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Interest in the  concept  of  clustered  caches  has 
been growing in recent years.  The  advantages 
of  sharing  data  and instruction streams  among 
two or  more  microprocessors  are  understood; 
however, clustering  also  introduces  new 
challenges in cache  and  memory  coherency 
when  system  design  requirements indicate 
that two or  more  of  these  clusters  are  needed. 
This  paper  describes  the  shared L2 cache 
cluster  design  found in the S/390@ G4 server. 
This  novel  cache  design  consists  of multiple 
shared-cache  clusters,  each supporting up to 
three  microprocessors,  forming  a tightly 
coupled  symmetric  multiprocessor with fully 
coherent  caches  and  main  memory.  Because 
this cache  provides  the link between an 
existing S/390 system  bus  and the new, high- 
performance SI390 G4 microprocessor  chips, 
the  paper  addresses  the  challenges  unique to 
operating  shared  caches  on  a  common  system 
bus. 

Introduction 
As the S/390* transformation  from  its legacy of large, 
complex, bipolar-based  mainframes  to  simpler, CMOS- 
microprocessor-based  servers  continues, increasing 
emphasis is being placed  on  the system structure  and 

memory hierarchy. As described by Getzlaff et  al. [l], 
the Si390 Parallel  Enterprise  Server  Generation 3 (G3) 
features a  system structure which supports  microprocessor 
and system frequencies in excess of 160 MHz. This design 
features  conventional,  dedicated L1 and L2 caches as well 
as  a novel, shared L2.5 cache [2] which services  all of the 
microprocessors in the system. This topology provides 
impressive  system-level performance  and  has excellent 
scaling capabilities. 

microprocessor [3], with  its  design  goal of doubling  the 
microprocessor  frequency, was expected to  increase 
memory  subsystem performance  requirements.  The L2 
cache design team was challenged  to  provide  the  means  to 
enable  the  introduction of this new microprocessor while 
reusing as many S/390 G3  components as  possible. The 
first challenge involved  system cycle time.  Because of 
the  desire  to  reuse  the S/390 G3  memory  hierarchy, 
speed  matching  between  the new, faster S/390 G4 
microprocessor  and  the  reused  components would be 
needed.  Second,  the  utilization level of the system bus 
was observed  to  be  increasing rapidly  with increasing 
microprocessor  frequency.  Doubling  the  microprocessor 
speed was likely to  cause  considerable  acceleration of this 
effect, thereby  necessitating a mechanism  for  reducing  bus 
traffic. Third, analysis of typical S/390 workloads  indicated 
that  there was a large  degree of sharing of instructions 
and  data  among  the processing elements of an S/390 

However, the  introduction of the Si390 G4 
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system. It would thus  be very advantageous  to  introduce a 
shared-cache  structure  to  the  cache hierarchy.  Finally, 
during  the design of the S/390 G3 system, it became 
apparent  that a  large  symmetric  multiprocessor introduced 
unwanted packaging complexity on the  bus  connections 
among  the  various system components.  This last  challenge 
was solved on  the Si390 G3 system by distributing  four 
microprocessors’  private L2s across four  SRAM  cache 
chips [l]. 

S/390 G4 L2  cache. The initial desire was to  introduce a 
large, fully shared cache  such  as those  found in bipolar 
ES/9000* SMPs.  While  this would certainly  have  provided 
optimal system-level performance via higher cache 
efficiency, this design approach was inconsistent with the 
existing system bus design. In  particular,  the Si390 G3 
memory interface would have required a complete 
redesign to  accommodate a fully shared L2 cache. 
Performance analysis, however, indicated  that  introducing 
cache sharing on each of the existing BSN system buses 
would generate a large  percentage of the advantage of 
shared caches while also  reducing system bus traffic. This 
scheme  does  not  disrupt  the system design and bus 
protocols. The S/390 design team  therefore  developed a 
hybrid solution consisting of fully shared three-way cache 
clusters which attach to the existing S/390 G3 system bus [4]. 

aggregate  L2  equivalent to  that available in the S/390 G3 
(3 MB of total L2  capacity) while reducing the L2 chip 
count by 33%. The value of shared caching was confirmed 
by performance  measurements which showed that  the 
shared caches  improved cache hit rates by 40-50% over 
the  predecessor system. The cross-point switches 
introduced  at  the  CP  interface maximize CP  performance 
and minimize overall  latencies, yet the system bus 
interface was also maintained, enabling component  reuse. 
Finally, despite  the fact that a shared-cache design is 
inherently  more complex than private L ~ s ,  the  entire 
design cycle, from design concept  through initial product 
prototype,  required only 15 months.  Initial  versions of the 
S/390 G4 L2  chip were fully functional  and exceeded 
frequency goals;  virtually the  entire  manufactured chip 
distribution  operates  at  or  better  than 200 MHz  in  CMOS 
5X, making  this  a very high-yield, low-cost, high- 
performance L2 cache  chip. 

The S/390 Parallel  Enterprise Server Generation 4 
memory  hierarchy  is depicted in Figure 1. Each 
microprocessor, or CP, contains 64 KB of store-through 
L1  cache.  The L2  cache contains 768 KB distributed in a 
clustered configuration  across  a  pair of chips. An  L2 
cluster supports up to  three CPs and provides access to 
the  entire memory  space. The L2 cache chip  provides the 
speed-matching function required by the S/390 G4  CP, 

A number of alternative designs  were  considered for  the 

This  L2  cache design resulted in an  amount of 

430 allowing the  CP  to  run  at twice the frequency of the 

remainder of the system. This  enables  the  reuse of the 
Si390 G3 memory  hierarchy (BSN, STC, etc.). 

This  paper discusses the  operation  and design of the 
shared-cache clusters found in the S/390 G4 system’; it is 
divided into  four main  sections. The design and layout of 
the Si390 G4 L2 cache are first described, with particular 
attention  to design challenges unique  to a shared 
structure.  The next section addresses cache  coherency 
issues unique  to a shared-cache  environment,  and  the 
solutions devised to address them. The  third  section 
discusses interlock controls in further  detail.  The  paper 
concludes with a brief summary of the key attributes of 
the Si390 G4  shared L2  cache. 

To  maintain clear and  uncluttered descriptions of the 
operations  performed by the  shared  L2  cache,  the 
following convention is used throughout  the  remainder of 
the  paper.  The  terms L2 and L2 cache are used to  refer  to 
a single chip in  an Si390 G4 L2 cache cluster. When 
discussing operations which span the  pair of cache chips, 
the  terms cluster or L2 cluster are used. The  reader  should 
also keep in mind that since  a  cluster  consists of two 
independent L2 cache chips, and  there may be up to 
four clusters in the  current design point,  up  to eight 
independent L2  cache  chips may simultaneously be 
performing  the bus operations described here. Finally, the 
four clusters which comprise  a fully populated system all 
share  the  same common  main  memory. 

Glossary of terms 
BIDI: Bidirectional 
B I F  BSN InterFace 
BSN: Bus Switch Network-the chip which controls bus 

traffic in Si390 G3  and  G4 systems 
BSNAR BSN interface  Address  Register 
BUSRR BUS Request  Register 
CFAR CP Fetch  Address  Register 
CL Changed Line bit-indicates that  the  data in the 

tagged line have been  altered  and  are  therefore of more 
recent vintage than  those  stored in main  memory 

CLST: Conditional Line STore 
C P  Central Processor or  Central microProcessor 
CPAR CP  interface  Address  Register 
CPID: Central Processor ID 
doubleword: Eight bytes 
L1: Level-1 cache 
L2: Level-2  cache 
LFAWLFAWLFARB: Line Fetch  Address 

Register-register(s)  used to  stage  CP  fetch  requests 
LSAR/LSARALSARB: Line Store Address Register-register(s) 
used to  stage  store  requests  to main  memory 

clusters, see B. A. Nayfeh, K. Olukotun, and J.  P. Singh, “The Impact of Shared 
1 For an example of independent research confirming the concept of shared-cache 

Cache Clustering in Small-Scale Shared-Memory Multiprocessors,” Proceedings of 
the Second International Symposium  on High Performance Computer  Architecture, 
San Jose, CA, 1996, pp. 74-84. 
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I o  Memory card 

LSLF: Line  Store/Line  Fetch operation-a fetch with an 
accompanying cast-out 

LRU: Least  Recently Used-an algorithm  for  determining 
which line(s)  to  replace with newer  lines in the  cache 

MC: Multi-Copy  bit 
quadword: Sixteen  bytes 
RAS: Reliability, Availability, Serviceability 
SEC/DED: Single-Error  Correct/Double-Error  Detect  ECC 

S M P  Symmetrical MultiProcessor 
XI: Cross-Invalidate-a mechanism  to  ensure  cache 

code 

coherency by invalidating lines out of L1 and/or L2 caches 

S/390 G4 shared L2 cache 
The S/390 G4  shared  L2  cache  chip is an  integrated 
design, with both  the  large  custom  SRAM [5] and  cache 
controls  contained  on  the  same chip. The  shared  cache 
consists of two identical chips, each  containing 384 KB of 
SRAM,  for a total of 768 KB of cache  per  cluster.  The 
entire  memory  address  space is mapped across this  pair of 
L2 chips, interleaved  across  the  four memory cards  to 
maximize concurrent  operation.  The  cache itself is six-way 
set-associative, is dual-interleaved,  and  has  directories 

dedicated  to  each system  bus. Each  L2  chip  features 
nonblocking switch functions  to  each  attached  CP  as well 
as to  the  other system components.  Data  buffers in the 
cache  array itself are also provided in order  to minimize 
latency  effects.  The  result of the  implementation of these 
design concepts is an  L2  cache which enables  concurrent 
execution of multiple  requests,  whether  from  the  CPs  or 
from  other  L2 clusters. 

To enable  achievement of CP cycle-time  objectives, the 
L1 cache was designed as  a store-through  cache,  meaning 
that  altered  data must  also be  stored  to  the next-level 
cache. The L2 cache is a store-in design, which helps  to 
contrnl and  minimize system bus activity. A full subset 
cache  protocol is used to  manage  data  coherency  between 
the  Lls  and L2s; this  means  that all lines  contained in  any 
Ll   are  also  stored in that cluster’s L2. The  advantages of 
this  scheme will become  apparent below. 

In addition  to  performance,  the S/390 G4 L2  cache 
provides  excellent RAS  characteristics.  This design 
contains  SECiDED  ECC  on  both  the  cache  and  directory 
arrays.  Error  correction in all cases is provided  “on 
the fly,” with no  additional access penalty.  When 
uncorrectable  errors  are  encountered, system  recovery 

IBM J. RES. DEVELOP. VOL. 41 NO. 415 JULYiSEPTEMBER 1997 P. MAK ET AL. 



’B 1 3 data and address flow. 

actions  are  triggered.  The L2 cache  and  directory also 
support a “cache-line  delete”  function [6] which allows 
removal of a  small number of cache  lines  from active 
use  to  prevent known stuck  faults  from  becoming 
uncorrectable  faults. Finally,  in the S/390 G4 system,  it is 
possible for  one  or  more individual CPs  to  halt  because of 
error  without causing  a  system checkstop. Since cache 
coherency is managed by the  shared L2, failing CPs  can  be 
logically removed  from  the active  configuration  with no 
data integrity exposure. 

The high-level data  and  address flow  of the S/390 G4 
shared L2 cache is depicted in Figure 2. This  shared L2 
cache  comprises  the following  critical component 
functions: 

1. L2 pipeline  and  arbitration  unit, which provide the 
means  for  controlling  multiple  requests  for  the  shared 

432 L2 cache facilities. 

2. L2 directory, which maintains  the  contents of the L2 

3. CP  interface  controller, which provides fetchhtore 

4. BSN interface  controller, which supplies  the  interface 

cache  array. 

access to  the L2 from  up  to  three CPs. 

to  the  other  shared L2 clusters as well as to  the  shared 
L2.5 cache  and  main  memory. 

fetch-miss and  write-back activity. 
5 .  LSAR/LFAR controller, which stages  and  controls all 

6. Shared L2 cache  array. 

L2 pipeline 
The L2 pipeline is shown  in Figure 3. All incoming 
requests  processed in the  shared L2 cache  must  pass 
through  the  central  pipeline.  This  pipeline consists  of  a 
number  of single-cycle staging registers  that  perform 
different  actions  each cycle. A new request  can  be 
launched  into  the  pipeline every cycle; a request  can  take 



LRU I CHGLN 
BSN port 1 

directow 

as few as two cycles or  as many as 11 cycles depending on 
its  type and  the availability of the  resources  needed  for 
completion. 

manage  the high level of activity from  the  L1  store- 
through traffic for  the  three CPs. Stores can degrade 
performance when  they are  not  drained  fast  enough, 
thereby halting CP  execution. To reduce  the  probability of 
creating a bottleneck,  the L2 has a pipeline design which 
can  process a new operation every cycle. The design  also 
contains a store  stack  for  each  CP  that is deep  enough  to 
buffer  the  stores until  they  can be  processed  through  the 
pipe. 

requestor  and  gates  the  corresponding  requestor 
information (such  as address,  command,  mode,  etc.)  into 
the  pipeline. A given requestor may make  multiple passes 

A pipelined design was selected in order  to effectively 

The  central  priority logic ultimately selects  one 

through  the  pipeline,  performing  different  functions on 
each pass. The  action  taken  during  each  pipeline cycle 
depends on the type and  source of the  command,  and on 
the  results of previous passes through  the  pipeline. 

C1 cycle activities include 
Directory  lookup  and field update 
Command  and  address  information  sent to cache 
interleave  controls 
Address  compares  against  internal  resources  and 
requestors  performed 

C2 cycle activities include 
Directory  search  results available 
First  interleave busy cycle for a cache access operation 
LFAR facility selected  on  detection of L2  cache miss 
L2 cache  request  proceedheject,  based on the  resource 
and conflict resolution 433 
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C3 cycle activities include 
LRU  array access and/or  update 
CL  array access and/or  update 

First  interleave busy cycle for a cache write operation 
Invalidate  command  sent  to  CP if the  requested  data 

LSAR facility selected  on  L2  cache miss requiring a 

Completion  response  sent  to  CP if requested  data hit 

C4 cycle activities include 

have  a coherency conflict 

cast-out 

in the  L2  cache  with no coherency conflict 

A cache  read  or  write  operation  continues  for several 
additional cycles beyond  C4 to  complete  the  transfer of 
eight 16-byte data  shots. 

Pipeline arbitration 
A total of 16 hardware  requestors,  dedicated  for  CP, BSN, 
and  internal L2 facility requests,  can vie for  priority  to 
enter  the  pipeline. Trying to  route all  16  directly to  some 
central  arbitration logic would  have constituted a major 
physical  wiring challenge.  Decentralizing  the  pipeline 
inputs by sending  them  through  the  prepriority  arbitration 
stations  before  forwarding  to  central  priority  helped  to 
prevent  these  potential wiring problems. 

The  prepriority  arbiters  funnel down the  requests  for 
central  priority.  Each  selects  one of its  requestors  and 
then  forwards  the  request  to  central  priority.  At  the  same 
time,  the  prepriority  arbiters  forward  the  corresponding 
requestor ID tag,  address,  command,  mode,  etc. buhcs to 
the  L2  pipeline.  The  prepriority  arbiters  also block 
requests  whose  resource  needs  are  not available  (e.g., 
cache  interleave conflicts), and  some  arbiters  equitably 
select  requestors  to avoid potential processing lockouts. 
This  particular  lockout  avoidance  and  others  are discussed 
in more  detail in  a later  section. 

There  are a total of four  prepriority  stations within the 
L2  cache chip. Each BSN port  has a dedicated  station, 
while the  three  CP  ports  share  the  other two stations. A 
BSN prepriority  station  arbitrates  among  the  BSNAR, 
LFARB,  and  LSARA  functions  dedicated  to  the  particular 
BSN port.  The  selection is done in  a priority  order  where 
BSNAR  has  the  highest priority, LFARB is second,  and 
LSARA is  last. BSNAR is picked  first because it reflects 
an  XI  (cross-invalidate) hit situation.  During  the  time it 
takes  an  L2  to resolve an XI hit,  the BSN bus is blocked 
from servicing  a new operation.  With  bus  utilization 
projected  to  be relatively  high,  a reduction of utilization 
and,  hence,  queuing was called for.  LFARB  and  LSARA 
selection  priority is not a critical  performance issue 
because of the low projected  L2 miss rate. 

pending  at any point in  time, two prepriority  stations  are 
Since each  CP  can have both  fetch  and  store  operations 

434 supplied  for  the  CP  ports.  Because  fetch  operations  are 

more critical to system performance  than  stores, having 
separate  arbiters  for  CP  fetch  and  store  operations 
ensures  that a fetch will always be  selected over  a store 
whenever  both  operations  are vying for  priority 
concurrently.  The  CP  fetch  (or  FAR)  prepriority  station 
arbitrates  among  requests  from  the  three  CP  ports in  a 
least-recently-processed  scheme  that avoids potential 
lockout.  A normal  round-robin  or a priority  order  chain 
scheme  can  cause a lockout on a CP if there  are sufficient 
activities from  the  other  ports  (such  as when CPs  are in 
synchronous  loops).  The-least-recently  processed  scheme is 
analogous  to a least-recently-used  (LRU)  algorithm  for 
cache-line  management, in which a most  recent  tag is 
updated  whenever a CP  fetch  (FAR)  operation  has 
completed processing  in the L2. The inverse of this  tag 
determines which CP’s request is the  oldest,  thereby 
assigning  it the  highest  priority in the  FAR  prepriority 
station.  Even  though  there  are only three  CP  ports on the 
L2 chip, there  are a total of six request  paths  into  this 
prepriority  station, two from  each  CP.  One  path  comes 
from  the  chip  interface  register  called  CPAR,  and  the 
other is from  the  CFAR hold register. 

The  prepriority  station  for  arbitrating  among  the  three 
CP  store  requests employs  a  modified round-robin  scheme 
to allow one of the  three  store  requestors  to  enter  central 
priority [7]. Stores  are  checked  for  cache  interleave 
conflict prior  to  arbitration in the  prepriority  station  to 
guarantee  completion in  a  single pass  through  the 
pipeline. Otherwise,  pipe  utilization would increase greatly 
because of wasted pipeline passes. One  undesirable  side 
effect of this  greater  pipeline efficiency is that  some  store 
requests  can  be  locked  out indefinitely if higher-priority 
operations such as  CP  fetches  continue  to  keep  the  target 
cache  interleave of the  store  operation busy. The modified 
round-robin  selection  scheme  guarantees  that if the 
highest-priority  store  request is not  selected  because of a 
cache  interleave conflict, and a  lower-priority store 
requestor in the  round-robin is selected,  the highest- 
priority  store  request will prevail  as the first store  to  be 
selected in subsequent cycles. Normally  in this  situation, a 
regular  round-robin would be  updated  and a  new store 
requestor would be given the highest priority in the 
following cycle. However, in the modified scheme  the 
round-robin is updated only when a store  requestor is 
selected,  and no higher-priority  store  requestors  are 
blocked from  priority  because of cache  interleave conflict. 

After  the initial  filtering at  the  four  prepriority  stations, 
the surviving requestors  meet  in  central  priority  for final 
selection  into  the  pipeline  for processing. At  this  station, a 
straightforward  priority  order  chain  selects  the  requestor. 
For  reasons explained  above, requestors  from  the two 
BSN preprioiity  groups haw  the highest priority,  followed 
by the  CP  FAR  prepriority  group  and finally by the  store 
prepriority  group. A grant is not always given whenever 
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there is a pipeline  request.  Some of the  reasons  relate  to 
actions  taken as part of recovery to  prevent  propagation 
of hardware  faults  and also to avoid certain classes of 
lockout  problems  caused by allowing into  the  pipeline 
requestors  or  operations  that may inadvertently  prevent 
another  requestor  or  operation  from  completing 
processing. Requestors  not  granted  pipeline access during 
the  priority  arbitration cycle continue  to  request  priority 
during  each  machine cycle until a grant is received. 

Directory 
Each  L2  chip  contains two  logical directories (or cache  tag 
arrays),  one  per BSN port.  Each  directory consists of  256 
rows and is six-way set-associative. With a  128-byte  cache- 
line size, the  directory  supports a total of 384 KB of L2 
cache. A  single  logical directory  contains  the following 
fields: address,  CPID,  changed  line  (CL),  and  LRU. 
Physically, the  address  and  CPID fields share  the  same 
custom  SRAM  macro, which is accessed or  updated in the 
C l  cycle of an operation in the pipeline. The  CL  and 
LRU  are  contained in a shared  SRAM  array  macro  that is 
accessed or  updated in the  C3 cycle of the  operation in 
the  pipeline. 

The  address/CPID  directory  array may be accessed via 
the  BIF  register  during a snoop  search  or via the  C1  stage 
of the  pipeline  during  other  requests.  The  BIF  register 
path  to  the  directory is needed in order  to  maintain bus 
protocol with the BSN for  reporting a  possible XI  hit  on a 
bus  snoop  operation. Since there  are two BSN ports  on  an 
L2 chip, the  directory is logically partitioned  into two 
halves to  support  the possibility of simultaneous  directory 
lookups  due  to  bus  snoops  on  each BSN bus. Snoop 
requests may be received from  the BSN ports  at any time; 
when  conflicts between  snoops  and  other  pipeline  requests 
occur,  the  snoop receives  priority, and  the  internal  request 
is recycled through  the  pipeline  once  the  snoop  request 
has  been satisfied. 

The  directory  contains  status  information  for  data in the 
L2 cache,  as well as information  on  data  ownership. A 
cache  line  can exist in four possible ownership  states:  CP 
exclusive, CP  read only with L2 exclusive, multiple  copies 
in L ~ s ,  and invalid. This  ownership  information is in the 
three-bit  CPID  tag field, where  one of the bits is the 
multiple copy (MC)  tag  bit. 

The  directory also maintains a changed  line  (CL)  tag 
which tracks  whether a given line  has  been  updated in the 
L2 cache by a CP  store  operation or was brought  into  the 
L2 cache  already in a changed  state  from  another L2 
cache via a BSN bus  operation.  For a cast-out  operation 
(either  LRU or XI), this information is used to  determine 
whether  the copy of the line  in  this L2 cache is more 
recent  than  the copy  in  main  memory. If so, a  memory 
update  operation  and/or  XI  cast-out  operation will result. 
Each  directory  entry  has a CL bit.  Normally, the  CL bit is 
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set by a CP  store  operation in the  C3 cycle of its  pass 
through  the  pipeline  when it is known whether  or  not  the 
operation  has  been  rejected. 

An LRU  array is also  maintained  for  each  congruence 
class (row)  in the  directory.  The  partitioned  LRU 
algorithm  determines which of the six compartments will 
be the  one  to  be  overwritten with new data when  a new 
line is being  written  into  the  cache  for  that  congruence 
class. If there  are  compartments which are  not  currently 
valid, one of these will be  chosen first. If all compartments 
are valid, the  compartment  pointed  to by the  LRU  code 
will be  chosen. A partitioned  LRU  scheme was chosen 
because it can  support a CP  store  operation every cycle 
and its smaller  code field has a  silicon area  advantage over 
a true  LRU  algorithm, which requires a longer  LRU  code 
field. Also, comparisons of the  partitioned  and  true  LRU 
schemes have  shown very little  performance  difference. 

CP controller 
The  CP  controller is depicted in Figure 4. The  CP 
controller logic provides the  interface  for  up  to  three CPs, 
services  all CP  fetch  and  store  requests,  and  handles  XI 
requests  and  responses  from  the  other  L2  clusters.  The 
interface  contains a fetch/store  command bus, a fetchhtore 
address bus,  a bidirectional  fetchistore  data bus,  a fetch 
responseidata valid bus, store  stack  response signals, an 
XI command bus, an  XI  address bus, and  an  XI  response 
bus. 

This  interface was designed  to  handle  one  store  request 
per system cycle from  each  CP,  and  to  optimize  the  data- 
return  time  for  CP  fetches, while meeting  the packaging 
constraints  imposed by the  chip technology. Each  CP  has 
a dedicated  interface,  enabling  each  to  transmit  fetch, 
store,  and XI operations  simultaneously  and  independently 
of one  another.  The  XI  request  controls  are  separate  from 
those  for  fetch  and  store  operations, allowing XI  requests 
to  be  processed  regardless of the  fetch  or  store activity for 
a given CP. 

Fetch  and  store  commands  are  sent  from  the  CP  to  the 
L2 via the  command  and  address buses. On  store 
operations,  up  to  one  quadword of store  data is also sent 
with the  command  and  address.  The  information is 
captured in a CP  interface  register  (the  CPAR),  and  then 
routed  to  either  the  fetch  or  store  controls  for  further 
processing, allowing the  L2  to  accept a new CP  operation 
every cycle. 

To  optimize  CP  performance,  fetch  requests  are given 
high priority  and may be  routed  to  prepriority directly 
from  the  CPAR.  This  helps minimize L2 latency on fetch 
requests. While  only one  outstanding  fetch  request  per  CP 
is permitted,  the L2 does allow the  CP  to  present its  next 
fetch  request  once  the  data  transfer  for  the  initial  request 
has  begun.  This,  too, is done  to minimize storage latency 
effects. 
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There  are  three types of fetch requests: 

Read-only Typically, these  are millicode or S/390 
instructions.  Read-only data may reside in the L1 caches 
of multiple CPs. 

more bytes will be  altered. A CP must have exclusive 
ownership of a  line in  order  to modify it. 

operand  information.  The L2 may grant read-only or 
exclusive access, depending  upon  the  results of the 
coherency checking. 

Store  requests  are  gated  into  separate  address  and  data 
store stacks. The stacks are eight entries  deep, allowing 
the L2 to  accept  up  to eight store  requests  from  each CP. 
The stack queues  the  store  requests  until L2 activity 
permits  the processing of the next sequential  store  request 
to  the cache. 

Since the  CP normally owns the bus, each  CP is allowed 

436 from a  previous fetch  request  are ready for  transfer.  When 

Exclusive A data line is requested  in which one  or 

Conditional exclusive This  request is usually for 

to  continue sending store  requests unless or  until  data 

this  occurs, the  CP  controller issues  a fetch  alert  response 
two cycles before  the  transfer is to begin. This enables 
the  CP  to  refrain  from  further  store activity and  to switch 
the BIDI direction  to receive the  fetch  data.  Once  the 
data  transfer is complete,  the BIDI is switched back 
to  its  default  state,  and  store  request activity can 
continue. 

Cross-invalidate (XI)  requests  are  sent  to  the  CP by the 
L2 CP  controller when the  status of a  line  held in the L1 
must change. A  line may be invalidated if another  CP 
submits an exclusive fetch  request  or if the L2 must  cast 
out  the line.  A line may also  be demoted  from exclusive to 
read-only if another  CP  requests access to  the line. An XI 
request may originate  from  another  CP within the  cluster 
or  from  another  cluster. 

Each L2 chip in the  cluster can send a new XI request 
every cycle until  the XI stack within the  CP is filled. It is 
the L2’s responsibility to  track  the  number of pending XI 
requests  and  not overflow the XI stack. As the  CP 
processes the XI requests in FIFO order, it responds by 
sending XI completion  responses  to  the L2. Queueing  the 
XI requests within the  CP helps optimize average XI 
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latency by enabling a CP to  return  an  XI  response every 
cycle. 

Fetch requests 
As  stated previously,  all requests  for L2 access must  be 
processed  through  the L2 pipeline.  As a selected  fetch 
request is routed  to  central priority, the  fetch-request 
controls  determine  the availability of the  desired  cache 
interleave. If an  interleave conflict is detected,  no  pipeline 
access is permitted  in  that cycle, effectively blocking 
lower-priority requestors  from  “stealing”  the  pipeline  from 
a fetch  request.  The  fetch  request is granted  pipeline 
access the following cycle, and processing continues. 

pipeline. Each  time a fetch  request  makes a pass  through 
the  pipeline,  prepriority  and  central  priority  calculations 
are  performed. Two  mechanisms are  used  to  control  the 
interruption  and  resumption of fetch  requests.  These  are 
the  NEEDS  and  MODE  registers. 

Each CP interface  contains a fetch  NEEDS  register. 
This  register  contains  an  encoded  value  indicating  the 
condition which must be satisfied  in order  for  the  fetch 
request  to  resume processing.  A NEEDS  value of all zeros 
indicates  that all conditions  are satisfied;  any nonzero 
value indicates  the  cause of the  interrupted processing. 
Once  the  required  resource  becomes available, the 
NEEDS  register  for  that CP is reset,  and  the  fetch  request 
is free  to  reenter  prepriority  for  pipeline access. 

Each CP interface  also has  a MODE  register.  The 
MODE is used to  “remember”  the  results of the  pipeline 
pass in progress so that  the  subsequent passes will be 
processed  more efficiently. For  example, checks which 
were successfully completed  on  an  earlier  pass  for  this 
request  need  not  be  repeated.  The  NEEDS  and  MODE 
registers maximize pipeline efficiency by preventing  fetch 
requests  from stalling the L2 pipeline. 

requests a line of data  that is currently held  “exclusive” 
by CP2 (another CP on  the  same  cluster).  On  the first 
pipeline pass, an  invalidate  XI  request is sent  to CP2. 
CPl’s NEEDS is set  to  indicate  that  an  XI  response is 
required  before processing can  continue.  The  MODE 
register  indicates  that  the  request  hit in the L2, but  to a 
line  owned exclusively by another CP. When  the  XI 
response  arrives, CPl’s NEEDS is reset,  and  the  fetch 
request  makes its second pass through  the  pipeline.  The 
MODE  indicates  that  the  line was  held exclusive, so CP2’s 
store  stack must now be  checked  to  ensure  that  the  latest 
copy of the  line is identified. If no  store  to  this  line is 
pending,  the CP1 fetch  request  obtains exclusive access to 
the  line  and  the  data  are  returned. If a store  to  the 
requested  line is pending, CPl’s fetch  request is again 
interrupted, this time  to allow the  store  to  be  processed. 
The  NEEDS  register  indicates waiting for  stores,  and 

Fetch-request processing may be  interrupted  once in the 

To  illustrate  this  concept with an example, suppose CP1 

MODE  indicates  store  stack  compares  detected.  Once 
the  cache  has  been  updated with the  latest copy of the 
requested line, NEEDS is reset,  and  the final pass  through 
the  pipeline  completes  as above [8]. 

Fetch  requests  are resolved  in one of three scenarios: 

1. A fetch  can  complete in a  single pipeline pass. This 
occurs  on  requests which hit in the L2 with the 
requested  line held exclusive by the  requesting CP; it 
also  occurs on read-only and  conditional exclusive 
requests which hit CP read-only in the L2. The eight 
requested  quadwords  are accessed by the  cache  controls 
and  routed  to  the CP BID1  data bus. The  completion 
response is sent by the CP controller with the first data 
transfer,  indicating  that a new CP fetch  request may be 
sent. 

2. A fetch  request may make  multiple  pipeline passes in 
order  to  generate local  (within this  cluster)  XI  requests. 
This  scenario is in effect if the  fetch  request  hits in the 
L2 but  the  line is held exclusive by another CP, or if 
the  request was an exclusive fetch which hits  read-only 
in  this L2 and  the  line is not  resident in  any other L2 
cluster.  For  these cases, the  fetch  request  makes 
multiple  pipeline passes to resolve the conflict(s) and  to 
update  the  directory  status.  On  the final pipeline pass, 
data  are  returned,  and  the  completion  response is sent 
to  the CP. 

3. A fetch  request  results in  a request  sent  on  the BSN 
bus. There  are two scenarios in which this  occurs. In 
the first, the  request is an exclusive fetch which hits 
read-only, and  the  line is in  a shared-ownership  state 
where  other  clusters have copies of the line.  All of the 
copies in other  clusters  must  be invalidated before  the 
current  requestor  can  be  granted exclusive access to  the 
line.  The  BUSRR  sends  an  invalidate  request  to  the 
remote L2 clusters via the BSN bus  and  then notifies 
the  requestor  upon  completion.  Once invalidation 
notification has  been received, the  requesting  fetch is 
processed  through  the  pipeline  as previously described. 
The  second  scenario is the L2 miss. This  results in an 
LFAR  controller  operation  to  request  data  from  the 
memory subsystem. In  this  case,  data  are  returned  from 
one of three  sources: main  memory, the L2.5, or 
another L2 cluster.  Data  are  routed  to  the  requestor 
CP immediately; the  LFAR  controller  then  schedules 
the  appropriate  cache  array  update.  This  approach is 
used  to  help minimize the  overall L2 miss latency. 

Store requests 
Store  requests  from a given CP must  be  processed in 
FIFO  order.  Stores  from  each of the  three CPs compete 
for access to  the  pipeline in the  prepriority  arbitration 
station.  Unlike  fetches,  store  interleave conflicts are 
checked  prior  to  prepriority.  When a conflict is detected, a 
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lower-priority store  from a different  CP is allowed to 
proceed.  The  round-robin  algorithm is not  updated, 
however. This allows the first store  to have the highest 
priority  on  the next cycle, when the  interleave conflict 
should  be resolved. 

Store  requests  from a specific CP must be  processed in 
the  order in  which  they are received to  ensure  coherency. 
It is possible,  however, for a store  request  to  enter 
prepriority  to begin  processing before  the previous store 
request  from  the  same  CP  has  completed. If this previous 
store  operation is interrupted,  the  later  store  request is 
also  interrupted. Processing on the  second  store  resumes 
once  the  initial  store  operation  resumes. 

Coherency  rules  dictate  that a CP  must have exclusive 
ownership of a line in order  to issue  a store  request. 
Therefore,  the  directory  search  result must be  “hit- 
exclusive” to  the  requesting CP. Any other  result, with one 
exception, is an  error  condition.  The  exception involves a 
store  request  where  the  directory  has  not yet been 
validated  for a previous L2 fetch-miss  operation  (the  line 
may be queued in the  LFAR, in the  process of updating 
the  cache). In this case, the  store  request is allowed to 

438 continue  once  the  cache  and  directory have been  updated. 

BSN controller 
There  are two BSN controllers  on  each L2 chip, one 
dedicated  to  each BSN port  interface. Figure 5 depicts a 
single BSN controller.  Each BSN controller is divided into 
two subcontrollers which share a common  interface  to  the 
BSN bus. The BSNAR is responsible  for all bus snoop 
activity, while the  BUSRR is responsible  for all bus 
commands  initiated  from within  a shared L2 cluster.  The 
BSN controller was designed  to allow the S/390 G4 L2 
design to  attach  to  the S/390 G3 BSN bus,  thereby 
enabling  reuse of existing components.  The BSN 
controller  therefore  contains most of the critical function 
required  to  mate  the  shared L2 cache  cluster  to  the fully 
shared memory  subsystem. 

Each BSN port  interface consists of a bidirectional 
bus (referred  to as the BSN bus) as well as several 
unidirectional  control signals. The BSN bus is used  to 
transmit  command,  address,  and  data.  Command  and 
address  information is transmitted  in  the  same cycle, while 
data  are  sent in subsequent cycles. Because of relatively 
long memory  DRAM access  times, the individual memory 
cards  are  organized  into two independent  banks [l]. 
Consequently,  the BSN bus is logically interleaved  to  take 
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advantage of this,  allowing two separate  commands  to  the 
memory  subsystem to  be active  simultaneously on each 
bus  (meaning  that  there  can  be  up  to eight  active  memory 
operations across the  four BSNs in any cycle). 

All four  shared  L2  clusters  are  considered logically to 
be  connected  to  the  same BSN bus.  However, physically 
there is a separate BSN bus  for  each  shared  L2  cluster. 
When  one L2 drives its BSN bus, the BSN chips broadcast 
a copy on  the BSN buses  to  the  other  shared  L2  clusters 
on  the following  system cycle. 

Ownership of the BSN bus is established  through a 
straightforward  handshake  algorithm, using request, grunt, 
and command select control signals. In  addition  to  these 
control signals, the  interface also includes transfer datu 
signals to  indicate  when  data  are  being  broadcast  on  the 
bus, memory  complete signals to  indicate  that a  memory 
operation  has  completed,  and X I  hit signals to  indicate 
that  there is an  XI  address  match on one of the  other 
shared  L2  clusters. 

B USRR 
All commands  destined  for  the BSN bus which originate 
in the L2 must pass  through  the  BUSRR  controller.  The 
BUSRR  register  contains a copy of the  command  and 
address waiting to  be  broadcast by this L2. It  must  pass 
through  the  BIF  register  before  being  broadcast on the 
BSN bus. Data  to  be  stored  or cast out of the  cluster  are 
held in the  line  store  buffer. 

The  BUSRR  can receive command  requests  from  three 
sources.  These  sources  are, in the  priority  order in which 
they are serviced: 

1. The  pipeline  (for  example,  because of special  signaling 

2. The LSAR controller  (an  LRU  cast-out is required). 
3. The  LFAR  controller  (a local CP  fetch  request  results 

in an  L2  cache miss, requiring a snoop  to  the  other 
clusters). 

When  the  BUSRR receives  a command  request, it 
attempts  to  gain  ownership of the BSN bus via a request 
signal. Upon  completion of BSN bus  arbitration,  the BSN 
bus BID1 is switched to drive mode,  and  the  command, 
address,  and  data (if any) are  transmitted in subsequent 
cycles. Once  the  command  and  address have been  sent, 
the  command is transferred  to  the  BUSRR-B  register, 
freeing  up  the  BUSRR  for  the next command  request. 
The  BUSRR  completes  the  command by notifying the 
appropriate  shared  L2  controllers of operation 
completion,  generating  encoded  responses  to  be  returned 
to  the  requesting  CP,  and  controlling  the dataflow  cross- 
point  to  route  fetch  data  to  the  correct  destination. 

and  memory  utilization, two performance  features have 

commands  to  the  CPs). 

To  reduce  L2 miss latency and  better  manage BSN bus 
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been  added  to  the  BUSRR  for  those cases where a CP 
fetch misses  in the  L2  cache: 

1. The  BUSRR  monitors  the  pipeline in order  to  predict, 
up  to two cycles in  advance,  a new fetch  request  for 
data  not  held in the local L2  cluster. If the BSN bus is 
not  currently busy, the  BUSRR  immediately issues  a 
bus  request.  Command  and  address  information  are 
then resolved  in parallel with bus  arbitration,  enabling 
the new request  to  be  transmitted as soon  as  the  bus is 
available. 

2. When  fetch  data must replace  an existing cache  entry, 
the  line  being  replaced  must  be  written back to  main 
memory if it has  been modified. Two mechanisms are 
available-LS/LF [l], and  conditional  line  store 
(CLST)-for casting out  the  “old”  line with  minimal 
performance  impact.  The  method  used is dependent 
upon  the availability of the  data  being  stored  relative  to 
the  completion of bus  arbitration  for  the  fetch  request. 
If the  data  to  be  stored  are  immediately available, the 
LS/LF  operation is  used. If not  (and  this is the  more 
likely case, as  an  LRU  operation may involve XI 
requests  as well), the  fetch  request is transmitted on 
the  bus immediately. The  CLST  command is then  used 
to  complete  the  operation,  once  the  bus  and  the  data 
to  be cast out  are  both available. 

BSNAR 
The BSNAR is responsible  for processing commands 
originating in the  other  shared  L2 clusters. The incoming 
command  and  address  are received  in the  BSNAR via the 
BIF  register,  where a directory  search is  immediately 
initiated  to  determine  whether  the  requested  data  are 
resident in the L2. If the  directory  search conflicts with 
an  operation  currently in the  pipeline,  that  operation is 
rejected  and  scheduled  for  retry.  The  BIF-generated 
directory  search must  have the highest pipeline  priority 
because of a fixed-cycle relationship on the BSN bus 
between  the  request  and  the activation of X I  hit to 
indicate  that  further  action is required in the receiving L2 
cluster.  In  addition  to  the  directory  search,  additional 
address  compares  are  performed against the  LFAR  and 
LSAR  to  determine  whether  the  requested  data exist in  a 
buffer.  This  protects  data in transition  to  either  the  L2 
cache  or  the main  memory. This  address-compare  function 
is discussed  in detail in  a later section. 

In  the  event of a directory hit or  an  LFAR/LSAR 
address  compare  match,  the X I  hit signal is raised  to 
notify the  requesting  cluster  that  further  action is required 
in the receiving cluster.  At  this  point,  the  BSNAR 
requests  pipeline  prepriority in  a manner similar to  the 
other  requestors.  Like  the  CP  controller,  the  BSNAR  has 
NEEDS  and  MODE  registers which control  and  monitor 
progress  through  the  pipeline. 
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the previously raised XI hit  ensures  that  this  cluster is the 
current BSN bus  master. 

I LFAR controller. 

The  actions  that must be  performed by the BSNAR are 
dependent  upon  the  command  and  the  status of the  line in 
question. A whole  range of actions  are possible, from 
doing  nothing  to  initiating  an X1 cast-out  to a requesting 
L2 cluster, with corresponding invalidation of the local 
cache  entry. As an example, suppose  the BSNAR receives 
a  fetch-exclusive request  from  another  cluster  and  that  the 
current  status of this requested line is exclusive to CPx, 
changed, where x represents any one of the CPs in the 
address-matched  cluster.  The BSNAR must 

Send  an XI command  to CPx requesting  that CPx 

Wait for  an XI response  from CPx. 
Wait for possible outstanding  store  operations  to  the 
requested  line by CPx to  complete. 
Access the L2 cache in order  to  read  out  the  line while 
updating  the  directory  to  invalidate  this  entry. 

invalidate  its copy of the  line. 

Once  the  line of data  has  been moved to  the  line  store 
buffer,  the BSNAR must  request  the BUSRR to issue 
an XI cast-out with the  requested  data.  The usual 

440 handshaking  protocols  are  not  needed in this  case  because 

LFARILSAR controller 
The  concept of data  buffering  has  been  around  for  some 
time; it is an  essential design technique  for a  high- 
performance  multiprocessor system [ 9 ] .  The basic idea 
behind  buffering is to minimize latency  between  cache  and 
main storage  and  also  to maximize cache utilization by 
allowing concurrent  cache  operations  during cache-miss 
situations. In the  application  for  the Si390 G4 L2, each 
BSN port  contains a  line-fetch buffer  and a line-store 
buffer;  each  buffer  also  has a pair of associated  address 
registers. The following is a description of buffer- 
management  techniques  employed in the LFARiLSAR 
controls. Especially noteworthy is the  feature which 
enables  each buffer to  appear  to have the  performance 
of a multiple buffer  design. The  problem of storage 
consistency associated with data  buffer designs is also 
addressed. 

L FAR 
The  hardware  controller  that  manages  the  line-fetch 
buffer is called LFAR. Figure 6 depicts this controller. 
LFAR is used  when  a request  from a CP misses the L2 
cache  and a BSN bus operation is needed  to  bring  data in 
from  elsewhere in the memory hierarchy. A pair of LFAR 
registers, LFARA and LFARB, are  associated with each 
BSN port.  Thus,  there  are two LFARA registers  and two 
LFARB registers  on  the L2 chip. 

Because  a given L2 may have  a  single bus  operation 
pending  at any point in time (a restriction imposed by the 
BSN bus  protocols), a  single buffer was deemed  adequate 
if it  could be  managed efficiently. A second  buffer would 
have  used up valuable chip real estate. Typically, a buffer 
has  only one  corresponding  address  register; in this 
L2 design, however,  a second  address  register was 
implemented  to  enable  concurrent fetch-miss operations 
and  to  reduce  bus  idle  time  between successive fetch 
operations on the  same BSN bus. The LFARA and 
LFARB registers work  in tandem so that while LFARB is 
waiting for  data  to  return  from  the BSN bus, LFARA can 
be  loaded with the next outgoing  fetch  operation.  Once 
the  buffer  starts  clearing  out (Le., the first data  shot  has 
been  read  out  to  be  stored  into  the  cache),  the  fetch 
residing  in LFARA can  initiate a  new request  to  the BSN 
bus for processing. By the  time  data  return,  the  data  from 
the previous fetch  operation will already have vacated  the 
buffer. 

The following describes a  fetch-miss operation as 
handled by the LFARA and LFARB registers. A CP fetch 
operation  detects a miss during  its initial pipeline  pass 
(assuming no address  or  resource conflicts). The  fetch 
address is loaded  into LFARA while the victim cache-line 

P. MAK ET AL. IBM J. RES. DEVELOP. VOL. 41 NO. 4/5 JULYiSEPTEMBER 1997 



address is loaded  into  LSARA.  A  request is made  to  the 
BSN for  permission  to  broadcast  a  fetch  command.  Once 
the  command is broadcast,  the  fetch  request is moved 
from  LFARA  to  LFARB  to await the  return of the  data 
and  to  start  the  sequence  that will load  the  data  into  the 
L2 cache.  Returned  data  are  simultaneously  written  into 
the  line-fetch  buffer  and  sent  to  the  requesting CP. The 
LFARB logic requests  priority  and  makes  a  pass  through 
the  pipeline  to  write  the 128  bytes of data  from  the BSN 
line  buffer  into  the L2 cache. One  quadword is written, 
per cycle, on consecutive cycles until  the  entire  line is 
read  out of the  buffer  and  written  into  the  cache. 
If this process completes  without any errors (e.g., no 
uncorrectable memory errors  are  detected),  another  pass 
through  the  pipeline is made  to  validate  the  directory 
entry  for  the new line. 

The  directory  entry validation is performed in a 
separate  pipeline pass for two reasons.  First, in the  event 
that  an  uncorrectable  error is detected in memory during 
the  line  transfer,  the recovery protocol is to  post  a 
machine check interrupt  code (MCIC) to  the  operating 
system, which causes it to deconfigure the physical page 
frame.  Until this  occurs,  the L2 must block any  further 
references  to  the  corrupted  sector of the  page  frame by 
not allowing the  line  to  be  labeled as valid in the cache. 
The  timing of LFARB's  validation  pass  guarantees  that 
the  pass is not  made until the  last possible storage UE 
report  has  been  detected.  The  second  reason  for having 
the  separate  validation  pass is to  prevent  subsequent 
operations to the  line  until it is loaded in its entirety.  This 
is accomplished via an  address  comparator  associated with 
LFARB, which reports  an  address-compare  match in the 
subsequent  operation's initial pipeline pass. 

Unlike  the CP FAR  and  the BSN controllers,  LFARB is 
governed only by a  mode-state machine register  to allow it 
to  transition  through  three possible hardware  states: wait 
for  data,  cache  load pass, and  directory validation  pass. 

The  performance benefit of the  second  LFAR  register is 
realized because as soon as the  cache  load  from  the first 
buffer  entry is underway, the  buffer is marked available to 
receive new fetch  data,  enabling  a new fetch  operation  to 
be issued to  the BSN bus.  With this  approach,  each L2 is 
able  to achieve concurrent fetch-miss operations with only 
one  data buffer. 

As  in other  controllers in the design, each  LFAR  has its 
own address  comparator logic for serializing operations 
that  are  potentially in conflict with operations  currently 
residing  in LFAR.  These  address  comparators  serve  one 
basic purpose:  They avoid problems  relating  to  data 
integrity.  However,  they  can easily create  deadlock 
problems if not used  carefully. For  normal  situations,  a 
partial  address-compare  range comprising the bits used  for 
selecting  the  directory row (or  congruence class address) 
is sufficient to achieve the  desired  effect.  Although  a 

C4 LRU  address selection based  on a 
CFAR fetch-miss operation 

I 

Snoop address- Address- 
compare results compare  results 

"""i 

To BSN local pipe 
prepriority logic 

compare  based on a  subset of the full line  address  range 
results in a  compare  match  overindication,  the  increase in 
queueing  times  caused by it is slight and  therefore  has  a 
negligible impact  on  performance. Besides, a  compare 
range  based  on  the  directory  congruence class was 
necessary to avoid the  situation in which back-to-back 
fetch misses on  the  same BSN bus are  concurrently 
targeting  the  same  directory  entry  for  cache-line 
replacement.  A full line  address  compare is needed  to 
protect  the recently acquired  storage  data  from being 
overlooked on a  directory  search  for  a bus snoop 
operation.  A  failure  to  report  an XI hit on  the BSN bus 
will violate  cache  coherency rules. 

LSAK 
An LSAR  controller is depicted in Figure 7. The  line- 
store  buffer  corresponding  to  the line-fetch buffer is 
managed by the  line-store  address  register.  Each  time  a 
fetch  operation  from a processor misses the L2 cache, LSAR 
is responsible  for  the eviction  of the  LRU  targeted  line 
from  the  cache  to  make  room  for  the new  fetch-miss data. 

In  an  arrangement  analogous  to  the  LFAR  just 
described,  there  are two LSAR  registers,  LSARA  and 441 
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LSARB,  dedicated  to  each BSN port,  sharing a  single  line- 
store  buffer.  The  cast-out  data  are held  in the  buffer  until 
they  are allowed to  transmit on the bus. Operationally, 
LSARA  has a hardware  sequencer  (the  mode-state 
machine  register)  that  removes  CP  ownership of the  LRU 
line  and  ensures  that all  possible updates  to  the  LRU line 
are  completed  before moving the  data  from  the  cache  into 
the  line-store buffer. Once  data  are in the  buffer,  LSARB 
continues  the  cast-out  operation by protecting  the  data 
(via a full address  compare) until the BSN bus is available 
to  process  the main  memory  write-back operation.  After 
the shift from LSAKA to LSAKB, LSAKA becomes 
available to  operate on a new cast-out  operation.  Just as 
LFAR is capable of issuing back-to-back fetch  operations 
on  the BSN bus, so too  can  LSAR issue back-to-back 
write-back operations  to main store. 

L2, each  LRU  operation  requires  an invalidation of CP 
ownership of the  cache victim (or LRU)  line.  In  fact,  the 
hardware  sequence  for invalidating and  ensuring  the  most 
recent  data  in  the  L2  cache is the  same  sequence  used by 
both  the  CP  and BSN controllers when  changing the 
directory  state of an  address  resident in the L2. 

more  recent  than  the main store copy), the  data  are 
moved out of the  cache  and  into  the  line-store  buffer  to 
wait until the bus is ready to  accept  the  memory-store 
operation.  During this time,  LSARA  can  start  the 
preparation  for a new cast-out,  but it will not move the 
new data  into  the  buffer  until any previous  cast-out  data 
are  on  the bus. 

Both LSAR registers have  a congruence class address 
comparator  to  prevent local CP operations  from 
interfering  with  the  LRU  congruence class management. 
This also prevents any inadvertent  fetches  from  being  sent 
to  the BSN bus  ahead of a cast-out  operation,  since  that 
would violate cache  coherency.  An LSAKB full address 
cornparator is needed  to  report  an  address  match in the 
event  that a remote L2 is requesting  the  data while they 
are in the  line-store  buffer. 

The  cache  interactions  created by multiprocessors in  a 
shared  L2 system require  the ability to  handle  multiple 
fetch-miss operations  even  to  the  same BSN bus. Because 
of technology constraints, only one  line-store  buffer  per 
BSN port  side was possible, necessitating a  high- 
availability buffer design. This was accomplished by 
sharing a  single line-store  buffer  between two LSAR 
registers. The  sequence  LSARA  requires  to  invalidate  the 
evicted cache  line  from  the local CPs  and  to  ensure  that 
the  latest modified data, if any, are  inside  the  cache 
before moving the  data to the  line-store  buffer  can  take a 
number of cycles. By having an  LSAR  register  pair,  the  L2 
is not  stalled  after  an  initial  fetch-miss  operation which 

To maintain  the  full  subset  cache  rule  between  L1  and 

If the  LRU  line is “dirtied”  (meaning  that  the  data  are 

442 ties  up  both  an  LFAR  and  an LSAR. With  the  second 

LFARILSAR  register, a second fetch-miss operation  can 
be  started while the initial  fetch-miss operation is 
underway.  As soon as that  completes,  the next fetch 
operation  or  cast-out  operation is  ready to  issue  a new bus 
request. 

Cache array 
The S/3YO G4 L2 has a total  cache capacity of 384 KB per 
chip. This is constructed  from  four physical arrays,  each 
containing 96 KB of data  and providing  eight  bytes per 
access cycle. Since the  L2  chip must  provide 16 bytes per 
cycle per  operation, two physical arrays art:  acccsscd i n  
parallel  to  provide  the necessary data  rate. 

accesses are  for 128-byte  lines) alternate between pairs 
of physical arrays in  successive cycles. Thus, any given 
physical array is busy only in alternate cycles for 
multicycle operations.  The  intermediate cycles are 
therefore available for use by another  operation.  This is 
termed  “interleaving,”  and  each  pair of physical arrays is 
referred  to  as a “cache  interleave.” 

Cache accesses that  require  more  than 16  bytes (many 

This type of two-way interleaving allows for two 
simultaneous  cache accesses by two independent  storage 
operations.  Interleaved  operations may be any mixture of 
fetch  or  store  operations, of any length. If one  cache 
access is already in progress, a second access  never has  to 
wait more  than  one cycle to find the  array  containing  its 
starting  address available for use. In situations  where  both 
interleaves  are busy, additional  storage  operations  must 
wait for  one of the active operations  to  complete  before 
access to  the  cache  array is granted. 

Each  cache  interleave  has  an  independent  controller 
that  controls all aspects of cache-array access,  including 
address  increment  and  interleave availability  notification. 
For multiple-cycle  accesses, addresses  and  control 
information  are passed  back and  forth  between  the 
interlcave  controllers on each successive cycle. 

Each physical cache array serves both BSN buses. Half 
of the  array  addresses  are  dedicated  to  one BSN bus, and 
the  other half to  the  other BSN bus.  This  restriction exists 
because of the  structure of the  cache  directories, which is 
dictated by directory access-time requirements  for BSN 
snoop  operations. 

The  four physical cache arrays are  manipulated  to 
appear  as two logical arrays  (interleaves) with 1024 rows 
of six compartments  each, with 128 bits  per  compartment. 

Cache-array writes may update  either 64 or all 128 bits 
of a compartment  to  accommodate  doubleword  and 
quadword  stores  from a  CP. To store less than a 
doubleword,  the  CP first performs a  byte merge  into a 
doubleword in the  L1  cache,  then  transfers  the  entire 
updated  doubleword  to  the  L2  cache. 

Figure 8 illustrates  the  complete dataflow,  with cache 
arrays  and including buffers  and  cross-point switches used 
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for accessing the  cache.  This  structure of buffers  and 
cross-point switches  is designed  to maximize  system 
throughput by allowing multiple  simultaneous  data 
transfers  for  different  requests. 

At  the  top of the figure, inputs  from  each of the five 
bidirectional  data  buses  are shown. At  the  bottom,  outputs 
are shown to  each of these  same five bidirectional buses. 
Each  bus may be in either drive or receive mode  at  any 
given time, so up  to five ekernal  data  transfers may occur 
simultaneously. 

All data-write  paths  include a buffer which is used  to 
hold data  until  the  needed  cache  interleave  becomes 
available for writing. Buffers  are  needed  on  the  CP 
interfaces  because  the  CPs  are allowed to  send a store  at 
any time  (provided  that  the  store  data  stack is not full), 
and it  may be necessary to wait for  the  cache  interleave  to 
complete  another  operation  before  the  data  can  be  written 
to  the  cache. Buffers are  needed  on  the BSN interfaces  to 
allow multiple  operations  to  be active simultaneously. 
Since  the S/390 G4 L2 does  not  stall waiting for 
outstanding BSN bus  data  requests,  it is possible that 
returning  data will encounter a busy cache  interleave, 
necessitating  the  buffer. 

All data  written  to  cache  must  be  accompanied by ECC 
checking  bits. The  CP  stores  data with the  appropriate 
ECC  check  bits  already  supplied.  Data  from  the BSN bus 
arrive with parity  and  are  stored with ECC  bits  generated 
by the  ECC  stations  (shown). 

Data-read  paths  include  buffers  for  data  destined  for 
the BSN bus  but  not  for  the CPs. The BSN path  requires 
buffers  because when data  are  being  readied  for  cast-out 
to  the BSN bus, the  BUSRR may not yet  have been 
granted  priority  to  send  data  onto  the bus. The  fetch-alert 
response  on  the  CP  interface is used to notify the  CP in 
advance  that  data  are  about  to  be  returned, blocking the 
CP  from  sending any  new stores  on  the  BID1  interface, so 
data  that  are  ready  can always be  sent immediately to  the 
CP  and no buffering is needed. 

All data  from  cache  are first checked  (and  corrected if 
necessary) by the  ECC  correction  stations (shown),  since 
both  the  CP  and BSN expect to receive data with parity, 
not  ECC. 

The seven independent  cross-point switches  shown  in 
the figure are a very important  feature  for  maintaining 
performance in the S/390 G4 system SMP  environment. 
These switches operate  independently  for  each  CP  and 
BSN port  and  for  each  cache  array, allowing up  to five 
simultaneous  transfers  on  the five L2 cache  chip  data 
ports.  Data  do  not  pass  through  one  common bus, which 
would  have the effect of limiting the L2 to  one  data 
transfer  at a time.  Instead,  each  port is capable of 
operating  independently of the  others.  Each  CP  port is 
capable of receiving data directly from  either  cache 

444 interleave or either BSN bus, each BSN line-store  buffer 
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is capable of receiving data  from  either  cache  interleave, 
and  each  cache  interleave is capable of receiving data 
directly from any CP-store  data  stack  or  either BSN line- 
fetch  buffer.  As  one example, all five L2 chip  ports may be 
active concurrently  for  the following four  simultaneous 
operations: 

1. Fetch  from  cache  interleave 0 to CPO. 
2. Fetch  from  cache  interleave 1 to CP1. 
3. Fetch  from BSN 0 bus  to  CP2  (busies two L2 ports). 
4. Store  from BSN 1 line-store  buffer to BSN 1 bus. 

Shared-cache coherency in the S/390 G4 L2 
cache 
The S/390 G4 system has  three levels of cache  hierarchy, 
in  which the first-level (Ll) and second-level (L2) caches 
may contain  storage  data  that  are  more  recent  than  those 
existing  in the  third-level (L2.5) cache  or  in  main memory. 
The S/390 G4’s novel approach  to tightly coupling  up  to 
12 microprocessors by creating a  system structure 
consisting of distributed  shared-cache  clusters  led  to 
further novelty  in coherence  management  for a  multilevel 
cache hierarchy. The  concept of hierarchical  ownership 
is introduced  for  the first time in S/390 with the G4 
system. 

through L1 caches  located on each of the  CP chips, shared 
store-in L2 caches  located  on  separate L2 chips, and  store- 
through L2.5 caches  located  on  each of the  four logical 
BSN buses.  Essentially, the L2.5 operates  as a main  store 
cache  for  frequently accessed, shared,  read-only  data.  The 
L2 caches  are  supersets of the L1 caches  that  are  part of 
the  same  cluster; i.e., if a line of data exists in any of the 
three L1 caches  that  are  in  the  cluster, it  must  also exist 
in the L2 cache  in  the  same  cluster.  The  reverse is not 
true, in that a line of data may exist in an L2 cache 
without existing  in  any of the L1 caches in the  same 
cluster. However, there is an  exception  to  this  subset  rule. 
The  storage  address  range  where  nonupdatable millicode 
is kept  can  be in the L1 while not in the L2. This was 
done  to  prevent  certain  deadlocks on the BSN bus  from 
occurring [lo]. There  are no superset  or  subset  rules 
between  the L2 and  the L2.5 caches, since the L2.5 can 
never  hold  data  that  are  more  recent  than  the copy in 
either  the L2 caches  or main store. 

The  cache  structure  for  the system  consists of store- 

Coherency is maintained  through  the  use of directory 
states  that  are defined as follows for  the first two levels of 
caches. For L1 caches,  three  directory  states  are defined: 
invalid, read-only,  and exclusive. The  read-only  and 
exclusive states simply tell the  CP  whether  or  not  the  data 
it  has in its L1 can  be  changed. If the  data  are in read- 
only state, a request  must  be  made  to  the L2 to  elevate 
the  state  from  read-only  to exclusive in  order  to  process a 
store. 
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For  the L2 caches,  the following directory  states  are 
defined:  invalid;  read-only to  CP(s),  MC = 1; read-only  to 
CP(s),  MC = 0; and exclusive to a CP.  The  “MC” in  this 
list refers  to a  multicopy  bit  which is used to  determine 
whether  the  line exists  in other  shared L2 clusters. A 
value of 0 indicates  that it does  not, while a  value of 1 
indicates  that it might. 

field that is part of the  directory  tag  for  each  cache slot. 
Since the  MC  bit is merged  into  the  CPID field,  only two 
bits  are used to identify the  CP  ownership  state. 

Note  that  there  are  unique L2 directory  states  to  keep 
track of which CP owns  a line exclusive, but  there  are  no 
unique L2 directory  states  to  keep  track of which CP or 
CPs own  a line read-only. This was done  to allow the 
limited directory physical space  to  be used for  ECC  bits  to 
better  protect  the  directory  contents  and  to  reduce design 
complexity. There is very little  resulting Loss in  system 
performance. 

Cache  coherency is  primarily managed by each L2 in 
the system. In  this  scheme,  the L2 simply tells  the  CP how 
data it is fetching  should  be  held  (read-only or exclusive) 
in the L1 directory,  and also when  to  invalidate  resident 
data  because of another CP’s exclusive fetch  for  the  same 
address or an  LRU  situation in the L2. There  are  three 
compelling reasons  for having the  coherency  management 
situated in the L2: 1) It simplifies the L1 function; 2) it 
eliminates L1 directory  resource conflict due  to  bus  snoop 
operations;  and 3) it allows the L2 to efficiently manage 
data in the system. By shielding the L1 from  bus  snoops, 
the design  avoided  having to allow concurrent  directory 
lookups in the L1. In  order for the L2 to successfully 
shield L1 from  bus  snoops,  the L2 must manage  the  data 
in  its attached L1 caches as  a subset of the L2 cache. 

With  the S/390 G4’s system of distributed  shared L2 
cache  clusters,  read-only  data  can  be  found in one or 
more of the L2 clusters when the  MC  status bit  is  active. 
When  the bit is inactive, the L2 cluster  has  sole  ownership 
of the  data.  This  MC  concept is widely used in bus-based 
SMP designs,  especially  in MESI (modified, exclusive, 
shared,  invalidate) schemes.  However, because  the S/390 
G4 system has a multiprocessor  node  on  the system  bus, 
as  opposed  to a  single microprocessor or a private L2, 
the  MC  concept  and  the  ownership  concept  for a shared 
cache  were  combined  to  form a new hierarchical 
ownership  concept  applicable only to  this type of system 
structure. 

The L2 directory  state is encoded in  a three-bit  “CPID” 

An  example  demonstrates  the  advantage of hierarchical 
ownership: In a bus-based  SMP design where  each 
connecting  node is a private L2, modified (or “dirtied”) 
data  can exist in the L1 and its associated L2 cache. If a 
CP  across  the BSN bus  requires access to  the  same  data, a 
data  transfer  on  the  bus  results,  and  the  data  end  up being 
in both L2 caches in  a  read-only state with the  MC  bit 
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active. If the  CP now wishes to  make a  modification,  a 
second  bus  operation is needed  to  invalidate all multiple 
copies of the  data.  On  the S/390 G4 structure,  where  there 
are  multiple  CPs in  a shared L2 node, if the  offending  CP 
is on  the  same  node  as  the  processor  that owns the 
modified data,  the  fetch  operation  and  the  subsequent 
data  transfer  are  processed  entirely within the  shared- 
cache  node  without  requiring  the BSN bus. Furthermore, 
if the  offending  CP wishes to  make a  modification, the L2 
simply issues an  invalidate  command  to  the victim CP, 
again without  requiring  the BSN bus. During  this  entire 
sequence of events,  the  MC bit  within the L2 remains a 0 
while the  CPID  changes,  but only to reflect the  ownership 
changes  from exclusive to  read-only  and back to exclusive 
states. Obviously, the S/390 G4 structure  does  not eliminate 
all CP-to-CP data transfers,  but it does reduce the bus traffic 
and lessen bus  queueing, improving system performance. 

The L2 chip is also  responsible  for  maintaining  strict 
coherency  for  both L1 and L2 caches. By strict  coherency, 
it is meant  that a CP is allowed to  store  into a line only if 
it exists in an exclusive state in  its L1 directory  and a  copy 
does  not exist in any other L1 in the system or in an L2 in 
any other  cluster.  Directory  states  for  both levels of caches 
may  have to  be  updated.  This  can  be accomplished via 
commands issued by CPs within the  cluster  or via 
commands  broadcast over the BSN bus  from  other 
clusters.  For  the first type, the  CP  controller is responsible 
for making  a series of pipeline  passes  to  update  the 
directory  states, while for  the  second  type  the BSNAR  is 
responsible  for making the  pipeline passes. Updating of 
the L1 directory  states is done by issuing an  XI  command 
to  the  affected  CP(s).  Note  that  for  lines  that  are in  a 
read-only  state in the L2 directory, it  is not known which 
CPs, if any, currently own a  copy of the line, so XI 
commands  are  sent  to all three  CPs in the  cluster. 
Also note  that  one  advantage of making the L2 chip 
responsible  for  both  the L1 and L2 directory  states is that 
some of the BSN bus activity is shielded  from  the  CP 
chips, reducing  the  number of L1 directory  searches  that 
have to  be  performed. 

One  interesting  case  worth  mentioning is the  case in 
which a line  currently exists  in the L2 in  a read-only, 
MC = 1, unchanged state  and a CP within the  cluster 
makes a request  to own the  line exclusively. Prior  to 
updating  the L1 and L2 directory  states within the  cluster, 
the  CP  controller  must first load  the  BUSRR with a line 
invalidate command  to  be  broadcast  on  the BSN bus  to all 
other L2 clusters in the system. This  forces  the  other 
clusters  to  update  their L1 and L2 directory  states  for this 
line  to invalid. Once  the  CP  controller is notified that  the 
line invalidate command is broadcast  on  the BSN bus,  it 
then  proceeds with pipeline  passes  to  update  the L1 and 
L2 directory  states within the  cluster. 
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Interlocks and  contention  management 
In a nonblocking switch design such  as  the Si390 G4 
shared L2, where  multiple  concurrent  operations  are 
allowed for  improved system throughput, special care  must 
be  taken  to  maintain  data consistency. Data integrity is 
compromised  when  operations  to  the  same  storage  data 
are allowed to  overrun,  resulting in misplacement of true 
data  and  also  bad  ownership assignments. The Si390 G4 
L2 avoids this  problem by employing  a series of varied 
address  comparators  that  are  observed by each  operation 
as  it  begins  processing but  before it can  complete. 
Specifically, these  address  compares  protect against 
concurrent conflicting data accesses by multiple 
requestors.  And  they  protect  data in transit 
between  L2  clusters  and  between  cache  and main 
memory. 

are listed below. The first section lists the  compares 
observed by the  CFAR  controller as a request  starts  up. 
The  second  section lists the  compares  observed by the 
BSN controller. 

Descriptions of the  different  address-compare  interlocks 

Interlocks for CFAR requests 
When  an L2 receives  a fetch  request  from a  local CP, 
the “valid”  bit for  that CP’s CFAR  becomes active 
immediately,  but  address conflict must be  checked  before 
processing completes. A distinction  must  be  made  between 
a CFAR  request which has a conflict and  one which has 
no conflict. The  CFAR “valid” tag bit is not sufficient, 
since  it has  to  be active  in both cases, so a  special tag 
called “pending” was created. A request  becomes 
“pending”  after it has  made  an initial directory  search 
pass  through  the  pipeline with no  address conflict; Le., no 
other  requestor is active with the  same  address.  Once a 
request is “pending,” it can  proceed safely to  completion, 
as the  “pending”  tag will block new requests  from 
accessing the  same  address while it remains active. The 
tag is reset  when  the  CFAR  request is processed. 

when  its request begins are  the following: 
Different types of address  compares  observed by CFAR 

1. Other  CFAR  register  compares.  Each  CFAR has  a 
“pending” bit, which indicates  that it is valid for 
compares. If a fetch  request  sees no compares  against 
other  CFARs,  the  requestor’s  pending bit is turned  on, 
making this  request valid for  compares  done by other 
CFARs  and effectively  locking out  other  CFAR 
requests  to  the  same  congruence class. The  CFAR 
compare  protects  against conflicts caused by two CPs 
attempting  to  fetch  the  same  line or attempting  to  fetch 
lines in the  same  congruence class. This  check avoids 
the  situation in which two CPs  attempting  to  fetch  the 
same  line could both  see  the  same  directory  status 

(for example, read-only),  resulting in an  attempt by 
each  to  update  the  line (i.e., trying to  obtain exclusive 
ownership).  These types of situations would cause 
unpredictable  directory  results. 

2. Line-fetch  address  register  (LFAR)  compares.  This is 
done  to  prevent  the  current  request  from  fetching a 
line from the  same  congruence class as a line  already 
being  fetched by another  CP,  thus accessing the  same 
directory  and  LRU  information  and  potentially 
overlaying the  results of the first request.  This  check is 
necessary,  since the  CFAR  for  the first request may be 
reset  before  the  directory  update is complete.  This is 
also done  to  prevent a situation in which two CPs  are 
attempting  to  fetch  the  same  address which missed the 
L2. There is a window condition,  where  the  data  for 
the first fetch-miss  have returned  and  are in the  process 
of being  loaded  into  the  cache,  but  the  directory  entry 
has  not  yet  been  validated.  Without  the  LFAR  compare 
check, the  second CP’s fetch would detect a directory 
miss and a new fetch  for  the  same  data would be  sent 
out on the BSN bus, resulting  in the L2 having two 
cache slots for  the  same  storage  address with 
potentially  different  CP ownership. 

compare  protects against the  case in which the  current 
fetch  request is for a line  that is being  LRUed  or cast 
out of the L2. 

3. Line-store  address  register  (LSAR)  compares.  This 

4. BSN address  register  (BSNAR)  compares.  This is done 
to  prevent  the  current  fetch  request  from  attempting  to 
fetch  data  that  are  currently  being  requested by a CP 
on a remote  cluster.  To cover the  reverse  situation, 
where a CFAR is in the midst of acquiring  ownership 
of some  data residing in the L2, any new remote  CP 
request  must  be held off until the local fetch  operation 
is processed.  This  interlock is accomplished by having 
each  CFAR  maintain  another  “pending” bit  called 
“BSN  pending,” which is turned  on if no compare is 
detected against  a BSNAR.  This  makes  the  CFAR valid 
for  compare  for  subsequent  BSNAR  requests. 

5. Store-stack  compares [8]. These  are  done  to  ensure 
that any outstanding  stores  to a line  are  complete 
before a fetch  request  for  that  line is processed, a 
requirement  for  maintaining  data integrity.  Since the 
store-stack  compare is done  on a subset of the  line 
address bit range,  compares may be  indicated  when  the 
store is not really to  the  same  line.  For  this  reason, all 
checking of store-stack  compares is gated with a check 
of the  directory  hit results. If a CP  does  not own the 
line exclusive, it cannot  update it. If the  line is held 
exclusive by the  requesting  CP,  compares  are  checked 
against  the  requestor’s  store  stack. If a CP  other  than 
the  requestor owns the  line exclusive, a compare is 
done  against  that CP’s store stack. 
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Intcrlocks  for BSNAK requests 
The BSN controller is continually “snooping”  the BSN bus 
to  determine  whether  commands being broadcast  require 
action,  whether casting out  changed  data  or invalidating 
old data.  When  a  command is detected,  a  directory  search, 
using the  address  that was broadcast on the BSN bus, is 
initiated.  This is done  to  determine  whether  the  line of 
data  resides in the L2 cache. 

In parallel with the  directory  search, two address 
compares  are  done  to  protect against  cases in which the 
data exist in either  the  line-fetch  or  line-store  buffer  but 
nut i n  the  cache. ’l‘hcsc two compares  are  referred  to as 
BIF cornpares,  since the  address  to which the  comparison 
is made resides in the BIF. These  are  done using the 
entire line address bit range. 

1. An  LFAR  BIF compare  detects  cases  where  the  data 
are in the line-fetch  buffer  waiting to  be  loaded  into 
the L2 cache. If a  compare is detected,  the BSN 
controller signals the BSN chip  that this L2 has  a copy 
of the line and waits  until the LFAR has  completed 
loading  the  data  and  updating  the cache. Once this 
occurs, it proceeds normally,  i.e.,  as if a  directory hit 
had  been  detected on the  original  directory  search. 

2. An LSAR BIF compare  protects against  cases where 
the  line of data resides in the  line-store  buffer waiting 
to be broadcast on the BSN bus. If a  compare is 
detected,  the BSN controller signals the BSN chip  that 
this L2 has a copy of the  line  and waits for LSAR to 
complete its processing of the LRU operation. 
Assuming that  the line was changed in the L2 cache, 
the  data should reside in the  line-store  buffer  at this 
point, so the BSN controller  broadcasts an XI cast-out 
command  on  the BSN bus  using the  data in the  line- 
store  buffer,  and cancels the  line-store  command  that 
was loaded  into  the BUSRR (bus  request  register) as 
part of the LSAR  LKU operation. If the line was not 
changed i n  the L2 cache, LSAK would have completed 
the LRU operation by simply invalidating the directory 
entry. In this case,  the BSN controller  resets without 
casting out  the  data,  and  the  data must be  fetched  from 
the L2.5 or main store. 

3. A BUSKR compare is performed as part of 
maintaining  cache  coherency between  clusters. When  a 
CP  controller  detects  that  the multicopy  bit is on while 
doing  a  directory  search  for  an exclusive fetch-type 
command, it loads  a line  invalidate command  into  the 
BUSRR register.  This  command  forces  other L2 chips 
to invalidate their copy of the  data, so that it can grant 
exclusivity to  the  requesting  CP. A complication  can 
arise when another L2 broadcasts  a  command  on  the 
BSN bus  that accesses the  same line of data  prior  to 
the line  invalidute command being broadcast. If the line 
itnulidate command i5 allowed to  be  broadcast  after  the 

other  command  completes,  the  directory  entries for 
these  data in the  different  clusters may get  out of sync. 
To prevent  this  from  happening,  the BSN controller 
performs  a special BSNAR versus BUSRR compare 
when  processing a  command it has received from  the 
BSN bus whenever it reaches  a  state  that  causes it to 
update  the local L2 directory  state. If a  match is 
detected  and  the BUSRR register  contains  a line 
invalidate command,  the CP controller is notified to 
restart  the  operation  from  the beginning to  see  the new 
L2 directory  state  and  then  to  take  the  appropriate 
course of action to  complete  the CP request. 

Aside  from  these  address-compare checks, when 
BSNAR goes  through  the  pipeline in its  initial  pass,  it 
checks for conflicts against  pending CP operations.  When 
a  CP  operation which will result  in data  returned  from  the 
L2 cache is in progress,  the BSNAR request  must  be held 
up until the new directory  state  has  been  updated.  This is 
to  ensure  that  the  proper invalidation is sent  to  the  CP 
which actually owns the  data in question.  Otherwise  a 
coherency  problem will result.  The  method by which this 
interlock is accomplished is described in the previous 
section. 

Conclusions 
The Si390 G4 shared L2 cache design demonstrates  the 
feasibility and  advantages of shared-cache design. It is also 
evidence  that it is possible to  create  a hybrid design which 
carries most of the  advantages of fully shared  cache 
structures while enabling  the use of low-cost  system bus 
topologies.  While obviously not  as  optimal  as  a  true fully 
shared  cache,  the  shared L2 cache  cluster  approach 
provides an  attractive low-cost, high-performance 
alternative.  The G4 shared L2 allowed the Si390 
design team  to maximize reuse of existing componentry 
without compromising the  performance of the Si390 G4 
microprocessor. l‘he result is an Si390 G4 CMOS system 
which matches or exceeds ES/9000 bipolar  mainframe 
system performance  at  a  fraction of the cost. 

The basic concepts of this shared L2 cache, most of 
which were described in this  paper,  are  expected  to  be 
capable of being extended  to provide greater  cache 
efficiencies and  sharing  capabilities  for  future  development 
efforts. For example, the  cross-point switches, cache 
interleaving,  data  ownership  hierarchy,  and  pipeline 
arbitration mechanisms can easily be  extended  to  support 
a  larger  number of microprocessors in a given cluster. 
This, combined with expected  improvements in CMOS 
density,  can lead  to even larger  SMP systems or  simpler, 
more powerful SMPs with fewer components.  The S/390 
L2 cache design team is considering several of these 
alternatives as we continue  to  increase S/390 system 
performance via high-performance  shared-cache designs. 447 
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