Formal
verification
made easy

by T. Schlipf
T. Buechner
R. Fritz
M. Helms
J. Koehl

Formal verification (FV) is considered by many
to be complicated and to require considerable
mathematical knowledge for successful
application. We have developed a methodology
in which we have added formal verification to
the verification process without requiring any
knowledge of formal verification languages.
We use only finite-state machine notation,
which is familiar and intuitive to designers.
Another problem associated with formal
verification is state-space explosion. If that
occurs, no result is returned; our method
switches to random simuiation after one hour
without results, and no effort is lost. We have
compared FV against random simulation with
respect to development time, and our results
indicate that FV is at least as fast as random
simulation. FV is superior in terms of
verification quality, however, because it is
exhaustive.

Introduction

Since the Intel floating-point divide bug was published,
interest in formal verification has soared. For the
interested novice, looking at the huge number of theories
and languages (see [1] for an overview), the questions are
these: Which approach to choose, which language to learn,
and how much mathematics will be required? We think
that this is one of the main difficulties impeding the
introduction of formal verification. The other big problem
has been that formal verification might fail because of
model size problems. We therefore had the following
goals:

1. No mathematical knowledge at all should be required
to use a formal verification tool, nor should it be
necessary to learn specific languages. We wanted to use
a notation designers already know, which they would find
intuitive, and which they use for design purposes as well.

2. Formal verification suffers from the well-known state-
space explosion problem. Therefore, FV should be
integrated into the overall verification process flow
so that, if a model size problem arises, we can casily
switch back to random simulation. The cffort required
to do this should take less than an hour.

Why formal verification?

What are the forces that drive formal verification? In this
section, we discuss the most important ones. The first

is silicon technology. Over the last few years, circuit
densities have increased dramatically, which has allowed
designers to implement highly qucued systems that offer
performance advantages over nonqucucd systems. Table 1
compares two memory bus adapter (MBA) chips from
two consecutive CMOS-based mainframe generations
manufactured by IBM. Compared with nonqueucd
systems, queued systems offer higher performance, require
many more circuits, and have much larger state spaces;
they arc therefore much more difficult to verify.

The second force is trends in simulation, which lead
naturally to formal verification (see Table 2). If we look
at the way simulation was done over three successive
generations of CMOS-based mainframe systems, we
observe the following trends:

1. Constant decrease in model size. In CMOS 1 the most
important unit of test was the system model, whereas in

©Copyright 1997 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,

of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

567

0018-8646/97/$5.00 © 1997 IBM

IBM J. RES. DEVELOP. VOL. 41 NO. 4/5 JULY/SEPTEMBER 1997

T. SCHLIPF ET AL.

568

Table 1 Comparison of queued and nonqueued systems.

Bandwidth Concurrent Transistors

(MB/s) operations
CMOS 2 MBA 200 3 600,000
CMOS 3 MBA 2000 30 3,700,000

Table 2 Simulation trends of system generations.

System Main unit Main test
generation of verification approach
CMOS 1 System model Deterministic tests
CMOS 2 Chip model Deterministic tests

(initially)
Random tests
(mid-program)
CMOS 3 Functional Random tests
unit model
CMOS 4 ? ?

Table 3 Basic temporal logic operators and their meaning.

Operator Interpretation
AG For all paths, at every point in time.
AF For all paths, at some point in time.
AX For all paths, at the next point in time.
AU AU has two operands A[g U r]. It means that for
all paths, g is true until 7 is true.
EG For some path, at every point in time.
EF For some path, at some point in time.
EX For some path, at the next point in time.
EU EU has two operands E{g U r]. It means that for

some path, g is true until r is true.

CMOS 3 the most important unit of test was one
functional unit of a chip.
2. Change from deterministic tests to random tests.

In general, random tests have more error-detection
capability than deterministic tests, but unfortunately the
debug time for an error found by random simulation is
greater than that for deterministic tests. Another problem
in random simulation is that there is no answer to the
question “If we run random simulation again, will we
improve the test coverage?” If we look again at Table 2,
the next logical steps in the evolution are the following:

« Verification: Since the control logic is the major source
of design errors, verification models containing only
the control logic are the most important models. We
designate such a unit of test a module. (A functional
unit consists of both dataflow and control logic.)

T. SCHLIPF ET AL.

* Moving from random tests to exhaustive tests.

Models which contain only control logic are small enough
to be formally verified; since FV provides exhaustive tests,
FV is the ideal candidate for this next step. If successfully
applicable, FV outperforms random and deterministic
tests in all areas:

1. Since a complete state space is explored, test coverage
is better than that of random tests.

2. Error analysis is easier and faster with an FV tool than
with simulation using deterministic handwritten tests,
because the FV tool searches for a short path to an
error.

3. Clearly, there is no way to show that the properties
specified by a designer comprise all of the properties
required for a circuit to operate correctly. However, in
contrast to random simulation, it is known that all of
the specified properties hold.

For control logic designs, FV approaches the ideal as a
verification tool, which in general allows us to find all
errors quickly and debug them.

Background

Symbolic model checking is a fully automated technique
which verifies that a set of properties specified with
temporal formulas will hold for a given circuit. The
complete state space of the circuit is exhaustively
traversed. Temporal formulas are described using
temporal logic operators. The eight basic temporal logic
operators talk about computation paths, which are possible
in a computation tree. A computation tree is an (infinite)
tree of all of the possible execution sequences of a system.
The root of the tree is the initial state of the system.

A temporal logic operator consists of two parts: the
path quantor and the temporal operator. There are two
path quantors: 4, which means on all paths, and E, which
means for some path. There are four basic temporal
operators: G, which means always; F, which means
eventually; X, which means next; and U, which means until.
See Table 3 for a short description of the basic temporal
operators,

For a detailed treatment of temporal logic, see
References [2-7]. There are two very important classes of
temporal formulas: Safety formulas specify properties that
must hold in the complete state space of the circuit, and
liveness formulas describe the absence of deadlock in the
design.

Integrating FV in a design verification
methodology

Figure 1 shows the design and verification process flow in
which FV could be used. The process flow follows the

IBM J. RES. DEVELOP. VOL. 41 NO. 4/5 JULY/SEPTEMBER 1997

well-known V-diagram. In the implementation branch of
the V we start with system design and terminate with the
module design; in the verification branch, we follow the
branch upward, starting from module test and ending with
system test. Note that in this process flow the essential
new step in system verification is the module test.

Module test is divided into dataflow test (typically done
by simulation) and control logic test. Testing the control
logic requires a complete understanding of the behavior of
the design; this activity should therefore be performed by
the designers. Since the control logic is normally the
most complex logic, formal verification should be used.
Introducing such a new step in the overall process flow
requires acceptance by the workers involved. We therefore
had the following goals:

1. Ease the introduction.

To ease the introduction of FV for the designers, little
knowledge about FV should be required. Ideally no
new languages should have to be learned.

2. Reuse protocol checkers in the next level of verification.
We found it very useful to enhance our test models
with protocol checkers. These protocol checkers should
also be usable for module test, or, if they are developed
during module test, they should be integrable in the
next level of verification. This approach reduces the
amount of work devoted exclusively to module test.

3. Minimize the risk.

Currently, formal verification can fail because of model
size problems, rendering useless the whole model-
generation effort. To avoid this, we have developed a
method which is nearly identical for simulation and
formal verification. If formal verification fails, we
perform random simulation; the extra effort required
typically takes less than an hour.

Experience has shown that the dataflow of a chip can be
quickly debugged, and that the control logic is the
dominating source of design errors. As mentioned above,
this logic should therefore be subject to formal
verification. The components of a typical model to test a
piece of control logic are shown in Figure 2. The model
consists of the design which should be tested, and an
environment. The environment consists of protocol
generators, which implement the protocols as required by
the design, and protocol checkers, which implement the rules
the design must follow. The following points are important:

1. Our experience shows that all components in the
environment of the model can be represented as FSMs.
Therefore this notation, which is familiar and intuitive,
was chosen as the input language.

2. The protocol checkers are used instead of complex
equations in the computation tree logic (CTL) language

IBM J. RES. DEVELOP. VOL. 41 NO. 4/5 JULY/SEPTEMBER 1997

| «-——— Implementation ——|+——— Verification —————
System System
design test
Chip Chip
design test
Functional Functional
N .) »
unit design unit test
Time h . Time
Module Module
design test

Integrating module test in the design and verification process flow.

Module test model

Module environment

Protocol - -
generators
Design
PR
Protocol
checkers N —

]

Components of a model for a module test.

[2, 7]. We found only simple CTL equations to be
intuitively comprehensible; nontrivial CTL equations
are hard to understand and prone to error.

The concept of protocol checkers implemented as finite-
state machines (FSMs) allows us to automatically generate
safety formulas for the formal verification tool. In

T. SCHLIPF ET AL.

569

570

Design Design
anjf [e i

1 2

@)

Design |7 PG 1 P62 Design
unit unit
i 2

cpPC CPC 1
Meodel { Model 2
(b)
Design Design
unit tnit
1 2
CPC
Integration test

©)

* - Current Input Dutput -~ Next
*+ state values values state
*
Sx . ., 010 o101, 8y
Sy o 101 o010 '
Sy ., OTHERWISE ; 010 S%
ta)
@ Si w010 ;A0 L: o 8
@ s1 ;010 10T 82
@ sl ;- OTHERWISE . 010 -, 83
e 51 ;- OTHERWISE ;010 ., . .54
b)

3 State table formats for different FSMs: (a) Deterministic machines;
. (b) nondeterministic machines.

{ The role of common protocol checkers in the verification process:

% (a) Hardware structure; (b) two FV models derived from (a); (c)

¢ the CPC in the integration test. Protocol generator = PG; common
protocol checker = CPC.

State tables/Timing charts

FSM generator
Design Random EV Integration
simulation test

Target languages of the FSM generator.

addition, the protocol checkers can be used in the
integration test, improving the overall test process.

Since there are many modules in a complex chip, there
are many module test models as well. Therefore, how do

T. SCHLIPF ET AL.

we ensure that the module environment description is
correct? The technique to achieve this is shown in

Figure 3, using two design units which communicate via a
protocol. To verify these two units, two module test
models are generated [Figure 3(a)]. The first model tests
design unit 1, and protocol generator 1 is required to
implement the protocol in place of design unit 2. The
same scheme holds for the second model, which tests
design unit 2 and requires protocol generator 2.

In order to check the protocol, a protocol checker is
required; since it can be used in both models, it is called a
common protacol checker. Note that this common protocol
checker can also be used in the integration test [Figure
3(c)], further increasing our confidence in the environment
description of the module test models.

FSM generator
To describe finite-state machines, designers use an FSM
generator (see Figure 4) which requires as input either
a state table or a timing chart. This FSM generator
produces either a macro (for design usage) for an IBM
internal hardware description language or a function
(for simulation usage) in a C-like behavioral description
language. With an additional option, we are able to
generate the environment description in the language
required by the formal verification tool.

Since timing charts are converted internally to state
tables, only state tables are considered next. Figure 5
shows the format of a state table. There are four columns,

IBM J. RES. DEVELOP. VOL. 41 NO. 4/5 JULY/SEPTEMBER 1997

which describe the current state, the input vector value,
the output vector value, and the next state. States are
coded symbolically, and input and output values can be
represented as binary or symbolic values. In addition, the

Grt Red Reg
unit p——— Req_Vec(0..2)

OTHERWISE statement is supported in the input column. : Gre Req Regq.vec *
In addition to Mealy and Moore machines [8], two different e so . o 0 o so
classes of machines can be represented: deterministic and @so , 0 .0 0 . R_TO * goto R_TO
nondeterministic. Nondeterministic machines require
an @ sign to mark state transitions that should be done e so . o e 0 , R.T7 * goto RT7
nondeterministically (e.g., the machine transitions from S1 *
and the input vector 010 to the states 31 and S2). In * request state R_T0: generate request for target T0
simulation, one transition of the set of possible transitions RTO . 0 1 mo T
is selected randomly, while in FV all possible transitions R.TO , 1 . 1m0 . 80 * return to SO
are verified exhaustively.)

To the states given in the state table, the generator adds *

an additional state, the error state. The state machine * request state R_T7: generate request for target T7

enters this state if during execution an input vector is R o o . .
found which is not defined in the state table for the R_TT , 1 , 1™ ., 80
current state (e.g., if in state Sx an input vector 110
occurs). Both simulation and formal verification check

to ensure that no state machine ever enters the error
State.

Figure 6 shows an example of a request unit which
generates a request accompanied by a request vector, and
eventually receives a grant. The request vector points to
eight different targets (TO, .., T7), which should
be selected nondeterministically. The decision to generate
a request should also be done nondeterministically. The

* return to S0

State table for a request unit.

FSM may nondeterministically transition from the initial Compile C‘g’gsel;:t’:r’;"l Compile
state SO to any of the request states (R_T0, .., R_T7), checkers

or may remain in the initial state. In each of the l

request stat.es, the FSM generates .the ‘request S}gnal and a Compile Writo model Compile
corresponding Req_Vec value (which is symbolically structure

coded TO, .., T7). As long as no grant is received,

Compile 1

the FSM remains in the request state; if a grant is Generate

received, the FSM returns to the initial state S0. Saf;’g:&f:'“ simulation
Since this tool is used for design and simulation, the setup

designers are already familiar with it. There is no need to ! l L

learn a new language in order to generate an environment
description for formal verification.

’ Run formal verificationJ {

Run simulation J

Switching between FV and random simulation
If different target languages can be generated from a
single input description, it is obvious that switching
between simulation and FV is trivial. Figure 7 shows the
process of switching between FV and random simulation.
Obviously, the biggest task is the description of the
protocol generators/checkers. Since the models are small,

Switching between FV and simulation.

all other activities require little effort.

Since the model structure contains all FSMs, it is
possible to identify all error states in the model. These
error states are used in safety formulas. An example is
shown in Figure 8, where the first formula states that for
all possible execution paths (AG = always globally) in

IBM J. RES. DEVELOP. VOL. 41 NO. 4/5 JULY/SEPTEMBER 1997

every cycle, the condition holds that the state of the FSM
REQ_UO is not the error state.

Safety formulas are an important class of temporal
formulas. Since they can be generated automatically from
the model structure, all components required by the
formal verification tool are available with no FV

T. SCHLIPF ET AL.

571

572

rule No.Error

oy

formula {-AG (REQ _U0iState != Error_State) }
formula (" AG:{ 'REQ_ US.State . I= Error.State) }
formula { AG'-{ . SLT_U0;State 1= Error. State .} '}
formula (. AG ‘(SLT. U7 .State = Error_ State)} '}

: Safety formulas.

FDbuffer | Cmdbuffer | - SDbuffer
Slot 0 Closloto | Slot0
: : Speed-
matching
: : buffers
Slot 3 il st | P St
ED “lcmd | D :
Xfer L oXfer | Xter | | SWieh
Foo7 o T
SPL O SPL'S

A design example [11]. Fetch data = FD; Store data = SD.

knowledge. Users can therefore use the formal verification
tool immediately and get accustomed to it.

RuleBase: A formal verification tool

RuleBase {5, 9, 10] is an industry-oriented formal
verification tool developed by the IBM Haifa Research
Laboratory. Based on years of experience in practical
formal verification of industrial hardware designs,
RuleBase offers access to this advanced technology to
every designer, not just FV experts. RuleBase uses an
enhanced version of SMV [2] as its verification engine,
employing the CTL model-checking verification method
[7]. SMV is an efficient and robust symbolic model

T. SCHLIPF ET AL.

checker developed by Ken McMillan at Carnegie Mellon
University.
The primary features of RuleBase are the following:

» Several hardware description languages are supported,

including VHDL, Verilog**, and DSL (an IBM internal

hardware description language).

RuleBase is integrated in a variety of design

environments and is easily integrable into others.

Sugar, the RuleBase specification language, provides a

way for hardware designers who are not CTL experts to

read and write specifications easily.

Various methods address model size problems:

1. New, efficient model-checking algorithms.

2. Enhancements of the original SMV algorithms.

3. Automatic design reductions which leave only parts
that influence formula correctness.

4, New dynamic binary decision diagram (BDD) ordering.

Debugging aids support result analysis and process

analysis:

1. Counterexamples are presented as simulation-like
timing diagrams.

2. Counterexamples can be translated into simulation
control programs.

3. Formulas which are trivially correct are detected.

A graphical user interface allows convenient control

over the formal verification process. The user interface

facilitates user intervention in the process, while

allowing a fully automated verification when the user

chooses not to intervene.

RuleBase has been used at various locations within IBM.
The list of hardware units successfully verified with
RuleBase includes bus bridges, cache controllers, bus
interface units, and more. Additionally, RuleBase has
been used to formally verify hardware at the architectural
level, specifically verification of cache coherence protocols.

An example

Figure 9 shows a functional unit of the memory bus
adapter [11]. The switch connects six SPL units

to a speed-matching buffer which contains three

buffer types: commands, store data, and fetch data.
Correspondingly, there are independent processes to
transfer commands, store data, and fetch data in the
switch. In the following we focus on the arbitration part of
the command transfer process. The command buffer has
room for eight different commands, which are associated
with buffer slots. The availability of a slot is signaled with
an S1t_Avl_x signal. An SPL requests a command
transfer with a Req signal and provides a Req_Vec, which
indicates the command slot it wishes to use. At the end of
arbitration two things happen:

IBM J. RES. DEVELOP. VOL. 41 NO. 4/5 JULY/SEPTEMBER 1997

Req [— Req0 — Slot

unit — Req_VecO —» < SIt_Avi0 == unir
0 |=Grt0 41 I R_SIt_AvI0 | ¢
Arbiter
Req Regs e Slot
unit - |-—Regq.Vees -« SIt_Avl7 - —: unit
5 |0 e = R_SIt_AvI7 -»| 7
Grt0 Grt5 R_SIt_AvIO _R_Slt Avl7

L - | | - |

Check only one Check only one
grant active R_SIt_Avl
atatime active at a time

Module test model of the command arbiter.

Grt0 ——f Check
only one Note: No output required!

. grant

GreS ——] active

*. Current , - Inputs ;- Outputs , Next state

* . state

*

S0 . 000 o000 , , S0 ® no grant active
80 , 100 o000 , , 80 * GRTO active
S0 . 010 o000 , , S0 * GRT1 active
50 ;001 000 , 80 * GRT2 active
s0 , 000 100 , , 80 * GRT3 active
S0 ., 800 o010 ., , S0 * GRT4 active
S0 ;. -000° 001 , , S0 * GRT5 active

One-grant-active protocol checker.

j—

. The unit which won the arbitration receives a grant.
2. The s1t_avl bit for the target selected is reset via the
R_Slt_av1l signal.

If we wish to verify the command transfer process, we
need a model of the dotted area in Figure 9. We can
abstract most of the behavior of the command buffer and
the SPL, and build a model which contains only the
relevant behavior for the unit to test, as shown in

Figure 10 for the unit of the command transfer arbiter.
Every SPL is replaced by a request unit, which
nondeterministically generates requests and Req_Vec
values and eventually receives a grant from the arbiter.
The different slots of the command buffer are represented
by eight slot units, which provide the S1t_Av1 signals. In
addition there are two protocol checkers, which check
whether more than one grant signal or more than one
R_S1t_avl signal is active at a time. (Note that in reality
there are more than two protocol checkers.) The principle
of the request generator is shown in Figure 6. Note that
every request unit will fall into the error state if it receives
a grant without having issued a request.

Figure 11 shows a state table which checks that only
one grant {or no grant) is active at a time. In this table
only the legal conditions are shown; all other input
conditions cause the FSM to transit to the error state.
Using the built-in error states of the FSMs, it is easy to
generate the temporal formulas which specify that no FSM
should ever enter the error state. The corresponding
formulas for our model are shown in Figure 8. With the

IBM J. RES. DEVELOP. VOL. 41 NO. 4/5 JULY/SEPTEMBER 1997

rule liveness_properties {

formula { EF (FSM_i.State=Sx) }
formula { EF (FSM_i.State=Sy)}
formula { EF (FSM_k.State=Sz)

formala { AG AF (FSM_i.State=Idle)}

formula {AG (Reqg — AF Grt) -}

Some liveness properties.

environment description and the safety formulas, a formal

verification run could be started. After some time the
designer becomes comfortable with the tool, gradually
adding liveness formulas to the set of safety formulas
which were automatically generated. In Figure 12 an
example is given. The first formula states that for some
execution path in the future (EF = eventually future) the
state of FSM_1 will be some state named Sx. Obviously
some equations (in addition to those for the safety
formulas) are generic and could be generated
automatically at the outset. Other formulas, however, are
model-specific, such as the last formula, which states that
for every request there must eventually be a grant.

T. SCHLIPF ET AL.

573

574

Results

The primary concern we had was this: “Do we increase
the total verification time by adding the module test to
our process flow?” To evaluate this question, we compared
the time required for a traditional functional unit
simulation with that required for FV. The complete switch
was verified with random simulation; part of the switch
(the command transfer process) was formally verified. The
command transfer process represents approximately 30%
of the switch in terms of logic circuits and complexity.
Since we did not use FV for the complete switch, we had
to extrapolate from the command transfer process. The
different cases are shown in Table 4. The first column
shows the switch simulation, the formal verification of the
command transfer process, and the extrapolation of FV

to the complete switch. The second column contains

the number of lines of code needed to describe the
environment for simulation and for the different FV
models. The last column shows the time spent (in person-
months). There is an order of magnitude difference in
lines of code, and the extrapolated FV value indicates
that FV is similar to or better than random simulation in
terms of time spent. Clearly it is superior in terms of test
coverage. We did formal verification after the random
functional unit simulation. No errors were found, and

no error was found in the actual hardware.

The method presented here has been successfully
applied to the design process of the MBA chip for the
next $/390* generation. Table 5 shows the number of
detected design errors in a functional unit of the chip
found by different verification techniques. FV detected
24% of the errors very early in the design flow. In this
example simulation started very early, so the majority of
errors were still found by simulation. However, there were
errors that would also have been found by FV. But far
more important is that the majority of the errors found by
FV would not have been detected by simulation. Table 6
shows that only 36% of the errors found by FV could have
been detected by simulation without much effort; 24%
were rather complex cases that would have been detected
eventually, and 40% of the failed FV cases would probably
have slipped through simulation as well.

Summary

We have developed an approach to integrate formal
verification in our design and verification process which
has the following advantages:

1. Tt relies on the familiar and intuitive notation of finite-
state machines; therefore, no learning curve is required.

2. It allows us to switch back to simulation within an hour
if FV fails because of model size problems.

3. The protocol checkers developed for FV can be used in
the chip and system integration tests, which increases

T. SCHLIPF ET AL.

Table 4 Comparison of FV with random simulation.

Case Number of lines Time spent
of code (person-months)
Simulation of 2586 6
complete switch
FV of command 1.25
transfer process '
Model 1 30
Model 2 34
Model 3 142
Model 4 229
Model 5 49
Model 6 84

FV of switch (estimated) 4

Table 5 Design errors detected with verification
technique.

Verification technique Errors found

(%)
Functional unit simulation 41
Formal verification 24
Visual code inspection 20

Chip simulation 15

Table 6 Classification of errors found with FV.

Error class FV errors
(%)
Not detectable by simulation 40
Possibly detectable by simulation 24
Easily detectable by simulation 36

confidence in the protocol checkers. In addition, they
help to find and isolate errors during integration
testing.

Because of the driving forces we have described, we
expect that model-checking tools will be accepted by the
industry in the very near future. We plan to use FV on

a large scale in our next project. Some designers today
are enthusiastic when a system simulation model runs
successfully for millions of cycles. However, with the large
state spaces required for heavily queued systems, this may
be not much more important than some millions of water
molecules in an ocean. How does one convince oneself
and others to introduce FV? The experience of very
extensive debugging is certainly quite convincing, because
heavily queued systems also generate more errors than
their predecessors.

IBM J. RES. DEVELOP. VOL. 41 NO. 4/5 JULY/SEPTEMBER 1997

Outlook

From a practical point of view, the following areas deserve
more investigation:

+ We use message sequence charts [12] as a
documentation aid to describe the behavior between
components of a module. It would be very useful to
compile these charts directly into CTL formulas.

Most of the FV models which had a state-space
explosion problem were characterized by very large
structural symmetries. These symmetries induce an
equivalence relation between states, which permits a
dramatic reduction of state space [13, 14]. Ongoing
research in this area seems to be very promising.

Most designers find it easier to specify rules for the
behavior of the dataflow than rules for the control logic.
A major goal would be to generate automatically an
abstracted model of the dataflow; such a model should
be behaviorally equivalent to the real dataflow from a
control logic point of view. This would allow the control
logic to be verified at the same time as the dataflow.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Cadence Design
Systems, Inc.

References

1. M. Yoeli, Formal Verification of Hardware Design, IEEE
Computer Society Press, Los Alamos, NM, 1990.

2. K. McMillan, Symbolic Model Checking, Kluwer Academic
Publishers, Boston, 1993.

3. J. Burch, E. Clarke, K. McMillan, and D. Dill, “Symbolic
Model Checking: 10% States and Beyond,” Proceedings of
the Fifth Annual IEEE Symposium on Logic in Computer
Science, June 1990, pp. 428-439.

4. J. Burch, E. Clarke, D. Long, K. McMillan, and D. Dili,
“Symbolic Model Checking for Sequential Circuit
Verification,” IEEE Trans. Computer Aided Design 13, No.
4, 401-424 (April 1994).

5. I. Beer, S. Ben-David, D. Geist, R. Gewirtzman, and M.
Yoeli, “Methodology and System for Practical Formal
Verification of Reactive Hardware,” Lecture Notes in
Computer Science 818, 182-193 (1994).

6. D. Geist and 1. Beer, “Efficient Model Checking by
Automated Ordering of Transition Relation Partitions,”
Lecture Notes in Computer Science 818, 299-310 (1994).

7. E. Clarke and E. Emerson, “Design and Synthesis of
Synchronization Skeletons using Branching Time
Temporal Logic,” Lecture Notes in Computer Science 31,
52-71 (1981).

8. John Hopcroft and Jeffrey Ullman, Introduction to
Automata Theory, Languages and Computation, Addison-
Wesley Publishing Co., Reading, MA, 1979.

9. I. Beer, S. Ben-David, C. Eisner, and A. Landver,
“RuleBase: An Industry-Oriented Formal Verification
Tool,” Proceedings of the 33rd Design Automation
Conference, Las Vegas, 1996, pp. 655-660.

10. RuleBase Formal Verification Tool: User’s Manual, IBM
Science and Technology, Haifa Research Laboratory,
Haifa, Israel 31905.

11. G. Doettling, K. J. Getzlaff, B. Leppla, W. Lipponer,

T. Pflueger, T. Schlipf, D. Schmunkamp, and U. Wille,

IBM J. RES. DEVELOP. VOL. 41 NO. 4/5 JULY/SEPTEMBER 1997

“8/390 Parallel Enterprise Server Generation 3: A
Balanced System and Cache Structure,” IBM J. Res.
Develop. 41, No. 4/5, 405-428 (1997, this issue).

12. K. Turner, Ed., Using Formal Description Techniques, John
Wiley & Sons, Inc., New York, 1993.

13. E. Clarke, R. Enders, and T. Filkorn, “Exploiting
Symmetry in Temporal Logic Model Checking,” Formal
Methods in System Design 9, 77-104 (1996).

14. C. Ip and D. Dill, “Better Verification Through
Symmetry,” Formal Methods in System Design 9, 41-75
(1996).

Received December 12, 1996; accepted for publication
July 10, 1997

Thomas Schlipf /BM Entwicklung GmbH,
Schoenaicherstrasse 220, 71032 Boeblingen, Germany
(SCHLIPF at BOEVM3). Mr. Schlipf studied electrical
engineering at the University of Karlsruhe. In 1985, after
working for a time at the Robert Bosch Company, he joined
the IBM S$/390 Development Laboratory in Boeblingen. Since
then he has been working on the hardware design of I/O chips
and now leads the MBA team. Mr. Schlipf’s interests are in
the areas of computer architecture and formal verification. He
is a member of the IEEE.

Thomas Buechner IBM Entwicklung GmbH,
Schoenaicherstrasse 220, 71032 Boeblingen, Germany
(BUECHNER at BOEVM4). Dr. Buechner received his
M.S.E.E. degree from the University of Karlsruhe, Germany,
in 1988, and the Ph.D. degree in computer science from the
University of Stuttgart, Germany, in 1996. In 1993 he joined
the IBM development laboratories in Boeblingen, Germany,
where he is currently responsible for logic design and
verification of complex and high-performance ICs for the
IBM S/390 CMOS Parallel Enterprise Servers. His research
interests include VLSI testing, formal verification, and
computer-aided design methods. From 1989 to 1993 he
worked as an R&D engineer at the Custom Processors and
Test Department of the Institute for Microelectronics
Stuttgart, Germany, a federally funded ASIC
design/fabrication/test center. During this time he was
responsible for the design of several custom processors, and
he did research on cost-effective test methods for semicustom
ASICs. Dr. Buechner has been a member of the IEEE since
1989; he served as a technical committee member and session
chair of the IEEE International ASIC Conference in 1996 and
1997.

Rolf Fritz IBM Entwicklung GmbH, Schoenaicherstrasse

220, 71032 Boeblingen, Germany (FRITZR at BOEVM3).

Mr. Fritz studied electrical engineering at the Fachhochschule
Offenburg. In 1981, after four years with Wandel u. Goldermann
developing measurement sets for telecommunications, he joined
the IBM §/390 development laboratories in Boeblingen. Starting
in a firmware department, he developed code for recovery

and error reporting for various $/390 systems. In 1993

he joined the MBA hardware team, where he has been
responsible for the design and in part for the verification

of the sense and control logic.

T. SCHLIPF ET AL.

575

576

Markus Helms [BM Entwicklung GmbH,
Schoenaicherstrasse 220, 71032 Boeblingen, Germany

(HELMS at BOEVM4). Mr. Helms studied electrical
engineering at the Berufsakademie Stuttgart, with emphasis
on telecommunications. His studies were accompanied by
practical training at IBM in Sindelfingen. In 1993 he joined
the IBM §/390 development laboratories in Boeblingen, where
he was responsible for design verification and simulation of
I/O adaptor chips. His current job is design and verification
of the MBA for the next two CMOS generations.

Juergen Koehl BM Entwicklung GmbH,
Schoenaicherstrasse 220, 71032 Boeblingen, Germany

(KOEHL at BOEVM4). Dr. Koehl is an Advisory Engineer in
the VLSI Design Centre. He received his Ph.D. in
mathematics from Bonn University in 1987; his Ph.D. thesis
was on algebraic cycles on Hilbert modular surfaces. From
1987 to 1989 he was a Research Staff Member at the Institute
for Discrete Mathematics in combinatorial optimization for
VLSI design. He joined IBM in 1989 and is responsible for
physical design methodology. Dr. Koehl is Chairman of the
ITG/GI/GMM Fachgruppe “Layout” and a senior member of
the IEEE.

T. SCHLIPF ET AL.

IBM J. RES. DEVELOP. VOL. 41 NO. 4/5 JULY/SEPTEMBER 1997

