
Automatic
selection
of high-order
transformations
in the IBM
XL FORTRAN
compilers

by V. Sarkar

The IBM ASTl optimizer provides the
foundation for high-order transformations and
automatic shared-memory parallelization in the
latest IBM XL FORTRAN (XLF) compilers for
RS/6000'" and PowerPC@ uniprocessors and
symmetric multiprocessors (SMPs), and for
automatic distributed-memory parallelization
in the IBM XL High-Performance FORTRAN
(XLHPF) compiler for the SP'" distributed-
memory multiprocessor. In this paper, we
describe how the transformer component of
the ASTl optimizer automatically selects high-
order transformations for a given input
program and a target uniprocessor, so as to
improve utilization of the memory hierarchy
(including cache and registers) and instruction-
level parallelism. Our solution is centered on a
quantitative approach in which optimization
problems are formulated using quantitative
cost models. The loop and data
transformations currently employed by the
ASTl transformer for optimizing uniprocessor

performance are loop distribution, loop
interchange, loop reversal, loop skewing, loop
tiling/blocking (with compiler-selected tile
sizes), loop fusion, unrolling of multiple loops
(with compiler-selected unroll factors), and
scalar replacement of selected array
references. The design and initial
implementation of the ASTl optimizer were
completed during the 1991-1993 time period.
To the best of our knowledge, the ASTl
transformer is the first system to perform
automatic selection of this wide range of
transformations using a cost-based
framework.

1. Introduction
Major changes in processor architecture over the last
decade have created a demand for new compiler
optimization technologies. Optimizing compilers have
risen to this challenge by steadily increasing the
performance gap between optimized compiled and
unoptimized compiled code to a level that already exceeds

"Copyright 1997 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

of this paper may be copied or distrlbuted royalty free without further permission by computer-based and other information-service systems. Permission to republish any other
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,

portion of this paper must be obtained from the Editor.

0018-8646/97/$5.W 0 1997 IBM

233

IBM J . RES. DEVELOP. VOL. 41 NO. 3 MAY 1997 V. SARKAR

the performance gap between two successive generations
of processor hardware. One class of compiler
optimizations that has recently made significant
contributions to improving the performance of optimized
code is high-order transformations. High-order (or high-
level) transformations operate on an intermediate
representation of the program that is close to the source
program level, as opposed to traditional compiler
optimizations that operate on an intermediate
representation that is close to the machine level. Examples
of high-level transformations include loop transformations
such as loop interchange and loop tiling, data
transformations such as alignment and padding, and in-
line expansion of procedure calls.

While a judicious use of high-order transformations can
significantly improve performance, improperly selected
high-order transformations can also degrade performance
to levels that are worse than unoptimized code. For
example, the loop interchange transformation can improve
the cache locality of a loop nest with a poor input loop
ordering, but can degrade the performance of a well-tuned
loop nest. The loop distribution and loop fusion
transformations show a similar behavior as well. In
contrast, traditional optimizations (e.g., constant folding,
register allocation) rarely degrade performance. This
characteristic highlights an important distinction between
high-order transformations and traditional optimizations.
The impact of changing a compiler algorithm for
performing a traditional optimization is usually an
increase or decrease in the amount of performance
improvement obtained, but rarely a performance
degradation compared to unoptimized code. Thus,
automatic selection of program transformations has
to be performed much more carefully for high-order
transformations than for traditional optimizations.

The IBM ASTI optimizer provides the foundation for
high-order transformations and automatic shared-memory
parallelization in the latest IBM XL FORTRAN (XLF)
compilers for RS/6000* and PowerPC* uniprocessors and
symmetric multiprocessors (SMPs), and for automatic
distributed-memory parallelization in the IBM XL High-
Performance FORTRAN (XLHPF) compiler for the SP*
distributed-memory multiprocessor. In this paper, we
describe how the transformer component of the ASTI
optimizer automatically selects high-order transformations
for a given input program and a target uniprocessor, so as
to improve utilization of the memory hierarchy (including
cache and registers) and instruction-level parallelism. The
loop and data transformations currently employed
by the ASTI transformer for optimizing uniprocessor
performance are loop distribution, loop interchange, loop
reversal, loop skewing, loop tiling/blocking (with compiler-
selected tile sizes), loop fusion, unrolling of multiple loops

234 (with compiler-selected unroll factors), and scalar

V. SARKAR

replacement of array references. The design and initial
implementation of the ASTI optimizer were completed
during the 1991-1993 time period. To the best of our
knowledge, the ASTI transformer is the first system to
perform automatic selection of this wide range of
transformations using a cost-based framework.

The transformations implemented in the ASTI
transformer have all been proposed in past work by other
researchers with motivating examples showing cases in
which the transformations can be used to improve
performance (e.g., see [l]). Many of these transformations
were first proposed in the context of vectorizing and
parallelizing compilers. However, there has been little
attention paid in the research literature to the problem of
how a compiler should automatically select these high-
order transformations for optimizing uniprocessor
performance, especially for the wide set of transformations
employed by the ASTI transformer. Our solution is
centered on a quantitative approach in which optimization
problems are formulated using quantitative cost models,
which are built on target hardware parameters and on
compiler estimates of memory costs, execution time costs,
and execution frequencies. In general, there is a many-to-
many mapping between high-order transformations and
the hardware resources that they optimize. Multiple
transformations may be used to optimize a single resource
(e.g., the use of loop interchange, tiling, and fusion to
improve cache locality), and multiple resources may be
optimized by a single transformation (e.g., the use of loop
unrolling to improve both register locality and instruction-
level parallelism).

In addition to improving the execution time of the
optimized program, great care has been taken to ensure
that the flexibility in the ASTI transformer does not come
at the cost of high compile-time overhead. Efficient
compile times in the ASTI transformer are obtained by
avoiding modification of the program after each
transformation (and thus avoiding repeated reanalysis to
obtain updated control and dataflow information).
Instead, the set of transformations to be applied on a
procedure is accumulated as updates to the loop
structure graph data structure defined in Section 4. The
intermediate language is updated only after all of the
encompassed transformations are finalized, after which
reanalysis is not required in ASTI. This approach also
allows "what-if" analysis of different loop transformation
scenarios. Compile-time performance is further improved
by decomposing the input procedure into regions and
performing transformations on a region-by-region basis.
Since the array data dependence analysis required for
high-order transformations can have a worst-case
execution time that is quadratic in the size of the region,
this decomposition can be very effective in reducing
compile time. The current decomposition approach used

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1991

by the transformer is to place in a single region each
sequence of loops that are contiguous at the outermost
nesting level. Compile-time performance is further
improved by the use of demand-driven data dependence
analysis, in which transformation profitability is computed
before data dependence analysis so as to avoid the
overhead of dependence analysis for loop nests that are
already well-tuned in the input program (and thus would
not benefit from transformation).

The rest of the paper is organized as follows. Section 2
gives an overview of the ASTI transformer component.
Section 3 introduces a simple matrix multiply-transpose
program that is used as a running example in many of the
following sections. Section 4 describes the loop structure
graph (LSG) data structure, which provides the foundation
for the transformer. Section 5 describes how the loop
distribution transformation is performed on the LSG
using demand-driven data dependence analysis.
Section 6 contains the details of the memory cost analysis
performed by the transformer. Section 7 outlines how
the transformer selects iteration-reordering loop
transformations for locality optimization of the input loop
nest, including automatic selection of tile sizes for the
tiling transformation. Section 8 outlines the algorithm
used by the transformer to automatically perform loop
fusion. Section 9 describes the loop-invariant scalar
replacement step, and how loop transformations are
selected to increase the opportunity for loop-invariant
scalar replacement. Section 10 outlines how the
transformer decides which loops to unroll and what the
unroll factors should be. Section 11 describes the
transformer’s demand-driven data dependence tester.
Finally, Section 12 discusses related work, and Section 13
contains our conclusions.

2. Overview of the ASTI transformer
In this section, we give an overview of the transformer
component of the ASTI optimizer; this is the component
that selects and implements high-order transformations.
Figure 1 shows how the ASTI optimizer fits into the
overall structure of the IBM XL FORTRAN compilers.
The ASTI optimizer accepts input and generates output in
a high-level compiler intermediate language used to
connect ASTI to the front-end and back-end components
of the compiler. ASTI translates the intermediate
language into a high-level intermediate representation,
HIR, designed to represent the constructs of the
FORTRAN and C programming languages in data
structures that are suitable for high-level program analysis
and transformation. This translation involves converting
flat intermediate language representations of program
statements and expressions into hierarchical linked-list
and tree data structures that are suitable for traversal
and modification by the ASTI optimizer. The HIR

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997

Compiler structure.

intermediate representation is actually referred to as HIL
in the product compiler (for “high-level intermediate
language”), but we refer to it as HIR in this paper to
emphasize that it is an intermediate representation used
internally within the ASTI optimizer and is distinct from
the intermediate language used to connect ASTI to the
front end and back end.

The ASTI optimizer consists of three major
components:

1. Analyzer Performs global intraprocedural control and
dataflow analysis (including static single assignment
form (SSA) construction [2], induction variable analysis
[3], and value numbering [4]) together with a small set
of global optimizations: dead-branch and dead-code
elimination [3], constant propagation [5], and invariant
IF code motion out of loops [3].

2. Scalarizer Converts FORTRAN 90 array language
statements [6] into equivalent sequential loops,

V. SARKAR

235

1 High-level structure of the ASTI transformer.

optimizing the conversion to maintain array statement
semantics (all values on right-hand side evaluated
before storage into the left-hand side) while limiting
the number of array temporaries required. It also
performs optimized expansion of array intrinsic
functions to in-line code.

3. Transformer Performs a sequence of loop
transformations which, for the scope of this paper,
focus on obtaining increased performance on
uniprocessor systems. The primary goal is to make
optimal use of the memory hierarchy (including
registers) and instruction-level hardware parallelism via
transformations such as loop distribution, loop
permutation, loop skewing, loop blocking, loop fusion,
loop unrolling, and scalar replacement. This is the
component that is described in this paper,

The acronym ASTI was derived from the functionalities
provided by these three components and the
interprocedural optimizer shown in Figure 1. The
interprocedural optimizer is currently invoked only as a
post-pass to the transformer. The transformer will benefit
from automatic interprocedural analysis information
and in-line expansion of procedure calls when the

236 interprocedural optimizer becomes available as a pre-pass.

V. SARKAR

In the interim, the user can communicate interprocedural
information to the transformer by using compiler
directives and INTENT attributes and statements in the
FORTRAN 90 language [6].

Figure 2 shows the high-level structure of the ASTI
transformer. The key aspect of the design of the ASTI
transformer that distinguishes it from other optimizers and
makes it extensible and retargetable is a strong separation
among the following procedures:

Initialize LSG-Build the loop structure graph (LSG)
data structure for specified single-entry single-exit
regions from the HIR and related analysis information.

transformations, guided by parameterized hardware
costs.

Estimate costs-Estimate the profitability of

Propose transformations-Select a set of transformations

Analyze data dependences-Perform demand-driven data
dependence testing on pairs of array references.
Test for legality-Use data dependence and other
analysis information to test for legality of proposed
transformations.
Commit transformations-Select transformations to be
applied to the input program.
Update LSG-Incrementally update the LSG data
structure according to selected transformations.
Rewrite HIR for program region-Update the HIR in
accordance with the selected transformations recorded
in the LSG.

on the basis of estimated costs.

In addition to uniprocessor target machines, this overall
structure of the ASTI transformer is used for automatic
shared-memory parallelization [7] in the latest IBM XL
FORTRAN (XLF) compiler for PowerPC-based symmetric
multiprocessors (SMPs), and is also used in the IBM XL
High-Performance FORTRAN (XLHPF) compiler for
performing transformations before and after generating a
single-program multiple-data (SPMD) parallel program [8]
for the SP distributed-memory multiprocessor.

Specifically, the ASTI transformer performs the
following ten steps by default when optimizing for a
uniprocessor target machine:

1. LSG initialization.
2. Loop distribution.
3. Identification of perfect loop nests.
4. Reduction recognition.
5. Locality optimization.
6. Loop fusion.
7 . Loop-invariant scalar replacement.
8. Loop unrolling and interleaving.
9. Local scalar replacement.

10. Transcription.

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997

The cost estimation, dependence analysis, and LSG update
procedures shown in Figure 2 can be performed on
demand by any of the steps listed above.

within the default sequence of ten steps listed above,
either by internal switch settings or by user options and
directives (which can be changed over complete programs
or all or part of a loop nest). It is also relatively easy to
extend the transformer by adding new transformations and
modifying the default sequence. In addition to the use of
the transformer in a range of product compilers for
sequential and parallel machines, several prototype
extensions have also been made in order to experiment
with transformations such as array padding and alignment
[9] and data-cache prefetching.

As a concluding note to this section, we present some
measurements comparing the performance of the four
kernel computations (Btrix, Gmtry, Emit, Vpenta) from
the SPECfp92** Dnasa7 benchmark that were studied in
[lo], when compiled with and without use of the ASTI
transformer. Figure 2 summarizes the user execution time
(in seconds) measured for the four kernels on a single
133-MHz PowerPC 604* processor in an IBM RSi6000
Model 530 SMP workstation. The performance
measurements were made using Version 4.1 of the IBM
XL FORTRAN compiler. The bar chart labels refer to the
two different compiler optimization options that were used
to obtain the performance measurements, as follows (the
-qarch=604 option directs the compiler to generate
code for the PowerPC 604 processor):

- 0 3 Compile command: xlf - 0 3 -qarch=604.. .
The -03 option directs the compiler to perform
the highest level of back-end optimization, even
though it may come at the cost of a larger
compile time or a larger memory utilization by
the compiler, compared to -0.

-qhot Compile command: x1 f - 0 3 -qhot
-qarch=604.. .
The -qhot option enables high-order
transformations in the XL FORTRAN compiler,
using the ASTI optimizer described in this
paper'. The -03 -qhot combination can be
viewed as the next (and highest) level of
optimization beyond - 0 3 that is supported by the
compiler.

Transformations can be turned on and off with ease

Figure 3 shows that the automatic high-order
transformations implemented in the ASTI transformer
(i.e., the -qhot option) provided significant speedup
(up to 3.4X) for three of the four kernels. Even larger

'In Release 3.2 of the XL FORTRAN compiler, the -qhot option invoked a hack-
end phase [l l] for performing high-order transformations. That phase 1s no longer
supported, and -qhot is now used to Invoke the ASTI optimizer as described In
this paper.

IBM J . RES, DEVELOP, VOL. 41 NO. 3 MAY 1997

1 Performance measurements on a 133-MHz PowerPC 604 processor
for four Dnasa7 kernels.

speedups can be obtained for other kernel computations,
as discussed in Section 3. Since most high-order
transformations can be implemented by hand in the source
program, the speedup that can be obtained by automatic
selection of high-order transformations will depend on
how much effort has already been spent by the
programmer on tuning the code.

3. Matrix multiply-transpose example
In this section, we introduce a simple matrix
multiply-transpose example that is used as a running
example in many of the following sections. The
FORTRAN 77 code for this example is shown in Figure 4.
Subroutine mmt effectively computes the product of input
matrices b and c and stores the transpose of the result in
matrix a. Array variables a, b, and c are declared as two-
dimensional n X n-sized matrices, and the dimension size
n is unknown at compile time.

Figure 5 summarizes some performance measurements
for this example program on a single 133-MHz PowerPC
604 processor in an IBM RS/6000 Model J30 SMP
workstation. These performance measurements were made
for a single call to subroutine mmt () for n = 500. The
performance measurements were made using Version 4.1
of the IBM XL FORTRAN compiler. The labels on the
x-axis in the bar charts in Figure 5 refer to different
compiler optimization options that were used to obtain the
performance measurements, as follows (the -qarch=604

V. SARKAR

237

[Matrix multiply-transpose example.

option directs the compiler to generate code for the
PowerPC 604 processor):

unopt

- 0 2

-03

- Pk

-Pv

238

Compile command: xlf -qarch=604.. .
The compiler generates unoptimized code in
the absence of any optimization option.
Compile command: xlE -02 -qarch=604.. .
This is the default level of optimization
performed by the XL FORTRAN compiler;
i.e., -02 is the same as -0.
Compile command: xlf -03 -qarch=604.. .
The -03 option directs the compiler to
perform additional back-end optimizations that
may come at the cost of a larger compile time
or a larger memory utilization by the compiler,
compared to -02.
Compile command: x l f -03 -Pk -wp,
-optimize=5, -scalaropt=3
-qarch=604.. .
The -Pk option directs the compiler to invoke
the “KAP for IBM XL FORTRAN” source-to-
source preprocessor [13] before compilation,
for additional optimization. The -wp,
-optimize=5, -scalaropt=3
command string enables the highest
optimization levels supported by this
preprocessor.
Compile command: x l f -03 -Pv -wp,
-eavx -qarch=604.. .
The -PV option directs the compiler to invoke
the “VAST-2 for XLl FORTRAN” source-to-
source preprocessor [14] before compilation,
for additional optimization. The -wp, -eavx
command string enables the highest
optimization levels supported by this
preprocessor.

-qhot Compile command: xlf -03 -qhot
-qarch=604 . . .
The -qhot option enables high-order
transformations in the XL FORTRAN compiler,
using the ASTI optimizer described in this paper.
The -03 -qhot combination can be viewed as
the next (and highest) level of optimization
beyond -03 that is supported by the compiler.

-essl Compile command: xlf -03 -less1
-qarch=604.. .
Since the matrix multiply-transpose example
uses standard dense-matrix operations, we
include performance measurements obtained by
rewriting the program to call the following
IBM Engineering Scientific Subroutine Library
(ESSL) routines for matrix multiplication and
transpose in place of subroutine mmt :

c a l l dgemm (IN’, ‘N’ , n , n, n , 1 . DO,

b , n , c , n , O.DO, a , n)
c a l l dgetmo (a, n , n, n, a , n)

The - l e s s1 option directs the compiler to
search the l i b e s s l . a library file to find
definitions of the dgemm and dgetmo routines
[15, 161. This option is technically not an
optimization option, since it involves a rewrite
of the source program. However, we include
this case in the performance measurements,
since it represents an ideal performance goal
for optimizing compilers, viz., to match or beat
the performance of well-tuned handcrafted
code for a given processor.

Figure 5 is a scatter plot illustrating the user + system
execution times (in seconds) measured for the different
optimization options. The execution time was dominated
by the user time component-the system execution time
was almost negligible (less than 0.1 seconds in all cases
except -lessl, for which it was 0.4 seconds). The
measurements were repeated ten times, and the scatter
plot shows significant variation (up to 20%) in execution
times for the first five cases (all cases except -qhot and
-1essl). The most likely source of execution time
variation in the first five cases is the fact that the
PowerPC 604 (like other modern microprocessors) has
caches that are indexed by physical memory addresses
rather than virtual addresses. The last two cases (-qhot
and -1essl) did not exhibit this execution time variation
because they incur significantly fewer cache misses than
the first five cases. In general, some form of operating
system support (e.g., as in [17]) is required to avoid the
execution time variations in the first five cases. However,
the general performance trend for the different compiler

V. SARKAR IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997

options can easily be observed in Figure 5 , despite the
execution time variations.

We see that a speedup of approximately 1.3X was
obtained by turning on optimization at the 02 level. An
extra speedup of approximately l . l X was then obtained
by increasing the optimization level from -02 to -03,
resulting in an execution time of approximately 60
seconds. Adding the -qhot option dramatically reduced
the execution time to 4.1 seconds, which is about the same
as the execution time of 4.3 seconds obtained by using the
ESSL routines. Thus, automatic selection of high-order
transformations using the -qhot option for this simple
program delivered a 15X performance improvement over
the -03 case! In contrast, the -Pk and -PV options
resulted in speedups of approximately l . l X and 2.2X
respectively, compared to the -03 case. The 15X
performance improvement delivered by the -qhot option
came about because of a large reduction in both the
number of data-cache misses incurred by the program and
the number of memory (loadhtore) instructions executed
by the program.

Speedups in the 5-15X range are usually only observed
for kernel computations such as matrix multiply-transpose.
The performance improvement for entire programs, while
still significant, is typically less than 2X. However, this
speedup factor is likely to increase in the future as the
performance gap between processor hardware and memory
systems continues to widen.

4. Loop structure graph
Key questions that arise when building an optimizer for
performing high-order transformations are “What
structures should be used to represent the internal state of
the program, and how should these structures be updated
after each transformation?” We believe that the choice of
internal representation is a critical issue in determining a
compiler’s ability and effectiveness in dealing with
multiple transformations. It is important for the internal
representation to be flexible and general enough to
accommodate new transformations and different orderings
of existing transformations as the optimizer evolves to
target new processor architectures.

Many internal program representations have been
proposed in the past, including the control flow graph [3],
the interval structure [18, 191, the program dependence
graph [20], the static single assignment form [21, 221, the
forward control dependence graph [23-251, the
hierarchical structured control flow graph [26], and the
hierarchical task graph [27]. These representations
simplify analysis and code generation, but updating these
representations after transformation is often tedious,
error-prone, and costly. This is particularly true for loop
transformations, which can dramatically alter the program
form. The problem is exacerbated when compilers

f Performance measurements on a 133-MHz PowerPC 604
processor for matrix multiply-transpose example with different 1 compiler optimization options.

simultaneously use more than one of these representations,
thus enhancing analysis at the expense of transformation
complexity.

In this section, we describe a new internal program
representation called the loop structure graph (LSG),
which is designed to facilitate loop transformations and
statement-reordering transformations without sacrificing
the analysis efficiency of other representations. All of the
high-order transformations performed by the ASTI
transformer use the LSG in such a way that only a small
amount of updating is required after each transformation.
We show how the LSG can be used to perform both
iteration-reordering loop transformations such as
interchange and tiling, and statement-reordering loop
transformations such as distribution and fusion of loop
nests.

The backbone of the LSG is a loop structure tree
(LST), in which each internal node corresponds to a loop
(i.e., a single-entry strongly connected region) in the
control flow graph for the program being transformed, and
each leaf node corresponds to a statement. The LST is
initialized from the interval structure tree [19] of the input
program, and is updated by various loop transformations.
The control flow in each loop body is captured by a loop-
level control flow graph (LCFG), and the data references
in each loop body are summarized in the input/output
lists. In addition, a loop-level dependence graph (LDG) is 239

IBM J. RES. DEVELOP. VOL. 41 NO, 3 MAY 1997 V. SARKAR

~ o o p structure tree for matrix multiply-transpose example.

Loop-level control flow graphs for matrix multiply-transpose
example.

computed on demand for any loop body, when the
transformer has to enumerate its control and data
dependences. Together, the LST and the individual
LCFGs, input/output lists, and LDGs comprise the LSG
representation introduced in this paper. As a whole, the
LSG is initialized from the information provided by the

240 ASTI analyzer component (control flow graph, intervals,

V. SARKAR

SSA, constant propagation, value numbering, induction
variable analysis), but subsequent transformations of the
LSG update only the LSG without reinvoking any of the
analysis algorithms.

The program’s loop structure is self-evident in the
hierarchical structure of the LSG. In contrast to the
forward control dependence graph [23-251, the LSG
avoids the creation of pseudo-control-flow edges that can
potentially weaken analysis by representing control flow
paths that cannot be executed in the original program. An
important strength of the LSG is its robust handling of
irreducible regions [3]. An irreducible region is merged,
with the smallest single-entry region in which it is
contained, into a single-loop node, thus isolating it from
other (containing, contained, or unrelated) loops in the
LST which remain eligible for all transformations and
optimizations.

The following sections describe the four major data
structures in the LSG: the loop structure tree, the loop-
level control flow graph, the inputloutput lists, and the
loop-level dependence graph.

Loop structure tree (LST)
The loop structure tree represents the loop-nesting
structure of the input program. It is derived from the
interval structure used in the modified interval analysis
formulated by Schwartz and Sharir [19]. If the flow graph
contains an irreducible region (a strongly connected
region with multiple entries), we include that irreducible
region within its smallest containing single-entry region
(which we refer to as a loop) and mark that loop as
irreducible. An irreducible loop is not eligible for any loop
transformation, but all other loops are eligible for loop
transformations. Thus, each interior node of the interval
structure tree represents a single-entry loop, and each leaf
node of the interval structure tree corresponds to a node
in the control flow graph. Usually, a node in the control
flow graph is a basic block which may contain multiple
statements. Since many program transformations are based
on single statements, we expand each basic block into its
individual statements when constructing the loop structure
tree. Thus, each interior node (I-node) of the LST
represents a (structured or unstructured) loop, and each
leaf node (S-node) of the LST represents a statement.

related to its loop. For example, the loop-level control
flow graph (LCFG), input/output lists, loop dependence
graph (LDG), loop-carried dependence vectors, and the
transformation sequence are all anchored in the I-node
for the appropriate loop.

Figure 6 shows the loop structure tree built for the
matrix multiply-transpose example program in Figure 4.
For convenience, we create a special I-node, Z.0, that
represents the entire subroutine as a dummy loop. Z.0 is

The I-node serves as a useful anchor for all information

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997

Table 1 Local input/output lists built for the matrix multiply-transpose example of Figure 3.

Loop Scalar-defs Scalar-uses Array-defs Array-uses

1.0 il n
1. 1 i , , i , n , i ;
1.2 i,, i , n , i,, i , a(i l , i,)
1. 3 i , n , i , , i,, i, i,) 4 i 1 , i J , b(i2 , i3), c(i,, i ,)

thus the root of the LST. The remaining I-nodes, 1.1, 1.2,
1.3, correspond to the DO loops with index variables i,, i,,
and i,, respectively. There are ten S-nodes in the LST,
corresponding to the ten statements in the input program.
For a given D O loop, the D O statement corresponds to
its initial zero-trip test, and the ENDDO statement
corresponds to the increment-and-test operation
performed in each iteration. That is why, for example, the
LST shows the DO statement S.2 outside the 1.1 loop and
the ENDDO statement S.9 contained inside the 1.1 loop.

Loop-level control flow graph (LCFG)
For each I-node (loop), L, in LST, we build a loop-level
control flow graph, LCFG(L), that defines the control flow
for L's immediate children in the LST. Each child LST
node (statement or loop) is a node in L's LCFG. We also
add three pseudo-nodes to each LCFG: START, BACK,
and STOP. The pseudo-nodes have the following
interpretations:

START node is the loop entry node.
BACK node is the target of all backward control flow

STOP node is the target of all loop exit branches.
edges.

LCFG edges represent control flow within the loop. Each
LCFG edge is annotated with an ordered pair
(BranchStmt, BranchLabel) as follows:

BranchStmt is an index to the HIR representation of the
branch statement that caused this control flow branch.
BranchLabel is the label value which is the target of this
branch from BranchStmt.

The LCFG is acyclic for all loops that are reducible. For
each exit from loop L, there is an edge in L's LCFG with
target STOP, and there is an edge in the LCFG of L's
outer loop from L's I-node to the exit target. If multiple
nested loops are being exited, there are additional edges
in the LCFG edges for the outer loops.

Figure 7 shows the four loop-level control flow graphs,
LCFG(Z.3) , LCFG(1.2) , LCFG(Z. l) , and LCFG(Z.O),
built for the matrix multiply-transpose example program
in Figure 4. All LCFGs are acyclic, since all loops are
reducible in this example. LCFG(Z.3) is the loop-level

control flow graph for the innermost i, D O loop, 1.3, and
thus contains only S-nodes and pseudo-nodes. A true
branch from the ENDDO statement S.7 represents a loop
exit, as shown by the branch to the STOP pseudo-node;
the false branch is connected to the BACK node because
it represents a continuation of the loop. LCFG(Z.2) is the
loop-level control flow graph for the middle i, DO loop.
Since the i, loop is nested inside the i, loop, we see that
1.3 is a child of 1.2 in the LST; hence, there is also a node
for 1.3 in LCFG(1.2) . Similarly, L C F G (l . l) is the loop-
level control flow graph for the outer i, D O loop, and
LCFG(I .0) is the loop-level control flow graph for the
outermost level of control flow in the subroutine. One
distinguishing feature of LCFG(l .O) is that it does not
contain an edge to the BACK pseudo-node, since there is
no loop at this outermost level of control flow.

Znput/output lists
Input/output lists are used to collect variable references'
on a loop-by-loop basis. The input/output lists for a given
loop are anchored in the LSG I-node corresponding to
that loop, and are updated when the loop body changes,
e.g., due to a loop distribution or loop fusion
transformation. Input/output lists are used to enumerate
data dependences in a loop and also to estimate memory
costs for cache/TLB locality and register locality. There
are four separate input/output lists-scalar-defs, scalar-
uses, array-defs, and array-uses. Each input/output list has
two levels and is structured as a linked list of variables at
the top level. For each variable in the top-level list, there
is a second-level list of references to the variable in the
loop.

The input/output lists are local lists; they contain only
references that are immediately contained within the loop.
When needed, the transformer builds temporary global
inputloutput lists on demand by merging local lists in a
bottom-up traversal of the LST.

matrix multiply-transpose example program in Figure 4.
Table 1 shows the (local) input/output lists built for the

Loop-level dependence graph (LDG)
For each loop, L, in LST, we can compute a loop-level
data dependence graph, LDG(L), on demand that contains

component of the ASTl optimizer identifies variable references in the HIR
'A variable reference is a definition or a use of a variable [3]. The analyzer

241

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997 V. SARKAR

Loop-level dependence graph for i, loop in matrix multiply-transpose
example.

242

the control dependence [20] and data dependence [l]
edges for L's immediate children in the LST. Each LDG
node in the graph is either a child node of loop L in LST,
or the START pseudo-node. BACK and STOP nodes do
not appear in the LDG. Each LDG edge is either a
control dependence edge or data dependence edge.
A control dependence edge is labeled with a
(BranchStmt,BranchLabel) pair identifying the LCFG edge
that caused this control dependence. A data dependence
edge is labeled with a tag identifying the nature of the
dependence (FLOW, ANTI, OUTPUT), the variable(s)
that cause the dependence, and additional information, as
described later in Section 11. Control dependence edges
are computed from LCFG(L) using the standard algorithm
[20]. Data dependence edges are computed €or scalar
variables using analysis information (SSA links [2],
induction variable information, etc.) and for array
variables by performing array data dependence testing on
demand.

Figure 8 shows the loop-level dependence graph that is
constructed on demand for loop 1.2. Except for STOP and
BACK, it contains the same set of nodes as in LCFG(I .2)
in Figure 7. Note that 1.3 is control-dependent on S.5
(with the False label), but S.8 is not control-dependent on
S.5. Since S.5 and S.8 are DO and ENDDO statements,
the only nodes in LDG(I .2) with interesting data accesses
are S.4 and 1.3. There is a data dependence from S.4 to
1.3 due to array variable a, but the data dependence tester
can tell that it is a loop-independent dependence [28], and
that there is no dependence from 1.3 back to S.4. We do
not include any data dependences on loop index variables
i,, i,, i , in Figure 8, because they are all induction
variables that impose no restriction on transformations.

V. SARKAR

Sequence representation of iteration-reordering loop
transformations
Using the framework described in [29], we represent an
iteration-reordering loop transformation as a sequence of
template,instantiations from a small but extensible kernel
set of transformation templates. The sequence is anchored
in the LST I-node of the outermost loop in the perfect
nest being transformed. The three loop-transformation
templates supported by the ASTI transformer for
uniprocessor optimizations are Reversepermute,
Unimodular, and Tile/Block. The Parallel and
Coalesce templates described in [29] are used for SMP
parallelization. The transformer selects templates from
this kernel set and instantiates them with specific values so
as to build a desired iteration-reordering transformation
as a sequence of template instantiations.

A transformation template specifies rules for mapping
dependence vectors, mapping loop-bound expressions, and
creating initialization statements for a transformed loop
nest. The dependence vectors of a loop nest are used to
test the legality of applying a transformation, with respect
to the data dependence constraints of the original loop
nest. When the loop nest is transformed, its dependence
vectors also change, as specified by the dependence vector
mapping rules. Details on the mapping rules for
dependence vectors and loop bounds for individual
transformations are provided in [29].

Transcription from the L S G
One of the major advantages of using the LSG is that it
simplifies the HIR rewrite step (transcription, step 10 in
Figure 1). During transformation, the LSG is updated to
facilitate the final code generation. For example, the
updated loop-bound expressions and index variable
mappings are stored in the LSG after the loop
transformations have been performed [29]. Also, all nodes
in the same loop body (i.e., the same LCFG) are linked
in a total order that is guaranteed to be a topological
sort of the LDG. This provides a legal order in which
the statements can be emitted in the output code.
Transcription is performed via a depth-first traversal of
the LST analogous to code generation from the forward
control dependence graph [25]. The main extra piece of
work that must be done during code generation is to
update the branch statements in the HIR to reflect the
changes made to the LSG.

5. Loop distribution
In this section, we describe how the loop distribution step
is performed in the ASTI transformer, and how the LSG
is updated after loop distribution. Loop distribution is a
program transformation that converts a single loop into
multiple loops, each of which iterates over a subset of
statements in the original loop. Loop distribution can

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997

uncover more perfectly nested loops, thus increasing the
opportunity for applying iteration-reordering loop
transformations. When applied to large loop bodies, it can
also improve performance by reducing register spills.

Loop distribution is performed early (step 2) in the
transformer because it increases the opportunity for
applying other transformations. For example, disabling
loop distribution in the transformer increases the
execution time of the matrix multiply-transpose example
for the -qhot case from 4.1 seconds to 60 seconds (the
same as the execution time for the -03 case). However,
loop distribution also has the potential to degrade
performance compared to unoptimized code by worsening
data locality, and by creating extra loop increment-and-
test instructions. We say that a loop distribution
transformation is necessary if it enables a later iteration-
reordering loop transformation that could otherwise not
have been performed. We assume that the performance
gain obtained by the later iteration-reordering loop
transformation always outweighs the overhead of a
necessary loop distribution transformation.

Loop fusion [l] is a well-known loop transformation
that fuses (combines) multiple conformable loop nests
into a single loop nest and is thus the inverse of loop
distribution. The loop fusion step described later, in
Section 8, can thus remove the overhead of unnecessary
loop distribution by fusing the loops back together again.
Weighted loop fusion is an NP-hard problem; the
transformer currently uses a greedy clustering algorithm
to select an optimized loop fusion configuration. It is
important to perform loop fusion late in the transformer,
so that the flexibility provided by loop distribution can be
exploited by the loop transformations for enhancing
locality which must be performed before loop fusion.

To better understand the interaction between loop
distribution and loop fusion, we observe that the result of
any sequence of fusion and distribution transformations is
a regrouping of the statements in the bodies of the loop
nests in the original program. All sequences of fusion and
distribution transformations that result in the same
regrouping of statements and in the same ordering of
regrouped loop nests are equivalent. The goal of
combining distribution and fusion is to automatically
select an optimized fusion/distribution configuration, Le.,
an optimized regrouping of statements. Therefore, without
any loss of generality, we can assume that all loop
distribution transformations are performed before any
loop fusion transformation, and the problem of selecting
an optimized fusionldistribution configuration thus
becomes equivalent to selecting an optimized fusion
partition of the statements after loop distribution. That is
why we do not need to use costs to guide selection of loop
distribution transformations, but we must use costs to
guide the loop fusion step in the transformer.

The ASTI transformer can perform loop distribution at
the following granularities:

1. Maximal-Distribute loops across strongly connected
components (v-blocks) [l] of the dependence graph.3

2. Affinity-Restrict distribution of innermost loops so
that two statements that access the same variable in
the same loop are not split into separate loops. Non-
innermost loops are maximally distributed.

loops are not distributed at all. Non-innermost loops
are maximally distributed.

4. None-No loop distribution.

Other phases in the transformer make no assumption
about the degree of distribution performed; they simply
operate on the loop nests present in the LSG. The current
loop distribution default for uniprocessor optimization is
Affinity. Affinity loop distribution is used as the default
to ensure that there is no possibility for a serious
performance degradation after loop distribution, since a
greedy heuristic algorithm is used in the loop fusion step.
The use of an optimal weighted loop fusion algorithm
(such as the integer programming formulation in [30])
instead would remove the need for this precaution, and
allow Maximal loop distribution to be used as a suitable
default.

3. Outer-Restrict loop distribution so that innermost

The distribution of statements into loops must preserve
the data and control dependences of the original loop. A
partition violates the original dependence relations if and
only if a dependence cycle is distributed across more than
one loop. Allen and Kennedy [31] presented an algorithm
to maximally distribute loops from the outer level to
the inner level on the basis of a comprehensive data
dependence graph. We obtain the same result by
distributing the loops from the inner level to the outer
level using a demand-driven approach to data dependence
analysis. The inner-to-outer traversal is well suited to
demand-driven loop distribution for uniprocessor
optimization, because outer levels of loop distribution can
be skipped once we reach a boundary of an innermost
perfect loop nest. ,

ASTI transformer is its use of control dependence
information. Analogous to data dependences, a control
dependence may be loop-carried or loop-independent. A
control dependence is loop-carried if its control path
passes through a back edge of a surrounding loop;
otherwise, it is loop-independent. Control dependences
are labeled with direction vectors in the same manner as

A key feature of the loop distribution performed by the

There may be cases in which additional opportunities fur loop distribution can be
3We define “maximal” loop distribution in the absence of other transformations.

revealed by first performing iteration-reordering transformations such as loop
interchange. 243

IBM J. RES. DEVELOP. VOL. 41 NO, 3 MAY 1997 V. SARKAR

' Example of loop distribution with control flow. 1

data dependences, so that a loop-independent control
dependence will have a (=, . . . , =) direction vector. Loop
distribution is then performed across strongly connected
components of the combined control and data dependence
graph. The use of control dependence information enables
the loop distribution algorithm to work even in the
presence of control flow arising from G O T 0 statements
in the loop body, as in the example program shown in
Figure 9. (Though the ASTI transformer updates the LST,
we instead show the equivalent transformed source code
in the figure for the sake of simplicity.) This robustness
in handling control flow is important for generality in
optimization of handwritten programs and computer-
generated programs.

V. SARKAR

Demand-driven data dependence testing for loop
distribution is based on the observation that the output of
loop distribution is a partition of dependence graph nodes
into components such that there is no cycle among
components. Strongly connected components define the
finest such partition. As we add edges to the dependence
graph (based on control and data dependences), we
do not need to test for a data dependence between
statements A and B, in either direction, if we have already
determined that there is a cycle containing both A and B
at the current level of loop distribution. This observation
eliminates the need to perform array data dependence
tests between statements that belong to a cycle built from
control dependences and scalar data dependences. Also
note that loop distribution is concerned only with the set
of levels that may carry a data or control dependence, but
not with other details of the direction or distance vectors.
Once the set of levels has been established, we do not
need to further refine the set of direction vectors into a
more precise set, thus avoiding the overhead of full data
dependence testing.

Let us examine how loop distribution proceeds inside-
out for the matrix multiply-transpose example program
in Figure 4. There is no scope for distribution in the
innermost i , loop because it contains only one nontrivial
statement. To perform loop distribution on the i, loop, the
transformer first computed LDG(I .2) on demand (see
Figure 8). Since the L D F is acyclic, it is legal to distribute
the i , loop across (S .4) and {S.5,1.3} (we keep S.5
together with 1.3 because S.5 is the D O statement for
loop Z.3). The LST resulting from this loop distribution is
shown in Figure 10(a). Though the ASTI transformer only
updates the LST, we also show the transformed source
code corresponding to the new LST in Figure 10(b) for
convenience in understanding the transformation. Note
that distributing the i, loop resulted in a new I-node, 1.4,
and two new S-nodes, S.3' and SA',.

Finally, loop distribution is performed on the outermost
i , loop. This results in distributing the i, loop across (S .3,
Z.2} and {S .3 ' , Z.4}; the updated LST and corresponding
transformed code are shown in Figure 11. It results in the
creation of a new I-node, 1.5, and two new S-nodes, S.2'
and S.9'. Figure 11 also highlights the two perfect loop
nests, 1.1-1.2 and 1.5-1.44.3, identified in step 3 of the
transformer.

6. Memory cost analysis
Consider an innermost loop nest containing h 2 1 loops,
numbered 1 . . . h from outer to inner. The job of memory
cost analysis in the transformer is to build symbolic
functions for the estimated number of distinct cache lines
[32], DLtota,(tl, . . . , t h) , and the estimated number of
distinctpages, DPtota,(tl, . . . , th) , accessed by a single tile
[1] of t , x . . . x t,, iterations of loops 1 . . . h ,

IBM J. RES. DEVELOP, VOL. 41 NO. 3 MAY 1997

respectively. The memory cost analysis techniques
presented in this paper apply to cost estimations for the
data cache and the data TLB (translation lookaside
buffer) in the processor. These techniques can easily be
adapted for cost analysis of other levels of the memory
hierarchy, such as the L2 cache.

DLtota,(tl, . . . , t,) and DPtota,(t , , . . . , t ,) are symbolic
functions of hypothetical tile size variables, t , , . . . , t,. The
tile size variables, t , , . . . , t , , are used to provide a flexible
interface for memory cost analysis. Their presence does

not mean that the tiling transformation will necessarily be
performed or that memory cost analysis is restricted to
tiled loops. Instead, setting different tile size values in
memory cost analysis is a convenient way of using the
same DLtota, and DPtot,, cost functions to evaluate the
memory costs of different loop configurations.

As an example, let us consider how the DLtot,, memory
cost function might be used to decide whether or not
to perform a loop interchangeipermutation [l]
transformation that moves the outermost loop to the 245

IBM J. RES, DEVELOP. VOL. 41 NO. 3 MAY 1997 V. SARKAR

(a) Transformed loop structure tree and (b) corresponding source code after distributing loops i2 and i, in matrix multiply-transpose example.

246

innermost position. Let the iteration counts for loops
1 . . . h be n l , . . . , n,,. Then, the total number of distinct
cache lines accessed by the innermost loop can be
evaluated as DLtot,, (1, . . . , 1, n h) , which yields an
average of DLtotal (1, . . . , 1, n,)/n, cache lines per
iteration. Similarly, the number of distinct cache lines
accessed by the outermost loop when moved to the
innermost position can be evaluated as DL,, (al, 1, . . . , l),

which yields an average of DLtotal (nl, 1, . . . , l) /n ,
cache lines per iteration. The loop interchange is likely to
be beneficial when this cost is smaller than the original
per-iteration memory cost. Section 7 describes how the
locality optimization step in the ASTI transformer uses
these memory cost functions to automatically select loop
permutation and loop tiling transformations. The following
subsections describe how the DLtotal and DPtotal memory

V. SARKAR IBM .I. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997

cost functions are constructed by the transformer at
compile time.

Estimating memory cost for a single array reference
We start by describing how the ASTI transformer
estimates the memory cost of a single array reference by
extending the approach outlined in [32]. The goal of this
analysis is to obtain a symbolic expression for the number
of distinct lines accessed by the array reference as a
function of the tile size variables, t , , . . . , t,. An important
use of cost functions for individual array references is in
building the DLtot,, cost function for an entire loop body
as described in the next subsection. In addition, the cost
function for a single array reference can be used to
characterize the self-reference locality exhibited by the
reference, as follows. Let

F(t,? ’ ’ ‘>

Number of distinct lines accessed by array reference
- -

t , X . . . X t h

be the average number of cache lines accessed by the
array reference per iteration in the tile. We can then
determine whether the array reference exhibits cache
locality for loop k by evaluating the partial derivative
6F/6tk at t , = . . . = t, = 1 and checking whether
SF/&, < 0. A negative value of 6F/6tk indicates that
increasing t , (the number of loop i, iterations in the tile)
causes a decrease in the average number of lines accessed
per iteration by the array reference.

f m (i l , . . . , i,)] to an m-dimensional array variable called
A, enclosed in h inner perfectly nested loops with index
variables i , , . . . , i,. The subscript expressions for the m
dimensions of the array reference are denoted by the
functions f l , . . . , f,. An array reference is said to be
analyzable if its subscript expressions can be written
as

Consider a reference of the form A[f , (i , , . . . , i,), . . . ,

h

f , (i , , . . . , i,) = c [~ , 01 + 2 C[I, kli,
k = l

h

f,(i,, . . . , i,) = c[m, 01 + c[m, k] i k ,

such that all coefficients c [j , k] are compile-time constants
for 1 I j I m, 1 I k I h , and the c [j , 01 terms are
invariant in loops i , , . . . , i,; Le., the c [j , 01 terms need
not be compile-time constants but they must not depend
on the values of i , , . . . , i,. Otherwise, the array reference
is said to be nonanalyzable. The memory cost analysis in
the ASTI transformer makes a worst-case assumption of
one cache miss and one TLB miss per iteration for

k = l

nonanalyzable array references. For analyzable references,
we define C [j] = (c [j , 11, . . . , c [j , h]) to be the
coefficient vector for dimension j . All elements of C [j]
are constant in an analyzable reference. We also denote
the entire coefficient matrix consisting of all c[*, *] elements
by C.

This definition of analyzable array references is similar
to the definition of affine subscript expressions used in the
literature. The only distinction is that our definition of
analyzable array references allows a c[j , 01 term to take on
any (unknown) value that is invariant in loops i,, . . . , i,.
For example, a c [j , 01 term is permitted to be a function
of the index variable of a loop that encloses the innermost
nest of loops i,, . . . , i,.

Let L equal the cache line size (in bytes) for the target
architecture. The following discussion is presented for
estimating the number of distinct cache lines accessed by
an array reference. However, it can just as well be used to
estimate the number of distinct pages accessed, by setting
the value of L to the page size (also in bytes).

Computing the index range spanned by an analyzable
subscript expression
We first address the problem of estimating RANGE(C[J’], T)
= MaxValue(C[j], T) - MinValue(C[j], T), for a given
coefficient vector C [j] and a tile of t , X . . . X t, iterations
specified by tile size vector T = (t, , . . . , t,), where
MaxValue(C[j], T) and MinValue(C[j], T) are the
maximum and minimum values taken by the subscript
expression 4 in the iteration tile. RANGE(C[j] , T) can be
viewed as the length of the range of distinct values
spanned in the tile by subscript expression f,. For
convenience in developing the memory cost functions,
RANGE(C[j] , T) is defined so that it equals zero when
function4 takes on a single value across the tile [in which
case MinValue(C[j], T) = MaxValue(C[j], T)].

We use an approach similar to the rectangular form of
Banerjee’s inequality [33] to compute a symbolic
expression for RANGE(C[j] , T). Initially, assume that
loops i,, . . . , i , all have a step of +1. Let LBound, and
UBound, denote the lower and upper bounds of loop i ,
in a single tile of iterations. This means that tile size
tk must equal (UBound, - LBound, + 1). Then,
RANGE(C[j] , T) can be derived as follows (the notation
1x1 denotes the absolute value of x , and the notation
cond ? true-expr: false-expr denotes a conditional operator
as in the C programming language):

h

MaxValue(C[j], T) = (c [j , k] 2 0 ? c [j , k] X UBound,
k = l

: c [j , k] x LBound,), 247

IBM .I. RES. DEVELOP, VOL. 41 NO. 3 MAY 1997 V. SARKAR

24%

k

M inVa lue (C[j] , T) = 1 (c [j , k] 2 0 ? c [j , k] X LBound,
k = l

: c [j , k] X UBound,)

+ R A N G E (C [j l , T)

= MaxValue(C, LoopSet) - MinValue(C, LoopSet)
k

= 2 [c [j , k] 2 0 ? c [j , k] X (UBound, - LBound,)
k = l

: c [j , k] x (LBound,UBound,)]
k

= 1 Ic[j, ~ I I X (tk - 1).
k = l

Interestingly, the value of R A N G E (C [j] , T) does not
depend on the specific values of LBound, and UBound,,
and can therefore be represented as a linear polynomial
function of only the t , tile sizes. Note that the value of
RANGE is zero when all tile sizes equal one, since the
subscript expression has only one distinct value in this
case. To relax our assumption that all loops have a step of
+1, we can extend the above expression for RANGE to
R A N G E (C [j] , T) = I c [j , k] X Stepk\ X (f k - l),
where Step, is the (constant-valued) step for loop i,,
assuming that the tile sizes t , , . . . , t , are still defined as
iteration counts.

Computing the memoly range spanned by an analyzable
array reference
Recall that an array reference, A[f , , ' . . , f,], is translated by
a compiler to a linearized address [3] of the form

addr (A[f l , . . . , f , I)
m

= StartAddr(A) + 1 [f d (i l , . . . , ih)
d = l

- LO,(A)]DimStride(d),

where L O J A) is the lower bound for indexing into
dimension d of array A, and DimStride(d) is the stride in
bytes for dimension d , i.e., the address increment for the
array reference when the subscript value for dimension d
is increased by +l. Specifically, DimStride(1) is the size of
a single element of array A, and DimStride(d) =

DimStride(d - 1) X DimSize(d - 1) when d > 1, where
DimSize(d - 1) is the size of dimension d - 1.

We now address the problem of estimating
MEMRANGE(j , C , T) , the number of bytes spanned by
the first j dimensions of an array reference with coefficient
matrix C across a tile of t , X . . . X t , iterations specified
by tile size vector T = (t l , . . . , t,). Specifically,
M E M R A N G E (j , C , T) = MaxAddress(j, C , T) -

V. SARKAR

MinAddress(j, C, T), where MaxAddress(j, C , T) and
MinAddress(j, C, T) are the maximum and minimum
address values taken by Address(A[f , , ' . . ,J;, LOj+l , . . . , LOm])
across the tile. As in the definition of RANGE,
MEMRANGE(j, C, T) equals zero when functions f l , ' ' . , J;
each take on a single value across the tile (this is the
case when the memory range consists of a single array
element). Note that the effect of parameter j is to restrict
MEMRANGE to the size of the memory range spanned by
the first j dimensions by ignoring subscript expressions

Given the previous definition of RANGE, we can use
the following identity to compute MEMRANGE:

I

MEMRANGE(j , C , T) = 2 RANGE(C[d], T)DimStride(d).
d = l

Recall that each RANGE(C[d] , T) can be expressed as a
linear polynomial of tile size variables. If, as is usually
the case, the DimStride(d) values are compile-time
constants, we obtain a linear polynomial expression for
M E M R A N G E (j , C , T) as well. If DimStride(d) is not a
compile-time constant for some dimension d (e.g., when
A is a dynamically sized array), a default value such
as 1000 is used for each unknown DimSize value
when estimating DimStride(d) using the identity
DimStride(d) = DimStride(d - 1) X DimSize(d - 1).
We can therefore assume that the actual/estimated
DimStride values are compile-time constants; hence,
M E M R A N G E (j , C , T) can be treated as a linear
polynomial in the tile sizes t , , * . + , t , for the purpose
of memory cost analysis. Note that DimStride(1) is
always a compile-time constant because it is the size
of a single array element.

Estimating the number of distinct lines spanned by an
analyzable array reference
We first briefly review the approach from [32] to estimate
the number of distinct lines for a single array reference.
The upper bound estimate given in [32] for a one-
dimensional subscript expression f is

where g is the greatest common divisor of the linear
coefficients in f , f and f lo are the maximum and
minimum values taken by subscript expression f across the
entire loop nest, and L' = L/DimStride(l) is the line size
in units of array element size. For the special case when
L ' = 1, D L V) = [(f hr - f '")/g] + 1 becomes an
estimate of the number of distinct accesses made by the
array reference. There are some special cases for which
this estimate can be proved to be exact [34]. In practice,

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997

the relative error of this estimation is small when, as is
usually the case, the size of the (fh' - f") range is much
larger than the size of the individual c [j , k] coefficients.

For a multidimensional array reference, A[f,, . . . , f ,] ,
the upper bound estimate given in [32] is

This bound provides a reasonable estimate when
DimStride(2) is Z L .

DL(j , C , T), the number of distinct lines spanned by the first
j dimensions of an array reference with coefficient matrix
C across a tile of t , x . . . X t , iterations specified by tile
size vector T = (t l , . . . , t,). For the j = 1 case, we can
rewrite the one-dimensional solution from [32] as

We can now address the problem of estimating

M E M R A N G E (1 , C , T)

L
1 +

since R A N G E (C [l] , T)=f:'-f: and MEMRANGE(1, C, T)
= (f:j - f:) X DimStride(1). The main difference is
that D L (1 , C , T) is a function of tile size variables, but
D L in [32] was defined for the entire loop nest. Note
that we also replaced the ceiling (r 1) function with a
continuous approximation; in essence, we approximated
an h y i term by [l + (x - l)/y].

For multidimensional arrays, our approach extends the
DL solution from [32] by not relying on the DimStride(2)
2 L assumption. This extension is important because we
want to use the same memory cost function for counting
lines and pages, and the DimStride(2) 2 L assumption is
less likely to hold when L is set to the page size. Our
solution is to estimate D L (j , C , T) for the first j
dimensions by using the following recurrence when j > 1:

D U j , C , T)

MEMRANGE(j , C, T)

L
1 +

For the sake of efficiency, we would like to simplify the
above expression for D L (j , C , T) to a linear polynomial
structure. In general this is hard to do, because the
evaluation of the min function depends on the values of
the RANGE and MEMRANGE terms, which in turn depend
on the tile size variables, t,, . . . , t,. However, we observe that
the min function for the j = 1 case can be rewritten as

DimStn'de(1) X RANGE(C[l] , T)
L I +

and can be resolved at compile time by comparing
1 /GCD(lc[l , 111, . . . , Ic[l, h]l) with DimStride(1)iL and
choosing the term with the smaller value, even though the
value of R A N G E (C [l] , T) is unknown at compile time.
This idea can be extended to the multidimensional case by
choosing the first (RANGE) term in the recurrence if
l / G C D (. . .) is smaller than DimStride(j)/L. Note that this
approach will always select the l / G C D (. . .) term when
DimStride(j) > L , which is consistent with the observation
that there is no spatial locality in dimension j in this case.

The above technique essentially specifies an algorithm
for resolving the min function in the DL recurrence at
compile time, and building a symbolic expression for
DL(m, C , T), the number of distinct lines accessed by the
array reference. The symbolic expression is a linear
polynomial in the tile size variables. This is the algorithm
implemented in the ASTI transformer for building linear
polynomial expressions for DLtotal(t l , . . . , t,,) and
DPtOtal(t l , . . . , t h) for a given array reference; an example
is provided later.

Estimating the memory cost for the entire loop nest
In the previous section, we showed how to estimate the
number of distinct lines accessed by a single array
reference. To obtain the total number of (distinct) lines
accessed by the entire loop body, we build a symbolic
expression representing the sum of the individual D L
expressions. This sum of D L terms is denoted by DLtot,,.

An important issue in computing DLtotal is that of
considering cross-reference locality [35] for multiple
references to the same array. If we ignore the potential
overlap across multiple references and simply add in the
contribution for each reference separately to DLtotal, our
memory cost estimation may become conservatively too
large. Consider the following one-dimensional relaxation
loop as an example:

do il = 2 , n-1
x (i 1) = 0 .3333 * (x (i 1 - 1) + x (i 1)

+ x (i l + l))
end do

This loop has substantial cross-reference locality, and the
number of distinct lines accessed by the entire loop body
(-= n / L , for large n) is approximately the same as the
number of distinct lines accessed by a single reference.
Ignoring cross-reference locality in this case would lead to
a memory cost estimation that is three times as large as
the actual memory cost. 249

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997 V. SARKAR

An algorithm for doing a precise estimation of the
memory cost of multiple references to an array is given in
[32]. However, in the worst case, the execution time of
this precise estimation can be exponential in the number
of references to the same array variable. We use a simpler
estimation in the ASTI transformer that is efficient but
still more precise than the conservative approach of
ignoring overlap among multiple references to the same
array. It is based on the idea of assuming 100% overlap
among array references that are uniformly generated [36]
(i.e., array references that have the same coefficient
matrix, C), and zero overlap otherwise. This approach can
be viewed as partitioning references to the same array
variable into equivalence classes, and computing DLtota, by
adding in the memory cost of only one representative
array reference from each equivalence class. One
refinement implemented in the ASTI transformer is to
place two array references in the same equivalence class if
and only if they have the same coefficient matrix and the
difference between the invariant terms is less than some
compiler-specified constant threshold. A future refinement
that would be easy to implement is to add constant offsets
to the terms in the DL expression for the representative
array reference, so as to reflect the contribution of other
array references in the same equivalence class.

For the one-dimensional relaxation example, all three
array references are placed in the same equivalence class
because they have the same coefficient matrix and the
difference between their invariant terms is at most two.
The current approach computes the cost for only one
reference in the equivalence class, thus yielding DLtotal(tl)
= 1 + (tl - l) /L, which is more precise than the cost
that we would obtain by ignoring cross-reference locality.
The additional refinement of extending the RANGE and
MEMRANGE terms to include the extent of the invariant
terms of other references in the same equivalence class
would instead yield DLtota,(tl) = 1 + (tl + l) /L. While
this is closer to the actual value, the difference is not
significant, especially for large L .

A n example
In this section, we illustrate the memory cost analysis
procedure for the triply nested loop obtained after
performing loop distribution on the matrix
multiply-transpose example shown in Figure 4. The
transformer uses the array-defs and array-uses
input/output lists defined in Section 4 to enumerate all
array references. After partitioning the array references
into equivalence classes as described earlier, the memory
cost analysis step builds a list of “representative” array
references containing one reference from each equivalence
class, and then builds a symbolic representation of the
DLtotal cost function. 250

V. SARKAR

For the triply nested loop 15-14-13 obtained after loop
distribution on the matrix multiply-transpose example
(Figure l l) , the representative list of array references
consists of a(il,i2), b(i2,i3), and c(i3,il).
Note that a (il, i2) is only counted once. Using the
techniques outlined in the previous sections, the memory
cost analysis step then traverses the representative list and
builds the following symbolic expression for DLtotal, the
numbers of distinct cache lines accessed by a tile of
t , X t , X t , iterations,

DLtota, = r8t1/Llt, + r8t2/Llt, + r8t,/Llt,

(1 + 8(t , - l)/L)t, + (1 + 8(t2 - l)/L)t,

+ (1 + 8(t , - l)/L)t,

= (0.25tI + 0.75)t2 + (0.25t2 + 0.75)t3

+ (0.25t, + 0.75)t,,

since L = 32 bytes is the cache line size for the PowerPC
604 processor, and each array element is 8 bytes long (the
array variables are declared with a real*8 base type).

A symbolic expression for the number of distinct pages,
DPtotal can be constructed similarly to DLlota, by using
P = 4096 bytes in place of L. For this example program,
DL,, and LIPtotal are completely symmetric in i , , i,, i,.
However, this need not be true in general.

Memory cost analysis for a given unimodular
transformation
In this section, we briefly outline how memory cost
analysis can be performed efficiently for a given
unimodular loop transformation [37] such as loop
permutation, reversal, or skewing [l]. This capability can
be used to estimate memory costs of different unimodular
transformations without requiring that the transformations
be performed on the intermediate language prior to
memory cost analysis.

Let M be the transformation matrix for a unimodular
loop transformation that we want to consider applying to a
set of perfectly nested loops with index variables i , , . . . , i,,
and let i ; , . . . , il, denote the index variables of the
loop nest that would be obtained if the transformation
were performed. To perform memory cost analysis on the
transformed loop nest, we must first rewrite the subscript
expression for each dimension j of an array reference,
f , (i , , * - . , i,) = c [j , 01 + c [j , kli,, into an equivalent
function on the index variables of the transformed loop
nest, f,!(i;, . . . , i l) = c ’ [j , 01 + c ’ [j , k]i;. The
unimodular transformation matrix M can be used to derive
the transformed coefficients as follows:

1 BM J. RES. I IEVELOP. VOL. 41 NO. 3 I dAY 1 991

where M" is the inverse of transformation matrix M.
Memory cost analysis can then be performed using the
transformed coefficients c ' [* , *I.

7. Locality optimization
This section gives a brief outline of the locality
optimization step in the transformer and how it uses the
memory cost functions described in Section 6. The locality
optimization step performs transformations to minimize
memory costs, in particular cache misses and TLB
misses. Our algorithm uses iteration-reordering loop
transformations (interchange, reversal, skewing, tiling) [29,
351 to move loops carrying locality inward, and is guided
by the memory cost functions in selecting the optimized
loop configuration. Locality optimization is attempted only
on the innermost perfect loop nests of the program
(including those revealed after loop distribution). Outer
loop nests and loops with subroutine calls are currently
not considered, since such loops often overflow the cache
in a single iteration. Maximal innermost perfect loop nests
are easily identified by a depth-first traversal of the LST.

The outputs of the locality optimization phase are a
sequence of iteration-reordering transformations
(typically, interchange and/or tiling, prefixed by enabling
transformations such as reversal and skewing as needed)
and a subset of inner transformed loops called the locality
group. The locality group is defined to be the largest
innermost subspace of the transformed iteration space that
is guaranteed to incur no capacity or collision misses if it
starts execution with a clean (empty) cache and a clean
TLB. The locality group can be specified by two
parameters, (m , B) , as follows:

1. m z 0, the number of innermost loops in the locality
group. The parameter m can be determined by
estimating the number of distinct lines accessed by
progressively larger subspaces of the iteration space
(innermost loop, inner two loops, and so on) till we
reach a case where no loops remain or one iteration of
the m + 1st loop overflows cache.

2. B 2 1, the largest number of iterations (block size) of
the outermost loop in the locality group such that no
capacity or collision misses occur. Note that B may, in
general, only be a fraction of the total number of
iterations in the outermost loop of the locality group.
In other words, only the first m - 1 inner loops in the
group span their complete iteration ranges without
incurring capacity or collision misses. For a given m ,
B can be estimated by solving a simple linear equation
obtained by setting the estimated number of distinct
lines to the number of lines available in cache, and
applying the floor (L J) function to convert the
interpolated B value to an integer value.

Thus, the locality group consists of the m innermost
loops, with B iterations of the outermost loop in the
locality group and complete iterations of all other loops in
the locality group. B is properly defined only when m 2 1;
m = 0 indicates that a single iteration of the loop nest
overflows the cache. The locality group can also be viewed
as an innermost "tile" of the iteration space such that no
capacity or collision misses occur within the tile. In fact, if
the tiling transformation is performed on the loop nest,
the locality group will be identical to be identical to a
single tile from the tiling transformation.

Later transformations are not permitted to change the
grouping of iterations in the locality group. However, they
are free to reorder iterations within each locality group
(e.g., during loop-invariant scalar replacement and loop
unrolling) and/or reorder the execution sequence of
locality groups (e.g., when parallelizing loops outside the
locality group).

Algorithm for selecting an optimized loop ordering
In this section, we describe how the transformer uses
memory cost functions to automatically select an
optimized loop ordering for a perfect loop nest. Given the
polynomial expressions for DLtotal and DPtOtal derived in
Section 6, the total memory cost of compulsory misses for
a hypothetical tile of t , X . . X t, is estimated as follows:

COSTtotal(t,, ' . '> $1
= (cache miss penalty) * DLtotal(tl, . . ., t,)

+ (TLB misspenalty) * DPtOtal(t,, . . ., t,).
Our objective is to minimize the memory cost per iteration,
which is given by the function

In general, the minimization has to be done subject to the
constraint that DLtota, not exceed the effective cache size
and DPtota, not exceed the effective TLB size.

We have designed the following simple and efficient
algorithm to choose a loop ordering that is optimized for
locality:

1. Examine (t l , . . . , t h) = (1, . . . , 1) as an initial
solution. If DL(1, . . . , 1) exceeds the effective number
of lines available in cache, or DP(1, . . . , 1) exceeds
the effective number of page entries available in the
TLB, no loop restructuring is performed, because each
iteration will overflow the cache or TLB.

2. Otherwise, evaluate the h partial derivatives of function
F , SF/&, at (t , , . . . , t h) = (1, . . . , 1).

3. Return a suggested loop ordering in decreasing order
of the partial derivative (slope) values. The loop with

IBM J . RES. DEVELOP. VOL. 41 NO. 3 MAY 1997 V. SARKAR

the most negative slope should be placed in the
innermost position, since it is likely to yield the largest
reduction in memory cost, and so on. This is the ideal
loop ordering based on memory costs. If the ideal
ordering differs from the input ordering, dependence
analysis is invoked to determine how closely the input
loop ordering can be made to approach the ideal loop
ordering.

As shown in Figure 11, there are two perfect loop nests
in the matrix multiply-transpose example after the loop
distribution step. Let us consider the first perfect loop
nest, which corresponds to the following transformed
code:

[2 1 do il = 1, n
[3] do i2 = 1, n
143 a(il,i2) = 0
[81 end do
[9] end do

The memory cost functions are very simple for this
single array reference, and are computed using estimated
penalties of 17 cycles and 21 cycles for a cache miss and a
TLB miss, respectively, on the PowerPC 604 processor
(note that 0.001953 and 0.998047 are numerical
approximations of 1/512 and 5111512):

DLtota,(tl, t,) = (0.25t, + 0.75)t2,

DPtOtal(tl, t,) = (0.001953t1 + 0.998047)t2

+COSTtota,(t,, t J = 17 x DL,,,(t,, $1 + 21 x DPtotal(tl’ t,)

= (4.25t1t, + 12.79,) + (0.04t,t2 + 20.96t2)

+ (0.04 + y) .

Thus GF/St, has a negative slope, but GF/6t, equals zero.
Therefore, locality optimization will perform a loop
interchange to bring the loop with negative slope into the
innermost position, resulting in

131 do i2 = 1, n
[23 do il = 1, n
[4 1 a(il,i2) = 0
181 end do
[9 1 end do

The locality cost function for the triply nested loop in
Figure 11 is completely symmetric in t,, t,, t,, so there is
no difference in the slopes for the three loops, and the
original loop ordering is preserved. Since all three loops
have negative slopes, this example is an ideal candidate
for the tiling transformation discussed later. 252

V. SARKAR

Efjective cache and TLB sizes
We now outline how the transformer estimates effective
cache and TLB sizes for use by the algorithm for selecting
optimized tile sizes. For a fully associative cache, the
effective cache size is identical to the actual cache size.
However, caches in real processors are not fully
associative, but instead have a limited degree of set
associativity. Our solution is to compute a cache
utilization efficiency that estimates the effective shrinking
of a set-associative cache ith S lines to an “equivalent”
fully associative cache with S’ 5 S lines, where S’ is the
effective cache size. The TLB utilization efficiency can be
estimated by following the same approach with TLB
parameters in place of cache parameters.

single stride T as follows:
To start with, consider a simple array reference with a

D O l O i = . . -
10 A(T*i + c) = . .

We are interested in estimating

q (T) = cache utilization efficiency of stride T
=fraction of sets accessed over a large number of

iterations.

For example, the array reference, A (i) , has 100%
efficiency; Le., ~ (1) = 1.0, because it will access all of the
sets in the cache. However, it is well known that a stride
value that is a power of two leads to poor efficiency. For
example, the reference A(32768*i) will repeatedly access
a single set in the cache. Since the (first-level) cache in
the PowerPC 604 processor has 512 sets, the efficiency for
this reference is only ~ (3 2 7 6 8) = 11512.

We estimate q (T) by considering three possible cases,
as outlined below. More precise estimates are possible if
the cache block alignment offset and number of loop
iterations are also known at compile time.

Case 1:
Case 2:
Case 3:

T 5 L 3 q (T) = 1.0.
T i s a multiple of L 3 q(T) = l /GCD(T/L, S).
Otherwise, we find the smallest n 2 1 that
satisfies [32],

mod (n X T, L X S) < L or mod (n X T ,
L X S) > L X S - L .

In this case, every nth access can map to the
same set, so we conservatively estimate v(T) = n/S.

Our overall approach to estimating effective cache size
is as follows, assuming that the actual cache is a k-way set-
associative cache with S sets (we set k = 1 to do the
analysis for a direct-mapped cache):

IBM J. RES. DEVELOP. 1 IOL. 41 NO. 3 MAY 1997

1.

2.

3.

4.

5.

Compute the locality group, (m , B) , for the loop nest,
assuming a fully associative cache containing k X S lines.
For each loop index variable i,, such that h - m < j < m,
examine each array reference that contains i,, and
estimate q(T) for the stride T of i, in that array
reference. This step restricts the estimation of cache
utilization efficiency to the m innermost loops, where m
is the number of loops in the locality group computed
in step 1.
For each array variable, choose the minimum among
the estimated q (T) values from step 2 as the cache
utilization efficiency for the array variable.
Estimate effective number of sets as S' = Lq,,,,,Sl,
where qaVdmln is the average value taken over all array
variables of the minimal cache utilization efficiency
obtained in step 3.
Set effective cache size to k X S' X L bytes.

In the above steps, the minimum q(T) value is used for
each array variable, so that the estimation is conservative;
qaVumin is estimated as the average of the min values based
on the assumption that cache usage is divided equally
among all of the array variables. If needed, the average
can be refined to a weighted mean by considering a
nonuniform partitioning of the cache for different array
variables.

Algorithm for selecting optimized tile sizes
If multiple loops are found to have a negative slope
(6F/6tk < 0) in the algorithm for selecting an optimized
loop ordering, the locality of the loop nest can often be
further improved by tiling the loops that have negative
slope. The key problem that must then be addressed by
the transformer is the selection of tile sizes, which we
formulate as a constrained optimization problem:

As before, the objective function to be minimized is
F(t,, . . . , t h) = COSTlo,a,/(tl X . . . X t h) , the average
cache and TLB miss overhead per iteration of the tiled
loop.
The constraints to be satisfied by the solution are the
following:

Each t , must be integer-valued and must be in the
range 1 5 t, I Ubound,. A default value such as
1000 is used for Ubound, if the number of loop
iterations is not known at compile time.
DL(t, , . . . , t h) I ECS. The number of distinct cache
lines accessed in a tile must not exceed the effective
cache size.
DP(t,, . ' . , t h) I ETS. The number of distinct
virtual pages accessed in a tile must not exceed the
effective TLB size.

We have designed an efficient constant-time algorithm
[38] to solve this constrained optimization problem for the
case of two loops with negative slope. If there are N > 2
loops with negative slope that are eligible for tiling,
standard logarithmic search techniques are used on N - 2
variables by invoking the two-variable solution at each
search point. In practice, N is rarely >3, and the N = 3
case is solved efficiently by searching on a single variable.

When the locality optimization step was performed on
the matrix multiply-transpose example for the PowerPC
604 processor, the binding constraint was the data cache
size constraint. The compiler optimistically assumes that
qavgimin = 1.0 when the dimension size n is not known at
compile time. (A safer approach would be to assume a
smaller value of qavgimin for unknown dimension sizes, but
that is not in the current implementation.) Therefore, the
effective cache size is estimated as being the actual cache
size, 4 X 512 = 2048 lines. This yields DLIot,,(tl, t,, t ,)
5 2048 as the cache size constraint. Our procedure for
selecting tile sizes returned t , = 50, t , = 51, t , = 51 as
the optimized solution for this example. We can verify
that this solution satisfies the cache size constraint by
using the expression described previously for DLl,,,(tl, t,, t,)
and computing DLlota,(50, 51, 51) = 2039.25, which is <2048.
We can also see that DLlota,(51, 51, 51) = 2065.50,
which shows that a slightly large tile overflows the
cache. The optimized tile sizes are (almost) equal for
this example because the cost function is completely
symmetric in i , , i,, i,. Other cost functions can lead to
different tile sizes for different loops.

Therefore, the cumulative transformations performed
by the locality optimization step for the matrix
multiply-transpose example is a loop interchange for the
first loop nest and loop tiling for the second loop nest, as
shown in Figure 12. (As before, the figure shows the
transformed source for convenience, though the
transformer only updates the LSG.)

8. Loop fusion
As discussed in Section 5, the loop fusion transformation
is important for removing the overhead of unnecessary
loop distribution. In addition, it can be useful for fusing
loops that were not distributed, e.g., conformable loop
nests arising from FORTRAN 90 array language
statements [6]. Just as with loop distribution, the key data
structure that is used to guide loop fusion is the loop
dependence graph (LDG) in the LSG. However, one
important difference is that loop distribution is performed
on loops from the inside out, and loop fusion is performed
from the outside in.

For simplicity, the implementation of loop fusion in the
transformer focused on optimizing the common case of a
program region that represents a set of k adjacent
conformable and identically control-dependent perfect 253

SARKAR 'OL. 41 NO. 3 MAY 1 997 V.

. .. I Locality optimization for matrix multiply-transpose example.
. .

loop nests. Two loop nests are said to be conformable if
their corresponding loops have identical iteration lengths
(loop bounds). Two loop nests (or, more generally,
statements) are said to be identically control-dependent if
they have the same set of control conditions [20], Le., the
same set of (node, label) pairs as control dependence
predecessors. However, it is straightforward to extend this
approach to a more general region which includes
nonconformable loop nests and the presence of control
flow across LDG nodes.

Each edge in the LDG is marked as being contractable
or noncontractable. The source and destination loop nests
of a noncontractable LDG edge cannot be fused, because
this would violate the data dependence test for loop fusion
[l]. This test is formally specified by the algorithm
Contractable(L, M) in Figure 13, which outlines this data
dependence test for nodes (loop nests) L and M such that
there is at least one LDG edge from L to M . If the
algorithm returns a false value, nodes L and M cannot be
fused, and all edges from L to M are marked as

noncontractable. It is not necessary to call the algorithm
Contractuble(L, M) when there is no LDG edge from L to
M , because in that case there cannot possibly be any data
interference between loop nests L and M .

A fusion partition of an LDG is a partition of the set of
nodes into disjoint fusion clusters; each fusion cluster
represents a set of loop nests to be fused. A fusion
partition is legal if and only if 1) for each noncontractable
edge, the source and destination nodes belong to distinct
fusion clusters; and 2) the reduced graph defined by the
fusion partition is acyclic. Given an LDG and a legal fusion
partition, the output code configuration can be obtained by
fusing all loops that belong to the same fusion cluster and
by ordering the fused loops according to some topological
sort defined by the edges in the reduced cluster graph.

associated with each pair of nodes i and j , representing
the cost savings that would be obtained if loops i and j
were fused. For convenience, we assume that wit = 0 for
all i , and that wij = wli = 0 for each noncontractable edge

We also assume that there is a weight wlj = wji

IBM J. RES. I IEVELOP. \. ‘OL. 41 NO. 3 MAY 1 997

‘Note that weights of noncontractable edges have no impact on the selection of the ASTI transformer adds the Constraint that no fusion
optimal fusion partitions, since these weights are always included in the total
intercluster weight. cluster should lead to a fused loop in which a single 255

256

Source-level listing of transformed matrix multiply-transpose
program after scalar replacement.

iteration spills registers if none of the original loops in the
fusion cluster spilled registers, and uses a greedy merge
heuristic to solve this problem [41]. A new algorithm for
optimal weighted loop fusion has recently been designed
[30]. It is based on an integer programming formulation
that is efficient enough for use in a production-quality
compiler. We plan to experiment with this new approach
to see how much more effective the optimal weighted loop
fusion is compared to the greedy heuristic.

9. Loop-invariant scalar replacement
The ASTI transformer performs scalar replacement for
loop-invariant array references so as to reduce the number
of memory accesses in a loop nest. The scalar replacement
transformation [42] uses array analysis information to
selectively replace array references with compiler-
generated scalar temporaries. This transformation is
performed so as to enable more effective register
allocation of array references by the compiler back end.
The ASTI transformer takes this idea one step further by
also performing loop interchange within the locality group
so as to move the loop with the largest number of loop-
invariant array references and operations to the innermost
position.

The outputs of the loop-invariant scalar replacement
phase are as follows:

1. A new sequence of iteration-reordering loop
transformations that is appended to the existing
sequence.

2. A scalar replacement interface data structure with one

V. SARKAR

entry per scalar temporary containing the following
information:

List of array references to be replaced by this scalar

Number of transformed inner loops in which the

Information on whether the scalar temporary must

variable.

array references are invariant.

be loaded/initialized from the array element location
on loop entry (liveness on entry), and/or stored into
the array element location on loop exit (liveness on
exit).

Continuing with the matrix multiply-transpose example
from the previous sections, we see that the two references
t o a (i l , i 2) a re invar ian t in loopi3 , re ferenceb(i2 , i3)
is invariant in loop i l , and c (i 3 , i l) is invariant
in loop i 2 . Since the scalar replacement savings for
a (il , i 2) consists of a load and a store instruction, as
opposed to just a load instruction for the other array
references, this phase decides to keep loop i 3 in the
innermost position in the locality group, and then creates
a scalar replacement entry for the a (il , i 2) references.
Figure 14 shows a source-level listing of the transformed
code for the i l k i 2 + i 3 loop nest. The transformations
performed include the interchange and tiling from locality
optimization as well as scalar replacement from this phase.
The loop-unrolling transformation described in Section 10
is used later by the transformer to exploit the loop-
invariance of the other array references.

The ASTI transformer extends the approach of
interchanging loops so as to maximize the savings from
scalar-replaced loads and stores to other loop-invariant
operations on array references’ as well. The most notable
case is when a divisor is a loop-invariant array reference.
In this case, an extra savings is obtained by computing the
reciprocal as a loop-invariant and reducing the strength of
the divide operation inside the loop to a multiplication
by the loop-invariant reciprocal. An example of this
transformation is shown in Figure 15. Though this
transformation is algebraically correct, it can change the
bitwise floating-point result that is obtained, so it is
performed only when permitted by user options.

I O . Loop unrolling
Loop unrolling is similar to tiling in that it divides the
iteration space into small tiles. The iterations in an
unrolled “tile” execute copies of the loop body that have
been expanded (unrolled) in place, rather than executing
inner control loops as in tiling for cache locality. The
benefits of loop unrolling can come from enhanced
register locality, enhanced instruction-level parallelism,

and hence insensitive to loop ordering.
‘Loop-invariant operations on scalar variables are invariant in the entire loop nest

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997

and reduced loop overhead. However, the unroll factors
must be carefully selected to avoid run-time performance
degradation from excessive unrolling due to register spills
and code size expansion, as well as the inconvenience of
excessively long compile times.

The approach taken by the transformer to select unroll
factors is similar to the approach taken in Section 7 for
selecting tile sizes. The constrained optimization problem
to be solved in this case is as follows:

The objective function to be minimized is the amortized
execution time for a single iteration of the original
loop nest, when taking into account the savings from
unrolling. In contrast to the case of loop tiling, this cost
function cannot be effectively approximated as a rational
polynomial of unroll factors. Min and max operators are
used in this cost function to properly model cross-
reference register reuse, as well as hardware
characteristics such as the IBM POWER2* processor’s
quad-load/quad-store instructions [43].

following:
The constraints to be satisfied by the solution are the

Each unroll factor must be integer-valued and is
bounded above by a compiler-specified constant for
the sake of compile-time efficiency.
The number of distinct floating-point array references
in the unrolled loop body must not exceed the
effective number of floating-point registers
available.
The number of distinct integer array references and
array index registers in the unrolled loop body must
not exceed the effective number of fixed-point
registers available.

Continuing with the matrix multiply-transpose example
from the previous sections, we see that both loops il
and i2 carry register locality that can be exploited by
unrolling. For this example, loop unrolling is constrained
by the effective number of floating-point registers
available, which is assumed to be 28 to allow the compiler
at least four registers to use for code generation. Using an
approach similar to the memory cost analysis in Section 6,
the number of distinct floating-point registers required by
a u1 X uz X u, unroll configuration is given by DR(u,, uz, u3)
= uluz + (u,u, + u p ,) , where u l , u2 , and u, are the
unroll factors for loops il, i2, and i3, respectively. The
uIuz term represents duplicated copies of the scalar
replacement temporary for array a after unrolling, and the
(u,u, + u2u3) term represents the number of registers
required to hold values of arrays b and c. The number of
distinct load instructions in an unrolled iteration is also
(u,u, + u2u3) . Ignoring possible instruction-level
parallelism benefits, the objective function to be

Example of divide replacement.

minimized for this example is simply the amortized
number of loads per iteration,

F h , , u2, u,) = - +”.
We see from function F that we can get an improvement
by increasing u1 or u2 , but increasing u, leaves the value
of function F unchanged.

The unroll factors selected by the transformer for this
objective function are u1 = 4, u2 = 4, and u3 = 1. This
leads to a total of DR(4, 4, 1) = 24 floating-point
registers used in the unrolled loop body, which is less than
the limit of 28. Increasing either u1 or u2 to 5 makes DR
equal 29, which exceeds the limit.

A source-level listing of the transformed code obtained
from the transformation report generated by the XL
FORTRAN compiler is shown in Appendix A. The
transformations performed include loop tiling
and scalar replacement from the previous sections,
and loop unrolling as described in this section.
Notice the “remainder loops” required for correct code
generation for the loop-unrolling transformation when the

U1U3 + u p , 1 1

‘1’2’3 ‘2 ‘1

”

257

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997 V. SARKAR

258

compiler does not know whether a loop iteration count is
a multiple of its unroll factor.

11. Data dependence analysis
The data dependence tester provides data dependence
information for pairs of array subscript references; such
information is used by the transformer to test the legality
of various proposed transformations. The data dependence
tester is designed on a demand-driven model. It is invoked
when, and only when, it is deemed necessary by the
transformer, and at the level of detail that is specified by
the transformer. One of the main advantages is the
simplification that arises from not having to worry about
transforming a data dependence graph after loop
transformations such as distribution and fusion. An
additional advantage of demand-driven data dependence
testing is compile-time savings for cases in which the
transformer does not have to compute data dependences,
e.g., when the transformer's cost estimation shows that
the desired configuration is the same as the original
configuration (a frequent case in a well-tuned program).
Inherent in the demand-driven model is the possibility
that the data dependence tester may sometimes be called
repeatedly (hence unnecessarily) for the same pair of
array subscript references. In practice this is not a
problem, since the cost of the extra calls is typically small
compared to the rest of the compile time for these cases.

The input to the data dependence tester comprises

1. Subscript tables for a pair of array subscript references.
2. Loop-bound tables for lowerlupper bounds of the

common loops enclosing both array subscript
references.

3. An input set of dependence vectors which specify
conditions under which testing should be performed.

4. A flag to indicate the action that should be taken for
implausible (lexicographically negative) dependence
vectors found.

The output of the data dependence tester comprises

1. A set of data dependence vectors specifying conditions
under which a dependence was found.

2. A flag specifying whether the dependence vectors in
this set are exact or conservative.

3. Extra information when the dependence is known to
have some additional constraints, e.g., dependence
holds for only one iteration of the loop, or for only one
pair of iterations in the loop, or if there is a split-point.

Before applying any of the data dependence testing
algorithms, some preparation/normalization must be done.
In general, algorithms in the data dependence tester
require that loops with constant steps have already been at

V. SARKAR

least seminormalized to a stride of +l (but not necessarily
a lower bound of l), and that symbolic expressions
appearing in the array subscript references and loop
bounds have been decomposed into constant and symbolic
coefficients of the loop index variables. The analyzer
component of the ASTI optimizer builds a subscript table
for each array reference and a loop bounds table for each
loop-bound expression, so that this information is
available to the data dependence tester when the
transformer is invoked.

Data dependence vectors
Following prior work in the area of iteration-reordering
loop transformations, we represent the loop-carried data
dependence constraints for a loop nest by a set of
dependence vectors D. A dependence vector for a loop
nest of size n is an n-tuple, h = (d l , . . , d") , where entry
d , corresponds to the kth loop (counting from outermost
to innermost). In practice, there are two kinds of values
for d , that are of interest [44]:

1. Distance-d, is an integer value, d , = y E Z .
2. Direction-d, is one of the six values + (positive),

- (negative), f (nonnegative), f (nonpositive),
(nonzero), * (any)6.

Let us use S(d,) to denote the set of integer values that
is represented by d,. In the case of a distance value, S(d,)
is a singleton set, i.e., S(d,) = { y } . When d, is one of the
six possible direction values, S(d,) = {xlx E Z A x's sign
is contained in d , } . The set of integer tuples denoted by
dependence vector h = { d l , . . . , dn} is given by tuples@)
= S (d l) X . . . X S(d,) , i.e., the Cartesian product of
the integer sets corresponding to d , , . . , d,. If D is the
set of all of the dependence vectors for a loop nest,
tuples(D) is simply the union of the tuple sets for each
dependence vector in D, that is, tuples(D) = UiEo
tuples(h). An integer tuple, a' = (al, . . , an) , is
lexicographically negative (positive) if and only if its first
nonzero element, ai, is negative (positive); i.e., ai = 0,
V l 5 j < i and a, < 0 (al > 0). Finally, an execution
instance of a loop nest of size n is defined as an n-tuple,
a' = (a l , . . . , a n) , where a, specifies the iteration number
of the kth loop.

enforces a partial order on the execution instances of the
loop nest; for any two distinct execution instances ii and 6 ,
if their difference 6 - ii belongs to tuples(D), instance 6
must be executed after instance ii. This partial order
summarizes all of the iteration-reordering constraints

The set of dependence vectors for a loop nest, D,

operators, <, >, 5, a, #, and * respectively [l]. We do not represent an =
6An alternate notation for the six direction values is to use the relational

direction in our framework because it is equivalent to a zero distance.

IBM .I. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997

imposed by data dependences. We assume that the
original execution order satisfies this partial order. This
implies that tuples(D) cannot contain a lexicographically
negative integer tuple for the original loop nest (otherwise
the original execution order can be shown to violate some
data dependence constraint). Further, if D’ is the set of
dependence vectors that result after a loop transformation
is applied, and tuples(D’) contains a lexicographically
negative tuple, the transformed loop nest can be shown to
violate some data dependence constraint, and so the
transformation must be illegal. This fact forms the basis of
the data dependence legality test for iteration-reordering
loop transformations.

Recurrence recognition
When a recurrence operation is encoded using a
FORTRAN loop, the order in which the values are
accumulated becomes fixed. For floating-point data, if the
values are accumulated in a different order, the numerical
result may be different, even though the result is
algebraically equivalent to the original. In many cases, the
order in which values are accumulated is not important to
the programmer, and the programmer may communicate
this to the compiler via appropriate options and directives.
In the case of recurrences that arise from the scalarization
of FORTRAN 90 intrinsic functions, the language
specification allows the language translator to accumulate
the result in any order. In all of these cases,
recognitiontidentification of recurrence constructs by the
compiler is important, since the transformer can then
ignore loop-carried dependences carried by accumulator
variables and thus select a transformation that might not
otherwise have been legal. For some transformations
(notably loop unrolling and loop parallelization), some
additional transcription support is required to generate
correct and efficient code for recurrences.

The recurrence recognition performed by the ASTI
transformer identifies definitions that correspond to
accumulator updates in a recurrence, and also determines
the set of enclosing loops for which the definition
constitutes a reduction. A recurrence may span multiple
statements in the loop body.

For example, the variable s is used both as an
accumulator and as an intraloop temporary in the
following loop nest:

do i = 1, n
do j = 1, n

s = s + a (i , j)
s = s + b (i , j)

end do
end do

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1991

Only the first use of s and the last definition of s are
identified as references to the accumulator. Without
recurrence recognition, the transformer has to make the
worst-case assumption that the initial set of loop-carried
dependence vectors is D = {(+ , *), (=, +)> due to the
definitions and uses of variable s. After recognizing the
recurrence, the transformer will compute D = fl and then
proceed to select a loop interchange transformation for
improved cache locality. Appendix B shows the source-
level listing of the transformed loop nest for this example,
after recurrence recognition enabled loop interchange and
loop unrolling.

12. Related work
To the best of our knowledge, the ASTI transformer is the
first system to perform automatic selection of this wide
range of transformations using a cost-based framework.
The KAP [13] and VAST [14] preprocessors have made
high-order transformations available to users for over a
decade now. While they provided a great convenience for
users, most of the experience with these preprocessors
has been with using specialized options for different
applications rather than with automatic cost-based selection
of high-order transformations. As mentioned earlier, the
transformations implemented in the ASTI transformer
have all been proposed in past work, but without any
algorithms for applying them collectively. Because of space
limitations, we discuss only a representative subset of
prior work that is most relevant to our paper.

improves the locality of a loop nest by transforming the
code via interchange, reversal, skewing, and tiling based
on a mathematical formulation of reuse and locality,
and a loop transformation theory that unifies the various
transforms as unimodular transformations. This algorithm
has been implemented in the SUIF research compiler [45].
Their goal is to find the best combination of loop
interchange, skewing, reversal, and tiling that maximizes
the data locality within loop nests, subject to the
constraints of direction and distance vectors. Unlike our
approach of locality analysis by estimating a count of the
number of cache misses, they measure the locality of a
transformed code by intersecting the reuse vector space
with the localized vector space. We expect our cost
estimation to be more accurate because it takes into
account more factors than just the number of loops

Wolf and Lam [35] propose an algorithm that

carrying reuse, and gives an estimate of the number
of distinct cache lines accessed. Also, the locality
transformation in their framework is limited to at most
two steps consisting of a unimodular transformation
followed by a tiling transformation. In contrast, the ASTI
transformer supports a general sequence of iteration-
reordering loop transformations combined with loop

v. 5

259

iARKAR

distribution, fusion, unrolling, and scalar replacement,
as described in this paper.

In [46], Bailey presents a thorough analysis of the
behavior of a direct-mapped cache with strided data
access, and gives a formula for estimating cache efficiency.
Using cache efficiency, the compiler can detect
unfavorable strides and automatically adjust array
dimensions through padding techniques. However, this
work does not address the overall problem of locality
analysis (estimating the number of misses) and
optimization of array references in a loop nest.

In the area of automatic selection of tile sizes,
Schreiber and Dongarra [47] address the problem of
deriving an optimized tiled (hyperparallelepiped) iteration
space to minimize communication traffic. They assume a
restricted loop/array model in which the iteration space
and data space are isomorphic. Most of the paper is
devoted to solving the problem for the special case when
all block sizes are equal. Their technique is very different
from ours, and also too time-consuming for use in
production-quality compilers.

The inspiration for the loop structure graph originated
from the forward control dependence graph (FCDG) used
in the PTRAN system to represent interval structure and
statement parallelism [23-251. The FCDG is a variant of
the PDG in which the program's loop structure is made
evident by control dependences that are derived partly
from pseudo-control-flow edges connected to interval pre-
header and post-exit nodes. We observed three limitations
with the FCDG representation:

1. The FCDG is not well defined for a program with an
irreducible control flow graph; at the very least,
irreducibility causes the FCDG to be cyclic, whereas all
of the algorithms that use the FCDG assume that it is
acyclic.

2. Though the FCDG facilitates the identification of
statement parallelism, it does not lend itself to
performing loop transformations.

3. The creation of pseudo-control-flow edges for the
FCDG can lead to less precise data flow information
and hence less precise analyzer information (constant
propagation, induction variables, etc.).

The loop structure graph remedies the above problems
with the FCDG as follows:

1. An irreducible region is merged along with its smallest
containing single-entry region into a single loop node,
thus isolating it from the other loops in the LST,
which remain eligible for all transformations and
optimizations.

2. Loop transformations are easily performed by local
260 updates to the LST nodes and the LCFG and LDG

V. SARKAR

graphs. For the common case of iteration-reordering
loop transformations, the update is minimal since the
loop body is unchanged [29].

3. No pseudo-control-flow edges are created in the LSG,
since the program's loop structure is made self-evident
by the hierarchical structure of the LSG.

Several papers related to iteration-reordering
transformations have been published in the literature.
Lamport [44] introduces the hyperplane method and the
coordinate method for parallel execution of iterations in a
loop nest. Both methods are special forms of iteration-
reordering transformations. The framework used in [44]
included dependence vectors that contain distance or
direction values, and iteration-reordering transformations
that can be represented by Z" ++ Z" linear mappings.
Further, the legality test for a linear mapping was based
on the existence of a lexicographically negative tuple in
the set of transformed dependence vectors. However, the
focus of the paper was on the two methods for rewriting a
sequential loop nest into a form containing parallel loops,
and the framework was developed only to the extent
required by these transformations. The framework in the
ASTI transformer is much more general-we support
linear and nonlinear transformations, allow input and
output loop nest sizes to be different, and permit all
iteration-reordering transformations to be composed
together in a general way.

Wolfe [l] introduces a comprehensive data dependence
graph, with edges labeled by direction vectors, as the basis
for a loop-transformation framework. Several iteration-
reordering transformations were supported by this
framework, e.g., loop interchanging, iteration space
tiling (blocking), loop skewing, vectorization, and
concurrentization. However, each transformation had its
own special legality test based on the direction vectors and
on the nature of loop-bound expressions. Our framework
is more general in that we treat transformations as
independent entities, separate from the data dependence
graph.

iteration-reordering transformations based on supernode
partitioning, an aggregation technique achieved by
hyperplane partitioning, followed by iteration space tiling
across hyperplane boundaries. In this framework, data
dependences are represented by dependence cones rather
than dependence vectors. They also provide a general
code-generation algorithm for any linear transformation
that corresponds to a unimodular change of basis [49].
Their framework incorporates loop interchange,
hyperplane partitioning, and loop tiling (blocking) in a
unified way, for loop nests with linear bounds expressions.
Our framework takes its inspiration from this kind of
unified approach to loop transformations, but distinguishes

Irigoin and Triolet [48] describe a framework for

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997

itself by efficient cost-based algorithms for automatic
selection of high-order transformations.

Finally, McKinley, Carr, and Tseng [lo] study
improvements in data locality by using the loop
permutation, fusion, distribution, and reversal
transformations. These transformations form a subset of
the transformations implemented in the ASTI transformer
(their study does not include scalar replacement, loop
tiling, and loop unrolling). Their experimental results
show wide applicability of these locality-improving
transformations for existing FORTRAN 77 and
FORTRAN 90 programs.

13. Conclusions
In this paper, we described how the transformer
component of the ASTI optimizer automatically selects
high-order transformations for a given input program and
a target uniprocessor, so as to improve utilization of the
memory hierarchy (including cache and registers) and
instruction-level parallelism. The ASTI transformer is used
daily in production mode in the latest IBM XLF product
compilers for RS/6000 and PowerPC uniprocessors and
SMPs, and in the IBM XLHPF product compiler for the
SP distributed-memory multiprocessor. The experience in
building the transformer has established the feasibility of
pursuing a quantitive approach in building optimizing
compilers that deliver effective and robust optimizations
for a wide range of programs and target architectures. It
also established the feasibility of building a compiler
framework that supports incremental and demand-driven
optimization with low compile-time overheads. To the best
of our knowledge, the ASTI transformer is the first system
built that supports automatic selection of the wide range
of transformations described in this paper, using a cost-
based framework.

Appendix A Transformed matrix multiply-
transpose program after loop unrolling

1585-103 *** Loop Transformation Report ***

subroutine mmt(a,b,c,n)

do i2=l,n,l

do il=l,n,l

a(il,i2)=0d@

end do

end do

do bb$-12=l,n,50

do bb$-13=l,n, 51
do bb$-14=l,n,53

IBM J . RES, DEVELOP, VOL. 41 NO. 3 MAY 1997

do il=MAXO(l,bb$_12) ,MINO(n,49+b$-12)-3,4

do i2=MAXO(1,bb$-i3),MINO(n,50+bb$-13)-3,4

ScRep-l9=a(il,i2)

ScRep_2O=a(il+l,i2)

ScRep_Zl=a(il+Z,iZ)

ScRepP22=a(i1+3,i2)

ScRep_23=a(il,iZtl)

ScRepP24=a(il+l,i2+i)

ScRepP25=a(i1+2,i2+1)

ScRep_26=a(il+3,i2+1)

ScRepP27=a(il,i2+2)

ScRep_28=a(il+l,i2+2)

ScRepP29=a(i1+2,i2+2)

ScRep_3O=a(i1+3,i2+2)

ScRep_31=a(il,i2+3)

ScRep_32=a(il+l,i2+3)

ScRepP33=a(i1+2,i2+3)

ScRepP34=a(i1+3,i2+3)

do i3=MnXO(l,bb$-14) ,MINO(n,SO+bb$-14) ,1
ScRep-l9=ScRep-l9+b(i2.i3)*c(i3,il)

ScRep-20=ScRep-20+b(i2,i3)*c(i3,il+l)

ScRep-21=ScRep-2l+b(i2,i3)*c(i3,il+2)

ScRep-22=ScRep-22+b(i2,i3)*c(i3,il+3)

ScRep_23=ScRep_23+b(i2+1,i3)*c(i3,il)

ScRep-24=ScRep-24+b(i2+l,i3)*c(i3,i1+1)

ScRep-25=ScRep-25+b(i2+l,i3)*c(i3,il+2)

ScRep_26=ScRep_26+b(i2+1,i3)*c(i3,ii+3)

ScRep_27=ScRep_27+b(i2+2,i3)*c(i3,il)

ScRep-28=ScRep-28+b(i2+2,i3)*c(i3,il+l)

ScRep-29=ScRep-29+b(i2+2,i3)*c(i3,il+2)

ScRep-30=ScRep-30+b(i2+2,i3)*c(i3,il+3)

ScRep-31=ScRep-3l+b(i2+3,i3)*c(i3,il)

ScRep-32=ScRep-32+b(i2+3,i3)*c(i3,il+l)

ScRep_33=ScRep_33+b(i2+3,i3)*c(i3,i1+2)

ScRep_34=ScRep_34+b(i2+3,i3)*c(i3,i1+3)

end do

a (il, i2) =ScRep-l9

a(il+l,iZ)=ScRep-Z@

a(i1+2,i2)=ScRep-21

a(il+3,iZ)=ScRep-22

a(i1, i2+1) =ScRep-23

a(il+l,i2+1)=ScRep-24

a(i1+2,iZ+l)=ScRep-25

a(i1+3,i2+1)=5cRep-26

a(il,i2+2)=ScRep-27

a(il+l,i2+2)=ScRep-28

a(i1+2.i2+2)=ScRepp29

a(il+3,i2+2)=ScRep-30

a(il,i2+3)=ScRep-31

a(il+l,i2+3)=ScRep-32

a(i1+2,i2+3)=ScRep-33

a(i1+3,i2+3)=ScRepP34

end do 261

V. SARKAR

a(il,i2)=a(il,i2)+b(i2,i3)*c(i3,il)
a(il+l,i2)=a(il+l,i2)+b(i2,i3)*c(i3,il+l)
a(i1+2,i2)=a(il+Z,i2)+b(i2,i3)*c(i3,i1+2)
a (i l + 3 , i 2) = a (i 1 + 3 , i Z i + b (i 2 , i 3) * c (i 3 , i l + 3)

end do
end do

end do
do il=il,MINO(n,49+bb$_l2) ,1
do i2=MAXO(l,bb$-13),MINO(n,5O+bb$-l3),1

do i3=MAXO(l,bb$-14) ,MINO(n,50+bb$-14),1
a(il,i2)=a(il,i2)+b(i2,i3)*c(i3,il)

end do
end do
end do

end do
end do
end do

return

end

return

end

Appendix 6: Example of transforming a loop
nest containing a recurrence
Original program:

subroutine foo(a,b,s,n)
real*8 a(n,n) ,b(n,n) , s

do i=l,n
do j = l , n

s=s+a(i, j)
s=s+b(i, j)

end do
end do

end

A f t e r interchange and unrolling:

subroutine foo(a,b,s,n)
real*8 a(n,n) ,b(n,n) ,s
real*8 ScRed-7,ScRed-8,ScRed-9,
ScRed-lO,ScRed-ll,ScRed-l2,

ScRed-l3,ScRed-l4,ScRed-l5
ScRed-7 = s

ScRed-8=0. OdO
ScRed-9=0. OdO

ScRed-lO=O. OdO

ScRed-ll=O . OdO
ScRed-l2=O. OdO
ScRed-l3=O. OdO

262 ScRed-l4=O. OdO

do i=l,n-2,3
scRed_li=ScReb7+a (i, j)

ScRedP7=ScRed-7+b(i, j)

~c~ed-8=ScRed-8+a(i,I+l)
ScRed-8=ScRedP8+b(i, j + l)

scRed-g=ScRed-g+a(i, j+2)
ScRed-g=ScRed_g+b(i, j+2)
ScRed-lO=ScRed-lO+a(i+l, j)
ScRed-lO=ScRed-lO+b(i+l,j)
ScRed-ll=ScRed-ll+a(i+l,j+1i
ScRed-ll=ScRed-ll+b(i+l,j+~)
ScRed-l2=ScReQ12+a(if1,j+2)
ScRed-l2=ScRed-l2+b(i+l,j+2)
ScRed-l3=ScRed-l3+a(i+2, j)
ScRed-l3=ScRed-l3+b(i+2,j)
Sc~ed-l4=ScRed-l4+a(i+2,j+~)
ScRed-l4=ScRed-l4+b(i+2,j+l)
ScRed-l5=ScRed-l5+a(i+2,j+2i

Sc~ed-l5=ScRed-l5+b(i+2,j+2)

end do
do i = i , n

ScRed_7=ScRed_7+a(i,j)
ScRed-7 =ScRed-7 +b (i , j)
Sc~ed_8=ScRed_8+a(i,j+l)
ScRed-8=ScRed-8+b(i,J+l)
ScRed-9=ScRed-9fa(i,j+2)
ScRed-9=ScRed-9+b(i,j+2)

end do
end do

s=s+ScRed-7+ScRed-8+ScRed-9+

ScRed-1O+Sc~ed-llfScRed-12+ScRed-l3

scRed-l4tScRed-15

do j=j,n
do i=l,n

s=s+a(i, j)
s=s+b(i, j)

end do
end do

end

Acknowledgments
This work would not have been possible without the
encouragement and guidance provided by Frances Allen
and Randolph Scarborough. The author would like to
thank Ray Ellersick, Roy Ju, Paula Newman, John Ng,
Khoa Nguyen, Jin-Fan Shaw, and Radhika Thekkath for
their contributions to the design and implementation of
the ASTI transformer at IBM Santa Teresa Laboratory
during the 1991-1993 time period, and all members of the
ASTI team for creating an exciting environment in which

V. SARKAR IBM J . RES. DEVELOP. VOL. 41 NO. 3 MAY 1997

research could flourish on a development schedule. The
author would also like to thank Alan Adamson and other
members of the Parallel Development group in the IBM
Toronto Laboratory for their ongoing work on shipping
the ASTI optimizer as part of the IBM XL FORTRAN
compiler products.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Standard
Performance Evaluation Corporation.

References
1. Michael J. Wolfe, Optimizing Supercompilers for

Supercomputers, Pitman, London, and MIT Press,
Cambridge, MA, 1989; in the series Research Monographs
in Parallel and Distributed Computing.

Wegman, and F. Kenneth Zadeck, “Efficiently Computing
Static Single Assignment Form and the Control
Dependence Graph,” ACM Trans. Programming Languages
& Syst. 13, 451-490 (October 1991).

3. A. V. Aho, R. Sethi, and J. D. Ullman, Compilers:
Principles, Techniques, and Tools, Addison-Wesley
Publishing Co., Inc., Reading, MA, 1986.

4. Barry K. Rosen, Mark N. Wegman, and F. Kenneth
Zadeck, “Global Value Numbers and Redundant
Computations,” Conference Record, Fijteenth ACM
Principles of Programming Languages Symposium, San
Diego, January 1988, pp. 12-27.

Propagation with Conditional Branches,” Conference
Record, Twelfth ACM Symposium on Principles of
Programming Languages, January 1985, pp. 291-299.

Science Publishers, England, 1990.

“Automatic Parallelization for Symmetric Shared-Memory
Multiprocessors,” presented at the CASCON ’96
Conference, November 1996.

Midkiff, Edith Schonberg, and Dave Shields, “Improving
the Performance of HPF Compilers,” Proceedings of the
Fifth Workshop on Compilers for Parallel Computers (CPC
’95), Malaga, Spain, June 1995, pp. 22-39.

Muthukumar, and Vivek Sarkar, “A Compiler Framework
for Restructuring Data Declarations to Enhance Cache
and TLB Effectiveness,” presented at the CASCON ’94
Conference, November 1994.

10. Kathryn S. McKinley, Steve Carr, and Chau-Wen Tseng,
“Improving Data Locality with Loop Transformations,”
ACM Trans. Programming Languages & Syst. 18, 423-453
(July 1996).

11. Kevin O’Brien, Kathryn M. O’Brien, Martin Hopkins,
Arvin Shepherd, and Ron Unrau, “XIL and YIL: The
Intermediate Languages of TOBEY,” Sigplan Notices 30,
71-82 (March 1995).

12. E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A.
McKenney, S. Ostrouchov, and D. Sorensen, LAPACK
Users’ Guide, Second Edition, Society for Industrial and
Applied Mathematics (SIAM), September 1994.

13. KAP for IBM FORTRAN, User’s Guide Version 3.3,
Technical report (Document No. 9603001), Kuck &
Associates, Inc., 1906 Fox Drive, Champaign, IL 61820-
7334. http://www.kai.com., 1996.

2. Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N.

5. Mark Wegman and Kenneth Zadeck, “Constant

6. M. Metcalfe and J. Reid, FORTRAN 90 Explained, Oxford

7. Jyh-Herng Chow, Leonard E. Lyon, and Vivek Sarkar,

8. KO-Yang Wang, Wei-Min Ching, Manish Gupta, Sam

9. David F. Bacon, Jyh-Herng Chow, Dz-Ching R. Ju, K.

14. VAST-2 for XL FORTRAN, User’s Guide, Edition 1.2,
Technical report (Document No. VA061), Pacific-Sierra
Research Corporation, 2901 28th St., Santa Monica, CA
90405, 1994.

Guide and Reference, 1994; available through IBM branch
offices.

“Exploiting Functional Parallelism of POWER2 to Design
High-Performance Numerical Algorithms,” IBM J. Res.
Develop. 38, 563-576 (September 1994).

17. Theodore H. Romer, Dennis Lee, Brian N. Bershad, and
J. Bradley Chen, “Dynamic Page Mapping Policies for
Cache Conflict Resolution on Standard Hardware,”
Proceedings of the First Symposium on Operating System
Design and Implementation, November 1994.

18. F. E. Allen and J. Cocke, “A Program Data Flow
Analysis Procedure,” Commun. ACM 19, 137-147
(March 1976).

19. J. T. Schwartz and M. Sharir, “Tarjan’s Fast Interval
Finding Algorithm,” Technical report (SETL Newsletter
Number 204), Courant Institute, New York University, 1978.

20. J. Ferrante, K. Ottenstein, and J. Warren, “The Program
Dependence Graph and Its Use in Optimization,” ACM
Trans. Programming Languages & Syst. 9, 319-349 (July
1987).

Wegman, and F. Kenneth Zadeck, “An Efficient Method
for Computing Static Single Assignment Form,”
Conference Record, Sixteenth Annual ACM Symposium on
Principles of Programming Languages, January 1989, pp.

1.5. Engineering and Scientific Subroutine Library (ESSL),

16. R. C. Aganval, F. G. Gustavson, and M. Zubair,

21. Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N.

25-35.
22. Jong-Deok Choi, Vivek Sarkar, and Edith Schonberg,

“Incremental Computation of Static Single Assignment
Form,” Proceedings of the I996 International Conference on
Compiler Construction (CC ’96), Linkoping, Sweden, April
1996.

“Automatic Generation of DAG Parallelism,” Proceedings
of the ACM SIGPLAN ’89 Conference on Programming
Language Design and Implementation, Portland, OR, June
1989, pp. 54-68.

“Experiences Using Control Dependence in PTRAN,”
Proceedings of the Second Workshop on Languages and
Compilers for Parallel Computing, August 1989; in Languages
and Compilers for Parallel Computing, D. Gelernter,
A. Nicolau, and D. Padua, Eds., MIT Press, 1990, pp.

25. Vivek Sarkar, “The PTRAN Parallel Programming System,”
Parallel Functional Programming Languages and Compilers,
B. Szymanski, Ed., ACM Press, New York, 1991, pp.

23. Ron Cytron, Michael Hind, and Wilson Hsieh,

24. Ron Cytron, Jeanne Ferrante, and Vivek Sarkar,

186-212.

309-391.
26. Francois Irigoin, Pierre Jouvelot, and Remi Triolet,

“Semantical Interprocedural Parallelization: An Overview
of the PIPS Project,” Proceedings of the ACM I991
International Conference on Supercomputing, June 1991,

27. Constantine Polychronopoulos, “The Hierarchical Task
Graph and Its Use in Auto-Scheduling,” Proceedings of the
ACM 1991 International Conference on Supercomputing,
June 1991, pp. 252-263.

Variables and Its Application to Program
Transformation,” Ph.D. thesis, Rice University, Houston,
TX, 1983.

Framework for Iteration-Reordering Loop
Transformations,” Proceedings of the ACM SIGPLAN ’92
Conference on Programming Language Design and
Implementation, June 1992, pp. 175-187.

pp. 244-251.

28. John R. Allen, “Dependence Analysis for Subscripted

29. Vivek Sarkar and Radhika Thekkath, “A General

263

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997 V. SARKAR

30. Nimrod Megiddo and Vivek Sarkar, “Optimal Weighted
Loop Fusion for Parallel Programs,” Proceedings of the
Ninth Annual ACM Symposium on Parallel Algorithms and
Architecture, June 1997, pp. 282-291.

31. Randy Allen and Ken Kennedy, “Automatic Translation
of FORTRAN Programs to Vector Form,” ACM Trans.
Programming Languages & Syst. 9, 491-592 (October 1987).

32. Jeanne Ferrante, Vivek Sarkar, and Wendy Thrash, “On
Estimating and Enhancing Cache Effectiveness,” Lecture
Notes in Computer Science 589, 328-343 (1991); in
Proceedings of the Fourth International Workshop on
Languages and Compilers for Parallel Computing, U.
Banerjee, D. Gelernter, A. Nicolau, D. Padua, Eds.,
Santa Clara, CA, August 1991.

33. Utpal Banerjee, Dependence Analysis for Supercomputing,
Kluwer Academic Publishers, Nonvell, MA, 1988.

34. Vivek Sarkar, Guang R. Gao, and Shaohua Han, “Locality
Analysis for Distributed Shared-Memory
Multiprocessors,” Proceedings of the Ninth Workshop on
Languages and Compilers for Parallel Computing, Santa
Clara, CA, August 1996; Lecture Notes in Computer
Science 1239, Springer-Verlag, New York, 1996, pp. 20-40.

35. Michael E. Wolf and Monica S. Lam, “A Data Locality
Optimization Algorithm,” Proceedings of the ACM
SIGPLAN Symposium on Programming Language Design
and Implementation, June 1991, pp. 30-44.

36. Kyle Gallivan, William Jalby, and Dennis Gannon, “On
the Problem of Optimizing Data Transfers for Complex
Memory Systems,” Proceedings of the ACM 1988
International Conference on Supercomputing, July 1988, pp.
238-253.

37. Michael E. Wolf and Monica S. Lam, “A Loop
Transformation Theory and an Algorithm to Maximize
Parallelism,” IEEE Trans. Parallel & Distributed Syst. 2,
452-471 (October 1991).

38. Nimrod Megiddo and Vivek Sarkar, “Minimizing Loop
Execution Time by Optimizing BlockITile Sizes,” Invention
Disclosure ST9-95-008, October 1994.

39. Vivek Sarkar, “Determining Average Program Execution
Times and Their Variance,” Proceedings of the 1989
SIGPLAN Conference on Programming Language Design
and Implementation, July 1989, pp. 298-312.

40. Ken Kennedy and Kathryn S. McKinley, “Maximizing
Loop Parallelism and Improving Data Locality via Loop
Fusion and Distribution,” Proceedings of the Sixth
Workshop on Languages and Compilers for Parallel
Computing, Portland, OR, August 1993; Lecture Notes
in Computer Science 768, Springer-Verlag, New York,
1993.

“Collective Loop Fusion for Array Contraction,” Proceedings
of the Fifth International Workshop on Languages and
Compilers for Parallel Computing, New Haven, CT, August
1992; Lecture Notes in Computer Science 757, Springer-
Verlag, New York, 1993, pp. 281-295.

42. David Callahan, Steve Carr, and Ken Kennedy,
“Improving Register Allocation for Subscripted
Variables,” Proceedings of the ACM SIGPLAN ’90
Conference on Programming Language Design and
Implementation, White Plains, NY, June 1990, pp. 53-65.

43. Special issue on POWER2 and PowerPC, IBM J. Res.
Develop. 38, 489-648 (September 1994).

44. L. Lamport, “The Parallel Execution of DO Loops,”
Commun. ACM 17, 83-93 (February 1974).

45. Michael E. Wolf, “Improving Parallelism and Locality in
Nested Loops,” Ph.D. thesis, Stanford University, August
1992; Technical Report CSL-TR-92-538.

46. David H. Bailey, “Unfavorable Strides in Cache Memory
Systems,” Scientific Programming 4, 53-58 (1995); RNR
Technical Report RNR-92-015, NASA Ames Research
Center, Sunnyvale, CA.

41. G. R. Gao, R. Olsen, V. Sarkar, and R. Thekkath,

264

V. SARKAR

47. Robert Schreiber and Jack Dongarra, “Automatic
Blocking of Nested Loops,” Technical Report 90.38,
Research Institute for Applied Computer Science
(RIACS), Mountain View, CA, August 1990.

Partitioning,” Conference Record, Fifteenth ACM
Symposium on Principles of Programming Languages, 1988.

Method and for Loop Interchange,” Technical Report
ENSMP-CAI-88-E102lCAI/I, Ecole Nationale Supkrieure
des Mines de Paris, October 1988.

48. Francois Irigoin and Remi Triolet, “Supernode

49. Francois Irigoin, “Code Generation for the Hyperplane

Received August 8, 1996; accepted for publication
April 21, 1997

Vivek Sarkar IBM Software Solutions Division, MIT
Laboratory for Computer Science, Cambridge, Massachusetts
02139 (vivek@lcs.mit.edu, http:llwww.csg.Ics.mit.edul-vivek).
Dr. Sarkar is a Senior Technical Staff Member in the IBM
Software Solutions Division and a member of the IBM
Academy of Technology. He is currently a visiting associate
professor at the MIT Laboratory for Computer Science. His
past research has focused on the area of optimizing and
parallelizing compilers. Dr. Sarkar joined IBM in 1987 after
receiving a Ph.D. degree from Stanford University. At IBM,
he worked on the PTRAN research project from 1987 to
1990, developing compiler technologies for automatic
parallelization. From 1991 to 1993, he led the product
development effort to design and implement the transformer
component of the IBM ASTI optimizer. From 1994 to 1996,
he was manager of the ADTI Department, with the mission
of transferring high-priority application development
technologies from the research stage into IBM products.

IBM I. RES, DEVELOP. VOL. 4 il NO. 3 MAY 1997

