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In  recent  years  the  importance  of  time  to 
market for  new  computer  systems  has  grown. 
Very little  time  can  be spent  in  hardware 
bring-up  and  the  system  integration  phase 
when  new  hardware  and  new  code  (several 
megabytes)  come  together  for  the  first  time  on 
the  test  floor. This  paper  describes  some  of 
the  measures  that  were  taken  to  achieve  this 
goal  on  the S/390@ Parallel  Enterprise  Server 
Generation 4. 

Introduction 
The  current S/390* microprocessor  design points  from 
Boeblingen  and  Poughkeepsie  are microcode/millicode- 
based  implementations of the S/390 architecture using 
level-sensitive  scan  design (LSSD) design  rules. The 
microcode/millicode is resident  either in read-only storage 
(ROS) or in  random-access  memory (RAM) in the  central 
processing  unit (CP).  The microcode/millicode routines, 
which are very timing-critical, are  permanently  stored 
in the  ROS  part of the  CP,  but  to  make  the system 
operational, significant portions of that  code must be 
loaded  after power-on into  the  RAM.  This "bring-up" 

procedure also  includes loading of the I/390 (maintenance 
and  I/O)  code  [l(a)] as well as  resetting  and initializing 
the  storage  elements in the system. These tasks are 
accomplished by a  service processor  connected  to  the 
S/390  system. Typically the service processor is a  Thinkpad* 
running OS/2* and  the service element  code  (SE  code); 
see Figure 1. The dataflow between  the service element 
and  the S/390 system is issued from  the SE code via the 
parallel port of the  Thinkpad.  It  interfaces by means of a 
universal  power controller  card  (UPC) with the  central 
clock-generation  chip  (CGC).  The  run-control  portion of 
the  central clock-generation chip  comprises  the  hardware 
center of control  for  the S/390 processor complex. The 
connection  between  the universal  power controller  card 
and  the  clock-generation  chip is an  asynchronous five-wire 
serial interface. To achieve  a fast  hardware bring-up time 
[l(b)],  these  components must be verified by simulation 
before first power-on. This  has  been  done successfully for 
the  last  four S/390 CMOS  processor complexes. The  setup 
described  in this  paper was developed in Boeblingen for 
CMOS-based S/390 systems in 1991, and  has  been  used 
most  recently by IBM  Poughkeepsie  for  the S/390 Parallel 
Enterprise  Server  Generation 4. 
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Verification  strategy 
The verification strategy is based on a two-step  approach 
and is quite  different  from  the  CP verification 
methodology.  There is no test  strategy with random  test- 
case  generators. All tests  are  deterministic, with a well- 
known scope of functions  being verified. 

Run-control  simulation 
In  the first step,  the  run-control logic is verified on a  bit- 
level basis using a  simplified representation of the  UPC 
card as  a  high-level model  (HIMO)  [l(c)].  The bit-level 
verification  uses  a language  developed especially for 
verification of Si390 run-control logic. The syntax elements 
of this  language  are as follows: shift data  into  the Si390 
processor;  compare shift data;  set  and  test facilities and 
conditional  branches.  To allow  quick changes in any test 
case without spending compile time, this test  language is 
interpreted by a program  called  IRESA  (interpreter  for 
run-control,  error  simulation,  and  array built-in self-test). 

578 It allows the  simulation of all run-control  functions 
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because self-test is performed  for all chips as well as for 
the  startistop clock,  scan-ring  shifting, the  serial link, 
single-cycle microinstruction  step  generation,  and  X-reg 
communication.  The  run-control  simulation is based  on 
shifting data  into  the clock-chip chains  (scan-ring shifting) 
and  the  other Si390 processor chips  using the HIMO of 
the  UPC  card.  In  an LSSD  design, all latches in a  single 
chip  are  part of one  chain  and can be accessed by shifting 
of the  entire  chain.  This is the primary control  mechanism 
into  the Si390 processor.  In  the  interpreter  environment, 
all simulation  model  elements  are accessible for  test  and 
set  to  establish  regression capability. These types of tests 
comprise 100 000 lines of code  and verify the underlying 
hardware by removing errors  to  an  extent  that  enables a 
fast hardware  bring-up.  The  total  elapsed simulation time 
to  run all tests is about 200 hours on  an Si390 system 
(9672-RX3); see Figure 2. 

The  simulation  runs in an Si390-based computing 
center,  parts of which are  dedicated  to  the SE code  and 
run-control  simulation.  The  simulator, MLDVS, is a tool 
developed in Boeblingen. MLDVS (medium-level  design 
verification simulator) is an  event-driven  simulator which 
is especially well suited  for  asynchronous types of 
simulation as  they appear in the  run-control logic. The 
intent of the first step in the verification process is to find 
all hardware-related  run-control  problems  prior  to  release 
of the  chips  to  manufacturing. 

SE code simulation 
Step two of the verification process verifies the  correctness 
of the  interaction  between  the  hardware  model verified in 
step  one  and  the  SE  code.  The  SE  code  simulation is not 
targeted  to find hardware  problems,  but  rather  software 
and specification errors. Specification errors  are  found 
primarily  in the  area of accessing processor  internal  arrays 
and in the  engineering  data file. The  functionality of the 
SE code covers  initial microcode  load  (IML), initial 
program  load  (IPL), Si390 manual  operations,  and  error 
detection  and isolation.  All of these  functions use the  run- 
control  interface  into  the Si390 processor complex. 

As stated above, the Si390 processor must  have 
microcodeimillicode and I/390 code  to  become 
operational.  The underlying SE  code  that  transfers  the 
code  incorporates  the basic hardware access mechanism  to 
access array  and  storage  elements  and knowledge about 
the physical structure of the Si390 system. The  structure 
of any chip is reflected  in  its engineering  data file. The 
engineering  data file, which describes  the  sequence of 
latches  and  storage  elements on the  scan ring of every 
chip, is part of the  SE  code. 

IML 
The  task of loading  the  code  into  the Si390 processor 
complex is called  initial  microcodeimillicode  load (IML); 
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two different  methods  are used to  transfer  the  code  into 
the Si390 processor.  In  the first steps of IML on the Si390 
Parallel  Enterprise  Server G3, about 1000 bytes of 
bootstrap  microcode is loaded  into  the  CP  control  store 
array via the CP-chain interface. On the Si390 Parallel 
Enterprise  Server G4, a  fast load  sequence shifts the 
bootstrap millicode data  into  the  L2  cache  array via a 
buffer  register.  The  SE  code scans the  data  into  the arrays 
using  special array access routines.  On  the G4, these  array 
access routines  were verified  in simulation by using the 
test  and  debug  monitor  (TDM) alteridisplay to write and 
read  the  arrays in the  CP  and  L2  and  then verify the 
correct  results in the  simulation  model.  This capability was 
also  used to assist  in the  reproduction  and  debug of 
problems  from  the  engineering  test floor. 

The next steps in the  IML  process  are  to  transfer  the 
large  amount  (several megabytes) of microcodeimillicode 
and I/390 code  into  the  machine by using the X-reg 
communication.  The  X-reg  communication  establishes a 
fast link between  the  CP microcodeimillicode that was 
loaded in the first steps of IML  and  the  SE  code. Since 
this is a  critical item  for  the system integration, it is 
verified in great  detail  on  the design level (see  step  one of 
the verification process)  and with the  SE  code  simulation. 

In  SE  code  simulation,  the  actual shift interface  cannot 
be used for  performance  reasons  because  the  actual shift 
speed is between 0.1 bitis and 1 bitis for  the  MLDVS 
software  simulator. Since  a typical CP chain is more  than 
50 000 bits long, this would lead  to  an unacceptably  long 
simulation  time  frame.  Instead of scan-ring shifting, 
therefore,  the  data  are  broadcast  into  the  simulation 
model,  resulting in a speed  improvement  factor of 1000 
through circumventing the  scan-ring shift  mechanism. The 
actual scan-ring shifting  process is simulated with the  use 
of other  test  methodologies.  (See  the  paper in  this  issue 
by Wile,  Mullen et al. [2] on  functional verification of the 
S/390 Parallel  Enterprise  Server G4.) 

Hypervisor 
The  controlling  element in the  SE  code  simulation  setup 
is the hypervisor. This  program is the supervisor for the 
simulation process;  it takes  the  data  from  the  SE  code  and 
puts  them into the  simulation  model,  lets  the  simulation 
run,  and  returns  data  from  the  simulation  model back to 
the  SE code. The hypervisor  was coded in REXX  and 
interfaces with both  the  simulation  model  and  the  SE 
code. 

In the  SE  code  simulation  setup,  the  SE  code is run  on 
a  PS/2* connected  to  the VM software  simulator.  The 
protocol  between  SE  code  and  VM is SRPI  (server 
requester  protocol  interface). For the  SE  code,  there is no 
difference between simulation  and  the  real  hardware.  On 
the VM side,  CMSSERVE  (a  workstation  server  program) 
is running. Because  VM is a  single-tasking operating 
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system,  a second  VM  machine is needed  for  simulation 
to  run  the  MLDVS  simulator  and  the hypervisor for  the 
Si390 Enterprise  Server G3 and  the ZFS simulator  for  the 
S/390 Enterprise  Server G4. The two VM  virtual machines 
are  connected via IUCV  (interactive  user  communication 
vehicle). The  amount of data  transferred back and  forth 
between the  SE  code  and  the  hardware  model is less than 
100 bytes or more  than 10 kilobytes, depending on the 
type of SE  operation  currently  performed.  This simulation 
depends heavily on the  uniprocessor  performance of the 
software  simulator. 

In Boeblingen’s SE  code  simulation,  the PSI2 with the 
SE  code was located in Boeblingen,  and  the  software 
simulator was on a  9672-RX3  system  in Poughkeepsie 
(this was the most  powerful Si390 system available for 
simulation in that  time  frame);  see Figure 3. The  mean 
time  between  failures in  this  complex simulation 
environment  during a running  simulation was about  12 
hours (mostly network  problems).  This was the limiting 
factor in the  scope of simulation.  In  principle, with this 
type of setup, a complete  IML  can  be verified; considering 
the  actual  simulation  performance, only the most  basic but 
important  functions  were verified. 

The  total  number of cycles necessary to  simulate a 
complete  IML is more  than 50 000 000 cycles. This  had 
been  done with the  EVE 1.5 and  EVE 2.0 hardware 
simulators in Poughkeepsie  for  the H series of processors. 
The  problem in this  area is not only having simulation 
“horsepower,”  but also being  able  to build  a simulation 
model with all required system elements, including the I/O 
subsystem, that will fit on  the  EVE  simulator.  The  time 
available  within the  development cycle to  do this  type of 
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simulation is extremely short.  Because  the SE code References 
incorporates  the  engineering  data,  the  hardware  model 
must  be  quite  stable in order  to  generate  the  code  and 
still  have a valid hardware  representation  for  simulation. 
Typically this  type of simulation  starts  after  release of the 
S/390 chips  to  manufacturing  and  lasts  until  the first steps 
of hardware  bring-up. 

As a result of the  run-control  and SE code  simulation, 
the  last  four  CMOS systems (including  the G4) had only 
minor  problems  in  the  area of run  control  and  IML. 
Another  use of the SE code  simulation  environment  on 
the G4 was the verification of a stand-alone  bring-up 
configuration.  The G4 bring-up  strategy was to  test 
initially  with  a configuration of only the clock, CP, and 
L2 chips; memory  and 1/0 were  not in the  configuration. 
A  special test  environment was set  up  to  deliver SAK 
(systems assurance  kernel)  test  cases  from  an S/390 host 
system to  the service element  and  into  the L2 cache.  The 
CP then  executed  the  test case, and  the  results  were  read 
out by the service element  and  sent  back  to  the S/390 host 
to  be verified. The delivery system and  test-case execution 
were verified completely using the SE code  simulation 
environment. 
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verification in 1996. 

Conclusion 
Without  the  different  steps  in verification of the  run- 
control logic and  the  SE  code,  fast  hardware  bring-up  and 
system integration  times  (one new CMOS  generation every 
year)  are  not achievable. 

Because  the  development  community in IBM is using 
primarily RS/6000* tools  for  simulation  and  chip 
development,  the hypervisor and  IRESA will be  coded in 
C and  connected via TCP/IP  to  the PS/2. The hypervisor 
will support  simulation  as well as  emulation  on  different 
target systems. The  future will bring  additional  effort in 
this  area, with improvements  in  the  development  process 
and in simulation  and  emulation  horsepower  to  further 
reduce  the  time  needed  for  hardware  and system bring-up. 
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