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We describe  the  environment  used for the 
simulation  and  evaluation  of a processor 
architecture  based on  very long instruction 
word (VLlw)  principles. In this architecture, a 
program  consists of a  set  of tree instructions, 
each  one  containing multiple branches  and 
operations  which  can  be  performed 
simultaneously.  The  simulation/evaluation 
environment  comprises 

An optimizing compiler,  which  generates tree 
instructions in a VLlW  assembly  language. 
A translator from VLlW  assembly  code into 
PowerPC@  assembly code  which  emulates 
the  functionality  of  the VLlW processor for 
the specific VLlW program. The emulating 
code  also  includes  instrumentation for 
collecting execution  counts  of VLIWs, 
profiling information,  and  generation  of 
predecoded  execution  traces. 
A  cycle  timer,  invoked  by  the  emulating  code 
on  a  VLIW-by-VLIW  basis, which  processes 
VLlW execution  traces as  they  are  generated. 

The  environment supports the  evaluation  of 
alternatives  and  trade-offs  among  the VLlW 
architecture, its compiler,  and  processor 
implementations.  Emphasis  has  been  placed 
on  providing fast turnaround time for the 
development  of  compilation  algorithms  and  an 
efficient compilation-to-simulation cycle  which 
allows  analysis  of  architecture/compiler  trade- 
offs  over  complete  execution  runs  of  realistic 
workloads. 

Introduction 
The design of a new computer  architecture  and its 
associated  compiler,  or a  new implementation of an 
existing architecture, is a  complex  process. For a given set 
of requirements,  designers must 

Determine what attributes  are  important  and necessary. 
Design  a machine  implementing such attributes, which 
delivers adequate  performance with respect  to  other 
architectures/implementations. 
Fulfill implementation  and  cost  constraints. 
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Moreover,  the  requirements  are  not always completely 
defined  in advance  and/or fixed. The  expected  applications 
(software) as well as  the  expected technology (hardware) 
may change dramatically from  the  time of conception  to 
the  time of delivery of a  new machine.  Consequently, a 
new architecture  or  implementation  must  be  designed 
under varying assumptions  regarding  the  features of 
software  and  hardware. 

Because of the  overall complexity of the  process, 
designers usually select a subset of the issues involved 
and  perform  trade-offs only among  those issues. For 
example, the design of a  new implementation  (a new 
microarchitecture)  includes  trade-offs with respect  to 
functional  organization, logic design, and circuit  design; 
some  compiler  functionality might be  included in  such 
trade-offs,  though it seems  that  the  compiler effects are 
usually taken  into  account  after  the  microarchitecture  has 
been  developed. In contrast,  the design of a new computer 
architecture  frequently  focuses first on instruction  set, 
machine  organization,  and  compiler  functionality, while 
making assumptions  regarding  implementation technology, 
chip size, and so on. 

The  evaluation of trade-offs such  as the  ones  mentioned 
above  requires  adequate  tools  for  simulation  and 
performance  measurement.  In  general,  the design process 
is an  iterative  one:  Features  are  proposed,  required 
changes  are  introduced  to  the design environment,  and  the 
effectiveness and  performance of the new features  are 
evaluated.  Such a process is necessary because of the 
ever-tighter  interaction  among  the  different  features. 
Consequently,  the  tools  used  should  be efficient, allow 
experimentation with realistic workloads, be easy to 
reconfigure, and  permit  the  evaluation of a  variety of 
features.  Moreover,  the  tools  should  be  able  to  support 
the  development of the  target system  as well as the 
performance  evaluation process,  activities which have 
widely different  requirements in terms of their  acceptable 
turnaround  time  and  the accuracy expected  from  the 
results. 

Instruction-level parallelism 
An  important  focus of activity regarding  computer 
architectures/microarchitectures in recent  years  has  been 
the  exploitation of instruction-level parallelism (ILP),  that 
is, the ability to  execute  several  operations  simultaneously 
[l, 21. Processors  capable of exploiting ILP  contain 
multiple  functional  units,  fetch several instructions  per 
cycle from  the  instruction  cache,  and in a given cycle may 
dispatch  multiple  operations  for  execution.  Such 
processors  are  referred  to as superscalar to distinguish 
them  from scalar processors, which dispatch  at most 
one  instruction  per cycle. Moreover,  when  the  set of 
operations issued for  parallel  execution is large (say larger 288 
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than  eight),  the  implementations  are  also known as wide- 
issue superscalar processors. 

Depending  on  the  machine  organization,  the  multiple 
simultaneous  operations  executed by a superscalar 
processor may be  an in-order or out-of-order sequence of 
instructions. In the  case of an  in-order  sequence,  the 
corresponding  processor  has  some  mechanism  to 
determine  the  adjacent  set of operations  that  are 
executable simultaneously, and  executes  them in the  order 
in which they  appear in the  program. In contrast,  an  out- 
of-order  processor  has  hardware  resources  that  determine 
the  dependencies  among successive operations as well as 
the  order in which those  operations  are  executed;  such 
ordering may be  different  from  the  one in which 
instructions  appear in the  program.  Most existing modern 
(high-performance)  processor  implementations  belong  to 
the  out-of-order class. 

The  instructions  executed  simultaneously by an  in-order 
issue superscalar  processor  are  determined by the way in 
which instructions  are  placed in  a program  (that is, by the 
compiler  or  programmer),  whereas  an  out-of-order 
processor discovers those  instructions while the  program 
is being  executed.  Consequently,  an  in-order  processor 
requires  simpler  dispatch logic than  an  out-of-order 
processor,  potentially  leading  to a faster  implementation 
(higher clock frequency)  and/or a shorter design cycle. 
This is one example of the many trade-offs possible  in the 
design of a processor. 

VLIWprocessors 
Aggressive in-order wide-issue  execution leads to very long 
instruction word (VLIW) processors, wherein scheduling of 
instructions is done statically by a compiler  that  groups 
independent  instructions  executable in parallel, using 
optimization  techniques such  as software pipelining, loop 
unrolling, and  scheduling  code speculatively  across  basic 
blocks [ 2 ] .  

VLIW is not a recent  concept; in fact, it originated as 
an  extension of microcode-based  techniques [3, 41, though 
the  concept  has  changed drastically since  its  inception. As 
with  all others,  VLIW-based  processors  are  subject  to a 
large variety of trade-offs.  On  one  end,  VLIW may be 
regarded simply as an  alternative  implementation of an 
existing sequential  architecture, in which case  the 
architecture is fixed but  the  compiler is augmented with 
the  functionality  for  generating  VLIWs (i.e., grouping 
together  instructions  executable in parallel);  perhaps  some 
architecture modifications  might be  introduced  to simplify 
the  process of detecting  at  run  time  the  boundaries of 
VLIWs in  a program. On the  other  end,  VLIW may be 
regarded  as a completely new architecture, in which case 
the  formats  and  contents of VLIWs  can  be defined 
in  a manner  different  from a sequential  program 
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representation,  leading  to  simpler  decoding  and issuing of 
instructions. 

natural successor to RISC,” because complexity is moved 
from  the  hardware  into  the  compiler. As stated in [SI, “the 
objective of VLIW is to  eliminate  the  complicated 
instruction  scheduling  and  parallel  dispatch  that  occur in 
most modern microprocessors. In  theory, a VLIW 
processor  should  be  faster  and less  expensive than a 
comparable  RISC  processor.”  The  transfer of complexity 
from  hardware  into  the  compiler is another  source  for 
trade-offs in  a VLIW-based design. 

In spite of the  attractiveness of its potential design 
simplicity, VLIW  implementations have been perceived  as 
suffering  from  important  limitations  when  compared  to 
out-of-order  implementations, such as  the  need  for a 
powerful  compiler,  larger  code size  arising from  the 
aggressive scheduling  performed by the  compiler, lock-step 
execution of VLIWs, and binary  incompatibility  across 
implementations with a varying number of functional 
units [l]. 

VLIW  implementations have been  described as “a 

Scope of the paper 
We have been  researching  the viability of a VLIW 
architecture in the  context of PowerPC*  and  the AIX* 
operating system. Our  focus  has  been  the  development  of 
a new architecture, with enhancements  for exploiting ILP 
such as  the removal of unique  resources which may cause 
serializations (e.g., the carry bit),  or  the  addition of a 
larger  register  set.  We have been studying the  potential 
features of such a  new architecture,  the  appropriate 
compiler algorithms, and  the  interactions  between 
architecture  and compiler. The objective has  been  the 
development of an  architecture/compiler  combination 
which reaches new levels of ILP in branch-intensive  and 
in numerically  intensive programs. 

environment  for  the  simulation  and  evaluation of our 
VLIW  architecture, which allows us to  experiment with 
alternative  features  and  to  evaluate  the benefits and 
complexities  arising from such features.  This  environment 
provides fast turnaround time for implementing new 
compilation algorithms, and fast turnaround time from 
compilation to  simulation, at  different levels of 
accuracy regarding  performance  estimates, so that 
architecturelcompiler trade-offs as well as implementation 
trade-offs can  be analyzed  over complete  execution runs. 

In  this  paper, we describe  the  environment  mentioned 
above.  We  focus mostly on  features  related  to  the 
instruction-set  architecture  and  their  relationship with 
compiler  optimization  algorithms.  The  relevance of the 
environment  for  experimental  evaluation is described, 
emphasizing its ability to quickly introduce new 
compilation  algorithms  and rapidly incorporate  and 

To support  our  research, we have created  an 

Iterative sirnulatiodevaluation process. 

evaluate new architecture  features.  Quantitative  results 
illustrate  the mechanisms  used to  evaluate  the abilities 
(or  limitations) of the  compiler  to exploit the  architectural 
features  considered. In practice,  the  environment allows 
evaluation of alternative  features over realistic  workloads; 
programs such as  the  SPECint**  benchmark  suite  and a 
set of AIX utilities can  be routinely simulated in their 
entirety.  Simulation  at  the  instruction-set  architecture 
level typically runs only seven to  ten  times slower than  the 
optimized native PowerPC  code  for  the  same  program. 
This level of performance in the  simulator  makes possible 
carrying out  complete  experiments  on a regular basis, 
without having to  resort  to simplifications to  reduce  their 
turnaround  time. 

The  rest of the  paper is organized as follows. We first 
describe  the overall environment  developed  to  support  our 
research,  and  summarize how this  environment differs 
from  others previously reported in the  literature.  We  then 
describe  significant aspects of Chameleon,  the optimizing 
compiler,  and briefly summarize  the basic properties of 
ForestaPC,  our  tree-based  VLIW  architecture.  This is 
followed by a description of some examples of the 
architecturelcompiler  interactions which can  be  explored 
in our  environment,  illustrating  them with quantitative 
results. We  also provide data  on  the  performance of the 
simulation/evaluation  environment.  We finalize with some 
observations  regarding  the  compilerlarchitecture 
interactions,  and  the  benefits of the  environment. 

The  simulation  and  evaluation  environment 
Our  simulation  and  evaluation  environment  has  been built 
around the architecturelcompiler interaction, leading  to two 
paths, as depicted in Figure 1: 
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Overview of the simulatiodtiming environment. 
~. ." . ". .. l.l_ll"l"".~l_. 

The exploratory (fast)  path, which is characterized by fast 
turnaround  time  but only instruction-set  architecture 
performance  measurements. 
The evaluation (slow)  path, which is characterized by 
longer  turnaround  time  but  performance  measurements 
that  take  into  account  implementation  aspects. 

As their  names imply, each  path  has a  well-defined 
objective. The  exploratory  path is used  to  test new 
features by modifying the  different  components of the 
environment  as necessary, and by simulating  at  the 
instruction-set  architecture level (without  taking  into 
account  implementation issues  such as finite-size cache 
memories,  interlocks,  and so on).  In  contrast,  the 
evaluation  path  focuses on providing accurate 
performance  estimates, including the  implementation 
aspects. 

simulation  environment which comprises two phases 
(Figure 2): 

The two paths  described above  have been built into a 

The preparation phase, in which ForestaPC  (VLIW) 
assembly language  code [6] is translated  into  PowerPC 
assembly code which emulates  the  behavior of the  VLIW 
program  (on a file-by-file basis if the  program consists of 
multiple files). 

program is simulated, including the collection of run- 
time profiling information  and  the invocation of a cycle 
timer on a cycle-by-cycle basis. 

The simulationltiming phase, in which the  VLIW 
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More specifically, the  major  components of the 
environment  are  the following: 

1. An optimizing compiler, Chameleon, which generates 
assembly language  code  for  the  ForestaPC  architecture. 
The  salient  features of this  compiler  are discussed  in 
the next section. 

2.  A translator, which maps  the  VLIW assembly code  into 
PowerPC assembly code.  The  resulting  code  emulates 
the  functionality of the  ForestaPC  architecture  for  the 
specific program  (as  opposed  to  an  interpreter using 
the  target  code as input). In addition,  the  resulting 
code  contains  instrumentation  to collect run-time  data 
regarding  the  VLIW  program,  and  to  generate 
predecoded  execution  traces. 

3. A cycle timer, invoked by the  simulation  code  on a 
cycle-by-cycle basis, which processes  the  predecoded 
execution traces of the  VLIW  architecture  as they are 
generated.  The cycle timer  contains a processor  model 
and a  memory model,  selected  from a range of 
alternative  models of varying levels of detail and accuracy. 

The  two-phase  approach  illustrated in Figure 2, which is 
common  to  other simulationlprofiling tools [7], offers 
several  special advantages in our case. For  example,  the 
layout of data  and  procedure call conventions in the 
ForestaPC  architecture  are  the  same as those in 
PowerPC/AIX, so the  preparation  phase may mix assembly 
code  from  both  architectures. Since the  translator 
generates  PowerPC assembly code on a file-by-file basis,  it 
is possible to compile into  ForestaPC assembly code only 
a subset of the  source files composing  a program,  and 
compile  the  remaining files directly into  PowerPC 
assembly code.  In  this way, the  program  resulting  from  the 
preparation  phase  emulates  and collects performance  data 
for only the  part of the  program  that  has  been  compiled 
for  the  ForestaPC  architecture,  thus  permitting a focus  on 
only the critical parts of a program.  This  helps  to  reduce 
the complexity and execution time of the  simulation  and 
evaluation tasks. 

Moreover,  the  resulting  PowerPC  code is assembled 
and  then  linked with the cycle timer, which includes a 
processor  and a  memory model.  Consequently, a given 
program for the  ForestaPC  architecture  can  be used  with 
alternative  processor  and memory  models,  providing 
varying degrees of detail in the  performance  data 
collected.  At  one  extreme,  no  model is inserted  whenever 
the  desired objective is just  the verification of correctness 
in the  program,  or  just  the collection of basic statistics 
regarding  the  instructions  executed.  At  the  other  extreme, 
detailed  processor  and  memory  models  are  inserted  to 
collect an  accurate cycle count  during  execution of the 
program.  The  selection of a particular  model is performed 
at link time,  when  the  simulation  executable is created. 
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Alternatively, the  preparation  phase may create a 
simulation  module  for  generating  and saving the execution 
trace of the  ForestaPC  program  instead of consuming the 
trace on the fly; this possibility is indicated by the  dashed 
lines in Figure 2.  Using  this same  approach, we have  also 
envisioned the possibility of replacing  the cycle timer 
module with some  form of debugging environment  for  the 
ForestaPC  architecture  (resembling what has  been  done 
with the  tool  Shade [SI). These  features  are possible 
through specific programming  interfaces  among  the 
processor  model,  the memory model,  and  the  emulated 
program. 

architectures  also allows the invocation of operating 
system resources in  a straightforward  manner.  The 
program in ForestaPC assembly code simply invokes the 
system function,  and  either a VLIW version or a PowerPC 
version of that  function is provided  at link time (initially, 
we used  the  PowerPC version for most of the system 
library functions). 

The translator 
As stated  above,  the  translator is used  to  convert 
ForestaPC assembly language  code  into  PowerPC  code 
(see Figure 3). Since the  program in the  ForestaPC 
architecture may contain  instructions  different  from  those 
available  in the  PowerPC  architecture,  extra  PowerPC 
primitives  must be  added  to  simulate  the effects of the 
new instructions.  Moreover,  since  the  VLIW  architecture 
may contain a larger  register  set  than  the  PowerPC  set, 
registers of the  VLIW  architecture  are  kept in  memory 
and  temporarily  loaded  into  PowerPC  registers  to  perform 
specific operations,  and results are  stored in the 
appropriate  target  registers in  memory. This is basically 
the  same  scheme used in tools such  as Shade [8]. 

Preliminary  performance  measurement  capabilities  are 
incorporated by the  translator  through  instrumentation  for 
collecting data  regarding  the  VLIWs  executed.  The 
measures  correspond  to statistics on the  instruction-set 
architecture,  and do  not  include  details  regarding  an 
implementation of such  an architecture.  Thus, this 
mechanism allows fast  turnaround  time  for  experimenting 
with architectural  features  and  compiler  algorithms, 
without yet introducing  the  detailed  description of a 
processor  and memory implementation. 

The  instrumentation consists of counters which are 
placed  at  selected  points in the  code  (representing  each 
exit point  from a VLIW). In addition,  the  translator 
generates a file of descriptors, each  containing  predecoded 
information which describes  the  operations  and  resources 
used by a  VLIW. When  the  program finishes  execution 
(a  simulation  run  completes  execution),  the  counters  are 
saved  in  a file on disk; then, a separate  tool  combines  the 
information  from  the  counters with the  descriptors,  thus 

Mixing assembly code  from  the  ForestaPC  and  PowerPC 

Instruction in 
VLIW architecture Translated  PowerPC code 

Iwz r31  ,R4-off(r13) 
Iwz r30,R3_off(r13) 
add r31,r31,r30 
sli r31,r31,4 
stw r31,R37_off(r13) 

computing  performance  data such  as total  number of 
times  each  VLIW was executed,  average  ILP achieved, 
utilization histograms  for  the  different  resources,  and 
dynamic frequency  distribution of the  different primitive 
instructions.  The  tool also generates  profile-directed 
feedback  information  for  the  compiler,  though we do  not 
currently exploit that capability. 

The  translator also  places  a  call to  the cycle timer  for 
each  VLIW  executed, passing  as arguments  the  associated 
descriptor as well as  an image of the  registers specifying 
their  contents  just  prior  to  the  execution of the  VLIW 
(i.e., a complete  “trace  record” which includes  the  status 
of the  processor  at  that  point). Only  a pointer  to  these 
elements is actually  used  as argument in the call to  the 
cycle timer, so there is no overhead in arranging  data 
before  the call. 

The  translator is driven by tables specifying the  actual 
translation  for  each primitive instruction defined in the 
ForestaPC  architecture;  adding a new instruction  or 
modifying one  already defined  consists simply in changing 
the  corresponding  table entry. The type of instrumentation 
desired is a parameter  to  the  translator, so different levels 
of detail in the collection of data can be  selected  at 
translation  time. 

The cycle timer 
The  approach used  in the cycle timer  attempts  to avoid 
some of the  limitations of traditional timing models in 
processing traces of meaningful length  (hundreds of 
millions of instructions), which either  require a very long 
execution time  or rely on sampling of the  execution 
traces’ [9 ] .  Two alternatives  are  provided  for timing the 
behavior of a processor,  both  based  on a cycle-by-cycle 
monitoring of the execution of a program: 

1. A (traditional)  trace-driven  approach, in which an 
execution  trace is first collected  and  then  used as input 

The environment described here may still require sampling, hut for much longer 
traces (programs running for many billions of instructions). 291 
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to  the  timer,  but using  a trace which contains 
predecoded  information  regarding  the  resources 
required  for  the  execution of each  instruction. 

2. An integrated  simulationhiming  approach, in which a 
program is simulated, a predecoded  execution  trace is 
generated,  and  the timing of the  trace is performed on 
the fly. 

In both  cases  the  trace  contains  predecoded  information, 
so that much of the  overhead in  processing the  trace is 
eliminated.  Moreover, in the  case of the  integrated 
approach,  the  overhead  associated with  accessing the  trace 
is replaced by simple procedure calls. 

The efficiency of the timing environment is largely 
achieved through  the  use of the  predecoded  descriptors. A 
single read-only  descriptor  for  each  VLIW is repeatedly 
used  during  simulation, so the size of the  descriptor is not 
an  important  consideration.  The  overhead involved  in 
invoking the cycle timer  as well as in processing the 
descriptor is amortized over  all of the  operations 
contained in the  tree.  Thus,  descriptors  are  designed  to 
minimize the processing overhead of the cycle timer. In 
contrast, a conventional  trace-driven timing environment 
typically must strive  to minimize the size of the  instruction 
and  machine-state  information in the  trace,  at  the  expense 
of decoding  overhead in the  timer. 

The processor model maintains  the cycle count  and  other 
performance  data,  dealing with  issues  such as  register 
dependencies  and  operation  latencies  for a given 
processor  implementation.  For  memory  operations,  the 
processor  model invokes the memory model, passing 
information  such  as  the  operation type and effective 
address of a  memory reference. Since the  processor  model 
has access to  the complete state of the  processor, complete 
checks can  be  performed  on any processor  functionality 
(i.e., fast memory address  generation,  prefetching,  etc.). 

The  processor  and memory models have  a  clearly 
defined interface, allowing  a  variety of models  to  be used 
interchangeably, with the  models  differing  both in the 
system configuration they implement  and in the  degree of 
detail  and accuracy  involved. This versatility is further 
enhanced by ensuring  that  the  interfaces  provide all of the 
information  required by the most detailed  or  accurate 
model  that may be  needed,  even if that  information is not 
necessary for  simpler models. 

A descriptor  contains  separate  components  for  each 
path in the  tree b a t h  descriptors), so that  predecoded 
information is available for  each  path. As a result,  the 
descriptor  component  associated with a taken  path is used 
for timing the  operations which are  executed  to 
completion,  whereas  the  descriptors  associated with 
nontaken  paths  are used for  timing  conditional execution 
of operations  for  those  cases  where it  might matter. 292 
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As is normally the  case,  the timing environment  does 
not check for  architecture  restrictions;  instead, it assumes 
that  instructions have been  compiled  properly, so that they 
comply  with the  architecture.  The verification of this 
assumption is performed by other  support  tools available 
in the  environment. 

We first developed simplified processor  and memory 
models, which capture  the basic features of an 
implementation.  For  example, a  simple processor  model 
detects  and  counts  stall  conditions such as  register 
interlocks  for long-latency operations  (memory accesses, 
nonpipelined multicycle operations  such  as multiply and 
divide),  register-bypassing  effects,  conflicts  in address 
generation,  and conflicts  in register  targets. Similarly,  a 
simple  memory model  describes a  multilevel  hierarchy 
(cache levels LO, L1,  L2, and main storage),  simulates only 
the  corresponding  directories,  computes miss ratios  at  the 
different levels of the  hierarchy, uses LRU  replacement 
policies, assumes fixed latencies  for  transferring  data 
between  adjacent levels of the  hierarchy,  and delays the 
return of data  to  the processor on the basis of such latencies; 
timing information is kept only for  data moving through 
the memory hierarchy  toward  the  processor,  not  for  write- 
through  data  to  percolate  through all memory levels. 

Timing information  can  be collected for specific 
routines  rather  than  an  entire  program, by isolating those 
routines  into  separate  source files and  then  generating 
timing support  for only those files; this  feature  relies on 
the capability of the  simulation  environment to specify the 
compilation/instrumentation of selected files. 

Relationship with other simulationievaluation tools 
A good  summary of the  state of the  art in simulation of 
processor  architectures is given in [8], which contains an 
extensive list of related  tools as well as  a description of 
Shade,  perhaps  one of the most complete  and effective 
simulation  and  tracing  tools  currently available.  Since 
attempting  to  illustrate  the similarities and  differences 
among  other  tools  and  ours is beyond the  scope of this 
paper, we compare  relevant  features of our  environment 
with those  provided by Shade,  and  summarize  the  unique 
properties of our  environment.  Further  comparisons with 
other  tools  can  be  inferred  from  the  summary given in [8]. 

As stated in [8], Shade is characterized by the following 
features: 

Library functions invoked by analyzer programs  are 
collected; analyzer programs typically use  Shade  to 
collect  raw trace  data,  and  then  summarize/process  the 
data  to  provide specific metrics. 

cross-compiled into  executable  code  that  runs directly on 
a  host machine. 

Executable  code  for a target  machine is dynamically 
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Host  code is cached  for  reuse so that  the cost of cross- 
compiling can be amortized. 
Simulation  and  tracing  code  are  integrated so that  the 
host code saves trace  information directly  as  it  runs. 
The analyzer is given control over what is traced,  and 
the  tracing  strategy  can  be  varied dynamically. 

While  our  environment  shares most of the objectives 
and  capabilities of Shade, it also  has  some very distinctive 
features.  In  particular, we rely on  static  translation  prior 
to  simulation  instead of dynamic translation,  thereby 
reducing  run-time  overhead  at  the cost of storage  space. 
Moreover,  our  environment  relies  on allowing mixing 
assembly code  for  the  target  architecture with assembly 
code  for  the  host  architecture,  thereby  reducing  the 
complexity of the tasks;  such  a  capability is not available 
in Shade  because  translation is performed  from  the 
executable  code  for  the  target  architecture of the  entire 
program. 

Both  Shade  and  our  environment give the  processor 
model (analyzer  in  Shade’s terms)  control  over  the  tracing 
strategy,  but  the  approach  used is different.  Shade 
generates  the  trace  records dynamically, according  to  the 
model’s  specifications. In contrast, since we rely on static 
translation,  the  processor  model receives  a pointer  to  the 
complete  trace  record, with no  run-time  overhead,  and  the 
model  uses  as much information  from this record as 
necessary. 

availability of a suitable optimizing compiler, so that 
architecture/compiler  interactions  are  explored in  many 
dimensions. In  contrast,  Shade  operates on executable 
code  produced  independently; it is not  intended  to  explore 
such  types of interactions.  In  this context,  it  would be 
more  appropriate  to  compare  our  approach with tools 
that have  similar  objectives,  such  as the  environment 
supporting  IMPACT [lo], but  that  environment is not  as 
general as Shade  or  the  one  described  here. 

In  addition,  our  environment is based  on  the 

The  Chameleon compiler 
Chameleon,  our  research  compiler  (see Figure 4), has 
been  designed  to  support  research  into instruction-level 
parallelism, and  to  evaluate  the  benefits of various 
architectural modifications  when  exploited through 
appropriate  compiler  optimizations.  Chameleon was 
designed  to  target  VLIW  architectures  that  execute  tree 
instructions; it is extensively parameterized so that it can 
target  processors with different  features (such as issue 
width, number of functional  units,  instruction  latencies, 
and  register  set).  Supporting  architectural  explorations 
and  implementing aggressive optimizations  geared  toward 
several  different  targets implies  a compiler in  a constant 
state of change.  Consequently,  the  compiler  has  been 
designed with support  for  the  addition of code, verification 

The  Chameleon  compiler  environment. 

of the modified compiler,  and  rapid  isolation of problems 
(such  mutability has given it  its  name). 

produced  either by a  modified  version of xlc, the  standard 
RS/6000* C  compiler [ll, 121, or a modified version of gcc, 
the GNU C compiler.  The  object files are  processed by an 
“object-code  translator”  that  generates  an assembly-like 
sequential  representation (*.vinp files). The  output  from 
Chameleon is a ForestaPC  program  (tree  instructions) in 
an assembly language  form (*.vasm files), which is either 
instrumented  and  translated  into  PowerPC assembly code 
(*.s files) that  emulates  the  target  ForestaPC  processor,  or 
is directly translated  into  PowerPC assembly code.’ 

The modifications to xlc and gcc fall into two categories: 
First, we have turned off phases such  as scheduling  and 
loop  transformations  that would tend  to  obscure  the 
original code  sequence;  second, we have added  capabilities 
to convey information  such as alias classes,  spill locations, 
and  registers live at  function calls and  function  return 
points.  The  results  reported in this  paper have all been 
obtained using xlc. Among  other benefits, the modified xlc 
allowed us to  take  advantage of an existing production 
compiler  front  end. 

architecture is not fixed. Since one  use of the  compiler is 
investigating trade-offs  among  features  such  as  the size of 
the  register  set  and  the  number of execution units, the 
compiler must be  able  to  handle  different  processor 
configurations. Moreover,  the  compiler  must  be  able  to 
support  the  evaluation of alternative  features in the 
architecture by making it possible to  determine  the 
performance of compiled  code with and  without  an 
additional  feature. 

The  input  to  Chameleon is object code (*.o files) 

In  contrast  to many other  compilers,  our  target 

In summary, the  compiler is characterized by its ability 
to  generate  optimized  code  to  properly exploit  a VLIW 

Such code is suitable  for a wide-issue implementation of the  PowerPC 
architecture. 293 
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Phases in Chameleon. 

architecture; its ability to  support  multiple  processor 
configurations, so that  the  number  and  balance of various 
resources  can  be  studied;  and its  modifiability to allow 
exploration of novel compiler  optimizations  and 
architecture-related ideas. 

Optimizations 
Chameleon  has a  fairly  aggressive suite of optimizations 
which can  be  grouped  into  the following categories  (see 
Figure 5): 

Traditional Optimizations including constant 
propagation,  loop-invariant  code  motion,  dead-code 
elimination,  and subexpression elimination;  these  are 
applied  throughout  the  compilation  process.  Moreover, 
since  Chameleon uses the  output  from xlc, it takes 
advantage of xlc’s excellent set of traditional optimizations. 
ZLP-increasing Optimizations  designed  for increasing 
the  instruction-level  parallelism, so that  the  scheduler 
can  pack  instructions tightly. These  include  various  loop 
transformations, such as  unrolling, rewriting loops with 
commutative/associative operations  (reductions), 
rewriting cyclic dependences  to  reduce  initiation 
intervals, and  memory  disambiguation. 
Architectural Optimizations designed to exploit various 
architectural extensions. For  instance,  there is a phase 
that  uses  conditional  move/store  operations  to  convert 
if-then-else  structures  to  straight-line  code. 

Optimizations  not in Chameleon  but  found in other 
research  compilers  include  profile-directed  feedback  and 
interprocedural analysis. Chameleon  has  the ability to  use 
profiling information,  but  it normally uses  synthetic  branch 
probabilities  produced by a variant of the Ball-Larus 
heuristics [13]. We  do  not exploit interprocedural analysis; 
even  the  interprocedural  phase of xlc has  been disabled. 

The  scheduler  used by Chameleon is an  enhanced 
version of selective scheduling [14]. The original algorithm 
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has been considerably  modified; the  changes  include 
examining  all instructions in  a loop  for  scheduling  (instead 
of only instructions within  a fixed “window”),  using 
heuristics  for  selecting  the  slot in which to  schedule  an 
instruction  (instead of a “greedy”  schedule),  and 
sensitivity to  register  pressure  (not  scheduling  an 
instruction if that might cause a register spill). 

Software pipelining is applied pervasively, to  outer as 
well as  inner  loops; it is also used on loops with complex 
bodies  and  loops with multiple  heads. 

Memory disambiguation 
Much  effort in  exposing parallelism is devoted  to  memory 
disambiguation.  Serialization  among  memory  operations 
due  to  potential memory  aliases causes a large  decrease in 
the  amount of ILP available. Some of the  techniques we 
use  are  the following: 

Traditional address disambiguation We  use aggressive 
versions of traditional  and  VLIW  techniques [15-171, 
computing  whole-function symbolic expressions for 
addresses, which are  then  used  to  compute aliases 
among  adjacent  loadistore pairs. The  disambiguation 
techniques  also  include  the  use of Banerjee  and GCD 
tests across loop  iterations [18]. 
Loop cloning Loops may contain a dependence which 
forces a  mostly sequential execution.  However, in many 
cases it is possible to  determine, by checking  a  simple 
condition  outside  the  loop,  that no dependence exists 
and  the  loop  can  be parallelized. If there is  such  a 
condition, we clone (duplicate)  the  loop;  one version 
contains  the  dependence,  and  its  execution is mostly 
sequential,  whereas  the  other is parallelized.  At  run 
time,  the  parallel  version of the  loop is executed 
whenever  the  condition is satisfied. Our loop-cloning 
implementation is a more aggressive  version of the 
technique  described in [19]. 

coherence test is used  for  reordering  load  instructions 
relative  to  store  instructions, in spite of the possibility of 
conflicts due  to  memory  references which cannot  be 
disambiguated [20]. Whenever a load  instruction is 
moved earlier  than a sequentially  preceding  ambiguous 
store  instruction, a coherence  test is inserted  at  the 
original position of the  load  instruction in the  sequential 
instruction  stream.  The  coherence  test consists of two 
instructions: a load  instruction  from  the  same  memory 
location, followed by a trap if not equal instruction which 
compares  the value just  loaded with the  value  loaded 
out of order. If the values are  identical,  the  value  loaded 
out of order  and all other values  derived from it are 
correct,  and  execution  can  proceed normally. On  the 
other  hand, if the value just  loaded is different  from  the 

9 Reordering memory operations A software-based 
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value  loaded  out of order (which implies that  the 
corresponding memory location  has  been modified after 
being  read),  the  value  loaded  out of order, as well as  all 
other values  derived from  it, is incorrect  and must be 
recomputed. A trap  handler is invoked,  activating 
recovery code  generated by the  compiler, which re- 
executes  the  out-of-order  load  instruction as well as 
those  instructions  that  depend on it and  were  executed 
before  the  trap was generated. For these  purposes,  the 
instructions  executed  between  the  out-of-order  load 
instruction  and  the  coherence  test  must  not  destroy  the 
operands of the  instructions  that  are  re-executed in the 
recovery code. 

Loop rewriting 
Loops, especially  in  numerically  intensive code,  contain 
many potentially  parallel  instructions.  We  use several 
loop-rewriting optimizations [18] to  transform  loops 
and  increase  the  amount of ILP available. These 
transformations  include  the following: 

Unrolling loops As  implemented,  software pipelining 
can  start  at most one  iteration of a loop  at a  time. 
Unrolling small loops allows a scheduler  to  be  presented 
with a loop body which contains  several  iterations of the 
original  loop, so that  software pipelining can  schedule 
the  initiation of several iterations in the  same cycle. 
Reducing minimum-initiation interval (MU) Software 
pipelining schedules a loop such that  iterations of the 
loop  start  once every MI1 cycles. MI1 reduction  rewrites 
some loops so that MI1 is reduced,  enabling  iterations  to 
be  started  more  frequently. 

commutative/associative operations  can  be  decomposed 
into  several  subsequences  wherein  each  subsequence  can 
be  computed in parallel;  the  partial  results  are  then 
combined  to  obtain  the  actual value. On the basis of 
this  idea,  loops  containing commutative/associative 
operations  are  rewritten so that  each  iteration of the 
loop  computes several partial  results in parallel; this 
greatly  increases  ILP on small loops  that  contain 
commutative/associative operations. 

Rewriting associative operations A sequence of 

Architecturelimplementation-speciJic transformations 
The  compiler  uses  parameterization  to  support  multiple 
targets.  Parameters  are used to  control  instruction 
latencies,  register file sizes, the  number of execution units 
of various types, and  the issue  width and mix. The 
compiler  also  supports a  variety of optimizations  tailored 
to specific architecture/implementation features.  In 
addition  to  the  reordering of memory operations  already 
mentioned,  the  supported  features  include 

9 Nontrappinglspeculative load instructions, which enable 
speculative issuing of load  instructions,  thereby removing 
control  dependences  that  could  potentially  inhibit 
performance. 
Conditional  instructions, such  as select (conditional 
move) and conditional store instructions.  These 
conditional  operations  do  not  enhance  performance 
directly; instead,  they  permit conversion of if-then-else 
structures  into a mixture of speculative operations  and 
select  instructions,  thereby simplifying control flow. 

add-store, into a  single operation. 

instructions,  under varying assumptions  regarding  the 
memory hierarchy. 

Combining  operations, such as add-add, add-shift, 

Prefetch instructions, also  known  as cache touch 

Implementation 
Chameleon is table-driven, so that  adding a  new 
instruction  and/or a  new register class requires localized 
changes. Its  intermediate  form,  the  dependence flow graph 
(DFG) [21], provides an  integrated  datakontrol flow 
information well suited  for  incorporating  advanced 
optimizations; such optimizations  are, with few exceptions, 
independent of one  another  and  permutable. 

An exhaustive list of the benefits of using the DFG 
representation is beyond the  scope of this  paper. 
Among  other benefits, DFGs combine control-flow and 
dependence  information  into a  single coherent  form. They 
are fully executable  representations,  and  the  dependence- 
flow information is a fully “pinned”  form;  that is, it  is both 
in single-static assignment (SSA)  and  reverse static-single 
assignment form. 

Analysis is particularly easy  with DFGs: SSA/reverse- 
SSA-based  analysis requires no extra work. Moreover, 
the  executable  nature of the DFG makes  attractive 
the analysis based on partial  evaluation  techniques. 
The choice of DFGs is one of the  reasons why our 
implementation of common  optimizations  has  performance 
advantages  compared with traditional  implementations. 

Another distinct advantage of our intermediate  form is 
the  representation of load/store  dependences.  Memory 
operations  are  connected by anti/output/flow  dependences; 
this provides  a mechanism whereby an  optimization 
performs memory anti-aliasingldisambiguation once,  and 
then  represents  the  result so that all other  optimizations 
can use it. 

The DFG provides  almost all of the  information  needed 
to  implement aggressive transformations. In fact, we use 
only one  additional global data  structure: a (pseudo-) 
interval hierarchy. For reducible  graphs,  this is 
the usual interval  hierarchy. For irreducible  graphs, 
certain  irreducible  portions  become  pseudo-intervals  (they 
have multiple  entry  points  from  outside  the  loop). 
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Tree instruction. 

structure integrity  validation. This  property  has  proven 
very effective;  when an  optimization is implemented 
incorrectly,  it is usually the  case  that  the  compiler fails  a 
self-check  in the  offending  optimization  rather  than 
producing  an  incorrectly  compiled  program. 

Compilation time 
The  area in which our  compiler differs  most from  others is 
compilation  time,  though this is the  result of conscious 
decisions. Whenever  there was a trade-off  among 
compilation  time  and  other  properties such  as robustness, 
maintainability,  extensibility, performance,  or  programmer 
productivity, we chose  against  compilation  time.  For 
instance, we frequently  use global O(n2)  algorithms over 
entire  functions.  In  addition, while DFGs  are  ideal  for 
implementing  optimizations,  they  are  more memory- 
intensive than  other  intermediate  forms. 

Chameleon is extensively parameterized; everything 
from  the  processor  resource  model  to  the  instruction  set 
is defined through  tables, which are usually  modifiable at 
run  time.  For  instance, primitive operations  and  their 
properties  are in  a table.  Thus,  adding a  new  primitive 
means  adding  one  entry  to  the  table,  and possibly an 
evaluation  function.  After  that,  the primitive instruction is 
accepted by the  scanner,  scheduled  appropriately,  and 
printed  out correctly. If the primitive has  properties such 
as associativity and commutativity, optimizations which use 
these  properties  are  able  to  use  them. Similarly, if the 
primitive has  an  evaluation  function,  the  various  constant 
propagation  transformations  are  able  to  use it. 

Encapsulation is pervasive; data  structures  are never 
accessed  directly, but  through  functions  or  (more 
frequently) macros. This  has  enabled us to radically 
change  the  implementation of the  various  data  structures 
with no impact on the  transformations. 

Transformations  are  written  to  be  stand-alone. They can 
be viewed as  transformations  on  the  DFG:  They  accept 
any  possible DFG  and  transform it into  some semantically 
equivalent  DFG. A particular  transformation may depend 
on a  previous transformation in terms of the  instruction- 
level parallelism it  exposes, but  not in terms of 
correctne~s.~  The lack of required  ordering  enables  the 
application of some  subset of all optimizations, in an 
arbitrary  order,  speeding  up  the  process of error  isolation. 

Chameleon  has extensive  debugging support  for 
reducing  the  time  to  isolate  and fix programming  errors, 
including  built-in data-structure consistency and checking 
for  memory bounds/validity.  A nonoptimized  version of 
the  compiler, with  debugging enabled,  can  spend  up  to 
two thirds of its execution time in asserts  and  data- 
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Basic features of the VLIW architecture 
In  ForestaPC,  our  VLIW  architecture, a program consists 
of a sequence of tree instructions, or simply trees, each of 
which corresponds  to  an unlimited multiway branch with 
multiple  branch  targets  and  an unlimited set  of primitive 
operations (see Figure 6 )  [6]. All  operations  and  branches 
are  independent  and  executable in parallel, as  a  single 
VLIW. The multiway branch is associated with the 
internal  nodes of the  tree,  whereas  the  operations  are 
associated with the arcs. The multiway branch is the  result 
of a set of binary tests on condition registers; the left 
outgoing  arc  from a tree  node  corresponds  to  the  false 
outcome of the  associated  test,  and  the right outgoing  arc 
corresponds  to its true  outcome.  The  structure of these 
tree  instructions is an  extension  to  those  described in 
[ 14, 221. 

On the basis of the  evaluation of the multiway branch, 
a  single path within  a tree  instruction is selected  at 
execution time  as  the taken path (a  tree  path  starts  from 
the  root of the  tree  and  ends in  a branch  target). 
Operations  on  the  taken  path  are  executed  to  completion, 
and  their  results  are  placed in the  corresponding  target 
registers  or  storage locations. In  contrast,  operations not 
on the  taken  path of the multiway branch  are  inhibited 
from  committing  their  results  to  storage  or registers. Such 
operations  produce  no  effect on the  state of the  processor. 

Primitive instructions in  a tree  are  subject  to sequential 
semantics for each path, as if each primitive instruction 
were  executed in the  order in which it appears in the  tree 
path  (a  tree  path  starts  from  the  root of the  tree  and  ends 
in  a destination  target). As  a result, a  primitive instruction 
cannot  use a processor  resource which is set by a previous 
instruction in the  same  tree  path.  This  property 
guarantees  binary compatibility among  different 
implementations of the  ForestaPC  architecture with 
varying degrees of parallel  execution capabilities, because 
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large  trees  can  be  decomposed  into  subtrees which are 
executed in different cycles [23, 241. 

More specifically, a ForestaPC  processor  fetches  tree 
instructions  from  main  storage  for execution. If the size of 
a tree  instruction exceeds the  resources in the  processor 
(such  as number of branch  operations  or  number of fixed- 
or floating-point  operations),  the  tree  instruction is 
dynamically decomposed (pruned) to fit the  resources 
available in the  processor.  The  resulting  subtrees  are 
executed in successive cycles, unless the  taken  path is 
completely contained within the first subtree. 

are  described in [6, 23-25]. 

Some  examples of compiler/architecture 
interactions 
The  range of architecture/compiler  interactions which can 
be  explored in our environment is quite  broad. Since we 
cannot  describe  the  entire  range in detail, we list below 
some examples of architectural  features which have been 
considered  and  for which compiler  algorithms have been 
developed: 

Additional  details  regarding  the  ForestaPC  architecture 

Number  and type of operations  per  VLIW. 
Size of the  register  set. 
Latencies of operations, including memory  operations. 
Availability/unavailability of specific instructions. 
Three-input instructions. 
Conditional move and  conditional  store  instructions. 
Record  form of instructions. 
Length of displacement  and  immediate fields. 
Static  reordering of ambiguous memory references, with 
run-time verification of incorrect  execution. 
Cache  prefetch  instructions. 

We now illustrate  the  capabilities of the  environment 
through two specific examples-the exploration of issue 
width with larger  register  set,  and  the  incorporation of 
three-input  operations in the  architecture. 

Issue  width and register set size 
Typically, studies  on VLIW architectures  assume a fixed- 
size register  set  and investigate the effects of increasing 
the  operations  per  VLIW [lo, 14, 261. In addition  to 
performing such studies, we have explored  the availability 
of instruction-level  parallelism  assuming  a larger  register 
set  for wider-issue implementations.  Such a trade-off is 
easily evaluated in our  environment.  The  compiler is 
simply invoked with a parameters file describing the 
features of the  target  architecture. No changes  are 
required in the  translator,  because  that tool is capable of 
handling very large configurations (1024 registers, 
unlimited  number of operations  per  VLIW). 

Table 1 Size of register  set in primitive operations. 

Register class Issue  width 

8 12 16 

General-purpose 64 96 128 
Floating-point 64 96 128 
Condition 16 24 32 

Table 2 Size of latencies in primitive operations. 

Operation  Latency 

Integer 1 
Floating-point 3 
Load 1 
Integer divide 10 
Integer multiply  3 

Table 3 VLIW instruction  ratio with respect  to  sequential 
code. 

Benchmark  Issue  width 

8 I 2  16 

SPECint92 
compress 4.14 5.14 5.79 
eqntott 4.79 5.00 8.02 
espresso 2.58 2.85 3.11 

li  3.25 3.58 3.69 
gcc 2.36 2.76 2.88 

SPECint95 
m88ksim 2.70 3.02 3.04 
go 2.23 2.45 2.51 

As an  example, Tables 1 and 2 respectively list the size 
of the  register  sets  and  the  operation  latencies  considered 
for one  experiment, in which we evaluate  the  instruction- 
level parallelism found  for  three  different  processors 
capable of issuing any eight, twelve, or sixteen instructions 
per VLIW. The  programs used in this experiment  are 
taken  from  the  SPECint92**  and  SPECint95**  suites. 

Table 3 lists the instruction-level parallelism  found  for 
the  three  processor configurations considered.  This figure 
indicates  the  ratio  between  the  number of instructions 
executed by a processor  running  PowerPC  code (with 
ILP = 1) and  the  number of tree  instructions  executed by 
the  ForestaPC  processor,  for  the  different issue  widths. 
The  PowerPC  instruction  counts  used  for  these  ratios  are 
obtained by compiling the  programs with xlc at 
optimization level 0 2 .  



Table 4 Relative ILP gain from three-input  operations in 
16/8/4/2116 processor. 

~ ~~ ~ 

Benchmark  Base ZLP 3-input ILP Gain (%) 

compress 4.41 5.38 18.0 
eqntott 7.88 7.91 0.4 
espresso 2.78  2.90 4.1 

li 3.48 3.53 1.4 
m88ksim 2.80  2.84 1.4 

gcc 2.65 2.68 1.1 

go 2.08 2.39 13.0 

Note  that  we  compute  instruction-level  parallelism 
differently  from many other  results  reported in the 
literature. Usually, the  results  reported  are  obtained by 
using the  same  compiler  for  both  the  parallel 
implementation  and  the  sequential  implementation.  In 
contrast,  the  instruction  counts  for  the  sequential 
implementations  are  obtained using the  best  compiler 
available for  the  PowerPC  architecture.  This is motivated 
by our original research  goal, namely measuring  the 
potential  improvement in instruction-level parallelism in a 
PowerPC-based  VLIW  processor over  existing PowerPC 
implementations.  Moreover,  we  believe  this is the  proper 
way to  compute ILP. 

Three-input operations 
Earlier work has shown that it is possible to build 
hardware  that  can  combine two arithmetic-logical 
operations  into a  single one,  and analysis of execution 
traces  has  indicated  that  there  are  opportunities  for  taking 
advantage of such combinations [27, 281. For example, an 
add&shift instruction is a three-input  operation  that 
performs  the  addition of two operands followed by shifting 
the  intermediate  result a number of positions specified by 
a third  operand;  that is, r5=add&shift  r3,r4,r7 is equivalent 
to rx=add r3,r4 followed by r5=shift m,r7. In  fact, 
contemporary  architectures such as  Hewlett-Packard’s 
PA-RISC** [29] have some capabilities of this type. 

Note  that  the  potential benefit of adding  three-input 
instructions  to  an  architecture is subject to  the capability 
(or inability) of the  associated  compiler  to  hide  the 
dependency  among  the  corresponding  operations as part 
of the execution of the  entire  program. Since  a VLIW 
processor is characterized by having  many functional  units, 
the  execution of an  instruction  pair as two  separate 
instructions might not  be  detrimental as  long as  the  pair 
is not  in  the  critical  path of the  program  (neglecting 
penalties arising from having larger  code size). 

We have  used our  environment  to  explore  the  benefits 
of including combined  operations in the  VLIW 
architecture. Initially, we considered  the following  classes 
of three-input  operations  (a  total of 67 additional 

298 instructions): 

A: Any combination of addhubtract with addhubtract. 
S: Any combination of addhubtract with shift, or shift 

L Any combination of logical  with  logical operations. 
with add/~ubtract .~ 

Moreover,  for  determining  an  upper  bound on the 
potential  performance achievable, we also allowed 
“recording” forms of each of these  combinations 
(Le., setting a condition  register in addition  to  the  result), 
as well as specifying an  immediate  value  for  one of 
the  operands.  Because of encoding  constraints,  these 
combinations  require  the  use of a doubleword  for  their 
representation in memory. 

We first added  these  three-input  operations  to  the 
compiler and  to  the  simulator. In Chameleon, this 
required  adding  an  entry  for  each  instruction in the 
opcode  table,  and  an  evaluation  function.  The  translator 
was  modified to recognize the new operations,  decompose 
them  into  their  two-input  components,  and emit suitable 
PowerPC assembly code  emulating  the new instructions. 

Chameleon.  We  made  three  changes  for exploiting the 
availability of three-input  operations: 

The next step was adding  the necessary optimizations  to 

Added a new phase  that  combines two operations  into a 
three-input  operation when the two operations  are in 
the  same basic block. 
Modified the  scheduling heuristics to  properly  handle 
the single-cycle latency of a three-input  operation, 
thereby combining instructions  when  such  an  action 
would produce a better  schedule. 
Altered  the final peephole  compaction  phase so that 
combining adjacent  VLIWs also  recognizes and exploits 
the  three-input  operations. 

As an  example, Table 4 depicts  the  relative gain in 
instruction-level  parallelism  arising from this interaction 
among  compiler  and  architecture,  for  the  case of a 
processor  capable of issuing up  to  16  operations  per 
VLIW  but  restricted  to eight  memory operations, four-way 
branch,  and two floating-point  operations,  and  whose 
register  set is 64/64/16 registers. As listed  in the  table, 
some  programs exhibit  significant  gains, whereas  others 
reflect little  variation. 

For  the  same example, Table 5 illustrates  the 
distribution of the most common  three-input  operations 
for  the  benchmarks compress, espresso, and go, which are 
the only ones  that exhibit significant gain  from  the 
availability of the new instructions  (see  Table 4). In  Table 
5, the  static  instruction  count  represents  the  number of 
occurrences of those specific instruction  combinations 
which are  present  in  the  VLIW  program,  whereas  the 

4 This class does not include  arithmetic shift instructions. 
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dynamic ratio  corresponds  to  the  ratio  between  the 
dynamic count of such specific instruction  combinations 
and  the  total  number of operations in the  entire  program 
(specified  in either  taken or nontaken  paths of the  tree 
instructions). 

Finally, Table 6 depicts  the effects of the  three-input 
instructions  grouped  according  to  their classes, for  the 
same  three  benchmarks as  in Table 5. In  the  case of 
compress and go, the most relevant  group is A + S; the L 
group  does  not have any effect. In  contrast, in the  case of 
espresso, each class contributes partially to  the overall 
gain.  However,  this  example indicates  that  the gain  arising 
from  the availability of two classes is not necessarily the 
same as the  sum of the individual  gains; the  compiler is 
able  to  schedule  instructions in such  a way as to partially 
compensate  for a missing class. 

Simulation performance 
As was stated  earlier, a ForestaPC  program  simulated  at 
the  instruction-set  architecture level executes seven to  ten 
times slower than  the  optimized native  version of the  same 
program,  whereas simulation  including  a processor  and 
memory model  adds  an  extra slowdown factor of the  order 
of 100. This is illustrated in Table 7 for  some workloads: 
lex and yacc, two AIX utilities, and compress and alvinn 
from  the  SPEC92**  suite.  In  these  experiments,  the 
processor  model  counts stall cycles due  to  implementation 
issues  such as  interlocks  required by long-latency 
operations,  long bypass paths,  carry-out  from  fast  address 
addition,  and conflicts  in  accessing ports  to  the  register 
file. In  turn,  the memory model  implements a three-level 
cache  hierarchy, with fixed latencies  for  transferring  data 
between  adjacent levels of the  hierarchy  toward  the 
processor,  and  main memory. 

Table 7 indicates  the  number of tree  instructions 
executed in each  program,  the  time  spent in user  code  for 
the native  version of the  program  (the  time  spent in 
system code is not  included  because it is negligible), the 
time  spent in user  code in the  exploratory  path  and in the 
evaluation  path,  and  the  ratios of these values  with respect 
to native execution.  The  entry  for  benchmark compress 
corresponds  to execution on  the official short  input, 
whereas alvinn corresponds  to  the official reference  input 
(1.3 billion VLIWs  executed). 

different  programs, in particular for simulation with a 
processor  model  (the  evaluation  path).  The most 
important  factor  contributing  to  the  differences is the 
frequency of memory operations in the  programs. Since 
memory operations imply invocations of the memory 
model,  the slowdown factor is larger  for  programs with 
higher memory traffic; for  example,  about  38% of the 
operations  performed in compress are memory operations, 
in contrast  to  about  62% in benchmark alvinn. 

As could be  expected,  the slowdown factor varies  across 
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Table 5 Distribution of three-input operations in 
benchmarks compress,  espresso, and go. 

Benchmark  Operation  Static  Dynamic 
~~ ~ 

instruction ratio 
count (%) 

compress slw,add 45 10.5 
add,subf 23 8.1 
add,add 56 3.0 
snv,add 4 <0.01 
all others 1 0.0 

espresso add,add 1145 3.5 
and,nor 86 1.7 
slw,add 1496 1.7 
and,and 38 0.5 
all others 453 1.2 

go  slw,add 45 10.5 
add,subf 23 8.1 
add,add 56 3.0 
snv,add 4 (0.01 
all others 1 0.0 

Table 6 Relative ILP gain from classes of three-input 
operations. 

Instruction  Benchmarks (%) 
classes 

compress espresso go 

A + S + L  18.0 4.1 13.0 
A + S  18.0 3.2 13.0 
A 11.2 2.2 0.5 
A + L  11.2  2.8 0.5 
S 7.3 1.3 12.1 
S + L  7.3 2.2 12.1 
L 0.0 0.8 0.0 

Concluding remarks 
We have described  the  simulation  and  evaluation 
environment for a VLIW  architecture  and  its  compiler, 
and have illustrated  some examples of the  application of 
the tools. In practice,  the  approach  used is applicable  to 
any type of processor  architecture,  but it is particularly 
well suited  to  modeling a VLIW-based  processor  because 
of lower simulation  overhead. 

The  environment is oriented  toward  the  evaluation of 
trade-offs in  a VLIW  architecture  and its compiler,  makes 
extensive  use of table-driven  techniques,  and  has  been 
wholly designed  for mutability. The  environment provides 
fast  turnaround  time  for  introducing new compilation 
algorithms,  and  fast  turnaround  time  from  compiler  output 
to  simulation  results, allowing adequate  support  for  testing 
of compiler  algorithms  and  architecture  features.  Thus, 299 
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Table 7 User execution time. 

Benchmark VLIWS x lo6 Native Exploratory path  Evaluation  path 
(SI 

(SI Ratio (SI Ratio 

compress 1.54 0.60 3.40 5.67 309 515 
yacc 16.56 0.97 7.27 7.49  762 786 
lex 2.33 2.04 14.97 7.34 1337 655 
alvinn 1300 35.80 369 10.32 53 490 1507 

the  environment allows the  performing of extensive 
experiments  to assess the  potential benefits of the  VLIW 
architecture/compiler  combination,  and  the collection of 
extensive data  supporting  the  evaluation of trade-offs in 
such  a  system. 

In  practice,  the  environment  has  permitted  routine 
evaluation of alternative  architectureicompiler  features 
over  realistic  workloads. Programs  from  the  SPEC92  and 
SPEC95**  benchmark  suites, a set of AIX utilities, the 
LINPACK  benchmark,  and  the  Livermore  loops 
benchmark have been  simulated  and  timed in their 
entirety,  for  different  processor configurations and 
different  compiler algorithms. Simulation  executables 
which do  not invoke the cycle timer typically run only 
seven to  ten  times slower than  the  optimized  native 
PowerPC  code  for  the  same  program; a processor  model 
at  the  functional  unit level and a  memory model consisting 
of two levels of cache  plus main  memory slow the 
simulation  executable by an  additional  factor of the  order 
of 100. These levels of performance in the  simulator  make 
possible complete  experiments  on a regular basis, without 
having to  resort  to simplifications to  reduce  their 
turnaround  time. 

Our  tools have properties similar to  those available  in 
other  simulation  environments,  but a combination of 
features  make  ours  unique: 

Highly modular  organization. 
An optimizing compiler  integrated with the  development 
of the  processor  architecture. 
Fast  turnaround  time  for  introducing compiling 
optimization algorithms. 
Fast  turnaround  time  from  compilation  output  to 
simulation results. 
The  integration of the  different  components, in 
particular  the  integration of the  simulator,  the 
generation of traces,  and  the  trace-driven timing 
analysis. 
The capability of timing the  complete execution of 

The ability to mix assembly code  written  for  the  target 
programs  without  the  need  for  storing  traces. 

architecture with  assembly code  for  the host 
architecture. 300 
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The  use of static  translation  and  predecoding  to  reduce 
run-time  overhead. 
The capability to  obtain  different levels of accuracy  in 
the  performance  measures, with more  accurate  results 
requiring  longer execution time. 

microarchitecture,  particularly  for  modeling wide-issue 
processors such  as VLIW  because of lower simulation 
overhead. 

Applicability to any type of processor  architecture  or 

The  techniques  and  the  environment  developed as part 
of this research  are  applicable  more generally than  just  for 
the  case of in-order issue processors  as  described in this 
paper,  though  some of the benefits are  clearer in such a 
context.  In any  case, we envision further work on  the 
development of similar environments  for  the  simulation 
and  evaluation of aggressive in-order  and  out-of-order 
processors, or  for  other new processor  architectures;  the 
compiler  can  be  used  to  further  explore  the  potential  and 
limitations of instruction-level  parallelism, either in 
unconstrained  conditions  or  constrained by specific 
architecture  features,  and  for  other  languages  and 
programming  environments. 
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