
Design
methodology
for the S/390
Parallel
Enterprise
Server G4
microprocessors

by K. L. Shepard
S. M. Carey
E. K. Cho
B. W. Curran
R. F. Hatch
D. E. Hoffman
S. A. McCabe
G. A. Northrop
R. Seigler

This paper describes the design methodology
employed in the design of the S/390@' Parallel
Enterprise Server G4 microprocessors. Issues
of verifying design metrics of area, power,
noise, timing, testability, and functional
correctness are discussed within the context
of a transistor-level custom design approach.
Practical issues of managing the complexity of
a 7.8-million-transistor design and encouraging
design productivity are introduced.

1. Introduction
The fourth generation of the S/390* CMOS
microprocessor is a 17.35-mm X 17.35-mm chip with 7.8
million transistors, which has been successfully operated
above 300 MHz at a supply voltage of 2.5 V [l].

The design methodology of this microprocessor follows
in the tradition of other successful methodologies [2 , 31 in
simultaneously addressing four goals:

Verify that a design meets all.of several metrics of
quality such as area, functionality, timing, power, noise
immunity, reliability, and testability.

Manage complexity.
Encourage productivity.
Coordinate a parallel design process.

Technology scaling and ever-increasing demands
for performance shape many aspects of the design
methodology. Technology scaling has had several major
consequences, of which the simplest is the growth in the
complexity of the designs as more transistors are available
for a given silicon area. Interconnection widths are scaling
lower, while interconnection lengths have remained
virtually the same as additional function or larger caches
have been added in lieu of making smaller chips. Total
wire capacitance is decreasing as a result, but wire
resistance is increasing faster. As a result, RC delays of
interconnections are increasing. At the same time, wiring
capacitance dominates the load on many nets. Coupling
capacitances, in particular line-to-line coupling
capacitances, have become a significant source of noise
on the chip, which means that they can produce glitch-
induced failures or have a significant effect on wiring
delay. Threshold voltages have also scaled to maintain
drive in the presence of scaling supplies. This has

Wopyright 1997 by International Business Machmes Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are Included on the first page. The title and abstract, but no other portions,
of this paper may be copied or distributed royalty free without further permlssion by computer-based and other information-service systems. Permission to republish any other

portion of this paper must be obtained from the Editor.

0018-8646/97/$5.00 Q I997 IBM

IBM J. RES. DEVELOP. VOL. 41 NO. 415 JULYiSEPTEMBER 1997 K. L. SHEPARD ET AL.

implications for noise, power, and Zddq (quiescent supply
current) testing. In addition to technology scaling, the
demands of ever-increasing performance are driving
designs to the use of dynamic circuits, which create
further complexity in noise and timing analysis.

Methodology themes
With these technology and performance trends as the
driving force, several methodology themes underlie the
approach we have taken in the design methodology for the
S/390 G4 microprocessors:

The demands of performance have required a
fundamentally transistor-level focus in the design
methodology. All tools and processes allow a design to
be customized and verified at the device level.
A two-level hierarchical approach is essential for
simultaneously managing complexity and parallelizing
the design process. The increasing complexity of the
designs has necessitated abstraction, while the closer
electrical interaction of circuit and interconnections
creates challenges in accurately modeling hierarchical
boundaries.
Static analysis techniques are key. Transistor-level static

the package. This is discussed in more detail in
Section 8.
Noise immunity This is perhaps the most important new

Timing The design must meet latch setup and hold
requirements for proper sequential operation. In
addition, the use of multiphase dynamic logic requires
additional timing checks to guarantee correct circuit
operation.

metric; it is discussed in detail in Section 9.

Functionality and correctness This involves a verification
chain connecting the design abstractions. Simulation is
used to verify the VHDL' against an architectural
specification. A combination of switch-level simulation
and Boolean equivalence checking verifies the VHDL
against the transistor-level circuit schematic, and logical-
versus-physical (LVS) checking verifies that the layout
matches the circuit schematic.
Testability This involves building a separate logical
description of the implementation, called a fault model,
which is used for testability analysis of single stuck-at
fault coverage and for test-pattern generation [4].

significant component of this metric.
Reliability Electromigration analysis is the most

analysis techniques are used for timing analysis, noise
analysis, Boolean equivalence checking, and fault-model
generation. Techniques employing binary decision
diagrams (BDDs) are an important aspect of this
approach.
Interconnections must be carefully designed and
analyzed. This includes wire-width tuning and buffer
insertion to control RC delays.

a common database.

Design abstraction
Design abstraction is one of the key methodology tools
used to manage complexity. In the G4 microprocessor
methodology, these abstractions are stored in a central
database. All analysis and verification are accomplished
with a two-level hierarchical approach which involves
identifying groups of 10000-200000 transistors as macros.

chip and form the main unit of the division of labor that
Design abstractions must be stored and controlled from Macros are laid Out and floorplanned On the

Cycle simulation is key to verifying register-level with
high-level behavioral models of the architecture. This is
the only way to achieve the simulation performance
required to verify design of rapidly increasing
complexity.
Noise is a design metric of importance comparable to,
if not greater than, area, power, and timing.
Semicustom implementations that preserve the leverage
of transistor-based design are crucial to achieving global
timing convergence and managing rapidly evolving logic
changes.

Metria for design quality
Several metrics of design quality must be analyzed as part
of any microprocessor design methodology:

Area The physical size of the chip.
Power The amount of power that the chip dissipates

51 6 and how that is handled by the thermal environment of

allows the design processes to be parallelized. At the
macro level, one would typically find the following design
abstractions in the central database:

Symbol Schematic representation of the ports of the
macro and their directionality.
Entity The VHDL entity for the design, automatically
created from the symbol.
Schematic A schematic representation of the transistor-
level implementation of the macro. The schematic may
in itself be a hierarchy of other submacro symbols and
schematics.
Architecture A VHDL architecture description of the
function of the macro used for simulation and Boolean
equivalence checking.

transistor-level timing.
Timing graph A timing graph abstraction created by

' VHSIC Hardware Description Language, IEEE Standard 1076.

I K. L. SHEPARD ET AL. IBM I. RES. DEVELOP. VOL. 41 NO. 415 JULYiSEPTEMBER 1997

Logical constraints view This view contains Boolean
satisfiability constraints in the implementation, which are
tested through BDD techniques.
Layout The physical design of the macro, which may be
a hierarchy of other submacro symbols and schematics.
Fault model A schematic of logic and sequential
primitives used for generating test patterns and
determining single stuck-at fault coverage.

each macro on the supply and ground distributions. This
is used to determine the chip power dissipation and to
estimate power supply noise.
Abstract This is a simplified view of the layout, which
can be used for floorplanning, place and route, and
global extraction. The amount of shapes information
varies during the course of the design process.

Power view An abstraction of the current demands of

The continued development of static noise analysis [5] will
result in an additional view:

Noise abstract A noise abstraction created by transistor-
level noise analysis.

Above the macro level is a hierarchy of schematics,
symbols, and layouts which constitute the global
interconnections and physical design of the chip. Two
abstractions of the global environment are brought down
to the macro level to guide macro-level implementation.

Shadow This is a representation of the global wires
overlaying a macro that is used to guide macro physical
design and for macro extraction.
Timing assertions This is information on the global
timing at macro interfaces-arrival times with phase tags
on inputs, required arrival times with phase tags on
outputs, primary input resistances, and primary output
capacitances.

The ways in which design abstractions are created and
used are discussed in detail in the remainder of the
paper. Section 2 discusses the use of VHDL in the G4
microprocessor design. Section 3 discusses how the circuits
are verified against their corresponding VHDL simulation
models. Because of the importance of interconnect
modeling, Section 4 discusses extraction and interconnect
modeling as it is used in timing, power, and noise analysis.
Section 5 discusses the timing methodology, while Section
6 discusses the semicustom logic synthesis approaches
used in the G4 designs. Section 7 describes the physical
design of the chip, both macro and global layout and
physical design planning. Section 8 discusses the power,
electromigration, and noise analysis methodologies.

2. VHDL design and verification
The G4 microprocessor was designed using VHDL 1076 as
the register-transfer-level description language [6]. There
were three principal requirements on the use of the
language:

Must be mappable to cycle simulation.
Must be able to check the VHDL logic design for

Must be able in some cases to guide synthesis to an
Boolean equivalence against a circuit implementation.

implementation.

In this section, we describe how the VHDL is entered and
stored and the coding styles employed. We show how the
VHDL guides cycle-simulation model builds, scan-chain
connections, initial values for registers, global Boolean
satisfiability constraints, and logical structure for synthesis.

Design endry
VHDL is entered only for the macros; this is done as a
structurally flat description, with the exception of special
latch and array primitives discussed in the next subsection.
The design above the macro level exists only as a
schematic and is netlisted as structural VHDL for the
purpose of logic simulation and verification. This
guarantees correct-by-construction correspondence
between the VHDL and circuit above the macro level.

Language subset for macro architectures
The IEEE std-logic-1164 package is employed and
augmented with an expanded set of logical, relational, and
arithmetic operators in a separate std-logic-support
package. In the case of the = and \= operators, the
std-logic-1164 package contains declarations for these
functions which are implicit with all enumerated types in
VHDL. We replace these with explicit declarations in the
std-logic-support package, relying on compatibility
flags in the VHDL analyzers to allow these nonstandard
function definitions to be declared in a separate package.
All of the functions are carefully coded to propagate ' X '
and ' U ' states of the std-ulogic type. The entire
concurrent VHDL language is allowed. In addition,
process statements that explicitly represent combinational
logic are permitted. To meet this criterion, the process
statements must be activated by every input. In addition,
conditionals must explicitly cover all cases to avoid
implying registers. As an example of a valid process,
consider the example shown in Figure 1: The process
codes the combinational piece of the state machine shown
in Figure 2 with a single two-bit state register. Each
conditional based on the input x has an e lse statement,
and the process is activated by both the input x and the
state vector values. 51 7

IBM J. RES. DEVELOP. VOL. 41 NO. 4/5 JUL .Y/SEPTEMBER 1997 K. L. SHEPARD ET AL.

VHDL process statement used to code combinational logic.

All sequential logic is handled by explicit instantiation
of a set of latch and array primitives. In some cases,
simple transparent latches are created from level-sensitive
guarded block assignments. The G4 designs use six
primitive latch components, each parameterized with a set
of generics. Three types of parameterized array primitives
are used-read-before-write, write-before-read, and read-
only. Read-only primitives, used to model on-chip ROMs,
take a read address of variable length as input and return
an output word, also of variable length. The contents of

51 8 the read-only primitives are loaded at simulation startup.

Example of a finite-state machine. A process statement can
conveniently code the combinational logic of the state machine.

Both the read-before-write and write-before-read array
primitives have an “asynchronous” read in which the data
word is available at the output as soon as the read address
is available. The writes are clocked. In the write-before-
read primitive, if the write and read addresses are the
same, the written data “flush” through and are
immediately available for the read. In addition, tristate
driver-receivers are also modeled with two special
library components because of the inability of the
synthesis tools used in cycle simulation to model high-
impedance states. Explicit latch and array instantiation
also allow these elements to be “snipped out” for the
purposes of Boolean verification, discussed in more detail
in Section 3. The VHDL model is explicitly full-function;
that is, it models all of the logical functioning of the chip
including test functions and contains full and complete
scan-chain connections. Only cycle boundary latches are
modeled in the VHDL. Mid-cycle latches, where they
exist, are not modeled in the VHDL, as this is considered
an implementation issue. The same applies to other
latch structures which do not store machine state.

The G4 processor is initialized through scan. Initial
values for the scan process are passed to the latch
primitives through generics. A global VHDL variable
determines whether these initial values are applied at t = 0
in VHDL simulation or whether the latch values are left
at an std-ulogic value of ‘U I. These initial values are
also exported as part of the cycle-simulation model-build
process as a model initialization file (MIF) which can be used
to initialize the cycle-simulation model as well as to
determine the scan sequences required to initialize the
processor for service processor code development. Scan-
chain connections were coded in the VHDL in a manner to
allow easy scan-chain reordering. Two local vector

K. L. SHEPARD ET AL. IBM J. RES. DEVELOP. VOL. 41 NO. 415 JULYISEPTEMBER 1997

signals, scan-connect-in and scan-connect-out, are
declared in each macro. The scan-connect-in signal
connects to the scan input of each latch, while the
scan-connect-out signal connects to the scan output of
each latch. All of the scan connections are then done as a
block of signal assignments of bits of scan-connect-out
to bits of scan-connect-in. This signal assignment block
can then be replaced following scan-chain optimization as
described in Section 6.

Logic simulation
Two types of simulation are used on the G4 design-
event-driven VHDL simulation and cycle simulation.
VHDL simulators are event-driven; that is, they maintain
an event queue, sequenced by real simulation time as well
as “delta delays.” In the coding style used for the G4
design, no explicit times are coded in the VHDL, except
for the times used to establish the waveforms of the
clocks. No attempt is made to use logic simulation to
verify timing. This is done in static timing analysis,
described in detail in Section 5. All signal assignments,
therefore, occur as a cascade of delta delay events
following a clock edge in VHDL simulation. We refer to
this as a clock-edge-triggered logic specification. This
controlled use of the language along with the explicit
instantiation of latch and array primitives allow the
register-transfer-level VHDL to be mapped to one of
two cycle-simulation models very efficiently. In cycle
simulation, one makes explicit use of the fact that the
design is clock-edge-triggered to improve the performance
of simulation [7]. Certain signals are identified as
“registers” and change state only on the basis of their
input values at the cycle boundary. Combinational logic is
“flattened” to easily evaluated Boolean equations. The two
cycle-simulation models built for the G4 design are

A single-cycle simulation model. This model allows only
a single state change per machine cycle, which is
sufficient for modeling typical machine operation and
therefore forms the basis for the main simulation engine
for verification with instruction traces.
A two-cycle simulation model. This model allows two
state changes per machine cycle. In this model, latches
are divided into two sets, those that evaluate on “even”
cycles (or, equivalently, those latches that evaluate on
the rising edge of the global system clock), and those
that evaluate on “odd” cycles (latches that evaluate on
the falling edge of the global system clock). This enables
modeling of certain test functions that require this type
of detail in the sequential modeling.

The cycle-simulation model-build process consists of
three steps:

The VHDL is processed through the synthesis tools
to produce a structural representation of the design.
Standardized primitives are used to replace elements of
the structural representation.
The model is optimized and code generated for the
cycle-simulation engine.

[n step 1, latch and array primitives are “black-boxed”;
that is, the VHDL architectures of these primitives are not
processed by synthesis. Combinational logic is represented
as a structural netlist of generic logical primitives.

In step 2, predefined cycle-simulation models for
the primitives are used. The one-cycle and two-cycle
simulation models are distinguished by the models for the
latch primitives used in the model-build process. For most
array macros, two separate VHDL descriptions also exist
for the one-cycle and two-cycle models. The model-build
process chooses between these two architectures in the
VHDL netlisting operation through a “switch” view list.
The one-cycle VHDL contains only the basic read and
write functions which can be modeled with one-cycle
granularity, while the two-cycle model contains details of
boundary-scan and self-test functions, for example, which
require two-cycle sequential granularity.

Consider the cycle-simulation representation of one of
the latch primitives of the G4 design, a d-latch, with the
VHDL description shown in Figure 3. In a single-cycle
simulation model, this latch is modeled as shown in
Figure 4(a). In this case, the logic function is significantly
simplified to model the basic system-state storing function
of the latch. In particular, none of the test function of the
VHDL is modeled. All register and array primitives can
potentially change state every cycle. In this example, when
clkg is ‘1 I, the latch changes state on the cycle
boundary. In simulation, clkg is raised to ‘1 ’ and held
there. Figure 4(b) shows the two-cycle implementation of
the latch model. In two-cycle models, registers and arrays
can be of either “master” or “slave” type. We refer to this
as two-latch behavioral modeling. Master-type latches,
which evaluate on even cycles, are denoted with an M,
while slave-type latches, which evaluate on odd cycles, are
denoted with an S. With this level of sequential
granularity, the full function of the latch can be modeled.
In this case, clkg is toggled every cycle. In addition, the
scan clocks, a-clk and b-clk, have at least twice the
period of clkg to produce correct operation. In the cases
in which individual transparent latches are used, a VHDL
attribute is used to specify whether the two-cycle
simulation mapping is of the master or slave type. The
same attribute is also used for two-cycle mapping of array
primitives. As an additional example of how master and
slave declarations affect transparent latch modeling in
cycle simulation, consider the example shown in Figure 5,
in which two master latches are clocked by the same clock. 51 9

IBM J . RES. DEVELOP. VOL. 41 NO. 415 JULYiSEPTEMBER 1997 K. L. SHEPARD ET AL.

VHDL description of a d-latch.

Applying the two-latch behavior to both transparent
latches in the model, we see that the data are flushed
through both latches in the same (i.e., "even") cycle.
Replacing the rightmost latch in Figure 5 with a slave
latch introduces a one-cycle delay from the master to the
slave.

In step 3 of the cycle-simulation model-build process,
the standardized flattened primitives created by the one-
cycle or two-cycle synthesis and mapping steps undergo a
variety of Boolean logic optimizations to improve run time
and performance. Three target internal cycle simulators
were used on the G4 design: TEXSIM, ZFS, and EVE.
The optimizations performed by the first simulator
(TEXSIM) include constant elimination, pin dropping, and

the TEXSIM optimizer, stopping prior to final code
generation. The flattened and now optimized primitives
are combined with additional parts and reoptimized, using
a similar set of algorithms, including AND/OR/XOR gate
merging. A fundamental difference between ZFS and
TEXSIM is that ZFS treats all signals as single bits,
ignoring any bundling that might have been present in the
original design. Code generation for ZFS results in an
object model which uses an event-driven evaluation
algorithm of the optimized structural primitives.

For the very largest system models, a hardware
accelerator known as EVE is used [8]. Build for EVE
follows after a model has been built for ZFS. The

data clkg " q p -
.
.

clkg I
. .

data
. . .

4
. .

.

clkg-
- - - - -

scan-enable

a clk
" "

-

b-clk

c l

c2

11-latch

I2-latch

1 2 3 4 5 6 7 8 9 1 0 1 1
(b)

expression merging. Code generation for this simulator
results in an object module which uses an oblivious
evaluation algorithm. By this, we mean rank-order Cycle-simulation models of a G4 d-latch: (a) Schematic

reuresentation of the one-cvcle model. Samule waveforms for this
simulation in which an expression is evaluated only after latch behavior are also shown. clkg acts as an enable signal (i.e., it
all of its predecessor expressions have been evaluated. is not toggled). (b) Schematic representation of the two-cycle
TEXSIM simulation is used extensively for models of model. Sample waveforms for latch behavior are also shown for

the case of scan-in = 1 and data = 0; clkg is toggled to produce
sections of the chip. correct latch functioning.

For larger models, including full chip and system, a
520 second cycle simulator (ZFS) is used, Build for ZFS runs

K. L. SHEPARD ET AL. IBM 1. RES. DEVELOP. VOL. 41 NO. 415 JULYISEPTEMBER 1997

optimized primitives are expanded into a four-input, one-
output technology, optimized again, and then partitioned
and scheduled for the EVE hardware. The object module
runs on the EVE hardware, which performs highly parallel
oblivious evaluation of the four-input, one-output
primitives.

The test-case environment in the G4 design allows the
designer the flexibility of moving between these simulators
with test-case transparency, allowing the use of the
simulator which is best for the specific model and test
case.

The cycle simulators are explicitly two-valued
simulators, propagating only ’ 0 ’ and ’ 1 ’ logic values. For
nets driven by tristate driver-receivers, the Z state is
recognized, and it is additionally checked that these nets
are not simultaneously driven to conflicting logic values.
Simulation checks to determine whether an uninitialized
system state exists after a processor-wide scan-chain
initialization is performed with VHDL simulation in which
all the latches are left at the std-ulogic ‘ U ’ value at
t = 0.

Assertions
A Boolean function is said to be satisfiable if an
assignment of Boolean value to the variables in the
function results in a logic ‘1 ‘ value for the function. We
refer to conditions expressed as a function which must
be satisfiable as a Boolean satisfiability constraint. The
variables in the function are referred to as a constraint
group. Boolean satisfiability constraints constitute an
important feature of the G4 design methodology. They are
used for three main purposes: to express a “don’t-care’’
set safely for a VHDL macro architecture, to allow the
use of circuits that require certain logical conditions on
their inputs for correct operation, and to eliminate false
paths in static timing. Each of these uses is described in
more detail in the sections that follow. At macro primary
inputs and outputs, we use VHDL assert statements to
express these constraints to immediately invoke simulation
checking with their use. There are four types of conditions
that can be expressed in this manner, each identifiable in
the VHDL through the use of keywords in the message
string:

Strong assertions Assertions are logical conditions that
we assume to be true and verify either formally or
through simulation. Strong assertions are assertions
which are true for any state that can be scanned into
registers. These assertions can exist only on primary
inputs of macros and must be accompanied by a test on
the primary output of the driving macro where they can
be formally verified. This creates the limitation that the
constraint group for the strong assertion must be driven
from a single macro and, consequently, a single test.

data-in

Clock

A configuration of two transparent latches of “master” type. Data
flush through both latches on even cycles when the clock is ‘1’.

With further advances in formal combinational logic
verification, flat logical verification of the design may be
possible, in which case this limitation will be removed.
This type of assertion must be used whenever there is a
circuit that requires a condition for determinant function
derived from primary inputs and is a thoroughly safe
mechanism for expressing logical “don’t-cares”; that is,
all other conditions not covered by the assertion belong
explicitly to the don’t-care set.
Weak assertions These are assertions which are true
only for validly reachable machine states, but which will
not be true for any possible machine state scanned into
registers. These assertions must also exist at primary
inputs, but are sequential in nature and can be verified
only through simulation. These assertions are used in
Boolean equivalence checking of VHDL and circuit at
the macro level; conditions not covered by the assertion
are also explicitly placed in the don’t-care set. This
assertion type may not be used when a circuit produces
an indeterminant behavior in the absence of this
assertion. It is preferable to convert weak assertions to
strong assertions, except in cases where this would add
unnecessary additional logic and reduce performance.
Strong tests Tests are logical conditions that must be
verified formally or through simulation. Strong tests
are the tests which accompany strong assertions. The
constraint group for a strong test must contain only
primary output signals. In addition, strong tests must
hold for any state which can be scanned into registers
and must be verified formally. Strong tests are
combinational in nature.
Weak tests Weak tests are tests which are true only for
validly reachable machine states. These are used only for
simulation as a convenience to logic designers to flag
unexpected conditions. Such tests are sequential in
nature, and their failure implies incorrect operation of
the machine. 521

K. L. SHEPARD ET AL. IBM J. RES. DEVELOP. VOL. 41 NO. 415 JULYiSEPTEMBER 1997

Synthesis issues
In some cases, the VHDL coding is used to help guide
some pieces of the design to better initial structuring for
synthesis. A common example of restructuring that
might be done in the VHDL is to move timing-critical
signals forward into the cone of logic by means of a
Shannon expansion [9]. Let xL denote a general Boolean
variable and x: its complement. Consider a general
Boolean function f(xl, x2, . . . , xi, . . .). The cofactor
off with respect to the variable xl is given by f,, =

f(xl, x2, . . . , 1, . . .), while the cofactor off with respect
to the variable x!! is given by f,; = f(xl, xp, . . . , 0, . . .).
The Shannon expansion off for the variable xi is then
given by f(x,, x2, . . . , xL, . . .) = x,f,, + xt’fXj. For example,
if a critical path exists from input a to output g, and
g = f(a, b, c , . . .), the VHDL is recoded as follows:

g o <= f (’ O ’ , b, c, . . .) ;

g1 <= f (’ l ’ , b, c, . . .) ;

with a select
g <= go when ’ 0 ’ ,

g1 when ‘ l ‘ ,
‘X‘ when others;

VHDL code is also frequently modified to eliminate
encoders and decoders in critical paths by latching and
distributing unencoded buses. Designers have direct
control in the synthesis process of the extent to which the
logical structure of the VHDL is preserved through
optimization and mapping. The details of the synthesis
process are described in Section 6.

Latch replication is also employed as a cloning
technique not available to synthesis. This allows larger
loads to be driven from latches without the need for
buffers. Frequently, one latch is used to drive critical
loads, while a cloned latch is used to drive noncritical
ones. Retiming is also employed as a manual process in
cases where this optimizes timing [lo].

3. Equivalence checking
The functional verification methodology relies on
simulation of the VHDL model through event-driven
VHDL simulation and cycle simulation and an
equivalence-checking methodology which ensures that
the circuit implemented in silicon matches the VHDL
description. The circuit must also be verified against the
fault-model description used for single-stuck-at fault
coverage and test-pattern generation. Because the design
is represented as a single netlist representation above the
macro level, the design is correct by construction above
the macro level of hierarchy. Therefore, a necessary and
sufficient condition for correspondence is that the macro
circuits are Boolean-equivalent to the macro VHDL and
the macro fault models. This is accomplished with a

522 formal Boolean comparison of the circuit and VHDL, and

of the circuit and fault model, augmented with switch-level
verification of latch and array primitives.

IBM’s Verity tool, used to perform the Boolean
comparison, has been described in detail elsewhere
[l l , 121. Verity relies on canonical reduced-ordered binary
decision diagram (ROBDD) representations [13] of the
logic from the fault model or as extracted from the VHDL
by IBM’s synthesis tool, BooleDozer [14, 1.51, and a logic
representation of the circuit extracted from a simple
switch model. Verity also incorporates a general
configurable time-slice approach in which independent
functions for different phase domains can be extracted
and combined. This allows Verity to be used for the
verification of multiphase dynamic implementations. The
latch and array primitives discussed in Section 2 were
preserved as “black boxes” to Verity in circuit, VHDL,
and fault-model representations and were independently
verified through switch-level simulation. These sequential
elements are “cut out” as part of the verification process,
in effect creating new outputs at the latch inputs and new
inputs at the latch outputs. For large, complex designs
where the ROBDDs grow too large, cut-point nodes are
introduced to reduce the ROBDD size. In the circuit-to-
VHDL comparison, strong and weak assertions (as
described in Section 2) on the primary inputs are used to
limit the care set of the comparison. In the circuit-to-
fault-model verification, only the strong assertions are
used, since weak assertions do not hold in general for any
patterns scannable into registers, and therefore
cannot restrict the care set of the comparison between
the circuit implementation and the fault model.

Verity forms an important part of the Boolean
constraint methodology in the G4 design. Verity is
used globally to verify that every strong assertion is
accompanied by a satisfying strong test for global signals.
In addition, each macro, in general, has an associated
logic constraints view which contains additional Boolean
satisfiability constraints for the macro circuit, which are
also verified by Verity as part of the comparisons. For
debugging purposes, Verity generates a counterexample
table showing all valid input states which produce
incorrect outputs, failing satisfiability constraints, or failing
consistency checks [16].

As an example of the canonical reduced-ordered BDD
approach to equivalence checking, consider the VHDL
and circuit model shown in Figure 6(a). Verity computes
the two final functions, f’ and p, the function for which
the output is driven to a 1 and the function for which
the output is driven to a 0. The VHDL, of course, gives
f’ = (xI&x2)I(xj&x4)I(x5&x6) a n d p = f ’ . For the domino
circuit, the final functions at the dynamic node are given
by fi = fi [evaZuate] I (fi [precharge]&~[evaZuate]) and
f: = ~ [e v a Z u a t e] ~ (f ~ [p ~ e c h a ~ e] & ~ ~ [e v a l u a t e]) , where
fi [evaluate] and t[evaZuate] are the functions driving the

K. L. SHEPARD ET AL. IBM J. RES. DEVELOP. VOL. 41 NO. 415 JULYiSEPTEMBER 1997

output to 1 or 0, respectively, in the “evaluate” time slice,
and fi[precharge] and fi[precharge] are the functions
driving the output to 1 and 0, respectively, in the
“precharge” time slice. These logical relationships between
the time-slice elements are specified through a Verity
control file. Since f,‘[evaluate] = 0, fb[precharge] = 1; and

7:. The static inverter at the domino output results in the
final function f ’ = f: and f ‘ = f i . These final functions
are the same as those specified in the VHDL; f ’ has the
canonical ROBDD representation shown in Figure 6(b).

Key to the verification process for large designs is a
highly robust and efficient batch-submission system
designed for running all of the macros within a unit in one
submission. This includes building models, automatic
creation of the Verity control file, and the submission of
Verity jobs for every macro. In addition, comparison
between circuit switch-level simulations and VHDL
simulations for latch and array primitives are automated,
with random patterns generated for valid clock and
control signal sequences.

fhchargel = 09.f: = (X,h,) l(X,~,) l(X,&x,) andf,‘ =

4. Extraction and interconnection modeling
In this section, we discuss the extraction and
interconnection modeling used for various aspects of
the G4 microprocessor design. Following the two-level
hierarchical approach used for key analysis processes,
extraction and interconnection modeling are divided
between the macro and global levels, with special
considerations for the interaction between these levels.

The resistance and capacitance extraction is rule-based,
with lumped-element extraction, and involves the
combined use of the vendor tools Dracula** and
Preview** as well as internal tools. Rule-based approaches
calibrated by finite-element calculations are the only
techniques with the performance required for extraction
calculation. Resistance is extracted using the sheet
resistivity of the metal layer, with geometrical corrections
for junctions. The capacitance extraction is done using
coefficients derived from the two-dimensional
configurations shown in Figure 7. Capacitances are
calculated using a grid-based solution to Laplace’s
equation [17]. Line-to-line coupling capacitance is fitted to
a single parameter, d , the spacing between the metal lines
as shown for conductors 1 and 2 in Figure 7(a) with a
piecewise-constant function with five to eight steps.
Minimum-width lines and complete metal coverage on the
planes above and below the lines are assumed for this
characterization. Spacing between these metal coverage
planes is denoted by H1 in the figure. Nonoverlapping
line-to-line capacitance between interconnections on
different levels, which we refer to as distant fringe, is also
characterized with a single parameter, d , fitted to an
equation of the form

IBM J . RES. DEVELOP. VOL. 41 NO. 415 JULYiSEPTEMBER 1997

(a) Boolean-equivalent VHDL and circuit representations. (b)
Canonical ROBDD representation for the l-function (f’).

as shown for conductors 1 and 2 in Figure 7(b) (h is the
dielectric thickness between the metal layers). The third
component of capacitance is area and fringe capacitance
between overlapping metal layers, as shown for conductors
1 and 2 in Figure 7(c). A piecewise-constant function is
also used in this case, with a single parameter d , the
distance to a neighboring conductor on the same level,
which acts to reduce the fringing capacitance. For each
value of d , capacitance for several values of conductor
width, W, is calculated and the results fitted to
C = K,*W + K,, where K2 is the fringe capacitance and
K, is the area capacitance. Since this rule-based approach
is fundamentally two-dimensional, three-dimensional
effects can be handled only heuristically. For example, to
handle the three-dimensional effects associated with
shielding due to intervening layers in fringe and area

K. L. SHEPARD ET A L .

Capacitance geometries used to calculate rule-based coefficients
for extraction: (a) Geometry for calculating line-to-line coupling,
capacitance between conductors on the same interconnection layer.
(b) Geometry for calculating distant fringe, capacitance between
nonoverlapping conductors on different layers. (c) Geometry for
calculating area and fringe capacitance for overlapping conductors
on different layers.

calculation, the intervening layers are “expanded” to take
into account the greater shielding effect these layers have

524 than their geometric overlap would indicate.

Macro and global extraction
Using the rule-based capacitance calculation described
above, two types of extraction are done at the macro level:

1. Capacitance-only extraction, including coupling

2. Resistance and capacitance extraction, in which all
capacitors.

floating capacitors are broken as two capacitors tied to
ground.

Depending on the stage of the design process, global
coverage is modeled either as a statistical environment or
as the shadow view passed down from the global level.
Shadows used for macro extraction contain net-attributed
shapes, allowing global net names to be used for floating-
capacitor extraction. At the global level, four types of
extraction are performed:

1. Statistical This is used when a quick interconnection
estimation is required in timing analysis. Two statistical
models are used. A worst-case model assumes 60
percent loading of all wires independent of their actual
environment. A best-case model assumes only 30
percent loading of all wires. In both cases, two
coefficients are used to characterize each
interconnection layer, one that multiplies the area and
another that multiplies the perimeter. If detailed routes
are not available, a Steiner tree estimate of the wire
length is used, along with a user-specified assumption
of wire width which can be specified on a net basis. If a
width is not specified, the minimum allowable wire
width is used as the default.

2. Detailed RC extraction without floating capacitors In
this case, a detailed capacitance calculation using the
capacitance coefficients outlined in Figure 7 is used.
Either abstracts or layouts are used for the macro
shapes. All floating capacitors are broken and tied to
ground.

capacitors
3. Detailed capacitance-only extraction with floating

4. Detailed RC extraction with floating capacitors

Extraction techniques 2 and 4 produce tremendous
amounts of resistance and capacitance data. Reduction
techniques, described in the next section, are essential to
successful analysis of these data for timing and noise
analysis. Abstracts used for global extraction contain net-
attributed shapes. For extractions 3 and 4, this allows
macro net names to be used for floating capacitors. In
extraction 4, resistances are not extracted for abstract
shapes, since it is not possible to reconstruct the entire net
topology necessary for correct analysis of distributed
resistance.

K. L. SHEPARD ET AL. IBM J . RES. DEVELOP. VOL. 41 NO. 415 JULYiSEPTEMBER 1997

Interconnection reduction
The G4 design employs what we refer to as the pi-model
pole-residue macromodel for the global interconnection.
This technique is based on a state-space representation of
the linear circuit equations that characterize the global
interconnection. Let us first consider the circuit equations
that correspond to calculating the current idriver and the
voltage vreceiver for the representative net shown in
Figure 8. These equations can be written in matrix form
as follows:

C+ = - GV + b vdriVe, ,

or in the Laplace domain,

SCV = -Gv + bvdri,,, ,

where C is the capacitance matrix given by

and G is the conductance matrix given by

GI + G, -G, (-G, G 2 -G3) '

-G3 G3

The input vector b is given by b = (G , 0 O) T , and
the state vector v is given by v = (vA vB v,) '.

Let us first consider calculating the admittance of the
network as seen by the driver. Temporarily ignoring the
current through Cnode, the capacitance to ground on the
driver node itself, the current idriver is given by

idriver = Irv + Glvdriver '

where 1' = (- G , 0 O) T . This gives the admittance

Y(s) = sCnode + IT(I - sA)"r + G, ,

including the admittance of Cnode. A = -G"C and
r = G"b. Expanding in a Taylor series around s = 0,

Y(s) = s(Cnode + ITAr) + s2ITAZr + s3ITA3r +
These are the moments of the admittance. The elements
of the pi-model shown in Figure 9 are used to match
for moments of the admittance to order s3 [18].
Approximating transfer functions by their moments is the
essence of asymptotic waveform evaluation (AWE) [19].

driver to each receiver are calculated:
Similarly, the moments of the transfer function from the

where 1 = (0 0 1)'.

function of the form
In this case the moments are matched to a transfer

IBM J. RES, DEVELOP. VOL. 41 NO. 41.5 JULYiSEPTEMBER 1997

Representative RC interconnection structure.

.

Pi-model used to model global interconnection load on the driver.

This gives an output voltage for a unit step input of the
form

where

k, = 1.
I

The pi-model pole-residue macromodels include the pi-
model element values, c,, c,, and R, for each driver and
the values of k, and p , for a given number of poles and
residues for each receiver.

The pi-model pole-residue macromodels have several
limitations:

Receiver loads must be included in the reduction. As a
result, it is not possible to separate the reduced-order
model for the interconnections from the specifics of the
receiver circuits.
The approach is single-input, single-output. As coupled
nets are included in the analysis, the number of ports
will grow, lending computation efficiency to a multiport
treatment. 525

K. L. SHEPARD ET AL.

Z,,, the characteristic impedance of the line
-

z,= &,

where 2 and (e are the inductance and capacitance per
unit length of the interconnection.

Rdriver, the effective resistance of the driver.
R, the total resistance of the line.

For transmission-line effects to matter, Rdriver << Z,, and
R << Z , [22, 231. Inductance can easily be included in the
linear interconnection analysis. The difficulty is that it is
in general very difficult to calculate inductance, since the
current return path is rarely well defined in the on-chip
interconnection. Fortunately, however, inductance has only
a weak logarithmic dependency on the distance to the
current return, as shown in the example of Figure 10. As a
result, if efforts are made to ensure a certain porosity of
the power and ground distribution, the self and mutual
inductances can be estimated with the current return
assumed to be through the nearest power or ground
distribution [24]. A lower bound on the inductance can
also be obtained from the infinite-frequency relationship
between the inductance and capacitance matrices:

LC = p d ,

where p and E are the permeability and permittivity of the
interconnection dielectric.

In reducing the interconnection models at the macro
Inductance per unit length as a function of spacing between two level, the requirement exists to preserve an RC netlist
wires with a skin depth of 6 = 0.626 pm. representation of the data for circuit simulation and

timing analysis. To accomplish this, one can preserve the
original topology of the RC extracted netlist, treating each
branch as a two-port network, in lieu of other partitioning

calculation of the moments are numerically unstable. Each two-port network can then be reduced to one of the

To solve these difficulties, we are migrating our this reduction, the moments of the admittance matrix Y of
interconnection modeling to a multiport driving-point the original branch network are calculated [27, 281. Let
impedance formulation [20]. The impedance of an r-port, Yi,[n] denote the nth moment of the given matrix element
n-node, RC interconnection structure is given by of the 2-by-2 Y matrix. Determining the element values is

done through explicit moment-matching. For example, for
the two-capacitor implementation, we match

Techniques such as AWE which rely on explicit schemes which destroy the original net topology [25, 261.

three representations shown in Figure 11. To accomplish

B ~ (G + SC) -'B,

where B E anXr is given by BT = (IrlO). Ir E 3'"' is the
1

identity matrix. Implicit Krylov subspace techniques such yl,[l] = cly,,[l] = c,y,,[o] = y,,[1] = - -

as Pade via Lanczos (PVL) can be applied to reduce R

these state equations, avoiding direct calculation of This initial reduction leaves many single-resistor point-to-
the moments [21]. point nets. These can be reduced to a lumped capacitance

On thick, low-resistivity, last-metal interconnections, value [Figure l l (a)] based on a time-domain criterion.
we have found that inductance can have a noticeable In this case, the loading capacitance at the ports must be
effect on delay. The point at which inductance must be considered, and R(C, + Cportl) and R(C, + CportZ) must
considered in interconnection analysis depends on the be less than tmin, the RC delay accuracy desired: typically

526 relative magnitude of three factors: 10 ps.

K. L. SHEPARD ET AL. IBM J. RES. DEVELOP. VOL. 41 NO. 415 JULYiSEPTEMBER 1997

5. Timing
Static timing analysis is a major component of the G4
microprocessor design methodology [29]. Unlike timing
simulators, static timers require no input patterns and
find longest and shortest paths through a circuit with
preconditioning assumptions at each gate to produce the
worst-case or best-case delay. Static timing analysis also
depends on the ability to abstract real switching voltages
as linear saturate ramps, characterized only by a delay and
a slew. As part of this abstraction, the 50% point of the
real switching waveform is used to characterize the delay,
and the difference between the 10% and 90% values is
extrapolated to determine the slew.

static timing analysis that require special mention. Key to
the approach is the construction of a timing graph from
the circuit representation, as shown in Figure 12. Timing
graphs are made up of timingpoints, which are connected
by directed propagate segments or test segments. The

There are some underlying methods and assumptions of

propagate segments contain information on how arrival
times (AT) and slews are propagated “forward” across the
segment. Test segments describe setup or hold checks

L I

between signals. In the presence of a test, a required
arrival time is also calculated (the arrival time that would
be required to just satisfy the test). These times
are propagated “backward” through the graph. Graph
propagation can be done in either late mode, in which the
latest of the arrival times is taken at each timing point, or
early mode, in which the earliest of the arrival times is
taken at each timing point. The slack is the difference
between the required arrival times and the arrival time in
late mode or the difference between the arrival time and
the required arrival time in early mode. More details of
these definitions can be found in Reference [29].

idea of cycle adjusts, that is, determining whether a signal
should be tested against a clock in the current cycle or
the following cycle. This is accomplished in practice by

Another important aspect of static timing analysis is the

__l

A
D -

B

CLK

E

“adjusting” the arrival time of the clock according to a
methodology based on phase tagging of all data signals to
indicate a reference clock edge, as shown in Figure 13. In I Timing graph abstraction. From the circuit shown at the top is - -
this example, there is a single reference clock, denoted as
~ 1 . The clock phase associated with a positive active clock
is denoted as cl+, while data launched from the leading
edge of the active clock are denoted as Cl+R. In this
case, the cycle adjust is the difference between the next
subsequent clock reference edge and the data reference the case of a violation of this “loop test,” the launching
edge as determined by the tagging. In the case of designs arrival time may be adjusted forward into the Period of
with transparent latches, “flush” loops may exist in the latch transparency in an attempt to remove the violation
design. These loops are broken at one of the transparent [30]. Fundamental to static timing analysis, therefore, is
latches, where the clock edge is used to determine the that all data edges have an associated clock reference
arrival time. The arrival time that wraps around the loop edge. In particular, loops in a timing graph must be
is subsequently compared to this clock reference edge. In “controllable” by a clock. These limitations make the

IBM J. RES, DEVELOP. VOL. 41 NO. 4/5 JULYiSEPTEMBER 1997 K. L. SHEPARD ET AL.

Determining the cycle adjust from clock tags. This figure shows
the one-period cycle adjust calculated for a data signal launched by
the leading edge of the C1 clock and subsequently tested to the
falling edge of the same reference clock in the following cycle.

current algorithms generally difficult to extend to self-
timed or self-resetting circuits [31].

implemented using the tool Pathmill** from EPIC Design
Technology and IBM’s EinsTimer*. As in all key analysis
processes on the G4 design, a hierarchical approach is
used. Macros are individually abstracted from transistor-
level analysis and are combined with global interconnection
models in chip-level timing runs. The hierarchical
approach allows faster turnaround of full-chip timing runs,
since only those macros which changed since the last
timing run must be re-abstracted. In addition, quick
analysis of proposed global wiring changes can be made
without detailed timing analysis at the macro level.

Macro timing
Pathmill was used for the macro-level timing analysis.
Inputs include a netlist, configuration file, and
characterization file. The netlist can be generated either
from a schematic or from an extracted layout. The
configuration file contains the assertion information
generated from the global timing run relevant to the
macro under analysis. In addition, it contains “hints” to
Pathmill on how to handle difficult circuit topologies, such
as clock-shaping circuits, complex latch structures, or
certain pass-gate structures. These commands are applied
to sets of devices identified from subgraph isomorphism
with specified patterns [32]. Delays at each channel-
connected component are generally made under the
assumption that only one input switches at a time.
Patterns are also developed in an effort to deal with the
effects of simultaneous switching on early-mode timing.

The timing methodology for the G4 design is

528 Patterns that match the most common static CMOS gates,

such as NANDs, NORs, OAIs, and AOIs (two-, three-,
and four-way) are used to reduce the best-case delay
calculated for these circuits. Boolean satisfiability
constraints in the form of inversion or orthogonality
declarations are also passed to Pathmill in the
configuration file and are used to eliminate false paths
in the timing graph. These conditions are obtained from
the logical constraints view and are verified by Verity, as
described in Section 3. The characterization file specifies
the input slew and output loading design point used for
determining the sensitivity coefficients for delay and slew
to these quantities in the timing abstractions.

In lieu of complex metastability analysis, heuristics are
applied to determine setup and hold times at latches, as
shown for example in Figure 14(a). There are two possible
types of heuristics that can be used, “trigger-to-trigger”
and “trigger-to-latch.” In “trigger-to-trigger” heuristics
[Figure 14(b)], which are the simplest to analyze but in
most cases are prohibitively conservative, data are always
launched at the latch trigger time, or at the leading edge
of the active clock. Late data must be set up at the latch
node before the leading edge of the early active clock
arrives at the clock node. Early data must be held after
the trailing edge of the late active clock arrives at the
clock node. Figure 14(c) shows the case of trigger-to-latch
heuristics. In this case, data are launched from the latch at
the later of the data input arrival time or the trigger time
for late mode. For early mode, the data are launched at
latch trigger time. Late data must arrive at the latch node
before the trailing edge of the early clock, and early data
must be held after the trailing edge of the late active
clock. If data arrive after the trailing edge of the clock,
the trailing edge of the clock is used to launch data from
the latch. This is referred to as clipping, and the data
launched from the register are said to be at a clock-limited
arrival time. Many of the registers of the G4 design are of
a master-slave type. In this case, trigger-to-latch heuristics
are used on the master, and trigger-to-trigger heuristics
are used on the slave. When master and slave clocks are
nonoverlapping, setup and hold checks are performed
to the trailing edge of the master clock and data are
launched from the leading edge of the slave clock.
When master and slave clocks overlap, setup checks are
performed to the leading edge of the slave clock, while
hold checks are performed to the trailing edge of the
master clock. Data are launched from the leading edge of
the slave clock. In the case of transparent latch design,
trigger-to-latch heuristics are always employed. To add
conservatism to the latch analysis, the delay in actually
setting the latch, that is, switching the cross-coupled
inverters, is included in the data arrival time for setup
checks.

K. L. SHEPARD ET AL. IBM J. RES. DEVELOP. VOL. 41 NO. 415 JULYiSEPTEMBER 1997

Static timing analysis can also be applied to multiphase
dynamic logic, with additional timing constraints that must
be satisfied by timing analysis. As an example, consider
the “footed” domino stage shown in Figure 15. “Footed”
denotes the presence of a clocked evaluation transistor at
the bottom of the n-FET stack. For this logic stage, there
are four additional timing checks which must be
performed:

The dynamic node must fall before the falling edge of
the clock (setup). The evaluate must occur during the
current cycle’s evaluation period.

7- Clock node m
-P- Latch node

(a)
Trigger
edge i -

+ I Trigger

: Trigger
i edee 1111

*: Latch

t:

Latch heuristics: (a) Example transparent latch circuit, with clock-
node and latch-node timing points identified. (b) Trigger-to-trigger
heuristics in which data are launched at trigger time and tested at
trigger time. (c) Trigger-to-latch heuristics in which data are
launched at the later of the data input arrival time or the trigger
time for late mode. Tests are performed against the latch time, the
trailing edge of the clock.

1 datai

I

Timing checks for a standard “footed’ domino stage: (a) Circuit
topology for the stage. D denotes the dynamic node of the gate,
and CLK is the clock. (b) Example waveforms for the data inputs,
clock, and dynamic nodes. Red arrows denote setup tests. Green
arrow denotes hold test. Black arrows denote delays.

The data node must fall before the rising edge of the
clock (setup). This ensures that the previous stage resets
before the evaluation begins.
The dynamic node must rise before the rising edge of
the clock (setup). This ensures that the current stage
resets before the evaluation begins.
The falling edge of the data node must be held until
after the dynamic node falls (hold). This ensures that
the data “pulses” are wide enough to evaluate the gate.

Timing abstractions presented to global timing from
macro analysis can be either black or gray, as shown in
Figure 16. In the case of the black box, no internal latch
points are defined, and setup and hold tests are presented
at primary inputs. Black boxes can only be used in the
case of static logic with nontransparent latches. In
addition, black box abstraction requires independent
verification of latch-to-latch paths within the macro, which 529

LL. IBM J. RES. DEVELOP. VOL. 41 NO. 415 JULYiSEPTEMBER 1 1997 K. L. SHEPARD ET P

residue global interconnection models described in Section
4. In the early stages of the design, this information comes
from largely estimated or partial routes. As the design
progresses, the interconnection models increasingly reflect
fully routed designs. The statistical model described in
Section 4 is used throughout most of the design process,
with “best-case’’ statistics used in early mode and “worst-
case” statistics used in late mode.

To calculate the macro driver waveforms, we use the
idea of the “effective capacitance,” Ce, [34]. The effective
capacitance is a single capacitance assertion, which is
designed to yield an accurate delay and slew against
a “k-factor” driver model. The actual admittance of the
interconnection is modeled at the driver as a pi-model, as
shown in Figure 17. Ceff is given by the capacitance that
produces the same total integrated current through the
driver through the 50% point of the driver voltage
waveform. Let the slew (0-100%) at the driver be given
by tr. We consider a rising waveform, but the same
discussion applies to a falling waveform. The total
integrated current to the 50% response point for the Ce,
driver load is

‘eff‘dd I d t = -
2 .

(a) Black box and (b) gray box modeling.

Combining the admittance of the pi-model with the
Laplace transform of the saturate ramp waveform, one
finds that the current flowing through the driver in the - -
Laplace domain is given by

t
+

Match currents
through 50%
response point

(1 - e sf^).

In the time domain, this becomes
I I

Calculating Ceff. The total integrated current to the 50% response point for
the pi-model driver load is

~ “I .“xl-.l _.I

are not presented to global timing. Gray boxes are
essential for timing verification in the case of transparent
latches or domino logic. In this case, internal latch points Equating the two integrated-current expressions, one
are defined, and segments and tests to the internal latch obtains an expression for Ce, in terms of the slew time tr,
points are included in the abstraction.

Global timing and assertion management tr
TO perform the global timing analysis, the black or gray To find Ceff, this equation is solved iteratively with the
models from macro timing are translated into DCL [33] driver slew equation, which gives the slew as a function of

530 and loaded into EinsTimer along with the pi-model pole- C,. Convergence is achieved in a few iterations. We note

* ”

2RC:
ce, = C, + C, - - (1 - e“JZRC2).

K. L. SHEPARD ET AL. IBM J. RES. DEVELOP. VOL. 41 NO. 415 JULYISEPTEMBER 1997

that our approach differs from that of Reference [34] in
that only the slew at the driver is used; that is, no “block
delay” is considered in the analysis.

To calculate the receiver waveforms from the pi-model
pole-residue interconnection model, the driver saturate
ramp waveshape is applied to the pi-model transfer
function. For poles p , and residues k,, the step response in
the Laplace domain is given by

where

‘sum = C ki
I

and -ksUm is the steady-state voltage value. The Laplace
transform of the saturate ramp source is given by

The voltage response at the receiver is then given by

Converting to the time domain, one finds

for t 2 tr.

This is then converted back to a saturate ramp waveform
by calculating the SO%, lo%, and 90% response points.

Assertions are generated from the global timing runs
and are necessary to drive macro-level timing optimization
and as characterization information for timing abstraction.
For each macro, the following assertions are generated:

Effective capacitances on the outputs.
Primary input resistance assertions.
Input arrival times (early and late mode, rising and

Output required times (rising and falling) with phase tags.
falling) with phase tags.

A “slack-apportionment” algorithm is employed during the
early phases of the design process, before timing
convergence is achieved, to apportion negative slack
across multiple macros through modification of the actual
arrival time and required arrival-time assertions. Proper
assertion management is key to timing convergence in a

IBM J. RES. DEVELOP. VOL. 41 NO. 415 JULYiSEPTEMBER 1997

hierarchical timing environment. In multicycle dynamic
and separated latch designs, which are increasingly
required in high-performance design, additional timing
checks associated with the clock phases must be managed
across hierarchical boundaries. Significant work is
underway to address the challenges associated with
managing these phase constraints and achieving overall
phase convergence in the design.

produces slack reports showing path traces associated with
the worst slacks in the design, early or late mode. Another
useful report is a list of nets that violate slew limits, with
both driver and receiver slews presented in the violations
report. Issues associated with managing RC delays in
global interconnections are further discussed in Section 7.

Voltage, temperature, and process conditions, slack
margins, and slew constraints were chosen to guarantee
functionality of the G4 design. A late-mode slack margin
was established to obtain sufficient yield of 300-MHz
processor chips, taking into account the effects of phase-
locked loop jitter, clock skew, coupled noise, and
temperature and voltage swings within the multichip
module environment. All circuits in late mode were
timed to nominal process, highest predicted on-chip
temperature, and lowest predicted on-chip voltage. Early-
mode analysis was performed at a three-sigma fast
process, lowest predicted on-chip temperature, and highest
predicted on-chip voltage. Early-mode slack margins,
protected by short-path padding in the design, were
chosen to account for the effects of clock skew and
simultaneous switching. Different clock skew values were
assumed, depending on the receiving latch type and the
relative locations of the latches in the clock distribution
tree at the beginning and end of the path. A slew (10% to
90% transition time) limit was also enforced to reduce
path delay sensitivity to manufacturing process variations
and to reduce path delay sensitivity to coupled noise and
ground-supply bounce. A slight delta in ground or supply
potential between driving and receiving circuits translates
into a variation in propagation delay proportional to
slew rate. Global nets are allowed the highest slew
limit only because the relatively high resistance of the
interconnections forced a higher limit. Nets internal to a
macro have a smaller slew limit, and even smaller slew
limits are targeted for dynamic nets and internal latch
nodes, since noise on these nets could affect the
functionality of the chip.

6. Semicustom synthesis methodology

The global chip timing run using EinsTimer also

BooleDozer [14], IBM’s logic synthesis tool, was an
essential element of the G4 methodology for
implementing major portions of the G4 microprocessor
design, many of these containing timing-critical paths. In
this section, we describe some of the ways we exploited

K. L. SHEPARD ET AL.

(a) Static CMOS inverter. (b) Three-input NAND gate.

BooleDozer to achieve rapid implementation while
maintaining the ability to control the logic structure and
aggressively tune the design at the device level. Some of
the future directions in semicustom implementation are
also addressed. The discussion involves several different
aspects of the use of synthesis in the G4 design:

Use of a continuously tunable, parameterized standard-
cell library with logic functions chosen for performance.
Designer controls on restructuring and technology
mapping to this library.
Use of “don’t-cares’’ as defined by VHDL asserts to
simplify logic implementation.
Use of “hill-climbing”-based late-timing correction.
Use of postplacement retuning and postplacement
optimization of the macro clock distribution and scan
chains.
Use of tag-based partitioning to create design hierarchy
to allow further customization of circuit and layout.

Traditionally, timing rules for standard-cell designs have
been based on the actual size of the gate. In addition,
each cell was available in a number of discrete sizes, or
“power levels.” The timing rules for the static CMOS
library used in the G4 microprocessor design differ from
these traditional libraries in three important ways. First,
the rules were continuously parameterizable; that is, no
fixed library cells were assumed. This has implications for
the physical design of the library, which is discussed in

532 Section 7. Second, the rules were parameterized by

K. L. SHEPARD ET AL

quantities directly related to delay, rather than size, which
we refer to as normalized gain and beta. Finally, the
parameterized logic functions chosen were limited to
simple, single inverting stages, the most complex being a

Let us first define the parameters normalized gain and
2 X 2 AOIiOAI (AND-OR-INVERT/OR-AND-INVERT).

beta. Consider the static CMOS inverter shown in
Figure 18(a) driving a load capacitance of cant. Let p,,
be the gate capacitance per unit width. The normalized
gain, g, of the inverter is given by

g =

Beta (p) is given by

Cout

P,WP + W”) .

In addition, we define a parameter called the effective
n-FET width, W:ff, which is given by

Kff = W”

for the static inverter. In terms of /3 and W:ff, the
normalized gain is given by

Cout
g = P c , q f f (1 + P) .

Now consider the three-input NAND gate shown in
Figure 18(b), driving the same load capacitance tout. The
equation derived above continues to apply. We introduce
FET multiplication factors mn and m p , which are chosen
for a particular book type so that the rising and falling
delays of the gate match the rising and falling delays of a
normalized gain-3 inverter. One might expect that mp = 1
and mn = 3. In actuality, mn = 2 would be a typical value
for the technology used in the G4 microprocessor design.
This approach follows closely the previously published
method of “logical effort” [35, 361. In our formulation, the
normalized gain of the gate is the same as the product
of the logical effort and the electrical effort used in
Reference [36].

The rule structure itself consists of interpolated tables
which calculate delay (do) and slew (so) as a function of
input slew (si), normalized gain (g), and beta (p):

do = fb,, g, PI>
so =?(si> g, PI.
Figure 19 shows a rising output delay of an inverter as a
function of normalized gain and slew for a p of 1.5. The
rule structure also allows calculation of delays for a sized
gate set with a table which stores the value of qff for
each fixed-size gate.

using many of the same ideas. The domino library differs
A parameterized domino library is also being developed

IBM J. RES. DEVELOP. VOL. 41 NO. 415 JULYiSEPTEMBER 1997

from the static one in two principal ways. First, unlike the
static library, in which performance drives the gate design
to simpler logic function, domino gates are designed to
achieve as much logic function as possible. Many complex
functions are achievable by replacing the traditional
output inverter with a static NAND or NOR gate, as
shown in Figure 20. Second, gain is the only parameter
which drives domino sizing. Noise considerations and
precharge time requirements drive the rest of the device
sizing and ratioing.

An important aspect of the use of BooleDozer in the
G4 microprocessor design was designer control over
structural dominance, By structural dominance, we mean
the extent to which the logical structure in the VHDL
dominates the mapping [14]. This is accomplished with a
SYN-CONTROL keyword which is placed in the VHDL
through an attribute on the block statement or, in some
cases, on an entire design entity. SYN-CONTROL could
have one of two values, direct or dataflow, both
implying structural dominance of the logic as coded in the
VHDL. The value direct denotes the highest degree of
control from the VHDL. BooleDozer attempts to find a
one-to-one mapping into the target technology. If none
exists, the function is given the same treatment as the
dataflow keyword implies. In the dataflow case, the
technology-mapping algorithm attempts to find a covering
that matches the original structure as closely as possible

Explicit declaration of a "don't-care'' set using VHDL
assert statements provides another approach for
optimization in BooleDozer [38, 391. A common example
is a fully decoded bus, in which the bits of the bus are
known to be orthogonal. Consider the implementation of
the following piece of VHDL:

assert (not (a(0) and a(1))

[371.

or not a'stable(1 ns))
report "dontcare: Orthogonality

violation on net a"
severity ERROR;

with a select
d <= b when " 01" ,

c when " 10" ,
'X' when others;

The a'stable (1 ns) in the assert statement ensures
that it is not activated in VHDL simulation while the
signal a is settling. An assert statement of this form
could reflect either a weak or strong assertion, as
discussed in Section 2. Without the assertion, BooleDozer
does an implementation that drives d to a ' 0 ' when a is
"00" or "11". In the presence of the assertion, however,
BooleDozer is free to choose a more simplified logic
implementation. BooleDozer uses a test generator
and a redundancy-removal algorithm to perform the

IBM J. RES. DEVELOP. VOL. 41 NO. 415 JULYiSEPTEMBER 1997

. , ,.. . ..

Inverter delay as a function of normalized gain and input slew.

Complex domino gate consisting of two separate domino pulldown
I stacks combined in a static NAND or NOR gate.

simplication, the details of which are described elsewhere
[39, 401.

The optimizations required by logic synthesis are very
complex. As a result, most are accomplished through
greedy heuristics which can never be guaranteed to
produce an optimal result [14]. These heuristic timing
optimizations are performed in BooleDozer after
technology mapping, a stage in the synthesis process
referred to as late timing correction. Late timing correction
consists of several steps:

1. Capacitances are corrected to 200% of their specified

2. Global delay optimization is performed in which all
limits through cloning and repowering.

output pins with negative slack are collected. For each

K. L. SHEPARD ET AL.

Delay optimization transformations: (a) Repowering; (b) cloning;
(c) buffering; (d) pin swapping; (e) inverter pushing; (0 boundary
moves; (g) expansion.

pass through the pin list, the delay optimization
transformation that produces the greatest improvement
in delay is performed. More details on the delay
optimization transformations are presented be!ow.

3. Capacitances are then corrected to 100% of their
specified limits.

4. Critical-path optimization is performed. For each pass
through a given critical path, the best transformation is
performed on the output pin of the path that produces
the best result.

5. On paths with positive slack, area is recovered where
possible through repower and common-term
elimination.

6. Slews are now corrected.
7. A final critical path optimization is performed.

Delay optimization transformation consists of repowering,
cloning, buffering, pin swapping, inverter pushing,
boundary moves, and expansion. An example of each of
these is shown in Figure 21. Repowering means sizing a
gate to achieve better timing in driving a load. Cloning,
sometimes also called parallel repowering, involves
duplicating a gate and dividing the fan-out between the
copies. Pin swapping, also referred to as fan-in reordering,

534 involves changing the pin assignment for commutative

logic functions. The example shown in Figure 21(d) is two-
level pin swapping, since critical signal x2 is moved ahead
one logic level in the swap. In Figure 21(e), the inverter at
input a is pushed forward, resulting in fewer logic levels
for the critical path from a to b. A boundary move is
illustrated in Figure 21(f). In this case, a four-level NAND
structure with critical path from a to f is converted
to a two-level NAND structure for this critical path.
Expansions may also be used to improve timing. An
example of an expansion is shown in Figure 21(g). Late
timing correction is also performed under “hill-climbing’’
conditions. This means that individual transformations are
allowed to make timing worse if a succession of these
transformations ultimately made timing better, allowing
the heuristics to escape from locally optimal timing
solutions. A checkpointing mechanism prevents the
algorithm from ever ultimately producing a slower
implementation.

Beta and gain parameterization in the timing rules as
described above enable heuristics for delay optimization
which can be applied after an initial placement of the
design. Only after an initial placement can the
interconnection capacitance be estimated accurately
enough through minimum-width Steiner tree routes to
enable detailed retuning. Timing correction in a
postplacement environment must be more restrictive,
incorporating only repowering, cloning, and buffering
as delay optimizations. The changes that result from
these postplacement optimizations are handled as an
“engineering change option” (ECO) to the original
placement. Details of this process are discussed in Section 7.
These delay optimization transforms can be employed
with the same late timing correction approach described
above, with several notable exceptions enabled by
beta-gain parameterization.

One notable difference is the way in which buffers are
added to drive large loads from primary outputs. As part
of the global delay optimization, we can calculate the
path effort F for each critical path in the design, which we
define as F = ~ C p , / C p i [36], where Cpo is the capacitance
being driven from the primary output of the macro as
determined from global assertions, and Cpi is a reasonable
input pin capacitance limit derived from the primary input
resistance assertion. In addition, let n be the number of
logic stages in the critical path and gopt the optimal
normalized gain for a given gate type (typically about 3).
If F”” > go+ additional buffers are added to the primary
output to bring F’” below gopI.

and beta optimization as distinct optimization processes.
In the case of gain, we define the branching effort as
b = CouJCin. Then, for optimal repowering of a given
gate, the normalized gain g should satisfy gb = gopI for
minimum delay. This enables an immediate determination

Repowering in the parameterized context separates gain

K. L. SHEPARD ET AL IBM J. RES. DEVELOP. VOL. 41 NO. 415 JULYBEPTEMBER 1995

of the locally optimal gate repowering, considerably
improving run-time performance.

In addition to retuning, postplacement optimizations
done within BooleDozer include reordering of the scan
chains and optimization of the clock-distribution network
within the macro. Following initial placement, which is
done without regard to the scan-chain connectivity, the
scan chains are reordered on the basis of latch placement
to minimize the total scan-chain length. Following this
reordering, the scan optimization program generates a
new set of scan-connect-out to scan-connect-in
VHDL signal assignments which are used in the VHDL
architecture as described previously in Section 2.

Signal tagging can be used for design partitioning. In
this case, signals are tagged to denote that the cone of
logic associated with this signal is to be included in a
specific partition. Logic in the cone is collected until a
primary input or other tagged net is reached. This is used
to “tag out” a piece of the design for a custom
implementation or produce “submacros” for a more
partitioned physical design.

be underestimated. It is extremely difficult to constantly
adapt full-custom designs to continuous changes in the
global timing and loading environment. Significant effort is
now underway to expand the semicustom approach to
handle multiphase domino logic implementations and the
associated problems of phase assignment and convergence.

The importance of a semicustom design process cannot

7. Chip circuit and physical design
We now consider some of the details of the circuit and
physical design of the processor. The methodology follows
the two-level paradigm with a macro level and a chip-
integration level of design. Macro-level design consists of
custom circuit and layout approaches for the dataflow
stacks and arrays and the semicustom cell-based approach
for control logic. Those macros implemented in the
semicustom approach are referred to as random logic
macros (RLMs).

Custom macro methodology
There are three loosely delineated stages to the design of
a custom macro-early schematic design and prototyping,
interactive schematic refinement, and final schematic and
layout. Custom macro design begins with a VHDL
description of the logic function developed in concert with
a transistor-level schematic implementation. Initial circuit
and logic decisions are made with early circuit-simulation-
based timing of critical cross sections. Estimates are also
made for the capacitive loading at the outputs based
on early chip floorplan estimates, as discussed in the
subsection on chip integration physical design. An early
floorplan of each custom macro is also done to ensure
that sufficient area and wiring resources are available.

This early physical design planning forms the basis for
wire capacitance estimates placed in the schematic.
“Layout-dependent” device models are also used which
contain early estimates of source and drain diffusion
capacitances based on predicted layout style. Once a
complete schematic exists, static timing is used to verify
the early cross-section selection and provide a timing
abstraction to use in early global timing.

Iterative refinement of the design occurs as timing
assertions are established on the basis of global timing.
The timing assertion generation process was described in
detail in Section 5. Area estimates are also updated as
part of this process. At some point, the macro designs are
“frozen.” This is made known to the slack apportionment
program so that all further timing improvements are
required from the semicustom implementations. The
macro then enters the final schematic and layout stage.

methodology limitation on the amount of hierarchy which
may be used. Layout and schematic hierarchies are
encouraged, but not required, to match in order to enable
hierarchical layout-to-schematic (LVS) verification. The
custom circuit layout implementations used on the G4
design encompass a wide variety of layout organizations
and design styles. The layout image is, in general,
constrained only by the bit image of the data stacks, which
specify wire usage and bit positions above first-level metal,
leaving complete flexibility within technology ground rules
and circuit style guidelines to FET layout and local
interconnection. The layouts, of course, have to conform
with shadow views from the global environment, generated
using either the blockage or contract methodology
described in the subsection on abstract and shadow
methodology. FETs are formed from either polygons or
the instantiation of parameterized device cells. Some use
is made of device-level wiring tools, but most designs are
wired manually, with highly regular wiring done with
scripts. After circuit layout is complete, the detailed
macro-level extraction is performed, as well as design rule
checking (DRC) and LVS. Static timing analysis is then
run directly on the extracted netlist. Final timing closure
involves potential retuning of the layout.

“weakly static,” circuits. Weakly static circuits are circuits
in which the dynamic node is held by a weak static half-
latch device. Timing checks are done using static timing
analysis. Noise is a major concern, particularly with
dynamic circuits, an issue discussed in more detail in
Section 9.

The arrays in the G4 design are entirely custom-

The final schematics and layout are hierarchical, with no

The G4 design makes limited use of dynamic, or

designed. The use of self-resetting techniques [41]
precludes use of static timing analysis. Regular structures
in the arrays allow timing verification almost entirely
through cross-section simulation. The timing abstractions 535

iL. 1997 K. L. SHEPARD ET P

for the arrays are largely hand-generated from this
analysis.

Random logic macro implementation
Efficient implementation of the semicustom macros within
performance requirements is an essential part of the
G4 methodology. The goals of the semicustom
implementation are twofold-provide a technique for
automatically generating a complete circuit and layout
from a VHDL description, while simultaneously preserving
the benefits of transistor-level design. We have already
discussed the parameterized libraries which were used in
synthesis, in addition to a “conventional” standard-cell
library. In this section, we complete the picture with
discussion of the physical design of the parameterized
library and discussion of the entire RLM methodology.

Parameterized cell generation
The use of parameterized cells or soft libraries requires
development of a tool to generate layouts automatically as
part of the design process. The library generator for static
CMOS developed for the G4 design concentrates on
efficient design of simple cells (the most complex being a
2 X 2 AO/OA), and allows customization of the cell
image. The cell generator techniques are also being
applied to complex domino logic gate implementations, as
shown in Figure 20, by modularization of devices in the
topology; that is, by doing the precharge devices, n-FET
pull-down stack, and output stage as separate modules and
combining them.

The cell generator is used in two ways. It is first used to
create a standard set of sizes which are selected and
shared over the entire chip, in effect creating a standard
cell library with a large number of sizing options. This
library is used for initial implementation and placement of
all semicustom macros. In some cases, the cells are made
a permanent part of the design hierarchy, matching a
nonparameterized representation in the schematic. The
more common approach is to tune away from the fixed
library sizes. In this case, a cell library is created
transiently corresponding to a user-specified “binning” of
the continuously tuned schematic. After a placed-and-
routed implementation from the soft library is completed,
the layout is subsequently flattened, eliminating all
references to the cell layout design. A parameterized
schematic corresponds to this flattened layout. In this way,
the original soft-library schematic and layout become part
of a customized macro implementation. More details of
the RLM methodology are described below.

Semicustom macro methodology
The RLM methodology begins with a schematic that is
created by synthesizing the VHDL description. In all

536 cases, the initial implementation uses the fixed power-level

cell set. A physical hierarchy of the design corresponding
to the schematic hierarchy is constructed, using abstracts
for both the standard-cell or parameterized library and
custom-designed blocks embedded in the design and
tagged out in the VHDL. A shadow view, containing an
estimate of the macro size as well as macro pin placement,
is used to create a macro floorplan. Each of the standard
cells is automatically placed within circuit rows in the
macro floorplan. The placement program optimizes the
placement, with constraints on critical nets and routing
congestion, using the Ce113** place-and-route engine. The
initial placement, which is in turn given to BooleDozer to
perform the postplacement optimizations, gives no weight
to clock and scan-chain nets. Postplacement optimizations
include reconnection of the clock distribution network,
scan-chain reordering based on placement of latches, and,
where necessary, continuous repowering and fan-out
correction. Network changes are handled as an ECO on
the initial placement solution, which is consequently
routed. Upon completion of the routing, the actual routes
are extracted and the design is retimed. This may result in
additional retuning through ECOs. From this point, the
design is tantamount to a transistor-level custom layout
for all timing and electrical analysis.

In some cases, the initial placement described above
is performed using timing-driven placement of critical
timing paths. The intent is to limit the amount of wiring
capacitance along these paths to prevent excessive area
utilization in subsequent retuning and fan-out correction.
The most timing-critical nets are first identified in the
macro long-path timing-slack report. A target capacitance
limit is calculated for each of these nets. The calculation
accounts for the timing slack of the net and the net’s fan-
out. The capacitance limit was set progressively higher for
nets which were less timing-critical or which had greater
fan-out. This approach has the most benefit on large
(>80000-transistor) designs.

The system of combining soft libraries with mature
place-and-route technology finds application in many
macros that would have otherwise been done with
full-custom design. In dataflow macros, particularly
those which do not have a bit-slice architecture, a
significant productivity advantage is obtained by manually
implementing the design with parameterized gates, tuning
each gate independently to optimize the critical path, and
applying soft libraries and place-and-route for the layout.
The semicustom layout approach is being driven by the
increasing need for early physical design to predict
performance and growing difficulty in estimating capacitive
load and RC delays from schematic representations.
Technology changes are also occurring many times
in a design cycle, both in the devices and in the
interconnections-a growing need exists to react rapidly to
these changes in the physical design. We are currently

K. L. SHEPARD ET AL. IBM J. RES. DEVELOP. VOL. 41 NO. 415 JULYiSEPTEMBER 1997

developing the semicustom approach to handle the
needs of bit-slice layouts and multicycle domino
implementations.

Chip integration physical design
Chip integration, the top level of the two-level circuit and
physical design process, consists of floorplanning and
global wiring design. The first step in the chip-level design
process is to floorplan the macros, allocating macro area
and optimizing pin placement. Early abstractions describe
the area and aspect ratio for each of the macros to the
floorplanning tool. Pin placement is determined by the
desire to reduce interconnection length as well as to ease
routability constraints. The estimated interconnection
models used in early timing analysis consider pin
placement. Early global timing is used to help discover
poor macro pin placements.

Once the initial floorplan is created, power and clock
are routed. One of the largest strengths of the G4 on-chip
power distribution is the use of C4 [42] areal power
distribution pads as opposed to wire-bonded peripheral
pads. As shown in Figure 22, the C4 periodicity was 900 pm
each direction for power and ground. Large last-metal
buses were used to distribute power in a twisted fashion.
Figure 22 also shows the tight grid distribution used on
the other interconnection levels. The rigidity of the power
grid is further discussed in Section 8. The clock tree
design is a balanced H-tree structure [43] created with a
specialized maze router that uses wire width as well as
length tuning to achieve skew control of 22.5 ps while
simultaneously working to reduce latency. Latency
translates directly into skew when process, temperature,
and voltage variations are considered. The clock tree
consists of two levels, as shown in Figure 23. The H-tree
for this clock distribution is shown in Figure 24. The first
is the balanced tree from the central phase-locked loop
(PLL) and clock driver to preplaced sector buffers. Each
sector buffer is placed directly under a top-level-metal
power bus to minimize both delay variations within the
chip and ZR drops in the power distribution network.
A second level of balanced routing connects each sector
buffer to the local macro clock generators. The main clock
wires are routed on the top two interconnection levels.
The top interconnection level is thick with low sheet
resistivity. Accurately predicting its delay requires
consideration of inductance effects. In order to reduce
coupling interaction with other wires and to provide
good return paths to reduce inductance, top-level
interconnection clock wires are routed with adjacent
supply or ground.

After power and clock routing, the I/Os are wired, as
are other timing-critical buses in the design. 1/0 routing
is done first, since I/Os typically demand last-metal
interconnections in congested areas of the chip. Critical

IBM 1. RES. DEVELOP. VOL. 41 NO. 415 JULYiSEPTEMBER 1997

GND LM

1 900w.m

M2 & M4

bus routing is done next, with use of wide wires to
minimize RC delays. Early critical bus routing is also done
with consideration of capacitive coupling, which drives
wider spacing between wires or alternate signal and
powerlground routing.

Abstract and shadow methodology
Once the initial floorplan with power, clock, and prewires
is complete, the rest of the interconnection design is
managed through the use of a hierarchical physical design
process to parallelize the design effort and manage
complexity. Two types of abstractions are used in the
process of managing wiring resources across the macro-
chip hierarchical boundary-shadows which pass wiring
information from the global routes to the macros, and
abstracts which pass wiring information from the macros
to the globals.

Two basic methodologies are used to manage wiring
resources. In the first, which we refer to as the
blockage method, global routes are completed first, with no
blockage restriction from the macro level. Shadows pass
the actual global routes to the macro level of hierarchy.
The shadow nets are attributed so that the macro routes

K. L. SHEPARD ET AL.

H-tree for clock distribution. This figure shows the actual structure
of the clock tree from the central clock buffer to each of the nine
sector buffers.

G4 clock distribution. The clock tree consists of two levels of
buffering. A central clock buffer drives nine sector buffers which,
in turn, drive local clock generators.

may tap into these where appropriate, further maximizing
wiring utilization. This approach is used in selective areas
of the chip where wiring resources are at a premium. In
the second methodology, which we refer to as the contract
method, the wiring tracks are divided a priori between the
macro and global levels of hierarchy, and this contract is
coded in both the shadow and abstract, which are negative
images of each other. For example, if 80% of the wiring
tracks are reserved for global routes, their channels will
appear in the shadows as blockages. The other 20%
reserved for the macro routes will appear in the abstract
as blockages. Prewires-clock, power, chip I/O, and
critical nets-also appear in the shadow as blockages. This
technique does not create as efficient a use of wiring
channels as the blockage method, but allows the
parallelization of the routing process.

As the design progresses, the shadows and abstracts
increasingly become representations of completed design,
with net-attributed shapes representing actual routes
replacing blockage shapes. These shadows and abstracts,

538 therefore, naturally evolve into their role in parasitic

extraction, as described in Section 4. In both the blockage
and contract methods, abstracts frequently have large pins,
big shapes or collections of shapes presented to the global
level for connectivity to a given pin. The use of large pins
helps to create flexibility in the global routing. However,
this, along with the use of net-attributed shadows in the
blockage method, produces situations such as those
shown in Figure 25, in which the resulting hierarchical
assignments of shapes produce difficult topologies for
extraction. In Figure 25(a), a “large pin” is tapped by
multiple global wires. The pin has multiple taps in the
macro as well as serving as a “feedthrough” for the global
routes. In Figure 25(b), a net-attributed shadow is used so
that a global route has multiple tap points to the macro,
more than the original number of pins in the design for
this net. One possible solution to these hierarchical
problems is to treat the tap points as equivalent, shorting
them together in the resulting macro extraction, but
keeping them distinct in the global extraction, choosing
the best-case or worst-case global interconnection delay
from among the equivalent pins.

Global interconnection optimization
Managing global RC delays and ensuring that global net
drivers are appropriately sized for their loads are essential
parts of the chip integration process. These problems are

K. I.. SHEPARD ET AL. IBM J . RES. DEVELOP. VOL. 41 NO. 415 JULYiSEPTEMBER 1997

identified as slew violation at global net receivers. For
those receivers showing violations, the slew at the driver is
also examined. The general optimization methodology is a
three-step process:

1. Where there is a slew violation at the driver, the driver

2. If the driver is appropriately sized but the receiver slew
is still poor, there is excessive RC delay. The first
approach to fixing this is to widen the wire, resizing the
driver in the process to the larger capacitive load.

an alternative or in addition to wide wires.

is resized.

3. In cases where slack allows, a repeater may be used as

If the net is longer than ten millimeters and there is
sufficient slack, insertion of repeaters is generally the
preferred solution. If the net is less than ten millimeters,
wire widening is generally used.

interconnections, in which the wire acquires lossy
transmission-line characteristics, one must also be careful
not to overdrive the line. This can result in an impedance
mismatch between the driver and the characteristic
impedance of the interconnection which can produce
ringing.

In the case of low-resistivity, last-metal

Verification of physical design
Verification of the physical design is divided into two main
areas: design rules checking (DRC) and layout versus
schematic (LVS). In addition, the physical verification
tools were also employed to perform such auxiliary
functions as physical data compare and technology
conversion.

The bulk of the DRC physical verification consisted
of checking the design against the layout ground rules
present in the technology guide, using manufacturing-
approved rules. The same ground-rule checking tool was
used at all stages of the design cycle. This required it to
be robust enough to handle an entire chip’s worth of data,
yet with low enough overhead that it did not affect the
turnaround time when checking small circuits. The
checking tool was integrated into the design system,
providing textual and graphical feedback upon completion
of the run. This feedback was reported hierarchically,
greatly reducing the amount of information that had to
be acted upon by the designer. Both the textual and
graphical error coordinates were normalized to those of
the prime cell. This allowed for easy graphical import into
the design database while simplifying the error-separation
process. In addition to the ground-rule checks, there were
other rule files available; these checked for potential
design problems that were not specifically ground-rule-
related, such as degenerate shapes, or non-technology-
specific ground rules, such as I/O checks.

(a) rJ Net-attributed
shadow shape

Hierarchical problems in extraction: (a) Large macro pin connects
to multiple wires representing the same global net. (b) Net-
attributed shadow shape is tapped in multiple places by macro nets.

Like DRC, the same LVS tool was used at all levels of
the design hierarchy. The LVS submission tool was also
completely integrated into the design system. In addition
to the physical layout, LVS requires a schematic
representation of the circuit as an input. This automated
procedure is accomplished by taking the output of the
electrical simulation and processing the text. Because of
the wide variety of design styles present on the chip, LVS
had to be flexible enough to check each correctly. This
was facilitated by allowing the designers to select from
a wide variety of options when submitting LVS jobs,
allowing them to tailor the checking job to meet the
specific requirements of their designs. One of the most
important features of the LVS methodology was its ability
to handle different design flows. Both top-down and
bottom-up designs could be submitted and checked from
within the design system. The top-down approach required
some data preprocessing. Because of this, a macro
designer could successfully check any combination of
circuits and black boxes; a processor subunit integrator
could check any combination of macros and black boxes;
and a chip integrator could check any combination of
processor subunits and black boxes. Having this ability
permitted wiring errors to be caught early in the design
cycle, thus greatly reducing the amount of rework.

Having a well-structured hierarchy was an important
factor in the successful operation of the LVS program. It
allowed for faster run times and more concise diagnostics.
This dependence on hierarchy was a drawback, however,
when dealing with the I/O terminating resistors. Because
these resistors had to be tuned with regard to chip wiring,

IBM J. RES. DEVELOP. VOL. 41 NO. 415 JULYiSEPTEMBER 1997 K. L. SHEPARD ET AL.

540

they could not be assigned values until the end of the
chip integration cycle. Placement of these resistors at
the top level of the design disrupted the hierarchy to a
considerable extent. It would not have been possible to
LVS-check the design without a lengthy rework of the
chip schematic. To get around this problem, a series of
checking programs were run outside the boundaries of
LVS to ensure that the resistors were placed correctly,
while LVS was told to ignore the resistors in the network
compare.

Besides DRC and LVS checking, the verification tool
set was also employed to handle some special cases.
Between major design releases, it was expedient to repair
design bugs by modification of personalization levels only.
In cases such as these, a layout data comparison program
was used to ensure that only the personalization levels
were altered, and that the silicon and local
interconnection layers remained unchanged, allowing for a
savings in the cost of these masks.

An even more significant use of the verification tools
involved the conversion of existing design data to a more
aggressive set of technology ground rules. This was
accomplished in a manner completely transparent to
the design team. They designed the entire chip in one
technology, and the final data were transformed to the
new technology. This resulted in cutting several months
off the time it would have taken for the design team
to convert to the new technology by hand. Such a
methodology required a more extensive set of verification
requirements, since it was necessary for the design data to
be completely DRC- and LVS-clean for both the designed
and converted technologies.

The final design data were checked completely using the
existing technology ground rules. A two-stage conversion
program was then employed to convert the data to the
new technology. A single conversion program was initially
used. Although this produced a ground-rule-correct design,
the conversion caused considerable disruption in the
chip hierarchy because of a special local interconnection
level. This level had a large amount of interhierarchy
interactions, leading to resultant shapes that had to be
propagated several layers upward in the hierarchy. Using
the current checking tools, it was impossible to run a
complete LVS on the final design. A cell-by-cell approach
was then tried, but this led to ground-rule violations on
the local interconnection level. The conversion program
was then converted into the two-stage approach. The first
stage performed the bulk of the shapes conversion on a
cell-by-cell basis. A hierarchical conversion was then
performed on a portion of the local interconnection layer
shapes that were in violation of the technology ground
rules. The final data could be checked with all of the same
rules used for the initial nonconverted design.

8. Electrical analysis
We now describe the methodology used to analyze the
power demands of the chip as well as determine the power
supply noise and the electromigration reliability of the
power network.

Power calculation
Static algorithms, such as those applied to timing analysis,
rely on simulations at the gate level combined with a
graph-based path search. The fundamental assumption of
this approach is that correct characterization for the
analysis in question can be done at the level of individual
channel-connected components. This is, unfortunately,
not true for determining the power demands of digital
systems. Straightforward static analysis is stubbornly defied
by the existence of glitches and incomplete transitions at
gate inputs, the dependence of energy consumption on
past history, and sensitivity of energy demands to the
precise analog nature of waveshapes in the design [44]. As
a result, the approach we take is an essentially two-level
hierarchical analysis methodology, in which large, flat
macro-level simulations are abstracted and combined
statically to analyze the energy demands of the chip and
determine the integrity of the power distribution network.

We perform the macro circuit simulation using the
SPECS (Simulation Program for Electronic Circuits and
Systems) simulator [45]. In SPECS, the simulation is
event-driven; IV characteristics are assumed to be
piecewise constant, branch currents are assumed to be
piecewise constant in time, and branch voltages are
assumed to be piecewise linear in time. The clocks are
toggled at system cycle time and patterns are applied with
arrival times relative to the clock as determined from
static timing analysis. Output loading is also obtained
from the global timing environment. Patterns are either
designer-chosen to maximize the power requirements of
the circuit, or randomly generated. For smaller macros
(<50000 transistors), hundreds of patterns are analyzed,
while for larger macros (50000-200000 transistors), tens
of patterns are simulated. We define a set of power points,
pins within the power and ground network that separate
the “local” power distribution from the global one. These
are typically chosen on the via layer that connects the
first- and second-level metal. The macro, including the
local power grid up to the power point, is extracted.
Current meters are attached to the power points in the
extracted netlist, as shown in Figure 26 for simulation. A
fundamental assumption of this hierarchical approach to
power analysis is that the global supply and ground can be
assumed to have their nominal values when calculating the
power-point currents. In actuality, macro power demands
result in power supply noise which in turn affects the

K. L. SHEPARD ET AL. IBM J. RES. DEVELOP. VOL. 41 NO, 415 JULYiSEPTEMBER 1997

power-point currents, an effect which is ignored in this
analysis.

In order to abstract macro power data both temporally
and spatially, we monitor the currents at the power points
during simulation. The active edge of the global clock
defines the cycle. Let i,””’(m) be the peak current on
power point n during cycle m , and let i,““’“(m) be the
average current on power point la over cycle m. We then
find the cycle m for which I

I n

is maximum, and the cycle m‘ for which
2 i;ueroge(m

n

is maximum. We then store the i r k (m) and iuverage ,l (m ‘)
values for each power point as a power view. Additional
temporal resolution is possible by dividing the cycle
into a number of “time buckets.”

From logic simulation, we determine a switching factor f
between 0 and 1 for each macro in the design during
“average” and “worst-case” activity. We define f as the
average fraction of inputs that change during a given
machine cycle. Figure 27 shows a power map of the chip
for average switching activity, calculated by computing

n

where the sum is over all of the power points in the power
view for the given macro.

IRIEM analysis
The power abstracts are also used to determine the
power-supply noise and evaluate electromigration
constraints in the power distribution. Both analyses begin
with an extraction of the multilevel power distribution
network from the macro power points to the C4 pads. A
full RC extraction of the power grid is performed [46].
The power-grid extraction includes the widths and via
sizes associated with each resistor in the extraction. For
the on-chip inductance extraction, the mesh plane of the
multichip module (MCM) package is used as the ground
plane [47].

to determine the IR drops in the power and ground
distribution. For this analysis, we use the average power-
point current and the “worst-case” switching factors to
apply dc current sources to the global power and ground
grids. The resulting resistive network is solved with a
sparse LU factorization package. IR drop results are
calculated for each power point, and branch currents are
calculated for each resistor in the network. The branch
currents are cross-referenced with the wire widths and via
sizes to flag potential electromigration problems. If we

We first perform a dc analysis of the power distribution

IBM I . RES. DEVELOP. VOL. 41 NO. 415 JULYiSEPTEMBER 1997

Power-point methodology. The supply and ground distribution is
divided between macro (black) and global (red). Power points form
the connection between these two levels of hierarchy. Independent 1 voltage sources that supply nominal supply and ground voltages to

I the macro serve as current meters. Peak and average currents
measured at these meters are subsequently applied to the global 1 power grid to determine IR drops and delta-I noise.

I Power dissipation map of the G4 processor

define the applied voltage Vapplied as the difference between
the power and ground voltage, ~~p~~~~ is the nominal applied
voltage, k‘z;Yf: is the average applied voltage, and Vzied

K. L. SHEPARD ET AL.

Power supply map of the G4 processor.

is the maximum value of the applied voltage. Figure 28
shows VaPplied calculated in this manner using i F (m ')
current values at each power point and average f values.
The maximum applied voltage drop, V z i e d - Vf.'Tj!:t,
is 37 millivolts, and the average applied voltage drop,
v:;:: - v ~ ~ ~ ~ ~ ~ ~ ' , is IO millivolts.

In addition to the variations in the dc power and
ground levels due to the steady-state current demands of
the chip, there are periodic variations due to simultaneous
switching of off-chip drivers and internal circuits. This
delta-Z noise occurs when these "pulses" of current are
sourced or sinked through inductance on the chip and
package supply and ground wires. Figure 29 shows delta-1
noise on the supply and ground as actually measured on-
chip. To analyze the delta4 noise, the power-point sources
are applied to the complete RLC extraction of the power
grid combined with a lumped-element model of the MCM.
Figure 30 shows a highly simplified view of this model for
a single powerlground C4 pair. The current sources at the
power points are assumed to switch as a spike with a slew
time of 100 ps rising and falling and with a magnitude
given by the peak current of the power point. Decoupling
capacitors are added to the equivalent circuit, as are

542 estimates of n-well and nonswitching circuit capacitance.

9. Noise analysis
We begin the discussion with a couple of definitions. An
evaluation node is a circuit node that forms the connection
between channel-connected components, or gates, in the
design. Noise, therefore, is defined as anything that causes
the voltage of an evaluation node to deviate from the
nominal supply or ground rails when the node should
represent a stable logic '0 ' or ' 1 ' value. We follow
Reference [5] in characterizing noise sources by peak
magnitudes relative to the nominal supply and ground
rails. Noise sources that reduce an evaluation node voltage
below the supply level (V,,) are denoted I/", while noise
sources that increase an evaluation node voltage above
the ground level are denoted VL. Noise may also be
bootstrapping if it increases a node voltage above the
supply level (V,,) or below the ground level (V,.). Noise
sources relevant to digital design include leakage noise,
power-supply noise, charge-sharing noise, and crosstalk

I
16.0000 ns 66.00MI ns 116.0000 ns

Ch. 1 200.0 mV/div Offset = 2.100 V
Ch. 2 200.0 mVldiv Offset = 400.0 mV
Timebase 10.0 ns/div Delay = 16.2000 ns

(a)

I I
16.M)oo ns 66.0000 ns 116.0000 ns

Ch. 1 200.0 mV/div Offset = 2.100 V
Ch. 2 200.0 mvldiv Offset = 400.0 mV
Timebase 10.0 ns/div Delay = 16.2000 ns

@)

1 Measured delta-Z noise on the G4 microprocessor at a clock cycle I time of (a) 3.5 ns; (b) 5 ns.

K. L. SHEPARD ET AL. IBM J. RES. DEVELOP. VOL. 41 NO. 415 JULYISEPTEMBER 1997

noise. Noise has two deleterious effects in digital systems:
It can produce logic failures by causing a latch to falsely
change state and can also have a direct effect on delay.
Leakage noise and power-supply noise result in lower or
higher supply levels, which reduce or enhance the current
drive of a circuit and consequently increase or decrease
the delay. Coupling noise can cause the effective line
capacitance to increase or decrease in the presence of
simultaneously switching noisy lines, increasing or
decreasing the delay. We refer to this as the
interconnection Miller effect.

The G4 design methodology analyzed only coupling
noise at the global level and did so in a limited way using
the capacitance-only coupling extraction of the global
interconnection discussed in Section 5. We define the
victim net as the static net onto which pulse noise is being
coupled by one or more perpetrator nets. Coupling noise
was calculated using the simple linear model shown in
Figure 31. A threshold of coupling capacitance to victim
self-capacitance was used to decide which perpetrator nets
to include in the analysis. Rdriver is the effective resistance
of the driver. The “resistance” R, of an individual FET k
is modeled from the linear region of the Ids versus Vds
current-voltage characteristic at IVgsl = Vdd. Rdriver is then

over the weakest static FET path in the driver. Rnet is the
total resistance of the net to the receiver. Cground is the
total capacitance of the victim net which is tied to ground.
Capacitances Cioup couple the victim to each of the
perpetrator sources uierp which are modeled as saturate
ramp waveforms of slew tllew. This network ignores the
distributed effects of resistance on the victim net. Instead,
the entire net resistance is put in series with the driver,
a pessimistic simplifying assumption. In addition, the
distributed resistance of the perpetrator nets is also
ignored. The unoi,,(t) response produced by the action
of a single perpetrator source ube,,(t) is given by

Package On chip

I Gnd

Equivalent circuit for delta-Z calculations.

Simple circuit model for crosstalk coupling.

In addition, both timing windows and logical constraints
were used to reduce pessimism. Arrival windows for the
perpetrator net signals are obtained from static timing
analysis and are defined by early- and late-mode
propagation at the same process, temperature, and
voltage. We then solve what we call the optimal control
problem for the arrival times of the perpetrator net driver
waveforms. We seek to find the arrival times for the
voltage waveforms of the perpetrator net drivers which
meet the arrival time constraints and which maximize the
peak noise response on each victim net receiver. Some
proactive attempts to avoid coupling problems were made
on global routes with constraint-driven routing techniques [48].

Receiver sensitivity to noise was characterized by circuit
topology. Latch topologies on receivers of long nets were
naturally ascribed lower acceptable upeak values than static
CMOS gates. Latches with n-FET pass-gate inputs have an

IBM J . RES. DEVELOP. VOL. 41 NO. 415 JULYiSEPTEMBER 1997 K. L. SHEPARD ET AL.

d V,-sensitive pass-gate latch structure. A V,, coupling even greater
than the threshold voltage V, causes the pass gate to turn on and I switch the latch, with no possibility of recovery.

Clk -

I

0.0 10.0 20.0 30.0 40.0
Q,a (fC)

1 Equivalent circuit for determining Q,, for soft-error failures of a
dynamic circuit. A pulse current source with total integrated charge I of Qcnt is applied.

sources [5] . The approach defines a metric of quality for
noise known as noise stability. The global interconnection
analysis takes advantage of the multiport impedance
macromodels described in Section 4 and will include
calculation of the effects of coupling on delay.

Soft-error rates
Soft errors are a leakage noise source caused by ionizing
radiation, which generates minority carriers in the
n-well or substrate that are collected at reverse-biased
source-drain diffusions. These can produce failures in
dynamic circuits, latches, and RAM cells. There are two
main sources of this ionizing radiation: cosmic rays and
alpha particles produced by radioactive decay of lead in

1 Soft-error rate as a function of the critical charge Qcrit for both c4 package technology. The impact of ionizing radiation 1 alpha-particle and cosmic-ray sources for a representative 0.35-pn
i technoloev. on circuits is determined by measuring the critical charge,

-,
Qcrit, which will produce failure in a given circuit. Smaller
feature sizes brought about by technology scaling mean

additional sensitivity to VLB2 noise. Consider the case in
which the gate of the pass gate is ' 0 ' and the latch stores
a logic ' 1 I, as shown in Figure 32. A VL. coupling event
greater than the threshold voltage V, causes the pass gate
to turn on and switch the latch. When the noise pulse
disappears, the pass gate is off, and no mechanism exists
to return the latch to its correct logic '1 ' state.

provide protection at the macro and global levels against
glitch-induced logic transitions for all possible noise

In development is a more detailed noise methodology to

544 p-FET pass-gate inputs would have a similar sensitivity to VH. noise.

smaller capacitances and lower values of Qcrit. Figure 33
shows the error rate for this circuit for both alpha and
cosmic rays in parts per million per thousand bits per
thousand hours of usage per pm2 of diffusion area.
Adjustments in the failure rate are also made in the
presence of error correcting.

To determine QCrit, circuits susceptible to soft-error
leakage are analyzed with an equivalent circuit similar to
that shown in Figure 34. A pulse current source is applied
to the evaluation node of the circuit so that the total
integrated charge of the current pulse is Qcrit. For p
diffusions, this charge is positive. For n diffusions, this
charge is negative. A typical pulse shape for this analysis

K. L. SHEPARD ET AL. IBM J. RES. DEVELOP. VOL. 41 NO. 415 JULYISEPTEMBER 1997

has a 5-ps rise
delayed falling

time and 30-ps time constant exponentially
edge.

10. Conclusions
In this paper we have reviewed the philosophies,
techniques, and processes used in the design of the Si390
Parallel Enterprise Server G4 microprocessor. In doing so,
we have emphasized some of the guiding themes of our
approach. Cycle simulation is an essential element of any
verification effort, and a methodology must exist to map
the design from an event-driven HDL into a cycle-
simulation model or, in many cases, into multiple cycle-

2. A. Cao, A. Adalal, J. Bauman, P. Delisle, P. Dedood, P.
Donehue, M. Dell’OcaKhouja, T. Doan, M. Doreswamy,
P. Ferolito, 0. Geva, D. Greenhill, S. Gopaladhine, J.
Irwin, L. Lev, J. MacDonald, M. Ma, S. Mitra, P. Patel,
A. Prabhu, R. Puranik, S. Rozanski, N. Ross, P. Saggurti,
S. Simovich, R. Sunder, B. Sur, W. Vercruysse, M. Wong,
P. Yip, J. Zhou, and G. Zyner, “CAD Methodology for
the Design of UltraSPARC-I Microprocessors at Sun
Microsystems, Inc.” Proceedings of the ACMIIEEE Design
Automation Conference, 1995, pp. 19-22.

3. C. Roth, R. Lewelling, and T. Brodnax, “The PowerPC
604 Microprocessor Design Methodology,” Proceedings of
the 1994 International Conference on Computer-Aided
Design, pp. 404-408.

Kusko. S. V. Pateras. D. E. Hoffman, T. G. McNamara,
4. W. V. Huott, T. J. Koprowski, B. J. Robbins, M. P.

simulation models. The design methodology must be and T.’J. Snethen. “Advanced Microprocessor Test
I

fundamentally transistor-level to allow detailed
optimization trade-offs among timing, power, and noise. 5 , K, L. Sheoard and v, Naravanan, in

“

Strategy and Methodology,” IBM J. Res. Develop. 41,
No. 415, 611-627 (1997, this issue).

At the same time, to manage the complexity, a consistent Submicro; Digital Design,”Proceedings of the 1996 -
two-level hierarchical approach must be used for all key International conference-on Computer2ided Design

analysis processes, with design abstractions stored and (ICCAD ’96), San Jose, CA, November 1996, pp. 524-531.

- .

6. IEEE Standard VHDL Lanauaae Reference Manual, IEEE
controlled from a common database. Static techniques Standard 1076-1987, I E E e Standaids Board, 345 E. 47th
must be employed for these analyses wherever possible.
In addition, one of these analyses must be noise, which
has acquired overwhelming importance with technology
scaling. Technology trends also mean that interconnections
must be designed and analyzed with comparable
importance to devices.

Acknowledgments
The authors gratefully acknowledge all of the members of
the G4 design team and other individuals throughout IBM
for their contributions to the methodology. We would like
particularly to thank Leon Stok, Reinaldo Bergamaschi,
Dan Brand, Andreas Kuehlmann, Chandu Visweswariah,
Gary Ditlow, Joachim Clabes, Izzy Bendrihem, Andrew
Sullivan, Nate Hieter, John Beatty, Pete Elmendorf, Alex
Suess, Vinod Narayanan, Kelvin Lewis, Phil Restle, Mike
Scheuermann, David Kung, Prabhakar Kudva, Lisa Lacey,
Dan Beece, Allan Dansky, Pat Williams, Keith Barkley,
Dennis Merrill, Scott Nealy, Steve Walker, Howard Chen,
Dan Knebel, Steve Washburn, Kwok Eng, Larry Lange,
and Paul Villarrubia.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Cadence Design
Systems, Inc. or Synopsys, Inc.

References
1. C. F. Webb, C. J. Anderson, L. Sigal, K. Shepard, J. S.

Liptay, J. D. Warnock, B. Curran, B. W. Krumm, M. D.
Mayo, P. J. Camporese, E. M. Schwarz, M. S. Farrell,
P. J. Restle, R. M. Averill, T. J. Slegel, W. V. Huott,
Y. H. Chan, B. Wile, P. G. Emma, D. K. Beece,
C. T. Chuang, and C. Price, “A 350 MHz SI390
Microprocessor,” 1997 IEEE International Solid-state
Circuits Conference Digest of Technical Papers, pp.
168-169, 449.

St., New York, NY 10017, 1988.

Cycle-Based, and Home-Brewed,” Electron. Design News

8. D. K. Beece, G. Deibert, G. Papp, and F. Villante, “The
IBM Engineering Verification Engine,” Proceedings of the
25th Design Automation Conference, Anaheim, CA, 1988,

7. C. Maxfield, “Digital Logic Simulation: Event-Driven,

41, NO. 14, 129-130, 132, 134, 136 (1996).

pp. 218-224.
9. C. E. Shannon, “A Symbolic Analysis of Delay and

Switching Circuits,” Trans. AIEE 57, 713-723 (1938).

Revisited and Reversed,” IEEE Trans. Computer-Aided
Design of Integrated Circuits & Syst. 15, No. 3, 348-357 (1996).

“Verity-A Formal Verification Program for Custom
CMOS Circuits,” IBM J. Res. Develop. 39, No. 112,

10. G. Even, I. Y. Spillinger, and L. Stok, “Retiming

11. A. Kuehlmann, A. Srinivasan, and D. P. LaPotin,

149-165 (1995).
12. D. P. Appenzeller and A. Kuehlmann, “Formal

Verification of a PowerPC Microprocessor,” Proceedings
of the International Conference on Computer Design,
Austin, TX, October 1995, pp. 79-84.

13. Randal E. Bryant, “Graph-Based Algorithms for Boolean
Function Manipulation,” IEEE Trans. Computer-Aided
Design ofIntegrated Circuits & Syst. 5, 677-691 (1986).

14. D. Brand, R. F. Damiano, and A. D. Drumm, “In the
Driver’s Seat of BooleDozer,” Proceedings of the
International Conference on Computer Design, Austin,
TX, October 1994, pp. 518-521.

Moricz, S . Prakash, A. Kuehlmann, and D. S. Rao, “High-
Level Synthesis in an Industrial Environment,” IBM J .
Res. Develop. 39, No. 112, 131-148 (1995).

16. A. Kuehlmann, D. I. Cheng, A. Srinivasan, and D. P.
LaPotin, “Error Diagnosis for Transistor-Level
Verification,” Proceedings of the 31st ACMIIEEE Design
Automation Conference, 1994, pp. 218-224.

17. W. T. Weeks, “Calculation of Coefficients of Capacitance
of Multiconductor Transmission Lines in the Presence of
a Dielectric Interface,” IEEE Trans. Microwave Theory
Tech. MT-18, 35-43 (1970).

18. Peter R. O’Brien and Thomas L. Savarino, “Efficient On-
Chip Delay Estimation for Leaky Models of Multiple-
Source Nets,” Proceedings of the Custom Integrated Circuits
Conference, 1990, pp. 9.6.1-9.6.4.

Evaluation for Timing Analysis,” IEEE Trans. Computer- 545

15. R. A. Bergamaschi, R. A. O’Connor, L. Stok, M. Z.

19. L. T. Pillage and R. A. Rohrer, “Asymptotic Waveform

IBM J. RES. DEVELOP. VOL. 41 NO. 415 JULYiSEPTEMBER 1YY7 K. L. SWEPARD ET AL.

Aided Design of Integrated Circuits & Syst. 9, No. 4,
352-366 (1990).

20. K. L. Shepard, V. L. Narayanan, P. C. Elmendorf, and G.
Zheng, “Global Harmony: Coupled Noise Analysis for
Full-Chip RC Interconnect Networks,” Proceedings of the
IEEE International Conference on Computer-Aided Design,
1997, to be published.

Modeling of Large Passive Linear Circuits by Means of
the SyPVL Algorithm,” Proceedings of ICCAD ’96, San
Jose, CA, November 1996, pp. 280-287.

22. A. Deutsch, G. V. Kopcsay, C. W. Surovic, B. J. Rubin,
L. M. Terman, Jr., R. P. Dunne, T. A. Gallo, and R. H.
Dennard, “Modeling and Characterization of Long
On-Chip Interconnections for High-Performance
Microprocessors,” IBM J. Res. Develop. 39, No. 5, 547-567
(1995).

VLSI, Addison-Wesley Publishing Co., Inc., Reading, MA,
1990.

in Deep Submicron Integrated Circuits,” Proceedings of
the IEEE International Conference on Computer Display,
October 1997; to be published.

25. H. Liao, W. W.-M. Dai, R. Wang, and F.-Y. Chang, “S-
Parameter Based Macro Model of Distributed-Lumped
Networks Using Exponentially Decayed Polynomial
Function,” Proceedings of the Design Automation
Conference, 1993, pp. 726-731.

of RC Interconnect Networks Based on Scattering
Parameter Macromodels,” Proceedings of the International
Conference on Computer-Aided Design, 1995, pp. 704-709.

27. Vivek Raghavan, J. Eric Bracken, and Ronald A. Rohrer,
“AWESpice: A General Tool for the Accurate and
Efficient Simulation of Interconnect Problems,”
Proceedings of the 29th ACMIIEEE Design Automation
Conference, Anaheim, CA, June 1992, pp. 87-92.

28. Seok-Yoon Kim, Nanda Gopal, and Lawrence T. Pillage,
“Time-Domain Macromodels for VLSI Interconnect
Analysis,” IEEE Trans. Computer-Aided Design of
Integrated Circuits & Syst. 13, 1257-1270 (1994).

Analysis for Computer Hardware,” IBM J. Res. Develop.

30. T. M. Burks. K. A. Sakallah. and T. N. Mudee. “Critical

21. R. W. Freund and P. Feldmann, “Reduced-Order

23. H. B. Bakoglu, Circuits, Interconnects, and Packaging for

24. K. L. Shepard, “Practical Issues of Interconnect Analysis

26. H. Liao and W. W.-M. Dai, “Partitioning and Reduction

29. R. B. Hitchcock, G. L. Smith, and D. D. Cheng, “Timing

26, 100-105 (1982).

37. D. S. Kung, R. F. Damiano, T. A. Nix, and D. J. Geiger,
“BDDMAP: Technology Mapper Based on a New
Covering Algorithm,” Proceedings of the 1992 Design
Automation Conference, pp. 484-487.

38. D. Brand, R. A. Bergamaschi, and L. Stok, “Be Careful
with Don’t Cares,” Proceedings of the 1995 International
Conference on Computer-Aided Design, pp. 83-86.

39. R. A. Bergamaschi, D. Brand, L. Stok, M. Berkelaar, and
S. Prakash, “Efficient Use of Logic Don’t Cares in High-
Level and Logic Synthesis,” Proceedings of the 1995
International Conference on Computer-Aided Design, pp.
272-278.

40. D. Brand, “Redundancy and Don’t Cares in Logic
Synthesis,” IEEE Trans. Computers C-32, 947-952 (1983).

41. T. I. Chappell, B. A. Chappell, S. E. Schuster, J. W.
Allen, S. P. Klepner, R. V. Joshi, and R. L. Franch,
“A 2-11s Cycle, 3.8 ns Access 512-kb CMOS ECL SRAM
with a Fully Pipelined Architecture,” IEEE J. Solid-State
Circuits 26, No. 11, 1577-1585 (1991).

42. L. F. Miller, “Controlled Collapse Reflow Chip Joining,”
IBM J. Res. Develop. 13, No. 3, 239-250 (1969).

43. H. B. Bakoglu, J. T. Walker, and J. D. Meindl, “A
Symmetric Clock Distribution Tree and Optimized High
Speed Interconnections for Reduced Clock Skew in ULSI
and WSI Circuits,” Proceedings of the IEEE International .
Conference on Computer Design, 1986, pp. 118-122.

44. D. Brand and C. Visweswariah, “Inaccuracies in Power
Estimation During Logic Synthesis,” Proceedings of the
IEEE International Conference on Computer-Aided Design,
1996, pp. 388-394.

45. C. Visweswariah and R. A. Rohrer, “Piecewise
Approximate Circuit Simulation,” IEEE Trans. Computer-
Aided Design of Integrated Circuits & Syst. 10, 861-870
(1991).

Switching Noise for High-Performance Microprocessor
Design,” Proceedings of the IEEE International Symposium
on Circuits and Systems, 1996, pp. 544-547.

47. B. J. Rubin, “An Electromagnetic Approach for Modeling
High-Performance Computer Packages,” IBM J. Res.
Develop. 34, No. 4, 585-600 (1990).

48. E. Malavasi, E. Charbon, E. Feit, and A. Sangiovanni-
Vincentelli, “Automation of IC Layout with Analog
Constraints,” IEEE Trans. Computer-Aided Design of
Integrated Circuits & Syst. 15, No. 8, 923-942 (1996).

46. H. H. Chen, “Minimizing Chip-Level Simultaneous

Paths in Circuits with Levelkensitive LatchG,’; IEEE
Trans. VLSI Syst. 3, No. 2, 273-291 (1995).

31. V. Narayanan, B. A. Chappel, and B. M. Fleischer, “Static
Received January 14, 1997; accepted for publication
July 30, 1997

Timing Analysis for Self-Resetting Circuits,” Proceedings
of the 1996 International Conference on Computer-Aided
Design, pp. 119-126.

“SubGemini: Identifying Subcircuits Using a Fast
Subgraph Isomorphism Algorithm,” Proceedings of the
1993 Design Automation Conference, pp. 31-37.

33. Draft of Procedural Interface and DCL Language, CAD
Framework Initiative, Inc., Austin, TX 78759, 1995.

34. Curtis L. Ratzlaff, Satyamurthy Pullela, and Lawrence T.
Pillage, “Modelling the RC-Interconnect Effects in a
Hierarchical Timing Analyzer,” Proceedings of the Custom
Integrated Circuits Conference, 1992, pp. 15.6.1-15.6.4.

35. E. Lehman, Y. Watanabe, J. Grodstein, and H. Harkness,
“Logic Decomposition During Technology Mapping,”
Proceedings of the 1995 International Conference on
Computer-Aided Design, November 1995, pp. 264-265.

Logical Effort: Designing for Speed on the Back of an
Envelope,” in Advanced Research in VLSI, University of
California at Santa Cruz, 1991.

32. M. Ohlrich, C. Ebeling, E. Ginting, and L. Sather,

36. Ivan Sutherland and Robert Sproull, “The Theory of

K. L. SHEPARD ET AL. IBM J. RES. DEVELOP. VOL. 41 NO. 415 JULYISEPTEMBER 1997

Kenneth L. Shepard IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights, New
York 10598 (shepard@vnet.ibm.com). Dr. Shepard received a
B.S.E. in electrical engineering from Princeton University in
1987, and an M.S. and Ph.D. in electrical engineering from
Stanford University in 1988 and 1992, respectively. He is
currently a Research Staff Member and Manager at the IBM
Thomas J. Watson Research Center in the VLSI Design
Department, where he has worked since joining IBM in 1992.
He is also an adjunct assistant professor of electrical
engineering at Columbia University.

Dale E. Hoffman 1BM System1390 Division, 522 South Road,
Poughkeepsie, New York 12601 (daleh@vnet.ibm.com). Mr.
Hoffman received a B.S. in electrical engineering from
Pennsylvania State University in 1981 and an M.S. in
electrical engineering from Syracuse University in 1984; he is
currently pursuing an M S . in computer engineering at
National Technological University. He is a Senior Engineer
and a design manager responsible for test, chip integration,
physical design, and back-end design methodology for high-
frequency custom microprocessors. Mr. Hoffman joined IBM
in 1981 at the East Fishkill facility, where he designed and
managed advanced VLSI logic and memory test systems for
eleven years. Mr. Hoffman holds five U.S. patents and has
several publications.

Sean M. Carey IBM System1390 Division, 522 South Road,
Poughkeepsie, New York 12601 (scarey@vnet.ibm.com). Mr.
Carey has been employed by IBM Poughkeepsie since 1988.
He has worked in the hardware development area on several Scott A. McCabe ZBM Systemi390 Division, 522 South
S/390 projects, with emphasis on timing methodology support Road, Poughkeepsie, New York 12601 (samiam@vnet.ibm.com).
and development. Mr. Carey received a B.S.E.E. degree from Mr. McCabe received a B.S. degree in electrical engineering
Clarkson University in 1988 and is currently working on his from Rutgers University in 1984, joining IBM the same year.
M.S.E.E. from Syracuse University. Mr. McCabe has worked in the area of physical verification,

first at East Fishkill and since 1993 at Poughkeepsie.

Ee Kin Cho IBM System1390 Division, 522 South Road,
Poughkeepsie, New York 12601 (ee@vnet.ibm.com). Mr. Cho
has been working in the hardware development area in the
System/390 Division since he joined IBM in 1981. He has
worked in design verification and tools support areas on
various S/390 projects. Mr. Cho received a B.S. degree in
electrical engineering from the University of Massachusetts in
1981 and an M.S. degree in computer science from Union
College in 1990.

Brian W. Curran IBM System/390 Division, 522 South Road,
Poughkeepsie, New York 12601 (bcurran@vnet.ibm.com). Mr.
Curran received a B.S. degree in electrical engineering from
the University of Wisconsin at Madison in 1984, joining the
IBM Data Systems Division (now Systemi390 Division) that
same year. Mr. Curran has designed logic and circuits for
large system processors and memory subsystems. He was a
member of the teams which developed the System13090 and
ESi9121 processors, in addition to his work on the G4 design.
Mr. Curran has received several IBM Technical Achievement
Awards; he has been issued seven patents relating to
processor design and has three patents pending. He is
currently a Senior Engineer in the Poughkeepsie Development
Laboratory and is a technical leader in the development of a
future high-frequency full-custom CMOS microprocessor.

Robert F. Hatch IBM System1390 Division, 522 South Road,
Poughkeepsie, New York 12601 (bhatch@vnet.ibm.com). Mr.
Hatch is a Senior Engineer in the Custom Design Department
of the S/390 Division. He received a B.S. degree in
engineering from Southern Illinois University in 1976 and an
MS. degree in electrical engineering from Purdue University
in 1978. Mr. Hatch joined IBM in 1978 at the East Fishkill
facility, where he did custom PLA circuit design for a custom
VLSI bipolar CPU chip set. His work has been in the areas
of bipolar circuit design, MOS circuit design, macro design,
VLSI chip design, and VLSI design tools. Mr. Hatch is
currently working on the next generation of S/390 Division
CMOS processors.

Greg A. Northrop IBM Thomas J. Watson Research
Center, P.O. Box 218, Yorktown Heights, New York 10598
(gnorth@watson.ibm.com). Dr. Northrop received the B.S.
degree from Texas Tech University in 1977, and the M.S.
and Ph.D. degrees in condensed-matter physics from the
University of Illinois, Urbana, in 1979 and 1982, respectively.
He joined the IBM Thomas J. Watson Research Center in
1984 as a member of the Semiconductor Physics and Devices
Department, subsequently joining the VLSI Design
Department in 1993. His current interests are in the areas of
high-performance CMOS circuit design, including layout
automation, standard-cell methodologies, and circuit tuning.

Rick Seigler IBM System1390 Division, 522 South Road,
Poughkeepsie, New York 12601 (seigler@pk705vma.vnet.ibm.com).
Mr. Seigler joined IBM Poughkeepsie in 1980 after receiving
B.S.E.E. and M.S.E.E. degrees from Rensselaer Polytechnic
Institute. He worked as a logic designer and as a systems test
engineer on 3090 systems, and as a RecoverylServiceability
Systems Test manager for 3090 follow-on systems and 902X
systems. Prior to joining the Custom Design Department in
1992 where he now works as an Advisory Engineer, he also
served one year on an IBM Faculty Loan assignment at the
Georgia Institute of Technology in Atlanta.

547

K. L. SHEPARD ET AL. IBM J. RES. DEVELOP. VOL. 41 NO. 415 JULYiSEPTEMBER 1997

