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This paper  describes  the  design  methodology 
employed  in  the  design of the S/390@' Parallel 
Enterprise  Server G4 microprocessors.  Issues 
of verifying  design  metrics of area, power, 
noise,  timing,  testability,  and  functional 
correctness are discussed  within the context 
of a  transistor-level  custom  design  approach. 
Practical issues of managing the complexity of 
a  7.8-million-transistor  design  and  encouraging 
design  productivity are introduced. 

1. Introduction 
The  fourth  generation of the S/390* CMOS 
microprocessor is a 17.35-mm X 17.35-mm chip with 7.8 
million transistors, which has  been successfully operated 
above 300 MHz at a  supply voltage of 2.5 V [l]. 

The design methodology of this  microprocessor follows 
in the  tradition of other successful methodologies [ 2 ,  31 in 
simultaneously  addressing  four goals: 

Verify that a  design meets all.of several  metrics of 
quality  such as  area, functionality,  timing,  power,  noise 
immunity,  reliability, and testability. 

Manage complexity. 
Encourage productivity. 
Coordinate a parallel design  process. 

Technology  scaling and  ever-increasing  demands 
for  performance  shape many aspects of the design 
methodology. Technology  scaling has  had  several  major 
consequences, of which the simplest is the growth  in the 
complexity of the designs  as more  transistors  are available 
for a given silicon area.  Interconnection  widths  are scaling 
lower,  while interconnection  lengths have remained 
virtually the  same  as  additional  function  or  larger  caches 
have been  added in lieu of making smaller chips. Total 
wire capacitance is decreasing as  a result,  but wire 
resistance is  increasing faster.  As a result, RC delays of 
interconnections  are increasing. At  the  same  time, wiring 
capacitance  dominates  the  load on many nets.  Coupling 
capacitances, in particular  line-to-line  coupling 
capacitances, have become a  significant source of noise 
on  the chip, which means  that they can  produce glitch- 
induced  failures  or have  a  significant  effect on wiring 
delay. Threshold voltages  have also scaled to  maintain 
drive  in the  presence of scaling supplies.  This  has 
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implications  for noise,  power, and Zddq (quiescent supply 
current)  testing. In addition  to technology  scaling, the 
demands of ever-increasing performance  are driving 
designs to  the  use of dynamic  circuits, which create 
further complexity in noise and timing analysis. 

Methodology themes 
With  these technology and  performance  trends as the 
driving force, several methodology  themes  underlie  the 
approach we have taken in the design methodology  for  the 
S/390 G4 microprocessors: 

The  demands of performance have required a 
fundamentally  transistor-level  focus in the design 
methodology. All tools  and  processes allow a  design to 
be customized and verified at  the device  level. 
A two-level hierarchical  approach is essential  for 
simultaneously managing complexity and parallelizing 
the design  process. The increasing  complexity of the 
designs has  necessitated  abstraction, while the closer 
electrical  interaction of circuit and  interconnections 
creates  challenges in accurately  modeling  hierarchical 
boundaries. 
Static analysis techniques  are key. Transistor-level  static 

the package. This is  discussed  in more  detail in 
Section 8. 
Noise immunity This is perhaps  the most important new 

Timing The design  must meet  latch  setup  and  hold 
requirements  for  proper  sequential  operation. In 
addition,  the use of multiphase dynamic logic requires 
additional timing  checks to  guarantee  correct circuit 
operation. 

metric; it is discussed  in detail in Section 9. 

Functionality and correctness This involves a  verification 
chain connecting  the design abstractions.  Simulation is 
used  to verify the  VHDL' against an  architectural 
specification.  A combination of switch-level simulation 
and  Boolean  equivalence checking  verifies the  VHDL 
against  the  transistor-level circuit schematic,  and logical- 
versus-physical (LVS) checking  verifies that  the layout 
matches  the circuit  schematic. 
Testability This involves building  a separate logical 
description of the  implementation,  called a fault  model, 
which is used  for testability analysis of single stuck-at 
fault  coverage  and  for  test-pattern  generation [4]. 

significant component of this  metric. 
Reliability Electromigration analysis is the most 

analysis techniques  are  used  for timing analysis, noise 
analysis, Boolean  equivalence checking, and  fault-model 
generation.  Techniques employing  binary  decision 
diagrams  (BDDs)  are  an  important  aspect of this 
approach. 
Interconnections  must  be carefully designed  and 
analyzed. This  includes wire-width tuning  and  buffer 
insertion  to  control RC delays. 

a common  database. 

Design abstraction 
Design abstraction is one of the key methodology  tools 
used to  manage complexity. In the G4 microprocessor 
methodology,  these  abstractions  are  stored in  a central 
database. All analysis and verification are  accomplished 
with  a  two-level hierarchical  approach which involves 
identifying groups of 10000-200000 transistors as macros. 

chip  and  form  the  main  unit of the division of labor  that 
Design abstractions must be  stored  and  controlled  from Macros are laid Out and floorplanned On the 

Cycle simulation is key to verifying register-level  with 
high-level behavioral  models of the  architecture.  This is 
the only way to  achieve  the  simulation  performance 
required  to verify design of rapidly increasing 
complexity. 
Noise  is  a  design metric of importance  comparable  to, 
if not  greater  than,  area,  power,  and timing. 
Semicustom  implementations  that  preserve  the  leverage 
of transistor-based design are  crucial  to achieving global 
timing convergence  and  managing rapidly evolving logic 
changes. 

Metria  for design quality 
Several  metrics of design quality must be analyzed  as part 
of any microprocessor design methodology: 

Area The physical size of the  chip. 
Power The  amount of power that  the  chip  dissipates 

51 6 and how that is handled by the  thermal  environment of 

allows the design processes  to  be  parallelized.  At  the 
macro level, one would typically find the following design 
abstractions in the  central  database: 

Symbol Schematic  representation of the  ports of the 
macro  and  their  directionality. 
Entity The  VHDL  entity  for  the design, automatically 
created  from  the symbol. 
Schematic A schematic  representation of the  transistor- 
level implementation of the  macro.  The  schematic may 
in itself be a hierarchy of other  submacro symbols and 
schematics. 
Architecture A VHDL  architecture  description of the 
function of the  macro  used  for  simulation  and  Boolean 
equivalence checking. 

transistor-level timing. 
Timing graph A  timing graph  abstraction  created by 

' VHSIC Hardware Description Language, IEEE Standard 1076. 
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Logical  constraints view This view contains  Boolean 
satisfiability constraints in the  implementation, which are 
tested  through  BDD  techniques. 
Layout The physical design of the  macro, which may be 
a hierarchy of other  submacro symbols and schematics. 
Fault model A schematic of logic and  sequential 
primitives  used for  generating  test  patterns  and 
determining single stuck-at  fault  coverage. 

each  macro on the supply and  ground  distributions.  This 
is used to determine  the  chip  power  dissipation  and  to 
estimate power  supply  noise. 
Abstract This is a  simplified view of the  layout, which 
can  be used for  floorplanning,  place  and  route,  and 
global extraction.  The  amount of shapes  information 
varies  during  the  course of the design process. 

Power view An  abstraction of the  current  demands of 

The  continued  development of static noise analysis [5] will 
result in an  additional view: 

Noise abstract A  noise abstraction  created by transistor- 
level noise analysis. 

Above  the  macro level is a hierarchy of schematics, 
symbols, and  layouts which constitute  the global 
interconnections  and physical design of the chip.  Two 
abstractions of the global environment  are  brought down 
to  the  macro level to  guide macro-level implementation. 

Shadow This is a representation of the  global wires 
overlaying  a macro  that is used  to  guide  macro physical 
design and  for  macro  extraction. 
Timing assertions This is information on the global 
timing at  macro interfaces-arrival times with phase tags 
on  inputs,  required arrival times with phase  tags on 
outputs,  primary  input resistances, and  primary  output 
capacitances. 

The ways in which design abstractions  are  created  and 
used  are discussed  in detail in the  remainder of the 
paper.  Section 2 discusses the  use of VHDL in the  G4 
microprocessor design. Section 3 discusses  how the circuits 
are verified against  their  corresponding  VHDL  simulation 
models. Because of the  importance of interconnect 
modeling,  Section  4 discusses extraction  and  interconnect 
modeling as  it is used in  timing,  power, and noise  analysis. 
Section 5 discusses the timing methodology, while Section 
6 discusses the  semicustom logic  synthesis approaches 
used in the  G4 designs. Section 7 describes  the physical 
design of the  chip,  both  macro  and global  layout and 
physical  design planning.  Section 8 discusses the power, 
electromigration,  and noise  analysis methodologies. 

2. VHDL design  and  verification 
The  G4  microprocessor was designed using VHDL 1076 as 
the  register-transfer-level  description  language [6].  There 
were  three  principal  requirements  on  the  use of the 
language: 

Must be  mappable  to cycle simulation. 
Must be  able  to  check  the  VHDL logic design for 

Must be  able in some  cases  to  guide synthesis to  an 
Boolean  equivalence  against a  circuit implementation. 

implementation. 

In this  section, we describe how the  VHDL is entered  and 
stored  and  the  coding styles employed.  We show how the 
VHDL  guides cycle-simulation model builds, scan-chain 
connections,  initial  values  for  registers, global Boolean 
satisfiability constraints,  and logical structure  for synthesis. 

Design endry 
VHDL is entered only for  the macros; this is done as  a 
structurally flat description, with the exception of special 
latch  and  array primitives  discussed  in the next subsection. 
The design above  the  macro level exists only as a 
schematic  and is netlisted as structural  VHDL  for  the 
purpose of logic simulation  and verification. This 
guarantees  correct-by-construction  correspondence 
between  the  VHDL  and circuit above  the  macro level. 

Language  subset for  macro architectures 
The  IEEE std-logic-1164 package is employed  and 
augmented with an  expanded  set of logical, relational,  and 
arithmetic  operators in  a separate std-logic-support 
package.  In  the  case of the = and \= operators,  the 
std-logic-1164 package  contains  declarations  for  these 
functions which are implicit with all enumerated types  in 
VHDL.  We  replace  these with explicit declarations in the 
std-logic-support package, relying on compatibility 
flags in the  VHDL analyzers to allow these  nonstandard 
function definitions to  be  declared in a separate  package. 
All of the  functions  are carefully coded  to  propagate ' X '  
and ' U '  states of the std-ulogic type. The  entire 
concurrent  VHDL  language is allowed. In  addition, 
process  statements  that explicitly represent  combinational 
logic are  permitted. To meet  this  criterion,  the  process 
statements must be  activated by every input. In addition, 
conditionals must explicitly cover  all cases  to avoid 
implying registers. As  an  example of a valid process, 
consider  the  example shown  in Figure 1: The  process 
codes  the  combinational  piece of the  state  machine shown 
in Figure 2 with  a  single  two-bit state  register.  Each 
conditional  based on the  input x has  an e lse  statement, 
and  the  process is activated by both  the  input x and  the 
state  vector  values. 51 7 
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VHDL process statement used  to code combinational logic. 

All sequential logic is handled by explicit instantiation 
of a set of latch  and  array primitives. In  some cases, 
simple  transparent  latches  are  created  from level-sensitive 
guarded block  assignments. The G4 designs use six 
primitive latch  components,  each  parameterized with  a set 
of generics.  Three types of parameterized  array primitives 
are used-read-before-write, write-before-read,  and  read- 
only. Read-only primitives,  used to  model  on-chip  ROMs, 
take a read  address of variable  length  as  input  and  return 
an  output  word, also of variable  length.  The  contents of 

51 8 the  read-only primitives are  loaded  at  simulation  startup. 

Example of a finite-state machine. A process statement can 
conveniently code the combinational logic of the state machine. 

Both  the  read-before-write  and  write-before-read  array 
primitives  have an  “asynchronous”  read in which the  data 
word is available at  the  output as soon  as  the  read  address 
is available. The writes are clocked. In the  write-before- 
read  primitive, if the  write  and  read  addresses  are  the 
same,  the  written  data “flush” through  and  are 
immediately available for  the  read.  In  addition,  tristate 
driver-receivers are  also  modeled  with  two  special 
library  components  because of the inability of the 
synthesis tools used  in cycle simulation  to  model high- 
impedance  states. Explicit latch  and  array  instantiation 
also allow these  elements  to  be  “snipped  out”  for  the 
purposes of Boolean verification,  discussed  in more  detail 
in Section 3. The  VHDL  model is explicitly full-function; 
that is, it  models all of the logical functioning of the  chip 
including  test  functions  and  contains full and  complete 
scan-chain  connections. Only cycle boundary  latches  are 
modeled in the  VHDL. Mid-cycle latches,  where  they 
exist, are  not  modeled  in  the  VHDL,  as  this is considered 
an  implementation issue. The  same  applies  to  other 
latch  structures which do  not  store  machine  state. 

The G4 processor is initialized through  scan.  Initial 
values for  the scan process  are  passed  to  the  latch 
primitives through generics. A global  VHDL  variable 
determines  whether  these initial values are applied at t = 0 
in VHDL simulation or whether the latch values are left 
at  an std-ulogic value of ‘U  I. These initial values are 
also exported  as part of the cycle-simulation model-build 
process  as  a model initialization file (MIF) which can be used 
to initialize the cycle-simulation model as well as to 
determine  the scan sequences  required to initialize the 
processor  for service processor  code  development. Scan- 
chain connections  were  coded in the  VHDL in  a manner to 
allow easy scan-chain reordering. Two local vector 
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signals, scan-connect-in and scan-connect-out, are 
declared in each macro. The scan-connect-in signal 
connects to  the scan input of each  latch, while the 
scan-connect-out signal connects to  the scan output of 
each latch. All of the scan connections are  then  done as  a 
block of signal assignments of bits of scan-connect-out 
to bits of scan-connect-in. This signal assignment block 
can then be replaced following scan-chain optimization  as 
described in Section 6. 

Logic  simulation 
Two types of simulation  are used on the G4 design- 
event-driven  VHDL  simulation  and cycle simulation. 
VHDL  simulators  are  event-driven;  that is, they maintain 
an event queue, sequenced by real  simulation  time as well 
as “delta delays.” In  the coding  style  used for  the G4 
design,  no explicit times  are  coded in the  VHDL,  except 
for  the  times used to  establish  the waveforms of the 
clocks. No attempt is made  to  use logic simulation  to 
verify timing. This is done in static timing analysis, 
described in detail in Section 5. All signal  assignments, 
therefore,  occur as  a cascade of delta delay events 
following a clock edge in VHDL  simulation.  We  refer  to 
this  as  a clock-edge-triggered logic specification. This 
controlled  use of the  language  along with the explicit 
instantiation of latch  and  array primitives allow the 
register-transfer-level  VHDL  to  be  mapped  to  one of 
two  cycle-simulation models very efficiently. In cycle 
simulation,  one  makes explicit use of the  fact  that  the 
design is clock-edge-triggered to  improve  the  performance 
of simulation [7]. Certain signals are identified  as 
“registers”  and  change  state only on the basis of their 
input values  at the cycle boundary.  Combinational logic is 
“flattened”  to easily evaluated  Boolean  equations.  The two 
cycle-simulation models built for  the G4 design are 

A single-cycle simulation  model.  This  model allows only 
a  single state  change  per  machine cycle, which is 
sufficient for  modeling typical machine  operation  and 
therefore  forms  the basis for  the  main  simulation  engine 
for verification  with instruction  traces. 
A two-cycle simulation  model.  This  model allows two 
state  changes  per  machine cycle. In this  model,  latches 
are divided into two sets,  those  that  evaluate on “even” 
cycles (or, equivalently, those  latches  that  evaluate on 
the rising edge of the global  system  clock), and  those 
that  evaluate  on  “odd” cycles (latches  that  evaluate on 
the falling edge of the global system clock). This  enables 
modeling of certain  test  functions  that  require this type 
of detail in the  sequential  modeling. 

The cycle-simulation  model-build process consists of 
three  steps: 

The  VHDL is processed  through  the synthesis tools 
to  produce a structural  representation of the design. 
Standardized primitives are  used  to  replace  elements of 
the  structural  representation. 
The  model is optimized  and  code  generated  for  the 
cycle-simulation engine. 

[n step 1, latch  and  array primitives are  “black-boxed”; 
that is, the  VHDL  architectures of these primitives are  not 
processed by synthesis. Combinational logic  is represented 
as a structural  netlist of generic logical  primitives. 

In  step 2, predefined cycle-simulation models  for 
the primitives are  used.  The one-cycle and two-cycle 
simulation  models  are distinguished by the  models  for  the 
latch primitives  used in the  model-build process. For most 
array macros,  two separate  VHDL  descriptions  also exist 
for  the one-cycle and two-cycle models. The  model-build 
process  chooses  between  these two architectures in the 
VHDL netlisting operation  through a  “switch” view list. 
The one-cycle VHDL  contains only the basic read  and 
write  functions which can  be  modeled with  one-cycle 
granularity, while the two-cycle model  contains  details of 
boundary-scan  and  self-test  functions,  for  example, which 
require two-cycle sequential  granularity. 

Consider  the cycle-simulation representation of one of 
the  latch primitives of the G4 design,  a d-latch, with the 
VHDL  description shown  in Figure 3. In a single-cycle 
simulation  model, this  latch  is modeled as  shown  in 
Figure 4(a). In this case,  the logic function is significantly 
simplified to  model  the basic system-state  storing  function 
of the  latch.  In  particular,  none of the  test  function of the 
VHDL is modeled. All register  and  array  primitives  can 
potentially  change  state every cycle. In this  example, when 
clkg is ‘1 I, the latch changes  state on the cycle 
boundary.  In  simulation, clkg is raised to ‘1 ’ and held 
there. Figure 4(b) shows the two-cycle implementation of 
the  latch  model.  In two-cycle models, registers  and arrays 
can  be of either  “master” or “slave”  type. We  refer  to  this 
as two-latch behavioral  modeling.  Master-type latches, 
which evaluate  on  even cycles, are  denoted with an M, 
while slave-type latches, which evaluate  on  odd cycles, are 
denoted with an S. With this level of sequential 
granularity,  the  full  function of the latch can  be  modeled. 
In this case, clkg is toggled  every cycle. In  addition,  the 
scan clocks, a-clk and b-clk, have at  least twice the 
period of clkg to  produce  correct  operation.  In  the  cases 
in which individual transparent  latches  are  used, a VHDL 
attribute is used  to specify whether  the two-cycle 
simulation  mapping is  of the  master or slave  type. The 
same  attribute is also  used for two-cycle mapping of array 
primitives. As an  additional  example of how master  and 
slave declarations affect transparent latch modeling in 
cycle simulation,  consider  the  example shown  in Figure 5, 
in which  two master  latches  are clocked by the  same clock. 51 9 
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VHDL description of a d-latch. 

Applying the two-latch behavior  to  both  transparent 
latches in the  model, we see  that  the  data  are flushed 
through  both  latches in the  same (i.e., "even") cycle. 
Replacing  the  rightmost  latch in Figure 5 with  a  slave 
latch introduces a  one-cycle  delay from  the  master  to  the 
slave. 

In  step 3 of the cycle-simulation model-build  process, 
the  standardized  flattened primitives created by the  one- 
cycle or two-cycle synthesis and  mapping  steps  undergo a 
variety of Boolean logic optimizations  to  improve  run  time 
and  performance.  Three  target  internal cycle simulators 
were used  on the G4 design: TEXSIM,  ZFS,  and  EVE. 
The  optimizations  performed by the first simulator 
(TEXSIM)  include  constant  elimination,  pin  dropping,  and 

the  TEXSIM  optimizer,  stopping  prior  to final code 
generation.  The  flattened  and now optimized primitives 
are  combined with additional  parts  and  reoptimized, using 
a  similar set of algorithms, including AND/OR/XOR  gate 
merging.  A fundamental  difference  between  ZFS  and 
TEXSIM is that  ZFS  treats all  signals as single  bits, 
ignoring any bundling  that might  have been  present in the 
original design. Code  generation  for  ZFS  results in an 
object  model which uses  an  event-driven  evaluation 
algorithm of the  optimized  structural primitives. 

For  the very largest system models, a hardware 
accelerator known as  EVE is used [8]. Build for  EVE 
follows after a model  has  been  built  for  ZFS.  The 

data clkg " q p -  
. . . . . .  
. . . . . .  . .  . . .  

clkg I . . . . . .  . . .  . .  . .  
. .  

data 
. . .  

4 
. .  

. .  . . . . .  

clkg- 
- - - - - 

scan-enable 

a clk 
" " 

- 

b-clk 

c l  

c2 

11-latch 

I2-latch 

1 2 3 4 5 6 7 8 9 1 0 1 1  
(b) 

expression  merging. Code  generation  for  this  simulator 
results in an  object  module which uses  an oblivious 
evaluation  algorithm. By this, we mean  rank-order Cycle-simulation  models of a G4 d-latch:  (a)  Schematic 

reuresentation of the  one-cvcle model. Samule waveforms for this 
simulation in  which an expression is evaluated only after latch behavior are also  shown.  clkg acts as an enable signal (i.e., it 
all of its predecessor expressions  have been  evaluated. is not  toggled). (b) Schematic  representation of the  two-cycle 
TEXSIM  simulation is used extensively for  models of model. Sample waveforms for latch behavior are  also shown for 

the case of scan-in = 1 and data = 0; clkg is toggled to produce 
sections of the chip. correct latch functioning. 

For  larger models,  including  full chip  and system,  a 
520 second cycle simulator  (ZFS) is used, Build for  ZFS  runs 
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optimized primitives are  expanded  into a four-input,  one- 
output technology, optimized  again,  and  then  partitioned 
and  scheduled  for  the  EVE  hardware.  The  object  module 
runs on the  EVE  hardware, which performs highly parallel 
oblivious evaluation of the  four-input,  one-output 
primitives. 

The  test-case  environment in the G4 design allows the 
designer  the flexibility of moving between  these  simulators 
with test-case transparency, allowing the  use of the 
simulator which is best  for  the specific model  and  test 
case. 

The cycle simulators  are explicitly two-valued 
simulators,  propagating only ’ 0 ’ and ’ 1 ’ logic values. For 
nets  driven by tristate driver-receivers, the Z state is 
recognized, and it  is additionally  checked  that  these  nets 
are  not  simultaneously driven to conflicting  logic  values. 
Simulation checks to  determine  whether  an uninitialized 
system state exists after a  processor-wide scan-chain 
initialization is performed with VHDL  simulation in which 
all the  latches  are  left  at  the std-ulogic ‘ U ’  value  at 
t = 0. 

Assertions 
A Boolean  function is said  to  be satisfiable if an 
assignment of Boolean value to  the  variables  in  the 
function  results in  a logic ‘1 ‘ value for  the  function.  We 
refer  to  conditions expressed  as  a function which must 
be satisfiable  as  a Boolean satisfiability constraint. The 
variables in the  function  are  referred  to as  a constraint 
group. Boolean satisfiability constraints  constitute  an 
important  feature of the G4 design methodology.  They  are 
used  for  three main purposes:  to express  a  “don’t-care’’ 
set safely for a VHDL  macro  architecture,  to allow the 
use of circuits that  require  certain logical conditions on 
their  inputs  for  correct  operation,  and  to  eliminate  false 
paths in static timing. Each of these  uses is described in 
more  detail in the  sections  that follow. At  macro primary 
inputs  and  outputs, we use  VHDL assert statements  to 
express  these  constraints  to immediately  invoke simulation 
checking with their  use.  There  are  four types of conditions 
that  can  be  expressed in  this manner,  each  identifiable in 
the  VHDL  through  the  use of keywords in the message 
string: 

Strong assertions Assertions  are logical conditions  that 
we assume  to  be  true  and verify either formally or 
through  simulation.  Strong  assertions  are  assertions 
which are  true  for any state  that  can  be  scanned  into 
registers.  These  assertions  can exist only on primary 
inputs of macros  and must be  accompanied by a test  on 
the  primary  output of the driving macro  where they can 
be  formally verified. This  creates  the  limitation  that  the 
constraint  group  for  the  strong  assertion must be driven 
from a  single macro  and,  consequently, a  single test. 

data-in 

Clock 

A configuration of two transparent latches of “master” type. Data 
flush through both latches on even  cycles when the clock is ‘1’. 

With  further  advances in formal  combinational logic 
verification,  flat  logical  verification of the design may be 
possible,  in which case  this  limitation will be removed. 
This type of assertion  must  be  used  whenever  there is a 
circuit that  requires a condition  for  determinant  function 
derived  from primary inputs  and is a thoroughly safe 
mechanism  for expressing  logical “don’t-cares”;  that is, 
all other  conditions  not  covered by the  assertion  belong 
explicitly to  the  don’t-care set. 
Weak assertions These  are  assertions which are  true 
only for validly reachable  machine  states,  but which will 
not  be  true  for any possible machine  state  scanned  into 
registers. These  assertions must  also  exist at  primary 
inputs,  but  are  sequential in nature  and  can  be verified 
only through  simulation.  These  assertions  are  used in 
Boolean  equivalence checking of VHDL  and circuit at 
the  macro level; conditions  not covered by the  assertion 
are also explicitly placed in the  don’t-care  set.  This 
assertion type  may not be  used when  a circuit  produces 
an  indeterminant  behavior in the  absence of this 
assertion.  It is preferable  to  convert  weak  assertions  to 
strong  assertions, except  in cases  where this  would add 
unnecessary additional logic and  reduce  performance. 
Strong tests Tests  are logical conditions  that  must  be 
verified formally or through  simulation.  Strong  tests 
are  the  tests which accompany  strong  assertions.  The 
constraint  group  for a strong  test must contain only 
primary output signals. In addition,  strong  tests must 
hold for any state which can  be  scanned  into  registers 
and  must  be verified  formally. Strong  tests  are 
combinational in nature. 
Weak tests Weak  tests  are  tests which are  true only for 
validly reachable  machine  states.  These  are used only for 
simulation  as  a convenience  to logic designers  to flag 
unexpected conditions.  Such  tests  are  sequential in 
nature,  and  their  failure implies incorrect  operation of 
the  machine. 521 
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Synthesis issues 
In  some cases, the  VHDL coding is used  to  help  guide 
some  pieces of the design to  better initial structuring  for 
synthesis. A common  example of restructuring  that 
might be  done in the  VHDL is to move  timing-critical 
signals forward  into  the  cone of logic by means of a 
Shannon  expansion [9]. Let xL denote a general  Boolean 
variable  and x: its complement.  Consider a general 
Boolean  function f(xl, x2, . . . , xi, . . .). The  cofactor 
off  with respect  to  the  variable xl is given by f,, = 

f(xl,  x2, . . . , 1, . . .), while the  cofactor  off with respect 
to  the  variable x!! is given by f,; = f(xl,  xp, . . . , 0, . . .). 
The  Shannon expansion off  for  the  variable xi is then 
given by f(x,, x2, . . . , xL, . . .) = x,f,, + xt’fXj. For example, 
if a  critical path exists from  input a to  output g, and 
g = f(a, b,  c ,  . . .), the  VHDL is recoded  as follows: 

g o  <= f ( ’ O ’ ,  b, c, . . . ) ;  

g1 <= f ( ’ l ’ ,  b, c, . . . ) ;  

with a select 
g <= go when ’ 0 ’ , 

g1 when ‘ l ‘ ,  
‘X‘ when  others; 

VHDL  code is also  frequently modified to  eliminate 
encoders  and  decoders in  critical paths by latching  and 
distributing  unencoded buses. Designers have direct 
control in the synthesis process of the  extent  to which the 
logical structure of the  VHDL is preserved  through 
optimization  and  mapping.  The  details of the synthesis 
process  are  described in Section 6. 

Latch  replication is also  employed as  a  cloning 
technique  not available to synthesis. This allows larger 
loads  to  be driven from  latches  without  the  need  for 
buffers. Frequently,  one  latch is used  to drive  critical 
loads, while  a cloned  latch is used to drive noncritical 
ones.  Retiming is also employed as  a manual  process in 
cases  where  this  optimizes timing [lo]. 

3. Equivalence  checking 
The  functional verification methodology  relies on 
simulation of the  VHDL  model  through  event-driven 
VHDL  simulation  and cycle simulation  and  an 
equivalence-checking methodology which ensures  that 
the circuit implemented in  silicon matches  the  VHDL 
description.  The circuit  must also  be verified against  the 
fault-model  description used for single-stuck-at fault 
coverage and  test-pattern  generation.  Because  the design 
is represented  as a  single netlist  representation  above  the 
macro level, the design  is correct by construction  above 
the  macro level of hierarchy.  Therefore, a  necessary and 
sufficient condition  for  correspondence is that  the  macro 
circuits are  Boolean-equivalent  to  the  macro  VHDL  and 
the  macro  fault models. This is accomplished with  a 

522 formal  Boolean  comparison of the circuit and  VHDL,  and 

of the circuit and  fault  model,  augmented with switch-level 
verification of latch  and  array primitives. 

IBM’s Verity  tool,  used  to  perform  the  Boolean 
comparison,  has  been  described in detail  elsewhere 
[ l l ,  121. Verity relies on canonical reduced-ordered  binary 
decision diagram  (ROBDD)  representations [13] of the 
logic from  the  fault  model  or as extracted  from  the  VHDL 
by IBM’s synthesis tool,  BooleDozer [14, 1.51, and a  logic 
representation of the  circuit  extracted  from a simple 
switch model. Verity  also incorporates a general 
configurable  time-slice approach in which independent 
functions  for  different  phase  domains  can  be  extracted 
and  combined.  This allows Verity  to  be used for  the 
verification of multiphase dynamic implementations.  The 
latch  and  array primitives  discussed  in Section 2 were 
preserved as  “black  boxes” to  Verity in circuit,  VHDL, 
and  fault-model  representations  and  were  independently 
verified through switch-level simulation.  These  sequential 
elements  are  “cut out” as  part of the verification process, 
in effect  creating new outputs  at  the  latch  inputs  and new 
inputs  at  the latch outputs.  For  large, complex  designs 
where  the  ROBDDs grow too  large,  cut-point  nodes  are 
introduced  to  reduce  the  ROBDD size. In the  circuit-to- 
VHDL  comparison,  strong  and  weak  assertions  (as 
described in Section 2) on  the  primary  inputs  are  used  to 
limit the  care  set of the  comparison.  In  the  circuit-to- 
fault-model verification, only the  strong  assertions  are 
used, since  weak assertions  do  not  hold in general  for any 
patterns  scannable  into registers, and  therefore 
cannot  restrict  the  care  set of the  comparison  between 
the circuit implementation  and  the  fault  model. 

Verity  forms  an  important  part of the  Boolean 
constraint  methodology in the G4 design.  Verity is 
used globally to verify that every strong  assertion is 
accompanied by a  satisfying strong  test  for  global signals. 
In  addition,  each  macro, in general,  has  an  associated 
logic constraints view which contains  additional  Boolean 
satisfiability constraints  for  the  macro  circuit, which are 
also verified by Verity as part of the  comparisons.  For 
debugging purposes,  Verity  generates a counterexample 
table showing  all  valid input  states which produce 
incorrect  outputs, failing  satisfiability constraints,  or failing 
consistency checks [16]. 

As an example of the  canonical  reduced-ordered  BDD 
approach  to  equivalence checking, consider  the  VHDL 
and circuit model shown in Figure 6(a). Verity computes 
the two  final functions, f’ and p, the  function  for which 
the  output is  driven to a 1 and  the  function  for which 
the  output is  driven to a 0. The  VHDL, of course, gives 
f’ = (xI&x2)I(xj&x4)I(x5&x6) a n d p  = f ’ .  For  the  domino 
circuit, the final functions  at  the dynamic node  are given 
by fi = fi [evaZuate] I (fi [precharge]&~[evaZuate]) and 
f: = ~ [ e v a Z u a t e ] ~ ( f ~ [ p ~ e c h a ~ e ] & ~ ~ [ e v a l u a t e ] ) ,  where 
fi [evaluate] and t[evaZuate] are  the  functions driving the 
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output  to 1 or 0, respectively,  in the  “evaluate”  time slice, 
and fi[precharge] and fi[precharge] are  the  functions 
driving the  output  to 1 and 0, respectively,  in the 
“precharge”  time slice. These logical relationships  between 
the time-slice elements  are specified through a  Verity 
control file. Since f,‘[evaluate] = 0, fb[precharge] = 1; and 

7:. The  static  inverter  at  the  domino  output  results in the 
final function f ’  = f: and f ‘  = f i .  These final functions 
are  the  same as those specified  in the  VHDL; f ’  has  the 
canonical  ROBDD  representation shown in Figure 6(b). 

Key to  the verification process  for  large designs is a 
highly robust  and efficient  batch-submission  system 
designed  for  running all of the  macros within  a unit in one 
submission. This  includes building models,  automatic 
creation of the  Verity  control file, and  the submission of 
Verity jobs  for every macro. In addition,  comparison 
between circuit switch-level simulations  and  VHDL 
simulations  for  latch  and  array primitives are  automated, 
with random  patterns  generated  for valid clock and 
control signal sequences. 

fhchargel = 09.f: = (X,h,) l(X,~,) l(X,&x,) andf,‘ = 

4. Extraction  and  interconnection  modeling 
In this  section, we discuss the  extraction  and 
interconnection  modeling used for  various  aspects of 
the G4 microprocessor design.  Following the two-level 
hierarchical  approach  used for key analysis processes, 
extraction  and  interconnection  modeling  are divided 
between  the  macro  and global levels, with  special 
considerations  for  the  interaction  between  these levels. 

The  resistance  and  capacitance  extraction is rule-based, 
with lumped-element  extraction,  and involves the 
combined  use of the  vendor  tools  Dracula**  and 
Preview** as well as  internal  tools.  Rule-based  approaches 
calibrated by finite-element  calculations  are  the only 
techniques with the  performance  required  for  extraction 
calculation.  Resistance is extracted using the  sheet 
resistivity of the  metal layer,  with geometrical  corrections 
for  junctions.  The  capacitance  extraction is done using 
coefficients  derived from  the two-dimensional 
configurations shown  in Figure 7. Capacitances  are 
calculated using  a grid-based  solution  to Laplace’s 
equation [17]. Line-to-line coupling capacitance is fitted  to 
a  single parameter, d ,  the spacing between  the  metal  lines 
as shown for  conductors 1 and 2 in Figure  7(a) with  a 
piecewise-constant function with five to eight steps. 
Minimum-width lines  and  complete  metal coverage on the 
planes  above  and below the  lines  are  assumed  for  this 
characterization.  Spacing  between  these  metal  coverage 
planes is denoted by H1 in the figure. Nonoverlapping 
line-to-line  capacitance  between  interconnections  on 
different levels, which we refer  to  as distant fringe, is also 
characterized with  a  single parameter, d ,  fitted to  an 
equation of the  form 
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(a) Boolean-equivalent VHDL and circuit representations. (b) 
Canonical ROBDD representation  for the l-function (f’). 

as shown for  conductors 1 and 2 in Figure  7(b) (h  is the 
dielectric  thickness  between  the  metal layers). The  third 
component of capacitance is area and fringe  capacitance 
between  overlapping  metal layers,  as  shown for  conductors 
1 and 2 in Figure 7(c). A piecewise-constant function is 
also  used in  this case, with  a  single parameter d ,  the 
distance  to a neighboring  conductor  on  the  same level, 
which acts  to  reduce  the fringing capacitance. For each 
value of d ,  capacitance  for  several values of conductor 
width, W,  is calculated  and  the  results fitted to 
C = K,*W + K,, where K2 is the  fringe  capacitance  and 
K,  is the  area  capacitance. Since this  rule-based  approach 
is fundamentally two-dimensional, three-dimensional 
effects can  be  handled only heuristically. For  example,  to 
handle  the  three-dimensional  effects  associated with 
shielding  due  to  intervening layers  in fringe  and  area 
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Capacitance geometries used to calculate rule-based coefficients 
for extraction: (a) Geometry for calculating line-to-line coupling, 
capacitance between conductors on the same interconnection layer. 
(b)  Geometry for calculating distant fringe, capacitance between 
nonoverlapping conductors on different layers. (c) Geometry for 
calculating area and fringe capacitance for overlapping conductors 
on different layers. 

calculation,  the  intervening layers are  “expanded”  to  take 
into  account  the  greater  shielding effect these layers  have 

524 than  their  geometric  overlap would indicate. 

Macro  and global extraction 
Using the  rule-based  capacitance  calculation  described 
above, two types of extraction  are  done  at  the  macro level: 

1. Capacitance-only  extraction, including  coupling 

2. Resistance  and  capacitance  extraction, in which  all 
capacitors. 

floating capacitors  are  broken as two capacitors  tied  to 
ground. 

Depending on the  stage of the design  process,  global 
coverage is modeled  either as  a statistical  environment  or 
as the shadow view passed  down from  the global  level. 
Shadows used  for  macro  extraction  contain  net-attributed 
shapes, allowing global net  names  to  be  used  for floating- 
capacitor  extraction.  At  the global  level, four types of 
extraction  are  performed: 

1. Statistical This is used when  a  quick interconnection 
estimation is required  in timing analysis. Two statistical 
models  are  used. A  worst-case model  assumes 60 
percent  loading of all  wires independent of their  actual 
environment. A best-case  model  assumes only 30 
percent  loading of all  wires. In  both cases, two 
coefficients are  used  to  characterize  each 
interconnection layer, one  that multiplies the  area  and 
another  that multiplies the  perimeter. If detailed  routes 
are  not available,  a Steiner  tree  estimate of the wire 
length is used,  along with  a  user-specified assumption 
of wire  width which can  be specified on a net basis. If a 
width is not specified, the minimum  allowable  wire 
width is used  as  the  default. 

2. Detailed RC extraction without  floating capacitors In 
this case,  a detailed  capacitance  calculation using the 
capacitance coefficients outlined in Figure 7 is used. 
Either  abstracts  or layouts are  used  for  the  macro 
shapes. All  floating capacitors  are  broken  and  tied  to 
ground. 

capacitors 
3. Detailed  capacitance-only  extraction  with floating 

4. Detailed RC extraction with floating capacitors 

Extraction  techniques 2 and 4 produce  tremendous 
amounts of resistance  and  capacitance  data.  Reduction 
techniques,  described in the next section,  are  essential  to 
successful  analysis of these  data  for  timing  and  noise 
analysis. Abstracts  used  for global extraction  contain  net- 
attributed  shapes.  For  extractions 3 and 4, this allows 
macro  net  names  to  be  used  for floating capacitors.  In 
extraction 4, resistances  are  not  extracted  for  abstract 
shapes,  since it is not possible to  reconstruct  the  entire  net 
topology  necessary for  correct analysis of distributed 
resistance. 
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Interconnection reduction 
The G4 design  employs  what we refer  to as the pi-model 
pole-residue  macromodel for  the global interconnection. 
This  technique is based  on a state-space  representation of 
the  linear circuit equations  that  characterize  the  global 
interconnection.  Let us first consider  the circuit equations 
that  correspond  to calculating the  current idriver and  the 
voltage vreceiver for  the  representative  net shown in 
Figure 8. These  equations  can  be  written in matrix form 
as follows: 

C+ = - GV + b vdriVe, , 

or in the  Laplace  domain, 

SCV = -Gv + bvdri,,, , 

where C is the  capacitance matrix given by 

and G is the  conductance matrix given by 

GI + G,  -G, ( -G, G 2  -G3) ' 

-G3 G3 

The input vector b is given by b = (G ,  0 O ) T ,  and 
the state vector v is given by v = ( vA vB v,) '. 

Let us first consider calculating the  admittance of the 
network  as  seen by the  driver.  Temporarily  ignoring  the 
current  through Cnode, the  capacitance  to  ground  on  the 
driver  node itself, the  current idriver is given by 

idriver = Irv  + Glvdriver ' 

where 1' = ( - G ,  0 O ) T .  This gives the  admittance 

Y(s)  = sCnode + IT(I - sA)"r + G, , 

including the  admittance of Cnode. A = -G"C and 
r = G"b. Expanding in  a  Taylor series  around s = 0, 

Y(s)  = s(Cnode + ITAr) + s2ITAZr + s3ITA3r + . . .. 
These  are  the moments of the  admittance.  The  elements 
of the pi-model  shown  in Figure 9 are used to  match 
for  moments of the  admittance  to  order s3 [18]. 
Approximating  transfer  functions by their  moments is the 
essence of asymptotic  waveform evaluation  (AWE) [19]. 

driver  to  each  receiver  are  calculated: 
Similarly, the  moments of the  transfer  function  from  the 

where 1 = (0 0 1)'. 

function of the  form 
In  this  case  the  moments  are  matched  to a transfer 
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Representative RC interconnection  structure. 

. ..  .. . . . 

Pi-model used to model global interconnection  load on the driver. 

This gives an  output voltage for a unit  step  input of the 
form 

where 

k, = 1. 
I 

The  pi-model  pole-residue  macromodels  include  the pi- 
model  element values, c,, c,, and R,  for  each  driver  and 
the values of k, and p ,  for a given number of poles  and 
residues  for  each receiver. 

The pi-model pole-residue  macromodels have several 
limitations: 

Receiver  loads must be  included in the  reduction.  As a 
result, it is not possible to  separate  the  reduced-order 
model  for  the  interconnections  from  the specifics of the 
receiver  circuits. 
The  approach is single-input,  single-output. As coupled 
nets  are  included in the analysis, the  number of ports 
will grow, lending  computation efficiency to a multiport 
treatment. 525 
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Z,,, the  characteristic  impedance of the  line 
- 

z,= &, 

where 2 and (e are  the  inductance  and  capacitance  per 
unit  length of the  interconnection. 

Rdriver, the effective resistance of the  driver. 
R,  the  total  resistance of the  line. 

For  transmission-line effects to  matter, Rdriver << Z,, and 
R << Z ,  [22, 231. Inductance  can easily be  included in the 
linear  interconnection analysis. The difficulty is that  it is 
in general very difficult to  calculate  inductance,  since  the 
current  return  path is rarely well defined in the  on-chip 
interconnection.  Fortunately, however, inductance  has only 
a  weak logarithmic  dependency  on  the  distance  to  the 
current  return,  as shown  in the  example of Figure 10. As a 
result, if efforts  are  made  to  ensure a certain porosity of 
the  power  and  ground  distribution,  the self and  mutual 
inductances  can  be  estimated with the  current  return 
assumed  to  be  through  the  nearest  power  or  ground 
distribution [24]. A lower bound  on  the  inductance  can 
also  be  obtained  from  the infinite-frequency relationship 
between  the  inductance  and  capacitance  matrices: 

LC = p d ,  

where p and E are  the  permeability  and permittivity of the 
interconnection dielectric. 

In reducing  the  interconnection  models  at  the  macro 
Inductance per unit length as a function of spacing between two level, the  requirement exists to preserve an RC netlist 
wires with a skin depth of 6 = 0.626 pm. representation of the  data  for  circuit  simulation  and 

timing analysis. To accomplish this,  one  can  preserve  the 
original  topology of the RC extracted  netlist,  treating  each 
branch as  a two-port  network, in lieu of other  partitioning 

calculation of the  moments  are numerically unstable.  Each  two-port  network  can  then  be  reduced  to  one of the 

To solve these difficulties, we are  migrating  our  this  reduction,  the  moments of the  admittance  matrix Y of 
interconnection  modeling  to a  multiport driving-point the  original  branch  network  are  calculated [27, 281. Let 
impedance formulation [20]. The  impedance of an  r-port, Yi,[n] denote  the  nth  moment of the given matrix element 
n-node, RC interconnection  structure is given by of the 2-by-2 Y matrix. Determining  the  element values is 

done  through explicit moment-matching.  For  example,  for 
the  two-capacitor  implementation, we match 

Techniques such  as AWE which rely on explicit schemes which destroy  the original net topology [25, 261. 

three  representations shown  in Figure 11. To accomplish 

B ~ ( G  + SC) -'B, 

where B E anXr is given by BT = (IrlO). Ir E 3'"' is the 
1 

identity matrix.  Implicit Krylov subspace  techniques  such yl,[l] = cly,,[l] = c,y,,[o] = y,,[1] = - - 

as  Pade via Lanczos (PVL) can  be  applied  to  reduce R 

these  state  equations, avoiding direct  calculation of This  initial  reduction leaves  many  single-resistor point-to- 
the  moments [21]. point  nets.  These  can  be  reduced  to a lumped  capacitance 

On thick, low-resistivity, last-metal  interconnections, value [Figure l l (a)]  based  on a time-domain  criterion. 
we have found  that  inductance  can have  a noticeable In  this case, the  loading  capacitance  at  the  ports  must  be 
effect on delay. The  point  at which inductance  must  be considered,  and R(C,  + Cportl) and R(C, + CportZ) must 
considered in interconnection analysis depends  on  the be less than tmin, the RC delay  accuracy desired: typically 

526 relative magnitude of three  factors: 10  ps. 
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5. Timing 
Static  timing analysis is a major  component of the G4 
microprocessor design methodology [29]. Unlike  timing 
simulators, static  timers  require  no  input  patterns  and 
find longest and  shortest  paths  through a  circuit  with 
preconditioning  assumptions  at  each  gate  to  produce  the 
worst-case or  best-case delay. Static timing  analysis also 
depends on the ability to  abstract  real switching  voltages 
as  linear  saturate  ramps,  characterized only by a  delay and 
a slew. As  part of this  abstraction,  the 50% point of the 
real switching  waveform is used  to  characterize  the delay, 
and  the  difference  between  the 10% and 90% values is 
extrapolated  to  determine  the slew. 

static timing  analysis that  require special mention. Key to 
the  approach is the  construction of a timing graph from 
the  circuit  representation, as  shown  in Figure 12. Timing 
graphs  are  made  up of timingpoints, which are  connected 
by directed propagate  segments or test segments. The 

There  are  some underlying methods  and  assumptions of 

propagate  segments  contain  information on how arrival 
times (AT)  and slews are  propagated  “forward” across the 
segment.  Test  segments  describe  setup  or  hold checks 

L I 

between signals. In  the  presence of a test, a required 
arrival time is also  calculated  (the  arrival  time  that would 
be  required  to  just satisfy the  test).  These  times 
are  propagated  “backward”  through  the  graph.  Graph 
propagation  can  be  done in either late mode, in  which the 
latest of the arrival times is taken  at  each  timing  point,  or 
early mode, in which the  earliest of the arrival times is 
taken  at  each  timing  point.  The slack is the  difference 
between  the  required  arrival  times  and  the  arrival  time in 
late  mode  or  the  difference  between  the  arrival  time  and 
the  required  arrival  time in early  mode.  More  details of 
these  definitions  can  be  found in Reference [29]. 

idea of cycle adjusts, that is, determining  whether a  signal 
should  be  tested  against a  clock  in the  current cycle or 
the following cycle. This is accomplished  in practice by 

Another  important  aspect of static timing  analysis is the 

__l 

A 
D -  

B 

CLK 

E 

“adjusting”  the  arrival  time of the clock according  to a 
methodology  based on phase tagging of all data signals to 
indicate a reference clock edge,  as shown  in Figure 13. In I Timing graph abstraction. From  the circuit shown at the top is - - 
this  example,  there is  a  single reference clock, denoted as 
~ 1 .  The clock phase  associated with  a  positive  active clock 
is denoted as cl+, while data  launched  from  the  leading 
edge of the active  clock are  denoted  as Cl+R. In this 
case,  the cycle adjust is the  difference  between  the next 
subsequent clock reference  edge  and  the  data  reference  the  case  of a violation  of  this  “loop  test,”  the  launching 
edge as determined by the tagging. In  the  case of designs arrival  time may be  adjusted  forward  into  the  Period of 
with transparent  latches, “flush” loops may exist in the  latch  transparency in an  attempt  to  remove  the violation 
design. These  loops  are  broken  at  one of the  transparent [30]. Fundamental  to  static  timing analysis, therefore, is 
latches,  where  the clock edge is used  to  determine  the  that all data  edges have an  associated clock reference 
arrival  time.  The  arrival  time  that  wraps  around  the  loop  edge.  In  particular,  loops  in a timing  graph  must  be 
is subsequently  compared  to  this clock reference  edge.  In  “controllable” by a  clock. These  limitations  make  the 
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Determining the cycle adjust from clock tags. This figure shows 
the one-period cycle adjust calculated for a data signal launched by 
the leading edge of the C1 clock and subsequently tested  to  the 
falling edge of the  same reference clock in the following cycle. 

current  algorithms generally difficult to  extend  to self- 
timed  or  self-resetting circuits [31]. 

implemented using the  tool  Pathmill**  from  EPIC  Design 
Technology and IBM’s EinsTimer*.  As in  all key analysis 
processes on the G4 design, a hierarchical  approach is 
used. Macros  are individually abstracted  from  transistor- 
level analysis and  are combined with global interconnection 
models in  chip-level  timing runs.  The  hierarchical 
approach allows faster  turnaround of full-chip  timing runs, 
since only those  macros which changed  since  the  last 
timing run must be  re-abstracted.  In  addition, quick 
analysis of proposed global wiring changes  can  be  made 
without  detailed timing  analysis at  the  macro level. 

Macro timing 
Pathmill was used  for  the macro-level  timing analysis. 
Inputs  include a netlist,  configuration file, and 
characterization file. The  netlist  can  be  generated  either 
from a schematic or from  an  extracted layout. The 
configuration file contains  the  assertion  information 
generated  from  the global timing  run  relevant  to  the 
macro  under analysis. In  addition, it contains  “hints”  to 
Pathmill on how to  handle difficult circuit topologies,  such 
as  clock-shaping  circuits,  complex latch  structures, or 
certain  pass-gate  structures.  These  commands  are  applied 
to  sets of devices  identified from  subgraph  isomorphism 
with specified patterns [32]. Delays at  each  channel- 
connected  component  are generally made  under  the 
assumption  that only one  input switches at a time. 
Patterns  are also developed in an  effort  to  deal with the 
effects of simultaneous switching on early-mode timing. 

The  timing  methodology  for  the G4 design is 

528 Patterns  that  match  the most common  static  CMOS  gates, 

such  as  NANDs, NORs, OAIs,  and  AOIs (two-, three-, 
and four-way) are  used  to  reduce  the  best-case delay 
calculated  for  these circuits. Boolean satisfiability 
constraints in the  form of inversion or  orthogonality 
declarations  are also passed to Pathmill  in  the 
configuration file and  are  used  to  eliminate  false  paths 
in the timing graph.  These  conditions  are  obtained  from 
the logical constraints view and  are verified by Verity,  as 
described in Section 3. The  characterization file specifies 
the  input slew and  output  loading design point  used  for 
determining  the sensitivity  coefficients for delay and slew 
to  these  quantities in the timing abstractions. 

In  lieu of complex metastability analysis, heuristics  are 
applied  to  determine  setup  and hold times  at  latches, as 
shown for example  in Figure 14(a). There  are two  possible 
types of heuristics that  can  be  used,  “trigger-to-trigger” 
and  “trigger-to-latch.”  In  “trigger-to-trigger” heuristics 
[Figure 14(b)], which are  the simplest to analyze but  in 
most  cases  are prohibitively  conservative, data  are always 
launched  at  the  latch  trigger  time, or at  the  leading  edge 
of the active clock. Late  data  must  be  set  up  at  the  latch 
node  before  the  leading  edge of the  early active  clock 
arrives at  the clock node.  Early  data  must  be  held  after 
the  trailing  edge of the  late active  clock arrives  at  the 
clock node. Figure 14(c) shows the  case of trigger-to-latch 
heuristics. In this case,  data  are  launched  from  the  latch  at 
the  later of the  data  input  arrival  time  or  the  trigger  time 
for  late  mode.  For  early  mode,  the  data  are  launched  at 
latch trigger time.  Late  data must arrive  at  the  latch  node 
before  the  trailing  edge of the  early clock, and  early  data 
must be held after  the  trailing  edge of the  late active 
clock. If data arrive after  the  trailing  edge of the clock, 
the  trailing  edge of the clock is used  to  launch  data  from 
the  latch.  This is referred  to as clipping, and  the  data 
launched  from  the  register  are said to  be  at a clock-limited 
arrival time. Many of the  registers of the G4 design are of 
a  master-slave  type. In this  case, trigger-to-latch  heuristics 
are  used  on  the  master,  and  trigger-to-trigger  heuristics 
are  used  on  the slave. When  master  and slave  clocks are 
nonoverlapping,  setup  and hold  checks are  performed 
to  the  trailing  edge of the  master clock and  data  are 
launched  from  the  leading  edge of the slave  clock. 
When  master  and slave  clocks overlap,  setup  checks  are 
performed  to  the  leading  edge of the slave  clock,  while 
hold checks  are  performed  to  the  trailing  edge of the 
master clock. Data  are  launched  from  the  leading  edge of 
the slave  clock. In  the  case of transparent latch  design, 
trigger-to-latch  heuristics  are always employed.  To  add 
conservatism to  the  latch analysis, the delay  in  actually 
setting  the  latch,  that is,  switching the  cross-coupled 
inverters, is included in the  data  arrival  time  for  setup 
checks. 
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Static timing  analysis can  also  be  applied to multiphase 
dynamic logic, with additional timing constraints  that must 
be satisfied by timing analysis. As an  example,  consider 
the  “footed”  domino  stage shown  in Figure 15. “Footed” 
denotes  the  presence of a  clocked evaluation  transistor  at 
the  bottom of the  n-FET stack. For this  logic stage,  there 
are four additional  timing checks which must be 
performed: 

The dynamic node must fall before  the falling edge of 
the clock (setup).  The  evaluate must occur  during  the 
current cycle’s evaluation  period. 

7- Clock node m 
-P- Latch node 

(a )  
Trigger 
edge i - 

+ I  Trigger 

: Trigger 
i edee 1111 

*:  Latch 

t: 

Latch heuristics: (a) Example transparent latch circuit, with clock- 
node  and latch-node timing points identified. (b) Trigger-to-trigger 
heuristics in which data  are launched at trigger time and tested at 
trigger  time.  (c)  Trigger-to-latch  heuristics  in which data  are 
launched at the  later of the data input arrival time or the trigger 
time for late mode. Tests are performed against the latch time, the 
trailing edge of the clock. 

1 datai 

I 

Timing  checks  for  a standard “footed’  domino stage: (a) Circuit 
topology for  the stage. D denotes the dynamic  node of the  gate, 
and  CLK is the clock. (b) Example waveforms for the data inputs, 
clock,  and  dynamic  nodes. Red arrows denote  setup tests. Green 
arrow denotes hold test. Black arrows denote delays. 

The  data  node must  fall before  the rising edge of the 
clock (setup).  This  ensures  that  the previous stage  resets 
before  the  evaluation begins. 
The dynamic node  must  rise  before  the rising edge of 
the clock (setup).  This  ensures  that  the  current  stage 
resets  before  the  evaluation begins. 
The falling edge of the  data  node must be  held until 
after  the dynamic node falls (hold).  This  ensures  that 
the  data  “pulses”  are wide enough  to  evaluate  the  gate. 

Timing  abstractions  presented  to global timing  from 
macro analysis can  be  either black or gray,  as  shown  in 
Figure 16. In  the  case of the black box, no internal  latch 
points  are  defined,  and  setup  and hold tests  are  presented 
at primary inputs. Black  boxes can only be  used in the 
case of static logic  with nontransparent  latches. In 
addition, black  box abstraction  requires  independent 
verification of latch-to-latch  paths within the  macro, which 529 
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residue  global  interconnection  models  described in Section 
4. In the  early  stages of the  design, this information  comes 
from largely estimated  or  partial  routes. As the design 
progresses,  the  interconnection  models increasingly  reflect 
fully routed designs. The  statistical  model  described in 
Section 4 is used  throughout most of the design process, 
with  “best-case’’ statistics  used in early  mode  and “worst- 
case”  statistics used  in late  mode. 

To calculate  the  macro  driver waveforms, we  use  the 
idea of the “effective capacitance,” Ce,  [34]. The effective 
capacitance is  a  single capacitance  assertion, which is 
designed  to yield an  accurate delay and slew against 
a “k-factor”  driver  model.  The  actual  admittance of the 
interconnection is modeled  at  the  driver  as a pi-model,  as 
shown  in Figure 17. Ceff is given by the  capacitance  that 
produces  the  same  total  integrated  current  through  the 
driver  through  the 50% point of the  driver  voltage 
waveform. Let  the slew (0-100%) at  the  driver  be given 
by tr. We  consider a  rising  waveform, but  the  same 
discussion applies  to a  falling  waveform. The  total 
integrated  current  to  the 50% response  point  for  the Ce, 
driver  load is 

‘eff‘dd I d t = -  
2 .  

(a) Black box and (b) gray box modeling. 

Combining  the  admittance of the  pi-model with the 
Laplace  transform of the  saturate  ramp waveform, one 
finds that  the  current flowing through  the  driver in the - - 
Laplace  domain is given by 

t 
+ 

Match currents 
through 50% 
response point 

(1 - e   sf^). 

In  the  time  domain,  this  becomes 
I I 

Calculating Ceff. The  total  integrated  current  to  the 50% response  point  for 
the  pi-model  driver  load is 

~ “I .“xl-.l _.I 

are  not  presented  to  global timing. Gray boxes are 
essential  for timing  verification in  the  case of transparent 
latches  or  domino logic. In this case, internal  latch  points  Equating  the two integrated-current expressions, one 
are  defined,  and  segments  and  tests  to  the  internal  latch  obtains  an expression for Ce, in terms of the slew time tr, 
points  are  included in the  abstraction. 

Global  timing  and  assertion  management tr 
TO perform  the  global  timing analysis, the  black  or gray To find Ceff, this  equation is  solved  iteratively with  the 
models  from  macro timing are  translated  into  DCL [33] driver slew equation, which gives the slew as a function of 

530 and  loaded  into  EinsTimer  along with the  pi-model  pole- C,. Convergence is achieved  in a  few iterations.  We  note 

* ”  

2RC: 
ce, = C, + C, - - (1 - e“JZRC2). 
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that our approach  differs  from  that of Reference [34] in 
that only the slew at  the driver is used;  that is, no “block 
delay” is considered in the analysis. 

To calculate  the receiver  waveforms from  the  pi-model 
pole-residue  interconnection  model,  the  driver  saturate 
ramp  waveshape is applied  to  the pi-model transfer 
function. For poles p ,  and  residues k,, the  step  response in 
the  Laplace  domain is given by 

where 

‘sum = C ki 
I 

and -ksUm is the  steady-state  voltage  value.  The  Laplace 
transform of the  saturate  ramp  source is given by 

The  voltage  response  at  the  receiver is then given by 

Converting  to  the  time  domain,  one finds 

for t 2 tr. 

This is then  converted back to a saturate  ramp waveform 
by calculating the SO%, lo%, and 90% response  points. 

Assertions  are  generated  from  the global  timing runs 
and  are necessary to drive  macro-level  timing optimization 
and  as  characterization  information  for timing abstraction. 
For each  macro,  the following assertions  are  generated: 

Effective capacitances  on  the  outputs. 
Primary  input  resistance  assertions. 
Input arrival times  (early  and  late  mode, rising and 

Output required  times (rising and falling) with phase tags. 
falling)  with phase tags. 

A “slack-apportionment”  algorithm is employed  during  the 
early  phases of the design  process, before timing 
convergence is achieved,  to  apportion negative  slack 
across  multiple  macros  through modification of the  actual 
arrival  time  and  required  arrival-time  assertions.  Proper 
assertion  management is key to timing convergence in  a 
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hierarchical timing environment.  In multicycle  dynamic 
and  separated  latch designs, which are increasingly 
required in high-performance design, additional timing 
checks  associated with the clock phases must be  managed 
across  hierarchical  boundaries. Significant  work is 
underway to  address  the  challenges  associated with 
managing  these  phase  constraints  and achieving  overall 
phase  convergence in the design. 

produces slack reports showing path  traces  associated with 
the worst  slacks  in the design, early or late  mode.  Another 
useful  report is a list of nets  that  violate slew limits,  with 
both  driver  and receiver slews presented in the violations 
report.  Issues  associated with managing RC delays in 
global  interconnections  are  further discussed  in Section 7. 

Voltage,  temperature,  and  process  conditions, slack 
margins, and slew constraints  were  chosen  to  guarantee 
functionality of the  G4 design.  A late-mode slack  margin 
was established  to  obtain sufficient yield of 300-MHz 
processor chips, taking  into  account  the  effects of phase- 
locked loop  jitter, clock skew, coupled  noise,  and 
temperature  and voltage swings within the  multichip 
module  environment. All  circuits in late  mode  were 
timed  to  nominal process,  highest predicted  on-chip 
temperature,  and lowest predicted  on-chip voltage. Early- 
mode analysis was performed  at a three-sigma  fast 
process,  lowest predicted  on-chip  temperature,  and highest 
predicted  on-chip voltage. Early-mode slack  margins, 
protected by short-path  padding in the  design,  were 
chosen  to  account  for  the  effects of clock  skew and 
simultaneous switching. Different clock skew values  were 
assumed,  depending  on  the receiving latch type and  the 
relative  locations of the  latches in the clock distribution 
tree  at  the beginning and  end of the  path. A slew (10% to 
90% transition  time) limit  was also  enforced  to  reduce 
path delay  sensitivity to  manufacturing  process  variations 
and  to  reduce  path delay  sensitivity to  coupled noise and 
ground-supply  bounce. A  slight delta in ground or supply 
potential  between driving and receiving  circuits translates 
into a variation in propagation delay proportional  to 
slew rate.  Global  nets  are allowed the highest slew 
limit only because  the relatively  high resistance of the 
interconnections  forced a higher limit. Nets  internal  to a 
macro have  a smaller slew limit, and  even  smaller slew 
limits are  targeted  for dynamic nets  and  internal  latch 
nodes, since noise  on  these  nets  could affect the 
functionality of the  chip. 

6. Semicustom  synthesis  methodology 

The global chip  timing  run using EinsTimer  also 

BooleDozer [14], IBM’s logic synthesis tool, was an 
essential  element of the  G4  methodology  for 
implementing  major  portions of the G4 microprocessor 
design, many of these  containing timing-critical paths.  In 
this  section, we describe  some of the ways we exploited 
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(a) Static CMOS inverter. (b) Three-input NAND gate. 

BooleDozer  to achieve rapid  implementation while 
maintaining  the ability to  control  the logic structure  and 
aggressively tune  the design at  the device level. Some of 
the  future  directions in semicustom  implementation  are 
also addressed.  The discussion involves several  different 
aspects of the  use of synthesis  in the G4 design: 

Use of a continuously  tunable,  parameterized  standard- 
cell library with logic functions  chosen  for  performance. 
Designer  controls on restructuring  and technology 
mapping  to this  library. 
Use of “don’t-cares’’  as  defined by VHDL asserts  to 
simplify logic implementation. 
Use of “hill-climbing”-based late-timing  correction. 
Use of postplacement  retuning  and  postplacement 
optimization of the  macro clock distribution  and  scan 
chains. 
Use of tag-based  partitioning  to  create design hierarchy 
to allow further  customization of circuit and layout. 

Traditionally, timing rules  for  standard-cell designs  have 
been  based  on  the  actual size of the  gate. In addition, 
each cell was available  in  a number of discrete sizes, or 
“power levels.” The timing rules  for  the  static  CMOS 
library used in the G4 microprocessor design  differ from 
these  traditional  libraries in three  important ways. First, 
the  rules  were  continuously  parameterizable;  that is, no 
fixed library  cells were  assumed.  This  has implications for 
the physical design of the library, which is discussed  in 

532 Section 7. Second,  the  rules  were  parameterized by 
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quantities directly related  to delay, rather  than size, which 
we refer  to as normalized  gain and beta. Finally, the 
parameterized logic functions  chosen  were  limited  to 
simple,  single inverting  stages,  the most  complex being a 

Let us first define  the  parameters  normalized  gain  and 
2 X 2 AOIiOAI (AND-OR-INVERT/OR-AND-INVERT). 

beta.  Consider  the  static CMOS inverter shown in 
Figure 18(a) driving a load  capacitance of cant. Let p,, 
be  the  gate  capacitance  per unit  width. The  normalized 
gain, g, of the  inverter is given by 

g =  

Beta ( p )  is given by 

Cout 

P,WP + W”) . 

In  addition, we define a parameter  called  the effective 
n-FET width, W:ff, which is given by 

Kff = W” 

for  the  static  inverter.  In  terms of /3 and W:ff, the 
normalized  gain is given by 

Cout 
g =  P c , q f f ( 1  + P )  . 

Now consider  the  three-input  NAND  gate shown  in 
Figure 18(b), driving the  same  load  capacitance tout. The 
equation derived  above continues  to apply. We  introduce 
FET multiplication factors mn and m p ,  which are  chosen 
for a particular  book  type so that  the rising and falling 
delays of the  gate  match  the rising and falling  delays of a 
normalized  gain-3  inverter.  One might  expect that mp  = 1 
and mn = 3. In actuality, mn = 2 would be a typical value 
for  the technology  used  in the G4 microprocessor design. 
This  approach follows closely the previously published 
method of “logical effort” [35, 361. In  our  formulation,  the 
normalized  gain of the  gate is the  same as the  product 
of the logical effort  and  the  electrical  effort used in 
Reference [36]. 

The  rule  structure itself consists of interpolated  tables 
which calculate delay (do) and slew (so) as  a function of 
input slew (si), normalized gain (g), and  beta (p):  

do = fb,, g, PI> 
so =?(si> g, PI. 
Figure 19 shows a  rising output delay of an  inverter  as a 
function of normalized gain and slew for a p of 1.5. The 
rule  structure also allows calculation of delays for a  sized 
gate  set with  a table which stores  the value of qff for 
each fixed-size gate. 

using many of the  same  ideas.  The  domino library  differs 
A parameterized  domino library is also  being  developed 
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from  the  static  one in two principal ways. First,  unlike  the 
static library,  in which performance drives the  gate design 
to  simpler logic function,  domino  gates  are  designed  to 
achieve  as  much  logic function  as possible.  Many  complex 
functions  are achievable by replacing the  traditional 
output  inverter with  a static  NAND  or  NOR  gate, as 
shown  in Figure 20. Second, gain is the only parameter 
which drives domino sizing. Noise considerations  and 
precharge  time  requirements drive the  rest of the device 
sizing and  ratioing. 

An important  aspect of the  use of BooleDozer in the 
G4 microprocessor design was designer  control over 
structural dominance, By structural  dominance, we mean 
the  extent  to which the logical structure in the  VHDL 
dominates  the  mapping [14]. This is accomplished with  a 
SYN-CONTROL keyword which is placed in the  VHDL 
through  an  attribute on the block statement  or, in some 
cases, on  an  entire design entity. SYN-CONTROL could 
have one of two values, direct or dataflow, both 
implying structural  dominance of the logic as coded in the 
VHDL.  The value direct denotes  the highest degree of 
control  from  the  VHDL.  BooleDozer  attempts  to find a 
one-to-one  mapping  into  the  target technology. If none 
exists, the  function is given the  same  treatment as the 
dataflow keyword implies. In  the dataflow case, the 
technology-mapping  algorithm  attempts  to find a  covering 
that  matches  the  original  structure  as closely as possible 

Explicit declaration of a "don't-care''  set using VHDL 
assert  statements  provides  another  approach  for 
optimization in BooleDozer [38,  391. A common example 
is a fully decoded bus,  in which the  bits of the bus are 
known to  be  orthogonal.  Consider  the  implementation of 
the following piece of VHDL: 

assert  (not (a(0) and  a(1) ) 

[371. 

or  not a'stable(1 ns)) 
report "dontcare: Orthogonality 

violation on net  a" 
severity ERROR; 

with a select 
d <= b when " 01" , 

c when " 10" , 
'X' when others; 

The a'stable (1 ns) in the assert statement  ensures 
that it is not  activated in VHDL  simulation while the 
signal a is settling.  An assert statement of this form 
could reflect either a weak  or  strong  assertion,  as 
discussed  in Section 2. Without  the  assertion,  BooleDozer 
does  an  implementation  that drives d to a ' 0 ' when a is 
"00" or "11". In  the  presence of the  assertion, however, 
BooleDozer is free  to  choose a more simplified logic 
implementation.  BooleDozer  uses a test  generator 
and a redundancy-removal  algorithm  to  perform  the 
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Inverter delay as a function of normalized gain and  input  slew. 

Complex  domino  gate consisting of two separate domino pulldown 
I stacks combined  in a static NAND or NOR gate. 

simplication,  the  details of which are  described  elsewhere 
[39, 401. 

The  optimizations  required by logic synthesis are very 
complex. As a result, most are  accomplished  through 
greedy heuristics which can  never  be  guaranteed to 
produce  an  optimal  result [14]. These  heuristic timing 
optimizations  are  performed in BooleDozer  after 
technology mapping, a stage in the synthesis process 
referred  to as late timing correction. Late timing correction 
consists of several  steps: 

1. Capacitances  are  corrected  to 200% of their specified 

2. Global delay optimization is performed in which all 
limits through cloning and  repowering. 

output  pins with negative  slack are  collected.  For  each 
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Delay optimization transformations: (a) Repowering; (b) cloning; 
(c) buffering; (d) pin swapping; (e) inverter pushing; (0 boundary 
moves; (g) expansion. 

pass  through  the  pin list, the delay optimization 
transformation  that  produces  the  greatest  improvement 
in  delay is performed.  More  details on the delay 
optimization  transformations  are  presented be!ow. 

3. Capacitances  are  then  corrected  to 100% of their 
specified  limits. 

4. Critical-path  optimization is performed.  For  each  pass 
through a given critical path,  the  best  transformation is 
performed on the  output  pin of the  path  that  produces 
the best result. 

5. On  paths with  positive  slack, area is recovered  where 
possible through  repower  and  common-term 
elimination. 

6. Slews are now corrected. 
7. A  final  critical path  optimization is performed. 

Delay  optimization  transformation consists of repowering, 
cloning, buffering,  pin swapping, inverter pushing, 
boundary moves, and  expansion. An example of each of 
these is  shown  in Figure 21. Repowering  means sizing a 
gate  to achieve better timing  in  driving  a load. Cloning, 
sometimes also  called parallel  repowering, involves 
duplicating a gate  and dividing the  fan-out  between  the 
copies.  Pin  swapping, also  referred  to as fan-in  reordering, 

534 involves changing the pin  assignment for  commutative 

logic functions.  The  example shown  in Figure  21(d) is two- 
level pin swapping, since critical  signal x2 is moved ahead 
one logic level in the swap. In Figure  21(e),  the  inverter  at 
input a is pushed  forward,  resulting in  fewer logic levels 
for  the  critical  path  from a to b. A boundary  move is 
illustrated in Figure 21(f). In this case, a  four-level NAND 
structure with  critical path  from a to f is converted 
to a two-level NAND  structure  for this  critical path. 
Expansions may also  be  used  to  improve timing. An 
example of an  expansion is shown  in Figure 21(g). Late 
timing correction is also  performed  under “hill-climbing’’ 
conditions.  This  means  that individual transformations  are 
allowed to  make timing worse if a  succession of these 
transformations  ultimately  made  timing  better, allowing 
the  heuristics  to  escape  from locally optimal  timing 
solutions. A checkpointing  mechanism  prevents  the 
algorithm  from ever  ultimately producing a  slower 
implementation. 

Beta  and  gain  parameterization  in  the  timing  rules  as 
described above enable  heuristics  for delay optimization 
which can  be  applied  after  an  initial  placement of the 
design.  Only after  an initial placement  can  the 
interconnection  capacitance  be  estimated  accurately 
enough  through minimum-width Steiner  tree  routes  to 
enable  detailed  retuning. Timing correction in  a 
postplacement  environment  must  be  more  restrictive, 
incorporating only repowering, cloning, and  buffering 
as  delay optimizations.  The  changes  that  result  from 
these  postplacement  optimizations  are  handled  as  an 
“engineering  change  option” (ECO) to  the  original 
placement.  Details of this  process are discussed in Section 7. 
These delay optimization  transforms  can  be  employed 
with the  same  late  timing  correction  approach  described 
above, with several  notable  exceptions  enabled by 
beta-gain  parameterization. 

One  notable  difference is the way in which buffers  are 
added  to drive large  loads  from  primary  outputs.  As  part 
of the global delay optimization, we can  calculate  the 
path effort F for  each critical path  in  the design,  which we 
define as F = ~ C p , / C p i  [36], where Cpo is the  capacitance 
being driven  from  the  primary  output of the  macro  as 
determined  from  global  assertions,  and Cpi is a reasonable 
input pin capacitance limit derived  from  the  primary  input 
resistance  assertion.  In  addition,  let n be  the  number of 
logic stages  in  the  critical  path  and gopt the  optimal 
normalized  gain  for a given gate  type (typically about 3). 
If F”” > go+ additional  buffers  are  added  to  the  primary 
output  to  bring F’” below gopI. 

and  beta  optimization  as  distinct  optimization processes. 
In  the  case of gain, we  define  the branching effort as 
b = CouJCin. Then,  for  optimal  repowering of a given 
gate,  the  normalized  gain g should satisfy gb = gopI for 
minimum delay. This  enables  an  immediate  determination 

Repowering in the  parameterized  context  separates  gain 
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of the locally optimal  gate  repowering, considerably 
improving run-time  performance. 

In  addition  to  retuning,  postplacement  optimizations 
done within BooleDozer  include  reordering of the scan 
chains  and  optimization of the  clock-distribution  network 
within the  macro. Following initial  placement, which is 
done  without  regard  to  the scan-chain  connectivity, the 
scan chains  are  reordered on the basis of latch placement 
to minimize the  total scan-chain length. Following  this 
reordering,  the  scan  optimization  program  generates a 
new set of scan-connect-out to scan-connect-in 
VHDL signal assignments which are  used in the  VHDL 
architecture as described previously in Section 2. 

Signal  tagging can  be used for design partitioning.  In 
this  case, signals are tagged to  denote  that  the  cone of 
logic associated with this signal is to  be  included in  a 
specific partition. Logic  in the  cone is collected  until a 
primary input or other tagged net is reached.  This is used 
to  “tag  out” a piece of the design for a custom 
implementation or produce  “submacros”  for a more 
partitioned physical design. 

be  underestimated.  It is  extremely difficult to  constantly 
adapt full-custom  designs to  continuous  changes in the 
global  timing and  loading  environment. Significant effort is 
now underway to  expand  the  semicustom  approach  to 
handle  multiphase  domino logic implementations  and  the 
associated  problems of phase assignment and convergence. 

The  importance of a semicustom design process  cannot 

7. Chip  circuit  and  physical  design 
We now consider  some of the  details of the circuit and 
physical design of the  processor.  The  methodology follows 
the two-level paradigm with a macro level and a  chip- 
integration level of design.  Macro-level  design  consists of 
custom circuit and  layout  approaches  for  the dataflow 
stacks  and  arrays  and  the semicustom  cell-based approach 
for  control logic. Those  macros  implemented in the 
semicustom  approach  are  referred  to as random logic 
macros  (RLMs). 

Custom macro methodology 
There  are  three loosely delineated  stages  to  the design of 
a custom macro-early schematic design and  prototyping, 
interactive  schematic  refinement,  and final schematic  and 
layout. Custom  macro design  begins  with  a VHDL 
description of the logic function  developed in concert with 
a transistor-level  schematic  implementation.  Initial circuit 
and logic decisions are  made with early  circuit-simulation- 
based timing of critical cross sections. Estimates  are  also 
made  for  the capacitive loading  at  the  outputs  based 
on  early  chip  floorplan  estimates,  as discussed  in the 
subsection  on  chip  integration physical design. An  early 
floorplan of each  custom  macro is also  done  to  ensure 
that sufficient area  and wiring resources  are available. 

This  early physical  design planning  forms  the basis for 
wire capacitance  estimates  placed in the  schematic. 
“Layout-dependent” device models  are  also  used which 
contain  early  estimates of source  and  drain diffusion 
capacitances  based on predicted layout  style. Once a 
complete  schematic exists, static timing is used  to verify 
the  early cross-section selection  and  provide a  timing 
abstraction  to  use in early global  timing. 

Iterative  refinement of the design  occurs as  timing 
assertions  are  established  on  the basis of global  timing. 
The timing assertion  generation  process was described in 
detail in Section 5. Area  estimates  are also updated  as 
part of this  process. At  some  point,  the  macro  designs  are 
“frozen.”  This is made known to  the slack apportionment 
program so that all further timing improvements  are 
required  from  the  semicustom  implementations.  The 
macro  then  enters  the final schematic  and  layout  stage. 

methodology  limitation  on  the  amount of hierarchy which 
may be  used.  Layout  and  schematic  hierarchies  are 
encouraged,  but  not  required,  to  match in order  to  enable 
hierarchical  layout-to-schematic  (LVS) verification. The 
custom circuit layout  implementations  used  on  the G4 
design encompass a  wide  variety of layout organizations 
and design styles. The  layout  image is, in general, 
constrained only by the  bit image of the  data stacks, which 
specify  wire  usage and bit positions above  first-level metal, 
leaving complete flexibility within  technology ground  rules 
and circuit style guidelines  to  FET layout and local 
interconnection.  The layouts, of course, have to  conform 
with  shadow views from  the  global  environment,  generated 
using either  the blockage or contract  methodology 
described in the  subsection on abstract  and  shadow 
methodology. FETs  are  formed  from  either polygons or 
the  instantiation of parameterized device  cells. Some  use 
is made of device-level  wiring  tools, but most  designs are 
wired manually,  with highly regular wiring done with 
scripts. After  circuit  layout is complete,  the  detailed 
macro-level extraction is performed, as well as design rule 
checking  (DRC)  and LVS. Static timing analysis is then 
run directly on  the  extracted  netlist.  Final  timing  closure 
involves potential  retuning of the layout. 

“weakly static,” circuits.  Weakly static  circuits  are circuits 
in which the dynamic node is held by a weak  static half- 
latch device.  Timing  checks are  done using static timing 
analysis. Noise is a major  concern,  particularly with 
dynamic  circuits, an issue  discussed  in more  detail in 
Section 9. 

The  arrays in the G4 design are  entirely  custom- 

The final schematics  and layout are  hierarchical, with no 

The G4 design makes  limited  use of dynamic, or 

designed.  The  use of self-resetting  techniques [41] 
precludes  use of static timing  analysis. Regular  structures 
in the  arrays allow timing verification almost  entirely 
through cross-section simulation.  The timing abstractions 535 

iL. 1997 K. L. SHEPARD ET P 



for  the  arrays  are largely hand-generated  from this 
analysis. 

Random logic  macro implementation 
Efficient implementation of the  semicustom  macros within 
performance  requirements is an  essential  part of the 
G4 methodology. The goals of the  semicustom 
implementation  are twofold-provide a technique  for 
automatically  generating a complete  circuit  and  layout 
from a VHDL  description, while simultaneously  preserving 
the  benefits of transistor-level design. We have already 
discussed the  parameterized  libraries which were used  in 
synthesis, in  addition  to a  “conventional” standard-cell 
library. In  this  section, we complete  the  picture with 
discussion of the physical  design of the  parameterized 
library and discussion of the  entire  RLM methodology. 

Parameterized  cell  generation 
The  use of parameterized cells or soft libraries requires 
development of a  tool to  generate  layouts  automatically as 
part of the design process.  The  library  generator  for  static 
CMOS  developed  for  the G4 design concentrates on 
efficient  design of simple  cells (the most  complex being a 
2 X 2 AO/OA), and allows customization of the cell 
image. The cell generator  techniques  are also being 
applied  to complex domino logic gate  implementations, as 
shown in Figure 20,  by modularization of devices  in the 
topology; that is, by doing  the  precharge devices, n-FET 
pull-down stack,  and  output  stage as separate  modules  and 
combining them. 

The cell generator is used in two ways. It is first used to 
create a standard  set of sizes which are  selected  and 
shared over the  entire  chip, in  effect creating a standard 
cell library with  a large  number of sizing options.  This 
library is used  for initial implementation  and  placement of 
all semicustom  macros.  In  some cases, the cells are  made 
a permanent  part of the design hierarchy,  matching a 
nonparameterized  representation in the schematic. The 
more  common  approach is to  tune away from  the fixed 
library  sizes. In this  case, a cell library is created 
transiently  corresponding  to a  user-specified “binning” of 
the  continuously  tuned  schematic.  After a placed-and- 
routed  implementation  from  the soft library is completed, 
the  layout is subsequently  flattened,  eliminating all 
references  to  the cell layout design. A parameterized 
schematic  corresponds  to  this  flattened layout. In this way, 
the  original soft-library schematic  and layout become  part 
of a customized  macro  implementation.  More  details of 
the  RLM  methodology  are  described below. 

Semicustom macro  methodology 
The  RLM  methodology  begins with a schematic  that is 
created by synthesizing the  VHDL  description. In all 

536 cases, the  initial  implementation  uses  the fixed power-level 

cell set. A physical hierarchy of the  design  corresponding 
to  the  schematic  hierarchy is constructed, using abstracts 
for  both  the  standard-cell  or  parameterized library and 
custom-designed blocks embedded in the design and 
tagged  out  in  the  VHDL. A shadow view, containing  an 
estimate of the  macro size as well as macro  pin  placement, 
is used  to  create a macro  floorplan.  Each of the  standard 
cells is automatically  placed within circuit rows in the 
macro  floorplan.  The  placement  program  optimizes  the 
placement, with constraints  on  critical  nets  and  routing 
congestion, using the Ce113** place-and-route  engine.  The 
initial  placement, which is in turn given to  BooleDozer  to 
perform  the  postplacement  optimizations, gives no weight 
to clock and scan-chain nets.  Postplacement  optimizations 
include  reconnection of the clock distribution  network, 
scan-chain  reordering  based on placement of latches,  and, 
where necessary, continuous  repowering  and  fan-out 
correction.  Network  changes  are  handled as an ECO on 
the initial placement  solution, which is consequently 
routed.  Upon  completion of the  routing,  the  actual  routes 
are  extracted  and  the design is retimed.  This may result in 
additional  retuning  through  ECOs.  From  this  point,  the 
design  is tantamount  to a transistor-level  custom layout 
for all  timing and  electrical analysis. 

In some cases, the  initial  placement  described  above 
is performed using  timing-driven placement of critical 
timing paths.  The  intent is to limit the  amount of wiring 
capacitance  along  these  paths  to  prevent excessive area 
utilization in subsequent  retuning  and  fan-out  correction. 
The  most timing-critical nets  are first  identified  in the 
macro  long-path timing-slack report. A target  capacitance 
limit is calculated  for  each of these nets. The  calculation 
accounts  for  the  timing slack of the  net  and  the net’s fan- 
out.  The  capacitance limit was set progressively higher  for 
nets which were less  timing-critical or which had  greater 
fan-out.  This  approach  has  the  most  benefit on large 
(>80000-transistor) designs. 

The system of combining  soft  libraries with mature 
place-and-route technology  finds application in many 
macros  that  would  have  otherwise  been  done with 
full-custom  design. In dataflow macros,  particularly 
those which do  not  have a  bit-slice architecture, a 
significant  productivity advantage is obtained by manually 
implementing  the design  with parameterized  gates,  tuning 
each  gate  independently  to  optimize  the critical path,  and 
applying  soft libraries  and  place-and-route  for  the  layout. 
The  semicustom  layout  approach is being driven by the 
increasing  need  for  early physical design to  predict 
performance  and growing difficulty in estimating capacitive 
load  and RC delays from  schematic  representations. 
Technology changes  are  also  occurring many times 
in  a  design cycle, both in the devices and in the 
interconnections-a  growing need exists to  react rapidly to 
these  changes in the physical design. We  are  currently 
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developing  the  semicustom  approach  to  handle  the 
needs of bit-slice layouts  and multicycle domino 
implementations. 

Chip  integration  physical  design 
Chip  integration,  the  top level of the two-level circuit and 
physical design process, consists of floorplanning  and 
global  wiring  design. The first step in the chip-level  design 
process is to  floorplan  the macros,  allocating macro  area 
and optimizing pin  placement.  Early  abstractions  describe 
the  area  and  aspect  ratio  for  each of the  macros  to  the 
floorplanning  tool. Pin placement is determined by the 
desire  to  reduce  interconnection  length  as well as to  ease 
routability  constraints.  The  estimated  interconnection 
models  used in early timing analysis consider  pin 
placement.  Early  global timing is used to  help discover 
poor  macro  pin  placements. 

Once  the initial floorplan is created, power and clock 
are  routed.  One of the  largest  strengths of the  G4  on-chip 
power distribution is the use of C4 [42] areal  power 
distribution  pads  as  opposed  to  wire-bonded  peripheral 
pads. As shown in Figure 22, the C4 periodicity was 900 pm 
each  direction  for power and  ground.  Large  last-metal 
buses  were used to  distribute power  in  a  twisted fashion. 
Figure 22  also  shows the tight  grid distribution  used  on 
the  other  interconnection levels. The rigidity of the power 
grid is further discussed  in Section 8. The clock tree 
design is a balanced  H-tree  structure [43] created with a 
specialized maze  router  that  uses wire  width as well as 
length  tuning  to  achieve skew control of 22.5 ps while 
simultaneously working to  reduce latency. Latency 
translates directly into skew when  process, temperature, 
and  voltage  variations  are  considered.  The clock tree 
consists of two levels, as shown  in Figure 23. The  H-tree 
for this  clock distribution is shown in Figure 24. The first 
is the  balanced  tree  from  the  central  phase-locked  loop 
(PLL)  and clock driver  to  preplaced  sector  buffers.  Each 
sector  buffer is placed directly under a top-level-metal 
power bus  to minimize both delay variations within the 
chip  and ZR drops in the power distribution  network. 
A second level of balanced  routing  connects  each  sector 
buffer  to  the local macro clock generators.  The  main clock 
wires are  routed  on  the  top two interconnection levels. 
The  top  interconnection level is thick with low sheet 
resistivity. Accurately  predicting its  delay requires 
consideration  of  inductance  effects.  In  order  to  reduce 
coupling  interaction with other wires and  to  provide 
good  return  paths  to  reduce  inductance, top-level 
interconnection clock  wires are  routed with adjacent 
supply or  ground. 

After power and clock routing,  the I/Os are  wired, as 
are  other timing-critical  buses in the design. 1/0 routing 
is done first,  since I/Os typically demand  last-metal 
interconnections in congested  areas of the chip.  Critical 
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bus  routing is done next, with use of wide  wires to 
minimize RC delays. Early critical bus  routing is also done 
with consideration of capacitive  coupling, which drives 
wider spacing between wires or alternate signal and 
powerlground  routing. 

Abstract and  shadow methodology 
Once  the initial floorplan with power,  clock, and prewires 
is complete,  the  rest of the  interconnection design is 
managed  through  the  use of a hierarchical physical design 
process  to  parallelize  the design effort  and  manage 
complexity.  Two  types of abstractions  are used in the 
process of managing wiring resources across the  macro- 
chip  hierarchical boundary-shadows which pass wiring 
information  from  the global routes  to  the macros, and 
abstracts which pass wiring information  from  the  macros 
to  the globals. 

Two basic methodologies  are used to  manage wiring 
resources.  In  the first, which we refer  to as the 
blockage method, global routes  are  completed first, with no 
blockage restriction  from  the  macro level. Shadows pass 
the  actual global routes  to  the  macro level of hierarchy. 
The shadow nets  are  attributed so that  the  macro  routes 
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H-tree  for  clock distribution. This  figure  shows the actual structure 
of the clock tree from the central clock buffer to  each of the nine 
sector buffers. 

G4 clock distribution. The  clock  tree consists of two levels of 
buffering. A central  clock buffer drives nine sector buffers which, 
in turn, drive  local clock generators. 

may tap  into  these  where  appropriate,  further maximizing 
wiring utilization.  This  approach is used in  selective areas 
of the  chip  where wiring resources  are  at a premium.  In 
the  second  methodology, which we refer  to  as  the contract 
method, the wiring tracks  are divided a priori between  the 
macro  and global  levels of hierarchy,  and this contract is 
coded in both  the  shadow  and  abstract, which are negative 
images of each  other. For example, if 80% of the wiring 
tracks  are  reserved  for global routes,  their  channels will 
appear in the shadows as blockages. The  other 20% 
reserved  for  the  macro  routes will appear in the  abstract 
as  blockages. Prewires-clock, power, chip I/O, and 
critical nets-also appear in the  shadow as  blockages. This 
technique  does  not  create as  efficient  a use of wiring 
channels  as  the blockage method,  but allows the 
parallelization of the  routing process. 

As the design progresses,  the shadows and  abstracts 
increasingly become  representations of completed  design, 
with net-attributed  shapes  representing  actual  routes 
replacing  blockage shapes.  These shadows and  abstracts, 

538 therefore,  naturally evolve into  their  role in parasitic 

extraction, as described in Section 4. In  both  the  blockage 
and  contract  methods,  abstracts  frequently have large pins, 
big shapes or collections of shapes  presented  to  the global 
level for connectivity to a given pin. The  use of large  pins 
helps to  create flexibility in the  global  routing. However, 
this, along with the  use of net-attributed shadows  in the 
blockage method,  produces  situations such  as those 
shown  in Figure 25, in which the  resulting  hierarchical 
assignments of shapes  produce difficult topologies  for 
extraction.  In  Figure  25(a), a “large  pin” is tapped by 
multiple global  wires. The pin has  multiple  taps in the 
macro  as well as  serving as a “feedthrough”  for  the global 
routes.  In  Figure  25(b), a net-attributed shadow is used so 
that a global  route  has  multiple  tap  points  to  the  macro, 
more  than  the original number of pins in the design for 
this  net.  One possible solution  to  these  hierarchical 
problems is to  treat  the  tap  points as equivalent, shorting 
them  together in the  resulting  macro  extraction,  but 
keeping  them  distinct in the global extraction,  choosing 
the  best-case or worst-case  global interconnection delay 
from  among  the  equivalent pins. 

Global  interconnection optimization 
Managing global RC delays and  ensuring  that  global  net 
drivers are  appropriately sized for  their  loads  are  essential 
parts of the  chip  integration process. These  problems  are 
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identified as slew violation  at  global  net receivers. For 
those  receivers showing  violations, the slew at  the  driver is 
also  examined. The  general  optimization  methodology is a 
three-step process: 

1. Where  there is a slew violation at  the  driver,  the  driver 

2.  If the  driver is appropriately sized  but the receiver slew 
is still poor,  there is excessive RC delay. The first 
approach  to fixing this is to widen the wire,  resizing the 
driver in the  process  to  the  larger capacitive load. 

an  alternative or in addition  to wide  wires. 

is resized. 

3. In  cases  where  slack allows, a repeater may be  used  as 

If the  net is longer  than  ten  millimeters  and  there is 
sufficient  slack, insertion of repeaters is generally the 
preferred  solution. If the  net is less than  ten millimeters, 
wire  widening is generally  used. 

interconnections, in which the wire acquires lossy 
transmission-line  characteristics,  one must also  be  careful 
not  to overdrive the line. This  can  result in an  impedance 
mismatch between  the  driver  and  the  characteristic 
impedance of the  interconnection which can  produce 
ringing. 

In the  case of low-resistivity, last-metal 

Verification of physical design 
Verification of the physical  design is divided into two main 
areas: design rules checking (DRC) and layout  versus 
schematic (LVS). In  addition,  the physical  verification 
tools  were also employed to perform such  auxiliary 
functions as physical data  compare  and technology 
conversion. 

The  bulk of the DRC physical verification consisted 
of checking the design  against the layout ground  rules 
present in the technology guide, using manufacturing- 
approved rules. The  same  ground-rule checking tool was 
used  at all stages of the design cycle. This  required  it  to 
be  robust  enough  to  handle  an  entire chip’s worth of data, 
yet with low enough  overhead  that it did  not affect the 
turnaround  time  when checking  small  circuits. The 
checking tool was integrated  into  the design  system, 
providing textual  and  graphical  feedback  upon  completion 
of the  run.  This  feedback was reported hierarchically, 
greatly reducing  the  amount of information  that  had  to 
be  acted  upon by the designer. Both  the  textual  and 
graphical  error  coordinates  were  normalized  to  those of 
the  prime cell. This allowed for easy graphical  import  into 
the design database while simplifying the  error-separation 
process. In addition  to  the  ground-rule checks, there were 
other  rule files available; these  checked  for  potential 
design  problems  that  were  not specifically ground-rule- 
related, such  as degenerate  shapes, or non-technology- 
specific ground rules, such as I/O checks. 

(a) rJ Net-attributed 
shadow shape 

Hierarchical  problems  in  extraction: (a) Large  macro  pin connects 
to multiple wires representing the same global net.  (b)  Net- 
attributed  shadow shape is tapped in multiple places by  macro nets. 

Like DRC, the  same LVS tool was used at all  levels of 
the design  hierarchy. The LVS  submission tool was also 
completely integrated  into  the design  system. In  addition 
to  the physical layout,  LVS  requires a schematic 
representation of the circuit  as an  input.  This  automated 
procedure is accomplished by taking  the  output of the 
electrical  simulation  and processing the text. Because of 
the wide  variety of design  styles present  on  the  chip, LVS 
had  to  be flexible enough  to  check  each correctly. This 
was facilitated by allowing the  designers  to  select  from 
a  wide  variety of options  when  submitting LVS jobs, 
allowing them  to  tailor  the checking job  to  meet  the 
specific requirements of their designs. One of the  most 
important  features of the  LVS  methodology was  its  ability 
to  handle  different design flows. Both  top-down  and 
bottom-up designs  could be  submitted  and  checked  from 
within the design system. The  top-down  approach  required 
some  data  preprocessing.  Because of this,  a macro 
designer  could successfully check  any combination of 
circuits  and black  boxes;  a processor  subunit  integrator 
could  check any combination of macros  and black  boxes; 
and a chip  integrator  could  check any combination of 
processor  subunits  and black boxes. Having this ability 
permitted wiring errors  to  be  caught  early in the design 
cycle, thus  greatly  reducing  the  amount of rework. 

Having a well-structured  hierarchy was an  important 
factor in the successful operation of the  LVS  program.  It 
allowed for  faster  run  times  and  more  concise diagnostics. 
This  dependence  on  hierarchy was  a  drawback,  however, 
when dealing with the I/O terminating resistors. Because 
these  resistors  had  to  be  tuned with regard  to  chip wiring, 
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they  could not  be assigned  values until  the  end of the 
chip  integration cycle. Placement of these  resistors  at 
the  top level of the design disrupted  the  hierarchy  to a 
considerable  extent.  It would not have been possible to 
LVS-check the design without a  lengthy  rework of the 
chip  schematic.  To  get  around  this  problem, a series of 
checking programs  were  run  outside  the  boundaries of 
LVS to  ensure  that  the  resistors  were placed correctly, 
while LVS was told  to  ignore  the  resistors in the  network 
compare. 

Besides DRC  and LVS  checking, the verification tool 
set was also  employed  to  handle  some special  cases. 
Between  major design releases, it  was expedient  to  repair 
design  bugs by modification of personalization levels only. 
In  cases such  as these, a  layout data  comparison  program 
was used  to  ensure  that only the  personalization levels 
were  altered,  and  that  the silicon and local 
interconnection layers remained  unchanged, allowing for a 
savings  in the  cost of these masks. 

An  even  more significant use of the verification tools 
involved the conversion of existing  design data  to a more 
aggressive set of technology ground rules. This was 
accomplished  in  a manner  completely  transparent  to 
the design team.  They  designed  the  entire  chip in one 
technology, and  the final data  were  transformed  to  the 
new  technology. This  resulted in cutting  several  months 
off the  time it  would  have taken  for  the design team 
to  convert  to  the new technology by hand.  Such a 
methodology  required a more extensive set of verification 
requirements,  since it  was  necessary for  the design data  to 
be  completely  DRC-  and LVS-clean for  both  the  designed 
and  converted  technologies. 

The final  design data  were  checked completely  using the 
existing  technology ground rules.  A  two-stage  conversion 
program was then  employed  to  convert  the  data  to  the 
new  technology.  A  single  conversion program was  initially 
used. Although  this  produced  a  ground-rule-correct design, 
the conversion caused  considerable  disruption in the 
chip  hierarchy  because of a  special  local interconnection 
level. This level had a large  amount of interhierarchy 
interactions,  leading  to  resultant  shapes  that  had  to  be 
propagated  several layers upward in the  hierarchy.  Using 
the  current checking tools, it  was  impossible to  run a 
complete  LVS on the final  design. A cell-by-cell approach 
was then  tried,  but  this  led  to  ground-rule  violations on 
the local interconnection level. The conversion program 
was then  converted  into  the two-stage approach.  The first 
stage  performed  the  bulk of the  shapes conversion on a 
cell-by-cell basis.  A hierarchical  conversion was then 
performed on a portion of the local interconnection layer 
shapes  that  were in violation of the technology ground 
rules.  The final data  could  be  checked with  all of the  same 
rules used for  the initial nonconverted design. 

8. Electrical analysis 
We now describe  the  methodology  used  to analyze the 
power demands of the  chip as well as  determine  the  power 
supply noise  and  the  electromigration reliability of the 
power network. 

Power calculation 
Static  algorithms, such  as those  applied  to timing analysis, 
rely on simulations  at  the  gate level combined with  a 
graph-based  path  search.  The  fundamental  assumption of 
this approach is that  correct  characterization  for  the 
analysis in question  can  be  done  at  the level of individual 
channel-connected  components.  This is, unfortunately, 
not  true  for  determining  the power demands of digital 
systems. Straightforward  static analysis is stubbornly defied 
by the existence of glitches and  incomplete  transitions  at 
gate  inputs,  the  dependence of energy  consumption  on 
past history, and sensitivity of energy  demands  to  the 
precise  analog  nature of waveshapes in the design [44]. As 
a result,  the  approach we take is an essentially  two-level 
hierarchical analysis methodology, in which large, flat 
macro-level simulations  are  abstracted  and  combined 
statically to analyze the  energy  demands of the  chip  and 
determine  the integrity of the  power  distribution network. 

We  perform  the  macro circuit simulation using the 
SPECS  (Simulation  Program  for  Electronic  Circuits  and 
Systems) simulator [45]. In SPECS,  the  simulation is 
event-driven; IV characteristics  are  assumed  to  be 
piecewise constant,  branch  currents  are  assumed  to  be 
piecewise constant in time,  and  branch voltages are 
assumed to  be piecewise linear in time.  The clocks are 
toggled at system cycle time  and  patterns  are  applied with 
arrival times relative to  the clock as  determined  from 
static  timing analysis. Output  loading is also obtained 
from  the global  timing environment.  Patterns  are  either 
designer-chosen  to maximize the power requirements of 
the  circuit, or randomly  generated.  For  smaller  macros 
(<50000 transistors),  hundreds of patterns  are analyzed, 
while for  larger  macros (50000-200000 transistors),  tens 
of patterns  are  simulated.  We define  a set of power points, 
pins  within the power and  ground  network  that  separate 
the  “local” power distribution  from  the global one.  These 
are typically chosen on the via layer  that  connects  the 
first- and second-level metal.  The  macro, including the 
local power grid up  to  the power point, is extracted. 
Current  meters  are  attached  to  the power points in the 
extracted  netlist,  as shown  in Figure 26 for  simulation. A 
fundamental  assumption of this hierarchical  approach  to 
power  analysis is that  the global  supply and  ground  can  be 
assumed  to have their  nominal values  when calculating  the 
power-point  currents.  In actuality, macro power demands 
result  in  power  supply  noise which in turn affects the 
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power-point  currents,  an  effect which is ignored in this 
analysis. 

In order  to  abstract  macro power data  both  temporally 
and spatially, we monitor  the  currents  at  the power points 
during  simulation.  The active edge of the global clock 
defines the cycle. Let i,””’(m) be the  peak  current on 
power point n during cycle m ,  and  let i,““’“(m) be  the 
average  current on power  point la over cycle m. We  then 
find the cycle m for which I 

I n 

is maximum, and  the cycle m‘ for which 
2 i;ueroge(m 

n 

is maximum. We  then  store  the i r k ( m )  and iuverage ,l ( m ‘ )  
values for  each power point as  a power view. Additional 
temporal  resolution is possible by dividing the cycle 
into a number of “time  buckets.” 

From logic simulation, we determine a  switching factor f 
between 0 and 1 for  each  macro in the design during 
“average”  and “worst-case”  activity. We define f as the 
average  fraction of inputs  that  change  during a given 
machine cycle. Figure 27 shows a  power map of the  chip 
for  average switching activity, calculated by computing 

n 

where  the sum  is  over  all of the power points in the power 
view for  the given macro. 

IRIEM analysis 
The power abstracts  are also used to  determine  the 
power-supply  noise and  evaluate  electromigration 
constraints in the power distribution.  Both analyses  begin 
with an  extraction of the multilevel  power distribution 
network  from  the  macro power points  to  the C4 pads. A 
full RC extraction of the power  grid is performed [46]. 
The power-grid extraction  includes  the widths and via 
sizes associated with each  resistor in the  extraction.  For 
the  on-chip  inductance  extraction,  the mesh plane of the 
multichip  module (MCM) package is used as  the  ground 
plane [47]. 

to  determine  the IR drops in the power and  ground 
distribution.  For  this analysis, we use  the  average power- 
point  current  and  the  “worst-case” switching factors  to 
apply dc  current  sources  to  the global  power and  ground 
grids. The  resulting resistive network is solved with a 
sparse  LU  factorization package. IR drop  results  are 
calculated  for  each power point,  and  branch  currents  are 
calculated  for  each  resistor in the  network.  The  branch 
currents  are  cross-referenced with the wire  widths and via 
sizes to flag potential  electromigration  problems. If  we 

We first perform a dc analysis of the  power  distribution 
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Power-point methodology. The supply and ground distribution is 
divided between macro (black) and global (red). Power points form 
the connection between these two levels of hierarchy. Independent 1 voltage sources that supply nominal supply and ground voltages to 

I the  macro  serve  as  current  meters.  Peak  and  average  currents 
measured at these meters are subsequently applied to the global 1 power grid to determine IR drops and  delta-I noise. 

I Power dissipation map of the G4 processor 

define  the  applied voltage Vapplied as  the  difference  between 
the power and ground voltage, ~~p~~~~ is the  nominal  applied 
voltage, k‘z;Yf: is the  average  applied voltage, and Vzied 
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Power  supply  map  of  the G4 processor. 

is the maximum  value of the  applied voltage. Figure 28 
shows VaPplied calculated in this  manner using i F ( m ' )  
current values at  each power point  and  average f values. 
The maximum applied voltage drop, V z i e d  - Vf.'Tj!:t, 
is 37 millivolts, and  the  average  applied  voltage  drop, 
v:;:: - v ~ ~ ~ ~ ~ ~ ~ ' ,  is IO millivolts. 

In  addition  to  the  variations in the  dc power and 
ground levels due  to  the  steady-state  current  demands of 
the  chip,  there  are  periodic  variations  due  to  simultaneous 
switching of off-chip drivers  and  internal circuits. This 
delta-Z noise occurs  when  these "pulses" of current  are 
sourced or sinked through  inductance on the  chip  and 
package supply and  ground wires. Figure 29 shows delta-1 
noise  on  the  supply  and  ground as  actually measured on- 
chip. To analyze the  delta4  noise,  the  power-point  sources 
are  applied  to  the  complete RLC extraction of the  power 
grid combined with  a lumped-element  model of the MCM. 
Figure 30 shows  a highly simplified view of this model  for 
a  single powerlground  C4  pair.  The  current  sources  at  the 
power points  are  assumed  to switch as a spike  with a slew 
time of 100 ps rising and falling and with  a magnitude 
given by the  peak  current of the power point.  Decoupling 
capacitors  are  added  to  the  equivalent  circuit,  as  are 

542 estimates of n-well and nonswitching  circuit capacitance. 

9. Noise analysis 
We begin the discussion with a couple of definitions. An 
evaluation node is a  circuit node  that  forms  the  connection 
between  channel-connected  components, or gates, in the 
design. Noise, therefore, is  defined as anything that  causes 
the  voltage of an  evaluation  node  to  deviate  from  the 
nominal supply or  ground rails  when the  node  should 
represent a stable logic '0 ' or ' 1 ' value.  We follow 
Reference [5] in characterizing  noise  sources by peak 
magnitudes  relative to  the  nominal supply and  ground 
rails. Noise sources  that  reduce  an  evaluation  node voltage 
below the supply  level (V,,) are  denoted I/", while noise 
sources  that  increase  an  evaluation  node  voltage above 
the  ground level are  denoted VL. Noise may also  be 
bootstrapping if it increases a node  voltage above the 
supply level (V,,) or below the  ground level (V,.). Noise 
sources  relevant  to  digital  design  include  leakage  noise, 
power-supply  noise, charge-sharing  noise,  and  crosstalk 

I 
16.0000 ns 66.00MI ns 116.0000 ns 

Ch. 1 200.0 mV/div Offset = 2.100  V 
Ch. 2  200.0 mVldiv Offset = 400.0 mV 
Timebase 10.0 ns/div Delay = 16.2000 ns 

(a) 

I I 
16.M)oo ns 66.0000 ns 116.0000 ns 

Ch. 1 200.0 mV/div Offset = 2.100  V 
Ch. 2  200.0 mvldiv Offset = 400.0 mV 
Timebase 10.0 ns/div Delay = 16.2000 ns 

@) 

1 Measured  delta-Z noise on the G4 microprocessor at a clock cycle I time  of  (a) 3.5 ns; (b) 5 ns. 
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noise. Noise  has  two deleterious  effects in  digital  systems: 
It  can  produce logic failures by causing a  latch to falsely 
change  state  and  can  also have  a direct effect on delay. 
Leakage  noise  and power-supply noise  result in  lower or 
higher supply  levels, which reduce or enhance  the  current 
drive of a  circuit and  consequently  increase  or  decrease 
the delay. Coupling  noise can cause  the effective line 
capacitance  to  increase  or  decrease in the  presence of 
simultaneously switching noisy lines, increasing  or 
decreasing  the delay. We  refer  to  this  as  the 
interconnection Miller effect. 

The G4 design methodology analyzed only coupling 
noise at  the global  level and  did so in  a  limited way using 
the capacitance-only coupling  extraction of the global 
interconnection discussed in Section 5. We  define  the 
victim net as the  static  net onto which pulse noise is being 
coupled by one or more perpetrator nets.  Coupling  noise 
was calculated using the simple linear  model shown  in 
Figure 31. A threshold of coupling capacitance  to victim 
self-capacitance was  used to  decide which perpetrator  nets 
to  include in the analysis. Rdriver is the effective resistance 
of the driver. The  “resistance” R, of an individual FET k 
is modeled  from  the  linear  region of the Ids versus Vds 
current-voltage characteristic  at IVgsl = Vdd. Rdriver is then 

over the weakest static  FET  path in the  driver. Rnet is the 
total  resistance of the  net  to  the receiver. Cground is the 
total  capacitance of the victim net which is tied  to  ground. 
Capacitances Cioup couple  the victim to  each of the 
perpetrator  sources uierp which are  modeled  as  saturate 
ramp waveforms of slew tllew. This  network  ignores  the 
distributed effects of resistance  on  the victim net.  Instead, 
the  entire  net  resistance is put in series with the  driver, 
a  pessimistic simplifying assumption.  In  addition,  the 
distributed  resistance of the  perpetrator  nets is also 
ignored.  The unoi,,(t) response  produced by the  action 
of a  single perpetrator  source ube,,(t) is given by 

Package On chip 

I Gnd 

Equivalent  circuit for delta-Z calculations. 

Simple circuit model for crosstalk coupling. 

In  addition,  both timing windows and logical constraints 
were used to  reduce pessimism. Arrival windows for  the 
perpetrator  net signals are  obtained  from  static timing 
analysis and  are defined by early- and  late-mode 
propagation  at  the  same  process,  temperature,  and 
voltage. We  then solve what we call the optimal control 
problem for  the arrival times of the  perpetrator  net  driver 
waveforms. We  seek  to find the arrival times  for  the 
voltage  waveforms of the  perpetrator  net  drivers which 
meet  the arrival time  constraints  and which maximize the 
peak noise response  on  each victim net receiver. Some 
proactive  attempts  to avoid  coupling problems  were  made 
on global routes with constraint-driven  routing  techniques [48]. 

Receiver sensitivity to noise was characterized by circuit 
topology. Latch  topologies  on  receivers of long  nets  were 
naturally ascribed lower acceptable upeak values than  static 
CMOS gates. Latches with n-FET pass-gate inputs have an 
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d V,-sensitive pass-gate latch structure. A V,, coupling even greater 
than the threshold voltage V, causes  the pass gate to turn on and I switch the latch, with no possibility of recovery. 

Clk - 

I 

0.0 10.0 20.0 30.0 40.0 
Q,a (fC) 

1 Equivalent circuit  for determining Q,, for soft-error failures of a 
dynamic circuit. A pulse current source with total integrated charge I of Qcnt is applied. 

sources [ 5 ] .  The  approach defines  a metric of quality  for 
noise known as noise stability. The  global  interconnection 
analysis takes  advantage of the  multiport  impedance 
macromodels  described in Section 4 and will include 
calculation of the effects of coupling  on delay. 

Soft-error rates 
Soft errors  are a leakage noise source  caused by ionizing 
radiation, which generates  minority  carriers in the 
n-well or  substrate  that  are  collected  at  reverse-biased 
source-drain diffusions. These  can  produce  failures in 
dynamic  circuits, latches,  and  RAM cells. There  are two 
main sources of this ionizing radiation: cosmic rays and 
alpha  particles  produced by radioactive decay of lead in 

1 Soft-error rate as a function of the critical charge Qcrit for both c4 package technology. The  impact of  ionizing radiation 1 alpha-particle and cosmic-ray sources for a representative 0.35-pn 
i technoloev. on circuits is determined by measuring  the critical charge, 

-, 
Qcrit, which will produce  failure in  a given circuit. Smaller 
feature sizes brought  about by technology  scaling mean 

additional sensitivity to VLB2 noise.  Consider  the  case in 
which the  gate of the  pass  gate is ' 0 '  and  the latch stores 
a  logic ' 1 I, as shown in Figure 32. A VL. coupling  event 
greater  than  the  threshold  voltage V, causes  the  pass  gate 
to  turn on and switch the  latch.  When  the  noise  pulse 
disappears,  the  pass  gate is off, and no mechanism exists 
to  return  the  latch  to its correct logic '1 ' state. 

provide protection  at  the  macro  and global  levels against 
glitch-induced  logic transitions  for all possible  noise 

In development is  a more  detailed noise methodology  to 

544 p-FET pass-gate inputs would have a  similar  sensitivity to VH. noise. 

smaller  capacitances  and lower values of Qcrit. Figure 33 
shows the  error  rate  for this  circuit for  both  alpha  and 
cosmic  rays  in parts  per million per  thousand  bits  per 
thousand  hours of usage per  pm2 of diffusion area. 
Adjustments in the  failure  rate  are  also  made in the 
presence of error  correcting. 

To  determine QCrit, circuits susceptible  to  soft-error 
leakage  are analyzed  with an  equivalent circuit  similar to 
that shown  in Figure 34. A pulse  current  source is applied 
to  the  evaluation  node of the circuit so that  the  total 
integrated  charge of the  current pulse is Qcrit. For p 
diffusions, this  charge is positive. For n  diffusions, this 
charge is negative.  A  typical pulse  shape  for  this analysis 
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has a 5-ps rise 
delayed  falling 

time  and 30-ps time  constant exponentially 
edge. 

10. Conclusions 
In this  paper we have  reviewed the  philosophies, 
techniques,  and  processes used in the design of the Si390 
Parallel  Enterprise  Server G4 microprocessor. In doing so, 
we have emphasized  some of the guiding themes of our 
approach. Cycle simulation is an  essential  element of any 
verification effort,  and a methodology must exist to  map 
the design from  an  event-driven  HDL  into a cycle- 
simulation  model or, in many  cases, into  multiple cycle- 

2. A. Cao, A. Adalal, J. Bauman, P. Delisle, P. Dedood, P. 
Donehue, M. Dell’OcaKhouja, T. Doan, M. Doreswamy, 
P. Ferolito, 0. Geva, D. Greenhill, S. Gopaladhine, J. 
Irwin, L. Lev, J. MacDonald, M. Ma, S. Mitra, P. Patel, 
A. Prabhu, R. Puranik, S. Rozanski, N. Ross, P. Saggurti, 
S. Simovich, R.  Sunder, B. Sur, W. Vercruysse, M. Wong, 
P. Yip, J. Zhou, and G. Zyner, “CAD Methodology for 
the Design of UltraSPARC-I Microprocessors at Sun 
Microsystems, Inc.” Proceedings of the ACMIIEEE Design 
Automation  Conference, 1995, pp. 19-22. 

3. C. Roth, R. Lewelling, and T. Brodnax, “The PowerPC 
604 Microprocessor Design Methodology,” Proceedings of 
the 1994 International  Conference on Computer-Aided 
Design, pp. 404-408. 

Kusko. S. V. Pateras. D. E. Hoffman, T. G. McNamara, 
4. W. V. Huott, T. J. Koprowski,  B. J. Robbins, M. P. 

simulation models. The design methodology must be and T.’J. Snethen. “Advanced Microprocessor Test 
I 

fundamentally  transistor-level  to allow detailed 
optimization  trade-offs  among timing,  power, and  noise. 5 ,  K, L. Sheoard and v, Naravanan, in 

“ 

Strategy and Methodology,” IBM J. Res.  Develop. 41, 
No. 415, 611-627 (1997, this issue). 

At  the  same  time,  to  manage  the complexity,  a consistent Submicro; Digital Design,”Proceedings of the 1996 - 
two-level hierarchical  approach  must  be used for all key International  conference-on Computer2ided Design 

analysis processes, with  design abstractions  stored  and (ICCAD ’96), San Jose, CA, November 1996, pp. 524-531. 

- .  

6. IEEE Standard VHDL Lanauaae  Reference  Manual, IEEE 
controlled  from a common  database.  Static  techniques Standard 1076-1987, I E E e  Standaids Board, 345 E. 47th 
must be employed for  these analyses wherever possible. 
In addition,  one of these analyses  must be  noise, which 
has  acquired overwhelming importance with  technology 
scaling.  Technology trends also mean  that  interconnections 
must be  designed  and analyzed  with comparable 
importance  to devices. 
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