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This paper  describes  the  overall test 
methodology  used  in  implementing the S/390@’ 
microprocessor  and  the  associated L2 cache 
array  in  shared  multiprocessor  designs,  the 
design-for-test  implementations,  and the test 
software  used  in  creating the test patterns 
and  in  measuring test effectiveness. 
Microprocessor  advances  in  architectural 
complexity,  circuit  density,  cycle time, and 
technology-related  issues,  coupled  with IBM’s 
high  requirements  for  quality,  reliability,  and 
diagnosability,  have  made  it  necessary to 
develop  testing  methods  and attain quality 
levels  that  far exceed what  others  have 
approached. 

Introduction 
The  advent of deep-submicron technology has given rise 
to  integrated circuits containing  hundreds of thousands of 
logic gates,  embedded  memories  approaching  the megabit 
range, I/O counts in the  thousands,  and  operating 
frequencies in the  hundreds of MHz. Along with the 
benefits of such characteristics  and  the design flexibility 
necessary to achieve them  come  severe design and  test 
challenges. In  particular,  traditional  methods of testing 
semiconductor devices are quickly becoming obsolete.  The 
use of functional  patterns derived for design  verification  as 
manufacturing  test  patterns is becoming  increasingly 
unacceptable.  Some of the most severe  problems 

associated with this  approach  are high test  development 
times,  defect coverages that  are low or  hard  to  measure, 
and  poor diagnosability.  As far back as fifteen to twenty 
years ago, test  techniques  were  developed within IBM  and 
in industry which based analysis on the design structure 
rather  than on functionality [l]. Within IBM, these 
techniques have been evolving from  the 308x testing in the 
early 1980s to  the 3090* testing in the  later %Os, to high- 
density CMOS parts in the  early ’90s [2-131. These 
techniques have led  to  the  development of automatic  test- 
pattern  generation  (ATPG)  algorithms  and  tools [14-191. 
Although  ATPG-based  approaches  to digital testing 
have met with some success,  they also  are becoming 
increasingly  ineffective  as chip sizes increase.  Indeed,  time 
requirements  for  ATPG  algorithms grow nonlinearly in 
relation  to  the size of the circuit under  test [20]. 

However, the  largest  problem with both  the  functional 
and  ATPG-based  test  techniques is their  reliance on the 
use of automatic  test  equipment  to apply the  test  patterns 
to  the device’s external  inputs  and  measure  responses on 
the device’s external  outputs.  This  approach  does  not 
provide a means  to  adequately  detect all of the device’s 
internal  defects.  Direct access to  the  internal  structures of 
a  device is necessary. This  requirement  has  led  to  the 
development of design-for-test  (DFT)  and  built-in  self-test 
(BIST) techniques  and  methods [21-271. 

DFT  techniques consist of design rules  and  constraints 
aimed  at increasing the testability of a  design through 
increased  internal controllability and observability. The 
most popular  form of DFT is scan  design, which involves 
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pins, an  on-chip  phase-locked  loop  (PLL) was used  to 
multiply the incoming tester  frequency  to  bring it up  to 
the  operating  frequency of the chip. Additional self- 
generated clock (SGC) [22, 29, 301 circuitry is then  used 
to  generate  the  various system clock sequences  needed 
to  properly exercise  all portions of the chip. 

The  BIST  techniques  can  be divided into two major 
categories: logic BIST  (LBIST)  to  test  at-speed  the logic 
in the devices, and  array B E T  (ABIST)  to  provide  at- 
speed  testing of the  embedded  arrays (Le., RAMS).  The 
basic idea in LBIST is to  add a pseudorandom-pattern 
generator  (PRPG)  to  the  inputs  and a multiple-input 
signature  register  (MISR)  to  the  outputs of the device’s 
internal scan  chains.  A  BIST controller  generates all 
necessary  waveforms for  repeatedly  loading  pseudorandom 
patterns  into  the scan chains,  initiating a functional cycle 
(capture cycle), and logging the  captured  responses  out 
into  the  MISR.  The  MISR  compresses  the  accumulated 
responses  into a code known as  a signature [31]. Any 
corruption in the final signature  at  the  end of the  test 
indicates a defect in the chip. This  LBIST  architecture is 
known  as  a STUMPS [6] architecture (self-test  using 
MISR  and  parallel  shift  register  sequence  generator),  and 
the scan chains  connecting  the  PRPG  and  MISR  are 
defined as  the  STUMPS  channels. 

Although  pseudorandom  patterns achieve high test 
coverage for most  scan-based  designs, some  areas within 
the design may be  inherently  resistant  to  testing with  such 
patterns.  Supplemental  patterns  designated  as  weighted 
random  patterns  (WRP) [15, 161 are  therefore  used  during 
manufacturing  test.  WRP avoids the  large  test  data 
volume  that would be  needed  to drive conventional 
stored-pattern logic tests.  External  tester  hardware is used 
to  force individual  bits  in scan-based  random  test  patterns 
to  be statistically  weighted  toward  a logic one or zero. 
Compared with LBIST  alone,  this  method  greatly  reduces 
the  number of random  patterns  needed  for  obtaining high 
test coverage, thereby greatly reducing  test  time. 

For  the  ABIST  test, a controller  based on a 
programmable-state  machine is used  to algorithmically 
generate a  variety of memory test  sequences. As with 
LBIST, test  patterns  can  be  applied  to  the  embedded 
array  at cycle speeds.  Because of the  regular  structure of 
arrays,  an  ABIST  controller  can  be  shared  among several 
arrays. This  not only reduces  the  overhead  per  array,  but 
allows for  decreased  test times, since  the  arrays  can  be 
tested in parallel. 

To  ensure good-quality  chips,  several IBM  standard 
manufacturing  tests  are  applied. In addition  to  those 
already  mentioned,  the types of tests  include a boundary- 
scan 1/0 test,  parametria,  IDDQ, excessive voltage  and 
temperature stressing, and dynamic burn-in [13]. Stressing 
the devices  with voltage stressing and  burn-in  conditions 

helps  guarantee  the very high quality and reliability 
necessary for  the mission-critical applications  for S/390 
servers. 

The  DFT  implementation  requires  chip  area  dedicated 
to  test  functions; however, the  bulk of the logic is also 
used for system initialization, recovery, and system failure 
analysis. The  amount of logic dedicated  to  manufacturing 
test on these high-density CMOS  parts utilizes  less than 
1% of the  overall  chip  real  estate. 

Design for test-LBIST 
LBIST is used for  manufacturing  test  at all package levels 
and  for system self-test.  The  main  LBIST  components  are 
a PRPG  and a  MISR. These two components are connected 
to chip scan chains to form the overall LBIST structure. 

The basic LBIST logic test  sequence used to apply test 
patterns is as follows: 

The  PRPG  and  MISR  are initialized to a 
predetermined  state known  as  a seed. Then,  the 
circuitry loops  on  Steps 2 and 3 for n patterns. 
Scan  clocks are  applied  to  the  PRPG,  MISR,  and 
system latches so that a pseudorandom  pattern is 
generated by the  PRPG  and  loaded  into  the system 
latches. Simultaneously, the  result of the previously 
applied  test  pattern is compressed  from  the system 
latches  into  the  MISR. 
System clocks are  applied  to  the system latches  to  test 
the logic paths between the latches.  Test patterns  are both 
launched and  captured by the latches in the scan chains. 
After n repetitions of Steps 2 and 3, the  signature 
in the  MISR is compared  against  an  expected 
predetermined  signature  that was calculated  during  the 
test-pattern  generation  and  simulation process. 

Although  the  LBIST  sequence is straightforward,  there 
are  multiple  means  to apply the  sequence  to  perform 
different  categories of logic tests. If the  test is required  to 
verify only that  the logic structure  between  the  latches is 
correct  and  has no stuck-at  faults,  the  LBIST  test  can  be 
applied with static,  nontransitional  patterns.  The  time 
between  launch of data  from  one system latch  and  data 
capture in another system latch is irrelevant, so data  are 
scanned  into  the  latches in  a  nonskewed state such that 
the  master  and slave latches  contain  the  same  data.  When 
system  clocks are  applied,  there is no transition of data  on 
the  launching  latches. 

If the  LBIST  test is to  determine  not only that  the logic 
between system latches is correct,  but  also  that  the 
propagation delay from  one system  latch to  another  occurs 
within  a predetermined delay,  a transition  test is applied. 
In  this  test,  data  are  scanned  into  the  latches in  a  skewed 
state such that  the  master  and slave latches  potentially 
have different  values so that  the  launch clock will create 61 3 
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LBIST PRPG architecture. 1 

transitions  at  the  latch  outputs.  Then precisely timed 
launch  and  capture clocks are  applied  to  the system 

61 4 latches via the  SGC circuitry. 

LBIST is used  on  the  tester  during  manufacturing 
test  and  during system self-test.  During  manufacturing 
test,  the  tester  can apply the necessary  signals to scan the 
shift-register  chains, cycle the  PRPG  and  MISR,  and apply 
the system  clocks at  the  proper  time. In the system, there 
are  no available resources  external  to  the  chip  to  control 
the  LBIST circuitry. These  controls  are  generated  on-chip 
by the  self-test  control  macro  (STCM).  The  STCM 
executes  the  LBIST  test  sequence in a stand-alone 
manner.  In  fact,  an  entire self-test sequence of the 
entire system can  be  initiated  at a customer office via 
modemiservice processor  controller. 

LBIST design  implementation 
Several unique  features  were  required in the logic 
implementation  to  support  the  various  aspects of the 
LBIST methodology. The  PRPG shown  in Figure 2 
is a  61-bit linear-feedback shift register  (LFSR) with  a 
feedback configuration  utilizing taps 0, 14, 15, and 60. 

To minimize data  dependencies,  the  outputs of the 
LFSR  are passed through  an  XOR  spreading  network 
before  being  applied  to  the logic. This  spreading  network 
is used  to minimize latch adjacency dependencies  between 
subsequent  stages of the  LFSR.  Each  stage of the  LFSR 
has  an  associated two-input XOR which is fed  from  that 
stage  and bit 0 of the  LFSR.  The  output of the  LFSR is 
applied  to  the  appropriate  STUMPS  channel scan input. 

The  MISR is also  61  bits long and  has a feedback 
configuration similar to  that of the  PRPG.  Unlike  the 
PRPG,  the  MISR  has a two-input  XOR  between  each of 
the  latch stages, which allows for  61  bits of data  from  the 
STUMPS  channel scan outputs  to  be clocked into  the 
MISR on each  LBIST scan cycle in the  process of 
generating  the  signature. 

control  the  on-chip  LBIST  test  operation; however,  it  also 
functions  as  the main interface  and  controller  for all other 
test  functions, with the exception of ABIST  execution, 
which has its own independent  test  engine.  The  functions 
of the  STCM  are as follows: 

The primary purpose of the  STCM in Figure 3 is to 

LBIST scan-clock generation  and  sequence  controls. 
Scan-chain configuration controls. 
ABIST  initialization. 
External clock controls. 

The  mode of operation,  or test mode, is determined by 
four bits of the  general-purpose  test  register  (GPTR).  The 
GPTR is a register  that is initialized prior to each  test 
with static  control  information.  The  GPTR consists of 
scan-only latches,  and its state  remains  constant 
throughout  the  application of a given set of tests. 
Details of the  GPTR  are discussed later. 
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LBIST controls and scan-clock generator 
The  LBIST  controls  and scan-clock generator in Figure 4 
consist of a  state  machine  and  static  control  latches  that 
are initialized by a scan operation.  It  contains  the 
following major  components: 

1. A / B  clock counter The N B  clock counter is loaded 
with the  number of AIB clock pairs  to  be  generated 
during  a  STUMPS  channel  load/unload  sequence. 
Usually  this number is the  length of the longest 
STUMPS  channel. 

2. AIB clock-generation logic The  A/B clocks required 
during  the  LBIST  test  sequence  are  generated within 
the  STCM.  These clocks are  derived  from  the system 
clocks that  run  the LBIST engine.  Static latch controls 
are  provided  to  suppress  the first A clock and/or 
suppress  the last B clock so all possible  nonskewed or 
skewed load/unload scan sequences can be applied. 

3. Pattern counter The  pattern  counter specifies the 
number of patterns  to  be  applied. A pattern is defined 
as a  channel  load/unload  sequence followed by the 
application of system clocks. 

4. SGC sequence controls The  SGC  sequence  controls 
consist of a system clock-sequence  register  and an 
SGC-go  generator  that  indicates  to  the  SGC circuitry 
when to apply the specified system clocks. 

5 .  State-machine start-up and completion logic The  STCM 
is initialized by a scan operation,  and  upon receiving a 
start-test pulse, it executes  to  completion  without 
external  intervention.  The  start-up  and  completion logic 
generates initial STCM  reset  and  enable signals and 
controls  for clocks, the  PRPG,  and  the  MISR.  At  test 
completion it produces an LBIST-done signal. 

control signals to  the chip. In  the  IBM  manufacturing 
test  environment,  the  number of test I/Os contacted  at 
wafer  test is limited to 64. If more  than 64 static 
control lines are  required, they are provided by the 
GPTR.  The  GPTR is on  a  separate AIB clock 
distribution  network so that it can be  scanned  without 
affecting the  state of other system latches. 

7. Static-test-control logic This logic uses the  states of the 
test  inputs  and  the  GPTR  to  generate high-level chip 
control signals that configure the  functional logic to  the 
proper  state  for  test  or system execution. 

6. GPTR The  GPTR is a  register  that provides static 

Scan-chain configuration controls 
The  scan  chains  can  be configured in several ways 
depending  on  the specified test  mode: 

LSSD (level-sensitive-scan-design) [3] mode All of the 
chip  latches  are configured in one long  scan chain.  This 
mode is used  whenever all latches of the  chip must be 
initialized to  a specific state.  It is the  primary  chip 

A/B clock counter 
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I LBIST 

External 
A/B clocks I PRPGI 

1 SGC 1 
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register SGC 
w + controls _ _  

Pattern  counter 

E LBIST STCM high-level architecture 

interface  for  both initialization and  observation  during 
test  and system operation. 
Boundary-scan mode This  mode is a  subset of the 
LSSD mode in which only the  boundary-scan [24] 
latches  and  GPTR  are  contained in the scan chain.  This 
mode is used  during I/O, parametric,  and  interconnect 
modes of testing. 
GPTR  mode This  mode is a  subset of the LSSD mode 
in which only the  GPTR  latches  are  contained in the 
scan chain.  This  mode is used to modify the  state of the 
GPTR  without changing the  state of the  chip system 
latches. 
WRP  mode This design implementation of WRP uses 
fifteen  scan  chains. In this  mode,  the scan latches  are 
configured into  the fifteen independent chains. This 
mode is used for applying WRP  and  deterministic test 
patterns  during  manufacturing  test. 

configured  as 61 STUMPS  channels  connected  to  the 
PRPG  and  MISR. 

LBIST  mode In  this  mode,  the scan chains  are 

ABIST initialization 
The  ABIST  engines  are local to  the  different  arrays  on  the 
chip, so there is no central  ABIST  state  machine.  ABIST 
engines  are initialized by a  scan-load  operation.  The 
function of the  STCM is to specify the  appropriate  ABIST 
mode  on  the basis of the  state of the  test-mode  bits in the 
GPTR  and  start  the clocks to  the  ABIST  engines.  The 
STCM  starts  the  ABIST  tests by generating an SGC-go to 
the  SGC circuitry  when a start-test signal is received. Each 61 5 
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of the  ABIST  engines runs to  completion  and issues an 
ABIST-done. The  STCM  combines  these  done signals into 
one ABIST-done for  the  chip  and  propagates  that signal to 
a chip  output. 

External clock controls 
In all cases  where  internally  generated clocks are  used, 
external clocks can also be  applied  to  generate  the  same 
test  sequences. LBIST, WRP, or deterministic  stored 
patterns  can  be  applied with internal clocks or 
external  tester-generated clocks without modifying the 
stimulateimeasure latch data.  This  feature allows for  the 
debugging of timing or  data  problems  at slow speeds  and 
is used  quite  often  to verify the integrity of the  patterns 
before  attempting to apply the  patterns  at  fast  internal 
chip cycle times. 

LBIST circuit design implementation 
The  LBIST  macro is designed  to  communicate with the 
rest of the  chip in an  asynchronous  manner, since there 
are no critical  timing  signals to  or  from  the  LBIST  macro. 
This clocking approach is possible because of the 
asynchronous  nature of the design;  it  allowed the  macro  to 
be synthesized and physically designed with no custom 
circuit  layout techniques. 

Design for test-ABIST 
Memory  array built-in self-test  (ABIST)  has  traditionally 
consisted of a finite-state  machine logic engine  designed  to 
apply  a prescribed fixed set of memory  test  patterns  to  the 
memory array(s)  under  test.  These  tests typically include 
data  blankets  (all Os and all Is), word-line  stripes,  bit-line 
stripes,  and  checkerboards.  Although  these  are  performed 
in multiple  addressing  modes, including unique  addressing 
(read  before  write),  this  pattern  set is the limit of most 
finite-state-machine  ABIST  engines  and is mostly 
unchangeable. A  simplified logic model  has  registers of 
latches  set  up  as  counters in nested  loops  to  perform  the 
series of array  addressing  and readingiwriting, and a  two- 
latch  data  register  that  fans  out  to all of the  array  even 
data  bits  and  odd  data bits,  respectively. Data  patterns  are 
limited by the  combinations of this  two-bit data  register. 
The  data  out of the  array  are  compared  against  this  data- 
in register,  and  the passifail results  are  latched.  Execution 
of finite-state-machine  ABIST involves initializing the  chip 
for  ABIST, usually through  the scan chain,  and applying  a 
sufficient number of system  clocks, either externally or 
through  the  SCG,  for  the  finite-state  machine  to  reach  its 
final state.  The  ABIST passifail results  (and  repairable 
array  addresses  for  arrays with redundancy)  are  scanned 
out  through  the scan chain. 

For the S/390 microprocessor  and L2 cache designs 
there  are  several  different  custom  embedded  memory 

61 6 array designs, often having different  test  requirements. 

The tight  cycle-time and access-time requirements  on 
these  arrays  caused  their designs to  be  quite aggressive. 
Dynamic  and  self-resetting circuit techniques  were  used 
extensively. These aggressive arrays  dictated a need  not 
just  for high-speed ABIST  engines,  but  for a testing 
scheme  that was flexible enough  to  help  diagnose  potential 
problems,  stress  array  performance,  and  provide 
production-level  testing ability. 

for  these  high-performance arrays [32, 331, with 
microprocessor-like  function.  The  ABIST  program  to  be 
applied is scanned  into a custom  microcode  array,  and 
each  instruction is decoded,  executed,  and  applied to the 
array by the  ABIST  microprocessor.  The  programmable 
ABIST design comprises eight  basic components,  as shown 
in Figure 5: 

A programmable  ABIST design was implemented 

1. Microcode array Scannable  register  array  that  contains 
the  ABIST  program  to  be  executed (typically eight 
instructions). 

2.  Pointer control macro Register  that  controls  the 
address of the  ABIST  instruction  being  executed. 

3. Address control macro Register  that  controls  the 
address  to  be  applied  to  the  array. 

4. Data control macro Register  that  controls  the  data 
to  be  applied  to  the array. 

5. Readiwrite register Register  that  controls  the  readiwrite 
mode  to  be  applied  to  the  array. 

6. Result compression macro Registers  that  either log 
passifail results  and failing address  data or store a 
passingifailing signature on the basis of the  array  data 
outputs. 

I .  Test control interface Logic  which communicates  to  the 
STCM  and  controls  the  test  modes of the array. 

8. Access  timer  macro Digitally Programmable  timer 
which measures  the access time of the array. 

The  core blocks of the  programmable  ABIST design are 
the  microcode  array,  pointer  control  macro,  and  test 
control  interface. For nearly all of the  different memory 
array designs, each  ABIST  engine  uses  the  same basic 
design for  these  core blocks. The  address,  data,  and 
readiwrite  macros  need  to vary only in size according  to 
the  addressidata  widths  and  readiwrite  configurations  of 
the  arrays  under  test.  The result compression  macro 
generally  consists of either a MISR  (multiple-input 
signature  register)  on  the arrays without  redundancy or a 
data  comparator  and failed address  registers  on  the  arrays 
with redundant  repairable  addresses.  Redundancy is a 
feature  sometimes  used on larger  arrays  to  improve yield 
by replacing failing  word lines with redundant  (spare) 
word  lines. 

The  microcode  array is custom-designed as  a dense, 
scannable,  read-only  register  array, with fast access. It 
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generally contains  eight  ABIST  microcode  instructions.  Its 
scannability gives the  ABIST  great flexibility in that it can 
so easily be  reprogrammed. Since  it  consists  mainly of 
scan-only latches,  the  microcode  array is implemented 
in  a very area-efficient  manner. 

quite powerful. A microcode  instruction is basically 
broken down into five command fields: 

The  programmable  ABIST  instruction  set is small but 

Field 2: Address  macro  commands. 
Increment/decrement/hold 

Field 3: Data  macro  commands. 
Hold/reset/invert/rotate/rotate with invert/etc. 

Field 4: Readiwrite  register  commands. 
Read/write 

Field 5: Result  compression  macro  commands. 
Compress/do  not  compress 

Field 1: Pointer  control  macro  branch  commands. 
Unconditional  branch During  the  execution of an  ABIST  program,  the  current 

Conditional  branch/loop  based  on  address 
overflow condition fields are  decoded by the  appropriate  ABIST macros, and . Conditional  branch/loop  based  on  data overflow the  resulting  pattern is applied  to  the  array  under  test. 
condition  This  process  continues  until  the  ABIST  program  has 

microcode  instruction is accessed, each of the  command 
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For example,  as  shown  in Table 1, a background of 
blanket Os can  be  written  into  the memory array using just 
one  instruction; several other examples are  included in 
Table 1. Only  a few instructions  are  needed  to  perform 
some very powerful operations. 

While  it may sound  like  an expensive proposition  to 
include  the full array  data  input width  in the  data  control 
macro, it  actually can  be  done  quite  cheaply  with  the 
programmable  ABIST design. The  data,  address,  and 
read/write  input fields to  the S/390 arrays  are usually 
logical  system cycle boundaries.  This  means  that a  system 
series  latch,  or  at  least a  listening latch  for LBIST, must 
exist at  the  data,  address,  and  read/write  ports of the 
arrays.  Either system data  or  ABIST  data  are multiplexed 
into  these  latches  depending  on  the  test  mode of the 
array. The  programmable  ABIST design is able  to  use 
these  latches  to  form  its  data,  address,  and  readiwrite 
control  macros.  The  cost of these  macros  becomes  just 
combinational logic for  these  macros, with  a few control 
lines  from  the  ABIST  microcode  array to tell  the  macro 
what  to  do  and  when.  With  the ability to economically 
provide  full-data-width  testing  to  the  memory  arrays,  not 
only can a multitude of new test  patterns  be  thrown  at  the 
arrays (such as marching  and walking patterns, which are 
typically not  done by finite-machine ABIST  engines),  but 
there  are system  benefits  as well. For example, the logic  in 
the  ABIST  engine  can now be used to initialize the  data 
in the  arrays  to  good  parity  and ECC upon  power-on  reset 
or even during on-the-fly reset recovery after  error  hits in 
the system. 

The  use of MISRs  for  signature  compression on the 
outputs of memory  arrays  without  redundancy in 

61 8 conjunction with  a programmable  ABIST  has many 

difficult to  do  at  speed  without complex  circuitry and 
wiring. These  arrays  are usually placed in some of the 
most congested  locations of the chip, where silicon area 
and wiring channels  are  at a premium. A MISR  lends 
itself very well to very  wide data  words while keeping 
wiring channel  usage  and circuit  complexity to a minimum. 
A properly  implemented  MISR  can  also  be  operated  at 
very high rates of speed  because of its  relative logic 
simplicity. The  MISR  function  on  the  nonredundant 
arrays  is  actually integrated  into  the  data  output  register 
of these arrays. Since  the  data  output  register is already a 
necessary component of the  array  function,  the  integration 
of the  MISR logic becomes  even  more  economical 
compared  to a full  data  comparator. 

Another  limitation of a data-comparator type of 
compression is that  the  ABIST  engine always has  the 
burden of calculating the  expected  array  data  output  for 
the  comparator.  This  puts  limitations  on  the complexity 
of the  test  patterns  that  can  be  applied  to  the  array, 
especially  with  a finite-state-machine  ABIST  engine. 
With  the  MISR  approach,  the  expected  result is never 
calculated by the  ABIST  engine. All of the  responses  are 
merely compressed  into  the  MISR final signature.  The 
ABIST  engine  can  generate  patterns of any  complexity 
while  writing and  reading  them  back in  any order 
whatsoever.  A programmable  ABIST  engine is well suited 
to  generate  patterns  at  these levels of complexity. The  net 
results of a MISR  approach with a programmable  ABIST 
are  more  thorough  pattern coverage and flexibility while 
maintaining high performance  and  minimum design 
overhead. 

In  addition  to maximizing pattern  coverage with the 
programmable  ABIST,  there is also  much  emphasis on 
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performance  characterization of the memory arrays.  Each 
of the  ABIST  engines is designed  to cycle well below the 
specified system cycle-time  limit of the chip. In fact,  the 
ABIST is able  to cycle below the  expected cycle-time 
limits of many of the individual  arrays. This is no small 
feat, since ABIST  operating  frequencies in some  cases 
go beyond 500 MHz. The benefit of this is not  just  the 
guarantee of chip system cycle performance  from  the 
arrays;  cycle-time results  can also be  examined  to  point of 
failure  on a per-array basis. Point-of-failure  results  enable 
the  quantification of cycle-time guardbanding  for  the 
arrays  as well as possible  qualification of the failing 
circuitry for future  improvements.  Because  the access time 
of a  memory array may occupy as  little  as 50% of a  full 
system cycle, access-time measurements  can  be even more 
important  than cycle-time measurements.  Each  ABIST 
engine is equipped with  a digitally programmable access 
timer  macro [34] which is able  to  measure  the access time 
of each  array  to a resolution of nearly 100 ps. The  desired 
access-time setting is scanned  into  the  timer,  and on each 
array clock the  timer  supplies  an access-time strobe, 
delayed by the  scanned  setting,  to  the  data-compression 
macro.  An access-time strobe is applied  to  the  data- 
compression  macro  for every cycle of the  entire  ABIST 
program, yielding  a  worst-case  access-time measurement 
across every pattern  and every address in the array. When 
the pass/fail settings of the  timer  for a particular  array 
have been  determined,  the  timer is then configured  in  a 
recirculating-loop  mode which allows the  timer  to oscillate 
at a rate  corresponding  to  the access time of the  array 
under  test.  This  frequency is divided to  produce a  lower 
rate  and multiplexed off the  chip  for  an easily measured, 
very accurate access time of the  array,  based on this 
oscillator  frequency.  The access timer  macro  also  has a 
static  mode which completely removes  the access-time 
measurement  from  the  ABIST  test  and allows for  static 
functional  debug. 

ABIST  engines  for  the S/390 microprocessor  and  L2  cache 
chips achieved high function  at minimal  cost. This 
approach provided  high-speed testing capability, the 
flexibility needed  for diagnosing  difficult problems,  and 
the ability to  stress  and  measure  array  and  redundancy 
performance,  along with production-level  testing 
capability.  All this was accomplished  in  a  design-efficient 
manner, minimizing real  estate  and  functional timing 
impact. 

The design and  implementation of programmable 

Chip testing debug,  analysis,  and  diagnosis 
Although  rigorous checking and verification of the design 
[35] is performed,  the complexity of microprocessors  often 
leads  to  some  technology-related  problems  that  are  found 
during  test of the  hardware.  The flexibility built  into  the 

BIST designs was invaluable in chip  bring-up,  both  at  the 
tester  and in  debugging the system. 

hardware  problem  caused by coupled noise.  A problem 
was first suspected when  initial test  runs showed that 
LBIST passed only in a very narrow (-100-mV) voltage 
range.  At voltages  above and below the  narrow  band,  the 
LBIST  signatures  were  intermittent  and  nonrepeating,  and 
varied with voltage. First  an  attempt was made  to find a 
single  failing pattern  that  caused  the fail,  using  a  binary 
search with LBIST  patterns. Since the  MISR  signature was 
known to  be  correct  after X patterns, it  must  also  have 
been good for all patterns less than X .  With  this 
knowledge, one simply changed  the bits programmed in 
the  pattern  counter in  a  binary search  fashion  and  ran 
LBIST in the known good-voltage range.  The  signature 
was not checked but was saved and used  as the golden 
signature for  additional analysis. (The benefit of this 
approach is that a new signature  can  be  obtained in less 
than a minute,  and  no  additional  pattern  generation is 
required.)  Then  the voltage was varied  to  see  whether  the 
passing voltage window remained  the  same. 

It was found  that  certain  patterns  caused  the  good- 
voltage window to  narrow  from  the previous pattern. 
These  were identified  as noisy patterns,  and  the  state of 
the system latches was extracted  from  the  LBIST  sequence 
before  and  after  these  patterns  were  applied.  The 
extracted  patterns  were  then  applied in a deterministic 
fashion  and  used  to  narrow down the  source of the 
coupled  noise. 

Another  unique  use of LBIST was determining power- 
supply noise  problems.  LBIST  can  be  programmed  to 
apply  a  skewed or nonskewed load/unload  sequence with 
or  without system clocks. This  feature was used  to 
measure  the power-supply  noise at  different levels of 
switching activity. Since LBIST runs in  a continuous 
loop, it  was straightforward  to  trace  the V,, supply and 
determine  the delta-Z noise  and power-supply droop with 
different levels of switching activity based on the scan and 
system clock sequences  applied.  Worst  case is a  skewed 
loadiunload  sequence with system clocks applied. Best 
case is a  nonskewed load/unload with no system 
clocks applied. 

are very complicated  to  determine.  Again,  LBIST was 
used  to  isolate  the worst-case  delay paths  between scan 

One  unique  use of the BIST hardware was in  isolating  a 

Within a  complex microprocessor, delay measurements 

chains, using  a technique similar to  that  for  the  coupled- 
noise analysis. A  binary search was performed  to find the 
failing pattern,  but using cycle time  as  the  search  variable 
rather  than  the voltage. The  LBIST  patterns  were 
narrowed down to  those  that  failed  at  the slowest cycle 
time;  these  patterns  were  then  extracted  and  used  for 
deterministic analysis of timing-critical paths. 61 9 
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sensitive latches  controlled by the  same  phase of a 
common clock, and edge-sensitive flip-flops gating  other 

In  the above  cases, LBIST was able  to  be  used  to 
diagnose  problems  at  the  tester  because of the flexibility 
designed  into  the  LBIST circuitry. The analysis was 
performed,  without  requiring any pattern  generation 
beyond the  original  LBIST  patterns,  and by simple edits  to 
the initialization state of the  LBIST scan setup. 

Test software strategy 
The wide  variety of test  techniques discussed  in the 
preceding  sections  and  the complexity of the  processor 
design require powerful and flexible test analysis, 
generation,  and  diagnostic  support.  TestBench*,  the  IBM- 
developed  test-generation  tool, was selected  to fill this 
role  because of its  state-of-the-art  capabilities.  It  supports 
various design  styles, encompassing  several  different 
clocking and scan approaches.  Along with supporting 
efficient and  varied  test-generation  and  simulation 
techniques,  TestBench  understands  the  interaction of 
these  test types. This  support is provided via multiple  test 
modes,  where a test mode is the  set of conditions  required 
for  test.  In  addition,  there is a  close  working relationship 
between  the  TestBench  development  team  and  both  the 
processor  development  and  internal technology groups.  An 
outcome of these  partnerships is correct-by-construction 

620 test  data, a  critical component of any test  methodology. 

branches of their own clocks. 

Generate test data 
Generate test data supports  the  several  different types of 
tests-mentioned  earlier: LBIST, ABIST,  stored-pattern 
stuck-fault  tests, 1 / 0  wrap,  parametrics,  IDDQ,  and  burn- 
in. The  most  familiar of these is stored-pattern  tests  for 
the logic, where  the  process consists in  automatically 
generating  input  stimuli  and  performing  fault  simulation 
to  produce  the  output  responses  and  grade  the  fault 
coverage of the tests, keeping  track of the  faults  that 
have been  tested  and  the  ones  that  remain.  As  another 
example, the  test-generation  process  for LBIST consists in 
reading in the clock sequence  for  the  LBIST  tests  and  the 
initial seeds  for  PRPG  and MISR, and  performing  fault 
simulation  to  grade  the  tests  (as in stored-pattern 
simulation)  and  produce  the  expected  MISR  signature, 
which corresponds  to  the  output  responses  for  stored- 
pattern  test.  Another  test type  previously mentioned is 
burn-in.  TestBench  has no specific support  for  burn-in,  but 
by using the  TestBench  multiple-test-mode  support,  the 
logic environment  for  burn-in  test  can  be  described so that 
tests  can  be  generated  for  burn-in. 

Most  TestBench  applications work  with the circuit  in  a 
single test  mode  at a time,  but  there  are a few instances in 
which there is some  interaction  among  various  test  modes. 
LBIST is a prime  example.  The  STUMPS configuration  is 
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built upon a  scan  design,  but the shift registers  are  fed by 
a PRPG  and  the  shift-register  outputs  feed  an  on-product 
MISR.  This scan mode is  clearly different  from  the 
standard LSSD scan  mode, in which the shift registers  are 
connected  to  chip pins. A full-scan (LSSD)  mode is used 
to initialize the  design, including the  PRPG  and  MISR. 
Then  the design is switched to  the  LBIST  mode, in which 
the  PRPG  and  MISR  are  not  scannable,  but  perform  their 
intended  test  functions.  In  manufacturing  test,  the design 
is switched  back to  the LSSD scan mode  at  the  end of the 
test  to  observe  the  signature.  Thus,  LBIST  application 
involves a combination of test  modes. 

Also  bringing together  different  test  modes is the 
cross-mode mark-off aspect of multiple  test  modes. 
Faults  marked off (detected) in one  test  mode may be 
automatically  marked off in other  test  modes  to avoid 
wasting time in redundantly  testing  the  same faults. This 
cross-mark-off  ability is one of the  techniques which 
guarantee  an efficient, compact  test-vector  set. 

The clock  circuitry and  control designs presented a 
challenge  to  TestBench, since the clock block contains 
nonscannable  latches.  These  latches  control  the  scan 
operation,  and  TestBench  does  not  support  sequential 
logic  in the  clock-generation  and scan controls.  This  tool 
limitation was circumvented by removing these  latches 
from  the  model  and  replacing  them with equivalent 
combinational logic and  “pseudo primary inputs”  that 
can  be  sequenced in such a way as to mimic the  real 
operation. Of course, this necessitated  additional  steps. 
All of the  test  patterns  had  to  be  converted  from  the 
TestBench  sequences, which use the  pseudo  primary 
inputs,  to a form  that  could  be  applied  to  the  hardware 
without  the  pseudo  primary  inputs,  and with the 
appropriate clocking on  the  real  inputs  to  produce  the 
desired effect. This conversion was straightforward  for 
LBIST  and  WRP  data  because  these  TestBench  processes 
accept user-specified  clocking sequences.  Some  other  test- 
generation  processes,  such as I/O wrap,  do  not  support 
clocking constraints,  and  for  those  processes  the 
conversion was complicated by the  need  to  look  for  and 
eliminate any tests  that  could  not be applied  on  the  real 
hardware.  Fortunately, as it turned  out,  there  were few 
automatically  generated  tests  that could not  be easily 
converted. 

Analyze untestable faults 
Because of the mission-critical nature of the S/390 servers, 
the  chips  had  to  be  tested  to  the highest product quality. 
The  test  coverage goal  was greater  than 99.9%. To 
understand  the  fault  coverage,  test  generation with user- 
defined clock sequences was simulated on each  functional 
subunit of the chips. TestBench  fault analysis was then 
simulated  on  the  remaining  untested faults. Detailed 
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analysis was performed  to  understand  the  nature of each 
untested  fault. 

The  TestBench  fault analysis identified testable  and 
untestable  faults  and split the  untestable  faults  into 
various  categories:  redundant  faults,  untestable  due to test 
inhibits, multi-time-frame  untestable,  and  test  generated 
but  simulation  failed. 

Redundant logic (corresponding  to  the  “redundant” 
faults) was analyzed and  the  redundancy  often  removed. 
Custom logic has a higher  percentage of redundant  faults 
than synthesized logic. The  causes  for  the  redundancies 
were understood  and  often removed. 

Test  inhibits hold  a fixed value on a  pin throughout  the 
test  generation in  a particular  mode.  Faults  untestable  due 
to  these  constraints  cannot  be  tested in the  respective  test 
mode,  but must be  tested in some  other  mode if they are 
to  be  tested  at all. Such  faults would often  cause a  system 
failure if they were  to  occur.  Each  fault of this type was 
analyzed to  ensure  that it  was tested in some  other  test 
mode, usually  employing some  other type of test. 
TestBench provides  a “global”  test  coverage which reflects 
the union of all of the  tests  for which fault  simulation is 
performed, across  all of the  various  test  modes. 

The  term multi-time-frame untestable refers  to  faults 
which require a series of clock pulses  to  be  detected. 
TestBench  fault analysis is based  on its own automatically 
generated single-clock sequences.  This  means  that  faults 
which require a series of clock pulses  to  detect will remain 
undetected by the  automatic analysis program. Usually 
these  faults  were  tested  when user-defined  clock sequences 
were  applied. 

The  last  category of untestable  fault,  representing a 
disagreement  between  the  test-pattern  generator  and  the 
fault  simulator, is usually symptomatic of a software 
problem.  Either  the  generated  test was incorrect,  or  the 
fault  simulation was  in error.  The  robust  simulation 
capabilities in TestBench  were valuable  in the analysis of 
these  faults.  Test  patterns  could  be  rerun using  a different 
simulator.  When  the two simulators  agreed,  this  pointed 
to a problem in the  test-pattern  generator.  Another  useful 
feature of TestBench is the capability to  simulate a 
subunit as if the  fault existed and display the waveforms 
showing either  the good or faulty behavior of the design. 

identified faults which, while not tested,  were  testable. 
Typically one might not  need  to  consider  these  faults, 
but since the designs supported a  limited set of clock 
sequences,  these  faults  had  to  be  examined.  This analysis 
prompted  model  changes  to  support an additional clock 
sequence. Also, some  groups of faults  were  understood  to 
be  untestable with the  models  used,  but  either  did  not 
exist or  were actually  being tested in the  hardware. 

Custom design techniques which stretch  or  bend 
accepted  DFT  guidelines  and  tool  capabilities  are  often 

Along with  identifying untestable  faults,  TestBench also 
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Example of Modgen fault-model  rule generation. 

necessary  in today’s competitive  environment. A  close 
partnership  between  the  product  designer  and  the tool 
provider is mandatory  for survival,  as more  demands  are 
being  placed  on  the tools, both  for  additional  function  and 
for  added flexibility to run existing functions with fewer 
constraints  on  the design. This  has  come  about primarily 
from  the  natural  forces of VLSI: larger circuits demanding 
higher  tool  performance  and  integration of more  functions 
on a  single chip,  requiring  techniques such  as  self- 
generated clocking and  self-test. 

Fault modeling 
TestBench  operates on a design’s fault  model, which is 
based  on a  gate-level representation of the  circuit.  In this 
section, we refer  to this  gate-level  circuit model as  a 
fault-model d e .  For  standard-cell  (ASIC) designs,  a 
TestBench-compatible  fault-model  rule  set was developed 
and  stored in  a  library.  A predefined  set of fault-model 
rules  cannot  be  created  for  custom designs. Custom 
designs are  modeled by an  application in TestBench called 
Modgen, which automatically  generates  fault-model  rules 
directly from a transistor-level  schematic. 

Modgen  takes  as  input a netlist of a transistor circuit 
and  uses a path-tracing  algorithm  to  produce a structurally 

622 equivalent gate-level  circuit. The gate-level  circuit is 

composed of logic  blocks (called logic  primitives) that 
TestBench  understands, such as  AND, OR, LATCH,  and 
TSD  (tristate device). An  example of this is shown  in 
Figure 7.  

logic, but  not  for  sequential logic such  as latches, clock 
blocks, and arrays. Fault-model  rules  for  sequential logic 
were  created by hand.  The  fault-model  rule-generation 
process is shown  in Figure 8. 

Modgen’s output is in the  form of EDIF (Electronic 
Design Interchange  Format), which contains  TestBench 
logic  primitives. After  the  EDIF  model is built, it is 
imported  into  TestBench,  and a TestBench  model is 
created.  The  EDIF is also  used by E2V  (EDIF to Verilog) 
to  create a fault-model cell view stored in the designer’s 
library. The  fault-model cell view is compared to the 
schematic using Verity [36] to  ensure  that  the  fault-model 
rule  correctly  predicts  the circuit behavior. 

Building  a fault-model  rule  from a hierarchical 
schematic consists of running  Modgen with all of the 
schematic’s instantiated cells treated  as black  boxes. If the 
fault-model  rule  for a given black-boxed  cell has  already 
been  created, no further processing  is required  for  the 
cell. If a fault-model  rule  has  not  been  created  for a given 
cell, or if the  schematic  for  the cell has  been  updated 

Modgen  creates  the  fault-model  rules  for  combinational 

1 Flow for fault-model generation. 
& 
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since the  fault-model  rule was created, a new fault-model 
rule is created.  This  hierarchical  traversal of the design 
continues  until  updated  fault-model  rules have been 
created  for all unique cells in the design. 

Modeling  sequential logic 
Creating  fault-model  rules  for  sequential logic is done 
manually,  since Modgen  does  not  handle  sequential logic. 
The  schematic  must  be  studied  and  understood,  and  then 
a fault-model  rule  and  corresponding  EDIF file can  be 
built using TestBench logic  primitives. 

One  example of modeling  sequential logic is the clock 
block that is used throughout  the  chip  to  provide local 
C2/C1 clocks to  latches.  Its  fault-model  rule is shown  in 
Figure 9(a). 

TestBench  treats a  circuit  using this clock  block  as an 
unconstrained  sequential design, because  the  latches  that 
are  used in the clock generation  confuse  the  TestBench 
analysis programs, which look for simple means of 
controlling all of the system latch clocks and  the scan data 
path. To allow the  TestBench highly efficient stored- 
pattern, LBIST, and WRP support  to  process  the chips, 
the clock-block model was  simplified. The  challenge 
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was to simplify the  model while ensuring  that  the  tests 
generated with this simplified model would  work on  the 
hardware. 

The first change  to  the  model is to  remove  the 
nonscannable  latches,  as shown in Figure 9(b). There is 
still  a problem with this  model,  because  TestBench 
requires  the existence of a primary  input stability state 
defined by setting all test  inhibits  (constant-value  inputs) 
and all clock primary  inputs  to  their inactive states.  Even 
for  an  edge-triggered design, the clock  primary inputs 
must have  a  defined  stability state.  It is a requirement  that 
the stability state must set all  clock inputs  to all latches  to 
known  values. In this case, there was no way to define the 
clock  stability state so that  just  setting  the clock primary 
inputs  (there  are  no  test  inhibits in this  picture) would 
force  the derived clock signal to a  known  value. This 
problem was solved by adding  to  the  model  an  extra pin 
called GLOBAL-C1. Figure 9(c) shows the new model 
with the  extra  “pseudo”  primary  input. 

ramifications.  Since the  pseudo  pin  does  not exist in the 
hardware,  TestBench  cannot  be allowed to  control it  in  a 
random  manner;  instead, a  user-specified clock sequence 
must  be used so that  the  model will behave like the 
hardware. Figure 10 shows the user-specified  clock 
sequence  that is used. Note  that signals C2  and C1 behave 
identically in Figures  9(a)  and  9(b) using the  user- 
specified  clock sequence, so the  model will behave like the 
hardware if the clock sequence  used in Figure 10 is used 
during  test-pattern  simulation. 

Another ramification of using  a pseudo  pin is that  the 
test  patterns  must  be  changed  prior  to applying them  at 
the  tester.  In  addition, using pseudo pins increases  the risk 

Adding  the  pseudo pin to  the  model  has  several 
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Test coverage vs. CPU time. 

of modeling  the  behavior of the circuit  incorrectly, so 
extensive model verification must  be  done. 

Model verijication 
In  order  to confirm that  the  TestBench  model  correctly 
predicts  the  behavior of the  chip,  the  model must be 
compared  to  the circuit for a  variety of patterns. 
Verification  was done  at  different levels of hierarchy in 
the design:  leaf-cell-, macro-,  and chip-level  verification. 

Leaf-cell verijication 
A leaf cell is defined as any  cell that  contains  transistors. 
For  each leaf cell  in the design containing  combinational 
logic, the  fault-model  rule was compared  to  the  schematic 
using  Verity.  Verity performs exhaustive verification- 
that is, the circuit is verified for all  possible input stimuli. 
Verity cannot  be used to verify sequential logic, so 
verification  was also  done  at  the  macro level and  chip 
level, where  another verification method was used. 

Macro-level  verification 
A macro is a functional logic group  that  can  contain 
combinational  and  sequential logic. In order  to verify the 
fault-model  rule  used  for a macro,  TestBench was run on 
the  macro  to  create a set of patterns.  These  patterns  were 
then  simulated on the  VHDL  model of the  macro,  and  the 
output of TestBench was compared  to  the  output of the 
VHDL.  This  process  proved  to  be  quite  valuable. Since  it 
is time-consuming  to  create a set of patterns  to  use  for 

624 verification,  using TestBench  to  create  the  patterns saved 

considerable  time. Also, TestBench  created  patterns  that a 
designer might  have overlooked. 

Chip-level  verification 
For  the chip-level  verification, LBIST  and  ABIST  were 
run using TestBench  and also  using the  chip  simulation 
model [37], and  the  signatures  were  compared.  This level 
of verification  disclosed problems existing between  macros 
that  were  not  caught by the  macro-level verification. It 
also  found  problems in the  behavior of TestBench,  and 
VHDL  problems in the  simulation  model.  This extensive 
model verification resulted in easing debugging of the  test 
patterns  at  the  tester,  where  no  model or tool  problems 
were  found. 

Test-pattern generation  and  coverage 
Many test  techniques have been discussed. They all come 
together in the final test-data  generation for the  product. 
The  goal in test  generation is to maximize test  coverage as 
quickly and as  efficiently  as  possible. With  limited  tester 
buffer sizes, test-data  volume is critical. Also, the  total 
CPU  time  to  generate  the  test  patterns  had  to  be  kept  to 
a reasonable  length, since pattern  regeneration  occurred 
often  because of code bugs, model  updates,  last-minute 
logic changes, and  efforts  to  optimize  the  pattern  set. 

and  then  resimulate  the  pattern  set with  dynamic fault 
simulation  turned  on.  This was done  because dynamic 
fault  simulation  for  the  CP  chip  required  more  than two 
CPU weeks on an RS/6000* Model 590 with two gigabytes 
of real memory (the  number of flat model blocks is 1.3 
million, and  the  combined  number of static  and dynamic 
faults is 9.2 million), and  static  test-pattern  generation 
required several iterations.  To  speed dynamic test- 
coverage growth  when  targeting  the  static  stuck-faults,  the 
dynamic-type clock sequences  were  used first. Then  the 
remaining static-only-type clock sequences  were  used  to 
complete  the  test  generation.  During dynamic resimulation 
of the  static  patterns,  this  approach  enabled  quicker 
dynamic test-coverage  gain, which ultimately improved  the 
test coverage. Note  that  even  though  targeting was done 
in a static  manner,  these  patterns  were  executed  on  the 
product in a  dynamic mode. 

Figure 11 shows an overview of the  test  patterns  that 
were  created,  the  time  required  to  create  them,  and  the 
number of each type that  were  created. 

The first test  generated is the  shift-register  test, which 
detects  about 45% of the  static  stuck-faults  (static stuck- 
faults  total  about 4.5 million). This  runs quickly, in about 
ten  CPU  minutes,  and  generates only ten  patterns. 

Next, 256 000 LBIST  patterns  were  generated,  but only 
the first 64 000 were  fault-simulated.  Fault  simulation of 
64000  patterns  required 50 hours of CPU time, but 
256000 would  have required  about 200 hours of CPU 

The  approach  used was to  target  static  stuck-faults first 
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time.  The  test-coverage  number reflects  only the first techniques must be  developed  to provide more  detailed 
64000 patterns; however, in order  to  get  the benefit of the analysis of device performance. BIST  must be  optimized 
patterns,  the full 256000 patterns  were  applied  at  the to  detect dynamic  faults. 
tester. Since  LBIST is inexpensive from a tester  buffer  and Test-generation  techniques  must  be  developed  to  reduce 
tester  run-time  perspective,  the  number of patterns was test-generation  time  and  test-application  time in an  effort 
extended  to  detect  unmodeled  defects as well. Unmodeled to drive  down test costs. Larger  and  more complex  designs 
defects  are  defects which can occur in hardware  that  are will exceed the capability of today’s test-generation  tools 
not  modeled in the  fault-model  rule  for a circuit. In and will increase  test times so that  test  becomes a greater 
addition, it is beneficial to have  a large  number of LBIST portion of the overall product cost. 
patterns, since LBIST is the only logic test  that is run on Test is and will always be key to  future  microprocessor 
the  higher levels of system  testing. designs. Investments in test  methodology  development, 

generation was invoked  next. WRP  generates weight sets,  the of future programs. 
and  patterns  are  simulated with these weight sets  until a 
marginal  test-coverage  threshold is reached.  The weight Acknowledgments 

resistant  and  are difficult to  detect using LBIST  patterns. team:  Larry Lange for writing several test tools and 

intensive, and 300 weight sets  required 103 CPU  hours. design; Pradip Patel and Phil Shephard for help in the 
When  the effectiveness of WRP  declined substantially, the ABIST design; Rick Rizzolo for sorting and test- 
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Tsapepas  for his interfacing  to  manufacturing;  and Jim 

times  shorter  than  the full scan-chain length of the  chip. 
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deterministic  patterns  required  to achieve  a high test to respond with quick updates on the TestBench programs. 

coverage,  this  method greatly reduced  the  tester  buffer Also,  several teams  were involved in the  testing  and 

and  test  time. characterization of the chips: Dave  Heidel,  Mike 
Immediato,  Keith  Jenkins, Kevin Stawiasz, and Steve 
Wilson for  their  efforts on characterization;  Barry  Butkus, 
Bill St.  George,  Mark Olive, Dana  Santerre,  Pierre 

With  the easy-to-detect faults  out of the way, WRP  test  generation,  and  advanced BIST techniques will ensure 

Sets target specific that are random-pattern- Many  individuals contributed  to  the Success of the  Test 

As shown in Figure l l ?  creating WRP patterns is cpu- enhancements;  Tom  Foote for test  generation on the L’ 

Once  the bulk of static  faults  were  detected,  the  other 
tests  were  created to test  the I/Os, the  PLL,  and  the 
arrays (using ABIST). 

After  the  static  tests were created,  the  patterns  were Thivierge, Darren Childress, owen  Farnsworth,  Deborah 
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Conclusions 
The Si390 custom microprocessor design created many 
test challenges. The  test methodology required  several 
enhancements  to  the  test-generation  process  and 
specialized fault-model  development  because of the 
complexity and  unique clocking structure of the design. 
BIST required  unique design development  to  support  the 
complexity and  high-performance  aspects of the design, 
while SGC was instrumental in verifying performance  and 
allowed the  chips  to  be  tested  at cycle time  during  the 
manufacturing  test process. 

addressed: Dynamic test must be  enhanced  to  keep  up 
with increasing  device performance; dynamic faults must 
be  targeted  and accurately measured, while on-chip 

As we look to  the  future,  several key test issues must be 

*Trademark  or  registered  trademark of International Business 
Machines  Corporation. 
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