Run-control
and service
element code
simulation

for the S/390
MICroprocessor

by S. Koerner
S. M. Licker

In recent years the importance of time to
market for new computer systems has grown.
Very little time can be spent in hardware
bring-up and the system integration phase
when new hardware and new code (several
megabytes) come together for the first time on
the test floor. This paper describes some of
the measures that were taken to achieve this
goal on the S/390® Parallel Enterprise Server
Generation 4.

Introduction

The current $/390* microprocessor design points from
Boeblingen and Poughkeepsie are microcode/millicode-
based implementations of the $/390 architecture using
level-sensitive scan design (LSSD) design rules. The
microcode/millicode is resident either in read-only storage
(ROS) or in random-access memory (RAM) in the central
processing unit (CP). The microcode/millicode routines,
which are very timing-critical, are permanently stored

in the ROS part of the CP, but to make the system
operational, significant portions of that code must be
loaded after power-on into the RAM. This “bring-up”

procedure also includes loading of the I/390 (maintenance
and I/O) code [1(a)] as well as resetting and initializing
the storage elements in the system. These tasks are
accomplished by a service processor connected to the
S$/390 system. Typically the service processor is a Thinkpad*
running OS/2* and the service element code (SE code);
see Figure 1. The dataflow between the service element
and the S$/390 system is issued from the SE code via the
paralle! port of the Thinkpad. It interfaces by means of a
universal power controller card (UPC) with the central
clock-generation chip (CGC). The run-control portion of
the central clock-generation chip comprises the hardware
center of control for the S/390 processor complex. The
connection between the universal power controller card
and the clock-generation chip is an asynchronous five-wire
serial interface. To achieve a fast hardware bring-up time
[1(b)], these components must be verified by simulation
before first power-on. This has been done successfully for
the last four /390 CMOS processor complexes. The setup
described in this paper was developed in Boeblingen for
CMOS-based $/390 systems in 1991, and has been used
most recently by IBM Poughkeepsie for the §/390 Parallel
Enterprise Server Generation 4.

©Copyright 1997 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,
of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other

portion of this paper must be obtained from the Editor.

577

0018-8646/97/$5.00 © 1997 IBM

IBM J. RES. DEVELOP. VOL. 41 NO. 4/5 JULY/SEPTEMBER 1997

S. KOERNER AND §. M. LICKER

578

Central 5/390
UPCcard [+—— clock <«——| processor
generation complex

ThinkPad running OS/2
, and service element code

Software simulation

UPC high-level model (central clock
model generation $/390

processor complex)

S~

Test-case
interpreter

Run-control tests

Verification strategy

The verification strategy is based on a two-step approach
and is quite different from the CP verification
methodology. There is no test strategy with random test-
case generators. All tests are deterministic, with a well-
known scope of functions being verified.

Run-control simulation

In the first step, the run-control logic is verified on a bit-
level basis using a simplified representation of the UPC
card as a high-level model (HIMO) [1(c)]. The bit-level
verification uses a language developed especially for
verification of $/390 run-control logic. The syntax elements
of this language are as follows: shift data into the §/390
processor; compare shift data; set and test facilities and
conditional branches. To allow quick changes in any test
case without spending compile time, this test language is
interpreted by a program called IRESA (interpreter for
run-control, error simulation, and array built-in self-test).
It allows the simulation of all run-control functions

S. KOERNER AND S. M. LICKER

because self-test is performed for all chips as well as for
the start/stop clock, scan-ring shifting, the serial link,
single-cycle microinstruction step generation, and X-reg
communication. The run-control simulation is based on
shifting data into the clock-chip chains (scan-ring shifting)
and the other 8/390 processor chips using the HIMO of
the UPC card. In an LSSD design, all latches in a single
chip are part of one chain and can be accessed by shifting
of the entire chain. This is the primary control mechanism
into the S/390 processor. In the interpreter environment,
all simulation model elements are accessible for test and
set to establish regression capability. These types of tests
comprise 100 000 lines of code and verify the underlying
hardware by removing errors to an extent that enables a
fast hardware bring-up. The total elapsed simulation time
to run all tests is about 200 hours on an $/390 system
(9672-RX3); see Figure 2.

The simulation runs in an $/390-based computing
center, parts of which are dedicated to the SE code and
run-control simulation. The simulator, MLDVS, is a tool
developed in Boeblingen. MLDVS (medium-level design
verification simulator) is an event-driven simulator which
is especially well suited for asynchronous types of
simulation as they appear in the run-control logic. The
intent of the first step in the verification process is to find
all hardware-related run-control problems prior to release
of the chips to manufacturing.

SE code simulation

Step two of the verification process verifies the correctness
of the interaction between the hardware model verified in
step one and the SE code. The SE code simulation is not
targeted to find hardware problems, but rather software
and specification errors. Specification errors are found
primarily in the area of accessing processor internal arrays
and in the engineering data file. The functionality of the
SE code covers initial microcode load (IML), initial
program load (IPL), /390 manual operations, and error
detection and isolation. All of these functions use the run-
control interface into the S/390 processor complex.

As stated above, the §/390 processor must have
microcode/millicode and /390 code to become
operational. The underlying SE code that transfers the
code incorporates the basic hardware access mechanism to
access array and storage elements and knowledge about
the physical structure of the S/390 system. The structure
of any chip is reflected in its engineering data file. The
engineering data file, which describes the sequence of
latches and storage elements on the scan ring of every
chip, is part of the SE code.

IML
The task of loading the code into the S/390 processor
complex is called initial microcode/millicode load (IML);

IBM J. RES. DEVELOP. VOL. 41 NO. 4/5 JULY/SEPTEMBER 1997

two different methods are used to transfer the code into
the §/390 processor. In the first steps of IML on the S/390
Parallel Enterprise Server G3, about 1000 bytes of
bootstrap microcode is loaded into the CP control store
array via the CP-chain interface. On the §/390 Parallel
Enterprise Server G4, a fast load sequence shifts the
bootstrap millicode data into the L2 cache array via a
buffer register. The SE code scans the data into the arrays
using special array access routines. On the G4, these array
access routines were verified in simulation by using the
test and debug monitor (TDM) alter/display to write and
read the arrays in the CP and L2 and then verify the
correct results in the simulation model. This capability was
also used to assist in the reproduction and debug of
problems from the engineering test floor.

The next steps in the IML process are to transfer the
large amount (several megabytes) of microcode/millicode
and 1/390 code into the machine by using the X-reg
communication. The X-reg communication establishes a
fast link between the CP microcode/millicode that was
loaded in the first steps of IML and the SE code. Since
this is a critical item for the system integration, it is
verified in great detail on the design level (see step one of
the verification process) and with the SE code simulation.

In SE code simulation, the actual shift interface cannot
be used for performance reasons because the actual shift
speed is between 0.1 bit/s and 1 bit/s for the MLDVS
software simulator. Since a typical CP chain is more than
50000 bits long, this would lead to an unacceptably long
simulation time frame. Instead of scan-ring shifting,
therefore, the data are broadcast into the simulation
model, resulting in a speed improvement factor of 1000
through circumventing the scan-ring shift mechanism. The
actual scan-ring shifting process is simulated with the use
of other test methodologies. (See the paper in this issue
by Wile, Mullen et al. [2] on functional verification of the
S/390 Paralle] Enterprise Server G4.)

Hypervisor
The controlling element in the SE code simulation setup
is the hypervisor. This program is the supervisor for the
simulation process; it takes the data from the SE code and
puts them into the simulation model, lets the simulation
run, and returns data from the simulation model back to
the SE code. The hypervisor was coded in REXX and
interfaces with both the simulation model and the SE
code.

In the SE code simulation setup, the SE code is run on
a PS/2* connected to the VM software simulator. The
protocol between SE code and VM is SRPI (server
requester protocol interface). For the SE code, there is no
difference between simulation and the real hardware. On
the VM side, CMSSERVE (a workstation server program)
is running. Because VM is a single-tasking operating

IBM J. RES. DEVELOP. VOL. 4] NO. 4/5 JULY/SEPTEMBER 1997

Atlantic Ocean

B]
[LAN
1 VM running
CMSSERVE
1,
o ¥ i cv
ThinkPad
running SE code VM running
IBM Boeblingen hypervisor
and software
51390 system simalator

IBM Poughkeepsie

Service element code simulation.

system, a second VM machine is needed for simulation

to run the MLDVS simulator and the hypervisor for the
$/390 Enterprise Server G3 and the ZFS simulator for the
S/390 Enterprise Server G4. The two VM virtual machines
are connected via IUCV (interactive user communication
vehicle). The amount of data transferred back and forth
between the SE code and the hardware model is less than
100 bytes or more than 10 kilobytes, depending on the
type of SE operation currently performed. This simulation
depends heavily on the uniprocessor performance of the
software simulator.

In Boeblingen’s SE code simulation, the PS/2 with the
SE code was located in Boeblingen, and the software
simulator was on a 9672-RX3 system in Poughkeepsie
(this was the most powerful $/390 system available for
simulation in that time frame); see Figure 3. The mean
time between failures in this complex simulation
environment during a running simulation was about 12
hours (mostly network problems). This was the limiting
factor in the scope of simulation. In principle, with this
type of setup, a complete IML can be verified; considering
the actual simulation performance, only the most basic but
important functions were verified.

The total number of cycles necessary to simulate a
complete IML is more than 50 000 000 cycles. This had
been done with the EVE 1.5 and EVE 2.0 hardware
simulators in Poughkeepsie for the H series of processors.
The problem in this area is not only having simulation
“horsepower,” but also being able to build a simulation
model with all required system elements, including the 1/O
subsystem, that will fit on the EVE simulator, The time
available within the development cycle to do this type of

S. KOERNER AND S. M. LICKER

579

simulation is extremely short. Because the SE code
incorporates the engineering data, the hardware model
must be quite stable in order to generate the code and
still have a valid hardware representation for simulation.
Typically this type of simulation starts after release of the
$/390 chips to manufacturing and lasts until the first steps
of hardware bring-up.

As a result of the run-control and SE code simulation,
the last four CMOS systems (including the G4) had only
minor problems in the area of run control and IML.
Another use of the SE code simulation environment on
the G4 was the verification of a stand-alone bring-up
configuration. The G4 bring-up strategy was to test
initially with a configuration of only the clock, CP, and
L2 chips; memory and I/O were not in the configuration.
A special test environment was set up to deliver SAK
(systems assurance kernel} test cases from an $/390 host
system to the service element and into the L2 cache. The
CP then executed the test case, and the results were read
out by the service element and sent back to the $/390 host
to be verified. The delivery system and test-case execution
were verified completely using the SE code simulation
environment.

Summary

The run-control hardware test strategy is to concentrate
on areas that are vital for the control of the S/390
processor complex and to verify the related hardware
functions carefully to ensure that the fast bring-up of the
system on the engineering test floor is not jeopardized.
The SE code test strategy is to verify the basic code layers
that are being used by the SE code each time it accesses
the hardware. Verification of these code layers depends
on the simulation horsepower and the establishment of

a process to ensure that the appropriate code level is
available to match the final level of hardware.

Conclusion
Without the different steps in verification of the run-
control logic and the SE code, fast hardware bring-up and

system integration times (one new CMOS generation every

year) are not achievable.

Because the development community in IBM is using
primarily RS/6000* tools for simulation and chip
development, the hypervisor and IRESA will be coded in
C and connected via TCP/IP to the PS/2. The hypervisor
will support simulation as well as emulation on different
target systems. The future will bring additional effort in
this area, with improvements in the development process
and in simulation and emulation horsepower to further
reduce the time needed for hardware and system bring-up.

*Trademark or registered trademark of International Business
Machines Corporation.

S. KOERNER AND S. M. LICKER

References

1. W. Spruth, H. Kriese, J. Maergner, and H. Schwermer, The
Design of a Microprocessor, Springer-Verlag Berlin, 1989:
(a) J. Maergner and H. Schwermer, p. 303; (b) W. Hehl,

p. 316; (c) H. Kriese, p. 184.

2. B. Wile, M. P. Mullen, C. Hanson, D. G. Bair, K. M.
Lasko, P. J. Duffy, E. J. Kaminski, Jr., T. E. Gilbert, S. M.
Licker, R. G. Sheldon, W. D. Wollyung, W. J. Lewis, and
R. J. Adkins, “Functional Verification of the CMOS S/390
Parallel Enterprise Server G4 System,” IBM J. Res.
Develop. 41, No. 4/5, 549-566 (1997, this issue).

Received December 18, 1996; accepted for publication
August 13, 1997

Stefan Koerner IBM Entwicklung GmbH,
Schoenaicherstrasse 220, 71032 Boeblingen, Germany
(KOERNER at BOEVM4). Mr. Koerner is an Advisory
Engineer in the $/390 hardware development organization in
the Boeblingen laboratories. He joined IBM in Boeblingen in
1981 and has held a number of positions in logic design,
microcode development, and design verification. He was the
technical team leader in the area of S/390 run-control, IML,
and microcode simulation for the $/390 G3 systems. Mr.
Koerner holds one patent and received an IBM Hardware
Development Team Award in 1996.

Steven M. Licker IBM System/390 Division, 522 South
Road, Poughkeepsie, New York 12601 (slicker@vnet.ibm.com).
Mr. Licker is an Advisory Engineer working in IBM $/390
design verification. He joined IBM in 1977, and has held a
number of technical and management positions in engineering
systems testing on the IBM 308X and 3090 projects. Mr.
Licker has spent the last ten years doing processor and system
simulation on the IBM ES/9000 and S/390 G4 systems. He
received an IBM Team Award for $/390 G3 common chip
verification in 1996.

IBM J. RES. DEVELOP. VOL. 41 NO. 4/5 JULY/SEPTEMBER 1997

