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This  paper  describes  SimAPI,  a  common 
programming  interface  for  cycle  simulators, 
and  how  SimAPl  was  used to test the S/390@' 
Parallel  Enterprise  Server  Generation 4. 
SimAPl  provides  a  rich  set  of  functions  useful 
for  programs  and test cases to drive  and 
monitor  a  simulation  model.  Support 
exists  for  multithreading,  event  detection, 
checkpointhestart, and  accessing objects in 
the  model. Most of the code which  implements 
this  interface  is  shared  among all simulators, 
with only a  small  amount of simulator-specific 
code needed to connect  a  simulator to 
SimAPI.  This makes it easy to run a new 
simulator with SimAPI. 

Introduction 
A cycle simulator is a  type of logic simulator which 
ignores  the  detailed timing of the logic  circuits and 
calculates  the  output of the logic only on clock cycle 
boundaries.  This  tends  to  be much faster  than  event- 
based  simulators, which simulate  the timing of the logic. 
Typically, some  form of timing  analysis  must  also be  done 
during  the design cycle. However,  most functional  testing 
of a  logic  design can  be  performed with a cycle simulator. 

increased significantly, with each  simulator having its own 
In  recent  years  the  number of cycle simulators  has 

special niche. For  example, a simulator with low model- 
build time  and source-level  debugging is ideal  for 
testing small pieces of logic in the  early  stages of a 
design. The  same  simulator may be much too slow 
for  large  sections of logic. On  the  other  end of the 
scale, a hardware  accelerator provides very high 
performance,  but model-build time is large  and debugging 
is difficult. 

For  the S/390* Parallel  Enterprise  Server  Generation 4 
(Si390 G4),  four  different  simulators  were used. For 
designer-level simulation a VHDL  event  simulator was 
used, since it provided  fast  model  construction  and  source- 
level debugging. However, this simulator  proved  to  be 
much too slow for  element-level models. (An  element 
model consists of a  medium-size chunk of logic, typically 
with well-defined interfaces such  as  a processor or memory 
controller.) For small element-level  models,  the TEXSIM 
software cycle simulator was used. This  simulator  provided 
much higher  speed  than  the  VHDL  simulator, but at  the 
expense of slower model build and no source-level debug. 
Larger  element  models  used ZFS, a software-event-driven 
cycle simulator.  This  simulator  provided much higher 
performance  than  TEXSIM  for  large  models,  but  ran 
slower for small models. Finally,  system-level models  were 
simulated  on  the EVE hardware  accelerator.  This 
simulator  has  the longest model-construction  time of the 
four  simulators,  and debugging is difficult. However,  the 
simulation  performance was  much better  than  that of any 

Wopyright 1997 by International Buslness Machines  Corporation. Copying in pr~nted  form  for private use I S  permitted  without  payment  of royalty provided that ( I )  each 

of this paper may be copied or distributed royalty free without further permission by computer-based  and  other  information-service systems. Permission  to republrsh any other 
reproduction is done  without  alteration and (2) the Journal reference  and IBM copyright notice  are included on the first page. The title and abstract,  but no other  portions, 

portion  of this paper must be  obtained from the  Editor. 601 
0018-8646/97/$5.00 0 1997 IBM 

IBM J. RES.  DEVELOP.  VOL. 41 NO. 4/5 JULYISEPTEMBER 1YY7 G .  G. HALLOCK ET  AL 



program 

t 

User 
interface 

other  simulator.  These  simulators  provided a  wide range 
of performance-from 10 seconds  per cycle to  more  than 
300 cycles per  second. 

Each  simulator  has its  own programming  interface.  In 
addition, two of the  simulators  ran only on  AIX*,  the 
EVE  hardware  accelerator  ran only on VM/CMS,  and  the 
ZFS  software cycle simulator would run on both  AIX  and 
VM/CMS. This  made it very difficult to  write  code  and 
test  cases  to drive  a simulation  model  and  then move to a 
different  simulator.  Rather  than  rewrite  code  for  each 
simulator, a common  programming  interface called 
SimAPI was developed,  and all user  code  and  test  cases 
were  written  against  SimAPI.  SimAPI  determines which 
simulator is running  and calls the  appropriate native 
simulator  functions,  thereby  insulating  the user code  from 
the  differences  between  simulators. 

Attempts  had  been  made in the  past,  when a new 
simulator was developed,  to mimic the  interface of its 
predecessor. However, this was limited to  cases in which 
the new simulator was designed  as a new and  improved 
replacement  for  an  old  one.  In  addition,  these  interfaces 
typically exposed too  much of the  detail of the  simulator 
to  the  user,  making  it difficult or impossible to  use  the 
interface efficiently  with another cycle simulator.  SimAPI 
is the first interface  that  addresses  the wide differences 
between cycle simulators  and  runs efficiently on  both 

by user  programs  and  test  cases  to drive  a simulation 
model.  It  does  not  attempt  to  be  yet  another  programming 
language, since there  are plenty of languages  to  choose 
from  already.  There  are  no  if/then/else  or  loop  constructs; 
instead,  SimAPI simply provides bindings  to existing 
languages. Currently C/C++,  PWX, and  Rem  are 
supported. Typically, programs  that  are used often  and 
require high performance  are  written in C/C++ or PL/X. 
When  ease of use is needed  or  when  performance is not 
critical, SimAPI  provides a  command-level interface  for 
Rexx. SimAPI  runs on three  operating systems-AIX/6000, 
VM/CMS, and  Sun Solaris. 

SimAPI actually  consists of two well-defined interfaces, 
as  shown in Figure 1. The first is a  high-level interface  for 
use by user  programs  and  test-case  drivers with  nearly 
eighty functions.  The  second is a low-level interface 
connecting  SimAPI  to a simulator consisting of about 
thirty  functions. Only about half of these low-level 
functions  are  essential  to basic SimAPI  operation.  The 
remaining  functions  can  be  implemented  at  the  simulator's 
discretion  to  provide  improved  performance  and  support 
functions  that  are less often used. Typically, a  small 
amount of code called the  simulator shell  must be  written 
for  each  simulator  that plugs into  SimAPI.  This  shell  code 
converts  the low-level sirnulator  calls from  SimAPI  to  the 
native simulator  API.  When possible,  this  shell code is 
merged  into  the  simulator  to effectively render  the  native 
simulator  API  the  same  as  the  SimAPI  simulator  interface 
and  to improve performance.  Currently, shell code exists 
to  connect eight different cycle simulators  to  SimAPI. 

It may seem  at first that  SimAPI could be significantly 
slower than  the native simulator  interface, since  a function 
call must go  through  at  least  one  and typically two 
additional layers of code  (SimAPI  and  the specific 
simulator  shell). However,  as is shown later,  SimAPI 
provides  great flexibility as  to which functions  are 
provided by the  simulator  and  shell  and which are  handled 
by SimAPI. Also, SimAPI user-level functions  are typically 
higher-level than native simulator  functions.  This  means 
that fewer  calls to  SimAPI  functions  are  needed.  For  these 
reasons,  SimAPI is typically no slower than  the  native 
simulator  interface  and  can actually be  faster. 

Threads 
SimAPI  provides  support for multithreading. All threads 
run  in  the  same  address  space  and  are  non-preemptive. 
A thread gives up  control  to  another  thread only when it 
must  wait for  some  event.  On  UNIX**-based systems, 
SimAPI  implements  threads with POSIX  threads. 

There  are two  types of threads-overlap and  non- 
overlap.  An  overlap  thread  has  no  need  to access the ' 602 software  simulators  and  hardware  accelerators.  simulation  model  and  can run in parallel with running 
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simulation cycles. A non-overlap  thread  requires access to 
the  simulation  model  and  can  run only when simulation is 
stopped.  An  overlap  thread  can  temporarily  gain access 
to  the  simulation  model by calling the spi-halt-sim 
function.  This  causes  simulation  to  stop so that  the  thread 
can have  a constant view of the  model.  The  thread  can 
later call the spi-resume-sim function  to  tell  SimAPI 
that it no  longer  needs access to  the model. Simulation 
cycles begin to  run again only when all threads have 
indicated  that  they  no  longer  need access to  the  model. 
There  are  functions in SimAPI  to  create a thread,  cancel 
a thread,  and  cause a thread  to wait for  some  event. 

test  cases (e.g., multiple  threads,  each driving a separate 
port in the  model). 

Use of multiple  threads  can simplify writing of complex 

Events 
SimAPI  can  be used to define various types of events, 
which can  be used in two ways. First, a thread  can wait for 
an  event.  The  thread  suspends, giving control  to  other 
threads, until the  event occurs; this is done with the 
spi-clock and spi-wait functions.  Second,  an  event 
can be used to  trigger  the  start of a new thread using the 
spi-after function.  Whenever  the  event  occurs, a new 
instance of the  thread will be  created. 

In addition  to defining events,  SimAPI  has  functions  to 
delete, activate, and  deactivate  an  event.  When  an  event is 
deactivated, it will not  occur  even if the  conditions  are 
such that  the  event would  normally occur if activated.  This 
can  help improve performance in two ways. First, ignoring 
an  event  after it occurs is more time-consuming than  not 
setting  the  event in the first place.  Second,  deactivating 
and activating an  event is much faster  than  deleting  and 
later redefining the  event. 

Cycle events A cycle event occurs when some  number 
of cycles have been  run. Cycle events  can  be defined to 
be  relative  to  the  current cycle or  based  on  absolute 
cycle numbers. 
Progrum events A program  event provides  a way for 
threads  to synchronize and  pass messages.  A thread  can 
set a program  event  and  associate a  message with the 
event. If some  other  thread is waiting for  the  event, 
it will “wake up”  and can then  read  the message. 

objects in the  model reach certain values. An  object 
event is composed of an expression containing any 
number of terms which are  combined with AND  and 
OR functions.  Each  term  compares  an  object in the 
model with a value.  Object  events can be  either level- 
sensitive or  edge-triggered. A  level-sensitive  event  occurs 
for every cycle for which the expression is true. An 
edge-triggered event occurs when the expression changes 
from  false  to  true. 

Object events An  object  event  occurs when one or more 

SimAPI gives the  simulator a choice of how object 
events  are  detected. By default,  SimAPI  detects object 
events by fetching  the  objects every cycle and  evaluating 
the expression. The  simulator  can  choose, however, to 
detect  the  events itself. This  can  improve  performance 
greatly for  hardware  accelerators such  as EVE  and  for 
distributed  simulation  where  the  simulator is running  on 
multiple  processor  nodes.  For  example,  EVE  detects 
object  events by actually  dynamically  modifying the logic 
being  simulated.  The  simulator  can  choose  to  detect 
some  events while  leaving others  for  SimAPI  to  handle. 
This is an example of how SimAPI  can actually  improve 
performance  even  though it introduces  extra layers of 
code in the calling chain.  Without  the  concept of events, 
a program would be  forced  to sit in a loop  fetching 
objects  and  running a cycle. This provides acceptable 
performance  for  some  software  simulators,  but 
performance would be very poor  for a hardware 
accelerator such  as EVE. By providing the higher-level 
concept of events,  the  simulator now has  the  opportunity 
to  choose a method of event  detection  that works 
efficiently. 

events.  For example, the  START  event is set by SimAPI 
just  before  the first simulation cycle is run.  The  END 
event is set  when  SimAPI is ready to  end  simulation. 

Built-in events SimAPI also  defines some built-in 

Accessing model objects 
SimAPI  has  functions  to  get,  set, stick, and unstick 
an object in the  simulation  model.  The  function 
spi-get-object gets  the value of an  object,  and 
spi-set-obj  ect sets  an  object  to a particular value 
while still allowing the logic in the  model  to modify the 
object.  The  function spi-stick-object sticks an  object 
to a particular value. This differs from set in that  the logic 
in the  model is prevented  from modifying the  object. 
Normally spi-set-object is used to  set  the  state of 
objects which have  memory,  such  as registers  and memory 
arrays,  while spi-stick-object is used to  tie  model 
input signals or  to inject errors.  The  function 
spi-unstick-object reverses  the effect of stick, 
allowing an  object  to  be modified by the logic in the 
model. 

For  performance  reasons,  these  functions  do  not access 
the  model directly. Instead,  the  requests  are  buffered 
using  a model action list, which is simply a list of gets, 
sets, sticks, and unsticks.  Calls to such functions as 
spi-get-object and spi-set-object can  be used to 
add  requests  to a list. The list is not actually executed 
until a  call to spi-flush-list is made.  This  buffering 
can  improve  performance significantly for  hardware 
accelerators such  as EVE  and  for  distributed  simulators, 
since it reduces  the  number of 1/0 operations  required. 603 
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There  are two basic  types of model  action lists- value is not changing,  while at  the  same  time exploiting 
temporary  and  permanent.  the  performance  advantage of permanent lists. 

Temporary lists Shadow 
A temporary  model  action list is emptied  after  the  Sometimes it  is  necessary to  get  the  value of an  object 
commands  on  the list are  executed.  Temporary lists are every cycle. This  can  be  done with spi-get-object and 
useful  when  one-time  references  to  objects  are  required. a permanent list, but  SimAPI provides  a more efficient 
By default, a temporary list has a fixed-size buffer.  When  method.  The  function spi-shadow-object is very 
the  buffer  becomes full, SimAPI issues an implicit  call to similar to spi-get-object. However, shadow makes 
spi-flush-list to  free  up  the buffer. It is possible to  certain  assumptions which allow it to  be fast: 
tell  SimAPI  not  to implicitly flush  a  list. In  this  case  the 
list buffer grows as  needed  and is flushed  only by an The  object is going be  fetched every cycle (or  at  least 
explicit call to spi-f  lush-list. Programs  can define very often), so shadow  optimizes  for  this case. 
any number of temporary lists, but a program will typically Changes  to  an  object  occur relatively infrequently. 
use  the  default  temporary list defined by SimAPI. Shadow is allowed to  update  the  data  area  where  the 

Permanent lists due  to a  flush). 
A permanent  model  action list can  be  executed many 
times  and  can  be  emptied only by an explicit call to  the  This  last  assumption is critical to shadow’s speed.  Since 
spi-empty-lis t function.  Permanent lists are useful shadow allows the  data  area  to  be  updated  as  soon  as 
when  the  same  operations must be  performed  on a group  the  object is changed  without waiting for a call to 
of objects many times  during a simulation.  Unlike a spi-flush-list, quite  often, by the  time  the list is 
temporary list, the  buffer  for a permanent list grows as  flushed,  there is nothing  much  left  to  do.  Shadow will also 
needed.  SimAPI  never implicitly  flushes  a permanent  optionally  set a change flag if the  object  has  changed 
list. Using a permanent list can significantly improve value. This allows a program  to flush a list containing a 
performance. All error  checking on inputs is done when number of shadows and  then quickly determine  what  has 
the list is created, so this  time is saved on each  execution  changed  and  what  needs  further processing. 
of the list.  Also, SimAPI  provides  the  simulator  an  SimAPI gives the  simulator a choice  as  to  whether  it 
opportunity  to  preprocess  the list after all requests have will implement shadow. Event  simulators, such  as ZFS 
been  added  to  the list. This processing can  include such and  the VHDL event  simulator,  can  implement 
things as  formatting  the list for  faster,  later execution spi-shadow-obj  ect much more efficiently than 
and moving the list closer to  the  actual  simulator.  For spi-get-object, since  they must  do  something only if 
example,  in  a distributed  simulator which runs on multiple  the object changes value. Other simulators such as TEXSIM 
nodes  connected by a network,  the list can  be split into  and  EVE  cannot  implement spi-shadow-object any 
pieces,  with each  piece  sent  to  the  node  that must process  faster  than spi-get-object. If a simulator tells SimAPI 
it. Then,  when  the list is executed,  there is relatively that it does  not  handle shadow, SimAPI will convert 
little  data  that  must  be  transferred across the  network. spi-shadow-object calls to spi-get-object. This 
This  has  proved  to  provide a  significant improvement in allows shadow  to  work  on all simulators while at  the  same 
performance.  time exploiting the  special  features of some  simulators  to 

Conditional set and stick 
SimAPI  has  conditional  set  and stick  functions- Operational  (utility)  functions 
spi-cond-set-object and spi-cond-stick-object. 
These  are similar to  set  and stick, but  the  execution of the Object name prejixing 
command is dependent on a change flag. When  the list Because of the many  levels of hierarchy  that  can  occur in 
is executed by calling spi-flush-list, only those a large system model,  object  names  can  become  quite 
commands  whose  change flag is set will be  executed. long.  A particular  thread may have to access objects only 
When used  with  a permanent list, conditional  set  and stick in a  local section of the hierarchy. It is also  sometimes 
can significantly improve  the  performance of driving  necessary to drive multiple  copies of a piece of logic which 
interface  lines which change  infrequently. A program  are in different  parts of the  hierarchy with the  same  code. 
would typically set only those  change flags for  objects  SimAPI  supports  object  name prefixing to simplify the 
whose  value  must  be modified and  clear all other  change  sharing of code  for  this  purpose.  Each  thread  has  an 
flags. It would then call spi-f  lush-list. This  prevents  associated prefix which is added  to all references  to objects. 

value of the  object will be  stored  at any time  (not  just 

improve performance. 

604 time  from  being  wasted  setting or sticking objects  whose When  a thread is initially started,  the prefix is null. A thread 
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can  then  set  the prefix using the spi-setsref ix 
function. Typically, the prefix would be passed  as  a 
parameter when the  thread is started. So, for  example,  to 
have  a  single piece of code drive multiple  copies of a piece 
of logic, all that need be done is to  start  up multiple  threads, 
passing  a different  object  name prefix for  each  thread. 

Virtual and  alias  objects 
SimAPI  permits  virtual  and  alias  objects  to  be defined. To 
a program, a virtual  object looks just like  any real  object 
in the  model.  It  can  be  set  and  its  value  can  be  fetched. 
Since a virtual  object is not  connected  to any real logic, its 
value changes only because of programs calling SimAPI 
functions.  Virtual  objects can be useful  when  a subset of a 
model is being  run  and a program  expects  an  object  to 
exist which is not in the  subset. 

An  alias  object is a  special  kind of virtual  object. Like  a 
virtual  object, it does  not exist in the  model itself; 
however,  unlike  a virtual  object,  an alias object is backed 
by real objects. Alias  objects  are useful  when the  bits of a 
register  are actually represented by many smaller objects. 
For example, a  32-bit register might  consist of 32 one-bit 
latches,  each with its own name.  An alias object  can  be 
defined that is then  mapped  onto  the individual latches; 
thus, a program  can  refer  to a  single  32-bit object  instead 
of many  small latches. A  single  alias object  bit  can  be 
mapped  onto  multiple  real  object bits. This is useful  when 
there  are  multiple  copies of an  object in the  model. 
Setting  the  alias  object  then  causes all copies  to  be  set.  It 
is also possible to leave gaps in an alias. For example, a 
register might logically be 32 bits wide but have only 31 
bits  used. Any alias  bits  that  are  not  mapped  to a real 
object  return a value of 0 when the  object is fetched. 
When  set,  the  data  for any unmapped bits are  ignored. 
SimAPI provides functions  to define and  delete  alias 
objects  and  to  map  alias  objects  to  real objects. 

Running cycles 
SimAPI provides two functions  to allow a thread  to  run 
simulation cycles. The spi-clock function  causes  the 
thread  to  suspend  until a  specified number of cycles have 
run.  The spi-wait function allows the  thread  to wait 
either  for  some  number of cycles to  be run or  until  one 
or more  events  occur. 

In  both cases, simulation cycles are  not  run directly  as a 
result of the  thread calling spi-clock or spi-wait. 
Instead,  the  thread simply waits for cycles to  be  run  or  an 
event  to occur. SimAPI  causes cycles to  be  run only when 
all non-overlap  threads have suspended. 

Checkpointlrestart 
SimAPI provides functions  to  checkpoint  the  state of 
the  simulation  model  and  to  restart  the  model  from a 
checkpoint. 

When a thread calls the spi-checkpoint function, a 
checkpoint is not  immediately  taken.  Instead,  the  thread is 
suspended  until it is safe  to  take a checkpoint.  SimAPI 
considers  it a safe  time  to  take a checkpoint only  when  all 
non-overlap  threads have either  suspended  or  ended.  This 
is typically just  before  the next simulation cycle is run. 
In  this way a thread  can call spi-checkpoint and  be 
assured  that  the  checkpoint will not  be  taken while some 
other  thread is in the  middle of making changes  to  the 
model  state. Similarly,  a  call to  the spi-restart 
function  causes  the  thread  to  suspend  until all non-overlap 
threads have suspended  or  ended.  The  control of the  time 
at which a checkpoint  or  restart is done is performed by 
SimAPI, so the  simulator  need  not  concern itself with  this. 
The low-level simulator  functions  for  checkpoint  and 
restart  perform  the  function  immediately. 

One  use of checkpoint is to save the  reset  state 
of a model. Typically, when a model is first built,  an 
initialization  test  case is run  to  bring  the  model  to  the 
initial state  used  for all other  test cases. This  initial  state 
is recorded in  a checkpoint.  After  that,  whenever a test 
case is run, the  model is first restored  to  this  initial 
checkpoint.  This  can  be much faster  than  going  through 
the  reset  process  before  each  test  case. 

state of the  model  during a long-running  simulation. By 
taking a checkpoint every N cycles, debugging can  be 
easier if a problem is discovered. The  simulation  can  be 
restarted  from  the  last  checkpoint  taken  prior  to  the 
failure  to  enable  detailed debugging. It is also possible 
to  transfer  checkpoints  between  simulators.  Thus, if a 
problem is found while running on the  EVE  simulator,  the 
last  checkpoint  can  be  converted  to a ZFS checkpoint  and 
transferred  to  the ZFS simulator  for debugging. This  has 
proved very useful,  since  debugging on ZFS is much 
easier  than  on  EVE. Also, EVE is a  limited and valuable 
resource; debugging on a software  simulator such  as ZFS 
means  that  the  EVE  resource is available to  do what it 
does best- high-speed  simulation. 

Another  use of checkpoint is to  record  the  intermediate 

Message  logging 
SimAPI provides  its own log file for  recording messages 
and a function, spi-simlogf, to  format  and log 
messages. This is independent of any log file that  the 
simulator itself may generate. 

Random-number generation 
Randomness  must  often  be  introduced  into  simulation 
to  improve  test  coverage or to  randomly inject errors. 
At  the  same  time, any randomness must be  repeatable 
in case  an  error is detected,  to  permit debugging 
the  problem.  SimAPI provides  a random-number 
generator  that  creates a  new random  number  each cycle. 
An initial seed is used  to  start  the  random-number 605 
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generator,  and  the  sequence of random  numbers is 
repeatable, given the  seed. 

Global data 
The spi-entry function allows programs  to  operate  on 
global data by name; spi-entry maintains a table of 
eight-character  names  and  four-byte values. Any  thread 
can  set  or  get  the value for a named  variable.  SimAPI 
defines some built-in entry variables. For example, the 
variable  APICYCLE  contains  the  current cycle number. 

Limitations 
SimAPI is designed  for  use with cycle simulators.  It  can  be 
used with event  simulators  as long as  the  simulator  can  be 
made  to  look like  a cycle simulator.  This was done with 
the  VHDL  event  simulator used for Si390 G4 by passing 
the cycle time  to  the  simulator shell. So, when SimAPI 
told  the  simulator to run a cycle, this  was translated by 
the shell to a certain  number of nanoseconds. However, 
SimAPI  has  no  functions  to directly control  time. 

SimAPI  currently limits the  names of objects to 256 
characters. However, this limit  could easily be  changed if 
longer  object  names  were  needed. 

SimAPl usage on S/390 G4 

Processor chip Verification 

Environment 
The  processor  chip level simulation was introduced in an 
earlier  paper in this  journal [l]. The  model  consisted of a 
single processor, with  a program  representing  the L2 chip. 
The primary stimulus was a set of architectural verification 
programs  (AVPs)  generated by AVPGEN [ 2 ] .  An  AVP is 
a test consisting of initial  values for  architected Si390 
registers, an  instruction  stream,  storage  operands,  and 
the  expected  results of storage  and  registers  after  the 
instructions  are  executed. 

The  simulation  environment  for  processor verification 
used  SimAPI extensively. Both  ZFS  and  the  VHDL  event 
simulator  were  used  for  performing  the  simulation. 
SimAPI  made  the  choice of simulator essentially 
transparent. 

In  order  to  control  the  simulation  environment  for  the 
processor, a run-time  manager  (RTM) was created.  This 
was a Rem exec  with SimAPI  commands  for  establishing 
the overall flow of control:  initialization,  event  detection, 
thread  control,  and  termination.  The  RTM  called  other C 
programs  to  do many of these  functions. 

initialized by using reset logic built into  the  hardware 
(for  “power-on  reset”  support).  This  required  setting 
some  internal  reset signals  in each of the units via the 
spi-set-obj  ect SimAPI  function,  and clocking the 
model several cycles using the spi-clock SimAPI 
function.  The  architected  registers  were  set  to values 
specified  as initial values  in the  AVP, using the 
spi-set-object function. 

Aliases 
During  the design  process, register  names  can  often 
change (e.g., because of a change in hierarchy in the 
design).  To avoid having to  change  our  programs 
whenever  these  name  changes  occurred, we made  use of 
“alias”  support in SimAPI.  Aliases provide  an association 
of logical names with real  names.  The  SimAPI  command 
spi-map-alias was used  to  establish  the aliases.  All of 
the  mappings  were  done in one  command file, which 
facilitated  rapid  changes. 

The  object  names  for a given register  can vary among 
simulators.  To  make  these  name  differences  transparent  to 
our  programs,  an alias file was created  for  each  simulator. 

Aliases  were also used  to  map a  single  logical register 
to  multiple  actual  registers.  This  feature was used to 
initialize certain  architected  registers (e.g., control 
registers),  where  copies existed  in multiple  units in the 
processor. A  single spi-set-obj  ect command, using 
an alias name, initialized  all of the copies. 

Checkpointing 
Whenever a new processor  model was built, a reset  state 
checkpoint was created.  This was done  for  performance 
reasons. Since each  AVP  starts  from  the  same  initial 
state,  the use of a checkpoint  eliminated much of the 
initialization overhead (i.e., the  simulation cycles needed 
to  reset  internal  registers).  To  create  the  checkpoint,  the 
SimAPI spi-checkpoint function was used.  The 
checkpoint was created  after  the  internal  registers  were 
initialized, but  before  the  architected  registers  were 
initialized. At  the  start of each  AVP,  the  model was reset 
to  the  checkpoint  state via the spi-restart function, 
and  the  architected  register initialization was then 
performed. 

Events 
As part of the  processor  simulation  environment, many 
events  were defined. When  the  events  were  detected, 
various  actions  were  taken.  Each of the  events was 
declared in the  RTM.  Some examples are  the following: 

Initialization 1. AVPBegin This was an  event  set  when a new AVP 
Two functions  were  implemented  to  do  the  model was about  to begin. It  triggered  the  program which 
initialization: one  for  internal  registers  and  one  for performed  the  architected  initialization  for  the  test 

606 architected (Si390) registers. The  internal  registers  were  case. 
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illegal condition.  The event caused a  message to  be 
logged and  the  test  case  to be terminated. 

3. DecodeSuccess Whenever  an  instruction was 
successfully decoded in the  I-unit,  this  event was set. 
A program was then  (optionally) called to  put  an  entry 
in a trace file, which was used for  debug  purposes. 

4. ZeroPSW This was an  event  set  whenever a program 
status word (PSW) with  a  value of all zeros was 
detected.  This signaled the  end of an  AVP. 

Multiple threads 
To  support  the  stand-alone  processor  chip  simulation 
environment, two programs  were  written to represent  the 
L2 and  the  MBA chips. The L2 program  provided a 
behavioral  simulation  for  the second-level cache  and 
memory hierarchy,  and  the  MBA  program  provided  the 
timing facility reference clocks. Each of these  programs 
was run as  a separate  thread, allowing them  to  run 
simultaneously with the  actual  simulation.  The 
spi-create-thread SimAPI  command was used 
in the  RTM  to  establish  the  multiple  threads. 

Termination 
The  end of a test  case was typically detected with  a 
ZeroPSW  event  (an  indication  that  an  interrupt  occurred), 
or with an  error  condition (e.g., the MilliCheckstop 
event). A program was then called which retrieved  the 
final state of the  architected  registers  and  compared  those 
values to  the  expected values  in the  test case. 

L2 chip verification 

Environment 
The L2 chip-level simulation used  a model  containing  the 
hardware  model of the L2 with drivers  and  monitors 
attached  to  the CP and BSN interface  ports.  For  the most 
part,  the  drivers  and  monitors were C+ + programs  that 
shared  information.  An exception to this was the BSN 
driver, which may have been  some  combination of VHDL 
macro or hardware  model  for  its  three  components, BSN, 
STC, and memory. In all  cases,  a C + +  driver  representing 
a remote L2 or MBA was talking  to  the BSN interface 
ports  not  connected  to  the  real L2. 

used SimAPI services to  provide  portability across 
simulator  platforms. In the  early  stages of the  project, 
SimAPI was not available, and two separate compiles were 
required  to  support  the  simulators in use at  that  time, a 
VHDL  event  simulator  and  TEXSIM. By using SimAPI, 
management of the  executables  for  the  different 
simulators was simplified,  since  only one version of the 

As in the  processor  chip verification, the L2 simulation 

Besides the  portability between simulators,  SimAPI 
offered a number of other  conveniences which were 
used in the L2 environment.  These  included  language 
portability,  control  events,  permanent  get-object lists, 
object alias files, and  multithreading of special test cases 
that  ran  along with the main environment. 

Language portability 
While the majority of the L2 verification was written in 
C++ ,  programs  that  did  environment initialization before 
the C + +  code was started  were  written in Rexx. These 
had all of the  SimAPI  functions available to  them, yet 
remained  independent of the  simulator being used.  The 
two most used  were  the  RTM,  responsible  for  loading  and 
running  the main L2 environment,  and  the SIMINIT file, 
which processed a list of objects  and initial  values to 
initialize latch objects. (There was no  reset on the L2, 
and scanning  was  used to initialize the  latches, so the 
SIMINIT provided a quick shortcut for initialization.) 

Control events 
For some of the  simulators  that  were used for L2 
verification,  a performance  penalty was incurred when the 
getting  and  setting of objects  were  intermixed.  This was 
because  the  simulator would reevaluate  some or all of the 
model when an  attempt was made  to  get  an  object  after 
one or more  objects  had  been  set in the  same cycle. 

two times within it, a “begin cycle” and  an  “end cycle.” 
The  setting of objects was done  at  the beginning of a 
cycle, and  the  getting of object values was done  at  the  end 
of the cycle. To effect  this management,  SimAPI provided 
the spi-wait function  and  predefined BEGIN-CYCLE and 
END-CYCLE events.  The call to spi-wait was handled 
correctly for  simulators  that  support this notion,  and  took 
the  appropriate  action for simulators  that  did  not. 

To avoid this situation,  the cycle was managed as  having 

Permanent get-object lists 
In the L2 chip verification,  checking correct  operation 
required  monitoring a substantial  number of objects on 
the  interfaces  and  internally by getting  their values from 
the  simulators.  Therefore, in the  interest of execution 
performance it was important  to  make  these accesses 
as  fast as  possible. SimAPI  provided a mechanism,  the 
permanent list, that  could  be  used  for  obtaining all of the 
values for  objects which were  to  be  fetched a number of 
times.  The L2 used  only one list that was executed every 
cycle, but multiple lists were possible. 

The  overhead of building the list was incurred only 
once,  and  the  optimization of getting values for a number 
of objects was contained within  SimAPI. Because  SimAPI 607 
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handled  the  entire list at  once,  the  overhead of multiple 
calls to  SimAPI was removed.  Another benefit was the 
ability to exploit  special features of a given simulator  that 
allowed for  accelerated access to  object values,  such as  the 
z-shadow function of ZFS.  These  features  were easily 
accessible because  SimAPI  supported  them. 

Object aliases 
Because  the verification code  had  to work  with several 
different configurations of the L2 model over the life of 
the  entire  project,  the  names of referenced  objects  were 
likely to  change  quite  often.  To avoid having to  maintain 
separate versions of the verification code, it was important 
to  remain  as flexible as  possible on this  point. Two things 
were used to  increase flexibility in this  area. 

Soft-coded  object  names, which were  not a function 
of SimAPI,  were used to  support  hierarchy  differences 
encountered in the  various configurations used.  However, 
this  did  not  address  the  problems  caused by partitioning 
arrays which arose  when physical layout became a serious 
factor. 

SimAPI aliasing  allowed the verification code  to  remain 
unchanged  and  supported  the one-cycle and two-cycle 
models. The two-cycle model was closely tied  to  the 
physical layout,  and  the  arrays  were  split  and  named 
accordingly, whereas  the one-cycle model  had only to  be 
functionally correct,  and a few large  arrays  were  used  for 
the  cache  data array. Alias  objects  were flexible enough  to 
allow the twelve smaller  arrays of the two-cycle model  to 
be  mapped  to  the  same  name  and addressability  as the 
single large  array used  in the one-cycle model.  This was 
accomplished by running a SimAPI R e x  program  from 
the  RTM  at cycle 0. 

Multithreading 
Although L2 verification was based  on  randomness, it was 
often necessary to  create a specific event  or  sequence of 
events.  This was most often  required  for debugging and 
verifying problems  that  were  found  at  the system  level or 
on  the  test floor. 

The  random  environment was  generally capable of 
creating  the necessary conditions, but needed  some fine 
tuning in some  instances.  This was accomplished by using 
another  SimAPI  test  case  running  at  the  same  time as the 
random  environment.  These  test  cases  were used to  inject 

internal  objects  to  obtain a desired  action.  Because 
SimAPI was also  available to  programs  written in Rem,  an 
interpreted  language,  these  test-case  threads  were quickly 
created  and  tuned  in  an  interactive way, which  was very 
useful  when  trying to pin  down an exact  timing, by trial 

I errors or commands  at specific times, or to  manipulate 

608 and  error, with very little  information. 

System verification 

Environment 
System verification was introduced in an  earlier  paper in 
this journal [l]. The  model  consisted of multiple  processor 
chips, L2 chips, bus  control chips, memory  control/memory 
adapter chips, and  main memory. S/390 instruction 
streams  (generated by SAK) were  executed  on  the 
processors  to verify the  implementation of the system 
from  an  architectural perspective. EVE 1.5 (a  hardware 
accelerator) was used  to  provide  greater  throughput  than 
is achievable on  software  simulators  running  large  models. 
EVE 1.5 executed  hundreds of simulation cycles each 
second, in contrast  to  the  same  model on a software 
simulator  running 10-15 cycles per  second. A  single 
simulation  run  executed millions of cycles in  a reasonable 
amount of time. A drawback  to  EVE 1.5 is its limited 
capability to  gather  trace  information  about  the  state of 
the  model, which made  problem  debug  cumbersome  and 
slow. ZFS  (a  software  simulator)  has  the ability to 
generate full traces of the  model  state  and was used for 
model  bring-up  and  problem  debug. 

and allowed one  set of programs  (written in C and R e x )  
to  interact seamlessly  with models on either  simulator. 
Many of the  SimAPI  features used at  the  processor  and 
L2 verification levels were  also used at  the system level. 
The  run-time  environment was controlled by an  RTM, 
which has  been  described in the  processor  and L2 chip 
verification sections.  The Needwork event was used  to 
initiate  data  transfers  between  the  simulation  model  and 
the  SAK host system when  a modeled  processor  had 
completed its  tasks. Events  declared in the  RTM  behaved 
identically on EVE 1.5 and  ZFS  from a user  perspective. 
Some  differences or unique  applications  are discussed 
below. 

SimAPI  was  used extensively  in the system environment 

Checkpointing 
Checkpoints [3] were  taken periodically (typically at  one 
million cycles) while running  simulation  on  an  EVE, 
capturing  not only the  state of the  EVE  model  but also  all 
of the  data  transfers  that  took  place  between  checkpoints. 
This  enabled  failures  to  be  restarted  on  EVE 1.5 in  a 
relatively  small window of simulation cycles without having 
to  return  to  the  starting  point,  as runs of 1 to 40 million 
or more cycles until  a failure was detected  were  observed. 
A subsequent  checkpoint was then  taken in  close 
proximity to the  failure.  The new EVE 1.5 checkpoint was 
converted seamlessly to a checkpoint  for  the  ZFS  software 
simulator.  After  the conversion, the  user specified the 
ZFS simulator  instead of EVE 1.5 and  made a  slight 
modification to  the  RTM which enabled full trace. 
Full  traces  for  debug  were  generated  during  the  ZFS 
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simulation runs which matched  the  EVE 1.5 runs on a 
cycle-by-cycle basis. 

Datu buffering 
The spi-flush-list function allows users  to  control 
the  point  at which a data  transfer is actually propagated 
to the  simulation  model.  The  user  sets bit 0 of the 
flags parameter of a SimAPI  function such  as 
spi-set-object to a ‘ 0 ’ .  This tells SimAPI  to  buffer 
this  request.  SimAPI  holds  the  request  until  an explicit 
spi-flush-list function  executes  or  until its buffer 
is full. Request(s)  are  then  propagated.  The following 
paragraph describes  a use of data buffering. 

SAK  test  cases  were moved between  the  simulation 
model’s  memory and  the SAK  host via a program known 
as Memmove. When  data  movement  occurred  to  or  from 
the  simulation  model,  simulation was stopped.  The  data 
were  transferred  between an Si390 EVE host and  the 
EVE 1.5 hardware via an Si390 channel  connection  and 
placed in a memory  object  (array) or taken  from a 
memory object by the EVE’S I/O processor. A transfer of 
a  single line of data (128 bytes) required 161 calls (or 
more)  to spi-set-object to  ensure  that  the  storage 
hierarchy was properly  updated.  Large  data  transfers 
resulted in thousands of requests  being  generated.  Each 
request was a unique Si390 1/0 request, which is a 
relatively slow process. So much time was consumed 
completing all of the  requests  that if each  request  had 
been  propagated uniquely, significantly more  time would 
have been  spent  transferring  data  than  running  simulation. 
(This  phenomenon  has  been  observed  at  times as  a result 
of coding errors.) If Memmove  were  coded in this  manner, 
software  simulators would  actually  provide higher cycle 
throughput  than  the  hardware  accelerator, wasting the 
speed  advantage of EVE 1.5. To solve this problem, 
Memmove  took  advantage of the  buffering capability of 
SimAPI when transferring  data. Efficiency ratios  (percent 
of the  time  EVE is actually running cycles) of 70-90% 
have been observed. 

Summary 
As the  number of cycle simulators available continues  to 
grow, the  number of programming  interfaces  to  simulation 
has  also  been growing. It has become very difficult to 
write  code  to  run  on multiple simulators.  SimAPI solves 
this  problem by providing  a common high-level interface 
to cycle simulation. By also  defining  a common low-level 
interface  to a simulator,  SimAPI  makes it to easy to  run 
new simulators. It has  been used with very good 
performance with  such widely different  simulators  as a 
VHDL  event  simulator  and a hardware  accelerator.  The 
functions available from  SimAPI have  proved  useful for all 
levels of simulation  from  the  designer level up to  and 
including  system-level  models. 
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