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Efficient  management  of distributed resources, 
under  conditions  of  unpredictable  and  varying 
workload,  requires  enforcement  of  dynamic 
resource  management  policies.  Execution  of 
such policies requires  a  relatively  fine-grain 
control over  the  resources  allocated to jobs in 
the system.  Although this is a difficult task 
using  conventional job management  and 
program  execution  models,  reconfigurable 
applications  can  be  used to make it viable. 
With  reconfigurable  applications, it is possible 
to dynamically  change,  during  the  course  of 
program  execution,  the  number  of  concurrently 
executing tasks of an application as well as 
the resources  allocated.  Thus,  reconfigurable 
applications  can  adapt to internal  changes in 
resource  requirements  and to external 
changes  affecting  available  resources. In this 
paper,  we  discuss  dynamic  management  of 
resources  on distributed systems with the help 
of  reconfigurable  applications. We first 
characterize  reconfigurable  parallel 
applications. We then  present  a  new 

programming  model for reconfigurable 
applications  and the Distributed  Resource 
Management  System  (DRMS),  an integrated 
environment for the  design,  development, 
execution,  and  resource  scheduling  of 
reconfigurable  applications.  Experiments  were 
conducted to verify the functionality and 
performance  of  application  reconfiguration 
under  DRMS. A  detailed  breakdown  of  the 
costs in reconfiguration is presented with 
respect to several  different  applications. 
Our results  indicate that application 
reconfiguration is effective  under DRMS and 
can  be  beneficial in improving  individual 
application  performance as well as overall 
system  performance. We observe  a  significant 
reduction in average job response time and  an 
improvement in overall  system  utilization. 

1, Introduction 
Resource  management is a much harder  problem  on 
parallel  and  distributed systems than  on  conventional 
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single-processor systems. The  problem  becomes even more 
difficult when the  resource  requirements of jobs arriving at 
the system are  unpredictable  and have high variability. 
Under such conditions,  one obvious solution is dynamic 
management of resources; Le., dynamically adjusting  the 
allocation of resource  as  the  demand  on  the system 
varies. For such  a scheme  to  be effective, the  resource 
management must adjust quickly in response  to any 
changes in the system workload  and/or in demands on the 
resources.  It  has  been shown  in the  literature (1-81 that 
dynamic resource  management  results in improved  job  and 
system performance in comparison  to  more  conventional 
static  resource  management  strategies,  where  resources 
are statically allocated  and a job is treated as  a  single 
resource  scheduling unit during  its lifetime. 

In this paper we discuss  a particular  form of dynamic 
resource  management  based on reconfigurable 
applications.  We define application  reconfiguration as the 
activity of statically or dynamically  changing the  degree of 
parallelism exposed by an  application  to  the  external 
environment.  (Other  common  uses of the  term application 
reconfiguration are briefly discussed in Section 10.) The 
applications we consider  express  parallelism in the  form of 
concurrent  execution of multiple tasks as  opposed to, e.g., 
parallelism  in  pipelined  execution.  (Throughout  the  paper 
we use  the  term tusk to  mean a thread of execution which, 
depending on the  particular system, could  be  implemented 
as a full  process  or as  a  lightweight thread.)  These 
multiple  tasks  and  their  corresponding  data  are  then 
mapped  onto underlying physical resources,  manifested 
primarily  in the  form of processors.  During  an  application 
reconfiguration,  the  number of concurrently executing 
tasks of an  application may be modified, and  the  tasks  and 
associated  data may be  remapped  onto  the physical 
resources.  This in turn allows the system resource 
manager  to  alter  the  allocation of physical resources  to 
jobs  running in the system in  a  dynamic and  adaptive 
manner. Not  all parallel  applications  are  amenable  to 
reconfiguration,  and  part of this paper is devoted  to 
characterizing  those  that  are. 

To  make dynamic resource  management a reality, 
three  requirements must be  met:  Applications must be 
reconfigurable,  a run-time  mechanism  for  application 
reconfiguration  must  be available, and a suitable  run-time 
infrastructure must be in place. We have developed  the 
Distributed  Resource  Management System (DRMS),  an 
integrated  environment  for design, development, 
execution,  and  resource  scheduling of reconfigurable 
applications.  DRMS aims at  delivering  better system and 
job  performance  through dynamic resource  management 
using  reconfigurable  applications. DRMS-reconfigurable 
applications follow an  extended  SPMD (single-program 
multiple-data) model  that we call the SOP (scheduluble and 
observable point) model.  We explain  this model briefly 304 
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later in this  paper  (Section 5). We  note, however, that 
the  concepts  are  applicable  to many other types of 
programming  models. 

Dynamic resource  management is beneficial compared 
to its static  counterparts only if the  overhead of dynamic 
changes  to  the  resource  pools is not excessively high. In 
this paper, using  extensive performance  evaluation of 
application  reconfigurations, we present a detailed 
breakdown of the costs of reconfiguration.  This analysis 
gives an insight into  the  strengths  and  limitations of our 
approach  and,  most significantly, directs  our work  in 
improving the  overall design. We  also  conduct system-level 
performance  studies which show that  job-scheduling 
policies using dynamic resource  management  based on 
reconfigurable  applications deliver better system 
performance  than policies that  use  static  resource 
management. 

characterize reconfigurable parallel  applications; 2 )  to 
describe  the  environment  (DRMS)  that we have developed 
for dynamic resource  management using  reconfigurable 
applications; 3) to  evaluate  the  performance of application 
reconfiguration when  it is used  to  support dynamic 
resource  management;  and 4) to  demonstrate system-level 
performance  improvements as a result of dynamic 
resource  management. 

We  note  here  that all performance  data  presented in 
this  paper  are  from  experiments  carried  out on the  IBM 
RS/6000* SP system. However,  the  design of DRMS  and 
the  programming  model  and  run-time  environment 
for reconfigurable applications  described in this paper 
are equally applicable  to  other  parallel  and  distributed 
systems. 

This  paper is organized as follows. Section 2 presents 
the  motivation  for  considering  application  reconfiguration 
in the  context of this paper.  Section 3 characterizes  the 
class of applications  that  are  amenable  to dynamic 
reconfiguration with no algorithmic  changes,  and it also 
states  the  rules  for  reconfiguration  that  must  be  obeyed 
for consistency and  correctness of the  application. Several 
mechanisms that have been  proposed  to accomplish 
program  reconfiguration  are discussed in  Section 4. The 
specific programming  model  for  reconfiguration in DRMS 
is presented in Section 5 .  An overview of the  DRMS 
framework is given in Section 6, while Section 7 discusses 
the  development  and  execution of reconfigurable 
applications  under  DRMS.  Application  reconfiguration 
performance  studies  are  described in Section 8, and 
system-wide performance  results  are  presented in Section 
9. Section 10 discusses some  additional  (to  Section 4) 
related work.  Finally, Section 11 presents  the conclusions 
of this paper  and discusses some  future work. 

Summarizing, the goals of this paper  are  fourfold: 1) to 
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2. Motivation 
Applications  can  take  different  approaches  to exploiting 
parallelism: multiple but identical tasks operating  on 
multiple  data;  multiple  and  distinct tasks operating  on  the 
same  data;  or  some  combination  of  the two. The benefits 
of parallelism  are realized by simultaneously carrying out 
execution of multiple tasks. On the basis of the  number of 
simultaneously  executing  tasks, we can classify applications 
into  three  categories: 1) applications  where  input  data  and 
problem  “boundary  conditions”  determine  the possible 
number  (or  set of numbers) of executing tasks; 2 )  
applications  that  are always executed with a fixed number 
of tasks, independent of the  input  data  or  the underlying 
system  configuration; 3) applications  where  the  number of 
executing  tasks is not fixed by the  problem  or by the  input 
data  set, but is determined by some  other  application-  or 
system-specific parameters (e.g., nondeterministic 
algorithms  that may follow one of many execution  paths, 
randomly). 

From  the  point of view of scalable parallel  computing, 
Category 1 above is  of interest. Ideally, each unit of 
computation could give rise to a  task which could follow 
data,  as with the dataflow model of computation. 
Architectural  limitations  and  other  performance 
considerations  require  that many computational  units 
be  merged  and  that several distinct  data  items  be 
agglomerated.  In  the case of scalable parallel  computing, 
this has given rise to heavyweight computing tasks and 
large amounts of data  agglomeration.  Further, 
performance  considerations have resulted in 
implementations with tight  coupling among  the executing 
tasks, data,  and  execution units. While such applications 
are  quite  common in practice, they tend  to  become 
monolithic  and vertically integrated.  The  number 
of tasks is determined almost at  the beginning of a 
program  execution,  on  the basis of the  data  set  and/or  the 
execution  units  available  at the  time.  Under such  a model 
of monolithic vertical  splitting of a program, all  tasks  must 
continue  to exist throughout  the  program  execution. For 
perfectly parallel  programs,  this  model works out well. 
However, most programs dealing with realistic  problems 
are  far  from  perfect,  and any monolithic  splitting 
necessarily  leads to  imbalance  among  the tasks and/or 
awkward programming  to  bring  about  the necessary 
balance.  As a consequence,  programs  are  unable  to use 
physical system resources in a judicious  manner. A further 
consequence is that complex (and sometimes ugly) resource 
scheduling  strategies  are  developed when the inflexibilities 
of  the  monolithic  model  are  taken  for  granted. 

To  make  parallel  programs  more flexible and less 
monolithic,  it is necessary to provide  a model  that  does 
away with vertical agglomeration of data  as well as  the 
strong  coupling  between  data  and tasks. To make such  a 

model  practical,  the  performance costs of such flexibility 
should  be relatively  small. 

3. Reconfigurable parallel applications 
In this section, we explain  in more  precise  terms  the 
reconfigurable  application  domain  that we consider.  We 
give some definitions of reconfigurable applications, list 
the  conditions  for reconfigurability, and list the  criteria 
for  correctness  and consistency of applications across 
reconfigurations. 

Definitions 
An application  that is associated with only a fixed number 
of executing  tasks, independent of the  input  dataset or of 
the  external  environment, is a statically configured parallel 
application.  An  application  for which the  number of 
executing tasks  depends  on  the  input  dataset is a 
dynanzically confgurable application. Similarly, if an 
application  can  execute with more  than  one  set of tasks 
(because of some  change in the  environment  external 
to  the  application)  for  the  same  input  dataset,  that 
application is also said to be dynamically  configurable. An 
application is reconfigurable if it executes in two or more 
stages such that in the first stage it executes with one  set 
of tasks and in each  subsequent  stage it executes with a 
different  set of tasks. The  application is said to  be 
statically reconfigurable if this behavior is input-  and  time- 
invariant.  The  same  application is said to  be dynamically 
reconfigurable if the  number of tasks  in  each  stage  depends 
either on the  input or on some  parameter  external  to  the 
program. In this  paper, we are primarily concerned with 
dynamically  reconfigurable applications. For brevity, in the 
rest of the  paper, we refer  to  these as reconfigurable 
applications. 

Conditions for reconfigurability 
A  necessary condition for an  application  to  be 
reconfigurable is that  the  application must be  capable of 
exposing multiple  degrees of parallelism;  that is, it should 
be possible to  execute  the  application  to  completion with 
more  than  one  set of tasks and, in each case, the final 
outcome  should  not  deviate significantly from  the  expected 
outcome (e.g., some  round-off  differences might be 
acceptable).  The  multiple  degrees of parallelism should  be 
exhibited  with the  same  input  dataset.  In  addition, 
reconfigurable parallel  applications  should possess one or 
more of the following properties: 

Capability of changing  the  number of (active) tasks 
during  the  course of program  execution. 
Capability of changing the  mapping of tasks to  execution 
units. 
Capability of changing the affinity between  data 
components  and  tasks  at  run  time. 
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Capability of switching from  one type of data 
agglomeration  to  another type during  the  course of a 
program  execution. 

Having one of the above properties  alone  does  not 
qualify an  application  to  be (dynamically)  reconfigurable. 
For  example,  consider  an  application  that is invariant in 
the  number of tasks  for a given input but allows for 
dynamic scheduling of the  tasks  on  one  or  more execution 
units. Such  an  application is not reconfigurable because it 
does not possess the necessary condition of being  able  to 
expose multiple levels of parallelism. 

The above  discussion characterizes a  reconfigurable 
application.  Note  that  the  programming  model is not  part 
of this  characterization.  Parallel  applications using the 
fork-join  model  or  the  workers  model, or those belonging 
to  the  SPMD  model, can  all be  made reconfigurable. In all 
cases, reconfiguration  must satisfy the  correctness  and 
consistency criteria  that we describe next. 

Correctness and consistency issues 
When a program  undergoes  reconfiguration,  there is a 
change in the  state of the  program.  Such a change in state 
should  not  lead  to  changes in the  semantics  associated 
with the  program  just  before  the  reconfiguration  point 
(RP),  nor  should it lead  to  unexpected  program  behavior 
after  the  RP.  The  former  requirement  leads  to  correctness 
issues and  the  latter  to consistency  issues; the two are 
interrelated.  Unexpected  program  behavior  includes 
any of the following: 1) the  program  does  not  produce 
the  same  results  as  it would  have if there  had  been no 
reconfiguration; 2) the  program  does  not  terminate  at 
the  same  point it  would  have if there  had  been no 
reconfiguration; 3) the  program  does  not  interact with 
the  external  environment as expected. 

In  general,  reconfigurations must  obey the following 
rules: 

1. The  application  semantics  should  not  change across 
reconfiguration  points  (RP). 

2. All  data  that defined the  program  state  before  an  RP 
should  be  preserved  and defined across  the  RP. 

3. If any task is terminated  at  an  RP, all  unfinished 
computations  associated with that  task  should  be 
assigned to  one or more tasks  existing after  the  RP. 

reconfiguration,  the  old  algorithm(s)  should  be  replaced 
by “equivalent” new algorithms such that  expected 
program  behavior is maintained. 

5. Reconfiguration  should  not  cause a deadlock  or a 
livelock as a result of a change in the  degree of 
parallelism. 

4. If there is algorithmic  change following  a 
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Reconfigurable  applications  that obey the above rules 
are said to  be valid reconfigurable applications.  Note  that 
the  rules specify only the  general  guidelines,  and  testing 
the validity of a reconfigurable  application  requires 
detailed knowledge of the  application.  For  this  reason, 
it is important  that  the  abstractions  provided by the 
programming  model  for developing reconfigurable 
applications  should  be  simple  and easy to  test  for validity 
by the  program  developer. 

4. Mechanisms  for  reconfiguration of parallel 
applications 
Two important issues  in successfully designing and 
developing  reconfigurable parallel  applications  are 
programming  abstractions  and efficient run-time 
mechanisms  for reconfigurations. Programming 
abstractions  should  be easy to use,  motivating users  to 
develop reconfigurable  applications. These  abstractions 
should  preferably  be additive, that is, constructs  that  can 
be  added  to  an  already  correct  (but  not  reconfigurable) 
program.  The  run-time  support  for  reconfigurations  should 
be such that  the  disturbance  to  the  application is 
minimal  (in terms of performance)  and  it  should 
leave the  application in  a consistent  state  after a 
reconfiguration. 

reconfigurations  that have been  proposed in literature  for 
various  programming models. The  programming  models 
we consider  are  the following: 

We describe  some of the  mechanism  to  support 

Workers model: Work  for  helper  tasks is dynamically 

Fork-join  model: Dynamic spawning of tasks  and 
carved out. 

dynamic data  agglomeration  based on the  amount of 
work or available resources. 
HPF model: Parallel execution from a single-threaded 

AMP model: Fixed number of executing  tasks, which 

SOP model: The  model on which DRMS is based, 

specification. 

swap data  and  computations. 

discussed in more  detail  in  the next section. 

In the  workers  model, a (logically shared) global entity 
defines the  tasks  that  must  be  executed  and  the  data on 
which they  operate.  This  global  entity  can  be active (a 
master  task)  or passive (a global state  pool).  Worker  tasks 
are given or  fetch  tasks  from this  global entity,  execute 
them,  and  return  the  results  to  the  entity.  The  Piranha 
system [9] is an example of a mechanism  to  support 
reconfigurable  applications  developed  according  to  the 
Linda [lo] workers  model.  The  tuple  space in Linda 
performs  the  role of the global state  pool.  Piranha was 
developed mainly to  harness  the  idle cycles in networks of 
workstations.  Because  usage  patterns of such networks  are 



highly unpredictable,  the ability to move computations 
around dynamically is very important.  While [9] reports 
many  successful  uses of Piranha, it  also reports  that  some 
data-parallel  programs (specifically, LU decomposition)  do 
not reconfigure efficiently in that  environment. 

The fork-join model is related  to  the  workers model. 
This  model usually  employs  a two-level scheduling 
mechanism: First, a number (possibly variable) of kernel- 
level threads  are  scheduled  for execution on physical 
processors;  these  kernel  threads  are  then used  as virtual 
processors  for  the execution of user-level threads  that 
exploit the parallelism. The user-level threads  are  created 
to  execute tasks from a shared task queue.  This two-level 
scheduling is used  because  forking  and  joining of threads 
can  be  done much faster  for user-level threads  than  for 
kernel-level threads.  There  are  also  implementations with 
a  single level of scheduling. Examples of systems that  use 
the fork-join model  to  support  reconfiguration  are Cray 
Multitasking [ l l ] ,  Process  Control [12], and  Minos [SI. 
Autoscheduling [13, 141 has shown how an efficient fork- 
join  model  can  support macro-dataflow  execution on time- 
variant  processor  partitions.  The work on  fork-join  models 
mentioned above is all in the  context of shared-memory 
multiprocessors, which eliminates  the  need  for dynamically 
changing the binding between  data  spaces  and  tasks  (there 
is only one,  shared,  data  space).  The work described in 
[7], for  private-memory (message-passing) multiprocessors, 
does  not fall in our classification of reconfigurable 
mechanisms because  the  number of executing tasks is kept 
fixed throughout  the  lifetime of an application. 

distribution  annotations  to  single-threaded  code with array 
operations.  Although  the  language was not specifically 
designed for  developing reconfigurable applications, it is 
possible to  exert  some  control  on  the  number of tasks 
performing  computations.  HPF allows the specification of 
virtual processor grids  in the  declaration section of each 
scoping  unit (function  or  subroutine)  and  the  distribution 
of data  onto  these  processor grids. Therefore, it is 
possible, in principle,  to write each scoping unit  to  execute 
on a different  number of processors. However, note  that 
there  are several fundamental  and  implementation 
difficulties with this approach.  First, COMMON variables 
must  have the  same  distribution specification  in all scoping 
units that use them,  and  therefore  are  not  amenable  to 
reconfiguration. Also, HPF  provides  no  constructs  for 
direct specification of the  number of desired tasks. 
Therefore,  the  scheduling  environment of the system 
where  an  HPF  application is running would  have to  derive 
such information  from  the executing program itself, which 
may be very difficult. 

The  Adaptive Multiblock PARTI  (AMP) library [16] 
supports  reconfiguration of SPMD  programs within  a fixed 
number of executing  tasks. An  application is spawned  on 

HPF [15] programs  are  created by adding  data 
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the maximum number of tasks  on which it can  run.  During 
its execution,  data  redistribution is used  to move the 
active data  to  different  subsets of tasks.  Only the tasks 
belonging to  this  subset,  at  each  moment,  are active and 
perform  computation.  The  other  tasks  execute  the  code 
for  the  application  but, since they have no data  associated, 
they do  not  perform  intensive  computations  and  are called 
skeleton tasks. This  approach  has  some deficiencies: First, 
it imposes  a hard limit on  the maximum number of active 
tasks,  namely the  number of tasks that  were originally 
spawned;  the  skeleton  tasks  can  interfere with other 
applications  that have  active tasks in the  same physical 
processor,  thus  creating a performance  and scalability 
problem; finally, it requires  that  the underlying  system 
be  able  to  support time-sharing among many parallel 
applications on the  same  processors  (one active  task 
from  one  application,  skeleton  tasks  from  the  other 
applications), which is not always supported. 

5. SOP programming  model 
The  reconfiguration  mechanism of DRMS is based  on 
the  SOP  programming  model  that we describe in this 
section. In this programming  model,  the execution of a 
parallel  program consists of a sequence of stages we call 
schedulable and observable quanta (SOQs). The  number of 
tasks is fixed during  an  entire  stage; also, the association 
between  data  spaces  and tasks is fixed and  one-to-one. 
Therefore,  each  stage  behaves like  a conventional  SPMD 
program, allowing us to exploit the  performance  benefits 
of the  monolithic  model  during  the  execution of a stage. 

Boundaries  between  stages  are defined by schedulable 
and observable points (SOPS).  At  an  SOP,  and only at  an 
SOP,  the  state of the  parallel  program  can  be  examined 
and modified. At  this  point  the  number of executing tasks 
and  the association between  tasks  and  data  spaces  can 
be  altered.  When  this  happens, we say that  the  SOP 
is a reconfiguration point. The  stage following the 
reconfiguration point  executes on the new configuration of 
tasks and  data  until it reaches a new SOP  and a new stage 
begins. A reconfiguration  from  one  stage  to  the next can 
involve a change in the  number of tasks,  a change in the 
association of data with tasks, or  both. 

We define  a stage as  consisting of four sections: 
resource, data, control, and computation. The resource 
section specifies the  number of tasks needed  for  the 
execution of the  stage.  This specification can  be in the 
form of a range of valid numbers of tasks, often 
dependent  on  the  problem size and  other problem-specific 
parameters.  Once a specific number of tasks is selected  for 
execution of the  stage,  the data section specifies  an 
association  between  the  data  space  and  the tasks. We 
discuss  this  association  in more  detail below. The control 
section specifies  values for  control  variables  pertinent  to 
the  stage.  Control  variables  are used to  control  the flow of 
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D,(i) = D,(i - 1) = D,(i + 1) = D, V i .  (2) 

In the  general  case, dynamically allocated global variables 
can  cause a change in D, from  stage  to  stage.  The global 
data  space D, is the  state  that is preserved  across a 
reconfiguration  point  (additional global variables  can  be 
created by the new stage after the  reconfiguration).  The 
data section of a stage specifies how this  data  space is to 
be  decomposed  into  the task data  spaces ds(i ,  j ) .  

6. DRMS framework 
DRMS consists of a general  framework  for  the execution 
of reconfigurable applications  and  for  the dynamic 
management of resources  used by these  applications. In 
the  DRMS  approach,  these two concepts  are tightly 
coupled. Efficient resource  management is accomplished 
because  applications  can  be reconfigured to  respond  to 
internal  and  external  (environment) changes.  Conversely, 
applications  can  reconfigure efficiently because  resources 
are  being  continuously  granted  to  and  reacquired  from 
applications. In this  section, we focus on the  concepts of 
DRMS,  and in the next section we discuss some specifics 

308 of our  implementation. 

execution  inside a stage, which  may vary depending on 
the  number of tasks  and  data association. Finally, the 
computation section specifies the  computations  and 
communications  that  each task performs  for  the execution 
of the  stage.  These  computations  and  communications  are 
usually steered by the  control  variables specified  in the 
control section. 

Let  the  execution of a parallel  job $ consist of n ( $ )  
stages. Each  stage i is executed with t ( i )  tasks. Each task 
j, j = 1, . ' . , t ( i ) ,  has its  own data  space.  We  denote by 
d( i ,  j )  the  data  space of task j in stage i. The  data  space 
of a task  can  be divided into two parts: a private  data 
space do(i ,  j )  and a shared  data  space ds(i ,  j ) .  The  private 
data  space  contains  temporary  data  and flow control 
variables  that  are  pertinent only to this task at this stage. 
The  shared  data  space  contains  actual  problem  data 
carried  from  stage  to  stage.  Because of replication of 
some  data,  the  shared  data  space of different  tasks may 
actually overlap.  The  union of the  shared  data  spaces of 
individual  tasks forms  the global data  space  for a given 
stage: 

1 0 )  

D,(i) = u ds(i, j ) .  (1 
j = l  

D,(i) is the collection of global data  structures of job 3 
during  stage i. If the  global  data  structures of a program 
are purely static, D ,  is an  execution-time  invariant: 
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Reconfiguration mechanism 
DRMS  supports  the  reconfiguration of applications  that 
follow the SOP programming  model. As discussed  in 
Section 5, these  applications consist of a sequence of 
stages (SOQs). Each  stage is executed with  a constant 
number of tasks, and  there is a fixed association between 
tasks  and  data  space,  just as there is in  a regular  SPMD 
program. SOPs mark  the  boundaries of stages, and  at 
SOPs the  number of tasks and/or  association of data  can 
change. 

When  the  number of tasks is changed  at  an SOP, the 
global data  space is preserved across the  reconfiguration. 
(In the next section, we describe  the mechanisms used in 
DRMS for this purpose.) All tasks emerging  from  the  SOP 
inherit  the  private  data  space,  but all variables in the 
private  data  space of a  task are  left in an  undefined  state. 
These  must  be reinitialized before  being  used. Also, the 
decomposition of the global space  into  the  shared  data 
space of the tasks is undefined.  Therefore, a  new 
association between  data  space  and  tasks  must  be specified 
before  the global data  are  used. 

practical  and concise, DRMS  offers a set of FORTRAN 
language  extensions  for  the  declaration of SOPs  and  the 
specification of stages. These language  extensions are  used 
in each  stage  to  declare  the  desired  number of tasks 
(resource section) and  the  decomposition of the global data 
space  into  the  shared  data  space of the  tasks (data 
section). The  language  extensions  are  processed by a 
compiler  that  translates  them  and links the  program 
with a run-time system, thus  creating a  reconfigurable 
application. 

The  application is closely coupled with  a run-time 
system and  the  application  global  data  space  and 
execution  state  are exposed to  this  run-time system. When 
the  application is at  an  SOP  and when there is a change in 
the  number of tasks, the  run-time system suspends  the 
application  until  the new set of tasks is created,  and  then 
continues execution on this new set of tasks. The  run-time 
system also  rearranges  data as  necessary according  to  the 
new association between  data  and tasks. The  run-time 
system, because of its  knowledge of the global data  space, 
can provide  a set of utility functions  that  offer  convenient 
abstractions  for writing the control and computation 
sections of a stage. 

provided by DRMS.  This  environment consists of a 
scheduling  module  that  has  direct  control  over  the 
physical processors of the  parallel system. For  each 
parallel  job,  this  scheduling  module  creates a partition of 
processors  that  executes  the  job.  This  partition  can  be 
resized at  the SOPs of that  application,  but it is fixed for 
the  duration of an  application  stage.  The  scheduler  also 
decides on the  mapping of application  tasks  to  processors 

To  make  the  abstractions  described above more 

Reconfigurable  applications  run  under  an  environment 
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in the  partition.  In our current  implementation of DRMS 
for  the RS/6000 SP  platform,  for  performance  reasons, 
only one task is mapped  onto a processor.  This  maintains 
a one-to-one  correspondence between application tasks 
and execution units.  Thus,  changes in the  number of tasks 
of an executing application  cause a corresponding  change 
in the size of the  processor  partition executing the 
application.  Although  not available  in our current 
implementation, in principle  the  processor  partitions of 
multiple  jobs may overlap  with  one  another.  When  that 
happens, a  physical processor time-multiplexes the 
execution of the  tasks belonging to  multiple applications. 

Creating reconfigurable applications 
There  are many alternatives  for  generating a 
reconfigurable application  according  to  the  SOP  model. 
In this paper we focus on three  approaches  that  are 
important in the  context of scientific and technical 
applications. 

The first approach  starts  from a conventional  SPMD 
program  that  executes with a set of tasks that is fixed at 
the beginning of the  application  execution.  That is, the 
number of executing  tasks can  be  set only once,  at job 
start  time. To make such  a program reconfigurable, the 
programmer manually  identifies the  segments of the 
program  that  are  to  be  transformed  into stages. DRMS 
language  extensions  can be used  to specify the  SOPS  and 
declare,  for  each  stage,  the task requirements  and  the 
association  between  data  and tasks. The  programmer  adds 
code  to  reinitialize local  variables and  compute  control 
variables  that  steer  the  computation. 

The  second  approach also starts  from a conventional 
SPMD  program,  but  the  transformation  into a 
reconfigurable program is performed  automatically by a 
compiler. In the  general case, the  user may still  have to 
specify the  decomposition of the  global  data  space, since 
that  can  be  arbitrarily complex and very difficult for  the 
compiler  to  determine.  The  user  can also  specify the 
number of tasks (perhaps a range of numbers) necessary 
for  the execution of the  program.  The  compiler  can  use 
control-flow and dataflow analysis to identify points in the 
program  where  an SOP can be  inserted.  The basic 
requirement is that all tasks  must  be  able  to synchronize 
at  the  point.  The  compiler  then identifies those  variables 
that must be  preserved across the  reconfiguration  and 
makes  them  part of the global data  space.  Using  the 
language  extensions  provided by DRMS,  the specifications 
for  number of  tasks and  data  decomposition  are 
automatically  inserted  at  the  SOP by the  compiler, 
according  to  the original  specifications given by the  user. 
The  compiler must  also  identify which variables  are 
control  variables  that  depend  on  the  number of tasks 
and/or  data association (for example, loop  bounds)  and 
create  the  proper initialization code  for  them. 
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Finally, the  third  approach consists of creating 
reconfigurable  applications  from HPF source  programs. 
HPF  programs  already  contain  the specification for  data 
decomposition, so the  user  does  not have to add any 
information. HPF compilers usually translate  HPF  source 
code  into  SPMD  code.  We  can  then  perform  the  same 
analysis as in the  second  alternative but helped by the 
extra  semantic  information available from  the HPF source. 
Also, because  the  SPMD  code is generated  automatically 
from a single-threaded specification,  its behavior is more 
constrained  than  that of an  SPMD  code  written directly by 
the  user.  We  note  that  the ability to  continue execution on 
a different  set of tasks  and  to  redistribute  the  data  to 
accommodate  this new set is not provided by the 
REDISTRIBUTE construct available  in the  standard  HPF 
model. 

DRMS architectural ov'ewiew 
Figure 1 shows the main functional  components of DRMS 
and  the  primary  interactions  among  these  components. 
The  DRMS  compiler  translates  programs with DRMS 
annotations, linking them with  a run-time system (RTS) 
to  create  reconfigurable executables. The  functional 
components  that  perform  the  resource  coordination  and 
task  scheduling  are  the  resource  coordinator  (RC)  and  the 
job  scheduler  and analyzer (JSA).  Run-time  management 
and  coordination of user  applications  are accomplished by 
the  user  interface  coordinator  (UIC),  the RC, and  the task 
coordinator  and  run-time  monitor  (TC).  The  performance 
analysis component is handled by a run-time  performance 
data  gatherer  and  the  associated  tools  and utilities. 

The system-level allocation  and  scheduling decisions 
are  made by the JSA on the basis of the  implemented 
scheduling  policies. These decisions may take  into  account 
information such  as application-supplied  resource 
requests,  job  priorities,  and individual processor 
utilization,  as well as system-level information such 
as  current  and  expected workload.  A particular 
implementation of the JSA can  use  the  information 
gleaned  from  the  performance analysis tools in addition  to 
its own knowledge of the  applications  for its  decision 
making.  Policies for making  such  decisions can  be  supplied 
and modified by system administrators.  The JSA does  not 
interface directly with the  user or user job,  but  rather it 
communicates its  decisions to  the  RC, which interacts with 
the  UIC  and  the  TC.  There is only one logical RC  and 
one logical JSA  for  the  entire  DRMS. 

Each  user  application  has  an  associated TC which 
consists of multiple  agents,  one  per  application  task 
(therefore, this set of TC  agents  can vary during 
application  execution).  One of the  agents  acts  as a master 
for  coordination with the  external world, including  the  RC 
and  the  UIC. We call this agent  the master TC.  The run- 
time  interactions  between  the  user  application  and  the  rest 
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j DRMS architecture. 

of the system,  including other  applications,  user,  and 
RC, are  managed by various  subcomponents of the 
TC.  The main functions  carried  out by the  TC  are 
acquiring/releasing  processors  from/to  the RC and 
starting/restarting  application task  execution on the 
allocated  processors. 

The  user  submits  jobs  and  interacts with the system 
throughout  the  course of the  job execution via the UIC. 

31 0 The primary function of the UIC is to provide a 

convenient  user  interface.  The  performance-gathering 
component is designed  to assist users  and  the system 
administrators  to  understand  some of the  characteristics of 
user  jobs [17]. It can also  provide performance  feedback 
that  the JSA can  use  in making more  intelligent 
scheduling decisions. 

management system only at its SOPS. However, the  TC 
coordinates  external  interactions  throughout  the  course of 

A reconfigurable  job  interacts with the  resource 
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job execution. When  the  JSA  decides to reconfigure  a job 
(expand or shrink)  during  the  course of its  execution, this 
decision is conveyed to  the  RC.  The  RC relays this 
decision  to  the  TC of that  job, which in turn delivers  this 
message to  the  RTS asynchronously. At  the next SOP,  the 
RTS  interprets  the  reconfiguration message, causes 
synchronization  among  the tasks of the  application,  and 
communicates with the JSA. After  the  initialization of the 
application’s new processor  partition,  the  RTS is informed 
of the new partition  information.  Then  the  RTS, in 
conjunction  with  the  TC,  rearranges  the  application  data 
so that  the  job  can  run with a new set of tasks on a new 
set of processors.  This  asynchronous  approach  to 
application  reconfiguration allows an  application  to 
execute an SOP  at a very low cost, since  only  a  local test, 
as opposed  to a  whole communication  protocol with the 
JSA,  has  to  be  performed  at  each SOP. It  relies on the 
fact  that  the  JSA is constantly  aware of the  resource 
requirements of the applications.  Since these  requirements 
can  change  during  the  course of a computation,  the  JSA 
must  be  kept  updated.  An  application  can also  voluntarily 
initiate  an expansion or  shrinkage of its allocated  set of 
processors.  This  happens  whenever  the  current  number of 
tasks  an  application is executing does  not belong to  the 
valid set of tasks specified for a stage.  In  this case, the 
application must  wait, possibly in a suspended  state, until 
the  JSA  can  allocate  the necessary number of processors. 

7. Application  reconfiguration  under DRMS 
In  this  section, we discuss some specifics of our current 
implementation of DRMS.  We  illustrate  the use of DRMS 
language  extensions  to  FORTRAN  that allow the 
development of reconfigurable  applications. We  also 
describe  the  functions  performed by the  compiler  and  the 
run-time system  in order  to  produce a  reconfigurable 
application.  We  describe  the  detailed  steps involved in a 
specific reconfiguration  operation,  and we illustrate  the 
inner workings of the system using  a hypothetical 
reconfiguration  scenario. 

Writing reconfigurable FORTRAN applications 
DRMS  language extensions to  FORTRAN  are in the  form 
of annotations, source-level comments  that  are  ignored by 
a regular  FORTRAN compiler. They always start with the 
! SURMS$ sequence.  The  DRMS  compiler  translates  these 
annotations  into  executable  FORTRAN  code in  a 
preprocessing  phase.  The  output of the  preprocessors is 
then compiled by a regular  FORTRAN compiler. We 
illustrate our language  support by means of an  example. 
Figure 2 shows the main loop of a  Poisson  solver  using 
Jacobi  relaxation.  Each  iteration of the  loop  performs  one 
step of the  relaxation  and  constitutes  one  stage of the 
execution of the  program.  At  each  iteration k ,  a new value 
uk(i ,  j )  for grid point (i, j )  is computed as 
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u,(i, j )  = h + ; [ U k J i  - 1 , j )  + uk-,( i  + 1,j) 

+ U k - , ( i > j  - 1) + L$-,(&j + 111. (3) 

Because of the  nearest-neighbor  communication,  the 
natural  approach is to  partition  the grid into  contiguous 
sections  and  let  each task operate in one  section.  Because 
of the  boundaries  between sections,  it is also  convenient 
to  let  the  section belonging to  one task overlap with the 
sections  from its neighbors. 

The  application in Figure 2 corresponds  to  the  code 
executed by each task participating in the  computation. 
The  declaration of u0 and ul at  the  top of the  program 
represents  the  declaration of the local sections of those 
variables (i.e., local to a  task). The  distributed  arrays u0 
and u l  are  declared as  having  global shape n X n through 
the  DRMS DIMENSION annotation.  The  local  shape  for 
the  section in each  task is automatically computed by 
DRMS.  DRMS  also  allocates  the  appropriate local storage 
and associates  it  with u0 and ul. 

The first instruction in the body of the  iteration 
(RESIZE) marks  an SOP. The RESIZE annotation 
specifies the  number of tasks for  the execution of the 
stage.  It  implements  the resource section of the  stage.  In 
this example, it is specifying that  the  set of valid numbers 
of tasks for execution is (4, 8, 16, 321. DRMS  supports 
the  declaration of a  variety of regular  ranges of tasks, as 
well as declaration of any irregular  range in the  form of a 
list of valid values. After this instruction,  execution 
continues on one of the valid numbers of tasks, possibly 
different  from  the previous iteration. 

The next annotation  implements  the data section of the 
stage. It defines how the  global, n X n, arrays u0 and ul 
should be decomposed  into local sections  for  each task.  A 
two-dimensional, HPF-like BLOCK distribution is used,  and 
overlap  among  the  sections is specified with  the BORDERS 
declaration.  DRMS  supports all forms of data  distribution 
from  HPF: block, cyclic, block-cyclic, and  collapsed.  It  also 
supports a different  form of block distribution,  that we 
call BLOCKD, and two forms of irregular  distribution: 
block-list and  arbitraq (specially  useful for  manipulating 
sparse  matrices).  We  refer  the  reader  to [18] for a more 
complete  reference  on  the  various  annotations  and  data 
distributions used in DRMS,  and  for a description of our 
data  redistribution algorithms. 

drms-local-extent i ) are  made  to initialize the 
control variables xsize and ysize with the  extents of the 
local sections of each  processor.  This  implements  the 
control section of the  stage. 

The  remainder of the  iteration body implements  the 
computation section of the  stage.  Control  variables xsize 
and ysize are used  as bounds in the  loops  that  operate 
on  the local sections of arrays u0 and ul. Because 

Two calls to  the  DRMS utility function 
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Example of reconfigurable Poisson solver. 

overlap  regions  must  be  updated with data  from  the 
actual owners,  a  call to  the  DRMS utility function 
drms-update-borders ( ) ,  which automatically  updates 
these regions, is used  before  the  computation  proper. 

DRMS compiler  and  run-time  system 
The  DRMS  compiler  translates  FORTRAN  programs 
augmented with DRMS  annotations  into  executable, 
reconfigurable applications. The first step in  compiling is a 
preprocessing of the  annotated  program by the  DRMS 
annotations  preprocessor  (DAP).  The  DAP is a source-to- 
source  translator  that  generates  output in FORTRAN. 
The  output  from  the  DAP  can  then  be  compiled by a 
native FORTRAN  compiler  and  linked with the  DRMS 
run-time system (RTS) to generate  an  executable.  The 
DAP  performs two primary functions:  It  translates  the 
DRMS  annotations  into calls to  the  RTS  that  performs 

31 2 the specified action,  and it creates  “handles”  for  the local 
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sections of the  distributed arrays to allow the  RTS  to 
manipulate  and  reshape  these  sections. 

RTS  communicating  the specified range of tasks. The  RTS 
then  interfaces with the  TC  to  obtain  the  appropriate 
number of tasks  and  to  continue  application  execution on 
the new set of tasks. Data  distribution  annotations  are 
translated  into calls that build descriptors of the  declared 
distributed arrays. The  RTS  uses  these  descriptors  to 
compare  old  and new distributions,  redistributing  data 
accordingly. Using  the  descriptors  for  the  distributed  data, 
the  RTS  can  automatically  compute  the local sections of 
each task. DRMS-created local sections always use dense 
storage; Le., there is no  gap  between  consecutive  array 
columns. The  descriptors  also allow the  RTS  to  provide a 
series of utility functions, as  seen in the example of Figure 2, 
that  facilitate  parallel  programming in general  and  the 
development of reconfigurable  applications in particular. 

A RESIZE annotation is translated  into a  call to  the 
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1 Job-initiated expansion: (a) Resource allocation; (b) partition reconfiguration; (c) job restart on new partition 

Implementation of application reconfiguration under DRMS 
In this subsection, we describe  the  steps involved in 
achieving the  different  types of processor  reconfiguration 
in the  current  implementation of DRMS on the  IBM 
RS/6000 SP. We  focus  on  reconfiguration  initiated by 
internal  events in the  application.  We  then discuss the 
differences with respect  to externally  (system) initiated 
reconfiguration. 

an  application  from two processors  to a four-processor 
partition.  The  edges  represent messages between  the 
various  components of DRMS.  The  numbers on the  edges 
order  the  events in time.  When two edges have the  same 
number, message communication  along  these  edges  can 
occur  concurrently. 

The  application  starts executing with two tasks: TO and 
TI. When  the  application  reaches  an SOP that  requires a 
reconfiguration  to  four tasks,  all of the tasks of the 
application  send  an expansion request  to  their local TCs 
via the  run-time system [Figure  3(a),  step 11. This 
expansion request provides the  range of tasks on which 
the  application  can  continue  to  execute.  The  application 
request is forwarded by the  master  TC of the  application 
(TC1)  to  the  RC, which in turn  forwards it to  the  JSA 
(steps 2 and  3). Assuming that  the  JSA policy allocated  to 
this job two additional  processors  to  start two additional 
tasks (with IDS 3 and 4), the  JSA  sends its response  to  the 
RC with the  details of the  processors  allocated  (step 4). 
The  RC in turn  forwards  the  response  to  the  master  TC of 
the  application, which percolates  the  information  to  the 
other  TCs (in this  case  TC2) of the  partition  (steps 5 and 
6).  The  TCs  forward  the  response  to  the  RTS within the 
application  (step 7). Because  the expansion requires a 

Figure 3 illustrates  the  internally  initiated expansion of 
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reinitialization of the  processor  partition, all of the  tasks 
on the  current partition exit. The master TC is informed of 
remote task exits by other  TCs of the partition  (steps 8 and 9). 

At this point,  the  job is ready to  be  restarted on the 
new partition of four  processors.  The  master  TC  includes 
the new TCs  into its partition  [Figure  3(b),  step 11. It  then 
requests  the R C  for configuring the new partition  (step 2). 
After receiving an  acknowledgment  from  the R C  (step  3), 
the  master  TC is ready  to  restart  the  job on the new 
partition.  Figure  3(c) shows the  job  restart.  The  TCs 
coordinate  and  restart  the  application with four  tasks  on 
the new partition  (steps 1 and 2). At this point,  the 
control is handed over to  the  DRMS  RTS which, on  the 
basis of the  information received from  the  TCs,  performs 
data  redistribution across the new set of tasks. 

Executing an  interactive  job on a  dynamically  changing 
number of processors implies that  the  standard 1/0 from 
the tasks  must be  properly  directed  to  the  user  interface 
(UIC)  that  submitted  the  interactive  job.  To achieve this 
redirection,  the  tasks dynamically attach  to  the  UIC 
during  the task restart  phase, in order  to  send  their  output 
and receive user  input.  Thus, in  a reconfiguration,  the 
current  set of tasks  detach  from  the  UIC  before 
termination,  and  the newly spawned  tasks  attach  to  UIC 
before  commencing  the  application execution. 

Job-initiated  shrinkage is achieved  nearly  identically to 
job-initiated expansion. Steps 1 through 9 of Figure  3(a) 
are  identical,  after which the  master  TC  informs  the  RC 
about  the  free  processors,  along with its reinitialization 
request  for  the  smaller new partition.  After receiving the 
reinitialization acknowledgment from  the  RC,  the  master 
TC  then  restarts  the  application  on  the new (smaller) 
partition. 
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Reconfiguring a job (Job 1)  to accommodate another job (Job 2). 

Also, when  there is a change in the system resource 
requirements,  the  JSA  can  expand  or  shrink a 
reconfigurable  job so as  to  better utilize the system 
resources.  This  reconfiguration is initiated by sending a 
signal  asynchronously from  the  JSA  to  the  application 
tasks via the  RC,  the  TCs,  and  the  RTS.  When  the 
application  reaches  an SOP, the  reconfiguration flag is 
examined,  and  the  same  steps as those  for a job-initiated 
reconfiguration  are  performed. 

Example of a reconfigurable job execution 
We now discuss how the  execution of a  reconfigurable job 
would proceed  under  DRMS in  a hypothetical  job 
submission scenario.  Let  there  be two job arrivals, J ,  and 
J , ,  one  at  time t ,  and  the  other  at  time t,, t ,  < t,. Let 
both  jobs  be  Jacobi  computations as  in the example of 
Figure 2, with job J ,  smaller in terms of total  amount of 
computations  performed. Also, let  the system  have 32 
processors, which are all free  at  time t , .  The  behavior of 
processor  allocation  to  each  job is illustrated in Figure 4. 

When  job J ,  arrives at  time t , ,  it can  start executing on 
the  largest possible number of processors, 32, since  the 
system is empty  (assuming  that  the  scheduling policy 
allows such  an  allocation).  When  execution  encounters  the 
RESIZE directive (collectively by all tasks) in the first 
iteration,  the  application  informs  the  JSA of the valid 
range of tasks (4, 8, 16, 32).  Since the  application is 
already  running  on a valid partition size  (32) and  there 
are  no  competing  jobs,  there is no need  to reconfigure the 
application,  and  the  execution simply continues on 32 
tasks. The  JSA  and  the  RTS  both remember the  range 
specified, anticipating  that  the  application may execute a 
RESIZE instruction again. During  the next iterations  there 
is no longer any interaction  between  the  application  and 
the  JSA, since the  application is already executing on a 
valid number of tasks  and  the  JSA is aware of the valid 

31 4 partition sizes for  this  application. Also, the  data 
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distribution is the  same as long as the  number of tasks is 
fixed. Therefore,  there is no  need  for  redistribution. 

At  time t,, job J ,  arrives.  All processors  are busy with 
job J , ,  but  the JSA knows that J ,  is a reconfigurable 
application.  Therefore, it sends a reconfiguration  request 
to  the  application,  through  the  TCs  and  the DRMS run- 
time system. This  request is used  to  set a flag internal  to 
the  RTS  that  indicates  that  the  JSA would like  to 
reconfigure  this  application.  When  the  application 
executes  the next RESIZE instruction, it contacts  the  JSA, 
which reallocates  resources  and assigns a new set of tasks 
for  each  job.  For example,  16 tasks might be given to  each 
application.  The execution of job J ,  then  continues,  after 
the resize, on 16 tasks. Because of this  change in the 
number of tasks, the  data  distribution is no  longer  the 
same  as in the  previous  iteration.  The  RTS  performs 
all  necessary data  movement  to accomplish the new 
distribution while preserving  the  semantics of the global 
data  structures.  Array  descriptors  and  array  handles  are 
also updated  to reflect the new distribution. 

Both  jobs  then  continue execution on 16 processors 
until J,, which is smaller, finishes at  time t,. At  that  point 
the  JSA  reacquires  those  16  processors  and  sends  another 
reconfiguration  request  to J , ,  because it knows that  that 
job  can  use  the processors. Again,  when J ,  encounters 
RESIZE instruction  the next time, it contacts  the  JSA, 
which reallocates all 32  processors  to J, .  Job J ,  continues 
execution on  32  tasks  and again redistributes its data.  The 
job  keeps executing on  32 tasks, without  further  contacting 
the  JSA, until it finishes at  time t , .  

8. Performance studies of application 
reconfiguration 
We  performed a series of experiments  to verify the 
functionality  and  measure  the  performance of DRMS in 
reconfiguring parallel applications. Our  performance 
evaluation goals  in  this section  are to quantify  the cost 
of a reconfiguration  as  seen by an individual application. 
The positive impact on the overall  system performance 
of efficient application  reconfiguration  has  been 
demonstrated  elsewhere [4, 7, 81. In  particular, it was 
analyzed for  the  DRMS  environment  in [19], and  some 
results of that analysis are  presented  and discussed  in 
Section 9. We  note  here  that  the  implementation of 
DRMS we used  for  the  performance  study is not yet  fine- 
tuned  for  performance,  but  it is continuously evolving and 
is being  tested  for functionality. As  such,  the  performance 
results  presented in this  section  should  not  be  interpreted 
in the  absolute  sense,  but  should  be  used as relative 
measures showing performance  trends. 

From  an  application  point of view, there  are two 
components of the  cost  for reconfigurability: the 
computation  overhead of the reconfigurable DRMS 
program as compared  to  the original SPMD version, and 
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the  actual cost of performing a reconfiguration.  The 
computation  overhead is introduced by our program 
transformations  that  add  the necessary code  to  create a 
reconfigurable application.  Note  that this computation 
overhead is incurred  whenever  the  application executes, 
regardless of the  number of reconfigurations it goes 
through.  We  measure this computation  overhead by 
comparing  the steady-state (i.e., after cold cache misses 
and  page-fault  transients)  execution  times of the  DRMS 
and  SPMD  versions when executed  on  the  same  number 
of processors. We  measure  the  reconfiguration  time as the 
elapsed wall-clock time  from  the  moment  an  application 
reaches  an  SOP  that  changes  its  pool of resources  (tasks) 
to  the  moment it is ready to  continue its execution on  the 
new pool.  For  our  current  implementation of DRMS, 
there is a one-to-one  correspondence  between  tasks  and 
processors. We  refer  to  processors in our  performance 
studies  because they are  the physical devices that  are 
allocated  to  an  application.  We also use  the  term  PE 
(processing element)  to  refer  to a processor. 

In our implementation  on  the RS/6000 SP, we identify 
five components of the  reconfiguration time:  “switch” 
time,  “exit”  time,  “spawn”  time,  “redistribution”  time,  and 
“other”  components. Switch time is the  time it takes  to 
reconfigure the  partition  data  structures  that  control 
message routing  through  the  interconnection  network 
(high-performance switch). The  partition  data  structures 
must be  updated  to  support  communication across the 
new set of processors. Our  approach  to  application 
reconfiguration actually involves terminating  the 
application  on  the  old  set of processors  and  restarting it 
on  the new set,  from  the  point  at which it  was stopped. 
We call the  times  for  these  operations  the exit and spawn 
times,  respectively. In  general, a change in the  processor 
set executing an  application involves a change in the 
distribution of data across processors.  This  component 
is the  redistribution  time. Finally, we group all other 
costs under  the  other  components, including the  time 
the  application  takes  to  communicate its resource 
requirements  to  the  RC  and  the  time it takes  the  JSA  to 
allocate  the new set of processors. Also  included is any 
application-specific reinitialization necessary to  proceed 
with execution on  the new set of processors. 

The  redistribution  time itself can  also  be subdivided 
into  four  components: 1) “Compute”  time is the  time it 
takes  for  computation of the slices of data  that must be 
exchanged among  processors. 2) “Buffer”  time is the  time 
it takes  to copy data  from/to  their  actual  locations  to/from 
intermediate  buffers  used  for  data exchange. 3)  “Message” 
time is the  time  for  actual  data exchange among 
processors using  message-passing. 4) “Sync” time is the 
average  time  processors wait for  the slowest processor in 
the  redistribution  operation  before synchronizing at  the 
end of it. Because of load imbalances  and  the  nature of 
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Table 1 Characteristics of benchmarks used to evaluate 
DRMS performance. 

Application Distributed Problem  Problem  Iterations 
arrays space space 

(elements) (MB) 

JACOBI 2  2 X 4098’ 256 200 
APPBT 6 42 X lOz3 340 200 
APPLU 5 17 X 1023 138 250 
APPSP 8 24 X 1023 194 400 
CHOLESKY 1  5.308.247 41 35.588 

the message-passing operations,  some  processors  take 
longer  than  others in their  redistribution  operation. 

Experimental  environment 
We  conducted our experiments  on a  32-processor partition 
of an  IBM RS/6000 SP with wide nodes  at  the  NASA 
Ames  Research  Center.  Each processing element  on  the 
RSi6000 SP  considered in this  study is an  IBM RS/6000 
Model 590 processor  (POWER2  Architecture*), with 
256  KB  of data  cache  and 66.5 MHz clock speed.  On  the 
RS/6000 SP,  the  processors  are  interconnected via a  high- 
performance switch. Other  important  performance 
parameters of this machine,  for  our  experiments,  are its 
memory-to-memory  transfer  bandwidth within  a node 
(Bm = 290 MB/s) and its unidirectional  node-to-node 
communication  bandwidth  through  the  network (Bn = 36 
MBls). We  refer  the  interested  reader  to [20] for  further 
details  on  the RSi6000 SP.  We  measured  the  elapsed 
times  for  the execution of operations using  a real-time 
clock with effective resolution  better  than 1 ps .  All of the 
elapsed  times  measured  were  larger  than  50 ms. 

Benchmarks 
We used five different  applications as benchmarks in 
our study: JACOBI,  APPBT,  APPLU,  APPSP,  and 
CHOLESKY. All of these  applications  operate on large 
distributed arrays;  they are  organized  as a main  loop, with 
a problem-size-dependent  number of iterations,  that 
performs  almost  the  entire  computation.  For  each of the 
applications, we started with SPMD versions optimized 
for  the RSi6000 SP. We  then manually added  DRMS 
annotations  to define an  SOP  at  the beginning of each 
iteration.  Thus, in the  DRMS version, each  iteration is a 
stage  that  can  be  executed  on a potentially  independent 
set of processors. JACOBI  uses  MPI [21] for message- 
passing; all other  applications  use  MPL [22]. 

Some  intrinsic  characteristics of the  applications  are 
shown in Table 1. For  each  application we list the  number 
of distributed arrays; the  volume of problem  data  that 
must be  distributed,  both in number of elements  and  MB 
(one  element is a double-precision floating-point value); 
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Table 2 Results for steady-state performance without any 
reconfiguration. 

JACOBI 32 63 2 5 58 5 1 8 
16 123 -C 11 112 t 1 9 

APPBT 32 11982 8 11662 6 3 
16 2335 t 17 2255 5 9 4 

APPLU 32 534 t 3 542 2 10 -1 
16 968 t 11 980 ir 11 -1 

APPSP 32 467 ? 10 440 t 4 6 
16 874 t 8 836 +- 5 5 

CHOLESKY 32 362 2 1 361 t 0 0 
16 592 ? 1 591 ? 1 0 

and  the  number of iterations of the main loop  that  are 
executed.  Because of some  overlap of data  caused by 
borders,  the  actual  volume of distributed  data is, in 
general,  dependent on the  number of processors  and 
larger  than  that of the  problem  data.  We  describe  the key 
features of each of these  applications  that  are  relevant  to 
this study. For  further  information, we point  to  pertinent 
references. 

JACOBI 
This  benchmark solves the well-known  Poisson equation 
on a square grid  using the  point  Jacobi  relaxation  method 
[23]. The grid is discretized using  a second-order  central 
differencing  scheme which results in a Jive-point  stencil. 
The  numerical  scheme consists of updating  the values at 
each grid point with the  average of the values (from  the 
previous iteration)  at  the  four  neighboring grid points. 
This  phase is referred  to  as  the relaxation phase.  The 
solution is iteratively improved  until a desired  convergence 
criterion is met.  For this,  a convergence check (by 
computing  the error norm) is performed  at  the  end of each 
iteration.  In  our study, we performed a fixed number of 
iterations (200),  in which each  iteration consisted of a 
relaxation  and a computation of the  error  norm.  The 
distributed  data  structures consist of two bidimensional 
arrays  (each with one  element  per grid point),  error-norm 
components  (one  per grid partition),  and two scalar values 
defining the  problem  (grid size and  number of iterations) 
which are  replicated  on  each  task. A  two-dimensional 
BLOCK distribution, with borders, was used.  The grid  size 
we selected was 4098 X 4098, including the  boundary 
condition  frame  (this  results in an  actual  relaxation grid of 
4096 X 4096). For  purposes of measuring  reconfiguration 

31 6 times, we forced a reconfiguration every ten  iterations. 

APPBT, APPLU, and APPSP 
These  applications  are  part of the  NAS  parallel 
benchmark  (NPB)  suite  released by the NAS program  at 
the  NASA  Ames  Research  Center  for  benchmarking 
highly parallel  supercomputers [24, 251. They  resemble 
closely the  state-of-the-art  Computational Fluid  Dynamics 
(CFD)  application  codes  and  are  representative of the 
computations commonly encountered in aerophysics 
applications [26]. The  depth of these  benchmarks,  and  the 
fact that they capture  the  essence of typical  large-scale 
CFD  applications, have made  them  popular  not only for 
the  purpose of evaluating  parallel  supercomputing systems, 
but  also in demonstrating  the viability of novel software 
and  architectural  concepts. Since these  three  benchmarks 
have some  structural similarities, we discuss them 
together.  For  complete  details on the  problem solved and 
the  numerical  techniques  used by these  benchmarks,  refer 
to  Chapter 3 of [24]. The  benchmarks  compute a 
numerical  solution  to a synthetic system of  five nonlinear 
partial  differential  equations  (PDEs)  that  represent  some 
of the key characteristics exhibited by the Navier-Stokes 
equations.  An implicit  type of numerical  solution is used 
in solving this system of PDEs.  The  solution  phase consists 
of several time  steps,  each involving 1) assembly and 
solution of the  linear system (three  substeps); 2) 
computation of the  right-hand sides of the  equations;  and 
3) updating  the  solution  for  the next time  step.  The 
benchmarks differ in the  manner in which the  linear 
systems are  assembled  and solved. For  APPBT  and 
APPSP,  three-dimensional BLOCKD distributions with 
borders  were used. APPBT  runs  for 200 iterations,  and 
APPSP  for 400. For  APPLU, which runs  for 250 
iterations, a  two-dimensional BLOCKD distribution was 
used. The class  B benchmarks  (larger  problem size) were 
utilized. As with JACOBI, a reconfiguration was forced 
every ten  iterations  for  each of the  applications. 

CHOLESKY 
This  benchmark  computes  the Cholesky factor L of a 
symmetric  positive definite matrix A such  that A = LLT 
[27]. Matrices A and L are  sparse  and  are  stored in 
column-compressed  form in this  benchmark.  Each  column 
has  a different  number of elements,  and  the  matrices  are 
stored in a  single one-dimensional  vector. A  recursive 
partitioning  algorithm [28] is used  to assign individual 
columns  to  processors. In DRMS, a one-dimensional 
arbitrary  distribution was used to  declare  the  data 
configuration.  As  input  to  the  factorization, we used  the 
STK31 matrix  from  the Hanvell-Boeing  collection [29]. 
We  forced a reconfiguration every 500 iterations. 
A more  thorough discussion of our  implementation 
of reconfigurable CHOLESKY, including detailed 
performance  measurements with several  test  matrices, 
can  be  found in [30]. 
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Table 3 Reconfiguration results-I. 

Application Operation Reconfigure Redistribute Rate birst 
I*.t-u p ? u  (MBlslPE) p 2 u  

(SI  (SI (ms) 

JACOB1 16 + 32 12.99 ? 2.24 0.96 2 0.02 16.85 59 2 1 
32 -+ 16 12.82 t- 2.35 1.14 t- 0.00 14.14 114 ? 1 

APPBT 16 + 32 16.16 t- 2.96 4.15 2 0.01 6.66 1215 2 8 
32 -+ 16 14.51 t- 2.27 3.75 2 0.01 6.85 2351 2 16 

APPLU 16 + 32 12.35 * 3.68 2.03 2 0.01 6.03 1352 2 11 
32 + 16 13.08 5 1.79 1.90 2 0.01 5.66 2476 2 24 

APPSP 16 -+ 32 9.94 5 3.21 2.74 2 0.01 5.75 487 2 6 
32 -+ 16 12.79 t- 0.53 2.68 t 0.01 5.46 910 ? 6 

CHOLESKY 16 + 32 15.49 t- 2.82 0.31 t- 0.00 8.27 
32 -+ 16 14.33 t- 1.73  0.30 t- 0.00 8.43 

- 

- 

Results 
In our first set of experiments we reconfigured each 
application  from 16 to 32 and  from 32 to 16 processors. 
Each  reconfiguration was performed  at  least 100 times 
(multiple runs of each  application  were necessary), and 
we discarded  the 10% smallest and  largest  samples. 
We  performed our analysis on the  remaining  (filtered) 
samples.  We  summarize  the  observations  for this set  of 
experiments in Tables 2 and 3. For each  application  and 
reconfiguration we list various results, in the  form of mean 
and  standard  deviation ( p  ? a) for the  filtered  samples. 
The  notation P ,  -+ P, denotes  reconfiguration  from P ,  
(source)  to P, (target) processors. 

Table 2 compares  the  steady-state  time  per  iteration  for 
the  DRMS  and  SPMD versions of the  application when 
executing on the  same  number of processors. The  column 
drms lists the  time for the  DRMS version (t,,,,), and  the 
spmd column lists the  time  for  the  SPMD version (tspM,). 
The  time for CHOLESKY is for 1000 iterations; it was 
obtained by dividing the  total  factorization  time by the 
number of iterations.  For  the  other  applications,  the 
iteration  times  were  obtained by direct  measurement.  The 
% column is a measure of the  increased  length of the 
DRMS  times  compared  to  the  corresponding  SPMD 
times. It is computed as 100 X (t,,,, - tspM,,)/tspM,. 
Note  that negative  values indicate  that  the  DRMS version 
is faster. 

In  Table 3, the Reconjigure column  presents  the  total 
reconfiguration  time.  The Redistribute column  presents  the 
redistribution  component of the  total  reconfiguration  time. 
The Rate column lists the redistribution rate for  the 
operations.  The  rate is computed  as  the  actual  amount of 
distributed  data in the  target  partition, divided by the 
redistribution  time, divided by the  number of processors in 
the  smaller  partition  (the  smaller  partition, in general, 

limits the  rate).  Therefore,  the  redistribution  rate is in 
units of MB per second per PE. 

first iteration  after a reconfiguration, on the new set of 
processors. Because of page and  cache misses, we expect 
this first iteration  to  execute  more slowly than when the 
application is in steady  state on a fixed number of 
processors  (compare  to  Table 2). This  penalty  to  reachieve 
steady-state  performance is also  a form of reconfiguration 
cost,  paid by the  application.  It is not  included in the 
Reconfigure column. For our first four  applications,  the 
whole data  space is traversed on each  iteration.  Therefore, 
steady-state  operation is reached  after  the first iteration 
after a reconfiguration.  Because of the small and highly 
variable  iteration  times  for  CHOLESKY, we do  not have 
this result for  the  last  application. 

times  into  their  components is shown  in Figure 5 .  
The  notation PI : P, at  the  top of each  bar  denotes a 
reconfiguration  from P,  to P, processors.  The  horizontal 
line  and  number  at  the  top of each vertical bar  represent 
the  total  time (in seconds) of each  operation 
(reconfiguration or redistribution).  The  different  shadings 
on  the  bars  represent  the  time  required  for  each of 
the  four  major  components of reconfiguration or 
redistribution.  The  blank  space between the  top of the  bar 
and  the  horizontal  line,  for  reconfiguration, is the  time 
required  for  the  operations  that we have lumped  together 
into  the  “other” category. For clarity of presentation, 
Figure 5 shows only the  expected values of the 
components. For completeness, Tables 4 and 5 show the 
mean  and  standard deviation for  each individual 
component we measured.  The % column in Table 4 lists 
the  percentage of total  reconfiguration  time  represented 
by the sum of switch, exit, and spawn  times, which are  the 

The  column  labeled First lists the  execution  time of the 

The  breakdown of reconfiguration  and  redistribution 

31 7 
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I Switch I System I Redistribute 5% Other 

1632 32:16 16:32 3216 16:32 32:16  16:32 32:16 1632  3216 

16.16 1 x 9  

6 -  
I Compute I Buffer I Message ‘tit: Sync 

-16:32 3216  1632  3216  1632  3216  1632  3216  1632  3216 

JACOBI APPBT  APPLU  APPSP CHOLESKY JACOBI APPBT  APPLU  APPSP  CHOLESKY 
Applications Applications 

(a) (b) 

1 Component costs of (a) reconfiguration and (b) redistribution times using 16- and  32-processor  partitions. 

system-related, as opposed  to  application-related, 
components of reconfiguration. 

reconfiguration  time is much  larger  than  the  redistribution 
time,  and also has a  much larger variability. The 
coefficient of variation Cx for  reconfiguration  time  can  be 
as large  as 0.32 (APPSP, 16 + 32).  Because of this  large 
variability, our worst-case 95% confidence interval  for  the 
mean p is p ? 0 .07~ .  We  note  that  the  redistribution 
times have  much smaller variance. The  largest Cx is only 
0.02 (JACOBI,  16 + 32), and  the 95% confidence 
intervals  for  the  mean  are all better  than p ? 0.004p. 
Redistribution  times show little  variance  because  this 
operation involves only processors  that,  at  the  moment, 
are exclusively assigned to  the  application  and 
communicate only through  the  high-performance switch. 

The variability  in reconfiguration  time  comes  from 
components  other  than  redistribution, specifically exit and 
spawn. This variability is caused mostly by external  factors 
that  are  outside  the  control of DRMS  and influence  a 
reconfiguration.  The  32-processor  partition we used in our 
experiments is part of a much  larger RS/6000 SP system, 
shared by many  users. Although  the  processors in the 
partition  were assigned exclusively to  DRMS,  other 
resources  are  shared (e.g., the  interconnection  network, 
file system, Ethernet).  The partition manager, which 
configures the  partition in preparation  for  job  execution 
(and  for  DRMS  reconfigurations), is shared  among all jobs 

We  note,  from  Table 3 and  Figure 5 ,  that  the  total 

31 8 in the RS/6000 SP. The  number of requests  that  the 

partition  manager receives and  network delays  in 
contacting it (it  executes  on  one  particular  node of the 
RSi6000 SP)  account  for variability  in the switch time.  The 
exit and spawn times involve socket  communication 
through  the local area  network  (Ethernet)  among  the 
various TCs. The traffic  in this  Ethernet in particular,  and 
the  contention  for  socket  operations in general, explain 
both  the variability and  large values for  the exit and spawn 
components.  We  observe in Figure 5 that,  for a given 
application,  the exit time grows with the size of the  source 
partition, since more  processors must  exit.  Conversely, 
the spawn time grows with the size of the  destination 
partition.  The switch time is more symmetrical. 

Note  that  for most applications,  the  “other”  component 
of the resize time is approximately 0.5 s, and  thus a  small 
fraction of the overall reconfiguration  time.  CHOLESKY 
has a more  elaborate  application  reinitialization 
procedure;  therefore,  the  “other”  time is much larger, 
of the  order of 2.5 s. 

From  the  redistribution  results in Table 3, we note  that 
the  redistribution  rates vary from 5.5 MB/s/PE up  to 17 
MB/s/PE. The  three NAS benchmarks have approximately 
the  same  rate.  The slightly larger efficiency of APPBT  can 
be explained by its  much larger  data  space.  JACOBI 
has a much higher  redistribution  rate  than  the NAS 
applications. From  Figure 5 we note  that  the NAS 
applications  spend a much  larger  fraction of their  time 
computing  the slices and copying data  to/from  buffers  than 
JACOBI.  This  difference  can  be  explained  because  the 
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Table 4 Analysis of reconfiguration  cost. 

Application Operation Reconfigure Switch Exit Apawn YO Kedzstnbute Other 
p i a  p t a  p t a  /.Lta p t u  p t u  

(s) (SI (SI (SI (SI (SI 

JACOBI 

APPBT 

APPLU 

APPSP 

CHOLESKY 

16  -32 
32 --f 16 
8 + 16 

16 -+8 

16 -+ 32 
32 + 16 
8 -27 

27-8 

16 + 32 
32 + 16 
24 + 32 
32 -+ 24 

16 + 32 
32 -+ 16 
8 + 3 2  

32 -+ 8 

16 --f 32 
32 -+ 16 
4 + 16 

16 - 9 4  

12.99 t 2.24 
12.82 i 2.35 
5.94 t 2.17 
6.00 2 1.99 

16.16 t 2.96 
14.51 t 2.27 
13.16 i 2.63 
13.69 i 2.47 

12.35 i 3.68 
13.08 i 1.79 
15.79 i 3.04 
14.66 i 2.97 

9.94 t 3.21 
12.79 i 0.53 
10.45 t 2.77 
13.13 i 0.61 

15.49 i 2.82 
14.33 2 1.73 
6.40 i 1.85 

10.33 t 2.33 

3.05 t 0.63 
2.76 t 0.28 
1.77 t 0.24 
1.70 i 0.33 

3.07 t 0.70 
2.53 2 0.36 
2.00 t 0.21 
2.23 2 0.37 

3.24 i 0.64 
2.87 i 0.36 
2.76 i 0.53 
2.75 t 0.35 

2.74 i 0.57 
2.47 i 0.36 
2.20 i 0.34 
1.95 2 0.43 

2.70 i 0.67 
2.61 f 0.40 
1.92 2 0.28 
2.12 i 0.40 

1.95 t 2.15 6.47 i 1.83 
6.22 t 0.02 2.21 ? 2.28 
0.15 t 0.01 1.82 +- 1.99 
1.57 _t 1.81 0.64 2 0.04 

2.98 i 2.04 5.16 t- 2.64 
5.76 2 1.26 1.86 2 1.96 
0.31 f 0.16 4.15 rt 2.73 
4.23 i 2.59 0.66 rt 0.02 

1.94 i 1.87 4.49 rt 2.79 
6.32 f 0.06 1.58 rt 1.66 
5.77 i 1.31 5.17 2 2.71 
6.31 2 0.04 3.49 t 2.79 

0.88 i 0.86 2.62 t 2.23 
6.25 i 0.06 1.05 t 0.16 
0.33 f 0.02 3.24 t 2.52 
6.24 i 0.04 0.73 t 0.08 

4.61 t 2.16 5.40 t 2.60 
7.64 i 0.05 1.39 t 1.23 
0.18 2 0.01 1.68 2 1.70 
5.38 i 2.45 0.48 t 0.02 

88 0.96 t 0.02 0.56 t 1.95 
87 1.14 t 0.00 0.50 t 0.71 
63 1.68 2 0.00 0.52 t 0.91 
65 1.57 t 0.03 0.51 t 0.80 

69 4.15 t 0.01 0.80 t 2.54 
70 3.75 2 0.01 0.61 2 1.08 
49 6.34 t 0.02 0.35 i 0.48 
52 6.13 t 0.06 0.44 t 0.68 

78 2.03 t 0.01 0.65 t 1.53 
82 1.90 t 0.01 0.42 t 0.63 
87 1.70 t 0.01 0.40 t 1.72 
86 1.57 i 0.01 0.54 2 0.72 

63 2.74 t 0.01 0.96 t 1.18 
76 2.68 _t 0.01 0.33 t 0.13 
55 3.95 f 0.01 0.72 2 0.94 
68 3.74 i 0.05 0.47 i 0.12 

82 0.31 2 0.00 2.46 t 3.29 
81 0.30 i 0.00 2.39 t 0.80 
59 0.55 t 0.00 2.06 t 0.58 
77 0.48 t 0.02 1.88 t 0.64 

Table 5 Analysis of reconfiguration cost. 

Application Operation Redistribute Compute Buffer Message Sync 
p t a  p i a  p i a  p i 0  p i a  

(SI (SI (SI (SI (SI 

JACOBI 16 --z 32 
32 -+ 16 
8 + 1 6  

16 -+8 

APPBT 16 -+ 32 
32 + 16 
8 + 27 

27 -28 

APPLU 16 -+ 32 
32 -+ 16 
24 -+ 32 
32 -+ 24 

APPSP 16 + 32 
32 + 16 
8 + 32 

32 + 8  

CHOLESKY  16 -+ 32 
32 + 16 
4 -16 

16 + 4  

0.96 t 0.02 
1.14 i 0.00 
1.68 i 0.00 
1.57 i 0.03 

4.15 i 0.01 
3.75 t 0.01 
6.34 i: 0.02 
6.13 t 0.06 

2.03 i 0.01 
1.90 i 0.01 
1.70 t 0.01 
1.57 i 0.01 

2.74 i 0.01 
2.68 t 0.01 
3.95 t 0.01 
3.74 i 0.05 

0.31 2 0.00 
0.30 t 0.00 
0.55 i 0.00 
0.48 2 0.02 

0.08 t 0.00 
0.09 2 0.00 
0.04 i 0.00 
0.05 i 0.00 

0.45 t 0.00 
0.45 i 0.00 
0.26 2 0.00 
0.28 i 0.00 

0.34 t 0.00 
0.35 i 0.00 
0.43 t 0.00 
0.44 i 0.00 

0.58 iO.00 
0.59 t 0.00 
0.41 t 0.00 
0.42 t 0.00 

0.11 i 0.00 
0.11 t 0.00 
0.03 t 0.00 
0.03 ? 0.00 

0.14 i 0.00 
0.07 t 0.00 
0.27 2 0.00 
0.14 2 0.00 

1.59 +. 0.00 
1.33 2 0.00 
1.41 2 0.00 
1.46 t 0.01 

0.68 t 0.00 
0.56 rt 0.00 
0.66 ? 0.00 
0.59 rt 0.00 

0.91 rt 0.00 
0.80 rt 0.00 
0.93 2 0.00 
0.74 i 0.00 

0.02 2 0.00 
0.01 t 0.00 
0.05 t 0.00 
0.02 t 0.00 

0.68 i 0.00 
0.79 t 0.00 
1.33 t 0.00 
1.23 t 0.02 

1.97 t 0.01 
1.45 2 0.01 
4.19 i 0.02 
2.92 i: 0.03 

0.98 t 0.01 
0.94 i 0.01 
0.57 i 0.00 
0.50 ? 0.01 

1.18 2 0.00 
1.16 2 0.01 
2.56 t 0.01 
2.27 i 0.04 

0.13 i: 0.00 
0.14 t 0.00 
0.41 2 0.00 
0.34 i 0.01 

0.05 i 0.01 
0.19 i 0.00 
0.04 t 0.00 
0.15 t 0.01 

0.14 t 0.00 
0.52 i 0.00 
0.48 i 0.01 
1.47 2 0.02 

0.04 i 0.00 
0.05 i 0.00 
0.03 i 0.00 
0.03 t 0.00 

0.06 2 0.00 
0.13 t 0.00 
0.05 t 0.00 
0.31 i 0.01 

0.05 t 0.00 
0.04 i 0.00 
0.07 2 0.00 
0.09 i 0.01 

CFD applications have more  distributed  arrays, and each APPBT). JACOBI only has two bidimensional distributed 
array is of higher dimensionality (up to five dimensions for arrays, so all the steps in redistribution execute more 31 9 
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Table 6 Results for steady-state performance without 
any reconfiguration. 

JACOBI 16 123 t 11 112 I 1 9 
8 239 I 22 214 t 1 12 

APPBT 27 1458 i- 4 1425 i- 3 2 
8 4570 t 15 4418 t 17 3 

APPLU 32 534 2 3 542 2 3  -1 
24 680 t 4 687 2 4 -1 

APPSP  32 467 2 10 440 ? 4 5 
8 1671 t 7 1609 t 6 4 

CHOLESKY 16 592 t 1 591 Lt 1 0 
4 1706 t 1 1720 i- 1 -1 
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efficiently. CHOLESKY only has  one  distributed  data 
structure; however, its efficiency is less than  that of 
JACOBI  because  its  dataset is smaller  and  because  the 
computation of slices of data  to  be  transferred is more 
elaborate  in  the  presence of arbitrary  distribution. 

Analyzing columns drms and spmd of Table 2, we 
observe  that in one  case  the  steady-state  performance 
of the  DRMS  version was better  than  that of the 
corresponding  SPMD version. The  DRMS  version of 
APPLU is 1% faster  than  the  corresponding  SPMD 
version. On  the  other  hand,  the  DRMS  version of 
JACOBI is up  to 9% slower than its SPMD  counterpart, 
with smaller  penalties  for  APPBT  and  APPSP.  We  note 
that  the  iteration  step in JACOBI is less elaborate  than 
in the NAS parallel  benchmarks,  thus emphasizing the 
impact of DRMS  transformations.  These  results show that 
the  impact of code  transformations in DRMS is minimal, 
and  that  the  dense  storage  created by the  array  handles 
can  sometimes have  a  beneficial effect,  at  least on the 
type of benchmarks we analyzed. We  note  that  for 
CHOLESKY,  where  there is no difference in storage 
patterns  for  both versions, the  steady-state  performance 
was the  same.  In analyzing the First column of Table 3 
(column 6), we note  that  for  three of the  applications  the 
impact of the  transient  after a reconfiguration is very 
small. For  JACOBI,  APPBT,  and  APPSP,  the first 
iteration  after a reconfiguration  executes  in nearly the 
same  time as steady-state  iterations.  For  APPLU,  the first 
iteration  after a  resize executes 2.5 times slower than 
steady-state.  We  are  currently investigating  this behavior 
to  determine  whether this  is  strictly application-dependent 
or  whether  there is some  other  cause in DRMS. 

To gain  further insight into  reconfiguration  and 
redistribution times, we performed a set of experiments 

in which each  application was submitted  to a different 
kind of reconfiguration.  We  chose  partition sizes that 
exercised  many different reconfigurations.  Again, each 
reconfiguration was performed  at  least 100 times. The 
observations  for this second  set of experiments  are 
summarized  in Tables 6 and 7, which are  equivalent  to 
Tables 2 and 3 for  the first set of experiments.  The 
breakdown of reconfiguration  and  redistribution  into 
components is shown in Figure 6 .  As  before,  Tables 4 
and 5 contain  the  details of each  component. 

Comparing  Tables 3 and 7, we observe  that 
redistribution  rates  for a given application  are  smaller 
when  a larger  source  or  target  partition is  involved. This 
is to be expected  because,  for a given application,  the 
amount of data  per  processor  decreases with  a larger 
partition size. During a redistribution,  the  data  are 
also divided into  more,  and  thus  smaller,  chunks  for 
interprocessor  communication  when a larger  partition is 
involved. All of these  factors  contribute  to  decrease  the 
efficiency in data exchange between  processors  when  the 
partition size is larger. 

are  quite small  when the  partition involved has eight or 
fewer processors.  These  components  then  become very 
large  for  partitions of size 16 or  larger.  These  results 
indicate  that  our  mechanism  for  inter-TC  communication, 
using sockets  through  the local area  network, is not very 
scalable  and  that we should  look  for  alternative  solutions. 

We can  compute  the payoff point  for  an expansion from 
P I  to P ,  processors  as  the  number of iterations np that it 
takes  to  amortize  the  cost of the  reconfiguration.  Let t ,  be 
the  time  to  execute  one  iteration on P processors,  in 
steady  state.  Let tr be  the  time  for  reconfiguration,  and  let 
us ignore  the  transient in the first iteration.  Then np can 
be computed by solving tr  + nptPz I n p t P , :  

From  Figures 5 and 6 we note  that exit and spawn times 

(4 

We also  define the cost  in iterations n, for a 
reconfiguration as 

nc = I?]’ ( 5 )  

that is, the  number of iterations  that would  have been 
executed in a partition of size P, during  time tr. We  note 
that P, processors  are busy during  the  expansion,  and  are 
therefore  prevented  from  doing useful  work  in the  form of 
iterations. Table 8 shows the values of np and n, for  our 
applications  for  expansions  from 16 to 32 processors.  We 
compute np and n c  using both  the  mean  value  for t r ,  as 
reported  in  Table 3, and  the minimum observed  time  from 
our  set of samples.  The  results  are shown  in the Mean and 
Minimum columns of Table 8, respectively. 
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1 Component  costs of (a) reconfiguration and  (b) redistribution times using 4-, 8-,  16-, 24-, 27-, and 32-processor partitions. 

Table 7 Reconfiguration results-11. 

Application  Operation Reconfigure Redistribute  Rate First 
p t u  p 2 u  (MBlsIPE) p i u  

(s)  (ms) ( S I  

JACOBI 8 -+ 16 5.94 i 2.17 1.68 2 0.00 19.15 114 t 1 
16 + 8  6.00 2 1.99 1.57 t 0.03 20.42 219 2 1 

APPBT 8-27 13.16 t 2.63 6.34 2 0.02 8.41 1488 2 12 
27-8 13.69 t 2.47 6.13 F 0.06 7.78 4606 t 19 

APPLU 24 -+ 32 15.79 2 3.04 1.70 ? 0.01 4.82 1355 2 13 
32 - 24 14.66 t 2.97 1.57 i 0.01 4.89 1730 i 16 

APPSP 8-32 10.45 t 2.77 3.95 * 0.01 7.98  484 t 3 
32 + 8  13.13 t 0.61 3.74 t 0.05 7.29 1727 2 11 

CHOLESKY 4 + 16 6.40 i 1.85 0.5.5 t 0.00 18.30 
16 -4 10.33 2 2.33 0.48 2 0.02 21.31 - 

- 

Table 8 Payoff and cost  results. 

JACOBI 123 63 12,990 217 201 5117 86 82 
APPBT 2335 1198 16,160 15 14 8079 8 7 
APPLU 968 534 12,350 29 24 6298 15 12 
APPSP 874 467 9940 25 22 6553 17 15 
CHOLESKY 0.592 0.362 15,490 67,348 42,791 6305 27,414 17,418 
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Comparing  the  number of iterations in each  benchmark, 
as  reported in Table  1, with the payoff and cost values 
in Table 8, it initially appears  that  it would not  make 
sense  to  perform  such  an  expansion  for  JACOB1  and 
CHOLESKY (especially if the  mean  times  for  tr  are  used). 
We  should  note, however, that  these  benchmarks  are  often 
used as kernels in much larger applications. For  example, 
CHOLESKY might be  inside a loop  that  performs many 
different  factorizations.  The ability to reconfigure 
CHOLESKY in the  middle of its execution means  that  the 
application  can  respond  much  more rapidly to  changes in 
the availability of resources.  The  application  as a  whole 
can  then benefit greatly by an  increase  in  the  number of 
processors.  We also note  that  the payoff point  decreases 
with an  increase in the  difference  between  the  source  and 
target  partitions of a reconfiguration.  For  an  APPBT 
reconfiguration  from 8 to 27 processors  (Table  7),  the 
payoff point is only four  iterations using the  mean  tr. 

9. Impact of application  reconfiguration on 
system performance 
Now we demonstrate  that  the ability to dynamically 
reconfigure  parallel  applications  can  lead  to overall better 
system performance.  As  noted  before,  these  results have 
previously been discussed  in [19]. We  compare  the 
performance of three  job-scheduling policies  in  a 32- 
processor RS/6000 SP  when  scheduling a  variety of 
workloads typical of scientific and  technical  computing. 
Two of these  are  static  scheduling policies that assign 
processors  at  job  startup  time  and  make  no  subsequent 
changes  to  the  processor  partition of a job.  The  third 
policy uses application  reconfiguration  to dynamically add 
processors  to  and  remove  them  from  partitions  during  the 
execution of a job. 

The system-level performance  parameter we use is the 
average  job  response  time.  Let a, be  the  time a job JL 
arrives in the system for execution. Let ei be  the  time  job 
J ,  exits the system (Le., the  time  at which it completes 
execution).  Then  the  response  time  rL  for  job Ji is 
computed  as r, = e, - a,. Note  that ri has a queueing 
(waiting) time  component as well as an  actual  execution 
time  component.  The  average  response  time  for  the 
system is simply the  average of ri for all jobs comprising 
the  workload. 

Workload speciJication 
To  produce  our  workloads of parallel  jobs we used a mix 
of 21 different  computational fluid  dynamics (CFD) 
applications.  The  21  applications  were  obtained by varying 
the  problem size and  number of iterations of the  three 
NAS parallel  benchmarks  APPBT,  APPLU,  and  APPSP 
(see  Section 8). The  applications have been  grouped  into 
three  categories qualitatively representing small, medium, 
and  large jobs. 

J. E.  MOREIRA AND V. K. NAIK 

Jobs  from  Category I (small)  can run on  partitions of 
1, 2, or 4 processors  and  require less than 1500 seconds 
of execution  when  computed  on a  single processor.  They 
are  representative of small interactive  applications  and 
program  development  runs.  Jobs  from  Category I1 
(medium)  can run on  partitions of 4, 8, 12, or 16 
processors  and  require  between 3000 and 4000 seconds of 
execution on  four processors.  They are  representative of 
trial  runs of applications.  Finally, jobs  from  Category I11 
(large)  can  run  on 8, 12, 16, 20, 24, 28, or  32  processors. 
They  require  between  13000  and  20000  seconds of 
execution on  eight  processors  and  are  representative of 
production runs. 

the  average  ideal service time of a job  when  executed on 
all  processors. The  ideal service time of a job  when 
executed on all processors is determined  as  the  execution 
time  on a  single processor divided by the  total  number of 
processors. In our  experiments, we varied  the  utilization 
from  0.1  to 0.8 in steps of 0.1, obtaining  the  average  job 
response  time  for  each utilization. 

characterized by the  percentage of utilization  produced by 
jobs  from  each  category.  To define  a workload we use  the 
notation (p1 :p l l :p i i i )  to represent  the  percentage of 
utilization  produced by jobs  from  categories I, 11, and 111, 
respectively. The six workloads we consider  are 
(05 : 25 : 70), (15 : 25 : 60), (25 : 25 :SO), (35 : 25 : 40), 
(45:25:30),  and  (55:25:20).  That is, we keep  the 
percentage of utilization  from  jobs of Category I1 fixed at 
25%,  and we vary the  percentage  from  Category I from 
5%  to  55%.  Correspondingly, we vary the  percentage  from 
Category I11 from  70%  to 20%. 

We define  system utilization as the  job  arrival  rate  times 

In our studies we used six different  workloads, 

Scheduling  policies 
The  three  scheduling policies we consider  for  this  study 
are lazy scheduling (LS), adaptive  scheduling (AS), and 
reconfigurable scheduling (RS). In all  cases, the  scheduler 
maintains arriving jobs in  a queue  prioritized on the 
arrival  time. 

Lspolicy The  scheduler  continuously  scans  the  job 
arrival  queue  and  schedules  the  earliest  job  that  can  run 
on all or  on a subset of the available processors, giving it 
as many processors  as  it can take. LS is afirst-to-fit policy, 
with an  allocation  preference  toward  the maximum  eligible 
number of processors. Once a job is scheduled to run  on a 
set of processors,  that  job  runs  until  completion  on  those 
processors. 

Aspolicy Under  the AS policy, whenever  processors  are 
available to  schedule  jobs,  the  scheduler  tries  to  schedule 
jobs in the  order in which they  arrived; however, instead 
of scheduling  the  earliest  job  on  the maximum  possible 
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number of processors, it tries  to  schedule  as many of the 
currently waiting jobs in the arrival queue as  possible. 
AS is a maximum-to-fit with  priorcty policy. Once a job is 
scheduled  to run on a  set of processors,  that  job runs until 
completion on those processors. 

RSpolicy Under  the RS policy, when there  are 
processors available, jobs  are  scheduled in the  same way 
as with the AS policy. In addition, when not  enough  free 
processors  are available and  there  are  jobs waiting to  run, 
it tries  to  free  up  processors  from  jobs  that  are  currently 
running on more  than  their minimum number of 
processors. Similarly,  when there  are no jobs waiting to  be 
scheduled  and  free  processors  are available, RS tries  to 
expand  one  or  more of the  running  jobs  to run  on a larger 
set of processors.  The RS policy adapts  processor  partition 
sizes of new and existing jobs  to dynamic changes in the 
system load. 

Simulation experiments 
Performance  parameters of the  various  CFD  applications 
and of DRMS  reconfiguration  operations  were  measured 
directly from  the system  in operation.  These  performance 
parameters  were used in a DRMS system-level simulator 
to  obtain  the  steady-state  performance  characteristics of 
the  three  scheduling policies. The  length of experiments 
necessary to  obtain  steady-state  results with  tight 
confidence intervals  can  sometimes  reach  into  the 
hundreds of thousands of job executions. Therefore, this 
combination of direct  measurement of some  parameters 
and  simulation  represents a practical  trade-off  to  evaluate 
the overall  system performance. 

The  central  part of the  simulator is the  job  scheduler, 
which mimics the  actions of the  JSA in DRMS  (Section 
6). The  simulator is event-driven, with each  event 
triggering an  action in the  job  scheduler  to  schedule  jobs 
for  execution  and  decide which jobs  must  be reconfigured. 
Job arrival times  are  generated using an  exponential 
distribution, with the  mean  interarrival  time  computed 
to deliver the  desired system utilization. Workload 
parameters  control  the  percentage of utilization produced 
by each  job category. 

We  measure  both  the  mean ( p )  and  standard deviation 
(u) of n samples of job  response  time. To reduce  the 
correlation  between successive samples, we use  the  batch 
means  method  as  described in [31]. After  the system 
achieves steady  state,  the  simulation runs until the 
standard  error ( 6  = u/gi) of the  response  time is less 
than 0.0111. (1% of the  mean). 

Results 
Figure 7 shows plots of response  time as  a function of 
utilization for  the  three  scheduling policies  in each of the 
workloads we consider. In the  experiments  that  generated 

these  results, we did not allow jobs  from  Category I to  be 
reconfigured  (in the RS policy). We  found  no significant 
difference in results when we allowed reconfiguration of 
those jobs. Jobs  from  Category I have short execution 
times  and  use  at most four  processors.  Therefore, 
reconfiguring them  has only  a  small impact on processor 
allocation. 

As a general  observation, we note  that,  for any given 
scheduling policy and  workload,  average  job  response  time 
increases with utilization. This is explained by longer 
queueing delays as  the  job arrival rate  increases,  and 
longer  execution  times as jobs have to  execute on smaller 
partitions.  We  also  note  that,  for any given scheduling 
policy and  utilization,  the  average  response  time  increases 
with an  increase in the  percentage of utilization  produced 
by Category I11 jobs.  Since Category I11 jobs have  a  much 
larger execution time  than  jobs  from  Category I, a larger 
percentage of longer  jobs  increases  the  overall  average 
response  time. 

we can  establish a  well-defined relation  among  the 
performances of the  three  scheduling policies. For any 
given workload  and  utilization, RS always performs  better 
than AS, and AS always performs  better  than  (or  at  least 
equal  to) LS. At low utilization,  the  three  scheduling 
policies perform similarly. AS performs similarly to LS 
because on average  there  are few jobs in the waiting 
queue. RS performs similarly to  the  other two because 
there  are few situations  that  cause  reconfiguration.  The 
advantages of AS and RS over LS increase monotonically 
with utilization. The  higher  the  utilization,  the  larger  the 
average  length of the waiting queue,  and  the first-to-fit 
policy of LS causes  more  job delays. The  advantage 
of RS over AS increases  at  medium utilization and  then 
decreases again at  higher utilization. At high utilization, 
jobs  tend  to  be  scheduled on smaller  partition sizes, and 
there  are usually jobs in the waiting queue  to fill holes  left 
by departing  jobs.  Therefore,  at  medium utilization there 
are  more  opportunities  for  reconfiguration  than  at  either 
low or high utilization.  Overall, we note  that  the ability 
to reconfigure running  parallel  jobs in RS can  lead  to 
reductions of the  average  job  response  time by a factor 
close to 2 over  a range of system  utilization  values. 

We  focus on response  time  as  the  performance 
parameter  when  comparing  the  different  scheduling 
policies. It is important  to  note, however, that  there  are 
other  important  criteria  for  comparing  scheduling policies 
in  a  system,  including, in particular,  fairness. While we do 
not  attempt  to  perform a formal study of the  fairness of 
the policies, some conclusions can  be drawn from our 
experiments.  First,  because our measurements  are  from 
steady-state  behavior, verified for each  job category, we 
know that  there is no job  starvation.  Second, we have 
measured  job  response  times  not only for  the  entire 

The most important  result  from  our  experiments is that 
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workload,  but  also  for  the individual categories in each 
workload. Figure 8 shows those  results  for  workload 
(25 : 25 : 50), but  the  same  overall  behavior is found in the 
other workloads. 

From  the  plots in Figure 8 we observe  that  the 
advantage of RS over the  other policies decreases as the 
size of the  job  increases.  Category I (small)  jobs benefit 
the  most, while Category I11 (large)  jobs benefit the least. 
Basically, small jobs  are benefiting from  the ability to 
reconfigure medium  and  large  jobs  to  smaller  partitions, 
freeing  up  processors  for  the  execution of the small jobs. 
However, we note  that,  for  each individual category,  the 
response  time  under RS is always better  than  under 

the  other policies. Therefore, all job types  benefit 
from  the RS policy, even  though  the  benefits  are  not 
uniform. 

Concluding our performance  evaluation, Figure 9 
presents a breakdown of the  average  job  response  time 
into its two components: wait time in the  queue  and 
service time in the processors.  Again, the  results  are for 
workload (25 : 25 : 50), with the  same  behavior being 
observed for  the  other  workloads.  The  letter  on  top of 
each  bar identifies the policy: L for LS, A for AS, and R 
for RS. We  observe  that  both service time  and wait time 
increase with utilization,  for all  policies. The  increase in 
service time with utilization indicates  that  the  average 
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Component  costs of average job response time into service time and wait time components. 

partition size allocated  to a job  decreases with utilization, 
as  expected.  Wait  times  increase with  utilization because 
higher  contention  for  processors  causes  the  jobs  to wait 
longer in the  queue. 

The service times  for  the LS and RS policies start 
similarly for very small loads,  and  then  the  difference 
between  the two increases  as  the  load  increases.  The 
service times  for RS are  larger  than  for LS, indicating a 
smaller  average  partition size. The  reduction of total 
response  time  for RS compared  to LS is  a result of much 
smaller  job wait time,  caused by the ability of RS to  pack 
the  jobs  better  and  start  their execution more  promptly. 
Because of the  sublinear  speedup  behavior of our  CFD 
applications, efficiency improves  when  jobs  run on 
smaller  partitions.  This  factor  also  helps RS to  perform 
better  than LS. We  note, however, that  under  the AS 
policy jobs have an  even  larger service time  than  under 
RS, indicating a smaller  average  partition size.  Still, 
wait times  and  total  response  times  are  smaller  for 
RS than  for AS, thus showing the  importance of 
reconfiguration. 

10. Related work 
The  SOP  model of programming  and  the  DRMS 
framework  that  supports  this  model cover several topics 
of interest  to  researchers  in  the  area of parallel  and 
distributed  computing. Five main  areas  are  relevant  to  the 
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Programming  models  that  support dynamic 

Run-time  environments  that  support  the execution of 

Language  support  for  data  distribution  on 

Scheduling  aspects of parallel applications. 
Reconfiguration of parallel  and  distributed  applications 

reconfiguration of parallel applications. 

such reconfigurable applications. 

multiprocessor systems. 

for  software  engineering  purposes. 

In  Section 4, we discussed four  other  parallel 
programming  models  (workers, fork-join, HPF,  and  AMP) 
that  support dynamic reconfigurations,  and  also  the  run- 
time  environments  that  support  these  programming models. 

Extensive work  has  been  done on language  support  for 
data  distribution in  multiprocessors. DRMS  data- 
distribution  annotations  were strongly  influenced by 
FORTRAN D [32] and  HPF [15], primarily because we 
wanted  to  present a programming  environment  that was 
already  familiar  to  some users. Other  languages with data- 
distribution  features  include  Vienna  FORTRAN [33], 
FORTRAN 90D [34], and  PC++ [35]. We  note  that  our 
work differs substantially from  these  languages in that we 
provide data  distribution as  a support  for  generating 
dynamically  reconfigurable explicit SPMD  parallel 
applications.  Our  language extensions incorporate 
mechanisms for specifying resource  requirements  that  are 
used by the  scheduling  module of DRMS in  dynamically 
reallocating  processors  among  competing  applications. 
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One of the  benefits of dynamic application 
reconfiguration is the ability to  implement dynamic 
scheduling  policies. Many studies have  shown that 
processor-scheduling policies supporting dynamic 
reconfiguration of processor  partitions  can  alleviate  the 
problem of adapting  to workload changes,  at  the  expense 
of additional  reconfiguration  overhead [l-81. In  particular, 
[2-51 analyze the benefits of dynamic partitioning  on 
uniform-access, shared-memory systems and show that 
dynamic reconfiguration policies outperform all other 
space-sharing policies. In  the  realm  of  private-memory 
(message-passing) systems, it has  been  demonstrated [6] 
that dynamic reconfiguration policies outperform  the  other 
policies.  A  discussion of the effects of different  processor- 
scheduling policies and  reconfiguration  overhead in 
dynamically  reconfigurable  systems can  be  found in [7, 361. 
Our work differs  from  the previously mentioned  research 
in that we have implemented a  working environment 
which supports dynamic reconfiguration of processor 
partitions  on a  commercial  message-passing system (IBM 
RS/6000 SP).  We provide the  language  extensions  and 
run-time services that allow users to easily port  their 
existing SPMD  applications  to  execute on reconfigurable 
partitions.  We  also provide  all resource  control  and 
scheduling  mechanisms  to  coordinate  the  execution of 
these jobs. 

application reconfiguration is also  used  in the  context of 
software  engineering of distributed  applications: e.g., 
addition  or  replacement of modules,  communication 
channels,  process  migration,  fault recovery, and  load 
balancing for performance  tuning. Significant among 
these are  the  Regis  and its predecessor  programming 
environments [37] and Polylith and its extensions  to 
support dynamic reconfigurations [38, 391. In all of these 
environments, a separate  language is provided for writing 
scripts  external  to  the  application  for  describing  the 
application  structure, its run-time  behavior,  and  the 
system-level actions  to  be  taken  at  reconfiguration points. 
Using  these scripts, the  run-time  environment  performs 
the  desired  reconfiguration  actions  described  above.  In 
Polylith, programmers can specify reconfiguration points, 
which are similar to SOPS,  in the  application  modules. 

In  this  paper we have not  addressed  the issue of 
application  reconfiguration  for  fault  tolerance. Task- 
reconfiguration schemes, in which tasks that  are  performing 
on a  faulty processor  are moved to a healthy  one,  are a 
well-known approach  to  reconfiguration  for  fault  tolerance 
[40]. More  related  to  our work, [41] addresses  the issue of 
reconfiguration of SPMD  programs  for  fault  tolerance.  It 
uses dynamic data  redistribution  to move the global data 
structures  into a target  healthy  processor  partition,  where 
the  computation is continued  from  the last checkpoint. 
Different  reconfiguration  strategies  are discussed  in [41], 

As we mentioned in the  introductory  section,  the  term 
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but it does  not provide the  programming  environment  and 
resource  manager  to  automatically  perform  checkpoint or 
data  redistribution.  The  implementation of those is left 
entirely  to  the  application. 

Octopus [42, 431 is another  resource-management 
system in which application  reconfiguration plays a central 
role. A system being  managed by Octopus is divided into 
independent  domains, which can  be  further divided into 
partitions.  The  domains  and  partitions can  have their own 
schedulers;  thus,  the system is controlled  and  managed in 
a hierarchical  manner.  Octopus  supports gang-scheduling 
to  perform  both  time-sharing  and  space-sharing of 
resources  among  subpartitions. A mechanism called 
flexible dynamic partitioning (FDP) is used to dynamically 
reallocate  resources  among  subpartitions. If a partition  has 
to have  its resources  reallocated while an  application is 
executing, the  application must be reconfigured. Octopus 
supports  both bag-of-tasks (workers  model)  and symmetric 
(SPMD  model) reconfigurable applications.  DRMS is 
different  from  Octopus in that  DRMS defines and 
implements a new programming  model specially designed 
for  the  development of reconfigurable applications by 
making only a few additive  changes  to existing parallel 
applications. This  programming  model is extensively 
supported in DRMS  through a  variety of data  distributions 
and  resource-control  constructs  that  can  be  used directly 
by applications.  Another  difference is in the  scheduling 
component of the two systems. In  Octopus,  the scheduling 
component is a central  and  integral  part of the system, 
whereas in DRMS,  resource  and  job  coordination is 
central  to  the system.  As  a result, in the  case of DRMS, 
any external site-specific scheduler  can  be plugged in 
to drive the system. This may be  advantageous when 
reconfiguration facilities are  to  be  made available to 
existing job-scheduling  environments. 

in that it supports  the  development of reconfigurable 
applications using distributed  data  structures.  It is 
oriented  toward new C + +  applications  that  make  use of 
the Dome class libraries  and  preprocessor. 

Finally, the  Dome  project [44] is also similar to  DRMS 

11. Conclusions 
In  this  paper we have described  the  Distributed  Resource 
Management System (DRMS), a comprehensive 
framework  that  supports dynamic reconfiguration of data 
parallel  applications.  We have developed  and  tested our 
particular  implementation  on a  large-scale IBM RS/6000 
SP system. The  reconfiguration  abstractions  provided by 
the SOP programming  model,  described in this  paper,  are 
easy to  use  and  are well suited  for  the  SPMD  applications 
that  constitute  the bulk of the  load in such systems. We 
have seen,  from  our system-level performance  evaluation, 
that job-scheduling  policies  using the  application 
reconfiguration  provided by DRMS  can  substantially 327 
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improve  the  average  job  response  time in an  IBM 
RSi6000 SP  parallel system. 

For  reconfiguration  purposes, in  this paper we 
considered  parallel  applications  based on the  SPMD 
paradigm.  To  make  these  applications reconfigurable, 
we used  the  manual-annotations  approach, in which 
appropriate  annotations  are  inserted in the  programs 
manually. In  the  recent  past, we have extended  this work 
on two fronts.  First, we have successfully extended  the 
SOP programming  model  to  HPF  programs, as described 
in [45]. We have also  developed  and  implemented low- 
level FORTRAN,  C,  and C + +  APIs  for  application 
reconfiguration  that allow a  finer resource  and  task 
control  than  the  language  extensions discussed  in  this 
paper.  The  API, which we have not discussed  in  this 
paper,  broadens  the  scope of the reconfigurable parallel 
applications  beyond  the  SPMD  paradigm. On a second 
front, using the  SOP  programming  model, we have been 
able  to design and  implement scalable checkpoint  and 
restart facilities for  parallel  applications  under  the  DRMS 
environment.  With  these facilities,  a parallel  application 
can  checkpoint its execution  state  at  an  SOP in  a task- 
independent  manner. Using this  state  information,  the 
application  can  be  restarted with  a different  set of tasks 
on a different  set of processors.  These facilities are useful 
in  providing fault  tolerance,  and  for  purposes of recovery 
and  migration. 

efficiently for it to deliver the  promise of better system 
and  job  performance.  Although we have  shown DRMS 
reconfiguration  to  be effective for  medium  to  large 
applications, much  work remains  to  be  done.  Our main 
performance objective is to reduce  further  the  relative 
cost of reconfiguring  a parallel  application. As Table 8 
shows, that  cost today  is  close to 10% of the execution 
time of the  applications on a large  processor  partition. We 
first note  that  even  the  NAS class B benchmarks  are 
relatively  small  applications. We  are  currently developing 
reconfigurable versions of production-strength  applications 
that  run  for  thousands of iterations  and  take several hours 
of CPU on large  processor  partitions. Since these 
applications have  a dataset  not much larger  than  APPBT, 
we can expect to  reconfigure  them in 15 to 20 s, which 
represents  just a  small fraction of their execution time. 

In most cases  the  data  redistribution  time is not a 
limiting factor in reconfiguration  performance, especially 
when  the  partitions involved are large. However, this 
redistribution  time scales  with the  problem size per 
processor,  evident  for  APPBT reconfiguring between 8 and 
27 processors. As more powerful nodes in  a parallel 
system are  used  to  address  larger  problems, we can 
expect the  percentage of reconfiguration  taken by data 
redistribution  to  increase.  Theefore, we are  taking  steps  to 

Application  reconfiguration must be  performed 
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the  computation of slices, eliminating  some of the 
intermediate  buffer copying, and  performing  more 
message aggregation. 

More pressing at  this  time is to  reduce  both  the 
total  cost  and variability of the  other  components of 
reconfiguration.  From  Table 8 it is clear  that we can 
double  the  performance of reconfiguration by eliminating 
the  external  factors  that  cause variability. As discussed  in 
Section 8, most of these costs are  outside  the  direct 
control of DRMS, since  they involve access to  shared 
resources such  as the  partition  manager  and  the  Ethernet. 
Also, the  processor  partition we used  for  our  experiments 
consisted of nodes  scattered  throughout many physical 
frames of an RSl6000 SP. We expect somewhat  better 
behavior  from a  full set of frames.  Our  strategy  for 
reducing  the cost for  partition  reinitialization consists of 
letting  each  node  reconfigure  its own partition  data 
structures directly. This avoids  access to  the  shared 
partition  manager  and also parallelizes  the  operation,  thus 
reducing its total  time.  We also wish to  perform all inter- 
TC communication  and  synchronization  over  the high- 
performance switch instead of the  Ethernet.  We  expect 
this to  reduce  both  the  time  and variability of the 
operations,  since  communication  over  the switch is much 
faster  and  subject  to less interference  from  other  nodes. 
These  improvements in inter-TC  communication will result 
in reductions in exit and spawn  times. The  time  to spawn 
a job  on a new set of processors  can  be  further  reduced by 
speeding  up  the  process of loading  the  code in this new 
set.  This  can  be accomplished by starting  the  load while 
the  partition is being initialized,  effectively overlapping 
the two operations,  and providing  access to  the code, 
specifically for  the new processors in  a partition,  through 
the  high-performance switch instead of the file system. 
One of the  reasons  for first implementing  inter-TC 
communication  over  the  Ethernet was to avoid 
interference with application-domain  communication.  As 
we move the  TC  communication  to  the  high-performance 
switch, we must reevaluate  the  impact on application 
performance. 

In  addition  to  tuning  DRMS  for  performance, we are 
also  working toward improving the  functionality  provided 
by DRMS. As mentioned  earlier, by providing  a low-level 
API, we are  extending  some of the  capabilities  to  non- 
SPMD  applications  that  are  developed using more  general 
programming  paradigms such  as MPMD  and master-slave 
programming models. Our  future work includes 
development of high-level programming  abstractions  for 
these  and  other types of programs  that  are  more 
commonly  in transaction-based  applications.  Another 
important  aspect of our  future work is the  development of 
a compiler which, as discussed  in Section 6, automatically 
converts  SPMD  programs  into  the  SOP  programming 
model. Similarly, we are working on developing true 

IBM J. RES.  DEVELOP. VOL. 41 NO. 3 MAY 1997 



computational  steering  and  interapplication  coordination 
facilities  using the  data  distribution  abstractions  developed 
for  application-reconfiguration  purposes.  Some of the 
issues involved have already  been discussed in [46]. 

A unique  feature of DRMS  environment is that  the 
system  provides  a closer  coupling  between  applications 
and  the  resource  coordination  and  scheduling activities 
which are normally associated with the  operating system. 
With  this  arrangement we have seen  that  both  the system 
and  the  applications  can  benefit. However,  this  close 
coupling  can  be  extended  further.  Using  the  Performance 
Data  Gatherer  (PDG)  component of DRMS,  JSA  can 
acquire  performance  characteristics of applications in the 
system and  the  information  on  the  current  load on each 
processor. By combining this  type of past  information with 
active performance-predication  capabilities  about  each 
running  application in the system, intelligent  scheduling 
decisions can  be  made.  Currently, we are working toward 
developing an efficient PDG subsystem and  fast  on-line 
performance-prediction  tools  that  can  be accessed by JSA. 
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