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This paper describes SIimAPI, a common
programming interface for cycle simulators,
and how SimAPI was used to test the $/390°
Paraliel Enterprise Server Generation 4.
SimAPI provides a rich set of functions useful
for programs and test cases to drive and
monitor a simulation model. Support

exists for multithreading, event detection,
checkpoint/restart, and accessing objects in
the model. Most of the code which implements
this interface is shared among all simulators,
with only a small amount of simulator-specific
code needed to connect a simulator to
SimAPIL. This makes it easy to run a new
simulator with SimAPI.

Introduction
A cycle simulator is a type of logic simulator which
ignores the detailed timing of the logic circuits and
calculates the output of the logic only on clock cycle
boundaries. This tends to be much faster than event-
based simulators, which simulate the timing of the logic.
Typically, some form of timing analysis must also be done
during the design cycle. However, most functional testing
of a logic design can be performed with a cycle simulator.
In recent years the number of cycle simulators has
increased significantly, with each simulator having its own

special niche. For example, a simulator with low model-
build time and source-level debugging is ideal for

testing small pieces of logic in the early stages of a
design. The same simulator may be much too slow

for large sections of logic. On the other end of the

scale, a hardware accelerator provides very high
performance, but model-build time is large and debugging
is difficult.

For the $/390* Parallel Enterprise Server Generation 4
($/390 G4), four different simulators were used. For
designer-level simulation a VHDL event simulator was
used, since it provided fast model construction and source-
level debugging. However, this simulator proved to be
much too slow for element-level models. (An element
model consists of a medium-size chunk of logic, typically
with well-defined interfaces such as a processor or memory
controller.) For small element-level models, the TEXSIM
software cycle simulator was used. This simulator provided
much higher speed than the VHDL simulator, but at the
expense of slower model build and no source-level debug.
Larger element models used ZFS, a software-event-driven
cycle simulator. This simulator provided much higher
performance than TEXSIM for large models, but ran
slower for small models. Finally, system-level models were
simulated on the EVE hardware accelerator. This
simulator has the longest model-construction time of the
four simulators, and debugging is difficult. However, the
simulation performance was much better than that of any
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other simulator. These simulators provided a wide range
of performance—from 10 seconds per cycle to more than
300 cycles per second.

Each simulator has its own programming interface. In
addition, two of the simulators ran only on AIX*, the
EVE hardware accelerator ran only on VM/CMS, and the
ZFS software cycle simulator would run on both AIX and
VM/CMS. This made it very difficult to write code and
test cases to drive a simulation model and then move to a
different simulator. Rather than rewrite code for each
simulator, a common programming interface called
SimAPI was developed, and all user code and test cases
were written against SImAPI. SimAPI determines which
simulator is running and calls the appropriate native
simulator functions, thereby insulating the user code from
the differences between simulators.

Attempts had been made in the past, when a new
simulator was developed, to mimic the interface of its
predecessor. However, this was limited to cases in which
the new simulator was designed as a new and improved
replacement for an old one. In addition, these interfaces
typically exposed too much of the detail of the simulator
to the user, making it difficult or impossible to use the
interface efficiently with another cycle simulator. SimAPI
is the first interface that addresses the wide differences
between cycle simulators and runs efficiently on both
software simulators and hardware accelerators.
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A common interface

SimAPI provides a rich set of high-level functions for use
by user programs and test cases to drive a simulation
model. It does not attempt to be yet another programming
language, since there are plenty of languages to choose
from already. There are no if/then/else or loop constructs;
instead, SimAPI simply provides bindings to existing
languages. Currently C/C++, PL/X, and Rexx are
supported. Typically, programs that are used often and
require high performance are written in C/C++ or PL/X.
When ease of use is needed or when performance is not
critical, SimAPI provides a command-level interface for
Rexx. SimAPI runs on three operating systems—AIX/6000,
VM/CMS, and Sun Solaris.

SimAPI actually consists of two well-defined interfaces,
as shown in Figure 1. The first is a high-level interface for
use by user programs and test-case drivers with nearly
eighty functions. The second is a low-level interface
connecting SimAPI to a simulator consisting of about
thirty functions. Only about half of these low-level
functions are essential to basic SimAPI operation. The
remaining functions can be implemented at the simulator’s
discretion to provide improved performance and support
functions that are less often used. Typically, a small
amount of code called the simulator shell must be written
for each simulator that plugs into SimAPI. This shell code
converts the low-level simulator calls from SimAPI to the
native simulator API. When possible, this shell code is
merged into the simulator to effectively render the native
simulator API the same as the SimAPI simulator interface
and to improve performance. Currently, shell code exists
to connect eight different cycle simulators to SimAPI.

It may seem at first that SimAPI could be significantly
slower than the native simulator interface, since a function
call must go through at least one and typically two
additional layers of code (SimAPI and the specific
simulator shell). However, as is shown later, SimAPI
provides great flexibility as to which functions are
provided by the simulator and shell and which are handled
by SImAPIL. Also, SimAPI user-level functions are typically
higher-level than native simulator functions. This means
that fewer calls to SimAPI functions are needed. For these
reasons, SimAPI is typically no slower than the native
simulator interface and can actually be faster.

Threads
SimAPI provides support for multithreading. All threads
run in the same address space and are non-preemptive.
A thread gives up control to another thread only when it
must wait for some event. On UNIX**-based systems,
SimAPI implements threads with POSIX threads.

There are two types of threads—overlap and non-
overlap. An overlap thread has no need to access the
simulation model and can run in parallel with running
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simulation cycles. A non-overlap thread requires access to
the simulation model and can run only when simulation is
stopped. An overlap thread can temporarily gain access
to the simulation model by calling the spi_halt_sim
function. This causes simulation to stop so that the thread
can have a constant view of the model. The thread can
later call the spi_resume_sim function to tell SimAPI
that it no longer needs access to the model. Simulation
cycles begin to run again only when all threads have
indicated that they no longer need access to the model.
There are functions in SimAPI to create a thread, cancel
a thread, and cause a thread to wait for some event.

Use of multiple threads can simplify writing of complex
test cases (e.g., multiple threads, each driving a separate
port in the model).

Events

SimAPI can be used to define various types of events,
which can be used in two ways. First, a thread can wait for
an event. The thread suspends, giving control to other
threads, until the event occurs; this is done with the
spi_clock and spi_wait functions. Second, an event
can be used to trigger the start of a new thread using the
spi_after function. Whenever the event occurs, a new
instance of the thread will be created.

In addition to defining events, SimAPI has functions to
delete, activate, and deactivate an event. When an event is
deactivated, it will not occur even if the conditions are
such that the event would normally occur if activated. This
can help improve performance in two ways. First, ignoring
an event after it occurs is more time-consuming than not
setting the event in the first place. Second, deactivating
and activating an event is much faster than deleting and
later redefining the event.

~ Cycle events A cycle event occurs when some number
of cycles have been run. Cycle events can be defined to
be relative to the current cycle or based on absolute
cycle numbers.

~ Program events A program event provides a way for
threads to synchronize and pass messages. A thread can
set a program event and associate a message with the
event. If some other thread is waiting for the event,
it will “wake up” and can then read the message.

~ Object events An object event occurs when one or more
objects in the model reach certain values. An object
event is composed of an expression containing any
number of terms which are combined with AND and
OR functions. Each term compares an object in the
model with a value. Object events can be either level-
sensitive or edge-triggered. A level-sensitive event occurs
for every cycle for which the expression is true. An
edge-triggered event occurs when the expression changes
from false to true.
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SimAPI gives the simulator a choice of how object
events are detected. By default, SimAPI detects object
events by fetching the objects every cycle and evaluating
the expression. The simulator can choose, however, to
detect the events itself. This can improve performance
greatly for hardware accelerators such as EVE and for
distributed simulation where the simulator is running on
multiple processor nodes. For example, EVE detects
object events by actually dynamically modifying the logic
being simulated. The simulator can choose to detect
some events while leaving others for SimAPI to handle.
This is an example of how SiImAPI can actually improve
performance even though it introduces extra layers of
code in the calling chain. Without the concept of events,
a program would be forced to sit in a loop fetching
objects and running a cycle. This provides acceptable
performance for some software simulators, but
performance would be very poor for a hardware
accelerator such as EVE. By providing the higher-level
concept of events, the simulator now has the opportunity
to choose a method of event detection that works
efficiently.

~ Built-in events SimAPI also defines some built-in
events. For example, the START event is set by SimAPI
just before the first simulation cycle is run. The END
event is set when SimAPI is ready to end simulation.

Accessing model objects

SimAPI has functions to get, set, stick, and unstick

an object in the simulation model. The function
spi_get_object gets the value of an object, and
spi_set_object sets an object to a particular value
while still allowing the logic in the model to modify the
object. The function spi_stick_object sticks an object
to a particular value. This differs from ser in that the logic
in the model is prevented from modifying the object.
Normally spi_set_object is used to set the state of
objects which have memory, such as registers and memory
arrays, while spi_stick_object is used to tie model
input signals or to inject errors. The function
spi_unstick_object reverses the effect of stick,
allowing an object to be modified by the logic in the
model.

For performance reasons, these functions do not access
the model directly. Instead, the requests are buffered
using a model action list, which is simply a list of gets,
sets, sticks, and unsticks. Calls to such functions as
spi_get_object and spi_set_object can be used to
add requests to a list. The list is not actually executed
until a call to spi_flush_list is made. This buffering
can improve performance significantly for hardware
accelerators such as EVE and for distributed simulators,

since it reduces the number of 1/0O operations required. 603
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There are two basic types of model action lists—
temporary and permanent.

& Temporary lists

A temporary model action list is emptied after the
commands on the list are executed. Temporary lists are
useful when one-time references to objects are required.
By default, a temporary list has a fixed-size buffer. When
the buffer becomes full, SimAPI issues an implicit call to
spi_flush_list to free up the buffer. It is possible to
tell SimAPI not to implicitly flush a list. In this case the
list buffer grows as needed and is flushed only by an
explicit call to spi_flush_list. Programs can define
any number of temporary lists, but a program will typically
use the default temporary list defined by SimAPI.

® Permanent lists

A permanent model action list can be executed many
times and can be emptied only by an explicit call to the
spi_empty_list function. Permanent lists are useful
when the same operations must be performed on a group
of objects many times during a simulation. Unlike a
temporary list, the buffer for a permanent list grows as
needed. SimAPI never implicitly flushes a permanent

list. Using a permanent list can significantly improve
performance. All error checking on inputs is done when
the list is created, so this time is saved on each execution
of the list. Also, SimAPI provides the simulator an
opportunity to preprocess the list after all requests have
been added to the list. This processing can include such
things as formatting the list for faster, later execution
and moving the list closer to the actual simulator. For
example, in a distributed simulator which runs on multiple
nodes connected by a network, the list can be split into
pieces, with each piece sent to the node that must process
it. Then, when the list is executed, there is relatively
little data that must be transferred across the network.
This has proved to provide a significant improvement in
performance.

® Conditional set and stick

SimAPI has conditional set and stick functions—
spi_cond_set_object and spi_cond_stick_object.
These are similar to set and stick, but the execution of the
command is dependent on a change flag. When the list

is executed by calling spi_flush_list, only those
commands whose change flag is set will be executed.
When used with a permanent list, conditional set and stick
can significantly improve the performance of driving
interface lines which change infrequently. A program
would typically set only those change flags for objects
whose value must be modified and clear all other change
flags. It would then call spi_flush_list. This prevents
time from being wasted setting or sticking objects whose

G. G. HALLOCK ET AL.

value is not changing, while at the same time exploiting
the performance advantage of permanent lists.

& Shadow

Sometimes it is necessary to get the value of an object
every cycle. This can be done with spi_get_object and
a permanent list, but SimAPI provides a more efficient
method. The function spi_shadow_object is very
similar to spi_get_object. However, shadow makes
certain assumptions which allow it to be fast:

~ The object is going be fetched every cycle (or at least
very often), so shadow optimizes for this case.

» Changes to an object occur relatively infrequently.

« Shadow is allowed to update the data area where the
value of the object will be stored at any time (not just
due to a flush).

This last assumption is critical to shadow’s speed. Since
shadow allows the data area to be updated as soon as

the object is changed without waiting for a call to
spi_flush_list, quite often, by the time the list is
flushed, there is nothing much left to do. Shadow will also
optionally set a change flag if the object has changed
value. This allows a program to flush a list containing a
number of shadows and then quickly determine what has
changed and what needs further processing.

SimAPI gives the simulator a choice as to whether it
will implement shadow. Event simulators, such as ZFS
and the VHDL event simulator, can implement
spi_shadow_object much more efficiently than
spi_get_object, since they must do something only if
the object changes value. Other simulators such as TEXSIM
and EVE cannot implement spi_shadow_object any
faster than spi_get_object. If a simulator tells SimAPI
that it does not handle shadow, SimAPI will convert
spi_shadow_object calls to spi_get_object. This
allows shadow to work on all simulators while at the same
time exploiting the special features of some simulators to
improve performance.

Operational (utility) functions

& Object name prefixing

Because of the many levels of hierarchy that can occur in
a large system model, object names can become quite
long. A particular thread may have to access objects only
in a local section of the hierarchy. It is also sometimes
necessary to drive multiple copies of a piece of logic which
are in different parts of the hierarchy with the same code.
SimAPI supports object name prefixing to simplify the
sharing of code for this purpose. Each thread has an
associated prefix which is added to all references to objects.
When a thread is initially started, the prefix is null. A thread
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can then set the prefix using the spi_set_prefix
function. Typically, the prefix would be passed as a
parameter when the thread is started. So, for example, to
have a single piece of code drive multiple copies of a piece
of logic, all that need be done is to start up multiple threads,
passing a different object name prefix for each thread.

o Virtual and alias objects

SimAPI permits virtual and alias objects to be defined. To
a program, a virtual object looks just like any real object
in the model. It can be set and its value can be fetched.
Since a virtual object is not connected to any real logic, its
value changes only because of programs calling SimAPI
functions. Virtual objects can be useful when a subset of a
model is being run and a program expects an object to
exist which is not in the subset.

An alias object is a special kind of virtual object. Like a
virtual object, it does not exist in the model itself;
however, unlike a virtual object, an alias object is backed
by real objects. Alias objects are useful when the bits of a
register are actually represented by many smaller objects.
For example, a 32-bit register might consist of 32 one-bit
latches, each with its own name. An alias object can be
defined that is then mapped onto the individual latches;
thus, a program can refer to a single 32-bit object instead
of many small latches. A single alias object bit can be
mapped onto multiple real object bits. This is useful when
there are multiple copies of an object in the model.
Setting the alias object then causes all copies to be set. It
is also possible to leave gaps in an alias. For example, a
register might logically be 32 bits wide but have only 31
bits used. Any alias bits that are not mapped to a real
object return a value of 0 when the object is fetched.
When set, the data for any unmapped bits are ignored.
SimAPI provides functions to define and delete alias
objects and to map alias objects to real objects.

S Running cycles

SimAPI provides two functions to allow a thread to run
simulation cycles. The spi_clock function causes the
thread to suspend until a specified number of cycles have
run. The spi_wait function allows the thread to wait
either for some number of cycles to be run or until one
or more events occur.

In both cases, simulation cycles are not run directly as a
result of the thread calling spi_clock or spi_wait.
Instead, the thread simply waits for cycles to be run or an
event to occur. SimAPI causes cycles to be run only when
all non-overlap threads have suspended.

® Checkpointfrestart

SimAPI provides functions to checkpoint the state of
the simulation model and to restart the model from a
checkpoint.
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When a thread calls the spi_checkpoint function, a
checkpoint is not immediately taken. Instead, the thread is
suspended until it is safe to take a checkpoint. SimAPI
considers it a safe time to take a checkpoint only when all
non-overlap threads have either suspended or ended. This
is typically just before the next simulation cycle is run.

In this way a thread can call spi_checkpoint and be
assured that the checkpoint will not be taken while some
other thread is in the middle of making changes to the
model state. Similarly, a call to the spi_restart
function causes the thread to suspend until all non-overlap
threads have suspended or ended. The control of the time
at which a checkpoint or restart is done is performed by
SimAPI, so the simulator need not concern itself with this.
The low-level simulator functions for checkpoint and
restart perform the function immediately.

One use of checkpoint is to save the reset state
of a model. Typically, when a model is first built, an
initialization test case is run to bring the model to the
initial state used for all other test cases. This initial state
is recorded in a checkpoint. After that, whenever a test
case is run, the model is first restored to this initial
checkpoint. This can be much faster than going through
the reset process before each test case.

Another use of checkpoint is to record the intermediate
state of the model during a long-running simulation. By
taking a checkpoint every N cycles, debugging can be
easier if a problem is discovered. The simulation can be
restarted from the last checkpoint taken prior to the
failure to enable detailed debugging. It is also possible
to transfer checkpoints between simulators. Thus, if a
problem is found while running on the EVE simulator, the
last checkpoint can be converted to a ZFS checkpoint and
transferred to the ZFS simulator for debugging. This has
proved very useful, since debugging on ZFS is much
easier than on EVE. Also, EVE is a limited and valuable
resource; debugging on a software simulator such as ZFS
means that the EVE resource is available to do what it
does best—high-speed simulation.

& Message logging

SimAPI provides its own log file for recording messages
and a function, spi_simlogf, to format and log
messages. This is independent of any log file that the
simulator itself may generate.

® Random-number generation

Randomness must often be introduced into simulation
to improve test coverage or to randomly inject errors.
At the same time, any randomness must be repeatable
in case an error is detected, to permit debugging

the problem. SimAPI provides a random-number
generator that creates a new random number each cycle.

An initial seed is used to start the random-number 605

G. G. HALLOCK ET AL.




606

generator, and the sequence of random numbers is
repeatable, given the seed.

& Global data

The spi_entry function allows programs to operate on
global data by name; spi_entry maintains a table of
eight-character names and four-byte values. Any thread
can set or get the value for a named variable. SimAPI
defines some built-in entry variables. For example, the
variable APICYCLE contains the current cycle number.

Limitations
SimAPI is designed for use with cycle simulators. It can be
used with event simulators as long as the simulator can be
made to look like a cycle simulator. This was done with
the VHDL event simulator used for S/390 G4 by passing
the cycle time to the simulator shell. So, when SimAPI
told the simulator to run a cycle, this was translated by
the shell to a certain number of nanoseconds. However,
SimAPI has no functions to directly control time.

SimAPI currently limits the names of objects to 256
characters. However, this limit could easily be changed if
longer object names were needed.

SimAPI usage on S$/390 G4
® Processor chip verification

Environment

The processor chip level simulation was introduced in an
earlier paper in this journal [1]. The model consisted of a
single processor, with a program representing the L2 chip.
The primary stimulus was a set of architectural verification
programs (AVPs) generated by AVPGEN [2]. An AVP is
a test consisting of initial values for architected $/390
registers, an instruction stream, storage operands, and

the expected results of storage and registers after the
instructions are executed.

The simulation environment for processor verification
used SimAPI extensively. Both ZFS and the VHDL event
simulator were used for performing the simulation.
SimAPI made the choice of simulator essentially
transparent.

In order to control the simulation environment for the
processor, a run-time manager (RTM) was created. This
was a Rexx exec with SimAPI commands for establishing
the overall flow of control: initialization, event detection,
thread control, and termination. The RTM called other C
programs to do many of these functions.

Initialization

Two functions were implemented to do the model
initialization: one for internal registers and one for
architected (5/390) registers. The internal registers were
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initialized by using reset logic built into the hardware
(for “power-on reset” support). This required setting
some internal reset signals in each of the units via the
spi_set_object SimAPI function, and clocking the
model several cycles using the spi_clock SimAPI
function. The architected registers were set to values
specified as initial values in the AVP, using the
spi_set_object function.

Aliases

During the design process, register names can often
change (e.g., because of a change in hierarchy in the
design). To avoid having to change our programs
whenever these name changes occurred, we made use of
“alias” support in SimAPI. Aliases provide an association
of logical names with real names. The SimAPI command
spi_map_alias was used to establish the aliases. All of
the mappings were done in one command file, which
facilitated rapid changes.

The object names for a given register can vary among
simulators. To make these name differences transparent to
our programs, an alias file was created for each simulator.

Aliases were also used to map a single logical register
to multiple actual registers. This feature was used to
initialize certain architected registers (e.g., control
registers), where copies existed in multiple units in the
processor. A single spi_set_object command, using
an alias name, initialized all of the copies.

Checkpointing

Whenever a new processor model was built, a reset state
checkpoint was created. This was done for performance
reasons. Since each AVP starts from the same initial
state, the use of a checkpoint eliminated much of the
initialization overhead (i.e., the simulation cycles needed
to reset internal registers). To create the checkpoint, the
SimAPI spi_checkpoint function was used. The
checkpoint was created after the internal registers were
initialized, but before the architected registers were
initialized. At the start of each AVP, the model was reset
to the checkpoint state via the spi_restart function,
and the architected register initialization was then
performed.

Events

As part of the processor simulation environment, many
events were defined. When the events were detected,
various actions were taken. Each of the events was
declared in the RTM. Some examples are the following:

1. AVPBegin This was an event set when a new AVP
was about to begin. It triggered the program which
performed the architected initialization for the test
case.
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2. MilliCheckstop This event was caused when the
millicode set a particular register after detecting an
illegal condition. The event caused a message to be
logged and the test case to be terminated.

3. DecodeSuccess Whenever an instruction was
successfully decoded in the I-unit, this event was set.
A program was then (optionally) called to put an entry
in a trace file, which was used for debug purposes.

4. ZeroPSW This was an event set whenever a program
status word (PSW) with a value of all zeros was
detected. This signaled the end of an AVP.

Multiple threads

To support the stand-alone processor chip simulation
environment, two programs were written to represent the
L2 and the MBA chips. The L2 program provided a
behavioral simulation for the second-level cache and
memory hierarchy, and the MBA program provided the
timing facility reference clocks. Each of these programs
was run as a separate thread, allowing them to run
simultaneously with the actual simulation. The
spi_create_thread SimAPI command was used

in the RTM to establish the multiple threads.

Termination

The end of a test case was typically detected with a
ZeroPSW event (an indication that an interrupt occurred),
or with an error condition (e.g., the MilliCheckstop
event). A program was then called which retrieved the
final state of the architected registers and compared those
values to the expected values in the test case.

® .2 chip verification

Environment

The L2 chip-level simulation used a model containing the
hardware model of the L2 with drivers and monitors
attached to the CP and BSN interface ports. For the most
part, the drivers and monitors were C+ + programs that
shared information. An exception to this was the BSN
driver, which may have been some combination of VHDL
macro or hardware model for its three components, BSN,
STC, and memory. In all cases, a C++ driver representing
a remote L2 or MBA was talking to the BSN interface
ports not connected to the real L2.

As in the processor chip verification, the L2 simulation
used SimAPI services to provide portability across
simulator platforms. In the early stages of the project,
SimAPI was not available, and two separate compiles were
required to support the simulators in use at that time, a
VHDL event simulator and TEXSIM. By using SimAPI,
management of the executables for the different
simulators was simplified, since only one version of the
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compiled code was required, and the ability to use the
ZFS simulator was then available at no extra cost.

Besides the portability between simulators, SimAPI
offered a number of other conveniences which were
used in the L2 environment. These included language
portability, control events, permanent get-object lists,
object alias files, and multithreading of special test cases
that ran along with the main environment.

Language portability

While the majority of the L2 verification was written in
C++, programs that did environment initialization before
the C++ code was started were written in Rexx. These
had all of the SImAPI functions available to them, yet
remained independent of the simulator being used. The
two most used were the RTM, responsible for loading and
running the main L2 environment, and the SIMINIT file,
which processed a list of objects and initial values to
initialize latch objects. (There was no reset on the L2,
and scanning was used to initialize the latches, so the
SIMINIT provided a quick shortcut for initialization.)

Control events

For some of the simulators that were used for L2
verification, a performance penalty was incurred when the
getting and setting of objects were intermixed. This was
because the simulator would reevaluate some or all of the
model when an attempt was made to get an object after
one or more objects had been set in the same cycle.

To avoid this situation, the cycle was managed as having
two times within it, a “begin cycle” and an “end cycle.”
The setting of objects was done at the beginning of a
cycle, and the getting of object values was done at the end
of the cycle. To effect this management, SimAPI provided
the spi_wait function and predefined BEGIN_CYCLE and
END_CYCLE events. The call to spi_wait was handled
correctly for simulators that support this notion, and took
the appropriate action for simulators that did not.

Permanent get-object lists
In the L2 chip verification, checking correct operation
required monitoring a substantial number of objects on
the interfaces and internally by getting their values from
the simulators. Therefore, in the interest of execution
performance it was important to make these accesses
as fast as possible. SimAPY provided a mechanism, the
permanent list, that could be used for obtaining all of the
values for objects which were to be fetched a number of
times. The L2 used only one list that was executed every
cycle, but multiple lists were possible.

The overhead of building the list was incurred only
once, and the optimization of getting values for a number
of objects was contained within SimAPI. Because SimAPI
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handled the entire list at once, the overhead of multiple
calls to SimAPI was removed. Another benefit was the
ability to exploit special features of a given simulator that
allowed for accelerated access to object values, such as the
z-shadow function of ZFS. These features were easily
accessible because SimAPI supported them.

Object aliases

Because the verification code had to work with several
different configurations of the L2 model over the life of
the entire project, the names of referenced objects were
likely to change quite often. To avoid having to maintain
separate versions of the verification code, it was important
to remain as flexible as possible on this point. Two things
were used to increase flexibility in this area.

Soft-coded object names, which were not a function
of SimAPI, were used to support hierarchy differences
encountered in the various configurations used. However,
this did not address the problems caused by partitioning
arrays which arose when physical layout became a serious
factor.

SimAPI aliasing allowed the verification code to remain
unchanged and supported the one-cycle and two-cycle
models. The two-cycle model was closely tied to the
physical layout, and the arrays were split and named
accordingly, whereas the one-cycle model had only to be
functionally correct, and a few large arrays were used for
the cache data array. Alias objects were flexible enough to
allow the twelve smaller arrays of the two-cycle model to
be mapped to the same name and addressability as the
single large array used in the one-cycle model. This was
accomplished by running a SimAPI Rexx program from
the RTM at cycle 0.

Multithreading

Although L2 verification was based on randomness, it was
often necessary to create a specific event or sequence of
events. This was most often required for debugging and
verifying problems that were found at the system level or
on the test floor.

The random environment was generally capable of
creating the necessary conditions, but needed some fine
tuning in some instances. This was accomplished by using
another SimAPI test case running at the same time as the
random environment. These test cases were used to inject
errors or commands at specific times, or to manipulate
internal objects to obtain a desired action. Because
SimAPI was also available to programs written in Rexx, an
interpreted language, these test-case threads were quickly
created and tuned in an interactive way, which was very
useful when trying to pin down an exact timing, by trial
and error, with very little information.
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o System verification

Environment

System verification was introduced in an earlier paper in
this journal [1]. The model consisted of multiple processor
chips, L2 chips, bus control chips, memory control/memory
adapter chips, and main memory. S/390 instruction
streams (generated by SAK) were executed on the
processors to verify the implementation of the system
from an architectural perspective. EVE 1.5 (a hardware
accelerator) was used to provide greater throughput than
is achievable on software simulators running large models.
EVE 1.5 executed hundreds of simulation cycles each
second, in contrast to the same model on a software
simulator running 10-15 cycles per second. A single
simulation run executed millions of cycles in a reasonable
amount of time. A drawback to EVE 1.5 is its limited
capability to gather trace information about the state of
the model, which made problem debug cumbersome and
slow. ZFS (a software simulator) has the ability to
generate full traces of the model state and was used for
model bring-up and problem debug.

SimAPI was used extensively in the system environment
and allowed one set of programs (written in C and Rexx)
to interact seamlessly with models on either simulator.
Many of the SimAPI features used at the processor and
L2 verification levels were also used at the system level.
The run-time environment was controlled by an RTM,
which has been described in the processor and L2 chip
verification sections. The Needwork event was used to
initiate data transfers between the simulation model and
the SAK host system when a modeled processor had
completed its tasks. Events declared in the RTM behaved
identically on EVE 1.5 and ZFS from a user perspective.
Some differences or unique applications are discussed
below.

Checkpointing

Checkpoints [3] were taken periodically (typically at one
million cycles) while running simulation on an EVE,
capturing not only the state of the EVE model but also all
of the data transfers that took place between checkpoints.
This enabled failures to be restarted on EVE 1.5 in a
relatively small window of simulation cycles without having
to return to the starting point, as runs of 1 to 40 million
or more cycles until a failure was detected were observed.
A subsequent checkpoint was then taken in close
proximity to the failure. The new EVE 1.5 checkpoint was
converted seamlessly to a checkpoint for the ZFS software
simulator. After the conversion, the user specified the
ZFS simulator instead of EVE 1.5 and made a slight
modification to the RTM which enabled full trace.

Full traces for debug were generated during the ZFS
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simulation runs which matched the EVE 1.5 runs on a
cycle-by-cycle basis.

Data buffering

The spi_flush_list function allows users to control
the point at which a data transfer is actually propagated
to the simulation model. The user sets bit 0 of the

flags parameter of a SimAPI function such as
spi_set_obiject toa '0'. This tells SimAPI to buffer
this request. SIMAPI holds the request until an explicit
spi_flush_list function executes or until its buffer
is full. Request(s) are then propagated. The following
paragraph describes a use of data buffering.

SAK test cases were moved between the simulation
model’s memory and the SAK host via a program known
as Memmove. When data movement occurred to or from
the simulation model, simulation was stopped. The data
were transferred between an $/390 EVE host and the
EVE 1.5 hardware via an $/390 channel connection and
placed in a memory object (array) or taken from a
memory object by the EVE’s I/O processor. A transfer of
a single line of data (128 bytes) required 161 calls (or
more) to spi_set_object to ensure that the storage
hierarchy was properly updated. Large data transfers
resulted in thousands of requests being generated. Each
request was a unique S$/390 I/O request, which is a
relatively slow process. So much time was consumed
completing all of the requests that if each request had
been propagated uniquely, significantly more time would
have been spent transferring data than running simulation.
(This phenomenon has been observed at times as a result
of coding errors.) If Memmove were coded in this manner,
software simulators would actually provide higher cycle
throughput than the hardware accelerator, wasting the
speed advantage of EVE 1.5. To solve this problem,
Memmove took advantage of the buffering capability of
SimAPI when transferring data. Efficiency ratios (percent
of the time EVE is actually running cycles) of 70-90%
have been observed.

Summary

As the number of cycle simulators available continues to
grow, the number of programming interfaces to simulation
has also been growing. It has become very difficult to
write code to run on multiple simulators. SInAPI solves
this problem by providing a common high-level interface
to cycle simulation. By also defining a common low-level
interface to a simulator, SimAPI makes it to easy to run
new simulators. It has been used with very good
performance with such widely different simulators as a
VHDL event simulator and a hardware accelerator. The
functions available from SimAPI have proved useful for all
levels of simulation from the designer level up to and
including system-level models.
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