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We describe the methodology  used  for  the 
design  of  a set of CMOS support  chips  used 
in  the IBM S/390@ Parallel  Enterprise  Server 
Generations 3 and 4. The  logic  design  is  based 
on functional  units,  and  the  majority of the 
logic  is  implemented by standard  cell  elements 
placed and  routed flat, using  timing-driven 
techniques.  Custom  library  elements are used 
wherever needed for performance  reasons. 
Using  this  approach,  a  density  has  been 
achieved  that  is  comparable to those of 
contemporary  custom  designs,  combined 
with very attractive turnaround  times. 

Introduction 
Custom design is the  dominant design  style for high- 
performance  processors.  It  offers  the  advantage of full 
control  over  the size and  the  location of each  transistor 
for  performance  tuning,  but  requires  considerable  effort 
to  implement  because of the complexity of a complete 
transistor-level design. This complexity creates  the  need 
to  introduce  additional  hierarchies, usually leading  to a 
“floorplanning”  approach. 

A standard cell design approach (Figure 1) makes it 
possible to globally apply advanced  optimization 

algorithms, which reduce  the  manual  effort  required 
and  improve  the  quality of the synthesized logic during 
layout.  The  use of basic standard cell elements  reduces 
complexity to the  extent  that a complete  chip design can 
be  handled flat by layout and  test  generation tools, 
removing the  need  for artificial floorplan  boundaries.  Our 
approach  uses a  small number of custom logic macros  and 
custom memory arrays  whenever a standard cell solution is 
not competitive. The  major  part of the  combinational logic 
portions, however, are  implemented in standard cells. 

Design entry, synthesis, and  simulation  are  performed 
on  the basis of functional units. There is no need  to 
optimize logic partitioning  on  the basis of timing, layout, 
and  test  considerations.  Flat, timing-driven placement 
and  routing  without  floorplan  boundaries minimizes 
interconnection delay  in critical  paths. This, coupled with 
in-place logic optimization, achieves  a post-layout cycle 
time no more  than 15% above  the  zero-net  estimate. 

The  testing  methodology we have  used  consists of 
design for  test  (DFT)  to  ensure high test  coverage,  and 
test  pattern  generation  to  enable testing, analysis, and 
debugging of chips in manufacturing. Key are  fast 
turnaround  time  and high-quality  testing. 

Test  data  generation, circuit and logic design,  and 
timing  verification are  performed with proprietary IBM 
tools [l-41. The  tools  for  layout  optimization  were 
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the service element  for all chips in the system. The 
memory bus  adapter  (MBA)  chips  are  direct-memory- 

Overview of design flow. access (DMA)  controllers  that  are  the  interface between 
the  asynchronous,  byte-serial 1/0 buses  and  the 16-byte- 
wide  system  bus. The bus-switching network (BSN) chips 
hold  shared level-3 caches  and  bus  arbiters  that  control 
the  concurrent access of PUS, MBAs, and system-wide 
memory. The  storage  controller  (STC)  chips  are  DRAM 
controllers,  supporting  transparent  refresh, interleaving, 
and multibit error  detection  and  repair.  More  details  can 
be  found in [5].  

Technology  and  design of custom elements 

Technology 
The  CMOS  process [6, 71 used on the  chip  set was 
developed by the  IBM  Microelectronics Division. The 
technology provides six layers of metallization-one  layer 
for  internal circuit  wiring only, and  four layers for wiring 
in a 1.8-pm wiring  pitch. The  last  metallization  layer is 
used  primarily for wiring redistribution  to  the  chip 1/0 
pads.  The technology parameters  are shown in Table 1. 

Library  and  chip  image 
The  standard cell  library we used  provides  a set of logic 
gates,  latches,  and I/O cells which fit into 3.5  million 
placement  locations  and  are  interconnected  through 
horizontal  and vertical  wiring tracks defined by the  chip 
image. The I/O cells can  be  placed anywhere among  the 
3.5 million  legal locations.  After  chip  placement  and 
routing,  the  unused cell locations  are filled with 
nonpersonalized  gate  array  elements  to  provide  an 
engineering  change capability  with metallization 
changes only. 
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Custom circuit design 
The  base  standard cell  library provides simple  logic gates, 
but a  small  set of custom logic macros  and  custom  SRAM 
macros was required  for  the  special  needs of the Si390 in 
order  to  improve cycle time  and density. The  custom 
implementation of the  macros gives the circuit designer 
the  freedom  to  use special  circuit  design techniques such 
as  dynamic and  double-pass circuits [SI to  improve  the 
propagation delay. 

The  circuit design flow (Figure 3) begins with a 
specification sheet defining the  macro  requirements. 
With  this  information, a model  written in a proprietary 
hardware  description  language  (HDL) is designed [9]. This 
HDL  model defines the logic behavior  and must be  as 
compact  as possible to  reduce logic simulation  time. 
The  HDL  model is thoroughly  simulated against the 
specification sheet  and  becomes  the  “golden”  model  for 
the following  design  process.  All other design sources 
required  on  the way to layout are  checked  against  the 
golden  model. 

The first step of the  schematic-driven layout is the 
implementation of the logic function in transistors with 
a schematic  entry  tool [lo]. An  iterative  process  based 
on transistor-level  simulation followed by transistor 
modifications is necessary to  meet  the timing, 
performance,  and  power-consumption  targets of 
the  macro. 

A Boolean  equivalence  checker [ l l ]  compares  the 
transistor  schematics  against  the  golden  model  and gives 
early  simulation-independent  feedback of the  correct 
implementation.  An  early timing model is generated  for 
the chip-level  delay calculator [4]. This early  timing model 
is replaced  later in the design process by the final  timing 
model,  based on information  extracted  from  the circuit’s 
layout. The device and  net  information in the  schematics 
is used by a proprietary  schematic-driven layout tool. 
Compliance of the  macro layout  with the technology 
design rules is checked with a hierarchical design rule 
check (DRC).  The  layout design style could vary, from a 
full shape-by-shape design to  the  use of circuit generators 
for  base logic functions such as  NANDs. 

additional  shape  and text information must be  added  to 
the  layout design. After  this  process,  the  custom  macros 
can  be  used  like big standard cell circuits, placeable in any 
legal location. Providing  signal-pin,  power-pin, and 
blockage information  to  the physical design tools allows 
automatic power and signal  wiring at  the  chip level. 

The  custom  macro layout is fed  into a proprietary 
layout parasitic  extraction  (LPE)  tool.  The  transistor 
geometries (width and  length),  as well as all parasitic 
elements  such as  diffusion capacitances  and  line-to-line 
capacitances,  are  then  extracted  from  the layout. The 
generated  netlist with parasitic  elements is used  for 

To  support  generation of the  chip  place  and  route rules, 

Design Verification - *, 
HDL entry - 

Boolean compare 

Schematic entry 

Layout design 

Test models 
Layout rules 

Table 1 Technology parameters. 

Feature  Value 

Supply voltage 2.5 v 

Minimum feature size 0.33 pm 

Metal layers 1 + 5  

Ldf 0.25 pm 

Tox 7 nm 

transistor-level  resimulation  to  ensure  that  the  function 
and  performance  are still correct.  This netlist is the  source 
for  the final,  most accurate timing model of the  macro. 

After  the  custom  macro  layout is complete, a  final 
layout  versus schematic (LVS) check is performed.  This 
check generates a  layout netlist  and  compares it  against 
the  schematic  netlist,  not only checking network topology 
and device sizes, but  also  detecting  net  opens  and  shorts. 

Finally  a test  model is generated,  breaking down all 
transistor  schematics  into  the primitive functions 
understood by test  pattern  generation  (TPG), such  as 
AND,  NAND,  NOR,  OR,  and  XOR.  This  model is 
verified  against the  golden  HDL  model  to  guarantee 
logic equivalence  between  the  implementations. 
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Design  entry,  synthesis,  and  simulation 

Design  entry 
The design  system accepts design data in three  forms: 
gate-level  schematics, hardware design language  (HDL) 
code,  and  finite-state  machine  (FSM)  tables (Figure 4). 

Gate-level  schematics  are  preferred  for data-flow- 
dominated designs and  for designs that  require  careful 
manual design and  optimization. Most parts of the 
processor  and  the  L2  cache  chip  are  designed  at  the  gate 
level. The  schematics  are  entered using  a proprietary 
schematic  editor  that  translates  the  schematics  into  gate- 
level netlists. Apart  from  macro  expansion, this is a one- 
to-one  translation;  no logic optimization is performed. 

HDL  code  and FSM tables  are  preferred  for  control- 
flow-dominated designs.  Most parts of the  support  chips 
are  HDL  code  or  FSM  table designs. HDL  code is a 
proprietary  hardware-description  language [9]. The level 
of description is similar to  the  concurrent  subset of 
VHDL:  Boolean expressions,  signal  assignments, 
component  instantiations,  etc. 

FSM tables  are  convenient  because  they  describe finite- 
508 state  machines  more compactly than  HDL  code.  FSM 

tables  are  translated  to  HDL  code  for synthesis and 
simulation.  For  simulation,  the  generated  HDL  code is 
instrumented  to collect  statistics about  state  transitions 
exercised by a set of test cases. This  information is used  to 
create  test  cases  that exercise  all  possible state  transitions. 

Logic  synthesis 
The logic synthesis  system, BooleDozer*,  reads  the  HDL 
code  and  generates gate-level  netlists. BooleDozer 
performs  technology-independent  optimization, technology 
mapping,  and timing optimization  to  generate a netlist of 
minimal  size that  meets  the delay  objectives  [2, 31. 
Synthesis uses  the  same delay calculator as placement 
and  routing, with the  exception  that  interconnection 
capacitances  and  resistances  are  estimated as  a function of 
fanout,  based on statistics  from  placement  and  routing. 

Because a  full-chip  design cannot  be synthesized  in one 
run, it must  be  partitioned  into  pieces of a few thousand 
synthesizable gates  each.  This  approach  has  the  advantage 
that synthesis jobs  can  run in parallel  on  multiple 
machines,  reducing  turnaround  times. Typically, synthesis 
times  range  from  one  to  ten  hours of CPU  time  per 
partition,  resulting in overnight  turnaround. 

Partitioning  requires  that delay  objectives for  the  chip 
be  broken down into delay  objectives for  each  partition. 
This process, designated  as slack apportionment, assigns 
delay  objectives to  partitions in such a way that if each 
partition  meets its  delay  objective, the  chip  also  meets  the 
delay  objective. The  process first runs  on  an  unoptimized 
design to  generate  initial delay  objectives. The design is 
then resynthesized and  optimized with respect  to initial 
delay  objectives, and is fed  into slack apportionment 
again to  generate  improved delay  objectives. This is an 
expensive process  because it requires  multiple full-chip 
synthesis runs,  but in practice  after two or  three  iterations 
the delay  objectives become  stable.  Experiments show that 
slack apportionment  need only be  rerun  after  major design 
changes, which do  not  occur very often. Logic  synthesis 
and  schematic  entry  generate  one  netlist  for  each  chip 
partition.  The  partition  netlists  are finally flattened  into 
one  chip  netlist  for flat placement  and  routing. 

Simulation 
Extensive logic simulation  at  the  unit, chip, and system 
level is performed  to verify the  functional  correctness of 
the designs [12, 131. Cycle-based simulation  assumes  zero 
delay,  leaving  timing  verification to  the delay calculator 
[4]. This  approach nicely separates timing aspects  from 
functional  aspects  and  speeds  up  simulation considerably. 

Unit-level  and chip-level simulation  are  carried  out 
using  mostly HDL  code  models.  This  interactive  mode of 
simulation is used  primarily in the  early  stages of logic 
design to  correct small  design errors  that  are easy to 
detect.  The bulk of simulation  occurs  at  the system level. 
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System simulation  uses gate-level models  for  the 
processor,  cache,  and memory interface chips, and 
behavior-level models  for  the I/O chips. A simulation 
monitor initializes the  storage  elements  (latches, 
memories) of the  model,  loads  test  cases  into  the  model, 
and  provides tracing, assertion checking, and  reporting 
capabilities.  The  monitor has  a full-screen  interface  for 
interactive  simulation,  but most of the system simulation 
is done in batch  mode.  The  simulation is performed in 

Pre-P&R 
netlist 

parallel  with logic design,  as soon as an initial,  unit-level 
simulated design is available. 

Timing optimization 

Chip placement and  routing -I: I optimization 

Flat and timing-driven layout *"(*) / 
Because  our  chip-placement  and  routing  tools have been 
refined over  the  course of four  processor  generations,  and 
because of the tight  cycle-time bounds  imposed on the 
designs, the primary layout  optimization objective has 
shifted  from  pure routability to cycle-time reduction. 

To  be  able  to  judge  the quality of a given layout, we 
needed a reasonable lower bound  for  the possible cycle 
time. A natural lower bound  could  be  obtained by a 

Tape-out 
to manufacturing 

static timing analysis of the logic network assuming  a 
net  length of zero  for  each  net. In other  words,  each 
circuit  drives the  input  capacitances of the next stage with Layout flow. 
interconnection  length  set  to  zero.  Upon  comparing  the 
actual post-layout cycle time  to  this  hypothetical  zero-net 
cycle time using different design approaches  such  as 
floorplanning vs. flat, and timing-driven vs. connectivity- 
driven, we found  that  the  approach  that consistently 
produced  the lowest interconnection delay  was flat, 
timing-driven  layout (Figure 5). 

Placement 
The ability to  place  and  route complex  designs  flat and 
timing-driven is an  important  prerequisite  for  the design 
methodology  presented  here.  This is made possible by 
quadratic  optimization  combined with  a new quadrisection 
approach [14]. The  approach  computes  net weights, 
derived  from a concurrent timing analysis run, which are 
then  used  for  the next optimization  step. A description of 
detailed  placement  can  be  found in [15]. 

In-place  optimization 
Logic optimization  based  on  the  actual  placement is 
performed  to  further improve the cycle time.  This is 
carried  out in three  steps: 

1. Clock synthesis The clock tree is not  considered 
during  placement  but is instead resynthesized after 
placement using a  zero-skew approach similar to 
[16, 171. Routing  information  for  balanced  routing is 
created as an  input  to  the  routing  step. 

2. Power-level optimization This is performed  for timing 
optimization  and power reduction.  It  uses  one of the 
five power  levels  available for  each  standard-cell  circuit. 

3. Buffer insertion This is performed  on timing-critical 
paths  that still  exceed the cycle-time  limit after power- 
level optimization. 

The  resulting decisions are always based on actual 
placement  data, as each circuit added is assigned to a 
placement  location.  Details on timing analysis and 
optimization  techniques  that  are  used  can  be  found 
in [HI.  

Routing 
Special nets such  as  power  buses and  nets  connected  to 
I/O pads  are  routed first, and  then  congestion-driven 
global routing defines guide boxes for  the following  local 
routing  step.  The  information  generated  during clock 
optimization drives the  balanced  routing of the clock nets. 
The ability to  route  the  entire design  flat removes  the 
suboptimality  introduced by the necessary pin  propagation 
in  a hierarchical  approach.  The  routing  tool  supports 
different wire  widths and  separations  and  has a  crosstalk 
analysis as well as removal  capability [19, 201. 509 
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functional  changes by the logic designers,  are  carried  out 
concurrently.  We have implemented a flow to  incorporate 
the  functional  changes  performed  on  the  pre-layout  netlist 
into  the post-layout  netlist. 

Results 
Figure 6 shows the  net  length  distribution  for  the 15.5 X 

15.5-mm2 MBA  chip.  About  70% of the  nets  are less than 
0.5 mm long, and very few nets  are  more  than 5 mm in 
length.  Restricting  the  functional  units  to  floorplan  regions 
would introduce  global  nets, which are typically longer. 
This relatively  small increase in interconnection delay is 
an  inherent  advantage of our  flat, timing-driven  layout 
approach. On the  most timing-critical paths we have been 
able  to  keep  the  ratio of post-layout  to  zero-net cycle 
time below 1.15. The  actual  ratio  deuends on the given I Net length distribution for the MBA chip. 

Y 

technology, of course.  It  should also be  noted  that  this 
ratio  applies  to only the  most timing-critical paths. For 
less critical paths  the  contribution of interconnection 

Table 2 Chip statistics. 

delays is typically much larger,  supporting  the  common 
industry view that  for today’s technologies,  interconnection 
delay is becoming  the  dominant  contributor  to  total  path - 

BSN MBA 
delay  [21, 221. 

Table 2 shows layout  statistics  for  the BSN and  MBA 
Chip size (mm’) 213 240 chips. The  densities of 15.0  kTX/mm’ (thousands of 
Transistors 16.6 X lo6 3.6 X lo6 
Density (kTX/mm2) 

transistors  per mm’) for  the  control-logic-dominated  MBA 
77.9 15.0 

Standard cells 71 X lo3 206 X lo3 chip  and 77.9 kTX/mm’ for  the  memory-dominated BSN 

Custom macros 341  89 chip  are  comparable  to  densities  presented  at  the 1997 
Pins 260 X lo3 771 X lo3 International Solid State  Circuits  Conference, e.g., 
Nets 82 X i o 3  226 X i o 3  34.6 kTX/mm2 in [23], 36.9 kTX/mm2 in [24], or 
Total net length (m) 60.6 122 
1/0 pins 758 

25.4 kTX/mm’  in [25]. 
770 

Cycle time (ns) 5.9  5.9 
attractive  considering  that hardly  any manual  intervention 
is required.  For  example, a complete timing-driven layout 
for  the  MBA chip,  consisting of two placement  and 

Table 3 Run times and memory for the MBA chip. optimization  iterations  and a routing  step,  can  be 
performed in  less than five days of processor  time 

The  run  times  for  placement  and  routing  are very 

Layout step Run times on Memory (Table 3). 
RS/6000* (MB) 
Model 590 

(h) 
Design  for  testability 
For very complex VLSI chips,  design for  test  (DFT) is 

Placement (2X) 16 (2X) 700 required in order  to achieve  high test  coverage  and 
In-place optimization (2X) 25 (2X) l2O0 reasonable  turnaround  time.  DFT consists of four  major 
Routing 26 300 phases: 

I. 
Boolean compare and engineering changes 

To avoid  any  risk of introducing logic errors  during in- 
place  optimization, a Boolean  equivalence checking tool 
[ I l l  is used  to verify the  equivalence of the  pre-  and 
post-layout  netlists. The design  system supports  late 
metallization-only changes by rerouting  or by using gate- 
array circuits. This  process is complicated by the  fact 

51 0 that in-place optimizations  during  layout,  and  late 

Definition of test methodology and design of test macros 
All of our designs  follow the level-sensitive  scan  design 
(LSSD)  rules [26]. This allows race-free  testing  and 
initialization of all  memory elements in the  chip  at any 
level. The  implementation is always full-scan. Our main 
test  approach is built-in  self-test (BIST), in which 
different  state  machines  are  designed  that  execute  the 
test  after  initialization. BIST is used  to  test  both 
combinational logic (LBIST)  and  memory  arrays 
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the  power-on  sequence in a  customer’s office. They can 
be  run  at system cycle speed in chip  manufacturing 
using on-product clock generation  and  on-chip PLLs.  A 
small number of special 1 / 0  circuits allow testing of all 
signal I/Os without  contacting  them  at  wafer  test.  This 
reduced-pin-count  testing  technique [29] allows the  use 
of less  expensive test vehicles in manufacturing  for 
most of the tests. The  custom library elements  are 
checked early  in the design phase  for testability, 
and, if necessary, logic circuits are  added to improve 
controllability and observability. 

2. Design of test control logic  together with clock generation 
logic 
Embedding  test  control logic into  on-product clock 
generation allows more  accurate  testing by using the 
system clock distribution.  The  test  control logic is very 
similar to  the IEEE JTAG  controller [30], but in 
addition it has  several  registers to set  up  and  control 
the  different  tests  that  are  executed.  For  example, 
registers  are  used  to define the  length of the  LBIST 
test  sequence,  or  the way of clocking, or  to  disable 
certain  parts of the chip. The  test  control logic is 
designed  once  and  reused  on all chips in the  set.  The 
basic LSSD design and  the  common  test  controller  are 
embedded in the  functional  portion of each  chip in 
such  a way that  they  are virtually invisible to  the 
functional logic designer (Figure 7). 

An  IBM-developed  tool  set,  TestBench*  [l], is used  not 
only for  test  data  generation,  but also to  check  for 
design rule  compliance.  TestBench checks and analyzes 
compliance with  LSSD and  several  other rules: 

Boundary scan rules These  rules  enable us to test 
the I/O area  independently of the  internal logic of 
the chips, and vice versa. Our  implementation [31] is 
similar to  the IEEE JTAG  boundary scan  design. 
Self-test rules In all  self-test  designs, propagation 
of undefined  states  into  the  signature analyzer is 
prohibited  because it  would corrupt  the final 
signature.  Another  important  check  ensures  that  the 
self-test chain  lengths  are  equal  for all chips in the 
set, allowing us to reuse  the  same  LBIST  control 
logic on  the chips. 

with IDDQ test  patterns,  it is necessary that all 
current  can  be  turned off for  the  measurements. 
We  devoted a separate  test I/O pin to control this. 

3. Test structure verification (TSV) 

IDDQ rules Because all of our  chips  are also tested 

4. Testability analysis (TA)  
The testability  goal for  our  chips is 99.9% stuck- 
fault coverage and 95% delay-fault  coverage. With 
TestBench we are  able  to  generate  the  fault  models 
as well as to analyze the  problem  areas.  The 

Test control logic. 

implementation of LSSD  full-scan  in addition  to  LBIST 
enables  TestBench  to  produce very high coverage 
almost immediately. The testability problem  that we 
deal with is mainly redundancy removal. However, 
because  our  primary  test  method is LBIST, it is also 
very important  to identify logic portions  that  are  hard 
to  test with random  patterns.  We  add  controllability 
and observability wherever possible to achieve at  least 
98% LBIST  stuck-fault coverage. 

Test pattern generation 
Figure 8 shows the  test  pattern  generation  (TPG) flow. 
After a  design has passed the  TSV  and  TA checks, TPG 
generates  the  actual  chip  and/or  module  test  data to be 
used  during  manufacturing, as well as the system  LBIST 
signatures  that  are  checked in the machine. TPG 
generates  the following test  data: 

1. Scan test 
This  test  ensures  the basic function of the  implemented 
LSSD design and is key for any  diagnostics performed 
in manufacturing. 

2. LBISTIABZST test 
The LBIST patterns  include  the initialization of the 
chip  plus  the  calculated final signature, as well as 
intermediate  signatures  for  debug  and diagnosis. The 
ABIST  patterns  not only indicate successifailure but 
also identify  failing array cells that  can  then  be 
disabled and  replaced by redundant  array cells. The 51 1 

IBM J. RES.  DEVELOP. VOL. 41 NO. 415 JULYiSEPTEMBER 1997 B. KICK ET AL 



I 
j Test  pattern  generation flow. 

LBIST/ABIST  tests  can  be  run in two different ways: 
controlled by a  single oscillator using the  on-product 
clock-generation logic, or  controlled by dedicated  tester 
clocks, the so-called LSSD clocks. This is important  for 
diagnostic  purposes. 

Additional  test  patterns  are  generated  to  supplement 
the  LBIST  test coverage,  in order to achieve 99.9% 
stuck-fault  coverage. 

Using the  boundary-scan  chain, all I/Os can  be  set 
independently  to logic 1 or 0 so that  these  patterns  are 
relatively easy to  generate  and very compact. 

3. Deterministic  test 

4. I10 test 

Table 4 shows TPG statistics for  the  MBA chip. 

Outlook 
We have described a standard-cell-based  VLSI design 
system producing  results which are  competitive with 
custom design solutions in terms of density,  in  a very short 
turnaround  time.  In  the  future, we expect the logic 
complexity and  the  number of small custom  macros to 
increase.  To verify that  this complexity can  be  handled by 
our methodology, we have successfully placed  and  routed 
an  experimental design  consisting of 580000 standard cells 

51 2 on a  1024-mm2  image. 

I B. KICK ET AL. 

Table 4 TPG statistics  for the MBA chip. 

Test model gates 1.64 X lo6 
LSSD latches 95SK 
Stuck faults  5.3 x lo6 
Delay faults 4.8 X lo6 
LBZST 

Stuck-fault  coverage (%) 98.93 
CPU time on RSl6000 Model 590 (h) 25 
Vectors 496K 

Deterministic patterns 
Stuck-fault coverage (%) 99.83 
CPU time on RSl6000 Model 590 (h) 1 
Vectors 742 

The low percentage of long  nets  inherent in our design 
approach  should minimize the  impact of the  higher 
interconnection delay expected in future,  denser  chip 
technologies. We  are  currently focusing on  improvements 
in parasitic  extraction  and  the analysis and  avoidance of 
crosstalk.  Furthermore,  efforts  are  being  put  into  faster 
system-level simulation  techniques. 

*Trademark  or registered trademark of International Business 
Machines  Corporation. 
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