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and methodology

This paper describes the overall test
methodology used in implementing the S/390°
microprocessor and the associated L2 cache
array in shared multiprocessor designs, the
design-for-test implementations, and the test
software used in creating the test patterns
and in measuring test effectiveness.
Microprocessor advances in architectural
complexity, circuit density, cycle time, and
technology-related issues, coupled with IBM’s
high requirements for quality, reliability, and
diagnosability, have made it necessary to
develop testing methods and attain quality
levels that far exceed what others have
approached.

Introduction

The advent of deep-submicron technology has given rise
to integrated circuits containing hundreds of thousands of
logic gates, embedded memories approaching the megabit
range, I/O counts in the thousands, and operating
frequencies in the hundreds of MHz. Along with the
benefits of such characteristics and the design flexibility
necessary to achieve them come severe design and test
challenges. In particular, traditional methods of testing
semiconductor devices are quickly becoming obsolete. The
use of functional patterns derived for design verification as
manufacturing test patterns is becoming increasingly
unacceptable. Some of the most severe problems

associated with this approach are high test development
times, defect coverages that are low or hard to measure,
and poor diagnosability. As far back as fifteen to twenty
years ago, test techniques were developed within IBM and
in industry which based analysis on the design structure
rather than on functionality [1]. Within IBM, these
techniques have been evolving from the 308x testing in the
early 1980s to the 3090* testing in the later '80s, to high-
density CMOS parts in the early '90s [2-13]. These
techniques have led to the development of automatic test-
pattern generation (ATPG) algorithms and tools [14-19].
Although ATPG-based approaches to digital testing

have met with some success, they also are becoming
increasingly ineffective as chip sizes increase. Indeed, time
requirements for ATPG algorithms grow nonlinearly in
relation to the size of the circuit under test [20].

However, the largest problem with both the functional
and ATPG-based test techniques is their reliance on the
use of automatic test equipment to apply the test patterns
to the device’s external inputs and measure responses on
the device’s external outputs. This approach does not
provide a means to adequately detect all of the device’s
internal defects. Direct access to the internal structures of
a device is necessary. This requirement has led to the
development of design-for-test (DFT) and built-in self-test
(BIST) techniques and methods [21-27].

DFT techniques consist of design rules and constraints
aimed at increasing the testability of a design through
increased internal controllability and observability. The
most popular form of DFT is scan design, which involves
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modifying all internal storage elements such that in test
mode they form individual stages of a shift register for
scanning test data stimuli and scanning out test
responses.

Conceptually, the BIST approach is very simple. It is
based on the realization that much of a circuit tester’s
electronics is semiconductor-based, just like the products
it is testing, and that the challenge in ATE design, and
many of the emerging limitations in ATE-based testing, lie
in the interface to the DUT. In light of this fact, the BIST
approach can be described as an attempt to move many of
the already semiconductor-based test equipment functions
into the products under test and eliminate the complex
interfacing. This embedding of functionality has many
benefits; some of the more important ones are the
following:

 The burden on and complexity of external test and
dynamic stress equipment are drastically reduced.

« The cost of product interface equipment, interface
boards, space transformers, probes, etc. is reduced.

+ Embedded memories and other structures can easily be
accessed for testing purposes.
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« All tests can be run at-speed, i.e., at the system
operating frequency, which provides for better coverage
of delay-related defects.

+ The approach can be used after product assembly for
system and field testing.

The clear benefits of DFT and BIST encouraged the
extensive use of these techniques in the design of the
currently developed S/390* microprocessor and associated
L2 cache chip. Indeed, the high complexity and density of
these submicron CMOS-based devices, coupled with the
need to optimize testing across all levels, minimize device
silicon, optimize test equipment, decrease time to market,
and achieve an extremely high shipped-product quality
level, made the use of DFT and BIST essential. Novel and
innovative BIST techniques were developed to address
some of the unique test challenges that arose from these
state-of-the-art designs.

This paper gives an overview of the test methodology
and describes the various DFT and BIST techniques used.
It then discusses some of the benefits of these DFT
features in hardware debug. The paper concludes with a
brief description of the test-generation software and fault-
model build, and the use of the fault-model/test software
in generating the test data.

Overview of test methodology

The test methodology was optimized across multiple IBM
divisions. This included a combination of DFT options
that dramatically reduced the required capital equipment
investment in test equipment. Potentially, the cost of a
full-speed full-input/output tester for this product could
have exceeded $8 million per tester. Instead, the devices
were tested and their performance verified using a low-
cost tester. Figure 1 shows the DFT and BIST techniques
which were used.

To reduce the number of full-speed tester channels
required, a boundary-scan DFT technique was
implemented. It consists in placing a scannable memory
element adjacent to each chip I/O so that signals at the
chip boundaries can be controlled and observed using scan
operations and without direct contact. This boundary-scan
chain is also needed for the logic BIST technique. Access
to the boundary-scan chain as well as to most of the DFT
and BIST circuitry is achieved through a custom five-wire
interface similar to the standard IEEE 1149.1 TAP
approach [28]. This interface is used to initialize and
control the various on-chip BIST controllers and other
DFT hardware during both system test and manufacturing
test. A state machine within each chip, referred to as
the self-test control macro (STCM), is used to control
internal-test-mode signals and the sequencing of all test
and system clocks while in test mode. Instead of testing
the performance of the device at full speed through the
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pins, an on-chip phase-locked loop (PLL) was used to
multiply the incoming tester frequency to bring it up to
the operating frequency of the chip. Additional self-
generated clock (SGC) [22, 29, 30] circuitry is then used
to generate the various system clock sequences needed
to properly exercise all portions of the chip.

The BIST techniques can be divided into two major
categories: logic BIST (LBIST) to test at-speed the logic
in the devices, and array BIST (ABIST) to provide at-
speed testing of the embedded arrays (i.e., RAMs). The
basic idea in LBIST is to add a pseudorandom-pattern
generator (PRPG) to the inputs and a multiple-input
signature register (MISR) to the outputs of the device’s
internal scan chains. A BIST controller generates all
necessary waveforms for repeatedly loading pseudorandom
patterns into the scan chains, initiating a functional cycle
(capture cycle), and logging the captured responses out
into the MISR. The MISR compresses the accumulated
responses into a code known as a signature [31]. Any
corruption in the final signature at the end of the test
indicates a defect in the chip. This LBIST architecture is
known as a STUMPS [6] architecture (self-test using
MISR and parallel shift register sequence generator), and
the scan chains connecting the PRPG and MISR are
defined as the STUMPS channels.

Although pseudorandom patterns achieve high test
coverage for most scan-based designs, some areas within
the design may be inherently resistant to testing with such
patterns. Supplemental patterns designated as weighted
random patterns (WRP) [15, 16] are therefore used during
manufacturing test. WRP avoids the large test data
volume that would be needed to drive conventional
stored-pattern logic tests. External tester hardware is used
to force individual bits in scan-based random test patterns
to be statistically weighted toward a logic one or zero.
Compared with LBIST alone, this method greatly reduces
the number of random patterns needed for obtaining high
test coverage, thereby greatly reducing test time.

For the ABIST test, a controller based on a
programmable-state machine is used to algorithmically
generate a variety of memory test sequences. As with
LBIST, test patterns can be applied to the embedded
array at cycle speeds. Because of the regular structure of
arrays, an ABIST controller can be shared among several
arrays. This not only reduces the overhead per array, but
allows for decreased test times, since the arrays can be
tested in parallel.

To ensure good-quality chips, several IBM standard
manufacturing tests are applied. In addition to those
already mentioned, the types of tests include a boundary-
scan [/O test, parametrics, IDDQ, excessive voltage and
temperature stressing, and dynamic burn-in [13]. Stressing
the devices with voltage stressing and burn-in conditions
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helps guarantee the very high quality and reliability
necessary for the mission-critical applications for S/390
servers.

The DFT implementation requires chip area dedicated

to test functions; however, the bulk of the logic is also
used for system initialization, recovery, and system failure
analysis. The amount of logic dedicated to manufacturing
test on these high-density CMOS parts utilizes less than
1% of the overall chip real estate.

Design for test—LBIST

LBIST is used for manufacturing test at all package levels
and for system self-test. The main LBIST components are
a PRPG and a MISR. These two components are connected
to chip scan chains to form the overall LBIST structure.

The basic LBIST logic test sequence used to apply test

patterns is as follows:

1.

The PRPG and MISR are initialized to a
predetermined state known as a seed. Then, the
circuitry loops on Steps 2 and 3 for n patterns.

. Scan clocks are applied to the PRPG, MISR, and

system latches so that a pseudorandom pattern is
generated by the PRPG and loaded into the system
latches. Simultaneously, the result of the previously
applied test pattern is compressed from the system
latches into the MISR.

. System clocks are applied to the system latches to test

the logic paths between the latches. Test patterns are both
launched and captured by the latches in the scan chains.

. After n repetitions of Steps 2 and 3, the signature

in the MISR is compared against an expected
predetermined signature that was calculated during the
test-pattern generation and simulation process.

Although the LBIST sequence is straightforward, there

are multiple means to apply the sequence to perform
different categories of logic tests. If the test is required to
verify only that the logic structure between the latches is
correct and has no stuck-at faults, the LBIST test can be
applied with static, nontransitional patterns. The time
between launch of data from one system latch and data
capture in another system latch is irrelevant, so data are
scanned into the latches in a nonskewed state such that
the master and slave latches contain the same data. When
system clocks are applied, there is no transition of data on
the launching latches.

If the LBIST test is to determine not only that the logic

between system latches is correct, but also that the
propagation delay from one system latch to another occurs
within a predetermined delay, a transition test is applied.
In this test, data are scanned into the latches in a skewed
state such that the master and slave latches potentially

have different values so that the launch clock will create
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transitions at the latch outputs. Then precisely timed
launch and capture clocks are applied to the system
latches via the SGC circuitry.
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LBIST is used on the tester during manufacturing
test and during system self-test. During manufacturing
test, the tester can apply the necessary signals to scan the
shift-register chains, cycle the PRPG and MISR, and apply
the system clocks at the proper time. In the system, there
are no available resources external to the chip to control
the LBIST circuitry. These controls are generated on-chip
by the self-test control macro (STCM). The STCM
executes the LBIST test sequence in a stand-alone
manner. In fact, an entire self-test sequence of the
entire system can be initiated at a customer office via
modem/service processor controller.

® LBIST design implementation

Several unique features were required in the logic
implementation to support the various aspects of the
LBIST methodology. The PRPG shown in Figure 2

is a 61-bit linear-feedback shift register (LFSR) with a
feedback configuration utilizing taps 0, 14, 15, and 60.

To minimize data dependencies, the outputs of the
LFSR are passed through an XOR spreading network
before being applied to the logic. This spreading network
is used to minimize latch adjacency dependencies between
subsequent stages of the LFSR. Each stage of the LFSR
has an associated two-input XOR which is fed from that
stage and bit 0 of the LFSR. The output of the LFSR is
applied to the appropriate STUMPS channel scan input.

The MISR is also 61 bits long and has a feedback
configuration similar to that of the PRPG. Unlike the
PRPG, the MISR has a two-input XOR between each of
the latch stages, which allows for 61 bits of data from the
STUMPS channel scan outputs to be clocked into the
MISR on each LBIST scan cycle in the process of
generating the signature.

The primary purpose of the STCM in Figure 3 is to
control the on-chip LBIST test operation; however, it also
functions as the main interface and controller for all other
test functions, with the exception of ABIST execution,
which has its own independent test engine. The functions
of the STCM are as follows:

 LBIST scan-clock generation and sequence controls.
 Scan-chain configuration controls.

¢ ABIST initialization.

 External clock controls.

The mode of operation, or test mode, is determined by
four bits of the general-purpose test register (GPTR). The
GPTR is a register that is initialized prior to each test
with static control information. The GPTR consists of
scan-only latches, and its state remains constant
throughout the application of a given set of tests.

Details of the GPTR are discussed later.
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LBIST controls and scan-clock generator

The LBIST controls and scan-clock generator in Figure 4
consist of a state machine and static control latches that
are initialized by a scan operation. It contains the
following major components:

. SGC sequence controls

. A/B clock counter The A/B clock counter is loaded

with the number of A/B clock pairs to be generated
during a STUMPS channel load/unload sequence.
Usually this number is the length of the longest
STUMPS channel.

. A/B clock-generation logic The A/B clocks required

during the LBIST test sequence are generated within
the STCM. These clocks are derived from the system
clocks that run the LBIST engine. Static latch controls
are provided to suppress the first A clock and/or
suppress the last B clock so all possible nonskewed or
skewed load/unload scan sequences can be applied.

. Pattern counter The pattern counter specifies the

number of patterns to be applied. A pattern is defined
as a channel load/unload sequence followed by the
application of system clocks.

The SGC sequence controls
consist of a system clock-sequence register and an
SGC-go generator that indicates to the SGC circuitry
when to apply the specified system clocks.

. State-machine start-up and completion logic The STCM

is initialized by a scan operation, and upon receiving a
start-test pulse, it executes to completion without
external intervention. The start-up and completion logic
generates initial STCM reset and enable signals and
controls for clocks, the PRPG, and the MISR. At test
completion it produces an LBIST-done signal.

. GPTR The GPTR is a register that provides static

control signals to the chip. In the IBM manufacturing
test environment, the number of test I/Os contacted at
wafer test is limited to 64. If more than 64 static
control lines are required, they are provided by the
GPTR. The GPTR is on a separate A/B clock
distribution network so that it can be scanned without
affecting the state of other system latches.

. Static-test-control logic This logic uses the states of the

test inputs and the GPTR to generate high-level chip
control signals that configure the functional logic to the
proper state for test or system execution.

Scan-chain configuration controls

The scan chains can be configured in several ways
depending on the specified test mode:

o LSSD (level-sensitive-scan-design) [3] mode

All of the
chip latches are configured in one long scan chain. This
mode is used whenever all latches of the chip must be
initialized to a specific state. It is the primary chip
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interface for both initialization and observation during
test and system operation.

This mode is a subset of the
LSSD mode in which only the boundary-scan [24]
latches and GPTR are contained in the scan chain. This
mode is used during I/O, parametric, and interconnect
modes of testing.

GPTR mode This mode is a subset of the LSSD mode
in which only the GPTR latches are contained in the
scan chain. This mode is used to modify the state of the
GPTR without changing the state of the chip system
latches.

WRP mode This design implementation of WRP uses
fifteen scan chains. In this mode, the scan latches are
configured into the fifteen independent chains. This
mode is used for applying WRP and deterministic test
patterns during manufacturing test.

LBIST mode In this mode, the scan chains are
configured as 61 STUMPS channels connected to the
PRPG and MISR.

® ABIST initialization

The ABIST engines are local to the different arrays on the
chip, so there is no central ABIST state machine. ABIST
engines are initialized by a scan-load operation. The
function of the STCM is to specify the appropriate ABIST
mode on the basis of the state of the test-mode bits in the
GPTR and start the clocks to the ABIST engines. The
STCM starts the ABIST tests by generating an SGC-go to
the SGC circuitry when a start-test signal is received. Each

W. V. HUOTT
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of the ABIST engines runs to completion and issues an
ABIST-done. The STCM combines these done signals into
one ABIST-done for the chip and propagates that signal to
a chip output.

® FExternal clock controls

In all cases where internally generated clocks are used,
external clocks can also be applied to generate the same
test sequences. LBIST, WRP, or deterministic stored
patterns can be applied with internal clocks or

external tester-generated clocks without modifying the
stimulate/measure latch data. This feature allows for the
debugging of timing or data problems at slow speeds and
is used quite often to verify the integrity of the patterns
before attempting to apply the patterns at fast internal
chip cycle times.

® LBIST circuit design implementation

The LBIST macro is designed to communicate with the
rest of the chip in an asynchronous manner, since there
are no critical timing signals to or from the LBIST macro.
This clocking approach is possible because of the
asynchronous nature of the design; it allowed the macro to
be synthesized and physically designed with no custom
circuit layout techniques.

Design for test—ABIST
Memory array built-in self-test (ABIST) has traditionally
consisted of a finite-state machine logic engine designed to
apply a prescribed fixed set of memory test patterns to the
memory array(s) under test. These tests typically include
data blankets (all Os and all 1s), word-line stripes, bit-line
stripes, and checkerboards. Although these are performed
in multiple addressing modes, including unique addressing
(read before write), this pattern set is the limit of most
finite-state-machine ABIST engines and is mostly
unchangeable. A simplified logic model has registers of
latches set up as counters in nested loops to perform the
series of array addressing and reading/writing, and a two-
latch data register that fans out to all of the array even
data bits and odd data bits, respectively. Data patterns are
limited by the combinations of this two-bit data register.
The data out of the array are compared against this data-
in register, and the pass/fail results are latched. Execution
of finite-state-machine ABIST involves initializing the chip
for ABIST, usually through the scan chain, and applying a
sufficient number of system clocks, either externally or
through the SCG, for the finite-state machine to reach its
final state. The ABIST pass/fail results (and repairable
array addresses for arrays with redundancy) are scanned
out through the scan chain.

For the S/390 microprocessor and L2 cache designs
there are several different custom embedded memory
array designs, often having different test requirements.

W. V. HUOTT

The tight cycle-time and access-time requirements on
these arrays caused their designs to be quite aggressive.
Dynamic and self-resetting circuit techniques were used
extensively. These aggressive arrays dictated a need not
just for high-speed ABIST engines, but for a testing
scheme that was flexible enough to help diagnose potential
problems, stress array performance, and provide
production-level testing ability.

A programmable ABIST design was implemented
for these high-performance arrays [32, 33], with
microprocessor-like function. The ABIST program to be
applied is scanned into a custom microcode array, and
each instruction is decoded, executed, and applied to the
array by the ABIST microprocessor. The programmable
ABIST design comprises eight basic components, as shown
in Figure §:

1. Microcode array Scannable register array that contains
the ABIST program to be executed (typically eight
instructions).

2. Pointer control macro Register that controls the
address of the ABIST instruction being executed.

3. Address control macro Register that controls the
address to be applied to the array.

4. Data control macro Register that controls the data
to be applied to the array.

5. Read)write register Register that controls the read/write
mode to be applied to the array.

6. Result compression macro Registers that either log
pass/fail results and failing address data or store a
passing/failing signature on the basis of the array data
outputs.

7. Test control interface Logic which communicates to the
STCM and controls the test modes of the array.

8. Access timer macro Digitally programmable timer
which measures the access time of the array.

The core blocks of the programmable ABIST design are
the microcode array, pointer control macro, and test
control interface. For nearly all of the different memory
array designs, each ABIST engine uses the same basic
design for these core blocks. The address, data, and
read/write macros need to vary only in size according to
the address/data widths and read/write configurations of
the arrays under test. The result compression macro
generally consists of either a MISR (multiple-input
signature register) on the arrays without redundancy or a
data comparator and failed address registers on the arrays
with redundant repairable addresses. Redundancy is a
feature sometimes used on larger arrays to improve yield
by replacing failing word lines with redundant (spare)
word lines.

The microcode array is custom-designed as a dense,
scannable, read-only register array, with fast access. It

IBM J. RES. DEVELOP. VOL. 41 NO. 4/5 JULY/SEPTEMBER 1997




Microcode

address
Pointer control decode Scannable microcode array
register / 1 Programmable ABIST
|
To STCM -+ Test control
° interface Finite-state \
F!ontrol ™! Mode control |+ machine/
inputs control
Pointer control
l 4 ﬁ—wﬁ—# Data control
To array
Count
mode
Write/
read
Timer mode control
Compare? MISR on?
Count?
Lo Data overflow R::;‘i’s‘:’;“?
Address
Failed overflow \_;L
ddress functio
3 " Address confrol register Data conirol register
(Store repair
s with s
a K
redundancy) Address read/write
4
L \ Atray address '
Data compare
L } Access time hogrmable Access time MISR
{7 strobe access timer strobe (Arrays without redundancy)
I

Data from array Data-in to-array. Data from array

%

ABIST block diagram.

generally contains eight ABIST microcode instructions. Its  Field 2: Address macro commands.

scannability gives the ABIST great flexibility in that it can «Increment/decrement/hold
so easily be reprogrammed. Since it consists mainly of Field 3: Data macro commands.
scan-only latches, the microcode array is implemented «Hold/reset/invert/rotate/rotate with invert/etc.

in a very area-efficient manner. Field 4:

The programmable ABIST instruction set is small but
quite powerful. A microcode instruction is basically
broken down into five command fields:

Read/write register commands.
«Read/write

Field 5: Result compression macro commands.
«Compress/do not compress

Field 1. Pointer control macro branch commands.

«.Unconditional branch During the execution of an ABIST program, the current

«.Conditional branch/loop based on address microcode instruction is accessed, each of the command
overflow condition fields are decoded by the appropriate ABIST macros, and
« Conditional branch/loop based on data overflow  the resulting pattern is applied to the array under test.
condition This process continues until the ABIST program has 617
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Table 1 ABIST programming examples

Field 1 Field 2 Field 3 Field 4  Field 5

A background of blanket Os can be Loop until address overflow Increment Reset Write  Compress
written into the memory array using
Just one instruction:

Reading back the blanket 0s is just Loop until address overflow Increment Reset Read  Compress
as easy:

Now to convert the blanket 0s to Is in  Unconditional increment Increment Reset Read  Compress
a unique address mode (read before Increment on address else branch —1 Hold Invert Write  Compress
write) would take instructions:

Now to march a data pattern of Os Unconditional increment Hold Rotate w/inv Write  Compress
across the background of 1s using a  Increment on data else —1 Hold Hold Read  Compress
nested loop: Increment on address else —1 Increment Invert Read  Compress

Note: In the above examples, ‘Loop until address overflow’ is shorthand for Loop on th

e current microcode instruction address until an overflow is received from the

address control macro. ‘Increment on data else —1’ is shorthand for Increment the microcode instruction address pointer on a data control macro overflow or else

decrement the microcode instruction address pointer by 1.

completed, final results are latched, and an ABIST DONE
signal is sent back to the self-test control macro (STCM).

For example, as shown in Table 1, a background of
blanket Os can be written into the memory array using just
one instruction; several other examples are included in
Table 1. Only a few instructions are needed to perform
some very powerful operations.

While it may sound like an expensive proposition to
include the full array data input width in the data control
macro, it actually can be done quite cheaply with the
programmable ABIST design. The data, address, and
read/write input fields to the S/390 arrays are usually
logical system cycle boundaries. This means that a system
series latch, or at least a listening latch for LBIST, must
exist at the data, address, and read/write ports of the
arrays. Either system data or ABIST data are multiplexed
into these latches depending on the test mode of the
array. The programmable ABIST design is able to use
these latches to form its data, address, and read/write
control macros. The cost of these macros becomes just
combinational logic for these macros, with a few control
lines from the ABIST microcode array to tell the macro
what to do and when. With the ability to economically
provide full-data-width testing to the memory arrays, not
only can a multitude of new test patterns be thrown at the
arrays (such as marching and walking patterns, which are
typically not done by finite-machine ABIST engines), but
there are system benefits as well. For example, the logic in
the ABIST engine can now be used to initialize the data
in the arrays to good parity and ECC upon power-on reset
or even during on-the-fly reset recovery after error hits in
the system.

The use of MISRs for signature compression on the
outputs of memory arrays without redundancy in
conjunction with a programmable ABIST has many
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advantages. Many of these arrays have very wide data-out
buses, which make a data-comparator type of compression
difficult to do at speed without complex circuitry and
wiring. These arrays are usually placed in some of the
most congested locations of the chip, where silicon area
and wiring channels are at a premium. A MISR lends
itself very well to very wide data words while keeping
wiring channel usage and circuit complexity to a minimum.
A properly implemented MISR can also be operated at
very high rates of speed because of its relative logic
simplicity. The MISR function on the nonredundant
arrays is actually integrated into the data output register
of these arrays. Since the data output register is already a
necessary component of the array function, the integration
of the MISR logic becomes even more economical
compared to a full data comparator.

Another limitation of a data-comparator type of
compression is that the ABIST engine always has the
burden of calculating the expected array data output for
the comparator. This puts limitations on the complexity
of the test patterns that can be applied to the array,
especially with a finite-state-machine ABIST engine.

With the MISR approach, the expected result is never
calculated by the ABIST engine. All of the responses are
merely compressed into the MISR final signature. The
ABIST engine can generate patterns of any complexity
while writing and reading them back in any order
whatsoever. A programmable ABIST engine is well suited
to generate patterns at these levels of complexity. The net
results of a MISR approach with a programmable ABIST
are more thorough pattern coverage and flexibility while
maintaining high performance and minimum design
overhead.

In addition to maximizing pattern coverage with the
programmable ABIST, there is also much emphasis on
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performance characterization of the memory arrays. Each
of the ABIST engines is designed to cycle well below the
specified system cycle-time limit of the chip. In fact, the
ABIST is able to cycle below the expected cycle-time
limits of many of the individual arrays. This is no small
feat, since ABIST operating frequencies in some cases

go beyond 500 MHz. The benefit of this is not just the
guarantee of chip system cycle performance from the
arrays; cycle-time results can also be examined to point of
failure on a per-array basis. Point-of-failure results enable
the quantification of cycle-time guardbanding for the
arrays as well as possible qualification of the failing
circuitry for future improvements. Because the access time
of a memory array may occupy as little as 50% of a full
system cycle, access-time measurements can be even more
important than cycle-time measurements. Each ABIST
engine is equipped with a digitally programmable access
timer macro [34] which is able to measure the access time
of each array to a resolution of nearly 100 ps. The desired
access-time setting is scanned into the timer, and on each
array clock the timer supplies an access-time strobe,
delayed by the scanned setting, to the data-compression
macro. An access-time strobe is applied to the data-
compression macro for every cycle of the entire ABIST
program, yielding a worst-case access-time measurement
across every pattern and every address in the array. When
the pass/fail settings of the timer for a particular array
have been determined, the timer is then configured in a
recirculating-loop mode which allows the timer to oscillate
at a rate corresponding to the access time of the array
under test. This frequency is divided to produce a lower
rate and multiplexed off the chip for an easily measured,
very accurate access time of the array, based on this
oscillator frequency. The access timer macro also has a
static mode which completely removes the access-time
measurenient from the ABIST test and allows for static
functional debug.

The design and implementation of programmable
ABIST engines for the S/390 microprocessor and L2 cache
chips achieved high function at minimal cost. This
approach provided high-speed testing capability, the
flexibility needed for diagnosing difficult problems, and
the ability to stress and measure array and redundancy
performance, along with production-level testing
capability. All this was accomplished in a design-efficient
manner, minimizing real estate and functional timing
impact.

Chip testing debug, analysis, and diagnosis
Although rigorous checking and verification of the design
[35] is performed, the complexity of microprocessors often
leads to some technology-related problems that are found
during test of the hardware. The flexibility built into the
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BIST designs was invaluable in chip bring-up, both at the
tester and in debugging the system.

One unique use of the BIST hardware was in isolating a
hardware problem caused by coupled noise. A problem
was first suspected when initial test runs showed that
LBIST passed only in a very narrow (~100-mV) voltage
range. At voltages above and below the narrow band, the
LBIST signatures were intermittent and nonrepeating, and
varied with voltage. First an attempt was made to find a
single failing pattern that caused the fail, using a binary
search with LBIST patterns. Since the MISR signature was
known to be correct after X patterns, it must also have
been good for all patterns less than X. With this
knowledge, one simply changed the bits programmed in
the pattern counter in a binary search fashion and ran
LBIST in the known good-voltage range. The signature
was not checked but was saved and used as the golden
signature for additional analysis. (The benefit of this
approach is that a new signature can be obtained in less
than a minute, and no additional pattern generation is
required.) Then the voltage was varied to see whether the
passing voltage window remained the same.

It was found that certain patterns caused the good-
voltage window to narrow from the previous pattern.
These were identified as noisy patterns, and the state of
the system latches was extracted from the LBIST sequence
before and after these patterns were applied. The
extracted patterns were then applied in a deterministic
fashion and used to narrow down the source of the
coupled noise.

Another unique use of LBIST was determining power-
supply noise problems. LBIST can be programmed to
apply a skewed or nonskewed load/unload sequence with
or without system clocks. This feature was used to
measure the power-supply noise at different levels of
switching activity. Since LBIST runs in a continuous
loop, it was straightforward to trace the V,, supply and
determine the delta-/ noise and power-supply droop with
different levels of switching activity based on the scan and
system clock sequences applied. Worst case is a skewed
load/unload sequence with system clocks applied. Best
case is a nonskewed load/unload with no system
clocks applied.

Within a complex microprocessor, delay measurements
are very complicated to determine. Again, LBIST was
used to isolate the worst-case delay paths between scan
chains, using a technique similar to that for the coupled-
noise analysis. A binary search was performed to find the
failing pattern, but using cycle time as the search variable
rather than the voltage. The LBIST patterns were
narrowed down to those that failed at the slowest cycle
time; these patterns were then extracted and used for

deterministic analysis of timing-critical paths. 619
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In the above cases, LBIST was able to be used to
diagnose problems at the tester because of the flexibility
designed into the LBIST circuitry. The analysis was
performed, without requiring any pattern generation
beyond the original LBIST patterns, and by simple edits to
the initialization state of the LBIST scan setup.

Test software strategy

The wide variety of test techniques discussed in the
preceding sections and the complexity of the processor
design require powerful and flexible test analysis,
generation, and diagnostic support. TestBench*, the IBM-
developed test-generation tool, was selected to fill this
role because of its state-of-the-art capabilities. It supports
various design styles, encompassing several different
clocking and scan approaches. Along with supporting
efficient and varied test-generation and simulation
techniques, TestBench understands the interaction of
these test types. This support is provided via multiple test
modes, where a test mode is the set of conditions required
for test. In addition, there is a close working relationship
between the TestBench development team and both the
processor development and internal technology groups. An
outcome of these partnerships is correct-by-construction
test data, a critical component of any test methodology.
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Figure 6 shows a high-level TestBench flow through the
test-generation methodology. TestBench requires both a
structural description of the processor design and a
description of each technology cell or macro used in the
design. The structural description is provided in EDIF
(Electronic Design Interchange Format) or other
languages. A model is built for the technology cells, and
test functions are specified for the pertinent signals to
define the various test modes. The steps are described in
the following sections.

® Analyze testability

Analyze testability is a step in TestBench which checks

the design for conformance to the established DFT
guidelines. The DFT guidelines ensure that the required
DFT structures are properly implemented, the clocks can
be controlled as needed, and the logic is free of races
which might not be correctly predicted by simulation and
could result in invalid test data. In the system mode of
operation, the design uses edge-triggered flip-flops, so
that, viewed from a structural perspective, there appear to
be race conditions throughout the design. The TestBench
structure verification (TSV) takes this into account, with a
simple assumption that clocks win all races. Example error
conditions that TSV looks for are consecutive level-
sensitive latches controlled by the same phase of a
common clock, and edge-sensitive flip-flops gating other
branches of their own clocks.

® Generate test data

Generate test data supports the several different types of
tests-mentioned earlier: LBIST, ABIST, stored-pattern
stuck-fault tests, I/O wrap, parametrics, IDDQ, and burn-
in. The most familiar of these is stored-pattern tests for
the logic, where the process consists in automatically
generating input stimuli and performing fault simulation
to produce the output responses and grade the fault
coverage of the tests, keeping track of the faults that

have been tested and the ones that remain. As another
example, the test-generation process for LBIST consists in
reading in the clock sequence for the LBIST tests and the
initial seeds for PRPG and MISR, and performing fault
simulation to grade the tests (as in stored-pattern
simulation) and produce the expected MISR signature,
which corresponds to the output responses for stored-
pattern test. Another test type previously mentioned is
burn-in. TestBench has no specific support for burn-in, but
by using the TestBench multiple-test-mode support, the
logic environment for burn-in test can be described so that
tests can be generated for burn-in.

Most TestBench applications work with the circuit in a
single test mode at a time, but there are a few instances in
which there is some interaction among various test modes.
LBIST is a prime example. The STUMPS configuration is
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built upon a scan design, but the shift registers are fed by
a PRPG and the shift-register outputs feed an on-product
MISR. This scan mode is clearly different from the
standard LSSD scan mode, in which the shift registers are
connected to chip pins. A full-scan (LSSD) mode is used
to initialize the design, including the PRPG and MISR.
Then the design is switched to the LBIST mode, in which
the PRPG and MISR are not scannable, but perform their
intended test functions. In manufacturing test, the design
is switched back to the LSSD scan mode at the end of the
test to observe the signature. Thus, LBIST application
involves a combination of test modes.

Also bringing together different test modes is the
cross-mode mark-off aspect of multiple test modes.
Faults marked off (detected) in one test mode may be
automatically marked off in other test modes to avoid
wasting time in redundantly testing the same faults. This
cross-mark-off ability is one of the techniques which
guarantee an efficient, compact test-vector set.

The clock circuitry and control designs presented a
challenge to TestBench, since the clock block contains
nonscannable latches. These latches control the scan
operation, and TestBench does not support sequential
logic in the clock-generation and scan controls. This tool
limitation was circumvented by removing these latches
from the model and replacing them with equivalent
combinational logic and “pseudo primary inputs” that
can be sequenced in such a way as to mimic the real
operation. Of course, this necessitated additional steps.
All of the test patterns had to be converted from the
TestBench sequences, which use the pseudo primary
inputs, to a form that could be applied to the hardware
without the pseudo primary inputs, and with the
appropriate clocking on the real inputs to produce the
desired effect. This conversion was straightforward for
LBIST and WRP data because these TestBench processes
accept user-specified clocking sequences. Some other test-
generation processes, such as I/O wrap, do not support
clocking constraints, and for those processes the
conversion was complicated by the need to look for and
eliminate any tests that could not be applied on the real
hardware. Fortunately, as it turned out, there were few
automatically generated tests that could not be easily
converted.

® Analyze untestable faults

Because of the mission-critical nature of the S/390 servers,
the chips had to be tested to the highest product quality.
The test coverage goal was greater than 99.9%. To
understand the fault coverage, test generation with user-
defined clock sequences was simulated on each functional
subunit of the chips. TestBench fault analysis was then
simulated on the remaining untested faults. Detailed
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analysis was performed to understand the nature of each
untested fault.

The TestBench fault analysis identified testable and
untestable faults and split the untestable faults into
various categories: redundant faults, untestable due to test
inhibits, multi-time-frame untestable, and test generated
but simulation failed.

Redundant logic (corresponding to the “redundant”
faults) was analyzed and the redundancy often removed.
Custom logic has a higher percentage of redundant faults
than synthesized logic. The causes for the redundancies
were understood and often removed.

Test inhibits hold a fixed value on a pin throughout the
test generation in a particular mode. Faults untestable due
to these constraints cannot be tested in the respective test
mode, but must be tested in some other mode if they are
to be tested at all. Such faults would often cause a system
failure if they were to occur. Each fault of this type was
analyzed to ensure that it was tested in some other test
mode, usually employing some other type of test.
TestBench provides a “global” test coverage which reflects
the union of all of the tests for which fault simulation is
performed, across all of the various test modes.

The term multi-time-frame untestable refers to faults
which require a series of clock pulses to be detected.
TestBench fault analysis is based on its own automatically
generated single-clock sequences. This means that faults
which require a series of clock pulses to detect will remain
undetected by the automatic analysis program. Usually
these faults were tested when user-defined clock sequences
were applied.

The last category of untestable fault, representing a
disagreement between the test-pattern generator and the
fault simulator, is usually symptomatic of a software
problem. Either the generated test was incorrect, or the
fault simulation was in error. The robust simulation
capabilities in TestBench were valuable in the analysis of
these faults. Test patterns could be rerun using a different
simulator. When the two simulators agreed, this pointed
to a problem in the test-pattern generator. Another useful
feature of TestBench is the capability to simulate a
subunit as if the fauit existed and display the waveforms
showing either the good or faulty behavior of the design.

Along with identifying untestable faults, TestBench also
identified faults which, while not tested, were testable.
Typically one might not need to consider these faults,
but since the designs supported a limited set of clock
sequences, these faults had to be examined. This analysis
prompted model changes to support an additional clock
sequence. Also, some groups of faults were understood to
be untestable with the models used, but either did not
exist or were actually being tested in the hardware.

Custom design techniques which stretch or bend
accepted DFT guidelines and tool capabilities are often
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composed of logic blocks (called logic primitives) that
TestBench understands, such as AND, OR, LATCH, and
—o| Q[ TSD (tristate device). An example of this is shown in
NET4 Figure 7.
Modgen creates the fault-model rules for combinational
logic, but not for sequential logic such as latches, clock
o{[: blocks, and arrays. Fault-model rules for sequential logic
NET5 = were created by hand. The fault-model rule-generation
process is shown in Figure 8.
Modgen’s output is in the form of EDIF (Electronic
| Design Interchange Format), which contains TestBench
jll logic primitives. After the EDIF model is built, it is
imported into TestBench, and a TestBench model is
{' created. The EDIF is also used by E2V (EDIF to Verilog)
NET1 to create a fault-model cell view stored in the designer’s
et )C ’> o NETA library. The fault-model cell view is compared to the
schematic using Verity [36] to ensure that the fault-model
rule correctly predicts the circuit behavior.
Building a fault-model rule from a hierarchical
NET3 DO—NEIS schematic consists of running Modgen with all of the
schematic’s instantiated cells treated as black boxes. If the
fault-model rule for a given black-boxed cell has already
been created, no further processing is required for the

cell. If a fault-model rule has not been created for a given
Example of Modgen fault-model rule generation. cell, or if the schematic for the cell has been updated
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necessary in today’s competitive environment. A close
partnership between the product designer and the tool
provider is mandatory for survival, as more demands are
being placed on the tools, both for additional function and
for added flexibility to run existing functions with fewer
constraints on the design. This has come about primarily
from the natural forces of VLSI: larger circuits demanding
higher tool performance and integration of more functions
on a single chip, requiring techniques such as self-

generated clocking and self-test. TestBench
import

TestBench
primitives

E2V

Fault modeling
TestBench operates on a design’s fault model, which is
based on a gate-level representation of the circuit. In this

section, we refer to this gate-level circuit model as a TestBench

fault-model rule. For standard-cell (ASIC) designs, a models

TestBench-compatible fault-model rule set was developed

and stored in a library. A predefined set of fault-model ‘ e

rules cannot be created for custom designs. Custom Verity “"— Fam;fdel
il

designs are modeled by an application in TestBench called
Modgen, which automatically generates fault-model rules
directly from a transistor-level schematic.

Modgen takes as input a netlist of a transistor circuit
and uses a path-tracing algorithm to produce a structurally
equivalent gate-level circuit. The gate-level circuit is

Sl
i

Flow for fault-model generation.
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since the fault-model rule was created, a new fault-model
rule is created. This hierarchical traversal of the design
continues until updated fault-model rules have been
created for all unique cells in the design.

® Modeling sequential logic

Creating fault-model rules for sequential logic is done
manually, since Modgen does not handle sequential logic.
The schematic must be studied and understood, and then
a fault-model rule and corresponding EDIF file can be
built using TestBench logic primitives.

One example of modeling sequential logic is the clock
block that is used throughout the chip to provide local
C2/C1 clocks to latches. Its fault-model rule is shown in
Figure 9(a).

TestBench treats a circuit using this clock block as an
unconstrained sequential design, because the latches that
are used in the clock generation confuse the TestBench
analysis programs, which look for simple means of
controlling all of the system latch clocks and the scan data
path. To allow the TestBench highly efficient stored-
pattern, LBIST, and WRP support to process the chips,
the clock-block model was simplified. The challenge
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Clock sequence for clock-block fault-model rule.

was to simplify the model while ensuring that the tests
generated with this simplified model would work on the
hardware.

The first change to the model is to remove the
nonscannable latches, as shown in Figure 9(b). There is
still a problem with this model, because TestBench
requires the existence of a primary input stability state
defined by setting all test inhibits (constant-value inputs)
and all clock primary inputs to their inactive states. Even
for an edge-triggered design, the clock primary inputs
must have a defined stability state. It is a requirement that
the stability state must set all clock inputs to all latches to
known values. In this case, there was no way to define the
clock stability state so that just setting the clock primary
inputs (there are no test inhibits in this picture) would
force the derived clock signal to a known value. This
problem was solved by adding to the model an extra pin
called GLOBAL_C1. Figure 9(c) shows the new model
with the extra “pseudo” primary input.

Adding the pseudo pin to the model has several
ramifications. Since the pseudo pin does not exist in the
hardware, TestBench cannot be allowed to control it in a
random manner; instead, a user-specified clock sequence
must be used so that the model will behave like the
hardware. Figure 10 shows the user-specified clock
sequence that is used. Note that signals C2 and C1 behave
identically in Figures 9(a) and 9(b) using the user-
specified clock sequence, so the model will behave like the
hardware if the clock sequence used in Figure 10 is used
during test-pattern simulation.

Another ramification of using a pseudo pin is that the
test patterns must be changed prior to applying them at
the tester. In addition, using pseudo pins increases the risk
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of modeling the behavior of the circuit incorrectly, so
extensive model verification must be done.

® Model verification

In order to confirm that the TestBench model correctly
predicts the behavior of the chip, the model must be
compared to the circuit for a variety of patterns.
Verification was done at different levels of hierarchy in
the design: leaf-cell-, macro-, and chip-level verification.

Leaf-cell verification

A leaf cell is defined as any cell that contains transistors.
For each leaf cell in the design containing combinational
logic, the fault-model rule was compared to the schematic
using Verity. Verity performs exhaustive verification—
that is, the circuit is verified for all possible input stimuli.
Verity cannot be used to verify sequential logic, so
verification was also done at the macro level and chip
level, where another verification method was used.

Macro-level verification

A macro is a functional logic group that can contain
combinational and sequential logic. In order to verify the
fault-model rule used for a macro, TestBench was run on
the macro to create a set of patterns. These patterns were
then simulated on the VHDL model of the macro, and the
output of TestBench was compared to the output of the
VHDL. This process proved to be quite valuable. Since it
is time-consuming to create a set of patterns to use for
verification, using TestBench to create the patterns saved
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considerable time. Also, TestBench created patterns that a
designer might have overlooked.

Chip-level verification

For the chip-level verification, LBIST and ABIST were
run using TestBench and also using the chip simulation
model [37], and the signatures were compared. This level
of verification disclosed problems existing between macros
that were not caught by the macro-level verification. It
also found problems in the behavior of TestBench, and
VHDL problems in the simulation model. This extensive
model verification resulted in easing debugging of the test
patterns at the tester, where no model or tool problems
were found.

Test-pattern generation and coverage

Many test techniques have been discussed. They all come
together in the final test-data generation for the product.
The goal in test generation is to maximize test coverage as
quickly and as efficiently as possible. With limited tester
buffer sizes, test-data volume is critical. Also, the total
CPU time to generate the test patterns had to be kept to
a reasonable length, since pattern regeneration occurred
often because of code bugs, model updates, last-minute
logic changes, and efforts to optimize the pattern set.

The approach used was to target static stuck-faults first
and then resimulate the pattern set with dynamic fault
simulation turned on. This was done because dynamic
fault simulation for the CP chip required more than two
CPU weeks on an RS/6000* Model 590 with two gigabytes
of real memory (the number of flat model blocks is 1.3
million, and the combined number of static and dynamic
faults is 9.2 million), and static test-pattern generation
required several iterations. To speed dynamic test-
coverage growth when targeting the static stuck-faults, the
dynamic-type clock sequences were used first. Then the
remaining static-only-type clock sequences were used to
complete the test generation. During dynamic resimulation
of the static patterns, this approach enabled quicker
dynamic test-coverage gain, which ultimately improved the
test coverage. Note that even though targeting was done
in a static manner, these patterns were executed on the
product in a dynamic mode.

Figure 11 shows an overview of the test patterns that
were created, the time required to create them, and the
number of each type that were created.

The first test generated is the shift-register test, which
detects about 45% of the static stuck-faults (static stuck-
faults total about 4.5 million). This runs quickly, in about
ten CPU minutes, and generates only ten patterns.

Next, 256 000 LBIST patterns were generated, but only
the first 64 000 were fault-simulated. Fault simulation of
64 000 patterns required 50 hours of CPU time, but
256 000 would have required about 200 hours of CPU
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time. The test-coverage number reflects only the first

64 000 patterns; however, in order to get the benefit of the
patterns, the full 256 000 patterns were applied at the
tester, Since LBIST is inexpensive from a tester buffer and
tester run-time perspective, the number of patterns was
extended to detect unmodeled defects as well. Unmodeled
defects are defects which can occur in hardware that are
not modeled in the fault-model rule for a circuit. In
addition, it is beneficial to have a large number of LBIST
patterns, since LBIST is the only logic test that is run on
the higher levels of system testing.

With the easy-fo-detect faults out of the way, WRP
generation was invoked next. WRP generates weight sets,
and patterns are simulated with these weight sets until a
marginal test-coverage threshold is reached. The weight
sets target specific faults that are typically random-pattern-
resistant and are difficult to detect using LBIST patterns.
As shown in Figure 11, creating WRP patterns is CPU-
intensive, and 300 weight sets required 103 CPU hours.
When the effectiveness of WRP declined substantially, the
remaining faults were tested with deterministic patterns.

The deterministic patterns were created in the WRP
test mode, since the scan-chain length in WRP mode is 15
times shorter than the full scan-chain length of the chip.
This allowed 15 times more deterministic patterns to
fit in the tester buffer. Because of the large number of
deterministic patterns required to achieve a high test
coverage, this method greatly reduced the tester buffer
and test time.

Once the bulk of static faults were detected, the other
tests were created to test the I/Os, the PLL, and the
arrays (using ABIST).

After the static tests were created, the patterns were
resimulated with dynamic fault simulation turned on. Then
the remaining untested dynamic faults were targeted with
WRP and deterministic patterns, and the new patterns
were appended to the total pattern set. Greater than 90%
dynamic test coverage was achieved.

Conclusions

The S$/390 custom microprocessor design created many
test challenges. The test methodology required several
enhancements to the test-generation process and
specialized fault-model development because of the
complexity and unique clocking structure of the design.
BIST required unique design development to support the
complexity and high-performance aspects of the design,
while SGC was instrumental in verifying performance and
allowed the chips to be tested at cycle time during the
manufacturing test process.

As we look to the future, several key test issues must be
addressed: Dynamic test must be enhanced to keep up
with increasing device performance; dynamic faults must
be targeted and accurately measured, while on-chip
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techniques must be developed to provide more detailed
analysis of device performance. BIST must be optimized
to detect dynamic faults.

Test-generation techniques must be developed to reduce
test-generation time and test-application time in an effort
to drive down test costs. Larger and more complex designs
will exceed the capability of today’s test-generation tools
and will increase test times so that test becomes a greater
portion of the overall product cost.

Test is and will always be key to future microprocessor
designs. Investments in test methodology development,
test generation, and advanced BIST techniques will ensure
the success of future programs.
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