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Interest in the concept of clustered caches has
been growing in recent years. The advantages
of sharing data and instruction streams among
two or more microprocessors are understood;
however, clustering also introduces new
challenges in cache and memory coherency
when system design requirements indicate
that two or more of these clusters are needed.
This paper describes the shared L2 cache
cluster design found in the $/390° G4 server.
This novel cache design consists of multiple
shared-cache clusters, each supporting up to
three microprocessors, forming a tightly
coupled symmetric multiprocessor with fully
coherent caches and main memory. Because
this cache provides the link between an
existing S/390 system bus and the new, high-
performance $/390 G4 microprocessor chips,
the paper addresses the challenges unique to
operating shared caches on a common system
bus.

Introduction

As the S/390* transformation from its legacy of large,
complex, bipolar-based mainframes to simpler, CMOS-
microprocessor-based servers continues, increasing
emphasis is being placed on the system structure and

memory hierarchy. As described by Getzlaff et al. [1],

the S/390 Parallel Enterprise Server Generation 3 (G3)
features a system structure which supports microprocessor
and system frequencies in excess of 160 MHz. This design
features conventional, dedicated L1 and L2 caches as well
as a novel, shared L2.5 cache [2] which services all of the
microprocessors in the system. This topology provides
impressive system-level performance and has excellent
scaling capabilities.

However, the introduction of the S/390 G4
microprocessor [3], with its design goal of doubling the
microprocessor frequency, was expected to increase
memory subsystem performance requirements. The L2
cache design team was challenged to provide the means to
enable the introduction of this new microprocessor while
reusing as many S/390 G3 components as possible. The
first challenge involved system cycle time. Because of
the desire to reuse the $/390 G3 memory hierarchy,
speed matching between the new, faster S/390 G4
microprocessor and the reused components would be
needed. Second, the utilization level of the system bus
was observed to be increasing rapidly with increasing
microprocessor frequency. Doubling the microprocessor
speed was likely to cause considerable acceleration of this
effect, thereby necessitating a mechanism for reducing bus
traffic. Third, analysis of typical $/390 workloads indicated
that there was a large degree of sharing of instructions
and data among the processing elements of an $/390
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system. It would thus be very advantageous to introduce a
shared-cache structure to the cache hierarchy. Finally,
during the design of the $/390 G3 system, it became
apparent that a large symmetric multiprocessor introduced
unwanted packaging complexity on the bus connections
among the various system components. This last challenge
was solved on the §/390 G3 system by distributing four
microprocessors’ private L2s across four SRAM cache
chips [1].

A number of alternative designs were considered for the
S/390 G4 L2 cache. The initial desire was to introduce a
large, fully shared cache such as those found in bipolar
ES/9000* SMPs. While this would certainly have provided
optimal system-level performance via higher cache
efficiency, this design approach was inconsistent with the
existing system bus design. In particular, the §/390 G3
memory interface would have required a complete
redesign to accommodate a fully shared L2 cache.
Performance analysis, however, indicated that introducing
cache sharing on each of the existing BSN system buses
would generate a large percentage of the advantage of
shared caches while also reducing system bus traffic. This
scheme does not disrupt the system design and bus
protocols. The S/390 design team therefore developed a
hybrid solution consisting of fully shared three-way cache
clusters which attach to the existing S/390 G3 system bus [4).

This L2 cache design resulted in an amount of
aggregate L2 equivalent to that available in the $/390 G3
(3 MB of total L2 capacity) while reducing the L2 chip
count by 33%. The value of shared caching was confirmed
by performance measurements which showed that the
shared caches improved cache hit rates by 40-50% over
the predecessor system. The cross-point switches
introduced at the CP interface maximize CP performance
and minimize overall latencies, yet the system bus
interface was also maintained, enabling component reuse.
Finally, despite the fact that a shared-cache design is
inherently more complex than private L2s, the entire
design cycle, from design concept through initial product
prototype, required only 15 months. Initial versions of the
S/390 G4 L2 chip were fully functional and exceeded
frequency goals; virtually the entire manufactured chip
distribution operates at or better than 200 MHz in CMOS
5X, making this a very high-yield, low-cost, high-
performance L2 cache chip.

The S/390 Parallel Enterprise Server Generation 4
memory hierarchy is depicted in Figure 1. Each
microprocessor, or CP, contains 64 KB of store-through
L1 cache. The L2 cache contains 768 KB distributed in a
clustered configuration across a pair of chips. An L2
cluster supports up to three CPs and provides access to
the entire memory space. The L2 cache chip provides the
speed-matching function required by the S/390 G4 CP,
allowing the CP to run at twice the frequency of the
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remainder of the system. This enables the reuse of the
$/390 G3 memory hierarchy (BSN, STC, etc.).

This paper discusses the operation and design of the
shared-cache clusters found in the /390 G4 system'; it is
divided into four main sections. The design and layout of
the S/390 G4 L2 cache are first described, with particular
attention to design challenges unique to a shared
structure. The next section addresses cache coherency
issues unique to a shared-cache environment, and the
solutions devised to address them. The third section
discusses interlock controls in further detail. The paper
concludes with a brief summary of the key attributes of
the S/390 G4 shared L2 cache.

To maintain clear and uncluttered descriptions of the
operations performed by the shared L2 cache, the
following convention is used throughout the remainder of
the paper. The terms L2 and L2 cache are used to refer to
a single chip in an $/390 G4 L2 cache cluster. When
discussing operations which span the pair of cache chips,
the terms cluster or L2 cluster are used. The reader should
also keep in mind that since a cluster consists of two
independent L2 cache chips, and there may be up to
four clusters in the current design point, up to eight
independent L2 cache chips may simultaneously be
performing the bus operations described here. Finally, the
four clusters which comprise a fully populated system ail
share the same common main memory.

Glossary of terms

BIDI: Bidirectional

BIF: BSN InterFace

BSN: Bus Switch Network—the chip which controls bus
traffic in $/390 G3 and G4 systems

BSNAR: BSN interface Address Register

BUSRR: BUS Request Register

CFAR: CP Fetch Address Register

CL: Changed Line bit—indicates that the data in the
tagged line have been altered and are therefore of more
recent vintage than those stored in main memory

CLST: Conditional Line STore

CP: Central Processor or Central microProcessor

CPAR: CP interface Address Register

CPID: Central Processor ID

doubleword: Eight bytes

L1: Level-1 cache

L2: Level-2 cache

LFAR/LFARA/LFARB: Line Fetch Address
Register—register(s) used to stage CP fetch requests

LSAR/LSARA/LSARB: Line Store Address Register—register(s)

used to stage store requests to main memory

! For an example of independent research confirming the concept of shared-cache
clusters, see B. A. Nayfeh, K. Olukotun, and J. P. Singh, “The Impact of Shared
Cache Clustering in Small-Scale Shared-Memory Multiprocessors,” Proceedings of
the Second International Symposium on High Performance Computer Architecture,
San Jose, CA, 1996, pp. 74-84.
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LSLF: Line Store/Line Fetch operation—a fetch with an
accompanying cast-out

LRU: Least Recently Used—an algorithm for determining
which line(s) to replace with newer lines in the cache

MC: Multi-Copy bit

quadword: Sixteen bytes

RAS: Reliability, Availability, Serviceability

SEC/DED: Single-Error Correct/Double-Error Detect ECC
code

SMP: Symmetrical MultiProcessor

XI: Cross-Invalidate—a mechanism to ensure cache
coherency by invalidating lines out of L1 and/or L2 caches

$/390 G4 shared L2 cache

The $/390 G4 shared L2 cache chip is an integrated
design, with both the large custom SRAM [5] and cache
controls contained on the same chip. The shared cache
consists of two identical chips, each containing 384 KB of
SRAM, for a total of 768 KB of cache per cluster. The
entire memory address space is mapped across this pair of
L2 chips, interleaved across the four memory cards to
maximize concurrent operation. The cache itself is six-way
set-associative, is dual-interleaved, and has directories
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dedicated to each system bus. Each L2 chip features
nonblocking switch functions to each attached CP as well
as to the other system components. Data buffers in the
cache array itself are also provided in order to minimize
latency effects. The result of the implementation of these
design concepts is an L2 cache which enables concurrent
execution of multiple requests, whether from the CPs or
from other L2 clusters.

To enable achievement of CP cycle-time objectives, the
L1 cache was designed as a store-through cache, meaning
that altered data must also be stored to the next-level
cache. The L2 cache is a store-in design, which helps to
control and minimize system bus activity. A full subset
cache protocol is used to manage data coherency between
the L1s and L2s; this means that all lines contained in any
L1 are also stored in that cluster’s L2. The advantages of
this scheme will become apparent below.

In addition to performance, the S$/390 G4 L2 cache
provides excellent RAS characteristics. This design
contains SEC/DED ECC on both the cache and directory
arrays. Error correction in all cases is provided “on
the fly,” with no additional access penalty. When
uncorrectable errors are encountered, system recovery
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actions are triggered. The L2 cache and directory also
support a “cache-line delete” function [6] which allows
removal of a small number of cache lines from active

use to prevent known stuck faults from becoming
uncorrectable faults. Finally, in the S/390 G4 system, it is
possible for one or more individual CPs to halt because of
error without causing a system checkstop. Since cache
coherency is managed by the shared L2, failing CPs can be
logically removed from the active configuration with no
data integrity exposure.

The high-level data and address flow of the §/390 G4
shared L.2 cache is depicted in Figure 2. This shared 1.2
cache comprises the following critical component
functions:

1. L2 pipeline and arbitration unit, which provide the

means for controlling multiple requests for the shared
L2 cache facilities.
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2. L2 directory, which maintains the contents of the L2
cache array.

3. CP interface controller, which provides fetch/store
access to the L2 from up to three CPs.

4, BSN interface controller, which supplies the interface
to the other shared L2 clusters as well as to the shared
L2.5 cache and main memory.

5. LSAR/LFAR controller, which stages and controls ail
fetch-miss and write-back activity.

6. Shared L2 cache array.

*, L2 pipeline

The L2 pipeline is shown in Figure 3. All incoming
requests processed in the shared L2 cache must pass
through the central pipeline. This pipeline consists of a
number of single-cycle staging registers that perform
different actions each cycle. A new request can be
launched into the pipeline every cycle; a request can take

IBM J. RES. DEVELOP. VOL. 41 NO. 4/5 JULY/SEPTEMBER 1997




LFARBO
BSNARO l LSARAO

i

CP/EART
CP/FARQ l CP/EAR2

Lo

CFAR focal
prepriority

BSNO local
prepriority

CSAR1 LFARB1
CSARO l CSAR2 BSNAR1 l LSARAI

PR

CSAR local BSN Tlocal
prepriority prepriority

BIFO snoop BIF1 snoop
address \\ address
e Central
priority.
Cleycle
BSN port 0 BSN port 1
ADDR/CPID Creycle ADDR/CPID
directory directory
C3cycle
l : I . .

BSN port 0 BSN-port'1
LRU / CHGLN Even QWILV Odd QW ILV LRU / CHGLN
directory l ] l l directory
L2 even QW 1.2 0dd QW
TLV:cache ILV cache

4
i

; L2 pipeline.

as few as two cycles or as many as 11 cycles depending on
its type and the availability of the resources needed for
completion.

A pipelined design was selected in order to effectively
manage the high level of activity from the L1 store-
through traffic for the three CPs. Stores can degrade
performance when they are not drained fast enough,
thereby halting CP execution. To reduce the probability of
creating a bottleneck, the L2 has a pipeline design which
can process a new operation every cycle. The design also
contains a store stack for each CP that is deep enough to
buffer the stores until they can be processed through the
pipe.

The central priority logic ultimately selects one
requestor and gates the corresponding requestor
information (such as address, command, mode, etc.) into
the pipeline. A given requestor may make multiple passes
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through the pipeline, performing different functions on
each pass. The action taken during each pipeline cycle
depends on the type and source of the command, and on
the results of previous passes through the pipeline.

¢ C1 cycle activities include
« Directory lookup and field update
« Command and address information sent to cache
interleave controls
« Address compares against internal resources and
requestors performed
¢ (2 cycle activities include
 Directory search results available
+ First interleave busy cycle for a cache access operation
o LFAR facility selected on detection of L2 cache miss
L2 cache request proceed/reject, based on the resource
and conflict resolution

P. MAK ET AL.
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& C3 cycle activities include
« LRU array access and/or update
« CL array access and/or update
o C4 cycle activities include
« First interleave busy cycle for a cache write operation
« Invalidate command sent to CP if the requested data
have a coherency conflict
« LSAR facility selected on L2 cache miss requiring a
cast-out
« Completion response sent to CP if requested data hit
in the L2 cache with no coherency conflict

A cache read or write operation continues for several
additional cycles beyond C4 to complete the transfer of
eight 16-byte data shots.

® Pipeline arbitration

A total of 16 hardware requestors, dedicated for CP, BSN,
and internal L2 facility requests, can vie for priority to
enter the pipeline. Trying to route all 16 directly to some
central arbitration logic would have constituted a major
physical wiring challenge. Decentralizing the pipeline
inputs by sending them through the prepriority arbitration
stations before forwarding to central priority helped to
prevent these potential wiring problems.

The prepriority arbiters funnel down the requests for
central priority. Each selects one of its requestors and
then forwards the request to central priority. At the same
time, the prepriority arbiters forward the corresponding
requestor ID tag, address, command, mode, etc. buses to
the L2 pipeline. The prepriority arbiters also block
requests whose resource needs are not available (e.g.,
cache interleave conflicts), and some arbiters equitably
select requestors to avoid potential processing lockouts.
This particular lockout avoidance and others are discussed
in more detail in a later section.

There are a total of four prepriority stations within the
L2 cache chip. Each BSN port has a dedicated station,
while the three CP ports share the other two stations. A
BSN prepriority station arbitrates among the BSNAR,
LFARB, and LSARA functions dedicated to the particular
BSN port. The selection is done in a priority order where
BSNAR has the highest priority, LFARB is second, and
LSARA is last. BSNAR is picked first because it reflects
an XI (cross-invalidate) hit situation. During the time it
takes an L2 to resolve an XI hit, the BSN bus is blocked
from servicing a new operation. With bus utilization
projected to be relatively high, a reduction of utilization
and, hence, queuing was called for. LFARB and LSARA
selection priority is not a critical performance issue
because of the low projected L2 miss rate.

Since each CP can have both fetch and store operations
pending at any point in time, two prepriority stations are
supplied for the CP ports. Because fetch operations are
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more critical to system performance than stores, having
separate arbiters for CP fetch and store operations
ensures that a fetch will always be selected over a store
whenever both operations are vying for priority
concurrently. The CP fetch (or FAR) prepriority station
arbitrates among requests from the three CP ports in a
least-recently-processed scheme that avoids potential
lockout. A normal round-robin or a priority order chain
scheme can cause a lockout on a CP if there are sufficient
activities from the other ports (such as when CPs are in
synchronous loops). The-least-recently processed scheme is
analogous to a least-recently-used (LRU) algorithm for
cache-line management, in which a most recent tag is
updated whenever a CP fetch (FAR) operation has
completed processing in the L2. The inverse of this tag
determines which CP’s request is the oldest, thereby
assigning it the highest priority in the FAR prepriority
station. Even though there are only three CP ports on the
L2 chip, there are a total of six request paths into this
prepriority station, two from each CP. One path comes
from the chip interface register called CPAR, and the
other is from the CFAR hold register.

The prepriority station for arbitrating among the three
CP store requests employs a modified round-robin scheme
to allow one of the three store requestors to enter central
priority [7]. Stores are checked for cache interleave
conflict prior to arbitration in the prepriority station to
guarantee completion in a single pass through the
pipeline. Otherwise, pipe utilization would increase greatly
because of wasted pipeline passes. One undesirable side
effect of this greater pipeline efficiency is that some store
requests can be locked out indefinitely if higher-priority
operations such as CP fetches continue to keep the target
cache interleave of the store operation busy. The modified
round-robin selection scheme guarantees that if the
highest-priority store request is not selected because of a
cache interleave conflict, and a lower-priority store
requestor in the round-robin is selected, the highest-
priority store request will prevail as the first store to be
selected in subsequent cycles. Normally in this situation, a
regular round-robin would be updated and a new store
requestor would be given the highest priority in the
following cycle. However, in the modified scheme the
round-robin is updated only when a store requestor is
selected, and no higher-priority store requestors are
blocked from priority because of cache interleave conflict.

After the initial filtering at the four prepriority stations,
the surviving requestors meet in central priority for final
selection into the pipeline for processing. At this station, a
straightforward priority order chain selects the requestor.
For reasons explained above, requestors from the two
BSN prepriority groups have the highest priority, followed
by the CP FAR prepriority group and finally by the store
prepriority group. A grant is not always given whenever
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there is a pipeline request. Some of the reasons relate to
actions taken as part of recovery to prevent propagation
of hardware faults and also to avoid certain classes of
lockout problems caused by allowing into the pipeline
requestors or operations that may inadvertently prevent
another requestor or operation from completing
processing. Requestors not granted pipeline access during
the priority arbitration cycle continue to request priority
during each machine cycle until a grant is received.

® Directory

Each L2 chip contains two logical directories (or cache tag
arrays), one per BSN port. Each directory consists of 256
rows and is six-way set-associative. With a 128-byte cache-
line size, the directory supports a total of 384 KB of L2
cache. A single logical directory contains the following
fields: address, CPID, changed line (CL), and LRU.
Physically, the address and CPID fields share the same
custom SRAM macro, which is accessed or updated in the
C1 cycle of an operation in the pipeline. The CL and
LRU are contained in a shared SRAM array macro that is
accessed or updated in the C3 cycle of the operation in
the pipeline.

The address/CPID directory array may be accessed via
the BIF register during a snoop search or via the C1 stage
of the pipeline during other requests. The BIF register
path to the directory is needed in order to maintain bus
protocol with the BSN for reporting a possible XI hit on a
bus snoop operation. Since there are two BSN ports on an
L2 chip, the directory is logically partitioned into two
halves to support the possibility of simultaneous directory
lookups due to bus snoops on each BSN bus. Snoop
requests may be received from the BSN ports at any time;
when conflicts between snoops and other pipeline requests
occur, the snoop receives priority, and the internal request
is recycled through the pipeline once the snoop request
has been satisfied.

The directory contains status information for data in the
L2 cache, as well as information on data ownership. A
cache line can exist in four possible ownership states: CP
exclusive, CP read only with L2 exclusive, multiple copies
in L2s, and invalid. This ownership information is in the
three-bit CPID tag field, where one of the bits is the
multiple copy (MC) tag bit.

The directory also maintains a changed line (CL) tag
which tracks whether a given line has been updated in the
L2 cache by a CP store operation or was brought into the
L2 cache already in a changed state from another L2
cache via a BSN bus operation. For a cast-out operation
(either LRU or XI), this information is used to determine
whether the copy of the line in this L2 cache is more
recent than the copy in main memory. If so, a memory
update operation and/or XI cast-out operation will result.
Each directory entry has a CL bit. Normally, the CL bit is
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set by a CP store operation in the C3 cycle of its pass
through the pipeline when it is known whether or not the
operation has been rejected.

An LRU array is also maintained for each congruence
class (row) in the directory. The partitioned LRU
algorithm determines which of the six compartments will
be the one to be overwritten with new data when a new
line is being written into the cache for that congruence
class. If there are compartments which are not currently
valid, one of these will be chosen first. If all compartments
are valid, the compartment pointed to by the LRU code
will be chosen. A partitioned LRU scheme was chosen
because it can support a CP store operation every cycle
and its smaller code field has a silicon area advantage over
a true LRU algorithm, which requires a longer LRU code
field. Also, comparisons of the partitioned and true LRU
schemes have shown very little performance difference.

o CP controller

The CP controller is depicted in Figure 4. The CP
controller logic provides the interface for up to three CPs,
services all CP fetch and store requests, and handles XI
requests and responses from the other L2 clusters. The
interface contains a fetch/store command bus, a fetch/store
address bus, a bidirectional fetch/store data bus, a fetch
response/data valid bus, store stack response signals, an
XI command bus, an XI address bus, and an XI response
bus.

This interface was designed to handle one store request
per system cycle from each CP, and to optimize the data-
return time for CP fetches, while meeting the packaging
constraints imposed by the chip technology. Each CP has
a dedicated interface, enabling each to transmit fetch,
store, and X1 operations simultaneously and independently
of one another. The XI request controls are separate from
those for fetch and store operations, allowing XI requests
to be processed regardless of the fetch or store activity for
a given CP.

Fetch and store commands are sent from the CP to the
L2 via the command and address buses. On store
operations, up to one quadword of store data is also sent
with the command and address. The information is
captured in a CP interface register (the CPAR), and then
routed to either the fetch or store controls for further
processing, allowing the L2 to accept a new CP operation
every cycle.

To optimize CP performance, fetch requests are given
high priority and may be routed to prepriority directly
from the CPAR. This helps minimize L2 latency on fetch
requests. While only one outstanding fetch request per CP
is permitted, the L2 does allow the CP to present its next
fetch request once the data transfer for the initial request
has begun. This, too, is done to minimize storage latency

effects. 435

P. MAK ET AL.




436

Directory-search resulis
‘Address-compare resulis
Resource availability

Reject:
conditions

CP controller.

There are three types of fetch requests:

* Read-only Typically, these are millicode or $/390
instructions. Read-only data may reside in the L1 caches
of multiple CPs.

* Exclusive A data line is requested in which one or
more bytes will be altered. A CP must have exclusive
ownership of a line in order to modify it.

e Conditional exclusive This request is usually for
operand information. The L2 may grant read-only or
exclusive access, depending upon the results of the
coherency checking.

Store requests are gated into separate address and data
store stacks. The stacks are eight entries deep, allowing
the L2 to accept up to eight store requests from each CP.
The stack queues the store requests until L2 activity
permits the processing of the next sequential store request
to the cache.

Since the CP normally owns the bus, each CP is allowed
to continue sending store requests unless or until data
from a previous fetch request are ready for transfer. When
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this occurs, the CP controller issues a fetch alert response
two cycles before the transfer is to begin. This enables
the CP to refrain from further store activity and to switch
the BIDI direction to receive the fetch data. Once the
data transfer is complete, the BIDI is switched back

to its default state, and store request activity can
continue.

Cross-invalidate (XI) requests are sent to the CP by the
L2 CP controller when the status of a line held in the L1
must change. A line may be invalidated if another CP
submits an exclusive fetch request or if the L2 must cast
out the line. A line may also be demoted from exclusive to
read-only if another CP requests access to the line. An XI
request may originate from another CP within the cluster
or from another cluster.

Each L2 chip in the cluster can send a new XI request
every cycle until the XI stack within the CP is filled. It is
the L2’s responsibility to track the number of pending XI
requests and not overflow the XI stack. As the CP
processes the XI requests in FIFO order, it responds by
sending XI completion responses to the L2. Queueing the
XI requests within the CP helps optimize average XI
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latency by enabling a CP to return an XI response every
cycle.

Fetch requests

As stated previously, all requests for L2 access must be
processed through the L2 pipeline. As a selected fetch
request is routed to central priority, the fetch-request
controls determine the availability of the desired cache
interleave. If an interleave conflict is detected, no pipeline
access is permitted in that cycle, effectively blocking
lower-priority requestors from “stealing” the pipeline from
a fetch request. The fetch request is granted pipeline
access the following cycle, and processing continues.

Fetch-request processing may be interrupted once in the
pipeline. Each time a fetch request makes a pass through
the pipeline, prepriority and central priority calculations
are performed. Two mechanisms are used to control the
interruption and resumption of fetch requests. These are
the NEEDS and MODE registers.

Each CP interface contains a fetch NEEDS register.
This register contains an encoded value indicating the
condition which must be satisfied in order for the fetch
request to resume processing. A NEEDS value of all zeros
indicates that all conditions are satisfied; any nonzero
value indicates the cause of the interrupted processing.
Once the required resource becomes available, the
NEEDS register for that CP is reset, and the fetch request
is free to reenter prepriority for pipeline access.

Each CP interface also has a MODE register. The
MODE is used to “remember” the results of the pipeline
pass in progress so that the subsequent passes will be
processed more efficiently. For example, checks which
were successfully completed on an earlier pass for this
request need not be repeated. The NEEDS and MODE
registers maximize pipeline efficiency by preventing fetch
requests from stalling the L2 pipeline.

To illustrate this concept with an example, suppose CP1
requests a line of data that is currently held “exclusive”
by CP2 (another CP on the same cluster). On the first
pipeline pass, an invalidate XI request is sent to CP2.
CP1’s NEEDS is set to indicate that an XI response is
required before processing can continue. The MODE
register indicates that the request hit in the L2, but to a
line owned exclusively by another CP. When the XI
response arrives, CP1’s NEEDS is reset, and the fetch
request makes its second pass through the pipeline. The
MODE indicates that the line was held exclusive, so CP2’s
store stack must now be checked to ensure that the latest
copy of the line is identified. If no store to this line is
pending, the CP1 fetch request obtains exclusive access to
the line and the data are returned. If a store to the
requested line is pending, CP1’s fetch request is again
interrupted, this time to allow the store to be processed.
The NEEDS register indicates waiting for stores, and

IBM J. RES. DEVELOP. VOL. 41 NO. 4/5 JULY/SEPTEMBER 1997

MODE indicates store stack compares detected. Once
the cache has been updated with the latest copy of the
requested line, NEEDS is reset, and the final pass through
the pipeline completes as above [8].

Fetch requests are resolved in one of three scenarios:

1. A fetch can complete in a single pipeline pass. This
occurs on requests which hit in the L2 with the
requested line held exclusive by the requesting CP; it
also occurs on read-only and conditional exclusive
requests which hit CP read-only in the L2. The eight
requested quadwords are accessed by the cache controls
and routed to the CP BIDI data bus. The completion ‘
response is sent by the CP controller with the first data
transfer, indicating that a new CP fetch request may be
sent.

2. A fetch request may make multiple pipeline passes in
order to generate local (within this cluster) XI requests.
This scenario is in effect if the fetch request hits in the
L2 but the line is held exclusive by another CP, or if
the request was an exclusive fetch which hits read-only
in this L2 and the line is not resident in any other L2
cluster. For these cases, the fetch request makes
multiple pipeline passes to resolve the conflict(s) and to
update the directory status. On the final pipeline pass,
data are returned, and the completion response is sent
to the CP.

3. A fetch request results in a request sent on the BSN
bus. There are two scenarios in which this occurs. In
the first, the request is an exclusive fetch which hits
read-only, and the line is in a shared-ownership state
where other clusters have copies of the line. All of the
copies in other clusters must be invalidated before the
current requestor can be granted exclusive access to the
line. The BUSRR sends an invalidate request to the
remote L2 clusters via the BSN bus and then notifies
the requestor upon completion. Once invalidation
notification has been received, the requesting fetch is
processed through the pipeline as previously described.
The second scenario is the L2 miss. This results in an
LFAR controller operation to request data from the
memory subsystem. In this case, data are returned from
one of three sources: main memory, the L2.5, or
another L2 cluster. Data are routed to the requestor
CP immediately; the LFAR controller then schedules
the appropriate cache array update. This approach is
used to help minimize the overall L2 miss latency.

Store requests

Store requests from a given CP must be processed in
FIFO order. Stores from each of the three CPs compete
for access to the pipeline in the prepriority arbitration
station. Unlike fetches, store interleave conflicts are
checked prior to prepriority. When a conflict is detected, a
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lower-priority store from a different CP is allowed to
proceed. The round-robin algorithm is not updated,
however. This allows the first store to have the highest
priority on the next cycle, when the interleave conflict
should be resolved.

Store requests from a specific CP must be processed in
the order in which they are received to ensure coherency.
It is possible, however, for a store request to enter
prepriority to begin processing before the previous store
request from the same CP has completed. If this previous
store operation is interrupted, the later store request is
also interrupted. Processing on the second store resumes
once the initial store operation resumes.

Coherency rules dictate that a CP must have exclusive
ownership of a line in order to issue a store request.
Therefore, the directory search result must be “hit-
exclusive” to the requesting CP. Any other result, with one
exception, is an error condition. The exception involves a
store request where the directory has not yet been
validated for a previous L2 fetch-miss operation (the line
may be queued in the LFAR, in the process of updating
the cache). In this case, the store request is allowed to
continue once the cache and directory have been updated.

P. MAK ET AL.

® BSN controller
There are two BSN controllers on each L2 chip, one
dedicated to each BSN port interface. Figure 5 depicts a
single BSN controller. Each BSN controller is divided into
two subcontrollers which share a common interface to the
BSN bus. The BSNAR is responsible for all bus snoop
activity, while the BUSRR is responsible for all bus
commands initiated from within a shared L2 cluster. The
BSN controller was designed to allow the S$/390 G4 L2
design to attach to the $/390 G3 BSN bus, thereby
enabling reuse of existing components. The BSN
controller therefore contains most of the critical function
required to mate the shared L2 cache cluster to the fully
shared memory subsystem.

Each BSN port interface consists of a bidirectional
bus (referred to as the BSN bus) as well as several
unidirectional control signals. The BSN bus is used to
transmit command, address, and data. Command and
address information is transmitted in the same cycle, while
data are sent in subsequent cycles. Because of relatively
long memory DRAM access times, the individual memory
cards are organized into two independent banks [1].
Consequently, the BSN bus is logically interleaved to take
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advantage of this, allowing two separate commands to the
memory subsystem to be active simultaneously on each
bus (meaning that there can be up to eight active memory
operations across the four BSNs in any cycle).

All four shared L2 clusters are considered logically to
be connected to the same BSN bus. However, physically
there is a separate BSN bus for each shared L2 cluster.
When one L2 drives its BSN bus, the BSN chips broadcast
a copy on the BSN buses to the other shared L2 clusters
on the following system cycle.

Ownership of the BSN bus is established through a
straightforward handshake algorithm, using request, grant,
and command select control signals. In addition to these
control signals, the interface also includes transfer data
signals to indicate when data are being broadcast on the
bus, memory complete signals to indicate that a memory
operation has completed, and XTI hit signals to indicate
that there is an XI address match on one of the other
shared L2 clusters.

BUSRR
All commands destined for the BSN bus which originate
in the L2 must pass through the BUSRR controller. The
BUSRR register contains a copy of the command and
address waiting to be broadcast by this L2. It must pass
through the BIF register before being broadcast on the
BSN bus. Data to be stored or cast out of the cluster are
held in the line store buffer.

The BUSRR can receive command requests from three
sources. These sources are, in the priority order in which
they are serviced:

1. The pipeline (for example, because of special signaling
commands to the CPs).

2. The LSAR controller (an LRU cast-out is required).
3. The LFAR controller (a local CP fetch request results
in an L2 cache miss, requiring a snoop to the other

clusters).

When the BUSRR receives a command request, it
attempts to gain ownership of the BSN bus via a request
signal. Upon completion of BSN bus arbitration, the BSN
bus BIDI is switched to drive mode, and the command,
address, and data (if any) are transmitted in subsequent
cycles. Once the command and address have been sent,
the command is transferred to the BUSRR-B register,
freeing up the BUSRR for the next command request.
The BUSRR completes the command by notifying the
appropriate shared L2 controllers of operation
completion, generating encoded responses to be returned
to the requesting CP, and controlling the dataflow cross-
point to route fetch data to the correct destination.

To reduce L2 miss latency and better manage BSN bus
and memory utilization, two performance features have
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been added to the BUSRR for those cases where a CP
fetch misses in the L2 cache:

1. The BUSRR monitors the pipeline in order to predict,
up to two cycles in advance, a new fetch request for
data not held in the local L2 cluster. If the BSN bus is
not currently busy, the BUSRR immediately issues a
bus request. Command and address information are
then resolved in parallel with bus arbitration, enabling
the new request to be transmitted as soon as the bus is
available.

2. When fetch data must replace an existing cache entry,
the line being replaced must be written back to main
memory if it has been modified. Two mechanisms are
available—LS/LF [1], and conditional line store
(CLST)—for casting out the “old” line with minimal
performance impact. The method used is dependent
upon the availability of the data being stored relative to
the completion of bus arbitration for the fetch request.
If the data to be stored are immediately available, the
LS/LF operation is used. If not (and this is the more
likely case, as an LRU operation may involve XI
requests as well), the fetch request is transmitted on
the bus immediately. The CLST command is then used
to complete the operation, once the bus and the data
to be cast out are both available.

BSNAR

The BSNAR is responsible for processing commands
originating in the other shared L2 clusters. The incoming
command and address are received in the BSNAR via the
BIF register, where a directory search is immediately
initiated to determine whether the requested data are
resident in the L2. If the directory search conflicts with
an operation currently in the pipeline, that operation is
rejected and scheduled for retry. The BIF-generated
directory search must have the highest pipeline priority
because of a fixed-cycle relationship on the BSN bus
between the request and the activation of X7 hit to
indicate that further action is required in the receiving L2
cluster. In addition to the directory search, additional
address compares are performed against the LFAR and
LSAR to determine whether the requested data exist in a
buffer. This protects data in transition to either the L2
cache or the main memory. This address-compare function
is discussed in detail in a later section.

In the event of a directory hit or an LFAR/LSAR
address compare match, the X1 hit signal is raised to
notify the requesting cluster that further action is required
in the receiving cluster. At this point, the BSNAR
requests pipeline prepriority in a manner similar to the
other requestors. Like the CP controller, the BSNAR has
NEEDS and MODE registers which control and monitor

progress through the pipeline. 439
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The actions that must be performed by the BSNAR are
dependent upon the command and the status of the line in
question. A whole range of actions are possible, from
doing nothing to initiating an XI cast-out to a requesting
L2 cluster, with corresponding invalidation of the local
cache entry. As an example, suppose the BSNAR receives
a fetch-exclusive request from another cluster and that the
current status of this requested line is exclusive to CPx,
changed, where x represents any one of the CPs in the
address-matched cluster. The BSNAR must

« Send an XI command to CPx requesting that CPx
invalidate its copy of the line.

« Wait for an XI response from CPx.

« Wait for possible outstanding store operations to the
requested line by CPx to complete.

» Access the L2 cache in order to read out the line while
updating the directory to invalidate this entry.

Once the line of data has been moved to the line store
buffer, the BSNAR must request the BUSRR to issue

an XI cast-out with the requested data. The usual
handshaking protocols are not needed in this case because
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the previously raised XI hit ensures that this cluster is the
current BSN bus master.

® [ FAR/LSAR controller

The concept of data buffering has been around for some
time; it is an essential design technique for a high-
performance multiprocessor system [9]. The basic idea
behind buffering is to minimize latency between cache and
main storage and also to maximize cache utilization by
allowing concurrent cache operations during cache-miss
situations. In the application for the S/390 G4 L2, each
BSN port contains a line-fetch buffer and a line-store
buffer; each buffer also has a pair of associated address
registers. The following is a description of buffer-
management techniques employed in the LFAR/LSAR
controls. Especially noteworthy is the feature which
enables cach buffer to appear to have the performance
of a multiple buffer design. The problem of storage
consistency associated with data buffer designs is also
addressed.

LFAR

The hardware controller that manages the line-fetch
buffer is called LFAR. Figure 6 depicts this controller.
LFAR is used when a request from a CP misses the L2
cache and a BSN bus operation is needed to bring data in
from elsewhere in the memory hierarchy. A pair of LFAR
registers, LFARA and LFARB, are associated with each
BSN port. Thus, there are two LFARA registers and two
LFARB registers on the L2 chip.

Because a given L2 may have a single bus operation
pending at any point in time (a restriction imposed by the
BSN bus protocols), a single buffer was deemed adequate
if it could be managed efficiently. A second buffer would
have used up valuable chip real estate. Typically, a buffer
has only one corresponding address register; in this
L2 design, however, a second address register was
implemented to enable concurrent fetch-miss operations
and to reduce bus idle time between successive fetch
operations on the same BSN bus. The LFARA and
LFARB registers work in tandem so that while LFARB is
waiting for data to return from the BSN bus, LFARA can
be loaded with the next outgoing fetch operation. Once
the buffer starts clearing out (i.e., the first data shot has
been read out to be stored into the cache), the fetch
residing in LFARA can initiate a new request to the BSN
bus for processing. By the time data return, the data from
the previous fetch operation will already have vacated the
buffer.

The following describes a fetch-miss operation as
handled by the LFARA and LFARB registers. A CP fetch
operation detects a miss during its initial pipeline pass
(assuming no address or resource conflicts). The fetch
address is loaded into LFARA while the victim cache-line
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address is loaded into LSARA. A request is made to the
BSN for permission to broadcast a fetch command. Once
the command is broadcast, the fetch request is moved
from LFARA to LFARB to await the return of the data
and to start the sequence that will load the data into the
L2 cache. Returned data are simultaneously written into
the line-fetch buffer and sent to the requesting CP. The
LFARB logic requests priority and makes a pass through
the pipeline to write the 128 bytes of data from the BSN
line buffer into the L2 cache. One quadword is written,
per cycle, on consecutive cycles until the entire line is
read out of the buffer and written into the cache.

If this process completes without any errors (e.g., no
uncorrectable memory errors are detected), another pass
through the pipeline is made to validate the directory
entry for the new line.

The directory entry validation is performed in a
separate pipeline pass for two reasons. First, in the event
that an uncorrectable error is detected in memory during
the line transfer, the recovery protocol is to post a
machine check interrupt code (MCIC) to the operating
system, which causes it to deconfigure the physical page
frame. Until this occurs, the L2 must block any further
references to the corrupted sector of the page frame by
not allowing the line to be labeled as valid in the cache.
The timing of LFARB’s validation pass guarantees that
the pass is not made until the last possible storage UE
report has been detected. The second reason for having
the separate validation pass is to prevent subsequent
operations to the line until it is loaded in its entirety. This
is accomplished via an address comparator associated with
LFARB, which reports an address-compare match in the
subsequent operation’s initial pipeline pass.

Unlike the CP FAR and the BSN controllers, LFARB is
governed only by a mode-state machine register to allow it
to transition through three possible hardware states: wait
for data, cache load pass, and directory validation pass.

The performance benefit of the second LFAR register is
realized because as soon as the cache load from the first
buffer entry is underway, the buffer is marked available to
receive new fetch data, enabling a new fetch operation to
be issued to the BSN bus. With this approach, each L2 is
able to achieve concurrent fetch-miss operations with only
one data buffer.

As in other controllers in the design, each LFAR has its
own address comparator logic for serializing operations
that are potentially in conflict with operations currently
residing in LFAR. These address comparators serve one
basic purpose: They avoid problems relating to data
integrity. However, they can easily create deadlock
problems if not used carefully. For normal situations, a
partial address-compare range comprising the bits used for
selecting the directory row (or congruence class address)
is sufficient to achieve the desired effect. Although a
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compare based on a subset of the full line address range
results in a compare match overindication, the increase in
queueing times caused by it is slight and therefore has a
negligible impact on performance. Besides, a compare
range based on the directory congruence class was
necessary to avoid the situation in which back-to-back
fetch misses on the same BSN bus are concurrently
targeting the same directory entry for cache-line
replacement. A full line address compare is needed to
protect the recently acquired storage data from being
overlooked on a directory search for a bus snoop
operation. A failure to report an XI hit on the BSN bus
will violate cache coherency rules.

LSAR
An LSAR controller is depicted in Figure 7. The line-
store buffer corresponding to the line-fetch buffer is
managed by the line-store address register. Each time a
fetch operation from a processor misses the L2 cache, LSAR
is responsible for the eviction of the LRU targeted line
from the cache to make room for the new fetch-miss data.
In an arrangement analogous to the LFAR just

described, there are two LSAR registers, LSARA and 441
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LSARB, dedicated to each BSN port, sharing a single line-
store buffer. The cast-out data are held in the buffer until
they are allowed to transmit on the bus. Operationally,
LSARA has a hardware sequencer (the mode-state
machine register) that removes CP ownership of the LRU
line and ensures that all possible updates to the LRU line
are completed before moving the data from the cache into
the line-store buffer. Once data are in the buffer, LSARB
continues the cast-out operation by protecting the data
(via a full address compare) until the BSN bus is available
to process the main memory write-back operation. After
the shift from LSARA to LSARB, LSARA becomes
available to operate on a new cast-out operation. Just as
LFAR is capable of issuing back-to-back fetch operations
on the BSN bus, so too can LSAR issue back-to-back
write-back operations to main store.

To maintain the full subset cache rule between L1 and
L2, each LRU operation requires an invalidation of CP
ownership of the cache victim (or LRU) line. In fact, the
hardware sequence for invalidating and ensuring the most
recent data in the L2 cache is the same sequence used by
both the CP and BSN controllers when changing the
directory state of an address resident in the L2.

If the LRU line is “dirtied” (meaning that the data are
more recent than the main store copy), the data are
moved out of the cache and into the line-store buffer to
wait until the bus is ready to accept the memory-store
operation. During this time, LSARA can start the
preparation for a new cast-out, but it will not move the
new data into the buffer until any previous cast-out data
are on the bus.

Both LSAR registers have a congruence class address
comparator to prevent local CP operations from
interfering with the LRU congruence class management.
This also prevents any inadvertent fetches from being sent
to the BSN bus ahead of a cast-out operation, since that
would violate cache coherency. An LSARB full address
comparator is needed to report an address match in the
event that a remote L2 is requesting the data while they
are in the line-store buffer.

The cache interactions created by multiprocessors in a
shared L2 system require the ability to handle multiple
fetch-miss operations even to the same BSN bus. Because
of technology constraints, only one line-store buffer per
BSN port side was possible, necessitating a high-
availability buffer design. This was accomplished by
sharing a single line-store buffer between two LSAR
registers. The sequence LSARA requires to invalidate the
evicted cache line from the local CPs and to ensure that
the latest modified data, if any, are inside the cache
before moving the data to the line-store buffer can take a
number of cycles. By having an LSAR register pair, the L2
is not stalled after an initial fetch-miss operation which
ties up both an LFAR and an LSAR. With the second
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LFAR/LSAR register, a second fetch-miss operation can
be started while the initial fetch-miss operation is
underway. As soon as that completes, the next fetch
operation or cast-out operation is ready to issue a new bus
request.

® Cache array

The §/390 G4 L2 has a total cache capacity of 384 KB per
chip. This is constructed from four physical arrays, each
containing 96 KB of data and providing eight bytes per
access cycle. Since the L2 chip must provide 16 bytes per
cycle per operation, two physical arrays are accessed in
parallel to provide the necessary data rate.

Cache accesses that require more than 16 bytes (many
accesses are for 128-byte lines) alternate between pairs
of physical arrays in successive cycles. Thus, any given
physical array is busy only in alternate cycles for
multicycle operations. The intermediate cycles are
therefore available for use by another operation. This is
termed “interleaving,” and each pair of physical arrays is
referred to as a “cache interleave.”

This type of two-way interleaving allows for two
simultaneous cache accesses by two independent storage
operations. Interleaved operations may be any mixture of
fetch or store operations, of any length. If one cache
access is already in progress, a second access never has to
wait more than one cycle to find the array containing its
starting address available for use. In situations where both
interleaves are busy, additional storage operations must
wait for one of the active operations to complete before
access to the cache array is granted.

Each cache interleave has an independent controller
that controls all aspects of cache-array access, including
address increment and interleave availability notification.
For multiple-cycle accesses, addresses and control
information are passed back and forth between the
interleave controllers on cach successive cycle.

Each physical cache array serves both BSN buses. Halt
of the array addresses are dedicated to one BSN bus, and
the other half to the other BSN bus. This restriction exists
because of the structure of the cache directories, which is
dictated by directory access-time requirements for BSN
Snoop operations.

The four physical cache arrays are manipulated to
appear as two logical arrays (interleaves) with 1024 rows
of six compartments each, with 128 bits per compartment.

Cache-array writes may update either 64 or all 128 bits
of a compartment to accommodate doubleword and
gquadword stores from a CP. To store less than a
doubleword, the CP first performs a byte merge into a
doubleword in the L1 cache, then transfers the entire
updated doubleword to the L2 cache.

Figure 8 illustrates the complete datafiow, with cache
arrays and including buffers and cross-point switches used
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for accessing the cache. This structure of buffers and
cross-point switches is designed to maximize system
throughput by allowing multiple simultaneous data
transfers for different requests.

At the top of the figure, inputs from each of the five
bidirectional data buses are shown. At the bottom, outputs
are shown to each of these same five bidirectional buses.
Each bus may be in either drive or receive mode at any
given time, so up to five external data transfers may occur
simultaneously.

All data-write paths include a buffer which is used to
hold data until the needed cache interleave becomes
available for writing. Buffers are needed on the CP
interfaces because the CPs are allowed to send a store at
any time (provided that the store data stack is not full),
and it may be necessary to wait for the cache interleave to
complete another operation before the data can be written
to the cache. Buffers are needed on the BSN interfaces to
allow multiple operations to be active simultaneously.
Since the /390 G4 L2 does not stall waiting for
outstanding BSN bus data requests, it is possible that
returning data will encounter a busy cache interleave,
necessitating the buffer.

All data written to cache must be accompanied by ECC
checking bits. The CP stores data with the appropriate
ECC check bits already supplied. Data from the BSN bus
arrive with parity and are stored with ECC bits generated
by the ECC stations (shown).

Data-read paths include buffers for data destined for
the BSN bus but not for the CPs. The BSN path requires
buffers because when data are being readied for cast-out
to the BSN bus, the BUSRR may not yet have been
granted priotity to send data onto the bus. The fetch-alert
response on the CP interface is used to notify the CP in
advance that data are about to be returned, blocking the
CP from sending any new stores on the BIDI interface, so
data that are ready can always be sent immediately to the
CP and no buffering is needed.

All data from cache are first checked (and corrected if
necessary) by the ECC correction stations (shown), since
both the CP and BSN expect to receive data with parity,
not ECC.

The seven independent cross-point switches shown in
the figure are a very important feature for maintaining
performance in the §/390 G4 system SMP environment.
These switches operate independently for each CP and
BSN port and for each cache array, allowing up to five
simultaneous transfers on the five L2 cache chip data
ports. Data do not pass through one common bus, which
would have the effect of limiting the L2 to one data
transfer at a time. Instead, each port is capable of
operating independently of the others. Each CP port is
capable of receiving data directly from either cache
interleave or either BSN bus, each BSN line-store buffer

P. MAK ET AL.

is capable of receiving data from either cache interleave,
and each cache interleave is capable of receiving data
directly from any CP-store data stack or either BSN line-
fetch buffer. As one example, all five L2 chip ports may be
active concurrently for the following four simultaneous
operations:

1. Fetch from cache interleave 0 to CPO0.

2. Fetch from cache interleave 1 to CP1.

3. Fetch from BSN 0 bus to CP2 (busies two L2 ports).
4. Store from BSN 1 line-store buffer to BSN 1 bus.

Shared-cache coherency in the $/390 G4 L2
cache

The S/390 G4 system has three levels of cache hierarchy,
in which the first-level (L1) and second-level (L2) caches
may contain storage data that are more recent than those
existing in the third-level (L2.5) cache or in main memory.
The S/390 G4’s novel approach to tightly coupling up to
12 microprocessors by creating a system structure
consisting of distributed shared-cache clusters led to
further novelty in coherence management for a multilevel
cache hierarchy. The concept of hierarchical ownership

is introduced for the first time in S/390 with the G4
system.

The cache structure for the system consists of store-
through L1 caches located on each of the CP chips, shared
store-in L2 caches located on separate L2 chips, and store-
through L.2.5 caches located on each of the four logical
BSN buses. Essentially, the L2.5 operates as a main store
cache for frequently accessed, shared, read-only data. The
L2 caches are supersets of the L1 caches that are part of
the same cluster; i.e., if a line of data exists in any of the
three L1 caches that are in the cluster, it must also exist
in the L2 cache in the same cluster. The reverse is not
true, in that a line of data may exist in an L2 cache
without existing in any of the L1 caches in the same
cluster. However, there is an exception to this subset rule.
The storage address range where nonupdatable millicode
is kept can be in the L1 while not in the L2. This was
done to prevent certain deadlocks on the BSN bus from
occurring [10]. There are no superset or subset rules
between the L2 and the L2.5 caches, since the L2.5 can
never hold data that are more recent than the copy in
either the L2 caches or main store.

Coherency is maintained through the use of directory
states that are defined as follows for the first two levels of
caches. For L1 caches, three directory states are defined:
invalid, read-only, and exclusive. The read-only and
exclusive states simply tell the CP whether or not the data
it has in its L1 can be changed. If the data are in read-
only state, a request must be made to the L2 to elevate
the state from read-only to exclusive in order to process a
store.
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For the L2 caches, the following directory states are
defined: invalid; read-only to CP(s), MC = 1; read-only to
CP(s), MC = 0; and exclusive to a CP. The “MC” in this
list refers to a multicopy bit which is used to determine
whether the line exists in other shared L2 clusters. A
value of 0 indicates that it does not, while a value of 1
indicates that it might.

The L2 directory state is encoded in a three-bit “CPID”
field that is part of the directory tag for each cache slot.
Since the MC bit is merged into the CPID field, only two
bits are used to identify the CP ownership state.

Note that there are unique L2 directory states to keep
track of which CP owns a line exclusive, but there are no
unique L2 directory states to keep track of which CP or
CPs own a line read-only. This was done to allow the
limited directory physical space to be used for ECC bits to
better protect the directory contents and to reduce design
complexity. There is very little resulting loss in system
performance.

Cache coherency is primarily managed by each L2 in
the system. In this scheme, the L2 simply tells the CP how
data it is fetching should be held (read-only or exclusive)
in the L1 directory, and also when to invalidate resident
data because of another CP’s exclusive fetch for the same
address or an LRU situation in the L2. There are three
compelling reasons for having the coherency management
situated in the L2: 1) It simplifies the L1 function; 2) it
eliminates L1 directory resource conflict due to bus snoop
operations; and 3) it allows the L2 to efficiently manage
data in the system. By shielding the L1 from bus snoops,
the design avoided having to allow concurrent directory
lookups in the L1. In order for the L2 to successfully
shield L1 from bus snoops, the L2 must manage the data
in its attached L1 caches as a subset of the L2 cache.

With the $/390 G4’s system of distributed shared L2
cache clusters, read-only data can be found in one or
more of the L2 clusters when the MC status bit is active.
When the bit is inactive, the L2 cluster has sole ownership
of the data. This MC concept is widely used in bus-based
SMP designs, especially in MESI (modified, exclusive,
shared, invalidate) schemes. However, because the $/390
G4 system has a multiprocessor node on the system bus,
as opposed to a single microprocessor or a private L2,
the MC concept and the ownership concept for a shared
cache were combined to form a new hierarchical
ownership concept applicable only to this type of system
structure.

An example demonstrates the advantage of hierarchical
ownership: In a bus-based SMP design where each
connecting node is a private L2, modified (or “dirtied”)
data can exist in the L1 and its associated L2 cache. If a
CP across the BSN bus requires access to the same data, a
data transfer on the bus results, and the data end up being
in both L2 caches in a read-only state with the MC bit
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active. If the CP now wishes to make a modification, a
second bus operation is needed to invalidate all multiple
copies of the data. On the S/390 G4 structure, where there
are multiple CPs in a shared L2 node, if the offending CP
is on the same node as the processor that owns the
modified data, the fetch operation and the subsequent
data transfer are processed entirely within the shared-
cache node without requiring the BSN bus. Furthermore,
if the offending CP wishes to make a modification, the L.2
simply issues an invalidate command to the victim CP,
again without requiring the BSN bus. During this entire
sequence of events, the MC bit within the L2 remains a 0
while the CPID changes, but only to reflect the ownership
changes from exclusive to read-only and back to exclusive
states. Obviously, the $/390 G4 structure does not eliminate
all CP-to-CP data transfers, but it does reduce the bus traffic
and lessen bus queueing, improving system performance.

The L2 chip is also responsible for maintaining strict
coherency for both L1 and L2 caches. By strict coherency,
it is meant that a CP is allowed to store into a line only if
it exists in an exclusive state in its L1 directory and a copy
does not exist in any other L1 in the system or in an L2 in
any other cluster. Directory states for both levels of caches
may have to be updated. This can be accomplished via
commands issued by CPs within the cluster or via
commands broadcast over the BSN bus from other
clusters. For the first type, the CP controller is responsible
for making a series of pipeline passes to update the
directory states, while for the second type the BSNAR is
responsible for making the pipeline passes. Updating of
the L1 directory states is done by issuing an XI command
to the affected CP(s). Note that for lines that are in a
read-only state in the L2 directory, it is not known which
CPs, if any, currently own a copy of the line, so XI
commands are sent to all three CPs in the cluster.
Also note that one advantage of making the L2 chip
responsible for both the L1 and L2 directory states is that
some of the BSN bus activity is shielded from the CP
chips, reducing the number of L1 directory searches that
have to be performed.

One interesting case worth mentioning is the case in
which a line currently exists in the L2 in a read-only,
MC = 1, unchanged state and a CP within the cluster
makes a request to own the line exclusively. Prior to
updating the L1 and L2 directory states within the cluster,
the CP controller must first load the BUSRR with a line
invalidate command to be broadcast on the BSN bus to all
other L2 clusters in the system. This forces the other
clusters to update their L1 and L2 directory states for this
line to invalid. Once the CP controller is notified that the
line invalidate command is broadcast on the BSN bus, it
then proceeds with pipeline passes to update the L1 and
L2 directory states within the cluster.
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Interlocks and contention management
In a nonblocking switch design such as the $/390 G4

shared L2, where multiple concurrent operations are
allowed for improved system throughput, special care must
be taken to maintain data consistency. Data integrity is
compromised when operations to the same storage data
are allowed to overrun, resulting in misplacement of true
data and also bad ownership assignments. The S/390 G4
1.2 avoids this problem by employing a series of varied
address comparators that are observed by each operation
as it begins processing but before it can complete.
Specifically, these address compares protect against
concurrent conflicting data accesses by multiple
requestors. And they protect data in transit

between L2 clusters and between cache and main
memory.

Descriptions of the different address-compare interlocks
are listed below. The first section lists the compares
observed by the CFAR controller as a request starts up.
The second section lists the compares observed by the
BSN controller.

& [nterlocks for CFAR requests
When an L2 receives a fetch request from a local CP,
the “valid” bit for that CP’s CFAR becomes active
immediately, but address conflict must be checked before
processing completes. A distinction must be made between
a CFAR request which has a conflict and one which has
no conflict. The CFAR “valid” tag bit is not sufficient,
since it has to be active in both cases, so a special tag
called “pending” was created. A request becomes
“pending” after it has made an initial directory search
pass through the pipeline with no address conflict; i.e., no
other requestor is active with the same address. Once a
request is “pending,” it can proceed safely to completion,
as the “pending” tag will block new requests from
accessing the same address while it remains active. The
tag is reset when the CFAR request is processed.
Different types of address compares observed by CFAR
when its request begins are the following:

1. Other CFAR register compares. Each CFAR has a
“pending” bit, which indicates that it is valid for
compares. If a fetch request sees no compares against
other CFARSs, the requestor’s pending bit is turned on,
making this request valid for compares done by other
CFARs and effectively locking out other CFAR
requests to the same congruence class. The CFAR
compare protects against conflicts caused by two CPs
attempting to fetch the same line or attempting to fetch
lines in the same congruence class. This check avoids
the situation in which two CPs attempting to fetch the
same line could both see the same directory status
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(for example, read-only), resulting in an attempt by
each to update the line (i.e., trying to obtain exclusive
ownership). These types of situations would cause
unpredictable directory results.

. Line-fetch address register (LFAR) compares. This is

done to prevent the current request from fetching a
line from the same congruence class as a line already
being fetched by another CP, thus accessing the same
directory and LRU information and potentially
overlaying the results of the first request. This check is
necessary, since the CFAR for the first request may be
reset before the directory update is complete. This is
also domne to prevent a situation in which two CPs are
attempting to fetch the same address which missed the
L2. There is a window condition, where the data for
the first fetch-miss have returned and are in the process
of being loaded into the cache, but the directory entry
has not yet been validated. Without the LFAR compare
check, the second CP’s fetch would detect a directory
miss and a new fetch for the same data would be sent
out on the BSN bus, resulting in the L2 having two
cache slots for the same storage address with
potentially different CP ownership.

. Line-store address register (LSAR) compares. This

compare protects against the case in which the current
fetch request is for a line that is being LRUed or cast
out of the L2.

. BSN address register (BSNAR) compares. This is done

to prevent the current fetch request from attempting to
fetch data that are currently being requested by a CP
on a remote cluster. To cover the reverse situation,
where a CFAR is in the midst of acquiring ownership
of some data residing in the L2, any new remote CP
request must be held off until the local fetch operation
is processed. This interlock is accomplished by having
each CFAR maintain another “pending” bit called
“BSN pending,” which is turned on if no compare is
detected against a BSNAR. This makes the CFAR valid
for compare for subsequent BSNAR requests.

. Store-stack compares [8)]. These are done to ensure

that any outstanding stores to a line are complete
before a fetch request for that line is processed, a
requirement for maintaining data integrity. Since the
store-stack compare is done on a subset of the line
address bit range, compares may be indicated when the
store is not really to the same line. For this reason, all
checking of store-stack compares is gated with a check
of the directory hit results. If a CP does not own the
line exclusive, it cannot update it. If the line is held
exclusive by the requesting CP, compares are checked
against the requestor’s store stack. If a CP other than
the requestor owns the line exclusive, a compare is
done against that CP’s store stack.
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o [uterlocks for BSNAR requests

The BSN controller is continually “snooping” the BSN bus
to determine whether commands being broadcast require
action, whether casting out changed data or invalidating
old data. When a command is detected, a directory search,
using the address that was broadcast on the BSN bus, is
initiated. This is done to determine whether the line of
data resides in the L2 cache.

In parallel with the directory search, two address
compares are done to protect against cases in which the
data exist in either the line-fetch or line-store buffer but
not in the cache. These two compares are referred to as
BIF compares, since the address to which the comparison
is made resides in the BIF. These are done using the
entire line address bit range.

1. An LFAR BIF compare detects cases where the data
are in the line-fetch buffer waiting to be loaded into
the L2 cache. If a compare is detected, the BSN
controller signals the BSN chip that this L2 has a copy
of the line and waits until the LFAR has completed
loading the data and updating the cache. Once this
occurs, it proceeds normally, i.e., as if a directory hit
had been detected on the original directory search.

2. An LSAR BIF compare protects against cases where
the line of data resides in the line-store buffer waiting
to be broadcast on the BSN bus. If a compare is
detected, the BSN controller signals the BSN chip that
this L2 has a copy of the line and waits for LSAR to
complete its processing of the LRU operation,
Assuming that the line was changed in the L2 cache,
the data should reside in the line-store buffer at this
point, so the BSN controller broadcasts an XI cast-out
command on the BSN bus using the data in the line-
store buffer, and cancels the line-store command that
was loaded into the BUSRR (bus request register) as
part of the LSAR LRU operation. If the line was not
changed in the L2 cache, LSAR would have completed
the LRU operation by simply invalidating the directory
entry. In this case, the BSN controller resets without
casting out the data, and the data must be fetched from
the L2.5 or main store.

3. A BUSRR compare is performed as part of
maintaining cache coherency between clusters. When a
CP controller detects that the multicopy bit is on while
doing a directory search for an exclusive fetch-type
command, it loads a line invalidate command into the
BUSRR register. This command forces other L2 chips
to invalidate their copy of the data, so that it can grant
exclusivity to the requesting CP. A complication can
arise when another L2 broadcasts a command on the
BSN bus that accesses the same line of data prior to
the line invalidate command being broadcast. If the /ine
invalidate command is allowed to be broadcast after the
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other command completes, the dircctory entries for
these data in the different clusters may get out of sync.
To prevent this from happening, the BSN controller
performs a special BSNAR versus BUSRR compare
when processing a command it has received from the
BSN bus whenever it reaches a state that causes it to
update the local L2 directory state. If a match is
detected and the BUSRR register contains a line
invalidate command, the CP controller is notified to
restart the operation from the beginning to see the new
L2 directory state and then to take the appropriate
course of action to complete the CP request.

Aside from these address-compare checks, when
BSNAR goes through the pipeline in its initial pass, it
checks for conflicts against pending CP operations. When
a CP operation which will result in data returned from the
L2 cache is in progress, the BSNAR request must be held
up until the new directory state has been updated. This is
to ensure that the proper invalidation is sent to the CP
which actually owns the data in question. Otherwise a
coherency problem will result. The method by which this
interlock is accomplished is described in the previous
section.

Conclusions

The S/390 G4 shared L2 cache design demonstrates the
feasibility and advantages of shared-cache design. It is also
evidence that it is possible to create a hybrid design which
carries most of the advantages of fully shared cache
structures while enabling the use of low-cost system bus
topologies. While obviously not as optimal as a true fully
shared cache, the shared L2 cache cluster approach
provides an attractive low-cost, high-performance
alternative. The G4 shared L2 allowed the 5/390

design team to maximize reuse of existing componentry
without compromising the performance of the /390 G4
microprocessor. The result is an /390 G4 CMOS system
which matches or exceeds ES/9000 bipolar mainframe
system performance at a fraction of the cost.

The basic concepts of this shared L2 cache, most of
which were described in this paper, are expected to be
capable of being extended to provide greater cache
efficiencies and sharing capabilities for future development
efforts. For example, the cross-point switches, cache
interleaving, data ownership hierarchy, and pipeline
arbitration mechanisms can easily be extended to support
a larger number of microprocessors in a given cluster.
This, combined with expected improvements in CMOS
density, can lead to even larger SMP systems or simpler,
more powerful SMPs with fewer components. The S/390
L2 cache design team is considering several of these
alternatives as we continue to increase S/390 system

performance via high-performance shared-cache designs. 447
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