Simulation/
evaluation
environment
for a VLIW
processor
architecture

by J. H. Moreno
M. Moudgill
K. Ebcioglu
E. Altman
C. B. Hall
R. Miranda
S.-K. Chen
A. Polyak

We describe the environment used for the
simulation and evaluation of a processor
architecture based on very long instruction
word (VLIW) principles. In this architecture, a
program consists of a set of tree instructions,
each one containing multiple branches and
operations which can be performed
simultaneously. The simulation/evaluation
environment comprises

« An optimizing compiler, which generates tree
instructions in a VLIW assembly language.

« A translator from VLIW assembly code into
PowerPC® assembly code which emulates
the functionality of the VLIW processor for
the specific VLIW program. The emulating
code also includes instrumentation for
collecting execution counts of VLIWSs,
profiling information, and generation of
predecoded execution traces.

» A cycle timer, invoked by the emulating code
on a VLIW-by-VLIW basis, which processes
VLIW execution traces as they are generated.

The environment supports the evaluation of
alternatives and trade-offs among the VLIW
architecture, its compiler, and processor
implementations. Emphasis has been placed
on providing fast turnaround time for the
development of compilation algorithms and an
efficient compilation-to-simulation cycle which
allows analysis of architecture/compiler trade-
offs over complete execution runs of realistic
workloads.

Introduction

The design of a new computer architecture and its
associated compiler, or a new implementation of an
existing architecture, is a complex process. For a given set
of requirements, designers must

e Determine what attributes are important and necessary.
» Design a machine implementing such attributes, which
delivers adequate performance with respect to other

architectures/implementations.
« Fulfill implementation and cost constraints.

©Copyright 1997 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,

of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

287
0018-8646/97/$5.00 © 1997 IBM

J. H. MORENO ET AL.

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997

288

Moreover, the requirements are not always completely
defined in advance and/or fixed. The expected applications
(software) as well as the expected technology (hardware)
may change dramatically from the time of conception to
the time of delivery of a new machine. Consequently, a
new architecture or implementation must be designed
under varying assumptions regarding the features of
software and hardware.

Because of the overall complexity of the process,
designers usually select a subset of the issues involved
and perform trade-offs only among those issues. For
example, the design of a new implementation (a new
microarchitecture) includes trade-offs with respect to
functional organization, logic design, and circuit design;
some compiler functionality might be included in such
trade-offs, though it seems that the compiler effects are
usually taken into account after the microarchitecture has
been developed. In contrast, the design of a new computer
architecture frequently focuses first on instruction set,
machine organization, and compiler functionality, while
making assumptions regarding implementation technology,
chip size, and so on.

The evaluation of trade-offs such as the ones mentioned
above requires adequate tools for simulation and
performance measurement. In general, the design process
is an iterative one: Features are proposed, required
changes are introduced to the design environment, and the
effectiveness and performance of the new features are
evaluated. Such a process is necessary because of the
ever-tighter interaction among the different features.
Consequently, the tools used should be efficient, allow
experimentation with realistic workloads, be easy to
reconfigure, and permit the evaluation of a variety of
features. Moreover, the tools should be able to support
the development of the target system as well as the
performance evaluation process, activities which have
widely different requirements in terms of their acceptable
turnaround time and the accuracy expected from the
results.

o [nstruction-level parallelism

An important focus of activity regarding computer
architectures/microarchitectures in recent years has been
the exploitation of instruction-level parallelism (ILP), that
is, the ability to execute several operations simultaneously
[1, 2]. Processors capable of exploiting ILP contain
multiple functional units, fetch several instructions per
cycle from the instruction cache, and in a given cycle may
dispatch multiple operations for execution. Such
processors are referred to as superscalar to distinguish
them from scalar processors, which dispatch at most

one instruction per cycle. Moreover, when the set of
operations issued for parallel execution is large (say larger

J. H. MORENO ET AL.

than eight), the implementations are also known as wide-
issue superscalar processors.

Depending on the machine organization, the multiple
simultaneous operations executed by a superscalar
processor may be an in-order or out-of-order sequence of
instructions. In the case of an in-order sequence, the
corresponding processor has some mechanism to
determine the adjacent set of operations that are
executable simultaneously, and executes them in the order
in which they appear in the program. In contrast, an out-
of-order processor has hardware resources that determine
the dependencies among successive operations as well as
the order in which those operations are executed; such
ordering may be different from the one in which
instructions appear in the program. Most existing modern
(high-performance) processor implementations belong to
the out-of-order class.

The instructions executed simultaneously by an in-order
issue superscalar processor are determined by the way in
which instructions are placed in a program (that is, by the
compiler or programmer), whereas an out-of-order
processor discovers those instructions while the program
is being executed. Consequently, an in-order processor
requires simpler dispatch logic than an out-of-order
processor, potentially leading to a faster implementation
(higher clock frequency) and/or a shorter design cycle.
This is one example of the many trade-offs possible in the
design of a processor.

® VLIW processors

Aggressive in-order wide-issue execution leads to very long
instruction word (VLIW) processors, wherein scheduling of
instructions is done statically by a compiler that groups
independent instructions executable in parallel, using
optimization techniques such as software pipelining, loop
unrolling, and scheduling code speculatively across basic
blocks [2].

VLIW is not a recent concept; in fact, it originated as
an extension of microcode-based techniques [3, 4], though
the concept has changed drastically since its inception. As
with all others, VLIW-based processors are subject to a
large variety of trade-offs. On one end, VLIW may be
regarded simply as an alternative implementation of an
existing sequential architecture, in which case the
architecture is fixed but the compiler is augmented with
the functionality for generating VLIWs (i.e., grouping
together instructions executable in parallel); perhaps some
architecture modifications might be introduced to simplify
the process of detecting at run time the boundaries of
VLIWs in a program. On the other end, VLIW may be
regarded as a completely new architecture, in which case
the formats and contents of VLIWs can be defined
in a manner different from a sequential program

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997

representation, leading to simpler decoding and issuing of
instructions.

VLIW implementations have been described as “a
natural successor to RISC,” because complexity is moved
from the hardware into the compiler. As stated in [5], “the
objective of VLIW is to eliminate the complicated
instruction scheduling and parallel dispatch that occur in
most modern microprocessors. In theory, a VLIW
processor should be faster and less expensive than a
comparable RISC processor.” The transfer of complexity
from hardware into the compiler is another source for
trade-offs in a VLIW-based design.

In spite of the attractiveness of its potential design
simplicity, VLIW implementations have been perceived as
suffering from important limitations when compared to
out-of-order implementations, such as the need for a
powerful compiler, larger code size arising from the
aggressive scheduling performed by the compiler, lock-step
execution of VLIWS, and binary incompatibility across
implementations with a varying number of functional
units [1].

8 Scope of the paper

We have been researching the viability of a VLIW
architecture in the context of PowerPC* and the AIX*
operating system. Our focus has been the development of
a new architecture, with enhancements for exploiting ILP
such as the removal of unique resources which may cause
serializations (e.g., the carry bit), or the addition of a
larger register set. We have been studying the potential
features of such a new architecture, the appropriate
compiler algorithms, and the interactions between
architecture and compiler. The objective has been the
development of an architecture/compiler combination
which reaches new levels of ILP in branch-intensive and
in numerically intensive programs.

To support our research, we have created an
environment for the simulation and evaluation of our
VLIW architecture, which allows us to experiment with
alternative features and to evaluate the benefits and
complexities arising from such features. This environment
provides fast turnaround time for implementing new
compilation algorithms, and fast turnaround time from
compilation to simulation, at different levels of
accuracy regarding performance estimates, so that
architecture/compiler trade-offs as well as implementation
trade-offs can be analyzed over complete execution runs.

In this paper, we describe the environment mentioned
above. We focus mostly on features related to the
instruction-set architecture and their relationship with
compiler optimization algorithms. The relevance of the
environment for experimental evaluation is described,
emphasizing its ability to quickly introduce new
compilation algorithms and rapidly incorporate and

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997

Evaluation Exploratory
path path
Simulator
modified
Evaluate Verify
performance effectivéness

Iterative simulation/evaluation process.

evaluate new architecture features. Quantitative results
illustrate the mechanisms used to evaluate the abilities

(or limitations) of the compiler to exploit the architectural
features considered. In practice, the environment allows
evaluation of alternative features over realistic workloads;
programs such as the SPECint** benchmark suite and a
set of AIX utilities can be routinely simulated in their
entirety. Simulation at the instruction-set architecture
level typically runs only seven to ten times slower than the
optimized native PowerPC code for the same program.
This level of performance in the simulator makes possible
carrying out complete experiments on a regular basis,
without having to resort to simplifications to reduce their
turnaround time.

The rest of the paper is organized as follows. We first
describe the overall environment developed to support our
research, and summarize how this environment differs
from others previously reported in the literature. We then
describe significant aspects of Chameleon, the optimizing
compiler, and briefly summarize the basic properties of
ForestaPC, our tree-based VLIW architecture. This is
followed by a description of some examples of the
architecture/compiler interactions which can be explored
in our environment, illustrating them with quantitative
results. We also provide data on the performance of the
simulation/evaluation environment. We finalize with some
observations regarding the compiler/architecture
interactions, and the benefits of the environment.

The simulation and evaluation environment
Our simulation and evaluation environment has been built
around the architecture/compiler interaction, leading to two
paths, as depicted in Figure 1:

J. H. MORENO ET AL.

289

290

Source ¢code
Simulation Profilin
[4
program statistics
Predecoded
trace
%‘ o
PowerPC citon i
assembly 1 Trace : E
D Cycle :_f?ed_efa' t
L Hmer 1
P : !
o - | Cycle timer / Asfienll‘:ermen Processort oo :
| }’ Processor model
model l e S
I:}\ Cycle-accurate
o Memory Menmory | 1 siatistics
G model model
Preparation phase Simulation/timing phase

. Figure 2

Overview of the simulation/timing environment.

o The exploratory (fast) path, which is characterized by fast
turnaround time but only instruction-set architecture
performance measurements.

* The evaluation (slow) path, which is characterized by
longer turnaround time but performance measurements
that take into account implementation aspects.

As their names imply, each path has a well-defined
objective. The exploratory path is used to test new
features by modifying the different components of the
environment as necessary, and by simulating at the
instruction-set architecture level (without taking into
account implementation issues such as finite-size cache
memories, interlocks, and so on). In contrast, the
evaluation path focuses on providing accurate
performance estimates, including the implementation
aspects.

The two paths described above have been built into a
simulation environment which comprises two phases
(Figure 2):

« The preparation phase, in which ForestaPC (VLIW)
assembly language code [6] is translated into PowerPC
assembly code which emulates the behavior of the VLIW
program (on a file-by-file basis if the program consists of
multiple files).

o The simulation/timing phase, in which the VLIW
program is simulated, including the collection of run-
time profiling information and the invocation of a cycle
timer on a cycle-by-cycle basis.

J. H. MORENO ET AL.

More specifically, the major components of the
environment are the following:

1. An optimizing compiler, Chameleon, which generates
assembly language code for the ForestaPC architecture.
The salient features of this compiler are discussed in
the next section.

2. A translator, which maps the VLIW assembly code into
PowerPC assembly code. The resulting code emulates
the functionality of the ForestaPC architecture for the
specific program (as opposed to an interpreter using
the target code as input). In addition, the resulting
code contains instrumentation to collect run-time data
regarding the VLIW program, and to generate
predecoded execution traces.

3. A cycle timer, invoked by the simulation code on a
cycle-by-cycle basis, which processes the predecoded
execution traces of the VLIW architecture as they are
generated. The cycle timer contains a processor model
and a memory model, selected from a range of
alternative models of varying levels of detail and accuracy.

The two-phase approach illustrated in Figure 2, which is
common to other simulation/profiling tools [7], offers
several special advantages in our case. For example, the
layout of data and procedure call conventions in the
ForestaPC architecture are the same as those in
PowerPC/AIX, so the preparation phase may mix assembly
code from both architectures. Since the translator
generates PowerPC assembly code on a file-by-file basis, it
is possible to compile into ForestaPC assembly code only
a subset of the source files composing a program, and
compile the remaining files directly into PowerPC
assembly code. In this way, the program resulting from the
preparation phase emulates and collects performance data
for only the part of the program that has been compiled
for the ForestaPC architecture, thus permitting a focus on
only the critical parts of a program. This helps to reduce
the complexity and execution time of the simulation and
evaluation tasks.

Moreover, the resulting PowerPC code is assembled
and then linked with the cycle timer, which includes a
processor and a memory model. Consequently, a given
program for the ForestaPC architecture can be used with
alternative processor and memory models, providing
varying degrees of detail in the performance data
collected. At one extreme, no model is inserted whenever
the desired objective is just the verification of correctness
in the program, or just the collection of basic statistics
regarding the instructions executed. At the other extreme,
detailed processor and memory models are inserted to
collect an accurate cycle count during execution of the
program. The selection of a particular model is performed
at link time, when the simulation executable is created.

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997

Alternatively, the preparation phase may create a
simulation module for generating and saving the execution
trace of the ForestaPC program instead of consuming the
trace on the fly; this possibility is indicated by the dashed
lines in Figure 2. Using this same approach, we have also
envisioned the possibility of replacing the cycle timer
module with some form of debugging environment for the
ForestaPC architecture (resembling what has been done
with the tool Shade [8]). These features are possible
through specific programming interfaces among the
processor model, the memory model, and the emulated
program.

Mixing assembly code from the ForestaPC and PowerPC
architectures also allows the invocation of operating
system resources in a straightforward manner. The
program in ForestaPC assembly code simply invokes the
system function, and either a VLIW version or a PowerPC
version of that function is provided at link time (initially,
we used the PowerPC version for most of the system
library functions).

® The translator

As stated above, the translator is used to convert
ForestaPC assembly language code into PowerPC code
(see Figure 3). Since the program in the ForestaPC
architecture may contain instructions different from those
available in the PowerPC architecture, extra PowerPC
primitives must be added to simulate the effects of the
new instructions. Moreover, since the VLIW architecture
may contain a larger register set than the PowerPC set,
registers of the VLIW architecture are kept in memory
and temporarily loaded into PowerPC registers to perform
specific operations, and results are stored in the
appropriate target registers in memory. This is basically
the same scheme used in tools such as Shade [8].

Preliminary performance measurement capabilities are
incorporated by the translator through instrumentation for
collecting data regarding the VLIWs executed. The
measures correspond to statistics on the instruction-set
architecture, and do not include details regarding an
implementation of such an architecture. Thus, this
mechanism allows fast turnaround time for experimenting
with architectural features and compiler algorithms,
without yet introducing the detailed description of a
processor and memory implementation.

The instrumentation consists of counters which are
placed at selected points in the code (representing each
exit point from a VLIW). In addition, the translator
generates a file of descriptors, each containing predecoded
information which describes the operations and resources
used by a VLIW. When the program finishes execution
(a simulation run completes execution), the counters are
saved in a file on disk; then, a separate tool combines the
information from the counters with the descriptors, thus

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997

Instruction in

VLIW architecture Translated PowerPC code

Iwz r31,R4_off(r13)

wz ¥30,R3_off(r13)
———— . gdd 131,131,130

sli r31,r31,4

stw r31,R37_off(r13)

add_shift r37,r4,r3,4

Translation of VLIW assembly code into PowerPC code.

computing performance data such as total number of
times each VLIW was executed, average ILP achieved,
utilization histograms for the different resources, and
dynamic frequency distribution of the different primitive
instructions. The tool also generates profile-directed
feedback information for the compiler, though we do not
currently exploit that capability.

The translator also places a call to the cycle timer for
each VLIW executed, passing as arguments the associated
descriptor as well as an image of the registers specifying
their contents just prior to the execution of the VLIW
(i.e., a complete “trace record” which includes the status
of the processor at that point). Only a pointer to these
elements is actually used as argument in the call to the
cycle timer, so there is no overhead in arranging data
before the call.

The translator is driven by tables specifying the actual
translation for each primitive instruction defined in the
ForestaPC architecture; adding a new instruction or
modifying one already defined consists simply in changing
the corresponding table entry. The type of instrumentation
desired is a parameter to the translator, so different levels
of detail in the collection of data can be selected at
translation time.

® The cycle timer

The approach used in the cycle timer attempts to avoid
some of the limitations of traditional timing models in
processing traces of meaningful length (hundreds of
millions of instructions), which either require a very long
execution time or rely on sampling of the execution
traces' [9]. Two alternatives are provided for timing the
behavior of a processor, both based on a cycle-by-cycle
monitoring of the execution of a program:

1. A (traditional) trace-driven approach, in which an
execution trace is first collected and then used as input

1 The environment described here may still require sampling, but for much longer
traces (programs running for many billions of instructions).

J. H. MORENO ET AL.

291

292

to the timer, but using a trace which contains
predecoded information regarding the resources
required for the execution of each instruction.

2. An integrated simulation/timing approach, in which a
program is simulated, a predecoded execution trace is
generated, and the timing of the trace is performed on
the fly.

In both cases the trace contains predecoded information,
so that much of the overhead in processing the trace is
eliminated. Moreover, in the case of the integrated
approach, the overhead associated with accessing the trace
is replaced by simple procedure calls.

The efficiency of the timing environment is largely
achieved through the use of the predecoded descriptors. A
single read-only descriptor for each VLIW is repeatedly
used during simulation, so the size of the descriptor is not
an important consideration. The overhead involved in
invoking the cycle timer as well as in processing the
descriptor is amortized over all of the operations
contained in the tree. Thus, descriptors are designed to
minimize the processing overhead of the cycle timer. In
contrast, a conventional trace-driven timing environment
typically must strive to minimize the size of the instruction
and machine-state information in the trace, at the expense
of decoding overhead in the timer.

The processor model maintains the cycle count and other
performance data, dealing with issues such as register
dependencies and operation latencies for a given
processor implementation. For memory operations, the
processor model invokes the memory model, passing
information such as the operation type and effective
address of a memory reference. Since the processor model
has access to the complete state of the processor, complete
checks can be performed on any processor functionality
(i.e., fast memory address generation, prefetching, etc.).

The processor and memory models have a clearly
defined interface, allowing a variety of models to be used
interchangeably, with the models differing both in the
system configuration they implement and in the degree of
detail and accuracy involved. This versatility is further
enhanced by ensuring that the interfaces provide all of the
information required by the most detailed or accurate
model that may be needed, even if that information is not
necessary for simpler models.

A descriptor contains separate components for each
path in the tree (path descriptors), so that predecoded
information is available for each path. As a result, the
descriptor component associated with a taken path is used
for timing the operations which are executed to
completion, whereas the descriptors associated with
nontaken paths are used for timing conditional execution
of operations for those cases where it might matter.

J. H. MORENO ET AL.

As is normally the case, the timing environment does
not check for architecture restrictions; instead, it assumes
that instructions have been compiled properly, so that they
comply with the architecture. The verification of this
assumption is performed by other support tools available
in the environment.

We first developed simplified processor and memory
models, which capture the basic features of an
implementation. For example, a simple processor model
detects and counts stall conditions such as register
interlocks for long-latency operations {memory accesses,
nonpipelined multicycle operations such as multiply and
divide), register-bypassing effects, conflicts in address
generation, and conflicts in register targets. Similarly, a
simple memory model describes a multilevel hierarchy
(cache levels L0, L1, L2, and main storage), simulates only
the corresponding directories, computes miss ratios at the
different levels of the hierarchy, uses LRU replacement
policies, assumes fixed latencies for transferring data
between adjacent levels of the hierarchy, and delays the
return of data to the processor on the basis of such latencies;
timing information is kept only for data moving through
the memory hierarchy toward the processor, not for write-
through data to percolate through all memory levels.

Timing information can be collected for specific
routines rather than an entire program, by isolating those
routines into separate source files and then generating
timing support for only those files; this feature relies on
the capability of the simulation environment to specify the
compilation/instrumentation of selected files.

® Relationship with other simulationfevaluation tools
A good summary of the state of the art in simulation of
processor architectures is given in [8], which contains an
extensive list of related tools as well as a description of
Shade, perhaps one of the most complete and effective
simulation and tracing tools currently available. Since
attempting to illustrate the similarities and differences
among other tools and ours is beyond the scope of this
paper, we compare relevant features of our environment
with those provided by Shade, and summarize the unique
properties of our environment. Further comparisons with
other tools can be inferred from the summary given in [8].
As stated in [8], Shade is characterized by the following
features:

s Library functions invoked by analyzer programs are
collected; analyzer programs typically use Shade to
collect raw trace data, and then summarize/process the
data to provide specific metrics.

« Executable code for a target machine is dynamically
cross-compiled into executable code that runs directly on
a host machine.

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997

» Host code is cached for reuse so that the cost of cross-
compiling can be amortized.

 Simulation and tracing code are integrated so that the
host code saves trace information directly as it runs.

 The analyzer is given control over what is traced, and
the tracing strategy can be varied dynamically.

While our environment shares most of the objectives
and capabilities of Shade, it also has some very distinctive
features. In particular, we rely on static translation prior
to simulation instead of dynamic translation, thereby
reducing run-time overhead at the cost of storage space.
Moreover, our environment relies on allowing mixing
assembly code for the target architecture with assembly
code for the host architecture, thereby reducing the
complexity of the tasks; such a capability is not available
in Shade because translation is performed from the
executable code for the target architecture of the entire
program.

Both Shade and our environment give the processor
model (analyzer in Shade’s terms) control over the tracing
strategy, but the approach used is different. Shade
generates the trace records dynamically, according to the
model’s specifications. In contrast, since we rely on static
translation, the processor model receives a pointer to the
complete trace record, with no run-time overhead, and the
model uses as much information from this record as
necessary.

In addition, our environment is based on the
availability of a suitable optimizing compiler, so that
architecture/compiler interactions are explored in many
dimensions. In contrast, Shade operates on executable
code produced independently; it is not intended to explore
such types of interactions. In this context, it would be
more appropriate to compare our approach with tools
that have similar objectives, such as the environment
supporting IMPACT [10], but that environment is not as
general as Shade or the one described here.

The Chameleon compiler

Chameleon, our research compiler (see Figure 4), has
been designed to support research into instruction-level
parallelism, and to evaluate the benefits of various
architectural modifications when exploited through
appropriate compiler optimizations. Chameleon was
designed to target VLIW architectures that execute tree
instructions; it is extensively parameterized so that it can
target processors with different features (such as issue
width, number of functional units, instruction latencies,
and register set). Supporting architectural explorations
and implementing aggressive optimizations geared toward
several different targets implies a compiler in a constant
state of change. Consequently, the compiler has been
designed with support for the addition of code, verification

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997

Architectural
miodel
Tnstrumented
Modified VLIW }_.("_ “PW‘ ﬁ“‘:é
xle N translator. [{in Power!
Object] eerh
conie J& Chameleon *s format)
Modified translator s PowePC |,
8ce ﬁ‘l‘gsnp translator |7 poaerbe
*ofiles ;}gsm *5 files

% The Chameleon compiler environment.

of the modified compiler, and rapid isolation of problems
(such mutability has given it its name).

The input to Chameleon is object code (*.o files)
produced either by a modified version of xlc, the standard
RS/6000* C compiler [11, 12], or a modified version of gec,
the GNU C compiler. The object files are processed by an
“object-code translator” that generates an assembly-like
sequential representation (*.vinp files). The output from
Chameleon is a ForestaPC program (tree instructions) in
an assembly language form (*.vasm files), which is either
instrumented and translated into PowerPC assembly code
(*.s files) that emulates the target ForestaPC processor, or
is directly translated into PowerPC assembly code.”

The modifications to xlc and gcc fall into two categories:
First, we have turned off phases such as scheduling and
loop transformations that would tend to obscure the
original code sequence; second, we have added capabilities
to convey information such as alias classes, spill locations,
and registers live at function calls and function return
points. The results reported in this paper have all been
obtained using x/c. Among other benefits, the modified xlc
allowed us to take advantage of an existing production
compiler front end.

In contrast to many other compilers, our target
architecture is not fixed. Since one use of the compiler is
investigating trade-offs among features such as the size of
the register set and the number of execution units, the
compiler must be able to handle different processor
configurations. Moreover, the compiler must be able to
support the evaluation of alternative features in the
architecture by making it possible to determine the
performance of compiled code with and without an
additional feature.

In summary, the compiler is characterized by its ability
to generate optimized code to properly exploit a VLIW

2 Such code is suitable for a wide-issue implementation of the PowerPC
architecture.

J. H. MORENO ET AL.

293

294

Architectural

aptimizations!’
canditional instrs., [
3-input instrs., etc.

ILP-enhancing
optimizations:
unrolling, ¢loning
MII reduction, etc.

Scheduling:
software pipelining,
local and global
scheduling

Phases in Chameleon.

architecture; its ability to support multiple processor
configurations, so that the number and balance of various
resources can be studied; and its modifiability to allow
exploration of novel compiler optimizations and
architecture-related ideas.

® Optimizations

Chameleon has a fairly aggressive suite of optimizations
which can be grouped into the following categories (see
Figure 5):

Traditional Optimizations including constant
propagation, loop-invariant code motion, dead-code
elimination, and subexpression elimination; these are
applied throughout the compilation process. Moreover,
since Chameleon uses the output from xlc, it takes
advantage of xic’s excellent set of traditional optimizations.
* ILP-increasing Optimizations designed for increasing
the instruction-level parallelism, so that the scheduler
can pack instructions tightly. These include various loop
transformations, such as unrolling, rewriting loops with
commutative/associative operations (reductions),
rewriting cyclic dependences to reduce initiation
intervals, and memory disambiguation.
* Architectural Optimizations designed to exploit various
architectural extensions. For instance, there is a phase
that uses conditional move/store operations to convert
if-then-else structures to straight-line code.

Optimizations not in Chameleon but found in other
research compilers include profile-directed feedback and
interprocedural analysis. Chameleon has the ability to use
profiling information, but it normally uses synthetic branch
probabilities produced by a variant of the Ball-Larus
heuristics [13]. We do not exploit interprocedural analysis;
even the interprocedural phase of xlc has been disabled.

The scheduler used by Chameleon is an enhanced
version of selective scheduling [14]. The original algorithm

J. H. MORENO ET AL.

has been considerably modified; the changes include
examining all instructions in a loop for scheduling (instead
of only instructions within a fixed “window”), using
heuristics for selecting the slot in which to schedule an
instruction (instead of a “greedy” schedule), and
sensitivity to register pressure (not scheduling an
instruction if that might cause a register spill).

Software pipelining is applied pervasively, to outer as
well as inner loops; it is also used on loops with complex
bodies and loops with multiple heads.

Memory disambiguation

Much effort in exposing parallelism is devoted to memory
disambiguation. Serialization among memory operations
due to potential memory aliases causes a large decrease in
the amount of ILP available. Some of the techniques we
use are the following:

* Traditional address disambiguation We use aggressive
versions of traditional and VLIW techniques [15-17],
computing whole-function symbolic expressions for
addresses, which are then used to compute aliases
among adjacent load/store pairs. The disambiguation
techniques also include the use of Banerjee and GCD
tests across loop iterations [18].

Loop cloning Loops may contain a dependence which
forces a mostly sequential execution. However, in many
cases it is possible to determine, by checking a simple
condition outside the loop, that no dependence exists
and the loop can be parallelized. If there is such a
condition, we clone (duplicate) the loop; one version
contains the dependence, and its execution is mostly
sequential, whereas the other is parallelized. At run
time, the parallel version of the loop is executed
whenever the condition is satisfied. Our loop-cloning
implementation is a more aggressive version of the
technique described in [19].

Reordering memory operations A software-based
coherence test is used for reordering load instructions
relative to store instructions, in spite of the possibility of
conflicts due to memory references which cannot be
disambiguated [20]. Whenever a load instruction is
moved earlier than a sequentially preceding ambiguous
store instruction, a coherence test is inserted at the
original position of the load instruction in the sequential
instruction stream. The coherence test consists of two
instructions: a load instruction from the same memory
location, followed by a trap if not equal instruction which
compares the value just loaded with the value loaded
out of order. If the values are identical, the value loaded
out of order and all other values derived from it are
correct, and execution can proceed normally. On the
other hand, if the value just loaded is different from the

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997

value loaded out of order (which implies that the
corresponding memory location has been modified after
being read), the value loaded out of order, as well as all
other values derived from it, is incorrect and must be
recomputed. A trap handler is invoked, activating
recovery code generated by the compiler, which re-
executes the out-of-order load instruction as well as
those instructions that depend on it and were executed
before the trap was generated. For these purposes, the
instructions executed between the out-of-order load
instruction and the coherence test must not destroy the
operands of the instructions that are re-executed in the
recovery code.

Loop rewriting

Loops, especially in numerically intensive code, contain
many potentially parallel instructions. We use several
loop-rewriting optimizations [18] to transform loops
and increase the amount of ILP available. These
transformations include the following:

* Unrolling loops As implemented, software pipelining
can start at most one iteration of a loop at a time.
Unrolling small loops allows a scheduler to be presented
with a loop body which contains several iterations of the
original loop, so that software pipelining can schedule
the initiation of several iterations in the same cycle.

* Reducing minimum-initiation interval (MII) Software

pipelining schedules a loop such that iterations of the

loop start once every MII cycles. MII reduction rewrites
some loops so that MII is reduced, enabling iterations to
be started more frequently.

Rewriting associative operations A sequence of

commutative/associative operations can be decomposed

into several subsequences wherein each subsequence can
be computed in parallel; the partial results are then
combined to obtain the actual value. On the basis of
this idea, loops containing commutative/associative
operations are rewritten so that each iteration of the
loop computes several partial results in parallel; this
greatly increases ILP on small loops that contain
commutative/associative operations.

Architecture/implementation-specific transformations

The compiler uses parameterization to support muitiple
targets. Parameters are used to control instruction
latencies, register file sizes, the number of execution units
of various types, and the issue width and mix. The
compiler also supports a variety of optimizations tailored
to specific architecture/implementation features. In
addition to the reordering of memory operations already
mentioned, the supported features include

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997

« Nontrapping/speculative load instructions, which enable

speculative issuing of load instructions, thereby removing

control dependences that could potentially inhibit

performance.

Conditional instructions, such as select (conditional

move) and conditional store instructions. These

conditional operations do not enhance performance

directly; instead, they permit conversion of if-then-else

structures into a mixture of speculative operations and

select instructions, thereby simplifying control flow.

« Combining operations, such as add-add, add-shift,
add-store, into a single operation.

e Prefetch instructions, also known as cache touch
instructions, under varying assumptions regarding the
memory hierarchy.

® [mplementation

Chameleon is table-driven, so that adding a new
instruction and/or a new register class requires localized
changes. Its intermediate form, the dependence flow graph
(DFG) [21], provides an integrated data/control flow
information well suited for incorporating advanced
optimizations; such optimizations are, with few exceptions,
independent of one another and permutable.

An exhaustive list of the benefits of using the DFG
representation is beyond the scope of this paper.

Among other benefits, DFGs combine control-flow and
dependence information into a single coherent form. They
are fully executable representations, and the dependence-
flow information is a fully “pinned” form; that is, it is both
in single-static assignment (SSA) and reverse static-single
assignment form.

Analysis is particularly easy with DFGs: SSA/reverse-
SSA-based analysis requires no extra work. Moreover,
the executable nature of the DFG makes attractive
the analysis based on partial evaluation techniques.

The choice of DFGs is one of the reasons why our
implementation of common optimizations has performance
advantages compared with traditional implementations.

Another distinct advantage of our intermediate form is
the representation of load/store dependences. Memory
operations are connected by anti/output/flow dependences;
this provides a mechanism whereby an optimization
performs memory anti-aliasing/disambiguation once, and
then represents the result so that all other optimizations
can use it.

The DFG provides almost all of the information needed
to implement aggressive transformations. In fact, we use
only one additional global data structure: a (pseudo-)
interval hierarchy. For reducible graphs, this is
the usual interval hierarchy. For irreducible graphs,
certain irreducible portions become pseudo-intervals (they

have multiple entry points from outside the loop). 295

J. H. MORENO ET AL.

296

Tests on
condition codes

Primitive
operations

Destination
targets

Tree instruction.

Chameleon is extensively parameterized; everything
from the processor resource model to the instruction set
is defined through tables, which are usually modifiable at
run time. For instance, primitive operations and their
properties are in a table. Thus, adding a new primitive
means adding one entry to the table, and possibly an
evaluation function. After that, the primitive instruction is
accepted by the scanner, scheduled appropriately, and
printed out correctly. If the primitive has properties such
as associativity and commutativity, optimizations which use
these properties are able to use them. Similarly, if the
primitive has an evaluation function, the various constant
propagation transformations are able to use it.

Encapsulation is pervasive; data structures are never
accessed directly, but through functions or (more
frequently) macros. This has enabled us to radically
change the implementation of the various data structures
with no impact on the transformations.

Transformations are written to be stand-alone. They can
be viewed as transformations on the DFG: They accept
any possible DFG and transform it into some semantically
equivalent DFG. A particular transformation may depend
on a previous transformation in terms of the instruction-
level parallelism it exposes, but not in terms of
correctness.” The lack of required ordering enables the
application of some subset of all optimizations, in an
arbitrary order, speeding up the process of error isolation.

Chameleon has extensive debugging support for
reducing the time to isolate and fix programming errors,
including built-in data-structure consistency and checking
for memory bounds/validity. A nonoptimized version of
the compiler, with debugging enabled, can spend up to
two thirds of its execution time in asserts and data-

3 This is not strictly true; some transformations must be performed after register
allocation.

I. H. MORENO ET AL.

structure integrity validation. This property has proven
very effective; when an optimization is implemented
incorrectly, it is usually the case that the compiler fails a
self-check in the offending optimization rather than
producing an incorrectly compiled program.

Compilation time

The area in which our compiler differs most from others is
compilation time, though this is the result of conscious
decisions. Whenever there was a trade-off among
compilation time and other properties such as robustness,
maintainability, extensibility, performance, or programmer
productivity, we chose against compilation time. For
instance, we frequently use global O(n’) algorithms over
entire functions. In addition, while DFGs are ideal for
implementing optimizations, they are more memory-
intensive than other intermediate forms.

Basic features of the VLIW architecture
In ForestaPC, our VLIW architecture, a program consists
of a sequence of tree instructions, or simply trees, each of
which corresponds to an unlimited multiway branch with
multiple branch targets and an unlimited set of primitive
operations (see Figure 6) [6]. All operations and branches
are independent and executable in parallel, as a single
VLIW. The multiway branch is associated with the
internal nodes of the tree, whereas the operations are
associated with the arcs. The multiway branch is the result
of a set of binary tests on condition registers; the left
outgoing arc from a tree node corresponds to the false
outcome of the associated test, and the right outgoing arc
corresponds to its true outcome. The structure of these
tree instructions is an extension to those described in
[14, 22].

On the basis of the evaluation of the multiway branch,
a single path within a tree instruction is selected at
execution time as the taken path (a tree path starts from
the root of the tree and ends in a branch target).
Operations on the taken path are executed to completion,
and their results are placed in the corresponding target
registers or storage locations. In contrast, operations not
on the taken path of the multiway branch are inhibited
from committing their results to storage or registers. Such
operations produce no effect on the state of the processor.

Primitive instructions in a tree are subject to sequential
semantics for each path, as if each primitive instruction
were executed in the order in which it appears in the tree
path (a tree path starts from the root of the tree and ends
in a destination target). As a result, a primitive instruction
cannot use a processor resource which is set by a previous
instruction in the same tree path. This property
guarantees binary compatibility among different
implementations of the ForestaPC architecture with
varying degrees of parallel execution capabilities, because

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997

large trees can be decomposed into subtrees which are
executed in different cycles [23, 24].

More specifically, a ForestaPC processor fetches tree
instructions from main storage for execution. If the size of
a tree instruction exceeds the resources in the processor
(such as number of branch operations or number of fixed-
or floating-point operations), the tree instruction is
dynamically decomposed (pruned) to fit the resources
available in the processor. The resulting subtrees are
executed in successive cycles, unless the taken path is
completely contained within the first subtree.

Additional details regarding the ForestaPC architecture
are described in [6, 23-25].

Some examples of compiler/architecture
interactions

The range of architecture/compiler interactions which can
be explored in our environment is quite broad. Since we
cannot describe the entire range in detail, we list below
some examples of architectural features which have been
considered and for which compiler algorithms have been
developed:

« Number and type of operations per VLIW.

« Size of the register set,

« Latencies of operations, including memory operations.

« Availability/unavailability of specific instructions.

e Three-input instructions.

« Conditional move and conditional store instructions.

* Record form of instructions.

+ Length of displacement and immediate fields.

« Static reordering of ambiguous memory references, with
run-time verification of incorrect execution.

+ Cache prefetch instructions.

We now illustrate the capabilities of the environment
through two specific examples—the exploration of issue
width with larger register set, and the incorporation of
three-input operations in the architecture.

o Issue width and register set size

Typically, studies on VLIW architectures assume a fixed-
size register set and investigate the effects of increasing
the operations per VLIW [10, 14, 26]. In addition to
performing such studies, we have explored the availability
of instruction-level parallelism assuming a larger register
set for wider-issue implementations. Such a trade-off is
easily evaluated in our environment. The compiler is
simply invoked with a parameters file describing the
features of the target architecture. No changes are
required in the translator, because that tool is capable of
handling very large configurations (1024 registers,
unlimited number of operations per VLIW).

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997

Table 1 Size of register set in primitive operations.

Register class Issue width

8 12 16
General-purpose 64 96 128
Floating-point 64 96 128
Condition 16 24 32

Table 2 Size of latencies in primitive operations.

Operation Latency
Integer 1
Floating-point 3
Load 1
Integer divide 10
Integer multiply 3

Table 3 VLIW instruction ratio with respect to sequential

code.
Benchmark Issue width
8 12 16
SPECint92
compress 4.14 5.14 5.79
eqntott 4.79 5.00 8.02
espresso 2.58 2.85 3.11
gce 2.36 2.76 2.88
li 3.25 3.58 3.69
SPECint95
m88ksim 2.70 3.02 3.04
g0 2.23 2.45 2.51

As an example, Tables 1 and 2 respectively list the size
of the register sets and the operation latencies considered
for one experiment, in which we evaluate the instruction-
level parallelism found for three different processors
capable of issuing any eight, twelve, or sixteen instructions
per VLIW. The programs used in this experiment are
taken from the SPECint92** and SPECint95** suites.

Table 3 lists the instruction-level parallelism found for
the three processor configurations considered. This figure
indicates the ratio between the number of instructions
executed by a processor running PowerPC code (with
ILP = 1) and the number of tree instructions executed by
the ForestaPC processor, for the different issue widths.
The PowerPC instruction counts used for these ratios are
obtained by compiling the programs with xlc at
optimization level O2.

J. H. MORENO ET AL.

297

208

Table 4 Relative ILP gain from three-input operations in
16/8/4/2/16 processor.

Benchmark Base ILP 3-input ILP Gain (%)
compress 4.41 5.38 18.0
eqntott 7.88 7.91 0.4
espresso 2.78 2.90 4.1
gce 2.65 2.68 1.1
i 3.48 3.53 1.4
m88ksim 2.80 2.84 1.4
go 2.08 2.39 13.0

Note that we compute instruction-level parallelism
differently from many other results reported in the
literature. Usually, the results reported are obtained by
using the same compiler for both the parallel
implementation and the sequential implementation. In
contrast, the instruction counts for the sequential
implementations are obtained using the best compiler
available for the PowerPC architecture. This is motivated
by our original research goal, namely measuring the
potential improvement in instruction-level parallelism in a
PowerPC-based VLIW processor over existing PowerPC
implementations. Moreover, we believe this is the proper
way to compute ILP.

® Three-input operations

Earlier work has shown that it is possible to build
hardware that can combine two arithmetic-logical
operations into a single one, and analysis of execution
traces has indicated that there are opportunities for taking
advantage of such combinations [27, 28]. For example, an
add&shift instruction is a three-input operation that
performs the addition of two operands followed by shifting
the intermediate result a number of positions specified by
a third operand; that is, r5=add&shift r3,r4,r7 is equivalent
to rx=add r3,r4 followed by r5=shift rx,r7. In fact,
contemporary architectures such as Hewlett-Packard’s
PA-RISC** [29] have some capabilities of this type.

Note that the potential benefit of adding three-input
instructions to an architecture is subject to the capability
(or inability) of the associated compiler to hide the
dependency among the corresponding operations as part
of the execution of the entire program. Since a VLIW
processor is characterized by having many functional units,
the execution of an instruction pair as two separate
instructions might not be detrimental as long as the pair
is not in the critical path of the program (neglecting
penalties arising from having larger code size).

We have used our environment to explore the benefits
of including combined operations in the VLIW
architecture. Initially, we considered the following classes
of three-input operations (a total of 67 additional
instructions):

J. H. MORENO ET AL.

e A: Any combination of add/subtract with add/subtract.

* S: Any combination of add/subtract with shift, or shift
with add/subtract.*

« L. Any combination of logical with logical operations.

Moreover, for determining an upper bound on the
potential performance achievable, we also allowed
“recording” forms of each of these combinations
(i.e., setting a condition register in addition to the result),
as well as specifying an immediate value for one of
the operands. Because of encoding constraints, these
combinations require the use of a doubleword for their
representation in memory.

We first added these three-input operations to the
compiler and to the simulator. In Chameleon, this
required adding an entry for each instruction in the
opcode table, and an evaluation function. The translator
was modified to recognize the new operations, decompose
them into their two-input components, and emit suitable
PowerPC assembly code emulating the new instructions.

The next step was adding the necessary optimizations to
Chameleon. We made three changes for exploiting the
availability of three-input operations:

e Added a new phase that combines two operations into a
three-input operation when the two operations are in
the same basic block.

Modified the scheduling heuristics to properly handle
the single-cycle latency of a three-input operation,
thereby combining instructions when such an action
would produce a better schedule.

Altered the final peephole compaction phase so that
combining adjacent VLIWs also recognizes and exploits
the three-input operations.

As an example, Table 4 depicts the relative gain in
instruction-level parallelism arising from this interaction
among compiler and architecture, for the case of a
processor capable of issuing up to 16 operations per
VLIW but restricted to eight memory operations, four-way
branch, and two floating-point operations, and whose
register set is 64/64/16 registers. As listed in the table,
some programs exhibit significant gains, whereas others
reflect little variation.

For the same example, Table 5 illustrates the
distribution of the most common three-input operations
for the benchmarks compress, espresso, and go, which are
the only ones that exhibit significant gain from the
availability of the new instructions (see Table 4). In Table
5, the static instruction count represents the number of
occurrences of those specific instruction combinations
which are present in the VLIW program, whereas the

4 This class does not include arithmetic shift instructions,

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997

dynamic ratio corresponds to the ratio between the
dynamic count of such specific instruction combinations
and the total number of operations in the entire program
(specified in either taken or nontaken paths of the tree
instructions).

Finally, Table 6 depicts the effects of the three-input
instructions grouped according to their classes, for the
same three benchmarks as in Table 5. In the case of
compress and go, the most relevant group is A + §; the L
group does not have any effect. In contrast, in the case of
espresso, each class contributes partially to the overall
gain. However, this example indicates that the gain arising
from the availability of two classes is not necessarily the
same as the sum of the individual gains; the compiler is
able to schedule instructions in such a way as to partially
compensate for a missing class.

S Simulation performance

As was stated earlier, a ForestaPC program simulated at
the instruction-set architecture level executes seven to ten
times slower than the optimized native version of the same
program, whereas simulation including a processor and
memory model adds an extra slowdown factor of the order
of 100. This is illustrated in Table 7 for some workloads:
lex and yacc, two AIX utilities, and compress and alvinn
from the SPEC92** suite. In these experiments, the
processor model counts stall cycles due to implementation
issues such as interlocks required by long-latency
operations, long bypass paths, carry-out from fast address
addition, and conflicts in accessing ports to the register
file. In turn, the memory model implements a three-level
cache hierarchy, with fixed latencies for transferring data
between adjacent levels of the hierarchy toward the
processor, and main memory.

Table 7 indicates the number of tree instructions
executed in each program, the time spent in user code for
the native version of the program (the time spent in
system code is not included because it is negligible), the
time spent in user code in the exploratory path and in the
evaluation path, and the ratios of these values with respect
to native execution. The entry for benchmark compress
corresponds to execution on the official short input,
whereas alvinn corresponds to the official reference input
(1.3 billion VLIWs executed).

As could be expected, the slowdown factor varies across
different programs, in particular for simulation with a
processor model (the evaluation path). The most
important factor contributing to the differences is the
frequency of memory operations in the programs. Since
memory operations imply invocations of the memory
model, the slowdown factor is larger for programs with
higher memory traffic; for example, about 38% of the
operations performed in compress are memory operations,
in contrast to about 62% in benchmark alvinn.

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997

Table 5 Distribution of three-input operations in
benchmarks compress, espresso, and go.

Benchmark Operation Static Dynamic
instruction ratio
count (%)
compress slw,add 45 10.5
add,subf 23 8.1
add,add 56 3.0
srw,add 4 <0.01
all others 1 0.0
espresso add,add 1145 3.5
and,nor 86 1.7
slw,add 1496 1.7
and,and 38 0.5
all others 453 1.2
go slw,add 45 10.5
add,subf 23 8.1
add,add 56 3.0
srw,add 4 <0.01
all others 1 0.0

Table 6 Relative ILP gain from classes of three-input

operations.
Instruction Benchmarks (%)
classes

compress espresso go
A+S+L 18.0 4.1 13.0
A+ S 18.0 3.2 13.0
A 11.2 2.2 0.5
A+ L 11.2 2.8 0.5
S 7.3 1.3 12.1
S+1L 7.3 2.2 12.1
L 0.0 0.8 0.0

Concluding remarks

We have described the simulation and evaluation
environment for a VLIW architecture and its compiler,
and have illustrated some examples of the application of
the tools. In practice, the approach used is applicable to
any type of processor architecture, but it is particularly
well suited to modeling a VLIW-based processor because
of lower simulation overhead.

The environment is oriented toward the evaluation of
trade-offs in a VLIW architecture and its compiler, makes
extensive use of table-driven techniques, and has been
wholly designed for mutability. The environment provides
fast turnaround time for introducing new compilation
algorithms, and fast turnaround time from compiler output
to simulation results, allowing adequate support for testing

of compiler algorithms and architecture features. Thus, 299

J. H. MORENO ET AL.

300

Table 7 User execution time.

Benchmark VLIWs X 10° Native Exploratory path Evaluation path
)
(s) Ratio (s) Ratio
compress 1.54 0.60 3.40 5.67 309 515
yacc 16.56 0.97 7.27 7.49 762 786
lex 2.33 2.04 14.97 7.34 1337 655
alvinn 1300 35.80 369 10.32 53490 1507

the environment allows the performing of extensive
experiments to assess the potential benefits of the VLIW
architecture/compiler combination, and the collection of
extensive data supporting the evaluation of trade-offs in
such a system.

In practice, the environment has permitted routine
evaluation of alternative architecture/compiler features
over realistic workloads. Programs from the SPEC92 and
SPEC95** benchmark suites, a set of AIX utilities, the
LINPACK benchmark, and the Livermore loops
benchmark have been simulated and timed in their
entirety, for different processor configurations and
different compiler algorithms. Simulation executables
which do not invoke the cycle timer typically run only
seven to ten times slower than the optimized native
PowerPC code for the same program; a processor model
at the functional unit level and a memory model consisting
of two levels of cache plus main memory slow the
simulation executable by an additional factor of the order
of 100. These levels of performance in the simulator make
possible complete experiments on a regular basis, without
having to resort to simplifications to reduce their
turnaround time.

Our tools have properties similar to those available in
other simulation environments, but a combination of
features make ours unique:

+ Highly modular organization.

» An optimizing compiler integrated with the development
of the processor architecture.

« Fast turnaround time for introducing compiling
optimization algorithms.

« Fast turnaround time from compilation output to
simulation results.

« The integration of the different components, in
particular the integration of the simulator, the
generation of traces, and the trace-driven timing
analysis.

» The capability of timing the complete execution of
programs without the need for storing traces.

« The ability to mix assembly code written for the target
architecture with assembly code for the host
architecture.

J. H. MORENO ET AL.

» The use of static translation and predecoding to reduce
run-time overhead.

« The capability to obtain different levels of accuracy in
the performance measures, with more accurate results
requiring longer execution time.

« Applicability to any type of processor architecture or
microarchitecture, particularly for modeling wide-issue
processors such as VLIW because of lower simulation
overhead.

The techniques and the environment developed as part
of this research are applicable more generally than just for
the case of in-order issue processors as described in this
paper, though some of the benefits are clearer in such a
context. In any case, we envision further work on the
development of similar environments for the simulation
and evaluation of aggressive in-order and out-of-order
processors, or for other new processor architectures; the
compiler can be used to further explore the potential and
limitations of instruction-level parallelism, either in
unconstrained conditions or constrained by specific
architecture features, and for other languages and
programming environments.

Acknowledgments

We thank Norman Cohen, Richard Goldberg, Peter Oden,
Vladimir Kotlyar, Induprakash Kodukula, and Balaram
Sinharoy for their contributions to Chameleon.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Standard Performance
Evaluation Corporation or Hewlett-Packard Company.

References

1. J. Hennessy and D. Patterson, Computer Architecture—
A Quantitative Approach, 2nd edition, Morgan Kaufmann
Publishers, Inc., San Francisco, 1996.

2. B. Rau and J. Fisher, “Instruction-Level Parallel
Processing: History, Overview, and Perspective,”

J. Supercomputing 7, No. 1/2, 9-50 (1993).

3. I. A. Fisher, The Optimization of Horizontal Microcode
Within and Beyond Basic Blocks, Ph.D. Thesis, New York
University, New York, 1979.

4. J. A. Fisher, “Very Long Instruction Word Architectures
and the ELI-52,” Proceedings of the 10th Annual

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997

International Symposium on Computer Architecture, 1983,
pp. 140-150.

5. L. Gwennap, “VLIW: The Wave of the Future?,”
Microprocessor Report, February 14, 1994, pp. 18-21.

6. J. H. Moreno, K. Ebcioglu, M. Moudgill, and D. Luick,
“ForestaPC (Scalable VLIW) User Instruction Set
Architecture,” Research Report RC-20733, IBM Thomas J.
Watson Research Center, Yorktown Heights, NY, 1996.

7. Fast Simulation of Computer Architectures, T. Conte and
C. Gimarc, Eds., Kluwer Academic Publishers, Boston,
1995.

8. B. Cmelik and D. Keppel, “Shade: A Fast Instruction-Set
Simulator for Execution Profiling,” Fast Simulation of
Computer Architectures, T. Conte and C. Gimare, Eds.,
1995, pp. 5-46.

9. K. Menezes, “Sampling for Cache and Processor
Simulation,” Fast Simulation of Computer Architectures,
T. Conte and C. Gimarc, Eds., 1995, pp. 171-203.

10. P. Chang, S. Mahlke, W. Chen, N. Water, and W. Hwu,
“IMPACT: An Architectural Framework for Multiple-
Instruction-Issue Processors,” Proceedings of the 18th
Annual International Symposium on Computer Architecture,
1991, pp. 266-275.

11. IBM Corporation, IBM CSet++ for AIX, Order No.
5C09-1968-01, 1995.

12. M. Auslander and M. Hopkins, “An Overview of the PL.8
Compiler,” Proceedings of the 1982 SIGPLAN Symposium
on Compiler Construction, June 1982, pp. 22-31.

13. T. Ball and J. Larus, “Branch Prediction for Free,”
Proceedings of the 1993 SIGPLAN Conference on
Programming Language Design and Implementation, June
1993, pp. 300-313.

14. S.-M. Moon and K. Ebcioglu, “An Efficient Resource-
Constrained Global Scheduling Technique for Superscalar
and VLIW Processors,” Proceedings of the 25th Annual
International Symposium on Microarchitecture (MICRO-25),
December 1992, pp. 25-71.

15. A. Aho, R. Sethi, and J. Ullman, Compilers: Principles,
Techniques and Tools, Addison-Wesley Publishing Co.,
Reading, MA, 1986.

16. J. Ellis, Bulldog: A Compiler for VLIW Architectures, MIT
Press, Cambridge, MA, 1986.

17. S. M. Moon and K. Ebcioglu, “A Study on the Number of
Memory Ports in Multiple Instruction Issue Machines,”
Proceedings of the 26th Annual International Symposium on
Microarchitecture (MICRO-26), 1993, pp. 49-58.

18. M. J. Wolfe, Optimizing Supercompilers for
Supercomputers, MIT Press, Cambridge, MA, 1989.

19. D. Bernstein and D. Cohen, “Dynamic Memory
Disambiguation for Array References,” Proceedings of the
27th Annual International Symposium on Microarchitecture
(MICRO-27), 1994, pp. 105~111.

20. M. Moudgill and J. Moreno, “Run-Time Detection and
Recovery from Incorrectly Reordered Memory
Operations,” Research Report RC-20857, IBM Thomas J.
Watson Research Center, Yorktown Heights, NY, 1996.

21. K. Pingali, M. Beck, R. Johnson, M. Moudgill, and P.
Stodghill, “Dependence Flow Graphs: An Algebraic
Approach to Program Dependencies,” Proceedings of the
18th ACM Symposium on Principles of Programming
Languages, 1991, pp. 67-78.

22. K. Ebcioglu, “Some Design Ideas for a VLIW
Architecture for Sequential Natured Software,” Parallel
Processing (Proceedings of IFIP WG 10.3, Working
Conference on Parallel Processing), M. Cosnard,

M. Barton, and M. Vanneschi, Eds., 1988,
pp. 3-21.

23. J. H. Moreno and M. Moudgill, “Scalable Instruction-
Level Parallelism Through Tree Instructions,” Research
Report RC-20661, 1BM Thomas J. Watson Research
Center, Yorktown Heights, NY, 1996.

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997

24. J. H. Moreno, “Dynamic Translation of Tree-Instructions
into VLIWSs,” Research Report RC-20505, IBM Thomas J.
Watson Research Center, Yorktown Heights, NY, 1996.

25. J. H. Moreno, M. Moudgill, K. Ebcioglu, E. Altman, B.
Hall, R. Miranda, S. K. Chen, and A. Polyak,
“Architecture, Compiler and Simulation of a Tree-Based
VLIW Processor,” Research Report RC-20495, IBM
Thomas J. Watson Research Center, Yorktown Heights,
NY, 1996.

26. T. Conte and S. Sathaye, “Dynamic Rescheduling: A
Technique for Object-Code Compatibility in VLIW
Architecturcs,” Proceedings of the 28th Annual
International Symposium on Microarchitecture (MICRO-28),
1995, pp. 208-218.

27. S. Vassiliadis, J. E. Phillips, and B. Blaner, “Interlock
Collapsing ALUs,” IEEE Trans. Computers 42, 825-839
(July 1993).

28. S. Vassiliadis, B. Blaner, and R. J. Eickemeyer, “SCISM:
A Scalable Compound Instruction Set Machine,” IBM J.
Res. Develop. 38, No. 1, 59-78 (January 1994).

29. G. Kane, PA-RISC 2.0 Architecture, Prentice-Hall, Inc.,
Upper Saddle River, NJ, 1992.

Received August 8, 1996; accepted for publication
March 18, 1997

Jaime H. Moreno IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights, New
York 10598 (jmoreno@watson.ibm.com). Dr. Moreno is a
Research Staff Member in the Microsystems Department at
the IBM Thomas J. Watson Research Center. He received a
degree in electrical engineering from the University of
Concepcion, Chile, in 1979, and M.S. and Ph.D. degrees in
computer science from the University of California at Los
Angeles in 1985 and 1989, respectively. In 1992 Dr. Moreno
joined the IBM Research Division, where he has been
performing research in processor architectures. Before joining
IBM, he was a faculty member at the Department of
Electrical Engineering, University of Concepcion, Chile, and
collaborated as a postdoctoral researcher at UCLA. Dr.
Moreno is co-author of the book Matrix Computations on
Systolic-Type Arrays, Kluwer Academic Publishers, 1992. His
research interests include processor architectures, instruction-
level parallelism, application-specific systems, and simulation
environments for the exploration of processor architectures.
He is a member of IEEE and the IEEE Computer Society.

Mayan Moudgill /BM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (mayan@watson.ibm.com). Dr. Moudgill is a Research
Staff Member in the Microsystems Department. He received a
B. Tech degree in computer science and engineering from the
Indian Institute of Technology, Kanpur, in 1988, and M.S. and
Ph.D. degrees in computer science from Cornell University in
1992 and 1994, respectively. Dr. Moudgill joined the IBM
Research Division in 1994. His research interests include
processor architectures, processor timers and simulators, and
optimizing compilers.

301

J. H. MORENO ET AL.

302

Kemal Ebcioglu [BM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (kemal@watson.ibm.com}. Dr. Ebcioglu received the
Ph.D. degree in computer science from the State University of
New York at Buffalo in 1986, the M.S. degree in computer
engineering from the Middle East Technical University,
Ankara, in 1979, a Master of Music degree in composition
from Ankara State Conservatory in 1977, and the B.A. degree
in French and Romance languages and literature, Faculty of
Letters, Istanbul University, in 1974. He joined the IBM
Thomas J. Watson Research Center as a Research Staif
Member in 1986, and is currently manager of the High-
Performance VLSI Architectures group there. Dr. Ebcioglu
has published extensively in the fields of architectures and
compilation techniques for fine-grain parallelism (VLIW in
particular), and algorithmic composition of tonal music.

He is a Vice President of the International Federation for
Information Processing (IFIP) Working Group 10.3
(Concurrent Systems).

Erik Atman IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (erik@watson.ibm.com). Dr. Altman is a Research Staff
Member in the Microsystems Department at the IBM Thomas
J. Watson Research Center. He received bachelor’s degrees in
economics and computer science from MIT in 1983 and 1989,
respectively, and M.S. and Ph.D. degrees in electrical
engineering from McGill University, Canada, in 1991 and
1995, respectively. Dr. Altman’s current interests include real-
time dynamic compilation, VLIW, simulation, and instruction
scheduling. He joined the IBM Research Division in 1995; his
previous employment includes design of hardware for machine
vision, real-time software for the automotive industry, and
hardware and software for a decoy system for the Stinger-Post
missile.

C. Brian Hall IBM Canada Laboratory, 1150 Eglinton
Avenue East, North York, Ontario M3C 1H7, Canada,
(cbhall@vnet.ibm.com). Mr. Hall received his B.Sc. degree
from Queen’s University in Kingston, Ontario, in 1983 and his
M.Sc. degree from the University of Toronto in 1986. He
joined IBM in 1987 and has since worked in compiler
development and code optimization. Mr. Hall is currently an
Advisory Software Developer.

Rene Miranda Cadence Design Systems, Inc., 270 Billerica
Road, Chelmsford, Massachusetts 01824 (renem@cadence.com).
Mr. Miranda received his B.S. degree in computer science
from the University of Maryland in 1986. He joined the IBM
Research Division in 1993, working in the Mathematical
Sciences and Microsystems Departments. Before joining IBM,
he was a software developer in the EDA industry. He is
currently a Senior Technical Staff Member of the Logic
Verification group at Cadence Design Systems.

Shyh-Kwei Chen IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 712, Yorktown Heights, New York
10598 (skchen@watson.ibm.com). Dr. Chen received a B.S.
degree from the National Taiwan University in 1983, an M.S.
degree from the University of Minnesota in 1987, and a Ph.D.
degree from the University of Illinois at Urbana-Champaign
in 1994, all in computer science. He joined the IBM Research
Division in 1994, and worked on a parallelizing compiler for

J. H. MORENO ET AL.

VLIW and superscalar architectures for two years. Dr. Chen
is currently with the Servers Department, working on data-
intensive platforms.

Arkady Polyak IBM Research Division, Thomas I. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (arp@watson.ibm.com). Mr. Polyak is a Staff Software
Engineer in the Microsystems Department at the IBM Thomas
J. Watson Research Center. He received a B.S. degree

and an M.S. degree in computer science in 1987 and 1988,
respectively, both from the Moscow Transportation University,
Moscow, Russia, and an M.S. degree in operations research
from New York University in 1997. He joined the Watson
Research Center in 1990. Mr. Polyak’s work has involved
binary-to-binary translation, linkage, and simulation of various
system architectures. His research interests include parallel
architecture, performance analysis, and performance
programming for scientific computation. He has co-authored
several papers in the area of high-performance processors.

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997

