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Microprocessor  design  techniques have 
evolved to a point where  large  systems,  such 
as  S/390@  servers,  can be constructed using 
relatively  few, but very  complex,  application- 
specific integrated circuits (ASICs). Delivery  of 
a quality  design in a  timely  fashion  requires 
that several  design activities progress 
simultaneously, with different  types  of 
verification used within the  various  design 
disciplines.  This  paper  discloses a simulation 
method  capable  of  functionally  verifying  a 
physical  implementation  of  the  design  at  a 
system  level.  The  aggressive  design  schedule 
undertaken  on  the S/390  Parallel  Enterprise 
Server G4 program  required  additional 
advances in simulation  beyond  those 
employed in the  development  of  the  IBM 
Enterprise System/9000@  (ES/9000@) processor 
family. A new type  of  cycle  simulation  was 
developed to supplement the incumbent 
strategy of using  conventional  cycle  simulation 
to verify  system function combined with 
Boolean  equivalence tools to perform logical- 
to-physical comparisons.  This two-cycle 
simulation  method was invented to verify  areas 

such  as logic built-in self-test (LBIST), array 
built-in self-test (ABET), clock trees,  firmware 
level-sensitive  scan  design (LSSD) rings,  and 
large  custom  arrays,  which  are  typically 
omitted by  existing  system verification 
methods.  The creation  of  the two-cycle 
simulation  model is discussed,  along with 
several  uses  of  the  model  and  the  types of 
errors uncovered. 

Introduction 
One of the  greatest  problems  surrounding  large  submicron 
logic design projects today is the  need  to begin detailed 
physical design of various  components while the system- 
level function is still being  developed.  This is particularly 
apparent in large  array designs where early floorplanning, 
layout,  and wiring analysis may cause  several  iterations of 
the  array design while the  functional  designers  attempt  to 
simulate  the  interaction of the  array  controller with the 
rest of the system. A common  method for handling this 
situation is to build  a simulation  model comprising the 
actual  control logic coupled  to  an  array  macro. As the 
design matures,  the  array  macro is updated  to  describe 
the  array  behavior with greater accuracy. In today’s 
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environment,  time-to-market  schedules  do  not  include 
sufficient time  to  update  and  maintain  macros  for all 
components  that  require early detailed physical design. 

surrounds verification of nonmainline  functions such as 
clocks and scan rings, where  the behavior tends  to  be 
abstracted or completely  omitted  from  the  register  transfer 
language  (RTL)  description.  This is especially prevalent 
in synthesized designs, where it is more  desirable to allow 
the synthesis and post-physical-design tools  to  perform 
clock-balancing and scan-ring optimization.  During  the 
development of the ES/9000* processor family, these 
portions of the physical design were verified using specialized 
tools which performed  connection  and electrical checks, but 
never verified their  operation  during system-level functions. 

One  common  approach  to solving these verification 
problems is the use of a  circuit simulator  to functionally 
verify the  operation of a physical design. This  approach 
has  limitations, such  as  size and  speed, which render it 
impractical in large S/390* systems  comprising  millions of 
gates. At  the  same  time,  the  problem  cannot  be  ignored, 
since today’s technology advances allow large  arrays and 
control logic to fit on  the  same  ASIC.  This  increases  the 
importance of finding problems  prior  to  releasing  the 
design to  manufacturing, since  a  single problem in an 
array  or clock circuit may render  the system  useless or 
nonfunctional in a hardware test environment.  The 
remainder of the  paper focuses on several  uses of a two- 
cycle simulation  model  to verify various  functions of the 
S/3Y0 Parallel  Enterprise  Server G4 machine. 

Array verification 
One of the  differentiating  factors in the G4 program was 
the close interaction between the  array  and logic design 
teams. Historically, arrays used in S/3Y0 processors were 
treated as commodities  where high-level  behavioral 
macros were  used in simulation  models.  The  actual  array 
designs were  not truly  verified in the system environment 
until  engineering  hardware was exercised on the test  floor. 
Several factors in the G4 program  rendered  the  array 
verification  a  critical  link to  the success of the  project.  For 
example, the  performance of the machine relies heavily on 
the  implementation of the  large arrays,  especially the L1 
and L2 caches.  Since so much of the system function 
depends  on  the  interaction of the arrays with the 
surrounding logic, i t  was imperative  to accurately verify 
their  function in  a system environment  prior  to  the  initial 
tape-out. In response  to this need, a plan was established 
to verify three  aspects of the  array design:  “black box,” 
internal  array  behavior,  and  array built-in self-test. 

“Bluck box” Verification 
As stated  earlier,  parallel design efforts played  a key role 

Another  problem facing logic designers of large  ASICs 

594 in the success of the G4 program.  For  example, logic 

simulation  models  were built  as soon  as sufficient I/O 
information was available for  the arrays. This  meant  that a 
simplistic functional  macro was essentially substituted for 
several hierarchical levels of array design.  As the  array 
design matured,  changes  were  made which were  intended 
to  improve  the physical design  while  preserving the logical 
behavior.  Once this deviation  occurred,  the  macro 
representation used in the  regular cycle-simulation model 
became a  “black box.” It  thus  became  the responsibility 
of the two-cycle model  to verify these black boxes. For 
example, the  data  buses  associated with the L2 cache  were 
logically arranged in such  a manner  that  the first 64 bits 
represented  the  data  and  the last 8 bits  represented  the 
error checking and  correction  (ECC) bits.  All schematics 
which interfaced with the L2 cache black box assumed this 
convention.  However,  the  cache-array  designers  found it 
beneficial to scramble  the bits  in order  to  optimize timing 
and wiring. Thus, a two-cycle model, which incorporated 
the  actual  array  schematics, was built to find mistakes in 
which the incoming data  were  scrambled differently from 
the  outgoing  data. Since  many people  were involved in the 
detailed  implementation of the black  boxes,  it  was not 
surprising  that several mistakes of this kind were  found. 

A second  aspect of the black box which required 
verification was the logical  timing of the  read  and write 
operations.  For  example, many of the  arrays utilized an 
array clock which was aligned with  a trigger clock. In 
order  to  prevent  write-through  and  LBIST  problems, L1- 
only latches  were  inserted  between  the  array  interface  and 
the  actual  static  random-access  memories  (SRAMs).  These 
L1-only latches  were used for  the  data  path,  the  address, 
and  the  write-enable signals. For a write  operation  to 
occur in the  real design,  it necessitated  both  an L1 (latch) 
clock and  the  array clock to  propagate  the  data  from  the 
interface  through  the  L1  latches  and  into  the  SRAM.  With 
respect  to  the logic design, this translated  into  data  being 
written  one full cycle after  presentation  to  the  array 
interface.  These  characteristics  had  to  be  properly 
modeled in the black  box macro  behavior  for use  in the 
regular single-cycle simulation  model.  Sometimes  these 
characteristics were miscommunicated  or  improperly 
coded in the high-level behavior,  thus  rendering  the 
results of the single-cycle simulation  model invalid. Once 
again, it was the responsibility of the two-cycle model  to 
verify that  the  arrays  were  operating in synergy with the 
surrounding  control logic. 

The  above  approach was taken  because most of the 
black box was still  in the  conceptual design stage  when 
the  need  arrived  for a functional single-cycle simulation 
model. Certainly,  an  alternate  approach is available for 
situations  where  the underlying  design is understood  at 
the  time a simulation  model is required. In this case,  the 
black box could  be defined as  the  actual  arrays  and 
registers, but would  exclude the  support logic and any 
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physical  design changes such as  data scrambling. For 
example, consider a macro which consists of an  SRAM, 
the  support logic (for  decoding  address bits, enabling  read 
and  write  modes, multiplexing data  ports,  etc.),  and 
observation  registers used for  hardware debugging. In  the 
G4 design methodology, most of the design was unknown 
at  the  time a functional simulation model was required. 
Therefore,  the  entire  macro was treated as  a  black box; a 
simple array  behavioral  description was written to emulate 
the  correct logical function,  but it omitted much of the 
detail.  Once  the  real design  was  available,  a two-cycle 
model  ensured  that  the underlying detail did not  break 
any of the logical assumptions  imparted in the black box 
behavior.  However, if the underlying detail is known, or 
will be available  in the  required  time,  the  alternate 
approach would include  the  entire design in the single- 
cycle model  and would  actually  exercise the  address 
decoders,  data  port multiplexors, etc.,  but would  black-box 
the  RAM  and  registers using  a simplified single-cycle latch 
and  array primitive.  Eventually  a two-cycle model may be 
desired  to verify the  real latch and  RAM designs, but  the 
surrounding  support  and debugging logic will already have 
been verified. This  approach provides the  advantage of 
maintaining only a  single macro design to service both 
simulation  environments.  The  substitution of latch  and 
array primitives can  be  handled by the  tools themselves. 
However, if the underlying macro  detail is significant, or 
the  macro is subject to  constant  iteration,  the single-cycle 
functional  simulation may experience a  productivity  delay 
due  to  either  reduced  performance  or  constant  churn. 
Each  candidate  for black-boxing  must be  evaluated 
independently on the basis of the goals, schedules, 
characteristics, complexity of the design under 
consideration,  and  the  maturity of the  simulation 
environment.  Depending on these  factors,  one  approach 
may be  more  desirable  than  the  other. 

Internal array behavioral  verijicution 
Once  the  array  interface issues (such  as  data scrambling 
and logical  timing) were verified, emphasis was placed on 
qualifying the  behavioral  representation of the  internal 
array design. In  the G4 project,  each  array  macro was 
represented by an  accurate  VHDL [l] description.  Unlike 
the high-level  black  box behaviors which modeled basic 
read  and write operations,  these  behaviors  described 
all aspects of the  array design,  including responses  to 
nonmainline stimuli such as ABIST,  LBIST, scan,  and 
device leakage  (IDDQ) testing. The  smaller arrays,  such 
as the  buffers  and  register files, were verified using the 
exhaustive array verification process discussed in a 
companion  paper in this issue [2]. However, the  large 
arrays  such  as the  directories  and  caches used the 
following deterministic  array verification process  to qualify 
the behaviors.  Qualification of these  behaviors was 

deemed critical  in ensuring  that  the  simulation  results 
were achieved against  accurate  behavioral  representations 
of the  array circuit  designs. 

The first step in the  deterministic  array verification 
(DAV) consisted of creating a series of test  vectors  for  the 
internal circuit simulator  (Parch) in order  to exercise the 
physical  design of the  arrays.  This  step was performed by 
the  array  designers using test  vectors whose outcome was 
known or  predictable.  This  step was iterated  until  the 
array  designers  felt  they  had  enough  test  vectors  to satisfy 
them  that  the  actual  array circuitry was performing 
properly. 

process which takes  Parch  test  patterns  and  converts  them 
to  simulation  test  cases using an  internal  simulation 
application  program  interface called SIMAPI.  These 
SIMAPI  test  cases could be used to exercise an 
independent two-cycle model  constructed  from  the 
detailed  array  behavior. Since the  Parch  test  patterns 
contained  both  the  input  stimulus  and  the  output 
responses of the  array  I/O, they  could produce self- 
checking SIMAPI  test cases by using the  output  responses 
as expected results.  A third  step consisted of a  derivative 
of the two-cycle simulation  model build process in which 
pieces of the  process  were  extracted  and  customized  for 
building automated  stand-alone  array models.  All three 
steps were integrated  into  the  DAV process, which also 
included several data  management  techniques  to  ensure 
synchronization of the  input  Parch  test  patterns  and  array 
behavior with the  generated  array two-cycle model  and 
SIMAPI  simulation  test cases. 

The  deterministic  array verification process  proved 
to  be very valuable in locating inaccuracies in the  array 
behaviors. Some examples of the kinds of problems 
encountered  include  the following: 

The next step  necessitated  development of a  special 

Array  behavior when multiple  late-select  lines (which 
are normally orthogonal)  were  activated simultaneously. 
Array  behavior when  normally orthogonal  operational 
modes  were  activated simultaneously. An  example of 
this would be pulsing the scan  clocks while ABIST was 
active. 
Array  behavior  during  an  unusual  or illegal clock or 
control  sequence. 

Although this technique  does  not  guarantee  that every 
conceivable operation works  correctly, careful  generation 
of Parch  test  patterns  does  result in thorough  validation. 
Furthermore,  this  technique provides the critical 
verification  link between  the physical design and a 
behavioral  description  capable of participating in  high- 
speed cycle simulation. By centering  the system 
verification strategy  around cycle simulation,  the 
dependency  on slower  circuit and  event  simulators is 595 
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reduced,  and  more  sophisticated system-level functions 
can  be exercised. 

Array built-in self-test (ABZST) 
Once  the  behavioral  descriptions of the  arrays  are 
qualified either  through exhaustive or  deterministic  array 
verification,  complex functions such as  array built-in  self- 
test  (ABIST)  can  be  simulated.  Using a combination of 
the two-cycle model in conjunction  with  powerful 
simulation  engines such as  ZFS  (the  internal cycle 
simulator),  the G4 project was able  to  simulate  entire 
ABIST  sequences on all of the  large  arrays in the system. 
Some  arrays  were exercised  using  a suite of ABIST 
programs,  each averaging several  thousand cycles, while 
other  arrays  required  one  or two programs which ran 
several  hundred  thousand cycles. This  approach  not only 
enabled verification of the  ABIST logic and  the arrays, but 
the  simulations  concluded  that  the clock  logic  was  working 
properly,  multiple  copies of the  same  array  macros  ran 
identically, and all interconnections  were  properly wired. 

Perhaps  one of the  most  interesting  uses of the  ABIST 
simulation was in  the  area of multiple-input  shift-register 
(MISR)  signature  predictions  for  those  arrays which were 
included  in  an  early-release  test chip. By the  time  the 
array  behaviors  and two-cycle model  were  validated,  the 
arrays on the  test  chip  had  been  thoroughly  examined in 
the  laboratory. Sufficient ABIST exercises had  been  run in 
the  laboratory  to  produce  what  were believed to  be 
“golden”  MISR  signatures.  These  same ABIST programs 
were  injected  into  the two-cycle model  to  ensure  that 
the  same  MISR  signatures  could  be  obtained  through 
simulation.  This exercise served  as  an  ABIST  certification 
process  for  the two-cycle model which proved beneficial  in 
two ways. The  primary  benefit  came when the design was 
modified  in  a way which changed  the  MISR  signatures. 
The two-cycle model was used  to predict the new 
signatures so that  manufacturing would  know, upon 
producing  the first  wafer of the new tape-out,  whether  the 
arrays  were defective.  A secondary  benefit  occurred in the 
latter  stages of the  project,  when  changes  were  made  to 
the  array design which were  not  intended  to  change  the 
MISR  signatures.  Once  again,  the two-cycle model was 
used  to  immediately confirm that  the  expected  MISR 
signatures  were still the  “golden”  signatures. 

Scan-ring  simulation 
Unlike  its  predecessors,  the G4 machine was heavily 
dependent  upon LSSD scanning  for many aspects of 
power-on, system reset,  and  hardware  initialization. 
Therefore, it  was critical  to find a means of verifying the 
thousands of registers  linked  on  the  scan  chain.  The two- 
cycle model  enabled new  types of verification tests  to  be 
developed  to certify the scan operation  at  several levels 

596 of the design. Although it  is  possible for a  single-cycle 

simulation  model, using simple  latch models, to  test 
the  scan  connections,  the two-cycle model  affords  one 
the  opportunity  to  simulate  an  actual scan operation 
interacting with the  real system clocks. This level of detail 
requires  an  accurate multiclock latch  model which can 
accept all of the necessary  clock connections  and mimic 
the  Ll-to-L2  transitions  during  the  proper clock phases. 
Opportunities exist in this  environment  to  detect 
nonscannable pieces of the design due  to  errors  in  the 
clock connections  or  mistakes in the clock-sequencing 
logic. Since  it is still beyond  the  practical limits of cycle 
simulators  to  emulate all of the  scanning necessary to 
power-on  the  entire  machine,  the  problem was attacked 
in  a  piecewise fashion. 

First,  the scan chain  on  each  chip was simulated  to 
ensure  that every shift-register  latch  (SRL) was properly 
connected.  For  both  the  processor  and  L2 chips, the 
architectural verification program  (AVP)  or  random  test- 
case  simulation  environment  made possible  a  clever 
approach  to verifying the scan operation.  The  chip would 
run  several  thousand cycles of normal system operation, 
and  at a random  point  simulation would pause.  The 
system mode  registers would be  saved,  and  the  chip would 
be  placed  into  scan  mode.  The chip’s scan  clocks  would be 
pulsed once  for  each  register on the  chip, with the  chip 
scan-out  pin  wrapped back to  the scan-in  pin. In  effect, 
the  entire  scan ring  was rotated  until  data in  a particular 
register  propagated  through every other  register  and  back 
to  their  starting  point.  Once  completed,  the  chip would be 
restored  to system mode  and  the system  clocks  would 
resume. As long  as  the scan  rings were  connected 
properly,  the  random  or  AVP  test-case  simulation would 
continue flawlessly, with the  scan  operation having no 
impact.  In  order  to  ensure  that  the  chip was really 
scanning, the  scan-out  pin was monitored  for a random 
data  pattern.  In  addition,  the  test was also  run using an 
incorrect  number of scan-clock pulses  to  ensure  that  the 
random  simulation failed. 

Upon  reaching system simulation, a  final scan-ring 
check was made  to certify the  interconnections  among all 
of the chips, as well as proper  operation of the clock  chip. 
This  test usually consisted of loading a  known data  pattern 
into a predetermined  position in the scan chain.  After 
instructing  the clock chip  to  perform  the  required  number 
of scan-clock  pulses, the  data  stream was monitored  for 
the  expected  pattern. A combination of the exhaustive 
scan-ring test  at  the  chip level, coupled with the 
certification of the clock operation  and  scan  connections 
at  the system  level, provided  the necessary confidence 
that  the  hardware  could  be initialized via scanning. 

Logic  built-in self-test (LBIST) 
Although  the  concept of logic  built-in self-test  (LBIST) 
has  been  around  for many SI390 generations,  none of the 
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prior verification environments  afforded  the  opportunity 
to  test  the logic design  in  a  system  configuration prior  to 
tape-out.  Not only did  the two-cycle model  permit  the 
LBIST logic to  be exercised to  the  point of generating a 
full-system signature,  but it assisted greatly in ensuring 
that  the clock control logic could sequence  the  processor 
and L2 chips  through  an LBIST operation. 

Another  application of the  LBIST verification  was to 
use  the two-cycle model  to cross-check the  test-pattern 
generation model. This proved to  be very beneficial,  since 
many pieces of the  test-pattern  generation  methodology 
were  developed  during  the G4 project.  With  the rising 
costs of processing test  data  on  wafers  at  the  foundries, 
efforts  to minimize the  generation of erroneous  test  data 
translated  to  real savings  in development  expense.  This 
was  achieved by generating  LBIST  signatures  on  the two- 
cycle model in a  system environment,  and  comparing  them 
with  similarly generated  signatures on the  test-pattern 
generation model.  Initially,  a  goal of attaining  ten 
matching  signatures was established.  As a result of this 
endeavor,  errors  were discovered  in the  test  pattern 
generation  tools, as well as in the  macros used to 
represent  nonstandard  components such  as arrays,  and in 
the  custom  latches in the  processor.  Upon rectifying these 
modeling  discrepancies,  an  environment was created  to 
permit  golden  LBIST  MISR  predictions for  the G4 chip set. 

Rounding  out  the  LBIST verification  was another type 
of test known as  an ac-skewed  load test, in which the  L1 
and L2 portions of a latch  are  loaded with orthogonal 
values. The trigger  clock is applied first, and is followed 
on  the next cycle by the  latch clock. This type of test is 
normally  used  with real  hardware  to  ensure  that  the  L2 
can  perform  the  required  transition  during  the C2 cycle 
and  can physically deliver  the new state  to  the next L1 in 
the  scan ring on  the following C1 cycle. Since the two- 
cycle model  ignores physical timing  constraints, it plays 
no  part in verifying the  ac  functionality of the machine. 
However, it  proved valuable in detecting  modeling 
problems with the  latches  and arrays. These  escaped 
functional  simulation,  because  functional  simulation always 
starts with matching  data in the  L1  and  L2  portions of a 
latch. This exercise further assisted  in  instilling the  proper 
confidence level in the  behavioral  representation of many 
of the  fundamental design components. 

Clock verification 
Errors in the design of clock logic often  result in hardware 
engineering changes,  yet prior S/390 machines  neglected 
to  simulate  the gate-level  design of the clock logic at  the 
system level. Although it is true  that  certain  components 
of the clock  circuitry, such as phase-locked  loops,  cannot 
be  simulated in  a cycle simulator, much of the design  in 
the  complex S/390 clock environment  lends itself well to 
two-cycle simulation. 
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In  the G4 machine, a multitude of test  plans  were 
developed  to exercise different  facets of the clock logic. 
The design under  test  covered  the clock chip in the system 
as well as  the  on-product  clock-generation  (OPCG) logic 
contained in the  processor  and  L2 chips. The following are 
examples of the types of tests  run: 

Cycling the clock chip  through  the  various  modes such 
as  LBIST, ABIST,  and  SOCE  (Stop  On  Count  or 
Error),  and  ensuring  that  the  proper clock sequences 
were  generated.  This  test  uncovered a  design problem in 
the clock chip in which the  resulting  number of clock 
pulses  generated  for a SOCE  command  were  incorrect. 
The  serial  interface  between  the clock chip  and  the 
processor was monitored  for  proper  operation. 
Various types of clock stoplstart  sequences  were  run 
to  ensure  that all of the  chips in the system stopped 
and  started in tandem.  One of these  tests  uncovered a 
problem in which the  arrays  could  not  be  written using 
chip single-cycle mode.  Fortunately  the  arrays  worked in 
system single-cycle mode, which allowed the specialized 
millicode to  be  rewritten  without  the  need  for a 
hardware  engineering  change. 

exercised,  all of the logic required  to scan-initialize  it 
to  the  various  run-time  modes was verified. 

Although  the  phase-locked  loop itself could  not  be 

The two-cycle model  also proved  beneficial  in  isolating  a 
design problem first  discovered on  the  engineering  test 
floor. The  model proved to  be  accurate  enough  to uncover 
a problem in an  array design  in which a certain  start/stop 
sequence of the clocks resulted in an  extra  write  operation 
taking  place in the array. This eventually led  to a new type 
of clock-verification test  for  future  tape-outs. 

Design data verification 
An  integral  part of the  G4 verification plan was the  use of 
simulation  to verify as  much of the firmware  design data 
as  possible. This was  especially important  because 
development of much of the  code was isolated  from  the 
hardware design. In  addition,  pieces of the  engineering 
hardware  test  plan  depended heavily on the ability to  load 
specialized  millicode into  the  caches via the design data. 
Therefore,  several types of special-purpose two-cycle 
models  were built to  remove  as many  design data  errors 
as  possible prior  to receiving engineering  test  hardware. 

millicode which was loaded  into  the L2 cache. Although 
this code was locally developed, it had  to  interface with 
S/390-level initial  millicode load  (IML)  code. Since this 
test was designed to  run  on a nonstandard  hardware 
configuration, it  was imperative  to  ensure  that  the existing 
SI390 code  could  support  this  type of engineering  debug 
exercise. The next test  simulated  the  array  characterization 

One  model was established solely to  test  the specialized 
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data, which describe  the  manner in which the  array 
control logic must be  scanned in order  to  perform  atomic 
read  and write operations on the arrays. The  process  for 
creating  these  data was prone to mistakes. so the two- 
cycle model served as a  qualification tool  for  the  array 
characterization  data. Several problems were encountered 
in which the  characterization  data  were incorrectly 
initializing the  array  control logic. 

at a system level was for verification of the service 
element  software. In this environment,  the  actual service 
element  code was attached  to  the two-cycle model  through 
a special interface  called  the hypervisor. The  role of the 
hypervisor was to  intercept  the signals between  the service 
element  and  hardware  interface  and  to  replace  them with 
the  corresponding  simulation  application  program 
interface  (SIMAPI)  commands  to load and  read  the 
appropriate registers  in the  model. Use of the two-cycle 
model in this  fashion  enables complex Si390 software  to 
be  debugged  and  tested  to gain  preliminary  confidence 
prior  to enlisting  expensive  test-floor machine  time  to  run 
the  code. 

Correlation  with  single-cycle  sirnulation 
models 
One of the most  powerful weapons in the Ci4 verification 
methodology is the exteusive use of cycle simulation  at 
various levels of the design  ranging from  the  functional 
units comprising the  processor all the way up to 
symmetrical multiprocessor  (SMP) systems  with  multiple 
processors.  Although  the most accurate  form of simulation 
would be  to  use a two-cycle model exclusively, this is 
simply impractical.  To begin with,  the model requires  the 
physical design to  reach a certain  state of completeness, 
which is counterproductive to rapidly  advancing the logic 
design. Second, a two-cycle model  runs twice as slowly as 
a  single-cycle model,  and  the complexity of the  G4 
simulation  test plan requires  the  faster single-cycle model. 
In addition,  the  models  focus primarily on  mainline system 
functions.  This  translates  into models  utilizing numerous 
black boxes which sacrifice  slower  gate-level  accuracy for 
faster high-level descriptions.  These high-level macros are 
often  written  early in the design cycle, while the  details of 
the black  boxes are still being implemented. In this  type of 
environment,  the risk exists that a high-level description 
was based on an inaccurate  assumption,  or  that a  design 
change  later in the cycle was never propagated back into 
the high-level macro. 

To minimize  this risk, the two-cycle model was used to 
cross-check the single-cycle model. In the  case of the L2, 
the  random  simulation  environment was enhanced such 
that  the  same  code  could exercise either type of model. 
This  permitted  the  simulation  team  to  select a seed  from a 

598 single-cycle simulation  run  and exercise it on both  models. 

Perhaps  the most  impressive  use of the two-cycle model 

In addition, several functional  simulation test cases would 
be run against both  models  to  ensure  that  the physical 
design  exhibited the  correct  functional  behavior. 
Performing  both of these activities prior  to  tape-out 
helped instill confidence in the  congruence  between  the 
two simulation models.  This, in turn, assisted in validating 
the millions of single-cycle simulation results. In the  case 
of the  processor,  correlation with the single-cycle model 
was aided by an  environment  centered  around AVPs. 
Thus, it was simply a matter of running  the  same  AVPs  on 
both  models  and  ensuring  that  the  results  were  identical. 

Results  and  conclusions 
Perhaps  the  greatest  testimonial  bestowed on the two- 
cycle simulation  effort is the  integral  role it  played  in 
ensuring  that  the circuit  design functioned in  a manner 
equivalent  to  that of the  corresponding  simulation  models. 
Evidence of this became  apparent with the first hardware 
release, which powered on in  an unprecedented  fashion by 
allowing the  test  team  to exercise  all supported  mainline 
function.  The  contribution  associated with two-cycle 
simulation is more  apparent  when  contrasted with the  test- 
floor exper~ence  on  past S/390 machines.  For  example, in 
an  earlier  prqect a  coding problem in  a  checking  tool 
permitted a number of chips to  be  released with 
nonfunctional scan  rings. Although  the  functional logic 
was fine,  this error  required an emergency  hardware 
release  to allow engineering  test to continue. In another 
escape,  the scanning function was inhibited by incorrect 
implementation of tie-ups  and tie-downs on some of the 
physical books. During  the  G4  project,  these types of 
problems  were  detectable with two-cycle simulation. 

This is not  to say that two-cycle simulation is a 
guarantee  to a  successful  power-on.  As with any 
simulation endeavor,  the  results  are only as good as the 
model  and  the type of test  vectors exercised. In  the initial 
Ci4 hardware, a problem was encountered  on  the  test floor 
with respect  to a window condition involving the scanning 
operation.  The two-cycle simulation  model verified the 
scanning operation using only a  single test  case in which 
the  normal system clocks were always stopped  during  the 
trigger phase. However,  a  design problem was found in 
some of the arrays such  that  interrupting  the system  clocks 
to  perform  scanning  during  the latch phase  could  result in 
a  one-cycle window where  the  output  data  came  from  the 
wrong address.  The  problem was accurately  reproduced 
and  debugged in a two-cycle simulation  environment,  and 
the scan-verification test was enhanced to prevent this  type 
of error on subsequent  releases. 

Many advances have been  made in recent history with 
respect  to  large-scale  simulation.  Some, such  as event 
simulators,  help close the accuracy gap by allowing the 
designer to simulate a behavioral  representation 
containing logical and physical design characteristics. 
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I Other advances,  such as cycle simulation,  focus  on  speed Gary A. Van Huben 1BM Systerni3YU Division, 522 South 
and  performance by assuming that  certain physical 
constraints  are  met. Finally, advances in the  area of 
cosimulation  permit design components  accustomed  to 
event  simulation  to  interact with components  that benefit 
from cycle simulation. However, two-cycle simulation 
provides  a new dimension  to  the verification  world by 
affording a method  to exploit the  performance of regular 
single-cycle simulation  and  augment it with system-level 
operations governed by the intricacies of the physical design. 
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