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Formal  verification (Fv) is considered by  many 
to be complicated and to require considerable 
mathematical knowledge  for  successful 
application. We have  developed  a  methodology 
in which we have added formal verification to 
the verification  process  without  requiring any 
knowledge of formal verification  languages. 
We use only finite-state machine  notation, 
which is familiar  and  intuitive to designers. 
Another  problem  associated with formal 
verification  is state-space explosion.  If that 
occurs, no result  is  returned;  our method 
switches  to random simulation after one  hour 
without  results, and no  effort  is  lost.  We  have 
compared FV against random simulation  with 
respect to development time, and our results 
indicate that FV is at least as fast as random 
simulation. FV is superior in terms of 
verification  quality,  however, because it is 
exhaustive. 

Introduction 
Since the  Intel  floating-point divide  bug was published, 
interest in formal verification has  soared.  For  the 
interested novice, looking at the  huge  number of theories 
and languages (see [l] for  an overview), the  questions  are 
these: Which approach  to  choose, which language  to  learn, 
and how much mathematics will be  required?  We  think 
that  this is one of the main  difficulties impeding  the 
introduction of formal verification. The  other big problem 
has  been  that  formal verification  might  fail because of 
model size problems.  We  therefore  had  the following 
goals: 

1. No mathematical knowledge at all should  be  required 
to use  a formal verification  tool, nor  should it be 
necessary to  learn specific languages. We wanted  to use 
a  notation  designers already know, which they would find 
intuitive, and which they use for design purposes  as well. 

2. Formal verification suffers  from  the well-known state- 
space explosion problem.  Therefore, FV should be 
integrated  into  the overall  verification process flow 
so that, if a model size problem arises, we can easily 
switch back to  random  simulation.  The  cffort  required 
to do this should  take less than an hour. 

Why formal  verification? 
What  are  the  forces  that drive formal Verification? In this 
section, we discuss the most important  ones.  The first 
is silicon  technology. Over  the last few years,  circuit 
densities have increased dramatically, which has allowed 
designers  to  implement highly queued systems that  offer 
performance  advantages over nonyucued systems. Table 1 
compares two memory  bus adapter (MBA) chips from 
two consecutive CMOS-based  mainframe  generations 
manufactured by IBM. Compared with nonqueucd 
systems, queued systems offer higher performance,  require 
many more circuits, and have  much larger  state spaces; 
they are  therefore much more difficult to verify. 

The  second  force is trends in simulation, which lead 
naturally to  formal verification (see Table 2). If we look 
at  the way simulation was done over three successive 
generations of CMOS-based  mainframe systems, we 
observe  the following trends: 

1. Constant  decrease in model  size. In  CMOS 1 the most 
important unit of test was the system model,  whereas in 
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Table 1 Comparison of queued  and  nonqueued systems. Moving from  random  tests  to exhaustive tests. 

Bandwidth Concurrent Transistors 
(MB/s) operations 

CMOS 2 MBA 200 3 600,000 

CMOS 3 MBA 2000  30 3,700,000 
~~~ 

Table 2 Simulation  trends of system generations. 

System Main unit Main test 
generation of verification approach 

CMOS 1 System model Deterministic  tests 

CMOS 2 Chip  model Deterministic  tests 
(initially) 

Random  tests 
(mid-program) 

CMOS 3 Functional  Random  tests 
unit model 

CMOS 4 ? ? 

Table 3 Basic temporal logic operators  and  their  meaning. 

Operator Interpretation 

AG For all  paths, at every point in time. 
AF For all  paths, at  some  point in time. 
AX For all  paths, at  the next point in time. 
AU AU has two operandsA[q U r ] .  It  means  that  for 

EG For  some  path,  at every point in time. 
EF For  some  path, at some  point in time. 
EX For  some  path, at the next point in time. 
EU EU has two operands E[q U r ] .  It  means  that  for 

all paths, q is true  until r is true. 

some path, q is true until r is true. 

CMOS 3 the most important unit of test was one 
functional unit of a chip. 

2. Change  from  deterministic  tests  to  random tests. 

In  general,  random  tests have more  error-detection 
capability than  deterministic  tests,  but  unfortunately  the 
debug  time  for  an  error  found by random  simulation is 
greater  than  that  for  deterministic  tests.  Another  problem 
in random  simulation is that  there is no  answer  to  the 
question “If we run  random  simulation  again, will we 
improve  the  test  coverage?” If we look again at  Table 2, 
the next logical steps in the  evolution  are  the following: 

Verification:  Since the  control logic is the  major  source 
of design errors, verification models  containing only 
the  control logic are  the most important models. We 
designate such  a unit of test a module. (A functional 

568 unit consists of both dataflow and  control logic.) 

Models which contain only control logic are small enough 
to  be formally  verified;  since FV provides  exhaustive  tests, 
FV is the  ideal  candidate  for this  next step. If successfully 
applicable,  FV  outperforms  random  and  deterministic 
tests in  all areas: 

1. Since  a complete  state  space is explored,  test  coverage 

2. Error analysis is easier  and  faster with an  FV  tool  than 
with simulation using deterministic  handwritten  tests, 
because  the  FV  tool  searches  for a short  path  to  an 
error. 

3. Clearly, there is no way to show that  the  properties 

is better  than  that of random  tests. 

specified by a designer  comprise all of the  properties 
required  for a  circuit to  operate correctly. However, in 
contrast  to  random  simulation,  it is known that all of 
the specified properties hold. 

For  control logic designs, FV  approaches  the  ideal  as a 
verification tool, which in general allows us to find all 
errors quickly and  debug  them. 

Background 
Symbolic model checking is a fully automated  technique 
which verifies that a set of properties specified with 
temporal  formulas will hold for a given circuit.  The 
complete  state  space of the circuit is exhaustively 
traversed.  Temporal  formulas  are  described using 
temporal logic operators.  The  eight basic temporal logic 
operators  talk  about computation  paths, which are possible 
in a computation  tree. A computation  tree is an (infinite) 
tree of all of the possible execution  sequences of a  system. 
The  root of the  tree is the initial state of the system. 

A temporal logic operator consists of two parts:  the 
path  quantor and  the temporal  operator. There  are two 
path  quantors: A ,  which means on all paths, and E ,  which 
means for  some  path. There  are  four basic temporal 
operators: G, which means always; F ,  which means 
eventually; X ,  which means next; and U ,  which means until. 
See Table 3 for a short  description of the basic temporal 
operators. 

References [2-71. There  are two very important classes of 
temporal  formulas: Safety  formulas specify properties  that 
must  hold in the  complete  state  space of the  circuit,  and 
liveness  formulas describe  the  absence of deadlock in the 
design. 

Integrating RI in a design  verification 
methodology 
Figure 1 shows the design and verification process flow in 
which FV  could  be used. The  process flow follows the 

For a detailed  treatment of temporal logic, see 
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well-known V-diagram. In the  implementation  branch of 
the V we start with  system  design and  terminate with the 
module design; in the verification branch, we follow the 
branch  upward,  starting  from  module  test  and  ending with 
system test.  Note  that in this  process flow the  essential 
new step in system  verification is the  module  test. 

Module  test is divided into dataflow test (typically done 
by simulation)  and  control logic test.  Testing  the  control 
logic requires a complete  understanding of the  behavior of 
the design;  this activity should therefore  be  performed by 
the  designers. Since the  control logic is normally the 
most complex logic, formal verification should be used. 
Introducing such  a new step in the  overall  process flow 
requires  acceptance by the  workers involved. We  therefore 
had  the following goals: 

1. Ease the  introduction. 
To  ease  the  introduction of FV for  the  designers, little 
knowledge about FV should  be  required. Ideally no 
new languages  should have to  be  learned. 

2. Reuse  protocol checkers in the next level of verification. 
We found it very useful to enhance our test  models 
with protocol  checkers.  These  protocol  checkers  should 
also  be usable for module  test, or, if they are developed 
during  module  test, they should be integrable in the 
next level of verification. This  approach  reduces  the 
amount of work devoted exclusively to  module  test. 

Currently,  formal verification  can  fail because of model 
size problems,  rendering useless the whole model- 
generation  effort. To avoid this, we have developed a 
method which is nearly identical  for  simulation  and 
formal verification. If formal verification  fails, we 
perform  random  simulation;  the  extra  effort  required 
typically takes less than  an  hour. 

3. Minimize the risk. 

Experience has  shown that  the dataflow of a chip can be 
quickly debugged,  and  that  the  control logic is the 
dominating  source of design errors. As mentioned above, 
this logic should  therefore be subject to  formal 
verification. The  components of a  typical model  to  test a 
piece of control logic are shown  in Figure 2. The  model 
consists of the design which should  be  tested,  and  an 
environment. The  environment consists of protocol 
generators, which implement  the  protocols as required by 
the design, and protocol checkers, which implement the rules 
the design must follow. The following points are important: 

1. Our  experience shows that all components in the 
environment of the model can  be  represented  as FSMs. 
Therefore  this  notation, which is familiar  and intuitive, 
was chosen  as  the  input  language. 

2. The  protocol  checkers  are used instead of complex 

I equations in the  computation  tree logic (CTL)  language 

{““‘j System 

{“J Chip 

Functional 
unit  test 

Time \ r,]? ,/ Time 
Module 
design test 

Module test model 

Module environment 

Protocol 

Design 

” 

[2, 71. We  found only simple CTL  equations  to  be 
intuitively comprehensible; nontrivial CTL  equations 
are hard to  understand  and  prone  to  error. 

The  concept of protocol  checkers  implemented as  finite- 
state  machines (FSMs) allows us to automatically  generate 
safety  formulas  for  the  formal verification tool. In 569 
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models  are  generated  [Figure  3(a)].  The first model  tests 
design  unit 1, and  protocol  generator 1 is required  to 
implement  the  protocol in place of design  unit 2. The 
same  scheme  holds  for  the  second  model, which tests 
design unit 2 and  requires  protocol  generator 2. 

In order  to check the  protocol, a protocol  checker is 
required;  since  it  can  be  used in both models, it is called  a 
common protocol  checker. Note  that this common  protocol 
checker  can also be used  in the  integration  test  [Figure 
3(c)], further  increasing our confidence  in the  environment 
description of the  module  test models. 

FSM  generator 
To describe  finite-state  machines,  designers  use  an FSM 

"F 
Bd. " I a state  table  or a  timing chart.  This FSM generator 

generator  (see Figure 4) which requires  as  input  either 
- 

[ Target  languages of the FSM generator. produces  either a macro  (for design usage)  for  an IBM 
internal  hardware  description  language or a function 
(for simulation  usage) in  a  C-like behavioral  description 
language.  With  an  additional  option,  we  are  able  to 
generate  the  environment  description in the  language 

addition,  the  protocol  checkers  can  be used  in the  required by the  formal verification tool. 
integration  test, improving the overall test process.  Since  timing charts  are  converted  internally  to  state 

Since  there  are many modules in  a  complex chip,  there tables,  only state  tables  are  considered next. Figure 5 
570 are many module  test  models  as well. Therefore, how do shows the  format of a state  table.  There  are  four  columns, 
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which describe  the  current  state,  the  input  vector value, 
the  output  vector  value,  and  the next state.  States  are 
coded symbolically, and  input  and  output values can  be 
represented  as binary or symbolic values. In addition,  the 
OTHERWISE statement is supported in the  input  column. 
In addition to Mealy and Moore machines [8], two different 
classes of machines can be represented:  deterministic and 
nondeterministic.  Nondeterministic  machines  require 
an @! sign to  mark  state  transitions  that  should  be  done 
nondeterministically (e.g., the  machine  transitions  from S1 
and  the  input  vector 0 1 0  to  the  states S1 and 52). In 
simulation,  one  transition of the  set of possible transitions 
is selected randomly, while in FV all  possible transitions 
are verified  exhaustively. 

an  additional  state,  the error state. The  state  machine 
enters  this  state if during execution an  input  vector is 
found which is not defined in the  state  table  for  the 
current  state (e.g., if in state sx an  input  vector 110 
occurs).  Both  simulation  and  formal verification  check 
to  ensure  that  no  state  machine  ever  enters  the  error 
state. 

Figure 6 shows an  example of a request unit which 
generates a request  accompanied by a request  vector,  and 
eventually receives  a grant.  The  request  vector  points  to 
eight  different  targets (TO, . . , T7), which should 
be  selected nondeterministically. The decision to  generate 
a request  should also be  done  nondeterministically.  The 
FSM may nondeterministically  transition  from  the initial 
state SO to any of the  request  states (R-TO, . . , R-T7), 
or may remain in the  initial  state. In each of the 
request  states,  the  FSM  generates  the  request signal and a 
corresponding ReXVec value (which is symbolically 
coded TO, . . , T7). As long as no grant is received, 
the  FSM  remains in the  request  state; if a grant is 
received, the FSM returns  to  the initial state S O .  

Since this tool is used  for design and  simulation,  the 
designers  are  already  familiar with it.  There is no  need to 
learn a new language in order to generate  an  environment 
description  for  formal verification. 

To  the  states given in the  state  table,  the  generator  adds 

Switching between FV and  random  simulation 
If different  target  languages  can  be  generated  from a 
single input  description, it is obvious that switching 
between  simulation  and  FV is trivial. Figure 7 shows the 
process of switching between  FV  and  random  simulation. 
Obviously, the biggest  task is the  description of the 
protocol  generators/checkers. Since the  models  are small, 
all other activities require  little  effort. 

Since the  model  structure  contains all  FSMs,  it is 
possible to identify all error  states in the  model.  These 
error  states  are used in safety formulas. An example is 
shown in Figure 8, where  the first formula  states  that  for 
all  possible  execution paths (AG = always globally) in 

Grt ’ Req 
b Req-Vec ( 0 .  . 2  1 

Grt  Req  Req-Vec 

e s o  , 0 , 0 0 , so 
e S O  , 0 , 0 0 , R-TO * got0 R-TO 

@ SO , 0 , 0 0 , R-T7 * got0 R-T7 
* 
* request  state R-TO: generate  request  for  target TO 
* 

R-TO , 0 , 1 TO , R-TO 
R-TO , 1 , 1 TO , SO * return  to SO 

* 
* request  state R-T7: generate  request for target T7 

R-T7 , 0 , 1 T7 , R-T7 
R - T ~  , 1 , 1 ~7 , SO * return to SO 

State table for a request unit 

Compile Code protocol 
generators/ 

Compile 

Write  model 
structure 

Switching between FV and simulation 

every cycle, the  condition  holds  that  the  state of the FSM 
REQ-UO is not  the  error  state. 

Safety formulas  are  an  important class of temporal 
formulas. Since  they can  be  generated  automatically  from 
the  model  structure, all components  required by the 
formal verification tool  are available with no FV 571 
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1 A design example [ll]. Fetch data = F D ;  Store data = SD. 

knowledge. Users can therefore  use  the  formal verification 
tool  immediately  and  get  accustomed  to  it. 

RuleBase: A formal verification tool 
RuleBase (5, 9, 101 is an  industry-oriented  formal 
verification tool  developed by the  IBM  Haifa  Research 
Laboratory.  Based on years of experience in practical 
formal verification of industrial  hardware designs, 
RuleBase  offers access to this advanced technology to 
every designer,  not just FV experts. RuIeBase  uses  an 
enhanced  version of SMV [2] as its verification engine, 
employing the  CTL model-checking  verification method 

572 [7]. SMV is an efficient and  robust symbolic model 

checker  developed by Ken  McMillan at  Carnegie Mellon 
University. 

The primary features of RuleBase  are  the following: 

Several  hardware  description  languages  are  supported, 
including  VHDL,  Verilog**,  and  DSL  (an  IBM  internal 
hardware  description  language). 

environments  and is easily integrable  into  others. 

way for  hardware  designers  who  are  not  CTL  experts to  
read  and write  specifications easily. 
Various  methods  address  model size problems: 
1. New, efficient  model-checking algorithms. 
2. Enhancements of the original SMV algorithms. 
3. Automatic  design  reductions which leave only parts 

4. New dynamic binary decision diagram (BDD) ordering. 

analysis: 
1. Counterexamples  are  presented as  simulation-like 

2. Counterexamples  can  be  translated  into  simulation 

3. Formulas which are trivially correct  are  detected. 
A graphical  user  interface allows convenient  control 
over  the  formal verification  process. The  user  interface 
facilitates  user  intervention in the  process, while 
allowing  a fully automated verification  when the  user 
chooses  not  to  intervene. 

RuleBase is integrated in  a  variety of design 

Sugar,  the  RuleBase specification language, provides  a 

that influence formula  correctness. 

Debugging aids support  result analysis and  process 

timing  diagrams. 

control  programs. 

RuleBase  has  been  used  at  various  locations within IBM. 
The list of hardware  units successfully verified with 
RuleBase  includes  bus bridges, cache  controllers,  bus 
interface  units,  and  more. Additionally, RuleBase  has 
been  used  to formally verify hardware  at  the  architectural 
level, specifically verification of cache  coherence  protocols. 

An example 
Figure 9 shows a functional  unit of the memory bus 
adapter [ll]. The switch connects six SPL units 
to a speed-matching  buffer which contains  three 
buffer types: commands,  store  data,  and  fetch  data. 
Correspondingly,  there  are  independent  processes  to 
transfer  commands,  store  data,  and  fetch  data in the 
switch. In the following we focus  on  the  arbitration  part  of 
the  command  transfer  process.  The  command  buffer  has 
room for eight different  commands, which are  associated 
with buffer slots. The availability of a slot is signaled  with 
an Slt-Avl-x signal. An SPL requests a command 
transfer with  a R e q  signal and  provides a Req-Vec, which 
indicates  the  command slot  it  wishes to use. At  the  end of 
arbitration two things happen: 
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Module test model of the command arbiter. 

1. The  unit which won the  arbitration receives  a grant. 
2. The Slt-Avl bit  for  the  target  selected is reset via the 

R-Slt-Avl signal. 

If we wish to verify the  command  transfer  process, we 
need a model of the  dotted  area in Figure 9. We  can 
abstract most of the  behavior of the  command  buffer  and 
the SPL, and build  a model which contains only the 
relevant  behavior  for  the unit to  test, as  shown  in 
Figure 10 for the  unit of the  command  transfer  arbiter. 
Every SPL is replaced by a request  unit, which 
nondeterministically  generates  requests  and Req-Vec 
values and eventually  receives  a grant  from  the  arbiter. 
The  different  slots of the  command  buffer  are  represented 
by eight slot units, which provide the Slt-Avl signals. In 
addition  there  are two protocol  checkers, which check 
whether  more  than  one  grant signal or more  than  one 
R-Slt-Avl signal is active at a time.  (Note  that in  reality 
there  are  more  than two protocol  checkers.)  The principle 
of the  request  generator is shown  in Figure 6. Note  that 
every request  unit will fall into  the  error  state if it  receives 
a grant  without having  issued  a request. 

Figure 11 shows  a state  table which checks that only 
one  grant  (or  no  grant) is active at a  time. In  this  table 
only the legal conditions  are shown;  all other  input 
conditions  cause  the FSM to  transit  to  the  error  state. 
Using the built-in error  states of the FSMs, it is easy to 
generate  the  temporal  formulas which specify that  no  FSM 
should ever enter  the  error  state.  The  corresponding 
formulas  for our model  are shown  in Figure 8. With the 

Check 
Note: 

Grt5 active 

* Current , Input8 , outputs , 
* state 

No output  required! 

Next  state 

so , 000 000 , , SO no grant active 
so , 100 000 , , SO * GRTO active 
so 
so 

, 010 000 , 
, 001 000 , 

so , 000  1 0 0  , , SO * GRT3 active 
so , 000 010 , 
so , 000 001 , 

, SO * GRTl active 
, SO * GRT2 active 

, SO * GRT4 active 
, SO * GRTS active 

rule livenessqroperties { 

formula { EF ( FSM-i.State=Sx ) I  
formula { EF ( FSM-i.State=Sy ) I .  

environment  description  and  the safety formulas, a formal 
verification run could be  started.  After  some  time  the 
designer  becomes  comfortable with the  tool, gradually 
adding liveness formulas  to  the  set of safety formulas 
which were automatically  generated.  In Figure 12 an 
example is given. The first formula  states  that  for  some 
execution path in the  future (EF = eventually future)  the 
state of FSM-i will be  some  state  named Sx. Obviously 
some  equations (in addition  to  those  for  the safety 
formulas)  are  generic  and  could  be  generated 
automatically at  the  outset.  Other  formulas, however, are 
model-specific,  such  as the  last  formula, which states  that 
for  every request  there must  eventually be a grant. 

IBM J. RES.  DEVELOP. VOL. 41 NO. 415 JULYiSEPTEMBER 1997 T. SCHLIPF ET AL. 



Results  Table 4 Comparison of FV with random  simulation. 
The primary concern we had was this: “Do we increase 
the  total verification time by adding  the  module  test  to 
our  process flow?” To  evaluate  this  question, we compared 
the  time  required  for a traditional  functional  unit 
simulation with that  required  for FV. The  complete switch 
was  verified  with random  simulation;  part of the switch 
(the  command  transfer  process) was formally  verified. The 
command  transfer  process  represents  approximately 30% 
of the switch in terms of logic  circuits and complexity. 
Since we did not  use  FV  for  the  complete switch, we had 
to  extrapolate  from  the  command  transfer process. The 
different  cases  are shown  in Table 4. The first column 
shows the switch simulation,  the  formal verification of the 
command  transfer  process,  and  the  extrapolation of FV 
to  the  complete switch. The  second  column  contains 

Case Number of lines Time spent 
of code (person-months) 

Simulation of 2586 6 

FV of command 1.25 
complete switch 

transfer process 
Model 1 30 
Model 2 34 
Model 3  142 
Model 4 229 
Model 5 49 
Model 6  84 

FV of switch (estimated) 4 

the  number of lines of code  needed  to  describe  the 
environment for simulation  and  for  the  different  FV technique. 

Table 5 Design errors  detected with verification 

models. The  last  column shows the  time  spent (in person- 
months).  There is an  order of magnitude  difference in Verification technique Errors found 
lines of code,  and  the  extrapolated  FV value indicates (%I 
that  FV is similar to  or  better  than  random  simulation in Functional  unit simulation 41 
terms of time  spent. Clearly it is superior in terms of test Formal verification 24 
coverage. We  did  formal verification after  the  random Visual code  inspection 20 
functional  unit  simulation. No errors  were  found,  and Chip simulation 15 
no  error was found in the  actual  hardware. 

The  method  presented  here has been successfully 
applied  to  the design process of the  MBA  chip  for  the 
next S/390* generation. Table 5 shows the  number of 
detected design errors in  a functional  unit of the  chip 
found by different verification techniques.  FV  detected 
24% of the  errors very early in the design flow. In this 
example simulation  started very early, so the  majority of 
errors were  still found by simulation. However, there  were 
errors  that would  also  have been  found by FV.  But  far 

Table 6 Classification of errors found with FV. 

Error class FV errors 

Not  detectable by simulation 40 
Possibly detectable by simulation 24 
Easily detectable by simulation 36 

more  important is that  the  majority of the  errors  found by 
FV would not have been  detected by simulation. Table 6 
shows that only 36% of the  errors  found by FV could  have 
been  detected by simulation  without  much  effort; 24% 
were  rather complex cases  that would  have been  detected 
eventually, and 40% of the failed FV  cases would  probably 
have slipped  through  simulation as well. 

Summary 
We have developed  an  approach  to  integrate  formal 
verification  in our design and verification process which 
has  the following advantages: 

confidence in the  protocol  checkers. In addition, they 
help  to find and  isolate  errors  during  integration 
testing. 

Because of the driving forces we have described, we 
expect that model-checking tools will be  accepted by the 
industry  in the very near  future.  We  plan  to use FV  on 
a large scale in our next project.  Some  designers  today 
are  enthusiastic when a system simulation  model  runs 
successfully for millions of cycles. However, with the  large 
state  spaces  required  for heavily queued systems, this may 

1. It  relies on the  familiar  and  intuitive  notation of finite- be  not much more  important  than  some millions of water 
state  machines;  therefore, no learning  curve is required. molecules  in  an  ocean.  How  does  one convince Oneself 

if FV fails because of model size problems. extensive  debugging is certainly  quite convincing, because 
2. It allows us to switch back to  simulation within an  hour  and  others  to  introduce  FV?  The  experience of very 

3. The  protocol  checkers  developed  for  FV can be used in heavily queued systems also  generate  more  errors  than 
574 the  chip  and system integration tests, which increases  their  predecessors. 
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Outlook 
From a practical  point of view, the following areas  deserve 
more investigation: 

. We use  message sequence  charts [12] as  a 
documentation aid to describe the  behavior  between 
components of a module. It would be very useful to 
compile these  charts directly into CTL formulas. 
Most of the FV models which had a state-space 
explosion problem  were  characterized by very large 
structural symmetries. These symmetries induce  an 
equivalence  relation  between  states, which permits a 
dramatic  reduction of state  space [13, 141. Ongoing 
research in this  area  seems  to be very promising. 
Most designers find it easier  to specify rules  for  the 
behavior of the dataflow than  rules for the  control logic. 
A major goal  would be  to  generate  automatically  an 
abstracted  model of the dataflow;  such  a model  should 
be behaviorally equivalent  to  the  real dataflow from a 
control logic point of  view. This would allow the  control 
logic to be verified at  the  same  time as the dataflow. 

*Trademark or registered  trademark of International Business 
Machines  Corporation. 

**Trademark  or registered trademark of Cadence Design 
Systems,  Inc. 
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