEPTEMBER 1997

In the G4 machine, a multitude of test plans were
developed to exercise different facets of the clock logic.
The design under test covered the clock chip in the system
as well as the on-product clock-generation (OPCG) logic
contained in the processor and L2 chips. The following are
examples of the types of tests run:

Cycling the clock chip through the various modes such
as LBIST, ABIST, and SOCE (Stop On Count or
Error), and ensuring that the proper clock sequences
were generated. This test uncovered a design problem in
the clock chip in which the resulting number of clock
pulses generated for a SOCE command were incorrect.
The serial interface between the clock chip and the
processor was monitored for proper operation.
Various types of clock stoplstart sequences were run
to ensure that all of the chips in the system stopped
and started in tandem. One of these tests uncovered a
problem in which the arrays could not be written using
chip single-cycle mode. Fortunately the arrays worked in
system single-cycle mode, which allowed the specialized
millicode to be rewritten without the need for a
hardware engineering change.

exercised, all of the logic required to scan-initialize it
to the various run-time modes was verified.

Although the phase-locked loop itself could not be

The two-cycle model also proved beneficial in isolating a
design problem first discovered on the engineering test
floor. The model proved to be accurate enough to uncover
a problem in an array design in which a certain start/stop
sequence of the clocks resulted in an extra write operation
taking place in the array. This eventually led to a new type
of clock-verification test for future tape-outs.

Design data verification
An integral part of the G4 verification plan was the use of
simulation to verify as much of the firmware design data
as possible. This was especially important because
development of much of the code was isolated from the
hardware design. In addition, pieces of the engineering
hardware test plan depended heavily on the ability to load
specialized millicode into the caches via the design data.
Therefore, several types of special-purpose two-cycle
models were built to remove as many design data errors
as possible prior to receiving engineering test hardware.

millicode which was loaded into the L2 cache. Although
this code was locally developed, it had to interface with
S/390-level initial millicode load (IML) code. Since this
test was designed to run on a nonstandard hardware
configuration, it was imperative to ensure that the existing
SI390 code could support this type of engineering debug
exercise. The next test simulated the array characterization

One model was established solely to test the specialized

GARY A. VAN HUBEN

data, which describe the manner in which the array
control logic must be scanned in order to perform atomic
read and write operations on the arrays. The process for
creating these data was prone to mistakes. so the two-
cycle model served as a qualification tool for the array
characterization data. Several problems were encountered
in which the characterization data were incorrectly
initializing the array control logic.

at a system level was for verification of the service
element software. In this environment, the actual service
element code was attached to the two-cycle model through
a special interface called the hypervisor. The role of the
hypervisor was to intercept the signals between the service
element and hardware interface and to replace them with
the corresponding simulation application program
interface (SIMAPI) commands to load and read the
appropriate registers in the model. Use of the two-cycle
model in this fashion enables complex Si390 software to
be debugged and tested to gain preliminary confidence
prior to enlisting expensive test-floor machine time to run
the code.

Correlation with single-cycle sirnulation
models
One of the most powerful weapons in the Ci4 verification
methodology is the exteusive use of cycle simulation at
various levels of the design ranging from the functional
units comprising the processor all the way up to
symmetrical multiprocessor (SMP) systems with multiple
processors. Although the most accurate form of simulation
would be to use a two-cycle model exclusively, this is
simply impractical. To begin with, the model requires the
physical design to reach a certain state of completeness,
which is counterproductive to rapidly advancing the logic
design. Second, a two-cycle model runs twice as slowly as
a single-cycle model, and the complexity of the G4
simulation test plan requires the faster single-cycle model.
In addition, the models focus primarily on mainline system
functions. This translates into models utilizing numerous
black boxes which sacrifice slower gate-level accuracy for
faster high-level descriptions. These high-level macros are
often written early in the design cycle, while the details of
the black boxes are still being implemented. In this type of
environment, the risk exists that a high-level description
was based on an inaccurate assumption, or that a design
change later in the cycle was never propagated back into
the high-level macro.

To minimize this risk, the two-cycle model was used to
cross-check the single-cycle model. In the case of the L2,
the random simulation environment was enhanced such
that the same code could exercise either type of model.
This permitted the simulation team to select a seed from a

598 single-cycle simulation run and exercise it on both models.

Perhaps the most impressive use of the two-cycle model

In addition, several functional simulation test cases would
be run against both models to ensure that the physical
design exhibited the correct functional behavior.
Performing both of these activities prior to tape-out
helped instill confidence in the congruence between the
two simulation models. This, in turn, assisted in validating
the millions of single-cycle simulation results. In the case
of the processor, correlation with the single-cycle model
was aided by an environment centered around AVPs.
Thus, it was simply a matter of running the same AVPs on
both models and ensuring that the results were identical.

Results and conclusions
Perhaps the greatest testimonial bestowed on the two-
cycle simulation effort is the integral role it played in
ensuring that the circuit design functioned in a manner
equivalent to that of the corresponding simulation models.
Evidence of this became apparent with the first hardware
release, which powered on in an unprecedented fashion by
allowing the test team to exercise all supported mainline
function. The contribution associated with two-cycle
simulation is more apparent when contrasted with the test-
floor exper~ence on past S/390 machines. For example, in
an earlier prqect a coding problem in a checking tool
permitted a number of chips to be released with
nonfunctional scan rings. Although the functional logic
was fine, this error required an emergency hardware
release to allow engineering test to continue. In another
escape, the scanning function was inhibited by incorrect
implementation of tie-ups and tie-downs on some of the
physical books. During the G4 project, these types of
problems were detectable with two-cycle simulation.

This is not to say that two-cycle simulation is a
guarantee to a successful power-on. As with any
simulation endeavor, the results are only as good as the
model and the type of test vectors exercised. In the initial
Ci4 hardware, a problem was encountered on the test floor
with respect to a window condition involving the scanning
operation. The two-cycle simulation model verified the
scanning operation using only a single test case in which
the normal system clocks were always stopped during the
trigger phase. However, a design problem was found in
some of the arrays such that interrupting the system clocks
to perform scanning during the latch phase could result in
a one-cycle window where the output data came from the
wrong address. The problem was accurately reproduced
and debugged in a two-cycle simulation environment, and
the scan-verification test was enhanced to prevent this type
of error on subsequent releases.

Many advances have been made in recent history with
respect to large-scale simulation. Some, such as event
simulators, help close the accuracy gap by allowing the
designer to simulate a behavioral representation
containing logical and physical design characteristics.

GARY A. VAN HUBEN IBM J RES DEVELOP. VOL. 41 NO. 415 JULYISEPlEMBER 1997

I Other advances, such as cycle simulation, focus on speed Gary A. Van Huben 1BM Systerni3YU Division, 522 South
and performance by assuming that certain physical
constraints are met. Finally, advances in the area of
cosimulation permit design components accustomed to
event simulation to interact with components that benefit
from cycle simulation. However, two-cycle simulation
provides a new dimension to the verification world by
affording a method to exploit the performance of regular
single-cycle simulation and augment it with system-level
operations governed by the intricacies of the physical design.

Road, Poughkeepsie, New York 12601 (vurzllubenCMvnct.ibnl.com).
Mr. Van Huben joined IBM in 1986 and is currently an
Advisory Engineer. He has held various design assignments
involving the Si390 I/O subsystem, central processor, and
storage controller. His most recent assignment was logic
design for the Si390 G4 L2 cache and dataflow controllers. In
addition to logic design, Mr. Van Huben has also worked on
various design processes and methodologics within the Si390
organization. He served as technical team leader for the data
management and design control process governing the Si390
ESiY000 product line. Mr. Van Huben received his B.S. in
electrical and computer engineering from Clarkson University
in 1986; he currently holds two IBM Invention Achievement

Acknowledgments
None of the disclosed advances in simulation verification
would have been possible without the contribution of
many individuals. The author would especially like to
acknowledge both the abundant contributions of Rick
Seigler and Daniel Beece to the development of the two-
cycle simulation model and their assistance in developing
many of these verification techniques. The following
people also deserve mention for their outstanding
contributions in the areas of two-cycle verification as well
as for providing valuable information for this paper: Bruce
Wile, William Huott, Timothy McNamara, Timothy
Koprowski, Steven Licker, Edward Kaminski, Jr., Thomas
Gilbert, Ken Shepard, Thomas Foote, Bryan Robbins, Tim
Charest, William Dachtera, Cara Hanson, and Michael
Mullen. Finally, a special thanks to Bing-Lun Chu for his
thorough review and valuable contributions to this paper.

plateau awards for nine patent filings.

*Trademark or registered trademark of International Business
Machines Corporation.

References
1. “VHSIC Hardware Description Language,” IEEE Standard

NY 10017, 1994.
1076, IEEE Standards Board, 345 E. 47th St., New York,

2. K. L. Shepard, S. M. Carey, E. K. Cho, B. W. Curran,
R. F. Hatch, D. E. Hoffman, S. A. McCabe, G. A.
Northrop, and R. Seigler, “Design Methodology for the
S/390 Parallel Enterprise Server G4 Microprocessor,” 1BM
J. Res. Develop. 41, 515-547 (1997, this issue).

Received December 4, 1996; accepted for publicution
May 5, 1997

IBM J. RES. DEVELOP. VOL. 41 NO. 415 JULYiSEPTEMBER 1997

599

GAKY A. VAN HUBEN

