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The IBM ASTl optimizer  provides  the 
foundation for high-order  transformations  and 
automatic  shared-memory  parallelization  in  the 
latest IBM XL  FORTRAN  (XLF) compilers for 
RS/6000'" and  PowerPC@  uniprocessors  and 
symmetric  multiprocessors (SMPs),  and for 
automatic  distributed-memory  parallelization 
in the IBM XL High-Performance FORTRAN 
(XLHPF) compiler for the SP'" distributed- 
memory  multiprocessor. In this paper,  we 
describe  how  the  transformer  component  of 
the ASTl optimizer  automatically  selects  high- 
order  transformations for a  given  input 
program  and  a  target  uniprocessor, so as to 
improve utilization of  the  memory  hierarchy 
(including  cache and  registers)  and instruction- 
level  parallelism. Our solution  is  centered  on  a 
quantitative  approach in which  optimization 
problems  are  formulated  using  quantitative 
cost models.  The loop and  data 
transformations  currently  employed  by  the 
ASTl transformer for optimizing  uniprocessor 

performance  are loop distribution, loop 
interchange, loop reversal, loop skewing, loop 
tiling/blocking (with compiler-selected tile 
sizes), loop fusion,  unrolling  of multiple loops 
(with compiler-selected unroll factors),  and 
scalar  replacement  of  selected  array 
references.  The  design  and initial 
implementation  of  the ASTl optimizer  were 
completed  during  the 1991-1993 time period. 
To the  best  of  our  knowledge,  the ASTl 
transformer is the first system to perform 
automatic  selection  of this wide  range  of 
transformations  using  a  cost-based 
framework. 

1. Introduction 
Major  changes in processor  architecture  over  the  last 
decade have created a demand  for new compiler 
optimization technologies.  Optimizing compilers have 
risen to this challenge by steadily  increasing the 
performance  gap  between  optimized  compiled  and 
unoptimized  compiled  code  to a level that  already exceeds 
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the  performance  gap  between two successive generations 
of processor  hardware.  One class of compiler 
optimizations  that  has  recently  made significant 
contributions  to improving the  performance of optimized 
code is high-order  transformations. High-order  (or high- 
level) transformations  operate  on  an  intermediate 
representation of the  program  that is close to  the  source 
program level,  as opposed  to  traditional  compiler 
optimizations  that  operate on an  intermediate 
representation  that is  close to  the  machine level. Examples 
of high-level transformations  include  loop  transformations 
such  as loop  interchange  and  loop tiling, data 
transformations  such as alignment  and  padding,  and in- 
line expansion of procedure calls. 

While  a judicious  use of high-order  transformations  can 
significantly improve  performance,  improperly  selected 
high-order  transformations  can also degrade  performance 
to levels that  are worse than  unoptimized  code.  For 
example, the  loop  interchange  transformation  can improve 
the  cache locality of a loop  nest with  a poor  input  loop 
ordering,  but  can  degrade  the  performance of a  well-tuned 
loop  nest.  The  loop  distribution  and  loop fusion 
transformations show  a  similar behavior as well. In 
contrast,  traditional  optimizations (e.g., constant folding, 
register  allocation) rarely degrade  performance.  This 
characteristic highlights an  important  distinction  between 
high-order  transformations  and  traditional  optimizations. 
The  impact of changing  a compiler  algorithm  for 
performing a traditional  optimization is usually an 
increase  or  decrease in the  amount of performance 
improvement  obtained,  but  rarely a performance 
degradation  compared  to  unoptimized  code.  Thus, 
automatic  selection of program  transformations  has 
to  be  performed  much  more carefully for  high-order 
transformations  than  for  traditional  optimizations. 

The  IBM  ASTI  optimizer  provides  the  foundation  for 
high-order  transformations  and  automatic  shared-memory 
parallelization in the  latest  IBM  XL  FORTRAN  (XLF) 
compilers  for RS/6000* and PowerPC* uniprocessors  and 
symmetric multiprocessors (SMPs), and  for  automatic 
distributed-memory  parallelization in the  IBM  XL  High- 
Performance  FORTRAN  (XLHPF)  compiler  for  the SP* 
distributed-memory  multiprocessor.  In this paper, we 
describe how the  transformer  component of the  ASTI 
optimizer  automatically  selects  high-order  transformations 
for a given input  program  and a target  uniprocessor, so as 
to improve utilization of the memory hierarchy (including 
cache  and  registers)  and instruction-level parallelism.  The 
loop  and  data  transformations  currently  employed 
by the  ASTI  transformer  for optimizing uniprocessor 
performance  are  loop  distribution,  loop  interchange,  loop 
reversal, loop skewing, loop tiling/blocking  (with compiler- 
selected tile  sizes), loop  fusion,  unrolling of multiple  loops 
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replacement of array  references.  The design and  initial 
implementation of the  ASTI  optimizer  were  completed 
during  the 1991-1993 time  period.  To  the  best of our 
knowledge, the  ASTI  transformer is the first system to 
perform  automatic  selection of this  wide range of 
transformations using  a cost-based  framework. 

The  transformations  implemented in the  ASTI 
transformer have  all been  proposed in past work by other 
researchers with motivating  examples  showing  cases  in 
which the  transformations  can  be  used  to improve 
performance (e.g., see [l]). Many of these  transformations 
were first proposed in the  context of vectorizing and 
parallelizing  compilers.  However, there  has  been  little 
attention  paid in the  research  literature  to  the  problem of 
how a compiler should  automatically select  these high- 
order  transformations  for optimizing uniprocessor 
performance, especially for  the wide set of transformations 
employed by the  ASTI  transformer.  Our  solution is 
centered on a quantitative  approach in which optimization 
problems  are  formulated using quantitative cost  models, 
which are built on  target  hardware  parameters  and  on 
compiler  estimates of memory  costs, execution  time costs, 
and execution frequencies.  In  general,  there is a  many-to- 
many mapping  between  high-order  transformations  and 
the  hardware  resources  that  they  optimize.  Multiple 
transformations may be  used  to  optimize a  single resource 
(e.g., the  use of loop  interchange, tiling, and fusion to 
improve cache locality), and multiple resources may be 
optimized by a  single transformation (e.g., the  use of loop 
unrolling  to improve both  register locality and  instruction- 
level parallelism). 

In  addition  to improving the execution time of the 
optimized  program,  great  care  has  been  taken  to  ensure 
that  the flexibility in the  ASTI  transformer  does  not  come 
at  the cost of high compile-time  overhead. Efficient 
compile times in the  ASTI  transformer  are  obtained by 
avoiding  modification of the  program  after  each 
transformation  (and  thus avoiding repeated reanalysis to 
obtain  updated  control  and dataflow information). 
Instead,  the  set of transformations  to  be  applied  on a 
procedure is accumulated as updates  to  the  loop 
structure  graph  data  structure defined  in Section 4. The 
intermediate  language is updated only after all of the 
encompassed  transformations  are finalized, after which 
reanalysis is not  required in ASTI. This  approach also 
allows "what-if" analysis of different  loop  transformation 
scenarios.  Compile-time  performance is further  improved 
by decomposing  the  input  procedure  into regions and 
performing  transformations  on a  region-by-region  basis. 
Since the  array  data  dependence analysis required  for 
high-order  transformations  can have  a  worst-case 
execution  time  that is quadratic in the size of the  region, 
this decomposition  can  be very effective  in reducing 
compile time.  The  current  decomposition  approach used 
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by the  transformer is to place in a  single region  each 
sequence of loops  that  are  contiguous  at  the  outermost 
nesting level. Compile-time  performance is further 
improved by the  use of demand-driven data  dependence 
analysis, in which transformation profitability  is computed 
before  data  dependence analysis so as to avoid the 
overhead of dependence analysis for  loop  nests  that  are 
already  well-tuned in the  input  program  (and  thus would 
not benefit from  transformation). 

The  rest of the  paper is organized as follows. Section 2 
gives an overview of the  ASTI  transformer  component. 
Section 3 introduces a  simple  matrix  multiply-transpose 
program  that is used as a running example  in  many of the 
following sections.  Section 4 describes  the  loop  structure 
graph  (LSG)  data  structure, which provides the  foundation 
for  the  transformer.  Section 5 describes how the  loop 
distribution  transformation is performed on the LSG 
using demand-driven  data  dependence analysis. 
Section 6 contains  the  details of the memory cost analysis 
performed by the  transformer.  Section 7 outlines how 
the  transformer  selects  iteration-reordering  loop 
transformations  for locality optimization of the  input  loop 
nest, including automatic  selection of tile  sizes for  the 
tiling transformation.  Section 8 outlines  the  algorithm 
used by the  transformer  to  automatically  perform  loop 
fusion. Section 9 describes  the  loop-invariant  scalar 
replacement  step,  and how loop  transformations  are 
selected to increase  the  opportunity  for  loop-invariant 
scalar  replacement.  Section 10 outlines how the 
transformer  decides which loops  to  unroll  and  what  the 
unroll  factors  should  be.  Section 11 describes the 
transformer’s  demand-driven  data  dependence  tester. 
Finally, Section 12 discusses related work, and  Section  13 
contains  our conclusions. 

2. Overview of the ASTI transformer 
In  this  section, we give an overview of the  transformer 
component of the  ASTI  optimizer; this is the  component 
that  selects  and  implements  high-order  transformations. 
Figure 1 shows how the  ASTI  optimizer fits into  the 
overall  structure of the IBM XL FORTRAN  compilers. 
The  ASTI  optimizer  accepts  input  and  generates  output in 
a  high-level compiler  intermediate  language  used  to 
connect ASTI to  the  front-end  and  back-end  components 
of the  compiler.  ASTI  translates  the  intermediate 
language  into a high-level intermediate  representation, 
HIR,  designed  to  represent  the  constructs of the 
FORTRAN  and C programming  languages in data 
structures  that  are  suitable  for high-level program analysis 
and  transformation.  This  translation involves converting 
flat intermediate  language  representations of program 
statements  and expressions into  hierarchical linked-list 
and  tree  data  structures  that  are  suitable  for  traversal 
and modification by the  ASTI  optimizer.  The  HIR 
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Compiler structure. 

intermediate  representation is  actually referred  to  as  HIL 
in the  product  compiler  (for “high-level intermediate 
language”),  but we refer  to it  as HIR in this  paper  to 
emphasize  that it is an  intermediate  representation  used 
internally within the  ASTI  optimizer  and is distinct from 
the  intermediate  language  used  to  connect  ASTI  to  the 
front  end  and  back  end. 

The  ASTI  optimizer consists of three  major 
components: 

1. Analyzer Performs global intraprocedural  control  and 
dataflow  analysis (including  static single  assignment 
form (SSA) construction [2], induction  variable analysis 
[3], and  value  numbering [4]) together with  a  small set 
of global  optimizations:  dead-branch  and  dead-code 
elimination [3], constant  propagation [5], and  invariant 
IF  code  motion  out of loops [3]. 

2. Scalarizer Converts  FORTRAN 90 array  language 
statements [6] into  equivalent  sequential  loops, 
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1 High-level structure of the ASTI transformer. 

optimizing the conversion to  maintain  array  statement 
semantics (all  values on right-hand  side  evaluated 
before  storage  into  the  left-hand  side) while limiting 
the  number of array  temporaries  required.  It also 
performs  optimized expansion of array  intrinsic 
functions  to in-line code. 

3. Transformer Performs a sequence of loop 
transformations which, for  the  scope of this paper, 
focus on obtaining  increased  performance on 
uniprocessor systems. The primary  goal is to  make 
optimal  use of the memory hierarchy (including 
registers)  and instruction-level hardware parallelism via 
transformations such  as loop  distribution,  loop 
permutation,  loop skewing, loop blocking, loop fusion, 
loop unrolling, and scalar replacement.  This is the 
component  that is described in this paper, 

The acronym ASTI was derived from  the  functionalities 
provided by these  three  components  and  the 
interprocedural  optimizer shown  in Figure 1. The 
interprocedural  optimizer is currently invoked  only as a 
post-pass  to  the  transformer.  The  transformer will benefit 
from  automatic  interprocedural analysis information 
and in-line  expansion of procedure calls when the 
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In the  interim,  the  user  can  communicate  interprocedural 
information  to  the  transformer by using compiler 
directives and  INTENT  attributes  and  statements in the 
FORTRAN 90 language [6]. 

Figure 2 shows the high-level structure of the  ASTI 
transformer.  The key aspect of the design of the  ASTI 
transformer  that distinguishes  it from  other  optimizers  and 
makes  it  extensible and  retargetable is a strong  separation 
among  the following procedures: 

Initialize LSG-Build the  loop  structure  graph  (LSG) 
data  structure  for specified  single-entry  single-exit 
regions from  the  HIR  and  related analysis information. 

transformations,  guided by parameterized  hardware 
costs. 

Estimate costs-Estimate the profitability of 

Propose transformations-Select a set of transformations 

Analyze data dependences-Perform demand-driven  data 
dependence  testing  on  pairs of array  references. 
Test for legality-Use data  dependence  and  other 
analysis information  to  test  for legality of proposed 
transformations. 
Commit transformations-Select transformations  to  be 
applied  to  the  input  program. 
Update LSG-Incrementally update  the  LSG  data 
structure  according  to  selected  transformations. 
Rewrite HIR  for program region-Update the  HIR in 
accordance with the  selected  transformations  recorded 
in the LSG. 

on the basis of estimated costs. 

In  addition  to  uniprocessor  target  machines, this overall 
structure of the  ASTI  transformer is used  for  automatic 
shared-memory  parallelization [7] in the  latest  IBM  XL 
FORTRAN  (XLF)  compiler  for  PowerPC-based symmetric 
multiprocessors  (SMPs),  and is also used  in the  IBM  XL 
High-Performance  FORTRAN  (XLHPF)  compiler  for 
performing  transformations  before  and  after  generating a 
single-program multiple-data  (SPMD)  parallel  program [8] 
for  the  SP  distributed-memory  multiprocessor. 

Specifically, the  ASTI  transformer  performs  the 
following ten  steps by default when  optimizing for a 
uniprocessor  target  machine: 

1. LSG  initialization. 
2. Loop  distribution. 
3. Identification of perfect  loop  nests. 
4. Reduction  recognition. 
5. Locality optimization. 
6. Loop fusion. 
7 .  Loop-invariant  scalar  replacement. 
8. Loop  unrolling  and interleaving. 
9. Local scalar  replacement. 

10. Transcription. 
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The cost estimation,  dependence analysis, and LSG update 
procedures shown  in Figure 2 can  be  performed on 
demand by any of the  steps listed above. 

within the  default  sequence of ten  steps  listed above, 
either by internal switch settings  or by user  options  and 
directives  (which can  be  changed over complete  programs 
or all or  part of a loop  nest).  It is also  relatively easy to 
extend  the  transformer by adding new transformations  and 
modifying the  default  sequence.  In  addition  to  the use of 
the  transformer in a range of product  compilers  for 
sequential  and  parallel  machines,  several  prototype 
extensions have also  been  made in order  to  experiment 
with transformations such as  array  padding  and  alignment 
[9] and  data-cache  prefetching. 

As  a  concluding note  to this section, we present  some 
measurements  comparing  the  performance of the  four 
kernel  computations (Btrix, Gmtry,  Emit,  Vpenta)  from 
the  SPECfp92**  Dnasa7  benchmark  that  were  studied in 
[lo], when compiled with and  without  use of the  ASTI 
transformer.  Figure 2 summarizes  the  user execution time 
(in seconds)  measured  for  the  four  kernels on a  single 
133-MHz PowerPC 604* processor in an  IBM RSi6000 
Model 530 SMP  workstation.  The  performance 
measurements  were  made using Version 4.1 of the  IBM 
XL FORTRAN compiler. The  bar  chart labels refer  to  the 
two different  compiler  optimization  options  that  were used 
to  obtain  the  performance  measurements,  as follows (the 
-qarch=604 option  directs  the  compiler  to  generate 
code  for  the  PowerPC 604 processor): 

- 0 3  Compile command: xlf - 0 3  -qarch=604.. . 
The -03 option  directs  the  compiler  to  perform 
the  highest level of back-end  optimization,  even 
though  it  may  come  at  the  cost of a larger 
compile  time or a larger  memory  utilization by 
the  compiler,  compared to -0. 

-qhot Compile command: x1 f - 0 3  -qhot 
-qarch=604.. . 
The -qhot option  enables  high-order 
transformations  in  the XL FORTRAN  compiler, 
using  the  ASTI  optimizer  described in this 
paper'.  The -03  -qhot combination  can  be 
viewed as the next (and  highest) level of 
optimization  beyond - 0 3  that is supported by the 
compiler. 

Transformations  can be turned  on  and off with ease 

Figure 3 shows that  the  automatic  high-order 
transformations  implemented in the  ASTI  transformer 
(i.e., the -qhot option)  provided significant speedup 
(up  to  3.4X)  for  three of the  four  kernels. Even larger 

'In Release 3.2 of the XL FORTRAN  compiler,  the -qhot option invoked a  hack- 
end  phase [ l l ]  for  performing  high-order  transformations.  That  phase 1s no longer 
supported,  and -qhot is now used to Invoke the ASTI optimizer  as  described In 
this paper. 
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1 Performance measurements on a 133-MHz PowerPC 604 processor 
for  four Dnasa7 kernels. 

speedups can be  obtained  for  other  kernel  computations, 
as  discussed  in Section 3.  Since  most high-order 
transformations  can  be  implemented by hand in the  source 
program,  the  speedup  that  can  be  obtained by automatic 
selection of high-order  transformations will depend on 
how much  effort  has  already  been  spent by the 
programmer on tuning  the  code. 

3. Matrix multiply-transpose example 
In  this  section, we introduce a  simple  matrix 
multiply-transpose  example that is used as  a running 
example  in  many of the following sections.  The 
FORTRAN 77 code  for  this example is shown  in Figure 4. 
Subroutine mmt effectively computes  the  product of input 
matrices b and c and  stores  the  transpose of the  result in 
matrix a. Array  variables a, b, and c are  declared  as two- 
dimensional n X n-sized  matrices,  and  the  dimension size 
n is unknown at  compile  time. 

Figure 5 summarizes  some  performance  measurements 
for this  example program  on a  single  133-MHz PowerPC 
604 processor in an  IBM RS/6000 Model  J30  SMP 
workstation.  These  performance  measurements  were  made 
for a single call to  subroutine mmt ( ) for n = 500. The 
performance  measurements  were  made using Version 4.1 
of the  IBM XL FORTRAN compiler. The  labels  on  the 
x-axis in the  bar  charts in Figure 5 refer  to  different 
compiler  optimization  options  that  were  used  to  obtain  the 
performance  measurements, as follows (the -qarch=604 
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[ Matrix multiply-transpose example. 

option directs the compiler to generate code for the 
PowerPC 604 processor): 

unopt 

- 0 2  

-03 

- Pk 

-Pv 
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Compile command: xlf  -qarch=604..  . 
The  compiler  generates  unoptimized  code in 
the  absence of any optimization  option. 
Compile command: xlE -02 -qarch=604.. . 
This is the  default level of optimization 
performed by the XL FORTRAN compiler; 
i.e., -02 is the  same as -0. 
Compile command: xlf  -03 -qarch=604.. . 
The -03 option  directs  the  compiler  to 
perform  additional  back-end  optimizations  that 
may come  at  the cost of a larger compile time 
or a larger memory  utilization by the  compiler, 
compared  to -02.  
Compile command: x l f  -03 -Pk -wp, 
-optimize=5,  -scalaropt=3 
-qarch=604.. . 
The -Pk option  directs  the  compiler  to invoke 
the “KAP for IBM XL FORTRAN”  source-to- 
source  preprocessor [13] before  compilation, 
for  additional  optimization.  The -wp, 
-optimize=5,  -scalaropt=3 
command  string  enables  the highest 
optimization levels supported by this 
preprocessor. 
Compile command: x l f  -03 -Pv -wp, 
-eavx  -qarch=604.. . 
The -PV option  directs  the  compiler  to invoke 
the “VAST-2 for XLl FORTRAN”  source-to- 
source  preprocessor [14] before  compilation, 
for  additional optimization. The -wp, -eavx 
command  string  enables  the highest 
optimization levels supported by this 
preprocessor. 

-qhot Compile command: xlf -03 -qhot 
-qarch=604 . . . 
The -qhot option  enables  high-order 
transformations in the XL FORTRAN compiler, 
using the ASTI optimizer described in this paper. 
The -03 -qhot combination can be viewed as 
the next (and highest) level of optimization 
beyond -03 that is supported by the compiler. 

-essl Compile command: xlf  -03  -less1 
-qarch=604.. . 
Since the matrix  multiply-transpose  example 
uses standard  dense-matrix  operations, we 
include performance  measurements  obtained by 
rewriting the  program  to call the following 
IBM Engineering Scientific Subroutine Library 
(ESSL) routines  for matrix  multiplication and 
transpose in place of subroutine mmt : 

c a l l  dgemm ( IN’, ‘N’ , n , n, n ,  1 . DO, 

b ,  n ,  c ,  n ,  O.DO, a ,  n) 
c a l l  dgetmo (a, n ,  n,  n, a , n )  

The - l e s s1  option  directs  the compiler to 
search  the l i b e s s l  . a library file to find 
definitions of the dgemm and dgetmo routines 
[15, 161. This option is technically not  an 
optimization  option, since it involves a rewrite 
of the  source  program. However, we include 
this  case in the  performance  measurements, 
since it represents  an  ideal  performance goal 
for optimizing  compilers, viz., to  match  or  beat 
the  performance of well-tuned  handcrafted 
code  for a given processor. 

Figure 5 is a  scatter plot illustrating the user + system 
execution times (in seconds) measured for the different 
optimization options. The execution time was dominated 
by the user time component-the  system execution time 
was almost negligible (less than 0.1 seconds in  all cases 
except -lessl, for which  it  was  0.4 seconds). The 
measurements were repeated ten times, and the scatter 
plot shows  significant variation (up to 20%) in execution 
times for  the first five cases (all cases except -qhot and 
-1essl). The most  likely source of execution time 
variation in the first five cases is the fact that  the 
PowerPC 604 (like other modern microprocessors) has 
caches that are indexed by physical  memory addresses 
rather  than virtual addresses. The last two cases (-qhot 
and -1essl) did not exhibit this execution time variation 
because they incur significantly fewer cache misses than 
the first five cases. In general, some form of operating 
system support (e.g.,  as in [17]) is required to avoid the 
execution time variations in the first five cases. However, 
the general performance trend for the different compiler 
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options  can easily be  observed in Figure 5 ,  despite  the 
execution time  variations. 

We  see  that a speedup of approximately 1.3X was 
obtained by turning  on  optimization  at  the 02 level. An 
extra  speedup of approximately l . l X  was then  obtained 
by increasing the  optimization level from -02 to -03, 
resulting in an  execution  time of approximately 60 
seconds.  Adding  the -qhot option dramatically reduced 
the  execution  time  to 4.1 seconds, which is about  the  same 
as  the  execution  time of 4.3 seconds  obtained by using the 
ESSL  routines.  Thus,  automatic  selection of high-order 
transformations using the -qhot option  for  this simple 
program delivered  a 15X performance  improvement  over 
the -03 case! In  contrast,  the -Pk and -PV options 
resulted in speedups of approximately l . l X  and 2.2X 
respectively, compared  to  the -03 case. The 15X 
performance  improvement  delivered by the -qhot option 
came  about  because of a large  reduction in both  the 
number of data-cache misses incurred by the  program  and 
the  number of memory (loadhtore)  instructions  executed 
by the  program. 

Speedups in the 5-15X range  are usually only observed 
for  kernel  computations such as matrix  multiply-transpose. 
The  performance  improvement  for  entire  programs, while 
still  significant, is typically less than 2X. However, this 
speedup  factor is likely to  increase in the  future  as  the 
performance  gap  between  processor  hardware  and memory 
systems continues  to widen. 

4. Loop structure  graph 
Key questions  that  arise  when building an  optimizer  for 
performing  high-order  transformations  are  “What 
structures  should  be used to  represent  the  internal  state of 
the  program,  and how should  these  structures  be  updated 
after  each  transformation?”  We believe that  the choice of 
internal  representation is a critical issue in determining a 
compiler’s  ability and effectiveness  in dealing with 
multiple  transformations.  It is important  for  the  internal 
representation  to  be flexible and  general  enough  to 
accommodate new transformations  and  different  orderings 
of existing transformations  as  the  optimizer evolves to 
target new processor  architectures. 

Many internal  program  representations have been 
proposed in the  past, including the  control flow graph [3], 
the  interval  structure [18, 191, the  program  dependence 
graph [20], the  static single  assignment form [21, 221, the 
forward  control  dependence  graph [23-251, the 
hierarchical  structured  control flow graph [26], and  the 
hierarchical  task  graph [27]. These  representations 
simplify analysis and  code  generation,  but  updating  these 
representations  after  transformation is often  tedious, 
error-prone,  and costly. This is particularly  true  for  loop 
transformations, which can  dramatically alter  the  program 
form.  The  problem is exacerbated when compilers 

f Performance  measurements on a 133-MHz PowerPC 604 
processor for matrix multiply-transpose example with different 1 compiler optimization options. 

simultaneously use more  than  one of these  representations, 
thus  enhancing analysis at  the  expense of transformation 
complexity. 

In  this  section, we describe a new internal  program 
representation  called  the  loop  structure  graph  (LSG), 
which is designed  to  facilitate  loop  transformations  and 
statement-reordering  transformations  without sacrificing 
the analysis efficiency of other  representations. All of the 
high-order  transformations  performed by the  ASTI 
transformer  use  the  LSG in such a way that only a  small 
amount of updating is required  after  each  transformation. 
We show how the LSG can  be  used  to  perform  both 
iteration-reordering  loop  transformations  such  as 
interchange  and tiling, and  statement-reordering  loop 
transformations  such as distribution  and  fusion of loop 
nests. 

The  backbone of the LSG  is  a loop  structure  tree 
(LST), in which each  internal  node  corresponds  to a loop 
(i.e.,  a  single-entry  strongly connected  region) in the 
control flow graph  for  the  program  being  transformed,  and 
each leaf node  corresponds  to a statement.  The  LST is 
initialized from  the  interval  structure  tree [19] of the  input 
program,  and is updated by various  loop  transformations. 
The  control flow in each  loop body  is captured by a loop- 
level control flow graph  (LCFG),  and  the  data  references 
in each  loop body are  summarized in the  input/output 
lists. In  addition, a  loop-level dependence  graph  (LDG) is 239 
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~ o o p  structure tree for matrix multiply-transpose example. 

Loop-level  control  flow  graphs  for  matrix multiply-transpose 
example. 

computed on demand  for any loop body, when  the 
transformer  has  to  enumerate  its  control  and  data 
dependences.  Together,  the  LST  and  the individual 
LCFGs,  input/output lists, and  LDGs  comprise  the  LSG 
representation  introduced in this  paper.  As a whole,  the 
LSG is initialized from  the  information  provided by the 

240 ASTI analyzer component  (control flow graph,  intervals, 
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SSA, constant  propagation, value numbering,  induction 
variable analysis), but  subsequent  transformations of the 
LSG  update only the  LSG  without reinvoking any of the 
analysis algorithms. 

The program’s loop  structure is self-evident  in the 
hierarchical  structure of the LSG. In  contrast  to  the 
forward  control  dependence  graph [23-251, the LSG 
avoids the  creation of pseudo-control-flow edges  that  can 
potentially  weaken analysis by representing  control flow 
paths  that  cannot  be  executed in the  original  program.  An 
important  strength of the  LSG is its robust  handling of 
irreducible regions [3]. An  irreducible  region is merged, 
with the  smallest single-entry  region  in which it is 
contained,  into a single-loop  node,  thus isolating  it from 
other  (containing,  contained,  or  unrelated)  loops in the 
LST which remain eligible for all transformations  and 
optimizations. 

The following sections  describe  the  four  major  data 
structures in the  LSG:  the  loop  structure  tree,  the  loop- 
level control flow graph,  the  inputloutput lists, and  the 
loop-level dependence  graph. 

Loop structure tree (LST) 
The  loop  structure  tree  represents  the  loop-nesting 
structure of the  input  program.  It is derived  from  the 
interval  structure used in  the modified interval analysis 
formulated by Schwartz and  Sharir [19]. If the flow graph 
contains  an  irreducible  region  (a strongly connected 
region with multiple  entries), we include  that  irreducible 
region within  its smallest  containing  single-entry  region 
(which we refer  to as  a loop) and  mark  that  loop  as 
irreducible.  An  irreducible  loop is not eligible for any loop 
transformation,  but all other  loops  are eligible for  loop 
transformations.  Thus,  each  interior  node of the  interval 
structure  tree  represents a single-entry  loop,  and  each leaf 
node of the  interval  structure  tree  corresponds  to a node 
in the  control flow graph. Usually,  a node in the  control 
flow graph is a basic block which may contain  multiple 
statements.  Since many program  transformations  are  based 
on single statements, we expand  each basic  block into its 
individual statements when constructing  the  loop  structure 
tree.  Thus,  each  interior  node  (I-node) of the  LST 
represents a (structured  or  unstructured)  loop,  and  each 
leaf node  (S-node) of the  LST  represents a statement. 

related  to its  loop. For example,  the loop-level control 
flow graph  (LCFG),  input/output lists, loop  dependence 
graph  (LDG),  loop-carried  dependence vectors, and  the 
transformation  sequence  are all anchored in the  I-node 
for  the  appropriate  loop. 

Figure 6 shows the  loop  structure  tree  built  for  the 
matrix  multiply-transpose example  program in Figure 4. 
For  convenience, we create a  special I-node, Z.0, that 
represents  the  entire  subroutine  as a dummy  loop. Z.0 is 

The  I-node  serves  as a useful  anchor  for all information 
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Table 1 Local input/output lists built for the matrix multiply-transpose example of Figure 3. 

Loop Scalar-defs Scalar-uses Array-defs  Array-uses 

1.0 il n 
1. 1 i , ,   i ,  n ,  i ;  
1.2 i,, i ,  n ,  i,, i ,  a( i l ,  i,) 
1. 3 i ,  n ,  i , ,  i,, i,  i,) 4 i 1 ,   i J ,  b( i2 ,  i3), c(i,, i , )  

thus  the  root of the LST. The  remaining  I-nodes, 1.1,  1.2, 
1.3, correspond  to  the  DO  loops with  index variables i,, i,, 
and i,, respectively. There  are  ten  S-nodes in the LST, 
corresponding  to  the  ten  statements in the  input  program. 
For a given D O  loop,  the D O  statement  corresponds  to 
its  initial zero-trip  test,  and  the  ENDDO  statement 
corresponds  to  the  increment-and-test  operation 
performed in each  iteration.  That is why, for example, the 
LST shows the DO statement S.2 outside  the 1.1 loop  and 
the  ENDDO  statement S.9 contained  inside  the 1.1 loop. 

Loop-level  control flow graph (LCFG)  
For  each  I-node  (loop), L,  in  LST, we build  a  loop-level 
control flow graph,  LCFG(L),  that defines the  control flow 
for L's immediate  children in the LST. Each child LST 
node  (statement  or  loop) is a node in L's LCFG.  We  also 
add  three  pseudo-nodes  to  each  LCFG:  START, BACK, 
and  STOP.  The  pseudo-nodes have the following 
interpretations: 

START  node is the  loop  entry  node. 
BACK  node is the  target of all  backward control flow 

STOP  node is the  target of all loop exit branches. 
edges. 

LCFG  edges  represent  control flow within the  loop.  Each 
LCFG  edge is annotated with an  ordered  pair 
(BranchStmt,  BranchLabel)  as follows: 

BranchStmt is an index to  the  HIR  representation of the 
branch  statement  that  caused  this  control flow branch. 
BranchLabel is the  label  value which is the  target of this 
branch  from  BranchStmt. 

The  LCFG is acyclic for all loops  that  are  reducible.  For 
each exit from  loop L, there is an  edge in L's LCFG with 
target STOP, and  there is an  edge in the  LCFG of L's 
outer  loop  from L's I-node to the exit target. If multiple 
nested  loops  are  being exited, there  are  additional  edges 
in the  LCFG  edges  for  the  outer loops. 

Figure 7 shows the  four loop-level control flow graphs, 
LCFG(Z.3) ,   LCFG(1.2) ,   LCFG(Z. l ) ,  and LCFG(Z.O), 
built for  the  matrix multiply-transpose example  program 
in Figure 4. All LCFGs  are acyclic, since  all loops  are 
reducible in this example. LCFG(Z.3) is the loop-level 

control flow graph  for  the  innermost i, D O  loop, 1.3, and 
thus  contains only S-nodes  and  pseudo-nodes. A true 
branch  from  the  ENDDO  statement S.7 represents a loop 
exit,  as  shown by the  branch  to  the  STOP  pseudo-node; 
the  false  branch is connected  to  the BACK node  because 
it represents a continuation of the  loop. LCFG(Z.2)  is the 
loop-level control flow graph  for  the  middle i, DO loop. 
Since the i, loop is nested  inside  the i, loop, we see  that 
1.3 is a  child of 1.2 in the LST; hence,  there is also  a node 
for 1.3 in LCFG(1.2) .  Similarly, L C F G ( l . l )  is the  loop- 
level control flow graph  for  the  outer i, D O  loop,  and 
LCFG(I .0 )  is the loop-level control flow graph  for  the 
outermost level of control flow in the  subroutine.  One 
distinguishing feature of LCFG(l .O)  is that it does  not 
contain  an  edge  to  the BACK pseudo-node, since there is 
no  loop  at  this  outermost level of control flow. 

Znput/output  lists 
Input/output lists are  used  to collect variable  references' 
on a loop-by-loop basis. The  input/output lists for a given 
loop  are  anchored in the  LSG  I-node  corresponding  to 
that  loop,  and  are  updated when the  loop body changes, 
e.g., due  to a loop  distribution  or  loop  fusion 
transformation.  Input/output lists are  used  to  enumerate 
data  dependences in a loop  and also to  estimate  memory 
costs  for  cache/TLB locality and  register locality. There 
are  four  separate  input/output lists-scalar-defs, scalar- 
uses, array-defs,  and array-uses. Each  input/output list has 
two levels and is structured  as a  linked list of variables  at 
the  top level. For  each  variable in the top-level  list, there 
is a  second-level list of references  to  the  variable in the 
loop. 

The  input/output lists are local lists; they contain only 
references  that  are  immediately  contained within the  loop. 
When  needed,  the  transformer builds temporary global 
inputloutput lists on demand by merging  local  lists  in  a 
bottom-up  traversal of the LST. 

matrix  multiply-transpose  example program in Figure 4. 
Table 1 shows the  (local)  input/output lists  built for  the 

Loop-level  dependence  graph  (LDG) 
For  each  loop, L, in LST, we can  compute a  loop-level 
data  dependence  graph,  LDG(L), on demand  that  contains 

component of the ASTl optimizer identifies variable references in the HIR 
'A variable reference is a definition or a use of a variable [3]. The analyzer 
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Loop-level dependence  graph  for i, loop in  matrix  multiply-transpose 
example. 

242 

the control  dependence [20] and data dependence [l] 
edges for L's immediate  children in the LST. Each LDG 
node in the graph is either a child node of loop  L in LST, 
or  the  START pseudo-node. BACK and  STOP  nodes do 
not  appear in the  LDG. Each LDG edge is either a 
control  dependence  edge or  data dependence  edge. 
A  control  dependence edge is labeled with a 
(BranchStmt,BranchLabel) pair identifying the  LCFG edge 
that caused this control  dependence.  A data  dependence 
edge is labeled with a tag identifying the  nature of the 
dependence (FLOW,  ANTI, OUTPUT),  the variable(s) 
that cause the dependence,  and  additional  information, as 
described later in Section 11. Control dependence edges 
are computed  from  LCFG(L) using the  standard algorithm 
[20]. Data dependence  edges are computed €or scalar 
variables using analysis information (SSA links [2],  
induction variable information, etc.) and for  array 
variables by performing  array data dependence  testing on 
demand. 

Figure 8 shows the loop-level dependence  graph  that is 
constructed on demand  for loop 1.2. Except for  STOP  and 
BACK, it contains the same set of nodes  as in LCFG(I .2)  
in Figure 7. Note that 1.3 is control-dependent on S.5 
(with the False label), but S.8 is not control-dependent on 
S.5. Since S.5 and S.8 are  DO and ENDDO statements, 
the only nodes in LDG(I .2 )  with interesting data accesses 
are S.4 and 1.3. There is a data  dependence from S.4 to 
1.3 due  to array variable a, but the  data  dependence  tester 
can tell that it is a  loop-independent  dependence [28],  and 
that  there is no dependence  from 1.3 back to S.4. We do 
not include any data dependences on loop index variables 
i,, i,, i ,  in  Figure 8, because they are all induction 
variables that impose no restriction on transformations. 

V. SARKAR 

Sequence representation of iteration-reordering loop 
transformations 
Using the framework described in [29],  we represent an 
iteration-reordering loop transformation as a  sequence of 
template,instantiations from a small but extensible kernel 
set of transformation  templates. The sequence is anchored 
in the LST I-node of the outermost  loop in the perfect 
nest being transformed. The  three loop-transformation 
templates supported by the ASTI transformer  for 
uniprocessor  optimizations are Reversepermute, 
Unimodular, and Tile/Block. The Parallel and 
Coalesce templates described in [29] are used for SMP 
parallelization. The transformer  selects  templates from 
this kernel  set  and  instantiates  them with specific values so 
as  to build a  desired  iteration-reordering  transformation 
as a  sequence of template  instantiations. 

A  transformation  template specifies rules  for  mapping 
dependence vectors, mapping  loop-bound expressions, and 
creating initialization statements for  a  transformed loop 
nest. The dependence  vectors of a loop nest are used to 
test  the legality of applying a  transformation, with respect 
to  the  data dependence  constraints of the original loop 
nest. When the loop  nest is transformed,  its  dependence 
vectors also change, as specified by the dependence  vector 
mapping rules.  Details on  the mapping rules  for 
dependence vectors and loop bounds for individual 
transformations are provided in [29]. 

Transcription from the L S G  
One of the major advantages of using the LSG is that it 
simplifies the  HIR rewrite step (transcription, step 10 in 
Figure 1). During  transformation, the LSG is updated  to 
facilitate the final code  generation. For example, the 
updated  loop-bound expressions and index variable 
mappings are stored in the LSG after  the  loop 
transformations have been  performed [29]. Also, all nodes 
in the same  loop body (i.e., the same LCFG)  are linked 
in a  total order that is guaranteed  to be  a topological 
sort of the  LDG. This provides a legal order in  which 
the statements can be emitted in the  output code. 
Transcription is performed via a  depth-first  traversal of 
the LST analogous to code  generation from the forward 
control  dependence  graph [25]. The main  extra piece of 
work that must be done during  code  generation is to 
update  the branch  statements in the  HIR  to reflect the 
changes made  to  the LSG. 

5. Loop distribution 
In this section, we describe how the loop  distribution step 
is performed  in the ASTI transformer,  and how the LSG 
is updated  after loop  distribution.  Loop  distribution is a 
program  transformation  that converts a single loop  into 
multiple loops,  each of which iterates over a subset of 
statements in the original loop. Loop distribution  can 

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997 



uncover more perfectly nested  loops,  thus increasing the 
opportunity  for applying iteration-reordering  loop 
transformations.  When  applied  to  large  loop  bodies, it can 
also improve performance by reducing  register spills. 

Loop  distribution is performed early (step 2) in the 
transformer  because it increases  the  opportunity  for 
applying other  transformations. For example,  disabling 
loop  distribution in the  transformer  increases  the 
execution time of the matrix  multiply-transpose  example 
for  the -qhot case  from 4.1 seconds  to 60 seconds  (the 
same as the  execution  time  for  the -03 case). However, 
loop  distribution  also  has  the  potential  to  degrade 
performance  compared  to  unoptimized  code by worsening 
data locality, and by creating  extra  loop  increment-and- 
test  instructions.  We say that a loop  distribution 
transformation is necessary if it  enables a later  iteration- 
reordering  loop  transformation  that could otherwise  not 
have been  performed. We assume  that  the  performance 
gain  obtained by the  later  iteration-reordering  loop 
transformation always outweighs the  overhead of a 
necessary loop  distribution  transformation. 

Loop fusion [l] is a well-known loop  transformation 
that  fuses  (combines)  multiple  conformable  loop  nests 
into a  single loop  nest  and is thus  the  inverse of loop 
distribution.  The  loop fusion step  described  later, in 
Section 8, can  thus  remove  the  overhead of unnecessary 
loop  distribution by fusing the  loops back together again. 
Weighted  loop fusion is an  NP-hard  problem;  the 
transformer  currently uses  a greedy  clustering  algorithm 
to  select  an  optimized  loop fusion  configuration. It is 
important  to  perform  loop fusion late in the  transformer, 
so that  the flexibility provided by loop  distribution  can  be 
exploited by the  loop  transformations  for  enhancing 
locality which must be  performed  before  loop fusion. 

To  better  understand  the  interaction  between  loop 
distribution  and  loop fusion, we observe  that  the  result of 
any sequence of fusion and  distribution  transformations is 
a regrouping of the  statements in the  bodies of the  loop 
nests in the  original  program. All sequences of fusion and 
distribution  transformations  that  result in the  same 
regrouping of statements  and in the  same  ordering of 
regrouped  loop  nests  are  equivalent.  The goal of 
combining distribution  and fusion is to  automatically 
select  an  optimized  fusion/distribution  configuration, Le., 
an  optimized  regrouping of statements.  Therefore,  without 
any loss of generality, we can  assume  that all loop 
distribution  transformations  are  performed  before any 
loop fusion transformation,  and  the  problem of selecting 
an  optimized  fusionldistribution configuration thus 
becomes  equivalent  to selecting an  optimized fusion 
partition of the  statements  after  loop  distribution.  That is 
why  we do  not  need  to use costs  to  guide  selection of loop 
distribution  transformations,  but we must  use  costs  to 
guide  the  loop fusion step in the  transformer. 

The  ASTI  transformer  can  perform  loop  distribution  at 
the following granularities: 

1. Maximal-Distribute loops across  strongly connected 
components  (v-blocks) [l] of the  dependence  graph.3 

2. Affinity-Restrict distribution of innermost  loops so 
that two statements  that access the  same  variable in 
the  same  loop  are  not split into  separate  loops.  Non- 
innermost  loops  are maximally distributed. 

loops  are  not  distributed  at all. Non-innermost  loops 
are maximally distributed. 

4. None-No loop  distribution. 

Other  phases in the  transformer  make no assumption 
about  the  degree of distribution  performed; they simply 
operate  on  the  loop  nests  present in the LSG. The  current 
loop  distribution  default  for  uniprocessor  optimization is 
Affinity. Affinity loop  distribution is used  as the  default 
to  ensure  that  there is no possibility for a serious 
performance  degradation  after  loop  distribution, since  a 
greedy  heuristic  algorithm is used in the  loop fusion step. 
The  use of an  optimal  weighted  loop fusion algorithm 
(such  as  the  integer  programming  formulation in [30]) 
instead would remove  the  need  for  this  precaution,  and 
allow Maximal loop  distribution  to  be  used  as a suitable 
default. 

3. Outer-Restrict loop  distribution so that  innermost 

The  distribution of statements  into  loops must preserve 
the  data  and  control  dependences of the  original  loop. A 
partition  violates  the  original  dependence  relations if and 
only if a dependence cycle is distributed across more  than 
one  loop.  Allen  and  Kennedy [31] presented  an  algorithm 
to maximally distribute  loops  from  the  outer level to 
the  inner level on  the basis of a comprehensive  data 
dependence  graph.  We  obtain  the  same  result by 
distributing  the  loops  from  the  inner level to  the  outer 
level using  a demand-driven  approach  to  data  dependence 
analysis. The  inner-to-outer  traversal is well suited  to 
demand-driven  loop  distribution  for  uniprocessor 
optimization,  because  outer levels of loop  distribution  can 
be  skipped  once we reach a boundary of an  innermost 
perfect  loop  nest. , 

ASTI  transformer is its  use of control  dependence 
information.  Analogous  to  data  dependences, a control 
dependence may be  loop-carried or loop-independent. A 
control  dependence is loop-carried if its control  path 
passes through a back  edge of a surrounding  loop; 
otherwise, it is loop-independent.  Control  dependences 
are  labeled with direction  vectors in the  same  manner  as 

A key feature of the  loop  distribution  performed by the 

There may be cases in which additional  opportunities  fur loop distribution  can  be 
3We define  “maximal” loop distribution in the  absence  of  other  transformations. 

revealed by first  performing  iteration-reordering  transformations such as loop 
interchange. 243 
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' Example of  loop distribution with control flow. 1 

data  dependences, so that a loop-independent  control 
dependence will have  a (=, . . . , =) direction  vector.  Loop 
distribution is then  performed  across strongly connected 
components of the  combined  control  and  data  dependence 
graph.  The  use of control  dependence  information  enables 
the  loop  distribution  algorithm  to work even in the 
presence of control flow arising from G O T 0  statements 
in the  loop body, as in the  example  program shown  in 
Figure 9. (Though  the  ASTI  transformer  updates  the LST, 
we instead show the  equivalent  transformed  source  code 
in the figure for  the  sake of simplicity.) This  robustness 
in handling  control flow is important  for  generality in 
optimization of handwritten  programs  and  computer- 
generated  programs. 

V. SARKAR 

Demand-driven  data  dependence  testing  for  loop 
distribution is based  on  the  observation  that  the  output of 
loop distribution is a partition of dependence  graph  nodes 
into  components such that  there is no cycle among 
components. Strongly connected  components define the 
finest such  partition.  As we add  edges  to  the  dependence 
graph  (based  on  control  and  data  dependences), we 
do  not  need  to  test  for a data  dependence  between 
statements A and B, in either  direction, if we have already 
determined  that  there is a cycle containing  both A and B 
at  the  current level of loop  distribution.  This  observation 
eliminates  the  need  to  perform  array  data  dependence 
tests  between  statements  that  belong  to a cycle built  from 
control  dependences  and  scalar  data  dependences.  Also 
note  that  loop  distribution is concerned only  with the  set 
of levels that may carry  a data or control  dependence,  but 
not with other  details of the  direction or distance  vectors. 
Once  the  set of levels has  been  established, we do  not 
need  to  further refine the  set of direction  vectors  into a 
more  precise  set,  thus avoiding the  overhead of full data 
dependence  testing. 

Let us examine how loop  distribution  proceeds inside- 
out  for  the  matrix multiply-transpose example  program 
in Figure 4. There is no  scope  for  distribution in the 
innermost i ,  loop  because it contains only one  nontrivial 
statement.  To  perform  loop  distribution  on  the i, loop,  the 
transformer first computed LDG(I .2 )  on  demand  (see 
Figure 8). Since the L D F  is acyclic, it is legal to  distribute 
the i ,  loop across (S .4 )  and {S.5,1.3} (we keep S.5 
together  with 1.3 because S.5 is the D O  statement  for 
loop Z.3). The  LST  resulting  from  this  loop  distribution is 
shown  in Figure 10(a). Though  the  ASTI  transformer only 
updates  the LST, we also  show the  transformed  source 
code  corresponding  to  the new LST in Figure 10(b) for 
convenience in understanding  the  transformation.  Note 
that  distributing  the i, loop  resulted in  a  new I-node, 1.4, 
and two new S-nodes, S.3' and SA',. 

Finally, loop  distribution is performed  on  the  outermost 
i ,  loop.  This  results in distributing  the i, loop  across (S .3,  
Z.2} and {S .3 ' ,  Z.4}; the  updated  LST  and  corresponding 
transformed  code  are shown  in Figure 11. It  results in the 
creation of a  new I-node, 1.5, and two new S-nodes, S.2' 
and S.9'. Figure 11 also highlights the two perfect  loop 
nests, 1.1-1.2 and 1.5-1.44.3, identified in step 3 of the 
transformer. 

6. Memory cost analysis 
Consider  an  innermost  loop  nest  containing h 2 1 loops, 
numbered 1 . . . h from  outer  to  inner.  The  job of memory 
cost analysis  in the  transformer is to  build symbolic 
functions  for  the  estimated  number of distinct cache lines 
[32],  DLtota,(tl, . . . , t h ) ,  and  the  estimated  number of 
distinctpages, DPtota,(tl, . . . , th) ,  accessed by a  single tile 
[1] of t ,  x . . . x t,, iterations of loops 1 . . . h ,  
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respectively. The memory cost analysis techniques 
presented in this  paper apply to cost estimations  for  the 
data  cache  and  the  data TLB (translation  lookaside 
buffer) in the  processor.  These  techniques  can easily be 
adapted  for  cost analysis of other levels of the memory 
hierarchy, such  as the L2 cache. 

DLtota,(tl, . . . , t,) and DPtota,(t , ,  . . . , t , )  are symbolic 
functions of hypothetical tile  size  variables, t , ,  . . . , t,. The 
tile  size  variables, t , ,  . . . , t , ,  are  used  to  provide a flexible 
interface  for  memory cost  analysis. Their  presence  does 

not  mean  that  the tiling transformation will necessarily be 
performed or that memory cost analysis is restricted to 
tiled  loops.  Instead,  setting  different  tile size  values  in 
memory  cost analysis is a convenient way of using the 
same DLtota, and DPtot,, cost functions  to evaluate the 
memory costs of different loop configurations. 

As an  example,  let us consider how the DLtot,, memory 
cost  function might be  used  to  decide  whether  or  not 
to  perform a loop  interchangeipermutation [l] 
transformation  that moves the  outermost  loop  to  the 245 
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(a) Transformed loop structure tree  and (b) corresponding source  code after distributing loops i2 and i, in matrix multiply-transpose example. 

246 

innermost  position.  Let  the  iteration  counts  for  loops 
1 . . . h be n l ,  . . . , n,,. Then,  the  total  number of distinct 
cache  lines accessed by the  innermost  loop  can  be 
evaluated as DLtot,, (1, . . . , 1, n h ) ,  which yields an 
average of DLtotal (1, . . . , 1, n,)/n, cache  lines  per 
iteration. Similarly, the  number of distinct  cache  lines 
accessed by the  outermost  loop  when moved to  the 
innermost position can be evaluated  as DL,, (al, 1, . . . , l), 

which yields an  average of DLtotal (nl, 1, . . . , l ) /n ,  
cache  lines  per  iteration.  The  loop  interchange is likely to 
be beneficial when this cost is smaller  than  the original 
per-iteration memory  cost. Section 7 describes how the 
locality optimization  step  in  the  ASTI  transformer  uses 
these  memory cost functions  to  automatically  select  loop 
permutation  and  loop tiling transformations.  The following 
subsections describe how the DLtotal and DPtotal memory 
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cost functions are constructed by the transformer at 
compile time. 

Estimating memory cost for a single  array  reference 
We  start by describing how the  ASTI  transformer 
estimates  the memory  cost of a  single array  reference by 
extending  the  approach  outlined in [32]. The goal of this 
analysis is to  obtain a symbolic expression for  the  number 
of distinct lines accessed by the  array  reference  as a 
function of the  tile size  variables, t , ,  . . . , t,. An  important 
use of cost functions  for individual array  references is in 
building the DLtot,, cost  function  for  an  entire  loop body 
as  described in the next subsection.  In  addition,  the  cost 
function  for a  single array  reference  can  be  used  to 
characterize  the self-reference locality exhibited by the 
reference,  as follows. Let 

F(t,? ’ ’ ‘> 

Number of distinct  lines accessed by array reference 
- - 

t , X . . . X t h  

be  the  average  number of cache  lines accessed by the 
array  reference  per  iteration in the tile. We  can  then 
determine  whether  the  array  reference exhibits cache 
locality for  loop k by evaluating  the  partial derivative 
6F/6tk at t ,  = . . . = t, = 1 and checking whether 
SF/&, < 0. A  negative value of 6F/6tk indicates  that 
increasing t ,  (the  number of loop i, iterations in the  tile) 
causes a decrease in the  average  number of lines accessed 
per  iteration by the  array  reference. 

f m ( i l ,  . . . , i,)] to  an  m-dimensional  array  variable called 
A, enclosed in h inner perfectly nested  loops with  index 
variables i , ,  . . . , i,. The  subscript expressions for  the m 
dimensions of the  array  reference  are  denoted by the 
functions f l ,  . . . , f,. An array  reference is said  to  be 
analyzable if its subscript expressions can  be  written 
as 

Consider a reference of the  form A[ f , ( i , ,  . . . , i,), . . . , 

h 

f , ( i , ,  . . . , i,) = c [ ~ ,  01 + 2 C[I, kli, 
k = l  

h 

f,(i,, . . . , i,) = c[m, 01 + c[m, k ] i k ,  

such that all  coefficients c [ j ,   k ]  are compile-time constants 
for 1 I j I m, 1 I k I h ,  and  the c [ j ,  01 terms  are 
invariant in loops i , ,  . . . , i,; Le., the c [ j ,  01 terms  need 
not  be  compile-time  constants  but they must  not  depend 
on  the values of i , ,  . . . , i,. Otherwise,  the  array  reference 
is said  to  be nonanalyzable. The memory cost analysis in 
the  ASTI  transformer  makes a  worst-case assumption of 
one  cache miss and  one  TLB miss per  iteration  for 

k = l  

nonanalyzable  array  references.  For analyzable references, 
we define C [ j ]  = ( c [ j ,  11, . . . , c [ j ,   h ] )  to  be  the 
coefficient vector  for  dimension j .  All  elements of C [ j ]  
are constant in an analyzable reference. We also denote 
the entire coefficient matrix consisting of  all c[*, *] elements 
by C. 

This definition of analyzable array  references is similar 
to  the definition of affine subscript  expressions  used in the 
literature.  The only distinction is that  our definition of 
analyzable array  references allows a c[j ,  01 term  to  take  on 
any (unknown) value that is invariant in loops i,, . . . , i,. 
For example,  a c [ j ,  01 term is permitted  to  be a function 
of the index variable of a loop  that  encloses  the  innermost 
nest of loops i,, . . . , i,. 

Let L equal  the  cache  line size (in bytes) for  the  target 
architecture.  The following discussion is presented  for 
estimating  the  number of distinct cache lines accessed by 
an  array  reference. However,  it can  just  as well be used to 
estimate  the  number of distinct pages accessed, by setting 
the  value of L to  the  page size (also  in bytes). 

Computing  the index range spanned by an analyzable 
subscript expression 
We first address the problem of estimating RANGE(C[J’], T) 
= MaxValue(C[j], T) - MinValue(C[j], T), for a given 
coefficient vector C [ j ]  and a  tile of t ,  X . . . X t,  iterations 
specified by tile size vector T = (t, ,  . . . , t,), where 
MaxValue(C[j], T) and MinValue(C[j], T) are  the 
maximum and minimum  values taken by the  subscript 
expression 4 in  the  iteration  tile. RANGE(C[j] ,  T) can  be 
viewed as the  length of the  range of distinct values 
spanned in the  tile by subscript expression f,. For 
convenience in  developing the memory cost  functions, 
RANGE(C[j] ,  T) is defined so that it equals  zero  when 
function4  takes  on a  single value  across  the tile  [in which 
case MinValue(C[j], T) = MaxValue(C[j], T)]. 

We  use  an  approach similar to  the  rectangular  form of 
Banerjee’s inequality [33] to  compute a symbolic 
expression for RANGE(C[j] ,  T). Initially, assume  that 
loops i,, . . . , i ,  all  have  a step of +1. Let LBound, and 
UBound, denote  the lower and  upper  bounds of loop i ,  
in  a  single tile of iterations.  This  means  that tile  size 
tk must equal (UBound, - LBound, + 1). Then, 
RANGE(C[j] ,  T) can  be  derived as  follows (the  notation 
1x1 denotes  the  absolute  value of x ,  and  the  notation 
cond ? true-expr: false-expr denotes a conditional  operator 
as  in the C programming  language): 

h 

MaxValue(C[j], T) = ( c [ j ,  k ]  2 0 ? c [ j ,  k ]  X UBound, 
k = l  

: c [ j ,  k ]  x LBound,), 247 
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k 

M inVa lue (C[ j ] ,   T )  = 1 ( c [ j ,  k ]  2 0 ? c [ j ,  k ]  X LBound, 
k = l  

: c [ j ,   k ]  X UBound,) 

+ R A N G E ( C [ j l ,   T )  

= MaxValue(C,  LoopSet) - MinValue(C,  LoopSet) 
k 

= 2 [ c [ j ,  k ]  2 0 ? c [ j ,   k ]  X (UBound, - LBound,) 
k = l  

: c [ j ,   k ]  x (LBound,UBound,)] 
k 

= 1 Ic[j, ~ I I  X (tk - 1). 
k = l  

Interestingly,  the  value of R A N G E ( C [ j ] ,   T )  does  not 
depend on the specific  values of LBound, and UBound,, 
and  can  therefore  be  represented  as a linear polynomial 
function of only the t ,  tile sizes. Note  that  the  value of 
RANGE is zero  when all tile sizes equal  one, since the 
subscript expression has only one distinct value in this 
case. To relax our  assumption  that all loops have  a step of 
+1, we can  extend  the  above expression for RANGE to 
R A N G E ( C [ j ] ,   T )  = I c [ j ,  k ]  X Stepk\ X ( f k  - l), 
where Step, is the  (constant-valued)  step  for  loop i,, 
assuming that  the tile sizes t , ,  . . . , t ,  are still  defined as 
iteration  counts. 

Computing  the  memoly range spanned by an analyzable 
array reference 
Recall that  an array  reference, A[ f , ,  ' . . , f,], is translated by 
a compiler to a linearized address [3] of the  form 

addr (A[ f l ,  . . . , f , I )  
m 

= StartAddr(A) + 1 [ f d ( i l ,  . . . , ih) 
d = l  

- LO,(A)]DimStride(d),  

where L O J A )  is the lower bound  for indexing into 
dimension d of array A, and DimStride(d) is the stride in 
bytes for  dimension d ,  i.e., the  address  increment  for  the 
array  reference when the  subscript value for  dimension d 
is increased by +l. Specifically, DimStride(1) is the size of 
a  single element of array A, and DimStride(d) = 

DimStride(d - 1) X DimSize(d - 1) when d > 1, where 
DimSize(d - 1) is the size of dimension d - 1. 

We now address  the  problem of estimating 
MEMRANGE( j ,   C ,   T ) ,  the  number of bytes spanned by 
the first j dimensions of an  array  reference with  coefficient 
matrix C across  a  tile of t ,  X . . . X t ,  iterations specified 
by tile size vector T = ( t l ,  . . . , t,). Specifically, 
M E M R A N G E ( j ,   C ,   T )  = MaxAddress(j, C ,   T )  - 
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MinAddress(j,  C, T), where MaxAddress(j, C ,   T )  and 
MinAddress(j,  C, T )  are  the maximum and minimum 
address values taken by Address(A[ f , ,  ' . . ,J;, LOj+l ,  . . . , LOm]) 
across the  tile. As in the  definition of RANGE, 
MEMRANGE(j,  C, T )  equals  zero when functions f l ,  ' ' . , J;  
each  take on a  single value  across  the tile (this is the 
case when the memory range consists of a  single array 
element).  Note  that  the  effect of parameter j is to restrict 
MEMRANGE to  the size of the memory range  spanned by 
the first j dimensions by ignoring  subscript expressions 

Given  the  previous  definition of RANGE, we can  use 
the following identity  to  compute MEMRANGE: 

I 

MEMRANGE( j ,   C ,   T )  = 2 RANGE(C[d],  T)DimStride(d). 
d = l  

Recall  that  each RANGE(C[d] ,  T) can  be  expressed  as a 
linear polynomial of tile size variables. If,  as  is  usually 
the  case,  the DimStride(d) values  are  compile-time 
constants, we obtain a linear polynomial  expression for 
M E M R A N G E ( j ,   C ,   T )  as well. If DimStride(d) is not a 
compile-time  constant  for  some  dimension d (e.g., when 
A is a  dynamically sized  array), a default  value  such 
as 1000 is used  for  each  unknown DimSize value 
when estimating DimStride(d) using the  identity 
DimStride(d) = DimStride(d - 1) X DimSize(d - 1). 
We  can  therefore  assume  that  the  actual/estimated 
DimStride values are  compile-time  constants;  hence, 
M E M R A N G E ( j ,   C ,   T )  can  be  treated as  a linear 
polynomial  in the tile  sizes t , ,  * . + , t ,  for  the  purpose 
of memory cost analysis. Note  that DimStride(1) is 
always a compile-time  constant  because it is the size 
of a  single array  element. 

Estimating  the  number of distinct  lines  spanned by an 
analyzable array reference 
We first briefly review the  approach  from [32] to  estimate 
the  number of distinct  lines for a  single array  reference. 
The  upper  bound  estimate given in [32] for a one- 
dimensional  subscript  expression f is 

where g is the  greatest  common divisor of the  linear 
coefficients  in f ,  f and f lo are  the maximum and 
minimum values taken by subscript expression f across the 
entire  loop  nest,  and L' = L/DimStride(l)  is the  line  size 
in units of array  element size. For the special case  when 
L '  = 1, D L V )  = [ ( f  hr - f '")/g] + 1 becomes  an 
estimate of the  number of distinct accesses made by the 
array  reference.  There  are  some  special  cases  for which 
this  estimate  can  be  proved  to  be exact [34]. In  practice, 
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the  relative  error of this  estimation is small when,  as is 
usually the case, the size of the (fh' - f") range is much 
larger  than  the size of the individual c [ j ,   k ]  coefficients. 

For a multidimensional  array  reference, A[f,, . . . , f , ] ,  
the  upper  bound  estimate given in [32] is 

This  bound  provides a reasonable  estimate when 
DimStride(2) is Z L .  

DL( j ,   C ,  T), the number of distinct lines spanned by the first 
j dimensions of an  array  reference with coefficient  matrix 
C across a tile of t ,  x . . . X t ,  iterations specified by tile 
size vector T = ( t l ,  . . . , t,). For  the j = 1 case, we can 
rewrite  the  one-dimensional  solution  from [32] as 

We  can now address  the  problem of estimating 

M E M R A N G E ( 1 ,   C ,  T) 

L 
1 +  

since R A N G E ( C [ l ] ,  T)=f:'-f: and MEMRANGE(1,   C,  T) 
= (f:j - f:) X DimStride(1). The main difference is 
that D L ( 1 ,   C ,  T) is a function of tile size variables, but 
D L  in [32] was  defined for  the  entire  loop  nest.  Note 
that we also replaced  the ceiling (r 1) function with a 
continuous  approximation; in essence, we approximated 
an h y i  term by [ l  + (x - l)/y]. 

For  multidimensional arrays, our approach  extends  the 
DL solution  from [32] by not relying on  the DimStride(2) 
2 L assumption.  This extension is important  because we 
want to use the  same memory cost  function  for  counting 
lines and pages, and  the DimStride(2) 2 L assumption is 
less likely to hold  when L is set  to  the  page size. Our 
solution is to  estimate D L ( j ,   C ,  T) for  the first j 
dimensions by using the following recurrence when j > 1: 

D U j ,   C ,  T) 

MEMRANGE(j ,   C,  T) 

L 
1 +  

For  the  sake of efficiency, we would  like to simplify the 
above  expression for D L ( j ,   C ,  T) to a linear polynomial 
structure.  In  general  this is hard  to  do,  because  the 
evaluation of the min function  depends  on  the values of 
the RANGE and MEMRANGE terms, which  in turn  depend 
on the tile size variables, t,, . . . , t,. However, we observe that 
the min function for the j = 1 case can be rewritten as 

DimStn'de(1) X RANGE(C[l] ,  T) 
L I +  

and  can  be resolved at  compile  time by comparing 
1 /GCD( lc[ l ,  111, . . . , Ic[l, h]l) with DimStride(1)iL and 
choosing the  term with the  smaller  value,  even  though  the 
value of R A N G E ( C [ l ] ,  T) is unknown at  compile  time. 
This  idea  can  be  extended  to  the  multidimensional  case by 
choosing the first (RANGE) term in the  recurrence if 
l / G C D ( .  . .) is smaller  than DimStride(j)/L. Note  that this 
approach will always select  the l / G C D ( .  . .) term when 
DimStride(j) > L ,  which is consistent with the  observation 
that  there is no  spatial locality in dimension j in this  case. 

The above technique essentially  specifies an algorithm 
for resolving the min function in the DL recurrence  at 
compile time,  and building  a symbolic expression for 
DL(m,  C ,  T), the  number of distinct lines accessed by the 
array  reference.  The symbolic expression is a linear 
polynomial in the tile  size  variables. This is the  algorithm 
implemented in the  ASTI  transformer  for building linear 
polynomial  expressions for DLtotal( t l ,  . . . , t,,) and 
DPtOtal(t l ,  . . . , t h )  for a given array  reference;  an example 
is provided later. 

Estimating  the memory cost for the entire loop nest 
In  the previous section, we showed how to  estimate  the 
number of distinct lines accessed by a  single array 
reference.  To  obtain  the  total  number of (distinct) lines 
accessed by the  entire  loop body, we build  a symbolic 
expression representing  the sum of the individual D L  
expressions. This  sum of D L  terms is denoted by DLtot,,. 

An  important issue in computing DLtotal is that  of 
considering  cross-reference locality [35] for multiple 
references  to  the  same  array. If  we ignore  the  potential 
overlap across  multiple references  and simply add in the 
contribution  for  each  reference  separately  to DLtotal,  our 
memory cost  estimation may become conservatively too 
large.  Consider  the following one-dimensional  relaxation 
loop as an example: 

do il = 2 ,  n-1 
x ( i 1 )  = 0 .3333  * ( x ( i 1 - 1 )  + x ( i 1 )  

+ x ( i l + l ) )  
end do 

This loop has  substantial  cross-reference locality, and  the 
number of distinct lines accessed by the  entire  loop body 
(-= n / L ,  for large n )  is approximately the  same as the 
number of distinct lines accessed by a  single reference. 
Ignoring  cross-reference locality  in  this case would lead  to 
a  memory  cost estimation  that is three  times  as  large as 
the  actual memory cost. 249 
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An  algorithm  for  doing a precise  estimation of the 
memory  cost of multiple  references  to  an  array is given in 
[32]. However,  in the worst  case, the  execution  time of 
this precise  estimation  can  be  exponential in the  number 
of references  to  the  same  array  variable.  We  use a simpler 
estimation in the  ASTI  transformer  that is efficient but 
still more  precise  than  the conservative approach of 
ignoring  overlap  among  multiple  references  to  the  same 
array.  It is based  on  the  idea of assuming 100%  overlap 
among  array  references  that  are uniformly generated [36] 
(i.e., array  references  that have the  same coefficient 
matrix, C), and  zero  overlap  otherwise.  This  approach  can 
be viewed as  partitioning  references  to  the  same  array 
variable  into  equivalence classes, and  computing DLtota, by 
adding in the  memory cost of only one  representative 
array  reference  from  each  equivalence class. One 
refinement  implemented in the  ASTI  transformer is to 
place two array  references in the  same  equivalence class if 
and only if they have the  same coefficient matrix  and  the 
difference  between  the  invariant  terms is less than  some 
compiler-specified constant  threshold. A future  refinement 
that would be easy to  implement is to  add  constant offsets 
to  the  terms in the DL expression  for  the  representative 
array  reference, so as to reflect the  contribution of other 
array  references in the  same  equivalence class. 

For  the  one-dimensional  relaxation  example, all three 
array  references  are  placed in the  same  equivalence class 
because  they have the  same coefficient  matrix and  the 
difference  between  their  invariant  terms is at  most two. 
The  current  approach  computes  the  cost  for only one 
reference in the  equivalence class, thus yielding DLtotal(tl) 
= 1 + (tl - l ) /L,  which is more  precise  than  the cost 
that we would obtain by ignoring cross-reference locality. 
The  additional  refinement of extending  the RANGE and 
MEMRANGE terms  to  include  the  extent of the  invariant 
terms of other  references  in  the  same  equivalence class 
would instead yield DLtota,(tl) = 1 + (tl + l ) /L.  While 
this is closer to  the  actual value, the  difference is not 
significant,  especially for  large L .  

A n  example 
In  this  section, we illustrate  the  memory  cost analysis 
procedure  for  the triply nested  loop  obtained  after 
performing  loop  distribution  on  the matrix 
multiply-transpose example shown in Figure 4. The 
transformer  uses  the  array-defs  and array-uses 
input/output lists  defined in  Section 4 to  enumerate all 
array  references.  After  partitioning  the  array  references 
into  equivalence classes as  described  earlier,  the  memory 
cost analysis step builds  a list of “representative”  array 
references  containing  one  reference  from  each  equivalence 
class, and  then builds  a  symbolic representation of the 
DLtotal cost  function. 250 
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For  the triply nested  loop 15-14-13 obtained  after  loop 
distribution  on  the matrix  multiply-transpose  example 
(Figure l l ) ,   the  representative list of array  references 
consists of a(il,i2), b(i2,i3), and c(i3,il). 
Note  that a ( il, i2 ) is only counted  once. Using the 
techniques  outlined in the  previous  sections,  the memory 
cost analysis step  then  traverses  the  representative list and 
builds the following symbolic expression for DLtotal, the 
numbers of distinct cache  lines accessed by a  tile of 
t ,  X t ,  X t ,  iterations, 

DLtota, = r8t1/Llt, + r8t2/Llt, + r8t,/Llt, 

(1 + 8(t ,  - l)/L)t, + (1 + 8(t2 - l)/L)t, 

+ (1 + 8( t ,  - l)/L)t, 

= (0.25tI + 0.75)t2 + (0.25t2 + 0.75)t3 

+ (0.25t, + 0.75)t,, 

since L = 32 bytes is the  cache  line size for  the  PowerPC 
604 processor,  and  each  array  element is 8 bytes long  (the 
array  variables  are  declared with  a real*8  base type). 

A  symbolic  expression for  the  number of distinct pages, 
DPtotal can  be  constructed similarly to DLlota, by using 
P = 4096 bytes in place of L.  For  this example program, 
DL,, and LIPtotal are  completely  symmetric in i , ,  i,,  i,. 
However,  this need  not  be  true in general. 

Memory cost analysis for a given unimodular 
transformation 
In this section, we briefly outline how memory cost 
analysis can  be  performed efficiently for a given 
unimodular  loop  transformation [37] such  as loop 
permutation, reversal, or skewing [l]. This capability can 
be used to  estimate  memory costs of different  unimodular 
transformations  without  requiring  that  the  transformations 
be  performed on the  intermediate  language  prior  to 
memory  cost analysis. 

Let M be  the  transformation  matrix  for a unimodular 
loop  transformation  that we want to  consider applying to a 
set of perfectly nested  loops with index variables i , ,  . . . , i,, 
and  let i ; ,  . . . , il, denote  the index variables of the 
loop nest that would be  obtained if the  transformation 
were  performed.  To  perform memory cost analysis on  the 
transformed  loop  nest, we must first rewrite  the  subscript 
expression for  each  dimension j of an  array  reference, 
f , ( i , ,  * - . , i,) = c [ j ,  01 + c [ j ,  kli,, into  an  equivalent 
function on the index variables of the  transformed  loop 
nest, f,!(i;, . . . , i l )  = c ’ [ j ,  01 + c ’ [ j ,  k]i;. The 
unimodular  transformation matrix M can  be  used  to  derive 
the  transformed coefficients as follows: 
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where M" is the inverse of transformation matrix M. 
Memory cost  analysis can  then be performed using the 
transformed coefficients c ' [ * ,  *I.  

7. Locality optimization 
This  section gives a brief outline of the locality 
optimization  step in the  transformer  and how it uses  the 
memory  cost functions  described in Section 6. The locality 
optimization  step  performs  transformations  to minimize 
memory  costs,  in particular  cache misses and  TLB 
misses. Our algorithm uses iteration-reordering  loop 
transformations  (interchange, reversal, skewing, tiling) [29, 
351 to move loops carrying  locality  inward, and is guided 
by the memory  cost functions in selecting  the  optimized 
loop configuration.  Locality optimization is attempted only 
on  the  innermost  perfect  loop  nests of the  program 
(including those revealed after  loop  distribution).  Outer 
loop  nests  and  loops with subroutine calls are  currently 
not  considered, since  such loops  often overflow the  cache 
in a  single iteration. Maximal innermost  perfect  loop  nests 
are easily identified by a depth-first  traversal of the LST. 

The  outputs of the locality optimization  phase  are a 
sequence of iteration-reordering  transformations 
(typically, interchange  and/or tiling,  prefixed by enabling 
transformations such  as  reversal and skewing  as needed) 
and a subset of inner  transformed  loops called the locality 
group. The locality group is defined to  be  the  largest 
innermost  subspace of the  transformed  iteration  space  that 
is guaranteed  to  incur  no capacity or collision  misses if it 
starts  execution with  a  clean (empty)  cache  and a clean 
TLB. The locality group  can  be specified by two 
parameters, ( m ,  B ) ,  as follows: 

1. m z 0, the  number of innermost  loops in the locality 
group.  The  parameter m can  be  determined by 
estimating  the  number of distinct lines accessed by 
progressively larger  subspaces of the  iteration  space 
(innermost  loop,  inner two loops,  and so on) till we 
reach a case  where  no  loops  remain  or  one  iteration of 
the m + 1st  loop overflows cache. 

2. B 2 1, the  largest  number of iterations (block  size) of 
the  outermost  loop in the locality group such that no 
capacity or collision  misses occur.  Note  that B may, in 
general, only be a fraction of the  total  number of 
iterations in the  outermost  loop of the locality group. 
In other  words, only the first m - 1 inner  loops in the 
group  span  their  complete  iteration  ranges  without 
incurring capacity or collision  misses. For a given m ,  
B can  be  estimated by solving a  simple linear  equation 
obtained by setting  the  estimated  number of distinct 
lines  to  the  number of lines available  in cache,  and 
applying the floor (L J) function  to  convert  the 
interpolated B value  to  an  integer value. 

Thus,  the locality group consists of the m innermost 
loops, with B iterations of the  outermost  loop in the 
locality group  and  complete  iterations of all other  loops in 
the locality group. B is properly defined only when m 2 1; 
m = 0 indicates  that a  single iteration of the loop nest 
overflows the  cache.  The locality group  can  also  be viewed 
as an  innermost "tile" of the  iteration  space  such  that no 
capacity or collision  misses occur within the tile. In  fact, if 
the tiling transformation is performed  on  the  loop  nest, 
the locality group will be  identical  to  be  identical  to a 
single  tile from  the tiling transformation. 

Later  transformations  are  not  permitted  to  change  the 
grouping of iterations in the locality group.  However, they 
are  free  to  reorder  iterations within each locality group 
(e.g., during  loop-invariant  scalar  replacement  and  loop 
unrolling)  and/or  reorder  the execution sequence of 
locality groups (e.g., when  parallelizing loops  outside  the 
locality group). 

Algorithm for selecting an optimized loop ordering 
In this section, we describe how the  transformer  uses 
memory cost  functions  to  automatically  select  an 
optimized  loop  ordering  for a perfect  loop  nest. Given the 
polynomial  expressions for DLtotal and DPtOtal derived  in 
Section 6, the  total memory  cost of compulsory misses for 
a hypothetical tile of t ,  X . . X t,  is estimated as follows: 

COSTtotal(t,, ' . '> $1 
= (cache  miss  penalty) * DLtotal(tl, . . ., t,) 

+ (TLB misspenalty) * DPtOtal(t,, . . ., t,). 
Our objective is to minimize the memory cost per iteration, 
which is given by the  function 

In general,  the  minimization  has  to  be  done subject to  the 
constraint  that DLtota, not exceed the effective cache size 
and DPtota, not exceed the effective TLB size. 

We have designed  the following  simple and efficient 
algorithm  to  choose a loop  ordering  that is optimized for 
locality: 

1. Examine ( t l ,  . . . , t h )  = (1, . . . , 1) as an initial 
solution. If DL(1, . . . , 1) exceeds the effective number 
of lines available  in cache, or DP( 1, . . . , 1) exceeds 
the effective number of page  entries available in the 
TLB,  no  loop  restructuring is performed,  because  each 
iteration will overflow the  cache or TLB. 

2. Otherwise,  evaluate  the h partial derivatives of function 
F ,  SF/&, at ( t , ,  . . . , t h )  = (1, . . . , 1). 

3. Return a  suggested loop  ordering in decreasing  order 
of the  partial derivative (slope) values. The  loop with 
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the  most  negative  slope  should  be  placed in the 
innermost  position,  since it is likely to yield the  largest 
reduction in  memory cost,  and so on. This is the  ideal 
loop  ordering  based on memory costs. If the  ideal 
ordering  differs  from  the  input  ordering,  dependence 
analysis is invoked to  determine how closely the  input 
loop  ordering  can  be  made  to  approach  the  ideal  loop 
ordering. 

As shown  in Figure 11, there  are two perfect  loop  nests 
in the  matrix multiply-transpose example  after  the  loop 
distribution  step.  Let us consider  the first perfect  loop 
nest, which corresponds  to  the following transformed 
code: 

[ 2 1  do il = 1, n 
[ 3 ]  do i2 = 1, n 
143 a(il,i2) = 0 
[81 end do 
[ 9 ]  end do 

The memory cost  functions  are very simple for  this 
single array  reference,  and  are  computed using estimated 
penalties of 17 cycles and 21 cycles for a cache miss and a 
TLB miss, respectively, on  the  PowerPC 604 processor 
(note  that 0.001953 and 0.998047 are  numerical 
approximations of 1/512 and 5111512): 

DLtota,(tl, t,) = (0.25t, + 0.75)t2, 

DPtOtal(tl, t,) = (0.001953t1 + 0.998047)t2 

+COSTtota,(t,, t J  = 17 x DL,,,(t,, $1 + 21 x DPtotal(tl’ t,) 

= (4.25t1t, + 12.79,) + (0.04t,t2 + 20.96t2) 

+ (0.04 + y )  . 

Thus GF/St, has a  negative slope,  but GF/6t, equals  zero. 
Therefore, locality optimization will perform a loop 
interchange  to  bring  the  loop with  negative slope  into  the 
innermost  position,  resulting in 

131 do i2 = 1, n 
[23 do il = 1, n 
[ 4 1  a(il,i2) = 0 
181 end  do 
[ 9 1  end  do 

The locality cost  function  for  the triply nested  loop in 
Figure 11 is completely symmetric  in t,,  t,,  t,, so there is 
no  difference in the  slopes  for  the  three  loops,  and  the 
original  loop  ordering is preserved. Since  all three  loops 
have  negative slopes, this example is an  ideal  candidate 
for  the tiling transformation discussed later. 252 
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Efjective cache and TLB sizes 
We now outline how the  transformer  estimates effective 
cache  and  TLB sizes for  use by the  algorithm  for  selecting 
optimized  tile sizes. For a fully associative cache,  the 
effective cache size is identical to the  actual  cache size. 
However,  caches in real  processors  are  not fully 
associative, but  instead have  a  limited degree of set 
associativity. Our  solution is to  compute a cache 
utilization efficiency that  estimates  the effective shrinking 
of a  set-associative cache  ith S lines to  an  “equivalent” 
fully associative cache with S’ 5 S lines, where S’ is the 
effective cache size. The  TLB  utilization efficiency can  be 
estimated by following the  same  approach with TLB 
parameters  in  place of cache  parameters. 

single stride T as follows: 
To  start with, consider a  simple array  reference with  a 

D O l O i = . . -  
10 A(T*i + c) = . . 

We  are  interested in estimating 

q ( T )  = cache  utilization efficiency of stride T 
=fraction of sets  accessed  over a large number of 

iterations. 

For example, the  array  reference, A ( i ) ,  has 100% 
efficiency; Le., ~ ( 1 )  = 1.0, because it will access  all of the 
sets in the cache. However,  it is well known that a stride 
value that is  a  power of two leads  to  poor efficiency. For 
example,  the  reference A(32768*i) will repeatedly access 
a  single set in the cache.  Since the (first-level) cache in 
the  PowerPC 604 processor  has 512 sets,  the efficiency for 
this reference is only ~ ( 3 2 7 6 8 )  = 11512. 

We  estimate q ( T )  by considering  three possible  cases, 
as outlined below. More  precise  estimates  are possible if 
the  cache block alignment  offset  and  number of loop 
iterations  are  also known at compile time. 

Case 1: 
Case 2: 
Case 3: 

T 5 L 3 q ( T )  = 1.0. 
T i s  a multiple of L 3 q(T) = l /GCD(T/L,  S). 
Otherwise,  we  find  the  smallest n 2 1 that 
satisfies [32], 

mod ( n  X T, L X S )  < L or mod ( n  X T ,  
L X S ) > L X S - L .  

In this case,  every nth access can  map  to  the 
same  set, so we conservatively estimate v(T) = n/S. 

Our  overall  approach  to  estimating effective cache size 
is as follows, assuming that  the  actual  cache is a k-way set- 
associative cache with S sets (we set k = 1 to  do  the 
analysis for a direct-mapped  cache): 
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1. 

2. 

3. 

4. 

5. 

Compute  the locality group, ( m ,  B ) ,  for  the  loop  nest, 
assuming a fully associative cache  containing k X S lines. 
For each  loop index variable i,, such that h - m < j < m, 
examine each  array  reference  that  contains i,, and 
estimate q(T)  for  the  stride T of i, in that  array 
reference.  This  step  restricts  the  estimation of cache 
utilization efficiency to  the m innermost  loops,  where m 
is the  number of loops in the locality group  computed 
in step 1. 
For each  array variable, choose  the minimum among 
the  estimated q ( T )  values from  step 2  as the  cache 
utilization efficiency for  the  array  variable. 
Estimate effective number of sets as S' = Lq,,,,,Sl, 
where qaVdmln is the  average value taken over  all array 
variables of the minimal cache  utilization efficiency 
obtained in step 3. 
Set effective cache size to k X S' X L bytes. 

In  the above steps,  the  minimum q(T)  value is used  for 
each  array  variable, so that  the  estimation is conservative; 
qaVumin is estimated as the  average of the min  values based 
on  the  assumption  that  cache usage is divided  equally 
among all of the  array variables. If needed,  the  average 
can  be refined to a  weighted mean by considering a 
nonuniform  partitioning of the  cache  for  different  array 
variables. 

Algorithm for selecting  optimized  tile  sizes 
If multiple  loops  are  found  to have  a  negative slope 
(6F/6tk < 0) in the  algorithm  for  selecting  an  optimized 
loop  ordering,  the locality of the  loop nest can  often  be 
further improved by tiling the  loops  that have  negative 
slope.  The key problem  that  must  then  be  addressed by 
the  transformer is the  selection of tile sizes, which we 
formulate as  a constrained  optimization  problem: 

As before,  the objective function  to  be minimized is 
F(t,,  . . . , t h )  = COSTlo,a,/(tl X . . . X t h ) ,  the  average 
cache  and  TLB miss overhead  per  iteration of the  tiled 
loop. 
The  constraints  to  be satisfied by the  solution  are  the 
following: 

Each t ,  must  be  integer-valued  and  must  be in the 
range 1 5 t, I Ubound,. A default  value such as 
1000 is used  for Ubound, if the  number of loop 
iterations is not known at  compile  time. 
DL(t, ,  . . . , t h )  I ECS. The  number of distinct  cache 
lines accessed  in  a  tile must  not exceed the effective 
cache size. 
DP(t,, . ' . , t h )  I ETS.  The  number of distinct 
virtual  pages accessed  in  a  tile  must not exceed the 
effective TLB size. 

We have designed  an efficient constant-time  algorithm 
[38] to solve this  constrained  optimization  problem  for  the 
case of two loops with  negative slope. If there  are N > 2 
loops with negative slope  that  are eligible for tiling, 
standard  logarithmic  search  techniques  are  used  on N - 2 
variables by invoking the two-variable solution  at  each 
search  point.  In  practice, N is rarely >3,  and  the N = 3 
case is solved  efficiently by searching  on a  single variable. 

When  the locality optimization  step was performed on 
the matrix  multiply-transpose example  for  the  PowerPC 
604 processor,  the  binding  constraint was the  data  cache 
size constraint.  The  compiler optimistically assumes  that 
qavgimin = 1.0 when  the  dimension size n is not known at 
compile time.  (A  safer  approach would be  to  assume a 
smaller  value of qavgimin for unknown dimension sizes, but 
that is not in the  current  implementation.)  Therefore,  the 
effective cache size is estimated  as  being  the  actual  cache 
size,  4 X 512 = 2048 lines. This yields DLIot,,(tl, t,, t ,) 
5 2048  as  the  cache size constraint.  Our  procedure  for 
selecting  tile sizes returned t ,  = 50, t ,  = 51, t ,  = 51 as 
the  optimized  solution  for  this  example.  We  can verify 
that  this  solution satisfies the  cache size constraint by 
using the expression described previously for DLl,,,(tl, t,, t,) 
and computing  DLlota,(50, 51, 51) = 2039.25, which is <2048. 
We  can  also  see  that  DLlota,(51, 51, 51) = 2065.50, 
which shows that a slightly large tile overflows the 
cache.  The  optimized tile sizes are  (almost)  equal  for 
this  example because  the  cost  function is completely 
symmetric in i , ,  i,, i,. Other cost functions  can  lead  to 
different  tile sizes for  different loops. 

Therefore,  the  cumulative  transformations  performed 
by the locality optimization  step  for  the matrix 
multiply-transpose example is a loop  interchange  for  the 
first loop nest and  loop tiling for  the  second  loop  nest,  as 
shown in Figure 12. (As  before,  the figure  shows the 
transformed  source  for  convenience,  though  the 
transformer only updates  the LSG.) 

8. Loop  fusion 
As discussed in  Section 5, the  loop fusion transformation 
is important  for removing the  overhead of unnecessary 
loop distribution.  In  addition, it can  be useful for fusing 
loops  that  were  not  distributed, e.g., conformable  loop 
nests arising from  FORTRAN 90 array  language 
statements [6]. Just  as with loop  distribution,  the key data 
structure  that is used  to  guide  loop  fusion is the  loop 
dependence  graph (LDG) in the LSG. However,  one 
important  difference is that  loop  distribution is performed 
on loops  from  the  inside  out,  and  loop fusion is performed 
from  the  outside  in. 

For simplicity, the  implementation of loop  fusion in the 
transformer  focused  on optimizing the  common  case of a 
program  region  that  represents a set of k adjacent 
conformable  and identically control-dependent  perfect 253 
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. .. I Locality optimization for matrix multiply-transpose example. 
. .  

loop nests.  Two loop  nests  are  said  to  be  conformable if 
their  corresponding  loops have identical  iteration  lengths 
(loop  bounds). Two loop  nests  (or,  more generally, 
statements)  are said to  be identically control-dependent if 
they  have the  same  set of control  conditions [20], Le., the 
same  set of (node,  label)  pairs as control  dependence 
predecessors.  However,  it is straightforward  to  extend this 
approach  to a more  general  region which includes 
nonconformable  loop  nests  and  the  presence of control 
flow across LDG  nodes. 

Each  edge in the  LDG is marked  as  being  contractable 
or  noncontractable.  The  source  and  destination  loop  nests 
of a noncontractable  LDG  edge  cannot  be  fused,  because 
this would violate  the  data  dependence  test  for  loop  fusion 
[l]. This  test is formally  specified by the  algorithm 
Contractable(L, M )  in Figure 13, which outlines  this  data 
dependence  test  for  nodes  (loop  nests) L and M such that 
there is at  least  one  LDG  edge  from L to M .  If the 
algorithm  returns a false value,  nodes L and M cannot  be 
fused,  and  all  edges  from L to M are  marked  as 

noncontractable.  It is not necessary to call the  algorithm 
Contractuble(L, M )  when  there is no  LDG  edge  from L to 
M ,  because in that  case  there  cannot possibly be any data 
interference  between  loop  nests L and M .  

A fusion partition of an  LDG is a partition of the  set of 
nodes  into disjoint fusion clusters; each fusion cluster 
represents a set of loop  nests  to  be  fused. A fusion 
partition is legal if and only if 1) for  each  noncontractable 
edge,  the  source  and  destination  nodes  belong  to  distinct 
fusion  clusters;  and 2) the  reduced  graph defined by the 
fusion partition is  acyclic. Given an LDG  and a legal fusion 
partition, the  output code configuration can be obtained by 
fusing all loops that belong to  the  same fusion cluster and 
by ordering  the  fused  loops  according  to  some topological 
sort defined by the  edges in the  reduced  cluster  graph. 

associated with each  pair of nodes i and j ,  representing 
the  cost savings that  would  be  obtained if loops i and j 
were  fused.  For  convenience, we assume  that wit = 0 for 
all i ,  and  that wij = wli = 0 for  each  noncontractable  edge 

We also assume  that  there is a  weight wlj = wji 
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‘Note that weights of noncontractable edges have no impact on the selection of the ASTI transformer adds the Constraint that no fusion 
optimal fusion partitions, since these weights are  always included in the total 
intercluster weight. cluster should lead to a fused loop in  which a single 255 
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Source-level  listing of transformed  matrix multiply-transpose 
program after scalar replacement. 

iteration spills registers if none of the original loops in the 
fusion cluster spilled  registers, and  uses a greedy  merge 
heuristic  to solve this  problem [41]. A  new algorithm  for 
optimal weighted loop  fusion  has  recently  been  designed 
[30]. It is based on an  integer  programming  formulation 
that is efficient enough  for  use  in a production-quality 
compiler.  We  plan  to  experiment with  this  new approach 
to  see how much  more effective the  optimal weighted loop 
fusion is compared  to  the  greedy heuristic. 

9. Loop-invariant  scalar  replacement 
The  ASTI  transformer  performs  scalar  replacement  for 
loop-invariant  array  references so as  to  reduce  the  number 
of memory accesses in a loop  nest.  The  scalar  replacement 
transformation [42] uses  array analysis information  to 
selectively replace  array  references with compiler- 
generated  scalar  temporaries.  This  transformation is 
performed so as  to  enable  more effective register 
allocation of array  references by the  compiler  back  end. 
The  ASTI  transformer  takes  this  idea  one  step  further by 
also  performing  loop  interchange within the locality group 
so as  to move the  loop  with  the  largest  number of loop- 
invariant  array  references  and  operations to  the  innermost 
position. 

The  outputs of the  loop-invariant  scalar  replacement 
phase  are as follows: 

1. A  new sequence of iteration-reordering  loop 
transformations  that is appended  to  the existing 
sequence. 

2.  A scalar  replacement  interface  data  structure with one 
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entry  per  scalar  temporary  containing  the following 
information: 

List of array  references  to  be  replaced by this  scalar 

Number of transformed  inner  loops in  which the 

Information  on  whether  the  scalar  temporary  must 

variable. 

array  references  are invariant. 

be  loaded/initialized  from  the  array  element  location 
on  loop  entry (liveness on  entry),  and/or  stored  into 
the  array  element  location on loop exit (liveness on 
exit). 

Continuing with the  matrix multiply-transpose example 
from  the  previous  sections, we see  that  the two references 
t o a ( i l , i 2 )  a re invar ian t in loopi3 , re ferenceb( i2 , i3)  
is invariant in loop i l ,  and c ( i 3 ,  i l )  is invariant 
in loop i 2 .  Since the  scalar  replacement savings for 
a ( il , i 2  ) consists of a load  and a store  instruction,  as 
opposed  to  just a load  instruction  for  the  other  array 
references,  this  phase  decides to  keep  loop i 3  in the 
innermost  position in the locality group,  and  then  creates 
a scalar  replacement  entry  for  the a ( il , i 2  ) references. 
Figure 14 shows  a  source-level  listing of the  transformed 
code  for  the i l k i 2 + i 3  loop  nest.  The  transformations 
performed  include  the  interchange  and tiling from locality 
optimization as well as scalar  replacement  from this phase. 
The  loop-unrolling  transformation  described in Section 10 
is used  later by the  transformer  to  exploit  the  loop- 
invariance of the  other  array  references. 

The ASTI transformer  extends  the  approach of 
interchanging  loops so as  to maximize the savings from 
scalar-replaced  loads  and  stores  to  other  loop-invariant 
operations  on  array references’  as well. The most notable 
case is when  a  divisor is a loop-invariant  array  reference. 
In this  case, an  extra savings is obtained by computing  the 
reciprocal  as a loop-invariant  and  reducing  the  strength of 
the divide operation  inside  the  loop  to a multiplication 
by the  loop-invariant  reciprocal.  An  example of this 
transformation is  shown  in Figure 15. Though  this 
transformation is  algebraically correct,  it  can  change  the 
bitwise floating-point  result  that is obtained, so it is 
performed only when  permitted by user  options. 

I O .  Loop  unrolling 
Loop  unrolling is similar to tiling  in that it  divides the 
iteration  space  into small  tiles. The  iterations in an 
unrolled  “tile”  execute  copies of the  loop body that have 
been  expanded  (unrolled)  in  place,  rather  than executing 
inner  control  loops  as in  tiling for  cache locality. The 
benefits of loop  unrolling  can  come  from  enhanced 
register locality, enhanced instruction-level parallelism, 

and  hence insensitive to loop  ordering. 
‘Loop-invariant operations on scalar  variables are invariant in the  entire  loop  nest 
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and  reduced  loop  overhead. However, the  unroll  factors 
must be carefully selected  to avoid run-time  performance 
degradation  from excessive unrolling  due  to  register spills 
and  code size expansion, as well as  the  inconvenience of 
excessively long  compile  times. 

The  approach  taken by the  transformer  to  select  unroll 
factors is similar to  the  approach  taken in Section 7 for 
selecting tile sizes. The  constrained  optimization  problem 
to  be solved  in this  case is as follows: 

The objective function  to  be minimized is the  amortized 
execution time  for a  single iteration of the  original 
loop  nest, when  taking into  account  the savings from 
unrolling. In  contrast  to  the  case of loop tiling,  this cost 
function  cannot  be effectively approximated as  a rational 
polynomial of unroll  factors. Min and max operators  are 
used  in  this cost  function  to  properly  model cross- 
reference  register  reuse, as well as  hardware 
characteristics such  as the  IBM  POWER2* processor’s 
quad-load/quad-store  instructions [43]. 

following: 
The  constraints  to  be satisfied by the  solution  are  the 

Each  unroll  factor must be  integer-valued  and is 
bounded  above by a  compiler-specified constant  for 
the  sake of compile-time efficiency. 
The  number of distinct  floating-point  array  references 
in the  unrolled  loop body  must not exceed the 
effective number of floating-point  registers 
available. 
The  number of distinct integer  array  references  and 
array  index  registers  in  the  unrolled  loop body must 
not exceed the effective number of fixed-point 
registers available. 

Continuing with the matrix  multiply-transpose example 
from  the  previous  sections,  we  see  that  both  loops il 
and i2 carry  register locality that  can  be exploited by 
unrolling. For this  example, loop  unrolling is constrained 
by the effective number of floating-point  registers 
available, which is assumed  to  be 28 to allow the  compiler 
at  least  four  registers  to  use  for  code  generation. Using an 
approach similar to  the memory cost analysis  in Section 6, 
the  number of distinct  floating-point  registers  required by 
a u1 X uz X u, unroll configuration is given by DR(u,, uz, u3)  
= uluz  + (u,u, + u p , ) ,  where u l ,  u2 ,  and u, are  the 
unroll  factors  for  loops il, i2, and i3, respectively. The 
uIuz  term  represents  duplicated  copies of the  scalar 
replacement  temporary  for  array a after  unrolling,  and  the 
(u,u, + u2u3)  term  represents  the  number of registers 
required  to  hold  values of arrays b and c. The  number of 
distinct load  instructions in an  unrolled  iteration is also 
(u,u, + u2u3) .  Ignoring possible instruction-level 
parallelism benefits, the objective function  to  be 

Example of divide replacement. 

minimized for  this example is simply the  amortized 
number of loads  per  iteration, 

F h , ,  u2, u,) = - +”. 
We  see  from  function F that we can get  an  improvement 
by increasing u1 or u2 ,  but increasing u, leaves the value 
of function F unchanged. 

The  unroll  factors  selected by the  transformer  for  this 
objective function  are u1 = 4, u2 = 4, and u3 = 1. This 
leads  to a total of DR(4, 4, 1) = 24 floating-point 
registers  used in the  unrolled  loop body, which is less than 
the limit of 28. Increasing  either u1 or u2 to 5 makes DR 
equal 29, which exceeds the limit. 

A  source-level  listing of the  transformed  code  obtained 
from  the  transformation  report  generated by the XL 
FORTRAN  compiler is shown in  Appendix A. The 
transformations  performed  include  loop tiling 
and  scalar  replacement  from  the  previous sections, 
and  loop  unrolling as described in  this section. 
Notice  the  “remainder  loops”  required  for  correct  code 
generation  for  the  loop-unrolling  transformation  when  the 

U1U3 + u p ,  1 1 

‘1’2’3 ‘2 ‘1 

” 

257 

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997 V. SARKAR 



258 

compiler does not know whether a loop iteration count is 
a multiple of its unroll factor. 

11. Data dependence analysis 
The data  dependence  tester provides data dependence 
information for pairs of array subscript references; such 
information is used by the transformer to test the legality 
of various proposed transformations. The data  dependence 
tester is designed on a demand-driven model. It is invoked 
when, and only when, it is deemed necessary by the 
transformer, and at  the level of detail that is specified by 
the transformer. One of the main advantages is the 
simplification that arises from not having to worry about 
transforming a  data dependence graph after  loop 
transformations such as distribution and fusion. An 
additional advantage of demand-driven data  dependence 
testing is compile-time savings for cases in which the 
transformer does not have to compute data dependences, 
e.g.,  when the transformer's cost estimation shows that 
the desired configuration is the same as the original 
configuration (a frequent case in a well-tuned program). 
Inherent in the demand-driven model is the possibility 
that  the  data dependence tester may sometimes be called 
repeatedly (hence unnecessarily) for the same pair of 
array subscript references. In practice this is not a 
problem, since the cost of the extra calls  is  typically small 
compared to the rest of the compile time for these cases. 

The input to the  data  dependence  tester comprises 

1. Subscript tables for a pair of array subscript references. 
2. Loop-bound tables for lowerlupper bounds of the 

common loops enclosing both array subscript 
references. 

3. An input set of dependence vectors which  specify 
conditions under which testing should be performed. 

4. A flag to indicate the action that should be taken for 
implausible (lexicographically negative) dependence 
vectors found. 

The  output of the  data dependence tester comprises 

1. A  set of data dependence vectors specifying conditions 
under which a  dependence was found. 

2. A flag  specifying whether the dependence vectors in 
this set are exact or conservative. 

3. Extra information when the dependence is  known to 
have some additional constraints, e.g., dependence 
holds for only one  iteration of the loop, or for only one 
pair of iterations in the loop, or if there is a split-point. 

Before applying  any of the data  dependence testing 
algorithms, some preparation/normalization must be done. 
In general, algorithms in the data dependence tester 
require that loops with constant steps have already been at 
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least seminormalized to a  stride of +l  (but not necessarily 
a lower bound of l), and that symbolic expressions 
appearing in the array subscript references and loop 
bounds have been decomposed into constant and symbolic 
coefficients of the  loop index variables. The analyzer 
component of the ASTI optimizer builds a subscript table 
for each array reference and a  loop bounds table for each 
loop-bound expression, so that this information is 
available to the  data dependence tester when the 
transformer is invoked. 

Data dependence vectors 
Following prior work  in the area of iteration-reordering 
loop transformations, we represent the loop-carried data 
dependence constraints for a loop nest by a  set of 
dependence vectors D. A dependence vector for  a  loop 
nest of size n is an n-tuple, h = ( d l ,  . . , d") ,  where entry 
d ,  corresponds to  the  kth loop (counting from outermost 
to innermost). In practice, there  are two kinds of values 
for d ,  that  are of interest [44]: 

1. Distance-d, is an integer value, d ,  = y E Z .  
2. Direction-d, is one of the six values + (positive), 

- (negative), f (nonnegative), f (nonpositive), 
(nonzero), * (any)6. 

Let us use S(d,)  to denote  the  set of integer values that 
is represented by d,.  In  the case of a distance value, S(d,)  
is a singleton set, i.e., S(d,)  = { y } .  When d,  is one of the 
six possible direction values, S(d,)  = {xlx E Z A x's sign 
is contained in d , } .  The  set of integer tuples denoted by 
dependence vector h = { d l ,  . . . , dn}  is  given  by tuples@) 
= S ( d l )  X . . . X S(d,) ,  i.e., the Cartesian product of 
the integer sets corresponding to d , ,  . . , d,.  If D is the 
set of all of the  dependence vectors for a  loop  nest, 
tuples(D) is simply the union of the tuple sets  for each 
dependence vector in  D, that is, tuples(D) = UiEo 
tuples(h). An integer tuple, a' = (al, . . , an) ,  is 
lexicographically negative (positive) if and only  if its first 
nonzero element, ai, is negative (positive); i.e., ai = 0, 
V l  5 j < i and a, < 0 (al  > 0). Finally, an execution 
instance of a loop nest of size n is defined as an n-tuple, 
a' = ( a l ,  . . . , a n ) ,  where a, specifies the iteration number 
of the kth loop. 

enforces a  partial order on the execution instances of the 
loop nest; for any two distinct execution instances ii and 6 ,  
if their difference 6 - ii belongs to tuples(D), instance 6 
must be executed after instance ii. This partial order 
summarizes all of the  iteration-reordering constraints 

The set of dependence vectors for a  loop nest, D, 

operators, <, >, 5, a, #, and * respectively [l]. We do not represent an = 
6An alternate notation for the six direction values is to use the relational 

direction in our framework because it is equivalent to a zero distance. 
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imposed by data  dependences. We assume  that  the 
original  execution order satisfies this  partial  order.  This 
implies that  tuples(D)  cannot  contain a  lexicographically 
negative integer  tuple  for  the  original  loop  nest  (otherwise 
the  original  execution  order  can  be shown to  violate  some 
data  dependence  constraint).  Further, if D’ is the  set of 
dependence  vectors  that  result  after a loop  transformation 
is applied,  and  tuples(D’)  contains a  lexicographically 
negative tuple,  the  transformed  loop nest can  be shown to 
violate  some  data  dependence  constraint,  and so the 
transformation must be illegal. This  fact  forms  the basis of 
the  data  dependence legality test  for  iteration-reordering 
loop  transformations. 

Recurrence recognition 
When a recurrence  operation is encoded using  a 
FORTRAN  loop,  the  order in  which the values are 
accumulated  becomes fixed. For floating-point data, if the 
values  are  accumulated in a different  order,  the  numerical 
result may be  different, even though  the  result is 
algebraically equivalent  to  the original. In many  cases, the 
order in which values are  accumulated is not  important  to 
the  programmer,  and  the  programmer may communicate 
this to  the  compiler via appropriate  options  and directives. 
In  the  case of recurrences  that  arise  from  the  scalarization 
of FORTRAN 90 intrinsic  functions,  the  language 
specification  allows the  language  translator  to  accumulate 
the  result in any  order.  In all of these cases, 
recognitiontidentification of recurrence  constructs by the 
compiler is important, since the  transformer  can  then 
ignore  loop-carried  dependences  carried by accumulator 
variables  and  thus  select a transformation  that might not 
otherwise have been legal. For  some  transformations 
(notably  loop  unrolling  and  loop  parallelization),  some 
additional  transcription  support is required  to  generate 
correct  and efficient code  for  recurrences. 

The  recurrence  recognition  performed by the  ASTI 
transformer identifies  definitions that  correspond  to 
accumulator  updates in  a recurrence,  and also determines 
the  set of enclosing loops for which the definition 
constitutes a reduction. A recurrence may span  multiple 
statements in the  loop body. 

For  example,  the  variable s is  used both  as  an 
accumulator  and as an  intraloop  temporary in the 
following loop nest: 

do i = 1, n 
do j = 1, n 

s = s + a ( i ,  j) 
s = s + b ( i , j )  

end do 
end do 
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Only the first use of s and  the  last definition of s are 
identified  as references  to  the  accumulator.  Without 
recurrence  recognition,  the  transformer  has  to  make  the 
worst-case  assumption  that  the  initial  set of loop-carried 
dependence  vectors is D = {( + , *), (=, +)> due  to  the 
definitions  and  uses of variable s. After recognizing the 
recurrence,  the  transformer will compute D = fl and  then 
proceed  to  select a loop  interchange  transformation  for 
improved  cache locality. Appendix B shows the  source- 
level  listing of the  transformed  loop  nest  for  this  example, 
after  recurrence  recognition  enabled  loop  interchange  and 
loop unrolling. 

12. Related work 
To  the  best of our knowledge, the  ASTI  transformer is the 
first system to perform  automatic  selection of  this  wide 
range of transformations using  a cost-based  framework. 
The KAP [13] and  VAST [14] preprocessors have made 
high-order  transformations available to  users  for over  a 
decade now. While  they provided  a great  convenience  for 
users, most of the  experience with these  preprocessors 
has  been with  using  specialized options  for  different 
applications rather  than with automatic cost-based selection 
of high-order  transformations.  As  mentioned  earlier,  the 
transformations  implemented  in  the  ASTI  transformer 
have  all been  proposed in past work, but  without any 
algorithms  for applying them collectively. Because of space 
limitations, we discuss only a representative  subset of 
prior work that is most relevant  to  our  paper. 

improves the locality of a loop nest by transforming  the 
code via interchange,  reversal, skewing, and tiling based 
on a mathematical  formulation of reuse  and locality, 
and a loop  transformation  theory  that unifies the  various 
transforms as unimodular  transformations.  This  algorithm 
has  been  implemented in the  SUIF  research  compiler [45]. 
Their  goal is to find the  best  combination of loop 
interchange, skewing, reversal, and tiling that maximizes 
the  data locality  within loop  nests,  subject  to  the 
constraints of direction  and  distance vectors. Unlike  our 
approach of locality analysis by estimating a count of the 
number of cache misses, they  measure  the locality of a 
transformed  code by intersecting  the  reuse  vector  space 
with the localized vector  space.  We expect our  cost 
estimation  to  be  more  accurate  because  it  takes  into 
account  more  factors  than  just  the  number of loops 

Wolf and  Lam [35] propose  an  algorithm  that 

carrying reuse,  and gives an  estimate of the  number 
of distinct cache  lines accessed.  Also, the locality 
transformation in their  framework is limited  to  at most 
two steps consisting of a unimodular  transformation 
followed by a  tiling transformation.  In  contrast,  the  ASTI 
transformer  supports a general  sequence of iteration- 
reordering  loop  transformations  combined with loop 
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distribution,  fusion,  unrolling,  and  scalar  replacement, 
as  described  in  this  paper. 

In [46], Bailey presents a thorough analysis of the 
behavior of a direct-mapped  cache with strided  data 
access, and gives a formula  for  estimating  cache efficiency. 
Using  cache efficiency, the  compiler  can  detect 
unfavorable  strides  and  automatically  adjust  array 
dimensions  through  padding  techniques. However, this 
work does  not  address  the  overall  problem of locality 
analysis (estimating  the  number of misses) and 
optimization of array  references in  a loop  nest. 

In  the  area of automatic  selection of tile sizes, 
Schreiber  and  Dongarra [47] address  the  problem of 
deriving an  optimized  tiled  (hyperparallelepiped)  iteration 
space  to minimize communication traffic. They  assume a 
restricted  loop/array  model in which the  iteration  space 
and  data  space  are isomorphic. Most of the  paper is 
devoted  to solving the  problem  for  the special case when 
all block sizes are  equal.  Their  technique is very different 
from ours, and also too time-consuming for  use in 
production-quality  compilers. 

The  inspiration  for  the  loop  structure  graph  originated 
from  the  forward  control  dependence  graph  (FCDG)  used 
in the  PTRAN system to  represent  interval  structure  and 
statement  parallelism [23-251. The  FCDG is a variant of 
the  PDG in which the  program's  loop  structure is made 
evident by control  dependences  that  are  derived  partly 
from pseudo-control-flow edges  connected  to  interval  pre- 
header  and post-exit nodes.  We  observed  three  limitations 
with the  FCDG  representation: 

1. The  FCDG is not well defined for a program with an 
irreducible  control flow graph;  at  the very least, 
irreducibility causes  the  FCDG  to  be cyclic, whereas all 
of the  algorithms  that  use  the  FCDG  assume  that  it is 
acyclic. 

2. Though  the  FCDG  facilitates  the  identification of 
statement  parallelism,  it  does  not  lend itself to  
performing  loop  transformations. 

3. The  creation of pseudo-control-flow edges  for  the 
FCDG  can  lead  to less precise  data flow information 
and  hence  less  precise  analyzer  information  (constant 
propagation,  induction variables,  etc.). 

The  loop  structure  graph  remedies  the above problems 
with the  FCDG as follows: 

1. An  irreducible  region is merged  along with its smallest 
containing  single-entry region into a  single loop  node, 
thus isolating  it from  the  other  loops in the LST, 
which remain eligible for all transformations  and 
optimizations. 

2. Loop  transformations  are easily performed by local 
260 updates  to  the  LST  nodes  and  the  LCFG  and  LDG 
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graphs.  For  the  common  case of iteration-reordering 
loop  transformations,  the  update is minimal  since the 
loop body is unchanged [29]. 

3. No pseudo-control-flow  edges  are  created in the  LSG, 
since  the  program's  loop  structure is made  self-evident 
by the  hierarchical  structure of the  LSG. 

Several  papers  related  to  iteration-reordering 
transformations have been  published in the  literature. 
Lamport [44] introduces  the  hyperplane  method  and  the 
coordinate  method  for  parallel  execution of iterations in  a 
loop  nest.  Both  methods  are special forms of iteration- 
reordering  transformations.  The  framework  used in [44] 
included  dependence  vectors  that  contain  distance  or 
direction values, and  iteration-reordering  transformations 
that  can  be  represented by Z" ++ Z" linear mappings. 
Further,  the legality test  for a linear  mapping was based 
on the existence of a  lexicographically  negative tuple in 
the  set of transformed  dependence vectors.  However, the 
focus of the  paper was on the two methods  for rewriting  a 
sequential  loop nest into a form  containing  parallel  loops, 
and  the  framework was developed only to  the  extent 
required by these  transformations.  The  framework  in  the 
ASTI  transformer is much  more general-we support 
linear  and  nonlinear  transformations, allow input  and 
output loop nest sizes to  be  different,  and  permit all 
iteration-reordering  transformations  to  be  composed 
together in  a general way. 

Wolfe [ l ]  introduces a comprehensive  data  dependence 
graph, with edges  labeled by direction vectors,  as the basis 
for a loop-transformation  framework. Several iteration- 
reordering  transformations  were  supported by this 
framework, e.g., loop  interchanging,  iteration  space 
tiling  (blocking), loop skewing, vectorization,  and 
concurrentization. However, each  transformation  had its 
own  special  legality test  based on the  direction  vectors  and 
on the  nature of loop-bound expressions. Our  framework 
is more  general  in  that  we  treat  transformations  as 
independent  entities,  separate  from  the  data  dependence 
graph. 

iteration-reordering  transformations  based on supernode 
partitioning,  an  aggregation  technique achieved by 
hyperplane  partitioning, followed by iteration  space tiling 
across hyperplane  boundaries. In this  framework,  data 
dependences  are  represented by dependence  cones  rather 
than  dependence vectors. They also provide a general 
code-generation  algorithm  for any linear  transformation 
that  corresponds  to a unimodular  change of basis [49]. 
Their  framework  incorporates  loop  interchange, 
hyperplane  partitioning,  and  loop tiling  (blocking)  in  a 
unified way, for  loop  nests with linear  bounds expressions. 
Our framework  takes  its  inspiration  from  this kind of 
unified approach  to  loop  transformations,  but distinguishes 

Irigoin  and  Triolet [48] describe a framework  for 
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itself by efficient  cost-based algorithms  for  automatic 
selection of high-order  transformations. 

Finally, McKinley, Carr,  and Tseng [lo] study 
improvements  in  data locality by using the  loop 
permutation,  fusion,  distribution,  and reversal 
transformations.  These  transformations  form a subset of 
the  transformations  implemented in the  ASTI  transformer 
(their study does  not  include  scalar  replacement,  loop 
tiling, and  loop  unrolling).  Their  experimental  results 
show wide applicability of these locality-improving 
transformations  for existing FORTRAN 77 and 
FORTRAN 90 programs. 

13. Conclusions 
In this paper, we described how the  transformer 
component of the  ASTI  optimizer  automatically  selects 
high-order  transformations  for a given input  program  and 
a target  uniprocessor, so as  to improve  utilization of the 
memory  hierarchy  (including cache  and  registers)  and 
instruction-level  parallelism. The  ASTI  transformer is used 
daily in production  mode in the  latest IBM XLF  product 
compilers  for RS/6000 and  PowerPC  uniprocessors  and 
SMPs,  and in the IBM XLHPF  product  compiler for the 
SP  distributed-memory  multiprocessor.  The  experience in 
building the  transformer  has  established  the feasibility of 
pursuing a quantitive  approach in building  optimizing 
compilers  that deliver  effective and  robust  optimizations 
for a  wide range of programs  and  target  architectures.  It 
also established  the feasibility of building  a compiler 
framework  that  supports  incremental  and  demand-driven 
optimization with low compile-time  overheads.  To  the best 
of our knowledge, the  ASTI  transformer is the first  system 
built that  supports  automatic  selection of the wide range 
of transformations  described in this  paper, using  a  cost- 
based  framework. 

Appendix A Transformed  matrix  multiply- 
transpose  program  after  loop  unrolling 

1585-103 *** Loop  Transformation  Report *** 

subroutine mmt(a,b,c,n) 

do i2=l,n,l 

do il=l,n,l 

a(il,i2)=0d@ 

end do 

end  do 

do bb$-12=l,n,50 

do bb$-13=l,n, 51 
do bb$-14=l,n,53 
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do il=MAXO(l,bb$_12) ,MINO(n,49+b$-12)-3,4 

do i2=MAXO(1,bb$-i3),MINO(n,50+bb$-13)-3,4 

ScRep-l9=a(il,i2) 

ScRep_2O=a(il+l,i2) 

ScRep_Zl=a(il+Z,iZ) 

ScRepP22=a(i1+3,i2) 

ScRep_23=a(il,iZtl) 

ScRepP24=a(il+l,i2+i) 

ScRepP25=a(i1+2,i2+1) 

ScRep_26=a(il+3,i2+1) 

ScRepP27=a(il,i2+2) 

ScRep_28=a(il+l,i2+2) 

ScRepP29=a(i1+2,i2+2) 

ScRep_3O=a(i1+3,i2+2) 

ScRep_31=a(il,i2+3) 

ScRep_32=a(il+l,i2+3) 

ScRepP33=a(i1+2,i2+3) 

ScRepP34=a(i1+3,i2+3) 

do i3=MnXO(l,bb$-14) ,MINO(n,SO+bb$-14) ,1 
ScRep-l9=ScRep-l9+b(i2.i3)*c(i3,il) 

ScRep-20=ScRep-20+b(i2,i3)*c(i3,il+l) 

ScRep-21=ScRep-2l+b(i2,i3)*c(i3,il+2) 

ScRep-22=ScRep-22+b(i2,i3)*c(i3,il+3) 

ScRep_23=ScRep_23+b(i2+1,i3)*c(i3,il) 

ScRep-24=ScRep-24+b(i2+l,i3)*c(i3,i1+1) 

ScRep-25=ScRep-25+b(i2+l,i3)*c(i3,il+2) 

ScRep_26=ScRep_26+b(i2+1,i3)*c(i3,ii+3) 

ScRep_27=ScRep_27+b(i2+2,i3)*c(i3,il) 

ScRep-28=ScRep-28+b(i2+2,i3)*c(i3,il+l) 

ScRep-29=ScRep-29+b(i2+2,i3)*c(i3,il+2) 

ScRep-30=ScRep-30+b(i2+2,i3)*c(i3,il+3) 

ScRep-31=ScRep-3l+b(i2+3,i3)*c(i3,il) 

ScRep-32=ScRep-32+b(i2+3,i3)*c(i3,il+l) 

ScRep_33=ScRep_33+b(i2+3,i3)*c(i3,i1+2) 

ScRep_34=ScRep_34+b(i2+3,i3)*c(i3,i1+3) 

end  do 

a (il, i2) =ScRep-l9 

a(il+l,iZ)=ScRep-Z@ 

a(i1+2,i2)=ScRep-21 

a(il+3,iZ)=ScRep-22 

a(i1, i2+1) =ScRep-23 

a(il+l,i2+1)=ScRep-24 

a(i1+2,iZ+l)=ScRep-25 

a(i1+3,i2+1)=5cRep-26 

a(il,i2+2)=ScRep-27 

a(il+l,i2+2)=ScRep-28 

a(i1+2.i2+2)=ScRepp29 

a(il+3,i2+2)=ScRep-30 

a(il,i2+3)=ScRep-31 

a(il+l,i2+3)=ScRep-32 

a(i1+2,i2+3)=ScRep-33 

a(i1+3,i2+3)=ScRepP34 

end  do 261 
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a(il,i2)=a(il,i2)+b(i2,i3)*c(i3,il) 
a(il+l,i2)=a(il+l,i2)+b(i2,i3)*c(i3,il+l) 
a(i1+2,i2)=a(il+Z,i2)+b(i2,i3)*c(i3,i1+2) 
a ( i l + 3 , i 2 ) = a ( i 1 + 3 , i Z i + b ( i 2 , i 3 ) * c ( i 3 , i l + 3 )  

end  do 
end  do 

end  do 
do il=il,MINO(n,49+bb$_l2) ,1 
do i2=MAXO(l,bb$-13),MINO(n,5O+bb$-l3),1 

do  i3=MAXO(l,bb$-14) ,MINO(n,50+bb$-14),1 
a(il,i2)=a(il,i2)+b(i2,i3)*c(i3,il) 

end  do 
end  do 
end  do 

end  do 
end do 
end  do 

return 

end 

return 

end 

Appendix 6: Example  of  transforming a loop 
nest  containing  a  recurrence 
Original  program: 

subroutine foo(a,b,s,n) 
real*8 a(n,n)  ,b(n,n) , s  

do i=l,n 
do j = l , n  

s=s+a(i, j) 
s=s+b(i, j) 

end do 
end  do 

end 

A f t e r  interchange and unrolling: 

subroutine foo(a,b,s,n) 
real*8 a(n,n)  ,b(n,n) ,s 
real*8 ScRed-7,ScRed-8,ScRed-9, 
ScRed-lO,ScRed-ll,ScRed-l2, 

ScRed-l3,ScRed-l4,ScRed-l5 
ScRed-7 = s 

ScRed-8=0. OdO 
ScRed-9=0.  OdO 

ScRed-lO=O.  OdO 

ScRed-ll=O . OdO 
ScRed-l2=O. OdO 
ScRed-l3=O. OdO 

262 ScRed-l4=O.  OdO 

do i=l,n-2,3 
scRed_li=ScReb7+a (i, j ) 

ScRedP7=ScRed-7+b(i, j )  

~c~ed-8=ScRed-8+a(i,I+l) 
ScRed-8=ScRedP8+b(i, j + l )  

scRed-g=ScRed-g+a(i, j+2) 
ScRed-g=ScRed_g+b(i, j+2) 
ScRed-lO=ScRed-lO+a(i+l, j) 
ScRed-lO=ScRed-lO+b(i+l,j) 
ScRed-ll=ScRed-ll+a(i+l,j+1i 
ScRed-ll=ScRed-ll+b(i+l,j+~) 
ScRed-l2=ScReQ12+a(if1,j+2) 
ScRed-l2=ScRed-l2+b(i+l,j+2) 
ScRed-l3=ScRed-l3+a(i+2, j) 
ScRed-l3=ScRed-l3+b(i+2,j) 
Sc~ed-l4=ScRed-l4+a(i+2,j+~) 
ScRed-l4=ScRed-l4+b(i+2,j+l) 
ScRed-l5=ScRed-l5+a(i+2,j+2i 

Sc~ed-l5=ScRed-l5+b(i+2,j+2) 

end do 
do i = i , n  

ScRed_7=ScRed_7+a(i,j) 
ScRed-7  =ScRed-7 +b ( i , j ) 
Sc~ed_8=ScRed_8+a(i,j+l) 
ScRed-8=ScRed-8+b(i,J+l) 
ScRed-9=ScRed-9fa(i,j+2) 
ScRed-9=ScRed-9+b(i,j+2) 

end do 
end do 

s=s+ScRed-7+ScRed-8+ScRed-9+ 

ScRed-1O+Sc~ed-llfScRed-12+ScRed-l3 

scRed-l4tScRed-15 

do j=j,n 
do i=l,n 

s=s+a(i, j) 
s=s+b(i, j) 

end  do 
end  do 

end 
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