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We describe the methodology used for the
design of a set of CMOS support chips used
in the IBM S/390® Parallel Enterprise Server
Generations 3 and 4. The logic design is based
on functional units, and the majority of the
logic is implemented by standard cell elements
placed and routed flat, using timing-driven
techniques. Custom library elements are used
wherever needed for performance reasons.
Using this approach, a density has been
achieved that is comparable to those of
contemporary custom designs, combined

with very attractive turnaround times.

Introduction
Custom design is the dominant design style for high-
performance processors. It offers the advantage of full
control over the size and the location of each transistor
for performance tuning, but requires considerable effort
to implement because of the complexity of a complete
transistor-level design. This complexity creates the need
to introduce additional hierarchies, usually leading to a
“floorplanning” approach.

A standard cell design approach (Figure 1) makes it
possible to globally apply advanced optimization

algorithms, which reduce the manual effort required

and improve the quality of the synthesized logic during
layout. The use of basic standard cell elements reduces
complexity to the extent that a complete chip design can
be handled flat by layout and test generation tools,
removing the need for artificial floorplan boundaries. Our
approach uses a small number of custom logic macros and
custom memory arrays whenever a standard cell solution is
not competitive. The major part of the combinational logic
portions, however, are implemented in standard cells.

Design entry, synthesis, and simulation are performed
on the basis of functional units. There is no need to
optimize logic partitioning on the basis of timing, layout,
and test considerations. Flat, timing-driven placement
and routing without floorplan boundaries minimizes
interconnection delay in critical paths. This, coupled with
in-place logic optimization, achieves a post-layout cycle
time no more than 15% above the zero-net estimate.

The testing methodology we have used consists of
design for test (DFT) to ensure high test coverage, and
test pattern generation to enable testing, analysis, and
debugging of chips in manufacturing. Key are fast
turnaround time and high-quality testing.

Test data generation, circuit and logic design, and
timing verification are performed with proprietary IBM
tools [1-4]. The tools for layout optimization were
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developed at the Institute for Discrete Mathematics at
Bonn, Germany, in close cooperation with the IBM
Laboratory in Boeblingen, Germany. This cooperation has
minimized the lead time required to incorporate
combinatorial optimization research results into our
production tools. The approach has been used successfully
on a set of CMOS chips which, together with processor
and cache, are the heart of the S/390* Parallel Enterprise
Server Generations 3 and 4.

System overview

The chip set (Figure 2) consists of processor chips
(PUO-PUB), cache chips (I.2), and a set of support chips
{Clock, MBA, BSN, STC). A tightly coupled S$/390
multiprocessor system with up to twelve processors and
16GB physical main memory can be designed with this
chip set. The clock chip (Clock) provides the clocks, self-
test, and power-on control logic, and the interface with
the service element for all chips in the system. The
memory bus adapter (MBA) chips are direct-memory-
access (DMA) controllers that are the interface between
the asynchronous, byte-serial I/O buses and the 16-byte-
wide system bus. The bus-switching network (BSN) chips
hold shared level-3 caches and bus arbiters that control
the concurrent access of PUs, MBAs, and system-wide
memory. The storage controller (STC) chips are DRAM
controllers, supporting transparent refresh, interleaving,
and multibit error detection and repair. More details can
be found in [5].

Technology and design of custom elements

& Technology

The CMOS process [6, 7] used on the chip set was
developed by the IBM Microelectronics Division. The
technology provides six layers of metallization—one layer
for internal circuit wiring only, and four layers for wiring
in a 1.8-um wiring pitch. The last metallization layer is
used primarily for wiring redistribution to the chip I/O
pads. The technology parameters are shown in Table 1.

& Library and chip image

The standard cell library we used provides a set of logic
gates, latches, and I/O cells which fit into 3.5 million
placement locations and are interconnected through
horizontal and vertical wiring tracks defined by the chip
image. The I/O cells can be placed anywhere among the
3.5 million legal locations. After chip placement and
routing, the unused cell locations are filled with
nonpersonalized gate array elements to provide an
engineering change capability with metallization
changes only.
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® Custom circuit design

The base standard cell library provides simple logic gates,
but a small set of custom logic macros and custom SRAM
macros was required for the special needs of the S/390 in
order to improve cycle time and density. The custom
implementation of the macros gives the circuit designer
the freedom to use special circuit design techniques such
as dynamic and double-pass circuits [8] to improve the
propagation delay.

The circuit design flow (Figure 3) begins with a
specification sheet defining the macro requirements.

With this information, a model written in a proprietary
hardware description language (HDL) is designed [9]. This
HDL model defines the logic behavior and must be as
compact as possible to reduce logic simulation time.

The HDL model is thoroughly simulated against the
specification sheet and becomes the “golden” model for
the following design process. All other design sources
required on the way to layout are checked against the
golden model.

The first step of the schematic-driven layout is the
implementation of the logic function in transistors with
a schematic entry tool [10]. An iterative process based
,on transistor-level simulation followed by transistor
modifications is necessary to meet the timing,
performance, and power-consumption targets of
the macro.

A Boolean equivalence checker [11] compares the
transistor schematics against the golden model and gives
early simulation-independent feedback of the correct
implementation. An early timing model is generated for
the chip-level delay calculator [4]. This early timing model
is replaced later in the design process by the final timing
model, based on information extracted from the circuit’s
layout. The device and net information in the schematics
is used by a proprietary schematic-driven layout tool.
Compliance of the macro layout with the technology
design rules is checked with a hierarchical design rule
check (DRC). The layout design style could vary, from a
full shape-by-shape design to the use of circuit generators
for base logic functions such as NANDs.

To support generation of the chip place and route rules,
additional shape and text information must be added to
the layout design. After this process, the custom macros
can be used like big standard cell circuits, placeable in any
legal location. Providing signal-pin, power-pin, and
blockage information to the physical design tools allows
automatic power and signal wiring at the chip level.

The custom macro layout is fed into a proprietary
layout parasitic extraction (LPE) tool. The transistor
geometries (width and length), as well as all parasitic
elements such as diffusion capacitances and line-to-line
capacitances, are then extracted from the layout. The
generated netlist with parasitic elements is used for
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Table 1 Technology parameters.
Feature Value
Supply voltage 25V
L, 0.25 pm
Minimum feature size 0.33 um
T, 7 nm
Metal layers 1+5

transistor-level resimulation to ensure that the function
and performance are still correct. This netlist is the source
for the final, most accurate timing model of the macro.

After the custom macro layout is complete, a final
layout versus schematic (LVS) check is performed. This
check generates a layout netlist and compares it against
the schematic netlist, not only checking network topology
and device sizes, but also detecting net opens and shorts.

Finally a test model is generated, breaking down all
transistor schematics into the primitive functions
understood by test pattern generation (TPG), such as
AND, NAND, NOR, OR, and XOR. This model is
verified against the golden HDL model to guarantee
logic equivalence between the implementations.
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Design entry, synthesis, and simulation

® Design entry
The design system accepts design data in three forms:
gate-level schematics, hardware design language (HDL)
code, and finite-state machine (FSM) tables (Figure 4).

Gate-level schematics are preferred for data-flow-
dominated designs and for designs that require careful
manual design and optimization. Most parts of the
processor and the L2 cache chip are designed at the gate
level. The schematics are entered using a proprietary
schematic editor that translates the schematics into gate-
level netlists. Apart from macro expansion, this is a one-
to-one translation; no logic optimization is performed.

HDL code and FSM tables are preferred for control-
flow-dominated designs. Most parts of the support chips
are HDL code or FSM table designs. HDL code is a
proprietary hardware-description language [9]. The level
of description is similar to the concurrent subset of
VHDL: Boolean expressions, signal assignments,
component instantiations, etc.

FSM tables are convenient because they describe finite-
state machines more compactly than HDL code. FSM
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tables are translated to HDL code for synthesis and
simulation. For simulation, the generated HDL code is
instrumented to collect statistics about state transitions
exercised by a set of test cases. This information is used to
create test cases that exercise all possible state transitions.

o Logic synthesis

The logic synthesis system, BooleDozer*, reads the HDL
code and generates gate-level netlists. BooleDozer
performs technology-independent optimization, technology
mapping, and timing optimization to generate a netlist of
minimal size that meets the delay objectives [2, 3].
Synthesis uses the same delay calculator as placement

and routing, with the exception that interconnection
capacitances and resistances are estimated as a function of
fanout, based on statistics from placement and routing.

Because a full-chip design cannot be synthesized in one
run, it must be partitioned into pieces of a few thousand
synthesizable gates each. This approach has the advantage
that synthesis jobs can run in parallel on multiple
machines, reducing turnaround times. Typically, synthesis
times range from one to ten hours of CPU time per
partition, resulting in overnight turnaround.

Partitioning requires that delay objectives for the chip
be broken down into delay objectives for each partition.
This process, designated as slack apportionment, assigns
delay objectives to partitions in such a way that if each
partition meets its delay objective, the chip also meets the
delay objective. The process first runs on an unoptimized
design to generate initial delay objectives. The design is
then resynthesized and optimized with respect to initial
delay objectives, and is fed into slack apportionment
again to generate improved delay objectives. This is an
expensive process because it requires multiple full-chip
synthesis runs, but in practice after two or three iterations
the delay objectives become stable. Experiments show that
slack apportionment need only be rerun after major design
changes, which do not occur very often. Logic synthesis
and schematic entry generate one netlist for each chip
partition. The partition netlists are finally flattened into
one chip netlist for flat placement and routing.

® Simulation :
Extensive logic simulation at the unit, chip, and system -
level is performed to verify the functional correctness of
the designs [12, 13]. Cycle-based simulation assumes zero
delay, leaving timing verification to the delay calculator
[4]. This approach nicely separates timing aspects from
functional aspects and speeds up simulation considerably.
Unit-level and chip-level simulation are carried out
using mostly HDL code models. This interactive mode of
simulation is used primarily in the early stages of logic
design to correct small design errors that are easy to
detect. The bulk of simulation occurs at the system level.

IBM J. RES. DEVELOP. VOL. 41 NO. 4/5 JULY/SEPTEMBER 1997




System simulation uses gate-level models for the
processor, cache, and memory interface chips, and
behavior-level models for the 1/O chips. A simulation
monitor initializes the storage elements (latches,
memories) of the model, loads test cases into the model,
and provides tracing, assertion checking, and reporting
capabilities. The monitor has a full-screen interface for
interactive simulation, but most of the system simulation
is done in batch mode. The simulation is performed in
parallel with logic design, as soon as an initial, unit-level
simulated design is available.

Chip placement and routing

o Flat and timing-driven layout

Because our chip-placement and routing tools have been
refined over the course of four processor generations, and
because of the tight cycle-time bounds imposed on the
designs, the primary layout optimization objective has
shifted from pure routability to cycle-time reduction.

To be able to judge the quality of a given layout, we
needed a reasonable lower bound for the possible cycle
time. A natural lower bound could be obtained by a
static timing analysis of the logic network assuming a
net length of zero for each net. In other words, each
circuit drives the input capacitances of the next stage with
interconnection length set to zero. Upon comparing the
actual post-layout cycle time to this hypothetical zero-net
cycle time using different design approaches such as
floorplanning vs. flat, and timing-driven vs. connectivity-
driven, we found that the approach that consistently
produced the lowest interconnection delay was flat,
timing-driven layout (Figure 5).

® Placement

The ability to place and route complex designs flat and
timing-driven is an important prerequisite for the design
methodology presented here. This is made possible by
quadratic optimization combined with a new quadrisection
approach [14]. The approach computes net weights,
derived from a concurrent timing analysis run, which are
then used for the next optimization step. A description of
detailed placement can be found in [15].

® In-place optimization

Logic optimization based on the actual placement is
performed to further improve the cycle time. This is
carried out in three steps:

1. Clock synthesis The clock tree is not considered
during placement but is instead resynthesized after
placement using a zero-skew approach similar to
[16, 17]. Routing information for balanced routing is
created as an input to the routing step.
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2. Power-level optimization This is performed for timing
optimization and power reduction. It uses one of the
five power levels available for each standard-cell circuit.

3. Buffer insertion This is performed on timing-critical
paths that still exceed the cycle-time limit after power-
level optimization.

The resulting decisions are always based on actual
placement data, as each circuit added is assigned to a
placement location. Details on timing analysis and
optimization techniques that are used can be found
in [18].

® Routing

Special nets such as power buses and nets connected to
I/O pads are routed first, and then congestion-driven
global routing defines guide boxes for the following local
routing step. The information generated during clock
optimization drives the balanced routing of the clock nets.
The ability to route the entire design flat removes the
suboptimality introduced by the necessary pin propagation
in a hierarchical approach. The routing tool supports
different wire widths and separations and has a crosstalk

analysis as well as removal capability [19, 20]. 509
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Table 2 Chip statistics.

BSN MBA
Chip size (mm?) 213 240
Transistors 16.6 X 10° 3.6 X 10°
Density (KTX/mm®) 77.9 15.0
Standard cells 71 % 10° 206 X 10°
Custom macros 341 89
Pins 260 X 10° 771 % 10°
Nets 82 x 10° 226 % 10°
Total net length (m) 60.6 122
I/O pins 758 770
Cycle time (ns) 5.9 5.9

Table 3 Run times and memory for the MBA chip.

Layout step Run times on Memory
RS/6000* (MB)
Model 590
(h)
Placement (2X) 16 (2%) 700
In-place optimization (2X) 25 (2x) 1200
Routing 26 300

® Boolean compare and engineering changes

To avoid any risk of introducing logic errors during in-
place optimization, a Boolean equivalence checking tool
[11] is used to verify the equivalence of the pre- and
post-layout netlists. The design system supports late
metallization-only changes by rerouting or by using gate-
array circuits. This process is complicated by the fact
that in-place optimizations during layout, and late
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functional changes by the logic designers, are carried out
concurrently. We have implemented a flow to incorporate
the functional changes performed on the pre-layout netlist
into the post-layout netlist.

® Results

Figure 6 shows the net length distribution for the 15.5 X
15.5-mm” MBA chip. About 70% of the nets are less than
0.5 mm long, and very few nets are more than 5 mm in
length. Restricting the functional units to floorplan regions
would introduce global nets, which are typically longer.
This relatively small increase in interconnection delay is
an inherent advantage of our flat, timing-driven layout
approach. On the most timing-critical paths we have been
able to keep the ratio of post-layout to zero-net cycle

time below 1.15. The actual ratio depends on the given
technology, of course. It should also be noted that this
ratio applies to only the most timing-critical paths. For
less critical paths the contribution of interconnection
delays is typically much larger, supporting the common
industry view that for today’s technologies, interconnection
delay is becoming the dominant contributor to total path
delay [21, 22].

Table 2 shows layout statistics for the BSN and MBA
chips. The densities of 15.0 KTX/mm® (thousands of
transistors per mm”) for the control-logic-dominated MBA
chip and 77.9 KTX/mm’ for the memory-dominated BSN
chip are comparable to densities presented at the 1997
International Solid State Circuits Conference, e.g.,

34.6 kKTX/mm” in [23], 36.9 KTX/mm’ in [24], or
25.4 kKTX/mm” in [25].

The run times for placement and routing are very
attractive considering that hardly any manual intervention
is required. For example, a complete timing-driven layout
for the MBA chip, consisting of two placement and
optimization iterations and a routing step, can be
performed in less than five days of processor time
(Table 3).

Design for testability

For very complex VLSI chips, design for test (DFT) is
required in order to achieve high test coverage and
reasonable turnaround time. DFT consists of four major
phases:

1. Definition of test methodology and design of test macros
All of our designs follow the level-sensitive scan design
(LSSD) rules [26]. This allows race-free testing and
initialization of all memory elements in the chip at any
level. The implementation is always full-scan. Our main
test approach is built-in self-test (BIST), in which
different state machines are designed that execute the
test after initialization. BIST is used to test both
combinational logic (LBIST) and memory arrays
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(ABIST) [27, 28]. These tests can be used on all levels
of hierarchy, from chip test in manufacturing through
the power-on sequence in a customer’s office. They can
be run at system cycle speed in chip manufacturing
using on-product clock generation and on-chip PLLs. A
small number of special 1/O circuits allow testing of all
signal 1/0s without contacting them at wafer test. This
reduced-pin-count testing technique [29] allows the use
of less expensive test vehicles in manufacturing for
most of the tests. The custom library elements are
checked early in the design phase for testability,

and, if necessary, logic circuits are added to improve

controllability and observability.

2. Design of test control logic together with clock generation
logic

Embedding test control logic into on-product clock

generation allows more accurate testing by using the

system clock distribution. The test control logic is very
similar to the IEEE JTAG controller [30], but in
addition it has several registers to set up and control
the different tests that are executed. For example,
registers are used to define the length of the LBIST
test sequence, or the way of clocking, or to disable
certain parts of the chip. The test control logic is
designed once and reused on all chips in the set. The
basic LSSD design and the common test controller are
embedded in the functional portion of each chip in
such a way that they are virtually invisible to the
- functional logic designer (Figure 7).

3. Test structure verification (TSV)

An IBM-developed tool set, TestBench* [1], is used not

only for test data generation, but also to check for

design rule compliance. TestBench checks and analyzes
compliance with LSSD and several other rules:

o Boundary scan rules These rules enable us to test
the I/O area independently of the internal logic of
the chips, and vice versa. Our implementation [31] is
similar to the IEEE JTAG boundary scan design.

o Self-test rules 1In all self-test designs, propagation
of undefined states into the signature analyzer is
prohibited because it would corrupt the final
signature. Another important check ensures that the
self-test chain lengths are equal for all chips in the
set, allowing us to reuse the same LBIST control
logic on the chips.

o IDDQ rules Because all of our chips are also tested
with IDDQ test patterns, it is necessary that all
current can be turned off for the measurements.

We devoted a separate test I/O pin to control this.
4. Testability analysis (TA)

The testability goal for our chips is 99.9% stuck-

fault coverage and 95% delay-fault coverage. With

TestBench we are able to generate the fault models

as well as to analyze the problem areas. The
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implementation of LSSD full-scan in addition to LBIST
enables TestBench to produce very high coverage
almost immediately. The testability problem that we
deal with is mainly redundancy removal. However,
because our primary test method is LBIST, it is also
very important to identify logic portions that are hard
to test with random patterns. We add controllability
and observability wherever possible to achieve at least
98% LBIST stuck-fault coverage.

Test pattern generation

Figure 8 shows the test pattern generation (TPG) flow.
After a design has passed the TSV and TA checks, TPG
generates the actual chip and/or module test data to be
used during manufacturing, as well as the system LBIST
signatures that are checked in the machine. TPG
generates the following test data:

1. Scan test
This test ensures the basic function of the implemented
LSSD design and is key for any diagnostics performed
in manufacturing.

2. LBIST/ABIST test
The LBIST patterns include the initialization of the
chip plus the calculated final signature, as well as
intermediate signatures for debug and diagnosis. The
ABIST patterns not only indicate success/failure but
also identify failing array cells that can then be
disabled and replaced by redundant array cells. The
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LBIST/ABIST tests can be run in two different ways:
controlled by a single oscillator using the on-product
clock-generation logic, or controlled by dedicated tester
clocks, the so-called LSSD clocks. This is important for
diagnostic purposes.

3. Deterministic test
Additional test patterns are generated to supplement
the LBIST test coverage, in order to achieve 99.9%
stuck-fault coverage.

4. I/O test
Using the boundary-scan chain, all I/Os can be set
independently to logic 1 or 0 so that these patterns are
relatively easy to generate and very compact.

Table 4 shows TPG statistics for the MBA chip.

Outlook

We have described a standard-cell-based VLSI design
system producing results which are competitive with
custom design solutions in terms of density, in a very short
turnaround time. In the future, we expect the logic
complexity and the number of small custom macros to
increase. To verify that this complexity can be handled by
our methodology, we have successfully placed and routed
an experimental design consisting of 580000 standard cells
on a 1024-mm’ image.

B. KICK ET AL.

Table 4 TPG statistics for the MBA chip.

Test model gates 1.64 x 10°
LSSD latches 95.5K

Stuck faults 53 % 10°
Delay faults 4.8 x 10°
LBIST
Stuck-fault coverage (%) 98.93
CPU time on RS/6000 Model 590 (h) 25
Vectors 496K
Deterministic patterns
Stuck-fault coverage (%) 99.83
CPU time on RS/6000 Model 590 (h) 1
Vectors 742

The low percentage of long nets inherent in our design
approach should minimize the impact of the higher
interconnection delay expected in future, denser chip
technologies. We are currently focusing on improvements
in parasitic extraction and the analysis and avoidance of
crosstalk. Furthermore, efforts are being put into faster
system-level simulation techniques.

*Trademark or registered trademark of International Business
Machines Corporation.
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