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Efficient management of distributed resources,
under conditions of unpredictable and varying
workload, requires enforcement of dynamic
resource management policies. Execution of
such policies requires a relatively fine-grain
control over the resources allocated to jobs in
the system. Although this is a difficult task
using conventional job management and
program execution models, reconfigurable
applications can be used to make it viable.
With reconfigurable applications, it is possible
to dynamically change, during the course of
program execution, the number of concurrently
executing tasks of an application as well as
the resources allocated. Thus, reconfigurable
applications can adapt to internal changes in
resource requirements and to external
changes affecting available resources. In this
paper, we discuss dynamic management of
resources on distributed systems with the help
of reconfigurable applications. We first
characterize reconfigurable parallel
applications. We then present a new

programming model for reconfigurable
applications and the Distributed Resource
Management System (DRMS), an integrated
environment for the design, development,
execution, and resource scheduling of
reconfigurable applications. Experiments were
conducted to verify the functionality and
performance of application reconfiguration
under DRMS. A detailed breakdown of the
costs in reconfiguration is presented with
respect to several different applications.

Our results indicate that application
reconfiguration is effective under DRMS and
can be beneficial in improving individual
application performance as well as overall
system performance. We observe a significant
reduction in average job response time and an
improvement in overall system utilization.

1. Introduction
Resource management is a much harder problem on
parallel and distributed systems than on conventional
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single-processor systems. The problem becomes even more
difficult when the resource requirements of jobs arriving at
the system are unpredictable and have high variability.
Under such conditions, one obvious solution is dynamic
management of resources; i.e., dynamically adjusting the
allocation of resource as the demand on the system

varies. For such a scheme to be effective, the resource
management must adjust quickly in response to any
changes in the system workload and/or in demands on the
resources. It has been shown in the literature (1-8] that
dynamic resource management results in improved job and
system performance in comparison to more conventional
static resource management strategies, where resources
are statically allocated and a job is treated as a single
resource scheduling unit during its lifetime.

In this paper we discuss a particular form of dynamic
resource management based on reconfigurable
applications. We define application reconfiguration as the
activity of statically or dynamically changing the degree of
parallelism exposed by an application to the external
environment. (Other common uses of the term application
reconfiguration are briefly discussed in Section 10.) The
applications we consider express parallelism in the form of
concurrent execution of multiple tasks as opposed to, e.g.,
parallelism in pipelined execution. (Throughout the paper
we use the term task to mean a thread of execution which,
depending on the particular system, could be implemented
as a full process or as a lightweight thread.) These
multiple tasks and their corresponding data are then
mapped onto underlying physical resources, manifested
primarily in the form of processors. During an application
reconfiguration, the number of concurrently executing
tasks of an application may be modified, and the tasks and
associated data may be remapped onto the physical
resources. This in turn allows the system resource
manager to alter the allocation of physical resources to
jobs running in the system in a dynamic and adaptive
manner. Not all parallel applications are amenable to
reconfiguration, and part of this paper is devoted to
characterizing those that are.

To make dynamic resource management a reality,
three requirements must be met: Applications must be
reconfigurable, a run-time mechanism for application
reconfiguration must be available, and a suitable run-time
infrastructure must be in place. We have developed the
Distributed Resource Management System (DRMS), an
integrated environment for design, development,
execution, and resource scheduling of reconfigurable
applications. DRMS aims at delivering better system and
job performance through dynamic resource management
using reconfigurable applications. DRMS-reconfigurable
applications follow an extended SPMD (single-program
multiple-data) model that we call the SOP (schedulable and
observable point) model. We explain this model briefly
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later in this paper (Section 5). We note, however, that
the concepts are applicable to many other types of
programming models.

Dynamic resource management is beneficial compared
to its static counterparts only if the overhead of dynamic
changes to the resource pools is not excessively high. In
this paper, using extensive performance evaluation of
application reconfigurations, we present a detailed
breakdown of the costs of reconfiguration. This analysis
gives an insight into the strengths and limitations of our
approach and, most significantly, directs our work in
improving the overall design. We also conduct system-level
performance studies which show that job-scheduling
policies using dynamic resource management based on
reconfigurable applications deliver better system
performance than policies that use static resource
management.

Summarizing, the goals of this paper are fourfold: 1) to
characterize reconfigurable parallel applications; 2) to
describe the environment (DRMS) that we have developed
for dynamic resource management using reconfigurable
applications; 3) to evaluate the performance of application
reconfiguration when it is used to support dynamic
resource management; and 4) to demonstrate system-level
performance improvements as a result of dynamic
resource management.

We note here that all performance data presented in
this paper are from experiments carried out on the IBM
RS/6000* SP system. However, the design of DRMS and
the programming model and run-time environment
for reconfigurable applications described in this paper
are equally applicable to other parallel and distributed
systems.

This paper is organized as follows. Section 2 presents
the motivation for considering application reconfiguration
in the context of this paper. Section 3 characterizes the
class of applications that are amenable to dynamic
reconfiguration with no algorithmic changes, and it also
states the rules for reconfiguration that must be obeyed
for consistency and correctness of the application. Several
mechanisms that have been proposed to accomplish
program reconfiguration are discussed in Section 4. The
specific programming model for reconfiguration in DRMS
is presented in Section 5. An overview of the DRMS
framework is given in Section 6, while Section 7 discusses
the development and execution of reconfigurable
applications under DRMS. Application reconfiguration
performance studies are described in Section 8, and
system-wide performance results are presented in Section
9. Section 10 discusses some additional (to Section 4)
related work. Finally, Section 11 presents the conclusions
of this paper and discusses some future work.
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2. Motivation

Applications can take different approaches to exploiting
parallelism: multiple but identical tasks operating on
multiple data; multiple and distinct tasks operating on the
same data; or some combination of the two. The benefits
of parallelism are realized by simultaneously carrying out
execution of multiple tasks. On the basis of the number of
simultaneously executing tasks, we can classify applications
into three categories: 1) applications where input data and
problem “boundary conditions” determine the possible
number (or set of numbers) of executing tasks; 2)
applications that are always executed with a fixed number
of tasks, independent of the input data or the underlying
system configuration; 3) applications where the number of
executing tasks is not fixed by the problem or by the input
data set, but is determined by some other application- or
system-specific parameters (e.g., nondeterministic
algorithms that may follow one of many execution paths,
randomly).

From the point of view of scalable parallel computing,
Category 1 above is of interest. Ideally, each unit of
computation could give rise to a task which could follow
data, as with the dataflow model of computation.
Architectural limitations and other performance
considerations require that many computational units
be merged and that several distinct data items be
agglomerated. In the case of scalable parallel computing,
this has given rise to heavyweight computing tasks and
large amounts of data agglomeration. Further,
performance considerations have resulted in
implementations with tight coupling among the executing
tasks, data, and execution units. While such applications
are quite common in practice, they tend to become
monolithic and vertically integrated. The number
of tasks is determined almost at the beginning of a
program execution, on the basis of the data set and/or the
execution units available at the time. Under such a model
of monolithic vertical splitting of a program, all tasks must
continue to exist throughout the program execution. For
perfectly parallel programs, this model works out well.
However, most programs dealing with realistic problems
are far from perfect, and any monolithic splitting
necessarily leads to imbalance among the tasks and/or
awkward programming to bring about the necessary
balance. As a consequence, programs are unable to use
physical system resources in a judicious manner. A further
consequence is that complex (and sometimes ugly) resource
scheduling strategies are developed when the inflexibilities
of the monolithic model are taken for granted.

To make parallel programs more flexible and less
monolithic, it is necessary to provide a model that does
away with vertical agglomeration of data as well as the
strong coupling between data and tasks. To make such a
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model practical, the performance costs of such flexibility
should be relatively small.

3. Reconfigurable parallel applications

In this section, we explain in more precise terms the
reconfigurable application domain that we consider. We
give some definitions of reconfigurable applications, list
the conditions for reconfigurability, and list the criteria
for correctness and consistency of applications across
reconfigurations.

® Definitions

An application that is associated with only a fixed number
of executing tasks, independent of the input dataset or of
the external environment, is a statically configured parallel
application. An application for which the number of
executing tasks depends on the input dataset is a
dynamically configurable application. Similarly, if an
application can execute with more than one set of tasks
(because of some change in the environment external

to the application) for the same input dataset, that
application is also said to be dynamically configurable. An
application is reconfigurable if it executes in two or more
stages such that in the first stage it executes with one set
of tasks and in each subsequent stage it executes with a
different set of tasks. The application is said to be
statically reconfigurable if this behavior is input- and time-
invariant. The same application is said to be dynamically
reconfigurable if the number of tasks in each stage depends
either on the input or on some parameter external to the
program. In this paper, we are primarily concerned with
dynamically reconfigurable applications. For brevity, in the
rest of the paper, we refer to these as reconfigurable
applications.

® Conditions for reconfigurability

A necessary condition for an application to be
reconfigurable is that the application must be capable of
exposing multiple degrees of parallelism; that is, it should
be possible to execute the application to completion with
more than one set of tasks and, in each case, the final
outcome should not deviate significantly from the expected
outcome (e.g., some round-off differences might be
acceptable). The multiple degrees of parallelism should be
exhibited with the same input dataset. In addition,
reconfigurable parallel applications should possess one or
more of the following properties:

 Capability of changing the number of (active) tasks
during the course of program execution.

« Capability of changing the mapping of tasks to execution
units.

o Capability of changing the affinity between data

components and tasks at run time. 305
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« Capability of switching from one type of data
agglomeration to another type during the course of a
program execution.

Having one of the above properties alone does not
qualify an application to be (dynamically) reconfigurable.
For example, consider an application that is invariant in
the number of tasks for a given input but allows for
dynamic scheduling of the tasks on one or more execution
units. Such an application is not reconfigurable because it
does not possess the necessary condition of being able to
expose multiple levels of parallelism.

The above discussion characterizes a reconfigurable
application. Note that the programming model is not part
of this characterization. Parallel applications using the
fork-join model or the workers model, or those belonging
to the SPMD model, can all be made reconfigurable. In all
cases, reconfiguration must satisfy the correctness and
consistency criteria that we describe next.

o Correctness and consistency issues
When a program undergoes reconfiguration, there is a
change in the state of the program. Such a change in state
should not lead to changes in the semantics associated
with the program just before the reconfiguration point
(RP), nor should it lead to unexpected program behavior
after the RP. The former requirement leads to correctness
issues and the latter to consistency issues; the two are
interrelated. Unexpected program behavior includes
any of the following: 1) the program does not produce
the same results as it would have if there had been no
reconfiguration; 2) the program does not terminate at
the same point it would have if there had been no
reconfiguration; 3) the program does not interact with
the external environment as expected.

In general, reconfigurations must obey the following
rules:

1. The application semantics should not change across
reconfiguration points (RP).

2. All data that defined the program state before an RP
should be preserved and defined across the RP.

3. If any task is terminated at an RP, all unfinished
computations associated with that task should be
assigned to one or more tasks existing after the RP.

4. If there is algorithmic change following a
reconfiguration, the old algorithm(s) should be replaced
by “equivalent” new algorithms such that expected
program behavior is maintained.

5. Reconfiguration should not cause a deadlock or a
livelock as a result of a change in the degree of
parallelism.
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Reconfigurable applications that obey the above rules
are said to be valid reconfigurable applications. Note that
the rules specify only the general guidelines, and testing
the validity of a reconfigurable application requires
detailed knowledge of the application. For this reason,
it is important that the abstractions provided by the
programming model for developing reconfigurabie
applications should be simple and easy to test for validity
by the program developer.

4. Mechanisms for reconfiguration of parallel
applications

Two important issues in successfully designing and
developing reconfigurable parallel applications are
programming abstractions and efficient run-time
mechanisms for reconfigurations. Programming
abstractions should be easy to use, motivating users to
develop reconfigurable applications. These abstractions
should preferably be additive, that is, constructs that can
be added to an already correct (but not reconfigurable)
program. The run-time support for reconfigurations should
be such that the disturbance to the application is
minimal (in terms of performance) and it should

leave the application in a consistent state after a
reconfiguration.

We describe some of the mechanism to support
reconfigurations that have been proposed in literature for
various programming models. The programming models
we consider are the following:

s Workers model: Work for helper tasks is dynamically
carved out.

o Fork-join model: Dynamic spawning of tasks and
dynamic data agglomeration based on the amount of
work or available resources.

s HPF model: Parallel execution from a single-threaded
specification.

o AMP model: Fixed number of executing tasks, which
swap data and computations.

o SOP model: The model on which DRMS is based,
discussed in more detail in the next section.

In the workers model, a (logically shared) global entity
defines the tasks that must be executed and the data on
which they operate. This global entity can be active (a
master task) or passive (a global state pool). Worker tasks
are given or fetch tasks from this global entity, execute
them, and return the results to the entity. The Piranha
system [9] is an example of a mechanism to support
reconfigurable applications developed according to the
Linda [10] workers model. The tuple space in Linda
performs the role of the global state pool. Piranha was
developed mainly to harness the idle cycles in networks of
workstations. Because usage patterns of such networks are
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highly unpredictable, the ability to move computations
around dynamically is very important. While [9] reports
many successful uses of Piranha, it also reports that some
data-parallel programs (specifically, LU decomposition) do
not reconfigure efficiently in that environment.

The fork-join model is related to the workers model.
This model usually employs a two-level scheduling
mechanism: First, a number (possibly variable) of kernel-
level threads are scheduled for execution on physical
processors; these kernel threads are then used as virtual
processors for the execution of user-level threads that
exploit the parallelism. The user-level threads are created
to execute tasks from a shared task queue. This two-level
scheduling is used because forking and joining of threads
can be done much faster for user-level threads than for
kernel-level threads. There are also implementations with
a single level of scheduling. Examples of systems that use
the fork-join model to support reconfiguration are Cray
Multitasking [11], Process Control {12], and Minos [5].
Autoscheduling [13, 14] has shown how an efficient fork-
join model can support macro-dataflow execution on time-
variant processor partitions. The work on fork-join models
mentioned above is all in the context of shared-memory
multiprocessors, which eliminates the need for dynamically
changing the binding between data spaces and tasks (there
is only one, shared, data space). The work described in
[7], for private-memory (message-passing) multiprocessors,
does not fall in our classification of reconfigurable
mechanisms because the number of executing tasks is kept
fixed throughout the lifetime of an application.

HPF [15] programs are created by adding data
distribution annotations to single-threaded code with array
operations. Although the language was not specifically
designed for developing reconfigurable applications, it is
possible to exert some control on the number of tasks
performing computations. HPF allows the specification of
virtual processor grids in the declaration section of each
scoping unit (function or subroutine) and the distribution
of data onto these processor grids. Therefore, it is
possible, in principle, to write each scoping unit to execute
on a different number of processors. However, note that
there are several fundamental and implementation
difficulties with this approach. First, COMMON variables
must have the same distribution specification in all scoping
units that use them, and therefore are not amenable to
reconfiguration. Also, HPF provides no constructs for
direct specification of the number of desired tasks.
Therefore, the scheduling environment of the system
where an HPF application is running would have to derive
such information from the executing program itself, which
may be very difficult.

The Adaptive Multiblock PARTI (AMP) library [16]
supports reconfiguration of SPMD programs within a fixed
number of executing tasks. An application is spawned on
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the maximum number of tasks on which it can run. During
its execution, data redistribution is used to move the
active data to different subsets of tasks. Only the tasks
belonging to this subset, at each moment, are active and
perform computation. The other tasks execute the code
for the application but, since they have no data associated,
they do not perform intensive computations and are called
skeleton tasks. This approach has some deficiencies: First,
it imposes a hard limit on the maximum number of active
tasks, namely the number of tasks that were originally
spawned; the skeleton tasks can interfere with other
applications that have active tasks in the same physical
processor, thus creating a performance and scalability
problem; finally, it requires that the underlying system

be able to support time-sharing among many parallel
applications on the same processors (one active task

from one application, skeleton tasks from the other
applications), which is not always supported.

5. SOP programming model

The reconfiguration mechanism of DRMS is based on
the SOP programming model that we describe in this
section. In this programming model, the execution of a
parallel program consists of a sequence of stages we call
schedulable and observable quanta (SOQs). The number of
tasks is fixed during an entire stage; also, the association
between data spaces and tasks is fixed and one-to-one.
Therefore, each stage behaves like a conventional SPMD
program, allowing us to exploit the performance benefits
of the monolithic model during the execution of a stage.

Boundaries between stages are defined by schedulable
and observable points (SOPs). At an SOP, and only at an
SOP, the state of the parallel program can be examined
and modified. At this point the number of executing tasks
and the association between tasks and data spaces can
be altered. When this happens, we say that the SOP
is a reconfiguration point. The stage following the
reconfiguration point executes on the new configuration of
tasks and data until it reaches a new SOP and a new stage
begins. A reconfiguration from one stage to the next can
involve a change in the number of tasks, a change in the
association of data with tasks, or both.

We define a stage as consisting of four sections:
resource, data, control, and computation. The resource
section specifies the number of tasks needed for the
execution of the stage. This specification can be in the
form of a range of valid numbers of tasks, often
dependent on the problem size and other problem-specific
parameters. Once a specific number of tasks is selected for
execution of the stage, the data section specifies an
association between the data space and the tasks. We
discuss this association in more detail below. The control
section specifies values for control variables pertinent to
the stage. Control variables are used to control the flow of
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execution inside a stage, which may vary depending on
the number of tasks and data association. Finally, the
computation section specifies the computations and
communications that each task performs for the execution
of the stage. These computations and communications are
usually steered by the control variables specified in the
control section.

Let the execution of a parallel job ¢ consist of n(§)
stages. Each stage i is executed with #(i) tasks. Each task
jsj =1, .-, t(i), has its own data space. We denote by
d(i, j) the data space of task j in stage i. The data space
of a task can be divided into two parts: a private data
space dp(i, j) and a shared data space d (i, j). The private
data space contains temporary data and flow control
variables that are pertinent only to this task at this stage.
The shared data space contains actual problem data
carried from stage to stage. Because of replication of
some data, the shared data space of different tasks may
actually overlap. The union of the shared data spaces of
individual tasks forms the global data space for a given
stage:

163}

D= U d)). (1)

D (i) is the collection of global data structures of job §
during stage i. If the global data structures of a program
are purely static, D is an execution-time invariant:

Di)=Dyi-1)=Di+1)=D, Vi (2)

In the general case, dynamically allocated global variables
can cause a change in D, from stage to stage. The global
data space D, is the state that is preserved across a
reconfiguration point (additional global variables can be
created by the new stage after the reconfiguration). The
data section of a stage specifies how this data space is to
be decomposed into the task data spaces d_ (i, j).

6. DRMS framework

DRMS consists of a general framework for the execution
of reconfigurable applications and for the dynamic
management of resources used by these applications. In
the DRMS approach, these two concepts are tightly
coupled. Efficient resource management is accomplished
because applications can be reconfigured to respond to
internal and external (environment) changes. Conversely,
applications can reconfigure efficiently because resources
are being continuously granted to and reacquired from
applications. In this section, we focus on the concepts of
DRMS, and in the next section we discuss some specifics
of our implementation.
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® Reconfiguration mechanism

DRMS supports the reconfiguration of applications that
follow the SOP programming model. As discussed in
Section 5, these applications consist of a sequence of
stages (SOQs). Each stage is executed with a constant
number of tasks, and there is a fixed association between
tasks and data space, just as there is in a regular SPMD
program. SOPs mark the boundaries of stages, and at
SOPs the number of tasks and/or association of data can
change.

When the number of tasks is changed at an SOP, the
global data space is preserved across the reconfiguration.
(In the next section, we describe the mechanisms used in
DRMS for this purpose.) All tasks emerging from the SOP
inherit the private data space, but all variables in the
private data space of a task are left in an undefined state.
These must be reinitialized before being used. Also, the
decomposition of the global space into the shared data
space of the tasks is undefined. Therefore, a new
association between data space and tasks must be specified
before the global data are used.

To make the abstractions described above more
practical and concise, DRMS offers a set of FORTRAN
language extensions for the declaration of SOPs and the
specification of stages. These language extensions are used
in each stage to declare the desired number of tasks
(resource section) and the decomposition of the global data
space into the shared data space of the tasks (data
section). The language extensions are processed by a
compiler that translates them and links the program
with a run-time system, thus creating a reconfigurable
application.

The application is closely coupled with a run-time
system and the application global data space and
execution state are exposed to this run-time system. When
the application is at an SOP and when there is a change in
the number of tasks, the run-time system suspends the
application until the new set of tasks is created, and then
continues execution on this new set of tasks. The run-time
system also rearranges data as necessary according to the
new association between data and tasks. The run-time
system, because of its knowledge of the global data space,
can provide a set of utility functions that offer convenient
abstractions for writing the control and computation
sections of a stage.

Reconfigurable applications run under an environment
provided by DRMS. This environment consists of a
scheduling module that has direct control over the
physical processors of the parallel system. For each
parallel job, this scheduling module creates a partition of
processors that executes the job. This partition can be
resized at the SOPs of that application, but it is fixed for
the duration of an application stage. The scheduler also
decides on the mapping of application tasks to processors
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in the partition. In our current implementation of DRMS
for the RS/6000 SP platform, for performance reasons,
only one task is mapped onto a processor. This maintains
a one-to-one correspondence between application tasks
and execution units. Thus, changes in the number of tasks
of an executing application cause a corresponding change
in the size of the processor partition executing the
application. Although not available in our current
implementation, in principle the processor partitions of
multiple jobs may overlap with one another. When that
happens, a physical processor time-multiplexes the
execution of the tasks belonging to multiple applications.

% Creating reconfigurable applications

There are many alternatives for generating a
reconfigurable application according to the SOP model.
In this paper we focus on three approaches that are
important in the context of scientific and technical
applications.

The first approach starts from a conventional SPMD
program that executes with a set of tasks that is fixed at
the beginning of the application execution. That is, the
number of executing tasks can be set only once, at job
start time. To make such a program reconfigurable, the
programmer manually identifies the segments of the
program that are to be transformed into stages. DRMS
language extensions can be used to specify the SOPs and
declare, for each stage, the task requirements and the
association between data and tasks. The programmer adds
code to reinitialize local variables and compute control
variables that steer the computation.

The second approach also starts from a conventional
SPMD program, but the transformation into a
reconfigurable program is performed automatically by a
compiler. In the general case, the user may still have to
specify the decomposition of the global data space, since
that can be arbitrarily complex and very difficult for the
compiler to determine. The user can also specify the
number of tasks (perhaps a range of numbers) necessary
for the execution of the program. The compiler can use
control-flow and dataflow analysis to identify points in the
program where an SOP can be inserted. The basic
requirement is that all tasks must be able to synchronize
at the point. The compiler then identifies those variables
that must be preserved across the reconfiguration and
makes them part of the global data space. Using the
language extensions provided by DRMS, the specifications
for number of tasks and data decomposition are
automatically inserted at the SOP by the compiler,
according to the original specifications given by the user.
The compiler must also identify which variables are
control variables that depend on the number of tasks
and/or data association (for example, loop bounds) and
create the proper initialization code for them.
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Finally, the third approach consists of creating
reconfigurable applications from HPF source programs.
HPF programs already contain the specification for data
decomposition, so the user does not have to add any
information. HPF compilers usually transiate HPF source
code into SPMD code. We can then perform the same
analysis as in the second alternative but helped by the
extra semantic information available from the HPF source.
Also, because the SPMD code is generated automatically
from a single-threaded specification, its behavior is more
constrained than that of an SPMD code written directly by
the user. We note that the ability to continue execution on
a different set of tasks and to redistribute the data to
accommodate this new set is not provided by the
REDISTRIBUTE construct available in the standard HPF
model.

% DRMS architectural overview

Figure 1 shows the main functional components of DRMS
and the primary interactions among these components.
The DRMS compiler translates programs with DRMS
annotations, linking them with a run-time system (RTS)

to create reconfigurable executables. The functional
components that perform the resource coordination and
task scheduling are the resource coordinator (RC) and the
job scheduler and analyzer (JSA). Run-time management
and coordination of user applications are accomplished by
the user interface coordinator (UIC), the RC, and the task
coordinator and run-time monitor (TC). The performance
analysis component is handled by a run-time performance
data gatherer and the associated tools and utilities.

The system-level allocation and scheduling decisions
are made by the JSA on the basis of the implemented
scheduling policies. These decisions may take into account
information such as application-supplied resource
requests, job priorities, and individual processor
utilization, as well as system-level information such
as current and expected workload. A particular
implementation of the JSA can use the information
gleaned from the performance analysis tools in addition to
its own knowledge of the applications for its decision
making. Policies for making such decisions can be supplied
and modified by system administrators. The JSA does not
interface directly with the user or user job, but rather it
communicates its decisions to the RC, which interacts with
the UIC and the TC. There is only one logical RC and
one logical JSA for the entire DRMS.

Each user application has an associated TC which
consists of multiple agents, one per application task
(therefore, this set of TC agents can vary during
application execution). One of the agents acts as a master
for coordination with the external world, including the RC
and the UIC. We call this agent the master TC. The run-
time interactions between the user application and the rest
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DRMS architecture.

of the system, including other applications, user, and convenient user interface. The performance-gathering

RC, are managed by various subcomponents of the component is designed to assist users and the system

TC. The main functions carried out by the TC are administrators to understand some of the characteristics of

acquiring/releasing processors from/to the RC and user jobs [17]. It can also provide performance feedback

starting/restarting application task execution on the that the JSA can use in making more intelligent

allocated processors. scheduling decisions.

The user submits jobs and interacts with the system A reconfigurable job interacts with the resource

throughout the course of the job execution via the UIC. management system only at its SOPs. However, the TC

310 The primary function of the UIC is to provide a coordinates external interactions throughout the course of
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job execution. When the JSA decides to reconfigure a job
(expand or shrink) during the course of its execution, this
decision is conveyed to the RC. The RC relays this
decision to the TC of that job, which in turn delivers this
message to the RTS asynchronously. At the next SOP, the
RTS interprets the reconfiguration message, causes
synchronization among the tasks of the application, and
communicates with the JSA. After the initialization of the
application’s new processor partition, the RTS is informed
of the new partition information. Then the RTS, in
conjunction with the TC, rearranges the application data
so that the job can run with a new set of tasks on a new
set of processors. This asynchronous approach to
application reconfiguration allows an application to
execute an SOP at a very low cost, since only a local test,
as opposed to a whole communication protocol with the
JSA, has to be performed at each SOP. It relies on the
fact that the JSA is constantly aware of the resource
requirements of the applications. Since these requirements
can change during the course of a computation, the JSA
must be kept updated. An application can also voluntarily
initiate an expansion or shrinkage of its allocated set of
processors. This happens whenever the current number of
tasks an application is executing does not belong to the
valid set of tasks specified for a stage. In this case, the
application must wait, possibly in a suspended state, until
the JSA can allocate the necessary number of processors.

7. Application reconfiguration under DRMS

In this section, we discuss some specifics of our current
implementation of DRMS. We illustrate the use of DRMS
language extensions to FORTRAN that allow the
development of reconfigurable applications. We also
describe the functions performed by the compiler and the
run-time system in order to produce a reconfigurable
application. We describe the detailed steps involved in a
specific reconfiguration operation, and we illustrate the
inner workings of the system using a hypothetical
reconfiguration scenario.

& Writing reconfigurable FORTRAN applications

DRMS language extensions to FORTRAN are in the form
of annotations, source-level comments that are ignored by
a regular FORTRAN compiler. They always start with the
1$DRMSS sequence. The DRMS compiler translates these
annotations into executable FORTRAN code in a
preprocessing phase. The output of the preprocessors is
then compiled by a regular FORTRAN compiler. We
illustrate our language support by means of an example.
Figure 2 shows the main loop of a Poisson solver using
Jacobi relaxation. Each iteration of the loop performs one
step of the relaxation and constitutes one stage of the
execution of the program. At each iteration k, a new value
u, (i, j) for grid point (i, j) is computed as
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Because of the nearest-neighbor communication, the
natural approach is to partition the grid into contiguous
sections and let each task operate in one section. Because
of the boundaries between sections, it is also convenient
to let the section belonging to one task overlap with the
sections from its neighbors.

The application in Figure 2 corresponds to the code
executed by each task participating in the computation.
The declaration of u0 and ul at the top of the program
represents the declaration of the local sections of those
variables (i.e., local to a task). The distributed arrays u0
and ul are declared as having global shape n X n through
the DRMS DIMENSION annotation. The local shape for
the section in each task is automatically computed by
DRMS. DRMS also allocates the appropriate local storage
and associates it with u0 and ul.

The first instruction in the body of the iteration
(RESIZE) marks an SOP. The RESIZE annotation
specifies the number of tasks for the execution of the
stage. It implements the resource section of the stage. In
this example, it is specifying that the set of valid numbers
of tasks for execution is {4, 8, 16, 32}. DRMS supports
the declaration of a variety of regular ranges of tasks, as
well as declaration of any irregular range in the form of a
list of valid values. After this instruction, execution
continues on one of the valid numbers of tasks, possibly
different from the previous iteration.

The next annotation implements the data section of the
stage. It defines how the global, n X n, arrays u0 and ul
should be decomposed into local sections for each task. A
two-dimensional, HPF-like BLOCK distribution is used, and
overlap among the sections is specified with the BORDERS
declaration. DRMS supports all forms of data distribution
from HPF: block, cyclic, block-cyclic, and collapsed. It also
supports a different form of block distribution, that we
call BLOCKD, and two forms of irregular distribution:
block-list and arbitrary (specially useful for manipulating
sparse matrices). We refer the reader to [18] for a more
complete reference on the various annotations and data
distributions used in DRMS, and for a description of our
data redistribution algorithms.

Two calls to the DRMS utility function
drms_local_extent ( ) are made to initialize the
control variables xsize and ysize with the extents of the
local sections of each processor. This implements the
control section of the stage.

The remainder of the iteration body implements the
computation section of the stage. Control variables xsize
and ysize are used as bounds in the loops that operate
on the local sections of arrays uQ and ul. Because
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Example of reconfigurable Poisson solver.

overlap regions must be updated with data from the
actual owners, a call to the DRMS utility function
drms_update_borders ( ), which automatically updates
these regions, is used before the computation proper.

® DRMS compiler and run-time system

The DRMS compiler translates FORTRAN programs
augmented with DRMS annotations into executable,
reconfigurable applications. The first step in compiling is a
preprocessing of the annotated program by the DRMS
annotations preprocessor (DAP). The DAP is a source-to-
source translator that generates output in FORTRAN.
The output from the DAP can then be compiled by a
native FORTRAN compiler and linked with the DRMS
run-time system (RTS) to generate an executable. The
DAP performs two primary functions: It translates the
DRMS annotations into calls to the RTS that performs
the specified action, and it creates “handles” for the local
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sections of the distributed arrays to allow the RTS to
manipulate and reshape these sections.

A RESIZE annotation is translated into a call to the
RTS communicating the specified range of tasks. The RTS
then interfaces with the TC to obtain the appropriate
number of tasks and to continue application execution on
the new set of tasks. Data distribution annotations are
translated into calls that build descriptors of the declared
distributed arrays. The RTS uses these descriptors to
compare old and new distributions, redistributing data
accordingly. Using the descriptors for the distributed data,
the RTS can automatically compute the local sections of
each task. DRMS-created local sections always use dense
storage; 1.e., there is no gap between consecutive array
columns. The descriptors also allow the RTS to provide a
series of utility functions, as seen in the example of Figure 2,
that facilitate paralle! programming in general and the
development of reconfigurable applications in particular.
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® Implementation of application reconfiguration under DRMS
In this subsection, we describe the steps involved in
achieving the different types of processor reconfiguration
in the current implementation of DRMS on the IBM
RS/6000 SP. We focus on reconfiguration initiated by
internal events in the application. We then discuss the
differences with respect to externally (system) initiated
reconfiguration.

Figure 3 illustrates the internally initiated expansion of
an application from two processors to a four-processor
partition. The edges represent messages between the
various components of DRMS. The numbers on the edges
order the events in time. When two edges have the same
number, message communication along these edges can
occur concurrently.

The application starts executing with two tasks: TO and
T1. When the application reaches an SOP that requires a
reconfiguration to four tasks, all of the tasks of the
application send an expansion request to their local TCs
via the run-time system [Figure 3(a), step 1}. This
expansion request provides the range of tasks on which
the application can continue to execute. The application
request is forwarded by the master TC of the application
(TC1) to the RC, which in turn forwards it to the JSA
(steps 2 and 3). Assuming that the JSA policy allocated to
this job two additional processors to start two additional
tasks (with IDs 3 and 4), the JSA sends its response to the
RC with the details of the processors allocated (step 4).
The RC in turn forwards the response to the master TC of
the application, which percolates the information to the
other TCs (in this case TC2) of the partition (steps 5 and
6). The TCs forward the response to the RTS within the
application (step 7). Because the expansion requires a

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997

Job-initiated expansion: (a) Resource allocation; (b) partition reconfiguration; (c) job restart on new partition.

reinitialization of the processor partition, all of the tasks
on the current partition exit. The master TC is informed of
remote task exits by other TCs of the partition (steps 8 and 9).

At this point, the job is ready to be restarted on the
new partition of four processors. The master TC includes
the new TCs into its partition [Figure 3(b), step 1]. It then
requests the RC for configuring the new partition (step 2).
After receiving an acknowledgment from the RC (step 3),
the master TC is ready to restart the job on the new
partition. Figure 3(c) shows the job restart. The TCs
coordinate and restart the application with four tasks on
the new partition (steps 1 and 2). At this point, the
control is handed over to the DRMS RTS which, on the
basis of the information received from the TCs, performs
data redistribution across the new set of tasks.

Executing an interactive job on a dynamically changing
number of processors implies that the standard 1/O from
the tasks must be properly directed to the user interface
(UIC) that submitted the interactive job. To achieve this
redirection, the tasks dynamically attach to the UIC
during the task restart phase, in order to send their output
and receive user input. Thus, in a reconfiguration, the
current set of tasks detach from the UIC before
termination, and the newly spawned tasks attach to UIC
before commencing the application execution.

Job-initiated shrinkage is achieved nearly identically to
job-initiated expansion. Steps 1 through 9 of Figure 3(a)
are identical, after which the master TC informs the RC
about the free processors, along with its reinitialization
request for the smaller new partition. After receiving the
reinitialization acknowledgment from the RC, the master
TC then restarts the application on the new (smaller)
partition.
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Reconfiguring a job (Job 1) to accommodate another job (Job 2).

Also, when there is a change in the system resource
requirements, the JSA can expand or shrink a
reconfigurable job so as to better utilize the system
resources. This reconfiguration is initiated by sending a
signal asynchronously from the JSA to the application
tasks via the RC, the TCs, and the RTS. When the
application reaches an SOP, the reconfiguration flag is
examined, and the same steps as those for a job-initiated
reconfiguration are performed.

® FExample of a reconfigurable job execution
We now discuss how the execution of a reconfigurable job
would proceed under DRMS in a hypothetical job
submission scenario. Let there be two job arrivals, J, and
J,, one at time ¢, and the other at time #,, t, <1,. Let
both jobs be Jacobi computations as in the example of
Figure 2, with job J, smaller in terms of total amount of
computations performed. Also, let the system have 32
processors, which are all free at time ¢,. The behavior of
processor allocation to each job is illustrated in Figure 4.
When job J, arrives at time ¢,, it can start executing on
the largest possible number of processors, 32, since the
system is empty (assuming that the scheduling policy
allows such an allocation). When execution encounters the
RESIZE directive (collectively by all tasks) in the first
iteration, the application informs the JSA of the valid
range of tasks (4, 8, 16, 32). Since the application is
already running on a valid partition size (32) and there
are no competing jobs, there is no need to reconfigure the
application, and the execution simply continues on 32
tasks. The JSA and the RTS both remember the range
specified, anticipating that the application may execute a
RESIZE instruction again. During the next iterations there
Is no longer any interaction between the application and
the JSA, since the application is already executing on a
valid number of tasks and the JSA is aware of the valid
partition sizes for this application. Also, the data

J. E. MOREIRA AND V. K. NAIK

distribution is the same as long as the number of tasks is
fixed. Therefore, there is no need for redistribution.

At time ¢,, job J, arrives. All processors are busy with
job J, but the JSA knows that J, is a reconfigurable
application. Therefore, it sends a reconfiguration request
to the application, through the TCs and the DRMS run-
time system. This request is used to set a flag internal to
the RTS that indicates that the JSA would like to
reconfigure this application. When the application
executes the next RESIZE instruction, it contacts the JSA,
which reallocates resources and assigns a new set of tasks
for each job. For example, 16 tasks might be given to each
application. The execution of job /, then continues, after
the resize, on 16 tasks. Because of this change in the
number of tasks, the data distribution is no longer the
same as in the previous iteration. The RTS performs
all necessary data movement to accomplish the new
distribution while preserving the semantics of the global
data structures. Array descriptors and array handles are
also updated to reflect the new distribution.

Both jobs then continue execution on 16 processors
until J,, which is smaller, finishes at time ¢,. At that point
the JSA reacquires those 16 processors and sends another
reconfiguration request to J;, because it knows that that
job can use the processors. Again, when J, encounters
RESIZE instruction the next time, it contacts the JSA,
which reallocates all 32 processors to J,. Job J, continues
execution on 32 tasks and again redistributes its data. The
job keeps executing on 32 tasks, without further contacting
the JSA, until it finishes at time ¢,.

8. Performance studies of application
reconfiguration

We performed a series of experiments to verify the
functionality and measure the performance of DRMS in
reconfiguring parallel applications. Our performance
evaluation goals in this section are to quantify the cost

of a reconfiguration as seen by an individual application.
The positive impact on the overall system performance

of efficient application reconfiguration has been
demonstrated elsewhere [4, 7, 8]. In particular, it was
analyzed for the DRMS environment in [19], and some
results of that analysis are presented and discussed in
Section 9. We note here that the implementation of
DRMS we used for the performance study is not yet fine-
tuned for performance, but it is continuously evolving and
is being tested for functionality. As such, the performance
results presented in this section should not be interpreted
in the absolute sense, but should be used as relative
measures showing performance trends.

From an application point of view, there are two
components of the cost for reconfigurability: the
computation overhead of the reconfigurable DRMS
program as compared to the original SPMD version, and
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the actual cost of performing a reconfiguration. The
computation overhead is introduced by our program
transformations that add the necessary code to create a
reconfigurable application. Note that this computation
overhead is incurred whenever the application executes,
regardless of the number of reconfigurations it goes
through. We measure this computation overhead by
comparing the steady-state (i.e., after cold cache misses
and page-fault transients) execution times of the DRMS
and SPMD versions when executed on the same number
of processors. We measure the reconfiguration time as the
elapsed wall-clock time from the moment an application
reaches an SOP that changes its pool of resources (tasks)
to the moment it is ready to continue its execution on the
new pool. For our current implementation of DRMS,
there is a one-to-one correspondence between tasks and
processors. We refer to processors in our performance
studies because they are the physical devices that are
allocated to an application. We also use the term PE
(processing element) to refer to a processor.

In our implementation on the RS/6000 SP, we identify
five components of the reconfiguration time: “switch”
time, “exit” time, “spawn” time, “redistribution” time, and
“other” components. Switch time is the time it takes to
reconfigure the partition data structures that control
message routing through the interconnection network
(high-performance switch). The partition data structures
must be updated to support communication across the
new set of processors. Our approach to application
reconfiguration actually involves terminating the
application on the old set of processors and restarting it
on the new set, from the point at which it was stopped.
We call the times for these operations the exit and spawn
times, respectively. In general, a change in the processor
set executing an application involves a change in the
distribution of data across processors. This component
is the redistribution time. Finally, we group all other
costs under the other components, including the time
the application takes to communicate its resource
requirements to the RC and the time it takes the JSA to
allocate the new set of processors. Also included is any
application-specific reinitialization necessary to proceed
with execution on the new set of processors.

The redistribution time itself can also be subdivided
into four components: 1) “Compute” time is the time it
takes for computation of the slices of data that must be
exchanged among processors. 2) “Buffer” time is the time
it takes to copy data from/to their actual locations to/from
intermediate buffers used for data exchange. 3) “Message”
time is the time for actual data exchange among
processors using message-passing. 4) “Sync” time is the
average time processors wait for the slowest processor in
the redistribution operation before synchronizing at the
end of it. Because of load imbalances and the nature of
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Table 1 Characteristics of benchmarks used to evaluate
DRMS performance.

Application  Distributed  Problem  Problem Iterations
arrays space space
(elements) (MB)
JACOBI 2 2 X 4098’ 256 200
APPBT 6 42x102° 340 200
APPLU 5 17 x 102° 138 250
APPSP 8 24 x 102’ 194 400
CHOLESKY 1 5.308.247 41 35.588

the message-passing operations, some processors take
longer than others in their redistribution operation.

® FExperimental environment

We conducted our experiments on a 32-processor partition
of an IBM RS/6000 SP with wide nodes at the NASA
Ames Research Center. Each processing element on the
RS/6000 SP considered in this study is an IBM RS/6000
Model 590 processor (POWER?2 Architecture*), with

256 KB of data cache and 66.5 MHz clock speed. On the
RS/6000 SP, the processors are interconnected via a high-
performance switch. Other important performance
parameters of this machine, for our experiments, are its
memory-to-memory transfer bandwidth within a node

(B,, = 290 MB/s) and its unidirectional node-to-node
communication bandwidth through the network (B, = 36
MB/s). We refer the interested reader to [20] for further
details on the RS/6000 SP. We measured the elapsed
times for the execution of operations using a real-time
clock with effective resolution better than 1 us. All of the
elapsed times measured were larger than 50 ms.

® Benchmarks

We used five different applications as benchmarks in
our study: JACOBI, APPBT, APPLU, APPSP, and
CHOLESKY. All of these applications operate on large
distributed arrays; they are organized as a main loop, with
a problem-size-dependent number of iterations, that
performs almost the entire computation. For each of the
applications, we started with SPMD versions optimized
for the RS/6000 SP. We then manually added DRMS
annotations to define an SOP at the beginning of each
iteration. Thus, in the DRMS version, each iteration is a
stage that can be executed on a potentially independent
set of processors. JACOBI uses MPI [21] for message-
passing; all other applications use MPL [22].

Some intrinsic characteristics of the applications are
shown in Table 1. For each application we list the number
of distributed arrays; the volume of problem data that
must be distributed, both in number of elements and MB

(one element is a double-precision floating-point value); 315
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Table 2 Results for steady-state performance without any
reconfiguration.

Application PEs drms spmd %
Lo nEo
(ms) (ms)
JACOBI 32 635 58+ 1 8
16 123 = 11 112 =1 9
APPBT 32 1198 = 8 1166 = 6 3
16 2335 £ 17 2255+ 9 4
APPLU 32 5343 542 £ 10 -1
16 968 = 11 980 * 11 -1
APPSP 32 467 = 10 440 = 4 6
16 874 £ 8 836 5 5
CHOLESKY 32 3621 3610 0
16 592+1 591 =1 0

and the number of iterations of the main loop that are
executed. Because of some overlap of data caused by
borders, the actual volume of distributed data is, in
general, dependent on the number of processors and
larger than that of the problem data. We describe the key
features of each of these applications that are relevant to
this study. For further information, we point to pertinent
references.

JACOBI

This benchmark solves the well-known Poisson equation
on a square grid using the point Jacobi relaxation method
[23]. The grid is discretized using a second-order central
differencing scheme which results in a five-point stencil.
The numerical scheme consists of updating the values at
each grid point with the average of the values (from the
previous iteration) at the four neighboring grid points.
This phase is referred to as the relaxation phase. The
solution is iteratively improved until a desired convergence
criterion is met. For this, a convergence check (by
computing the error norm) is performed at the end of each
iteration. In our study, we performed a fixed number of
iterations (200), in which each iteration consisted of a
relaxation and a computation of the error norm. The
distributed data structures consist of two bidimensional
arrays (each with one element per grid point), error-norm
components (one per grid partition), and two scalar values
defining the problem (grid size and number of iterations)
which are replicated on each task. A two-dimensional
BLOCK distribution, with borders, was used. The grid size
we selected was 4098 X 4098, including the boundary
condition frame (this results in an actual relaxation grid of
4096 X 4096). For purposes of measuring reconfiguration
times, we forced a reconfiguration every ten iterations.
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APPBT, APPLU, and APPSP

These applications are part of the NAS parallel
benchmark (NPB) suite released by the NAS program at
the NASA Ames Research Center for benchmarking
highly parallel supercomputers [24, 25]. They resemble
closely the state-of-the-art Computational Fluid Dynamics
(CFD) application codes and are representative of the
computations commonly encountered in aerophysics
applications [26]. The depth of these benchmarks, and the
fact that they capture the essence of typical large-scale
CFD applications, have made them popular not only for
the purpose of evaluating parallel supercomputing systems,
but also in demonstrating the viability of novel software
and architectural concepts. Since these three benchmarks
have some structural similarities, we discuss them
together. For complete details on the problem solved and
the numerical techniques used by these benchmarks, refer
to Chapter 3 of [24]. The benchmarks compute a
numerical solution to a synthetic system of five nonlinear
partial differential equations (PDEs) that represent some
of the key characteristics exhibited by the Navier-Stokes
equations. An implicit type of numerical solution is used
in solving this system of PDEs. The solution phase consists
of several time steps, each involving 1) assembly and
solution of the linear system (three substeps); 2)
computation of the right-hand sides of the equations; and
3) updating the solution for the next time step. The
benchmarks differ in the manner in which the linear
systems are assembled and solved. For APPBT and
APPSP, three-dimensional BLOCKD distributions with
borders were used. APPBT runs for 200 iterations, and
APPSP for 400. For APPLU, which runs for 250
iterations, a two-dimensional BLOCKD distribution was
used. The class B benchmarks (larger problem size) were
utilized. As with JACOBI, a reconfiguration was forced
every ten iterations for each of the applications.

CHOLESKY

This benchmark computes the Cholesky factor L of a
symmetric positive definite matrix 4 such that 4 = LLT
[27]. Matrices 4 and L are sparse and are stored in
column-compressed form in this benchmark. Each column
has a different number of elements, and the matrices are
stored in a single one-dimensional vector. A recursive
partitioning algorithm [28] is used to assign individual
columns to processors. In DRMS, a one-dimensional
arbitrary distribution was used to declare the data
configuration. As input to the factorization, we used the
STK31 matrix from the Harwell-Boeing collection [29].
We forced a reconfiguration every 500 iterations.

A more thorough discussion of our implementation

of reconfigurable CHOLESKY, including detailed
performance measurements with several test matrices,
can be found in [30].
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Table 3 Reconfiguration results—I.

Application Operation Reconfigure Redistribute Rate First
w*o p*o (MB/s/PE) nEo
(s) (s) (ms)
JACOBI 16 — 32 12.99 + 2.24 0.96 = 0.02 16.85 59=+1
32 —>16 12.82 + 2,35 1.14 = 0.00 14.14 114 = 1
APPBT 16 — 32 16.16 = 2.96 4.15 = 0.01 6.66 1215 £ 8
32—->16 14.51 + 2.27 3.75 = 0.01 6.85 2351 £ 16
APPLU 16 —» 32 12.35 = 3.68 2.03 = 0.01 6.03 1352 £ 11
32 > 16 13.08 = 1.79 1.90 = 0.01 5.66 2476 + 24
APPSP 16 — 32 9.94 + 321 2.74 = 0.01 5.75 487 = 6
32 —>16 12.79 = 0.53 2.68 = (.01 5.46 910 = 6
CHOLESKY 16 — 32 15.49 +2.82 0.31 + 0.00 8.27 —
32—16 14.33 £ 1,73 0.30 = 0.00 8.43 —
& Results limits the rate). Therefore, the redistribution rate is in

In our first set of experiments we reconfigured each
application from 16 to 32 and from 32 to 16 processors.
Each reconfiguration was performed at least 100 times
(multiple runs of each application were necessary), and
we discarded the 10% smallest and largest samples.

We performed our analysis on the remaining (filtered)
samples. We summarize the observations for this set of
experiments in Tables 2 and 3. For each application and
reconfiguration we list various results, in the form of mean
and standard deviation (1 * o) for the filtered samples.
The notation P, — P, denotes reconfiguration from P,
(source) to P, (target) processors.

Table 2 compares the steady-state time per iteration for
the DRMS and SPMD versions of the application when
executing on the same number of processors. The column
drms lists the time for the DRMS version (f,,), and the
spmd column lists the time for the SPMD version (g, )-
The time for CHOLESKY is for 1000 iterations; it was
obtained by dividing the total factorization time by the
number of iterations. For the other applications, the
iteration times were obtained by direct measurement. The
% column is a measure of the increased length of the
DRMS times compared to the corresponding SPMD
times. It is computed as 100 Xt = somp) Lspmn-
Note that negative values indicate that the DRMS version
is faster.

In Table 3, the Reconfigure column presents the total
reconfiguration time. The Redistribute column presents the
redistribution component of the total reconfiguration time.
The Rate column lists the redistribution rate for the
operations. The rate is computed as the actual amount of
distributed data in the target partition, divided by the
redistribution time, divided by the number of processors in
the smaller partition (the smaller partition, in general,
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units of MB per second per PE.

The column labeled First lists the execution time of the
first iteration after a reconfiguration, on the new set of
processors. Because of page and cache misses, we expect
this first iteration to execute more slowly than when the
application is in steady state on a fixed number of
processors (compare to Table 2). This penalty to reachieve
steady-state performance is also a form of reconfiguration
cost, paid by the application. It is not included in the
Reconfigure column. For our first four applications, the
whole data space is traversed on each iteration. Therefore,
steady-state operation is reached after the first iteration
after a reconfiguration. Because of the small and highly
variable iteration times for CHOLESKY, we do not have
this result for the last application.

The breakdown of reconfiguration and redistribution

times into their components is shown in Figure 5.

The notation P, : P, at the top of each bar denotes a
reconfiguration from P, to P, processors. The horizontal
line and number at the top of each vertical bar represent
the total time (in seconds) of each operation
(reconfiguration or redistribution). The different shadings
on the bars represent the time required for each of

the four major components of reconfiguration or
redistribution. The blank space between the top of the bar
and the horizontal line, for reconfiguration, is the time
required for the operations that we have lumped together
into the “other” category. For clarity of presentation,
Figure 5 shows only the expected values of the
components. For completeness, Tables 4 and 5 show. the
mean and standard deviation for each individual
component we measured. The % column in Table 4 lists
the percentage of total reconfiguration time represented

by the sum of switch, exit, and spawn times, which are the 317
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system-related, as opposed to application-related,
components of reconfiguration.

We note, from Table 3 and Figure 5, that the total
reconfiguration time is much larger than the redistribution
time, and also has a much larger variability. The
coefficient of variation C_ for reconfiguration time can be
as large as 0.32 (APPSP, 16 — 32). Because of this large
variability, our worst-case 95% confidence interval for the
mean u is u * 0.07u. We note that the redistribution
times have much smaller variance. The largest C_ is only
0.02 (JACOBI, 16 — 32), and the 95% confidence
intervals for the mean are all better than p = 0.004u.
Redistribution times show little variance because this
operation involves only processors that, at the moment,
are exclusively assigned to the application and
communicate only through the high-performance switch.

The variability in reconfiguration time comes from
components other than redistribution, specifically exit and
spawn. This variability is caused mostly by external factors
that are outside the control of DRMS and influence a
reconfiguration. The 32-processor partition we used in our
experiments is part of a much larger RS/6000 SP system,
shared by many users. Although the processors in the
partition were assigned exclusively to DRMS, other
resources are shared (e.g., the interconnection network,
file system, Ethernet). The partition manager, which
configures the partition in preparation for job execution
(and for DRMS reconfigurations), is shared among all jobs
in the RS/6000 SP. The number of requests that the
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partition manager receives and network delays in
contacting it (it executes on one particular node of the
RS/6000 SP) account for variability in the switch time. The
exit and spawn times involve socket communication
through the local area network (Ethernet) among the
various TCs. The traffic in this Ethernet in particular, and
the contention for socket operations in general, explain
both the variability and large values for the exit and spawn
components. We observe in Figure 5 that, for a given
application, the exit time grows with the size of the source
partition, since more processors must exit. Conversely,

the spawn time grows with the size of the destination
partition. The switch time is more symmetrical.

Note that for most applications, the “other” component
of the resize time is approximately 0.5 s, and thus a small
fraction of the overall reconfiguration time. CHOLESKY
has a more elaborate application reinitialization
procedure; therefore, the “other” time is much larger,
of the order of 2.5 s.

From the redistribution results in Table 3, we note that
the redistribution rates vary from 5.5 MB/s/PE up to 17
MB/s/PE. The three NAS benchmarks have approximately
the same rate. The slightly larger efficiency of APPBT can
be explained by its much larger data space. JACOBI
has a much higher redistribution rate than the NAS
applications. From Figure 5 we note that the NAS
applications spend a much larger fraction of their time
computing the slices and copying data to/from buffers than
JACOBI. This difference can be explained because the
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Table 4 Analysis of reconfiguration cost.

Application Operation Reconfigure Switch Exit Spawn Yo Redistribute Uther
nxo nto nwto nwrto nwto nwxo
() (s) ) () (s) (s)
JACOBI 16 —32 12.99 = 2.24 3.05 £ 0.63 1.95+215 647 +x183 88 0.96 = 0.02 0.56 = 1.95

3216 12.82 = 2.35 2.76 £ 0.28 622 0.02 221%228 87 1.14 = 0.00 0.50 = 0.71
8 —16 5.94 =217 1.77 £ 0.24 015001 182*199 63 1.68 * 0.00 0.52 > 0.91
16 — 8 6.00 = 1.99 1.70 = 0.33 1.57£1.81 064 +0.04 65 1.57 = 0.03 0.51 = 0.80

APPBT 16 — 32 16.16 = 2.96 3.07 £ 0.70 298 204 516264 69 4.15 = 0.01 0.80 = 2.54
32 > 16 14.51 £ 2.27 2.53 +0.36 576 2126 186 196 70 3.75 £ 0.01 0.61 = 1.08

8 — 27 13.16 = 2.63 2.00*+0.21 031016 415%x273 49 6.34 = 0.02 0.35 £ 0.48

27 —8 13.69 = 2.47 2.23 = 0.37 423 £259  0.66 =002 52 6.13 £ 0.06 0.44 = 0.68

APPLU 16 — 32 12.35 = 3.68 3.24 = 0.64 1.94 +1.87 449279 78 2.03 = 0.01 0.65 = 1.53
32—>16 13.08 = 1.79 2.87 £ 0.36 632006 158=x1.66 82 1.90 = 0.01 0.42 = 0.63
24 — 32 15.79 = 3.04 2.76 = 0.53 577 =131 517x271 87 1.70 = 0.01 0.40 £ 1.72
32524 14.66 = 2.97 275 £ 0.35 631+0.04 349279 &6 1.57 = 0.01 0.54 = 0.72

APPSP 16 — 32 9.94 = 3.21 2.74 £ 0.57 0.88 £0.86 2.62x223 63 274 = 0.01 0.96 = 1.18
3216 12.79 + 0.53 2.47 £ 0.36 625*0.06 105x016 76 2.68 * 0.01 0.33 = 0.13

8§ —32 10.45 = 2.77 220 £ 0.34 033+0.02 324=x252 55 395 £0.01 0.72 = 0.94

328 13.13 = 0.61 1.95 = 0.43 624 +0.04 0.73x0.08 68 3.74 £ 0.05 0.47 £ 0.12

CHOLESKY 16 —>32 15.49 = 2.82 2.70 = 0.67 461216 540260 82 0.31 = 0.00 2.46 = 3.29
3216 14.33 = 1.73 2.61 = 0.40 7.64 = 0.05 139+123 81 0.30 = 0.00 2.39 + 0.80

4 —16 6.40 = 1.85 1.92 + 0.28 0.18 £0.01 1.68=+170 59 0.55 = 0.00 2.06 = 0.58

16 —4 10.33 £ 2.33 212 = 0.40 538245 048=x0.02 77 0.48 = 0.02 1.88 + 0.64

Table 5 Analysis of reconfiguration cost.

Application Operation Redistribute Compute Buffer Message Sync
uwro nwro wxo w*ro Lo

(s) () (s) (s) (s)
JACOBI 16 — 32 0.96 = 0.02 0.08 = 0.00 0.14 = 0.00 0.68 = 0.00 0.05 = 0.01
32 - 16 1.14 = 0.00 0.09 = 0.00 0.07 = 0.00 0.79 = 0.00 0.19 = 0.00
8 — 16 1.68 = 0.00 0.04 = 0.00 0.27 = 0.00 1.33 = 0.00 0.04 = 0.00
16 —8 1.57 = 0.03 0.05 = 0.00 0.14 = 0.00 1.23 = 0.02 0.15 = 0.01
APPBT 16 — 32 4.15 = 0.01 0.45 = 0.00 1.59 % 0.00 1.97 = 0.01 0.14 = 0.00
32— 16 3.75 = 0.01 0.45 = 0.00 1.33 £ 0.00 1.45 = 0.01 0.52 = 0.00
8 —27 6.34 = 0.02 0.26 = 0.00 1.41 % 0.00 4.19 = 0.02 0.48 = 0.01
27 —>8 6.13 = 0.06 0.28 = 0.00 1.46 = 0.01 2.92 = 0.03 1.47 = 0.02
APPLU 16 — 32 2.03 £ 0.01 0.34 = 0.00 0.68 = 0.00 0.98 = 0.01 0.04 £ 0.00
32 —-16 1.90 = 0.01 0.35 = 0.00 0.56 = 0.00 0.94 = 0.01 0.05 = 0.00
24 —> 32 1.70 = 0.01 0.43 = 0.00 0.66 = 0.00 0.57 = 0.00 0.03 = 0.00
3224 1.57 = 0.01 0.44 = 0.00 0.59 = 0.00 0.50 = 0.01 0.03 = 0.00
APPSP 16 —32 2.74 = 0.01 0.58 = 0.00 0.91 = 0.00 1.18 = 0.00 0.06 = 0.00
3216 2.68 = 0.01 0.59 = 0.00 0.80 = 0.00 1.16 = 0.01 0.13 = 0.00
8 —>32 395001 041 = 0.00 0.93 = 0.00 256 = 0.01 0.05 = 0.00
328 3.74 = 0.05 0.42 = 0.00 0.74 = 0.00 227 £ 0.04 0.31 £ 0.01
CHOLESKY 16 — 32 0.31 = 0.00 0.11 = 0.00 0.02 = 0.00 0.13 = 0.00 0.05 = 0.00
32 —>16 0.30 = 0.00 0.11 = 0.00 0.01 = 0.00 0.14 = 0.00 0.04 * 0.00
416 0.55 = 0.00 0.03 = 0.00 0.05 = 0.00 0.41 = 0.00 0.07 = 0.00
16 -4 0.48 = 0.02 0.03 = 0.00 0.02 = 0.00 0.34 = 0.01 0.09 = 0.01

CFD applications have more distributed arrays, and each APPBT). JACOBI only has two bidimensional distributed
array is of higher dimensionality (up to five dimensions for arrays, so all the steps in redistribution execute more 319
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Table 6 Results for steady-state performance without
any reconfiguration.

Application PEs drms spmd %
mEo nEo
(ms) (ms)
JACOBI 16 123 £ 11 112 £1 9
8 239 £ 22 214 £ 1 12
APPBT 27 1458 x 4 1425 = 3 2
8 4570 x 15 4418 = 17 3
APPLU 32 5343 542+ 3 -1
24 680 = 4 687 = 4 -1
APPSP 32 467 = 10 440 = 4 5
8 1671 £ 7 1609 + 6 4
CHOLESKY 16 592x1 591 +1 0
4 1706 = 1 1720 £ 1 -1

efficiently. CHOLESKY only has one distributed data
structure; however, its efficiency is less than that of
JACOBI because its dataset is smaller and because the
computation of slices of data to be transferred is more
claborate in the presence of arbitrary distribution.

Analyzing columns drms and spmd of Table 2, we
observe that in one case the steady-state performance
of the DRMS version was better than that of the
corresponding SPMD versjon. The DRMS version of
APPLU is 1% faster than the corresponding SPMD
version. On the other hand, the DRMS version of
JACOBI is up to 9% slower than its SPMD counterpart,
with smaller penalties for APPBT and APPSP. We note
that the iteration step in JACOBI is less elaborate than
in the NAS parallel benchmarks, thus emphasizing the
impact of DRMS transformations. These results show that
the impact of code transformations in DRMS is minimal,
and that the dense storage created by the array handles
can sometimes have a beneficial effect, at least on the
type of benchmarks we analyzed. We note that for
CHOLESKY, where there is no difference in storage
patterns for both versions, the steady-state performance
was the same. In analyzing the First column of Table 3
(column 6), we note that for three of the applications the
impact of the transient after a reconfiguration is very
small. For JACOBI, APPBT, and APPSP, the first
iteration after a reconfiguration executes in nearly the
same time as steady-state iterations. For APPLU, the first
iteration after a resize executes 2.5 times slower than
steady-state. We are currently investigating this behavior
to determine whether this is strictly application-dependent
or whether there is some other cause in DRMS.

To gain further insight into reconfiguration and
redistribution times, we performed a set of experiments
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in which each application was submitted to a different
kind of reconfiguration. We chose partition sizes that
exercised many different reconfigurations. Again, each
reconfiguration was performed at least 100 times. The
observations for this second set of experiments are
summarized in Tables 6 and 7, which are equivalent to
Tables 2 and 3 for the first set of experiments. The
breakdown of reconfiguration and redistribution into
components is shown in Figure 6. As before, Tables 4
and 5 contain the details of each component.
Comparing Tables 3 and 7, we observe that
redistribution rates for a given application are smaller
when a larger source or target partition is involved. This
is to be expected because, for a given application, the
amount of data per processor decreases with a larger
partition size. During a redistribution, the data are
also divided into more, and thus smaller, chunks for
interprocessor communication when a larger partition is
involved. All of these factors contribute to decrease the
efficiency in data exchange between processors when the
partition size is larger.
From Figures S and 6 we note that exit and spawn times
are quite small when the partition involved has eight or
fewer processors. These components then become very
large for partitions of size 16 or larger. These results
indicate that our mechanism for inter-TC communication,
using sockets through the local area network, is not very
scalable and that we should look for alternative solutions,
We can compute the payoff point for an expansion from
P, to P, processors as the number of iterations n, that it
takes to amortize the cost of the reconfiguration. Let £, be
the time to execute one iteration on P processors, in
steady state. Let ¢ be the time for reconfiguration, and let
us ignore the transient in the first iteration. Then n can
be computed by solving ¢, + ntp, S Mt

t
= [tﬁ —~ tpz.’ ' 4)

We also define the cost in iterations n_ for a
reconfiguration as

t(
]

that is, the number of iterations that would have been
executed in a partition of size P, during time ¢,. We note
that P, processors are busy during the expansion, and are
therefore prevented from doing useful work in the form of
iterations. Table 8 shows the values of , and n_ for our
applications for expansions from 16 to 32 processors. We
compute n, and n_ using both the mean value for ¢, as
reported in Table 3, and the minimum observed time from
our set of samples. The results are shown in the Mean and
Minimum columns of Table 8, respectively.
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Table 7 Reconfiguration results—II.

Application Operation Reconfigure Redistribute Rate First
pEro pEao (MB/s/PE) wEo
(s) (s) (ms)

JACOBI 8§—16 5.94 =217 1.68 = 0.00 19.15 114 £ 1

16 -8 6.00 = 1.99 1.57 = 0.03 20.42 2191
APPBT 8§ =27 13.16 = 2.63 6.34 = 0.02 8.41 1488 = 12

27— 8 13.69 + 2.47 6.13 = 0.06 7.78 4606 = 19
APPLU 24 - 32 15.79 = 3.04 1.70 = 0.01 4.82 1355 = 13

3224 14.66 = 2.97 1.57 = 0.01 4.89 1730 = 16
APPSP 8§ —32 10.45 £ 2.77 3.95 = 0.01 7.98 484 =3

32 -8 13.13 = 0.61 3.74 = 0.05 7.29 1727 = 11
CHOLESKY 4—16 6.40 = 1.85 0.55 = 0.00 18.30 —

16 —» 4 10.33 £ 2.33 0.48 = 0.02 21.31 —

Table 8 Payoff and cost results.
Application te ty Mean Minimum
(ms) (ms)
t n, n, t, n, n,
(ms) (ms)

JACOBI 123 63 12,990 217 207 5117 86 82
APPBT 2335 1198 16,160 15 14 8079 8 7
APPLU 968 534 12,350 29 24 6298 15 12
APPSP 874 467 9940 25 22 6553 17 15
CHOLESKY 0.592 0.362 15,490 67,348 42,791 6305 27,414 17,418
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Comparing the number of iterations in each benchmark,
as reported in Table 1, with the payoff and cost values
in Table 8, it initially appears that it would not make
sense to perform such an expansion for JACOBI and
CHOLESKY (especially if the mean times for ¢ are used).
We should note, however, that these benchmarks are often
used as kernels in much larger applications. For example,
CHOLESKY might be inside a loop that performs many
different factorizations. The ability to reconfigure
CHOLESKY in the middle of its execution means that the
application can respond much more rapidly to changes in
the availability of resources. The application as a whole
can then benefit greatly by an increase in the number of
processors. We also note that the payoff point decreases
with an increase in the difference between the source and
target partitions of a reconfiguration. For an APPBT
reconfiguration from 8 to 27 processors (Table 7), the
payoff point is only four iterations using the mean ¢ .

9. Impact of application reconfiguration on
system performance

Now we demonstrate that the ability to dynamically
reconfigure parallel applications can lead to overall better
system performance. As noted before, these results have
previously been discussed in [19]. We compare the
performance of three job-scheduling policies in a 32-
processor RS/6000 SP when scheduling a variety of
workloads typical of scientific and technical computing.
Two of these are static scheduling policies that assign
processors at job startup time and make no subsequent
changes to the processor partition of a job. The third
policy uses application reconfiguration to dynamically add
processors to and remove them from partitions during the
execution of a job.

The system-level performance parameter we use is the
average job response time. Let a, be the time a job J,
arrives in the system for execution. Let e, be the time job
J, exits the system (i.e., the time at which it completes
execution). Then the response time r, for job J, is
computed as r, = e, — a,. Note that r, has a queueing
(waiting) time component as well as an actual execution
time component. The average response time for the
system is simply the average of r, for all jobs comprising
the workload.

® Workload specification

To produce our workloads of parallel jobs we used a mix
of 21 different computational fluid dynamics (CFD)
applications. The 21 applications were obtained by varying
the problem size and number of iterations of the three
NAS parallel benchmarks APPBT, APPLU, and APPSP
(see Section 8). The applications have been grouped into
three categories qualitatively representing small, medium,
and large jobs.
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Jobs from Category I (small) can run on partitions of
1, 2, or 4 processors and require less than 1500 seconds
of execution when computed on a single processor. They
are representative of small interactive applications and
program development runs. Jobs from Category 11
(medium) can run on partitions of 4, 8, 12, or 16
processors and require between 3000 and 4000 seconds of
execution on four processors. They are representative of
trial runs of applications. Finally, jobs from Category III
(large) can run on 8, 12, 16, 20, 24, 28, or 32 processors.
They require between 13000 and 20000 seconds of
execution on eight processors and are representative of
production runs.

We define system utilization as the job arrival rate times
the average ideal service time of a job when executed on
all processors. The ideal service time of a job when
executed on all processors is determined as the execution
time on a single processor divided by the total number of
processors. In our experiments, we varied the utilization
from 0.1 to 0.8 in steps of 0.1, obtaining the average job
response time for each utilization.

In our studies we used six different workloads,
characterized by the percentage of utilization produced by
jobs from each category. To define a workload we use the
notation (p,:py:py,) to represent the percentage of
utilization produced by jobs from categories I, I, and III,
respectively. The six workloads we consider are
(05:25:70), (15:25:60), (25:25:50), (35:25:40),
(45:25:30), and (55:25:20). That is, we keep the
percentage of utilization from jobs of Category II fixed at
25%, and we vary the percentage from Category I from
5% to 55%. Correspondingly, we vary the percentage from
Category III from 70% to 20%.

® Scheduling policies

The three scheduling policies we consider for this study
are lazy scheduling (LS), adaptive scheduling (AS), and
reconfigurable scheduling (RS). In all cases, the scheduler
maintains arriving jobs in a queue prioritized on the
arrival time.

LS policy The scheduler continuously scans the job
arrival queue and schedules the earliest job that can run
on all or on a subset of the available processors, giving it
as many processors as it can take. LS is a first-to-fit policy,
with an allocation preference toward the maximum eligible
number of processors. Once a job is scheduled to run on a
set of processors, that job runs until completion on those
processors.

AS policy Under the AS policy, whenever processors are
available to schedule jobs, the scheduler tries to schedule
jobs in the order in which they arrived; however, instead
of scheduling the earliest job on the maximum possible
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number of processors, it tries to schedule as many of the
currently waiting jobs in the arrival queue as possible.

AS is a maximum-to-fit with priority policy. Once a job is
scheduled to run on a set of processors, that job runs until
completion on those processors.

RS policy Under the RS policy, when there are
processors available, jobs are scheduled in the same way
as with the AS policy. In addition, when not enough free
processors are available and there are jobs waiting to run,
it tries to free up processors from jobs that are currently
running on more than their minimum number of
processors. Similarly, when there are no jobs waiting to be
scheduled and free processors are available, RS tries to
expand one or more of the running jobs to run on a larger
set of processors. The RS policy adapts processor partition
sizes of new and existing jobs to dynamic changes in the
system load.

& Simulation experiments

Performance parameters of the various CFD applications
and of DRMS reconfiguration operations were measured
directly from the system in operation. These performance
parameters were used in a DRMS system-level simulator
to obtain the steady-state performance characteristics of
the three scheduling policies. The length of experiments
necessary to obtain steady-state results with tight
confidence intervals can sometimes reach into the
hundreds of thousands of job executions. Therefore, this
combination of direct measurement of some parameters
and simulation represents a practical trade-off to evaluate
the overall system performance.

The central part of the simulator is the job scheduler,
which mimics the actions of the JSA in DRMS (Section
6). The simulator is event-driven, with each event
triggering an action in the job scheduler to schedule jobs
for execution and decide which jobs must be reconfigured.
Job arrival times are generated using an exponential
distribution, with the mean interarrival time computed
to deliver the desired system utilization. Workload
parameters control the percentage of utilization produced
by each job category.

We measure both the mean (n) and standard deviation
(o) of n samples of job response time. To reduce the
correlation between successive samples, we use the batch
means method as described in [31]. After the system
achieves steady state, the simulation runs until the
standard error (8 = o/Vn) of the response time is less
than 0.01p (1% of the mean).

S Results

Figure 7 shows plots of response time as a function of
utilization for the three scheduling policies in each of the
workloads we consider. In the experiments that generated
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these results, we did not allow jobs from Category I to be
reconfigured (in the RS policy). We found no significant
difference in results when we allowed reconfiguration of
those jobs. Jobs from Category I have short execution
times and use at most four processors. Therefore,
reconfiguring them has only a small impact on processor
allocation.

As a general observation, we note that, for any given
scheduling policy and workload, average job response time
increases with utilization. This is explained by longer
queueing delays as the job arrival rate increases, and
longer execution times as jobs have to execute on smaller
partitions. We also note that, for any given scheduling
policy and utilization, the average response time increases
with an increase in the percentage of utilization produced
by Category I1I jobs. Since Category 111 jobs have a much
larger execution time than jobs from Category I, a larger
percentage of longer jobs increases the overall average
response time.

The most important result from our experiments is that
we can establish a well-defined relation among the
performances of the three scheduling policies. For any
given workload and utilization, RS always performs better
than As, and AS always performs better than (or at least
equal to) LS. At low utilization, the three scheduling
policies perform similarly. AS performs similarly to LS
because on average there are few jobs in the waiting
queue. RS performs similarly to the other two because
there are few situations that cause reconfiguration. The
advantages of AS and RS over LS increase monotonically
with utilization. The higher the utilization, the larger the
average length of the waiting queue, and the first-to-fit
policy of L.S causes more job delays. The advantage
of RS over AS increases at medium utilization and then
decreases again at higher utilization. At high utilization,
jobs tend to be scheduled on smaller partition sizes, and
there are usually jobs in the waiting queue to fill holes left
by departing jobs. Therefore, at medium utilization there
are more opportunities for reconfiguration than at either
low or high utilization. Overall, we note that the ability
to reconfigure running parallel jobs in RS can lead to
reductions of the average job response time by a factor
close to 2 over a range of system utilization values.

We focus on response time as the performance
parameter when comparing the different scheduling
policies. It is important to note, however, that there are
other important criteria for comparing scheduling policies
in a system, including, in particular, fairness. While we do
not attempt to perform a formal study of the fairness of
the policies, some conclusions can be drawn from our
experiments. First, because our measurements are from
steady-state behavior, verified for each job category, we
know that there is no job starvation. Second, we have

measured job response times not only for the entire 323
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workload, but also for the individual categories in each
workload. Figure 8 shows those results for workload
(25:25:50), but the same overall behavior is found in the
other workloads.

From the plots in Figure 8 we observe that the
advantage of RS over the other policies decreases as the
size of the job increases. Category I (small) jobs benefit

the most, while Category III (large) jobs benefit the least.

Basically, small jobs are benefiting from the ability to
reconfigure medium and large jobs to smaller partitions,
freeing up processors for the execution of the small jobs.
However, we note that, for each individual category, the
response time under RS is always better than under
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the other policies. Therefore, all job types benefit
from the RS policy, even though the benefits are not
uniform.

Concluding our performance evaluation, Figure 9
presents a breakdown of the average job response time
into its two components: wait time in the queue and
service time in the processors. Again, the results are for
workload (25:25:50), with the same behavior being
observed for the other workloads. The letter on top of
each bar identifies the policy: L for 1.3, A for a3, and R
for RS. We observe that both service time and wait time
increase with utilization, for all policies. The increase in
service time with utilization indicates that the average
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partition size allocated to a job decreases with utilization,
as expected. Wait times increase with utilization because
higher contention for processors causes the jobs to wait
longer in the queue.

The service times for the LS and RS policies start
similarly for very small loads, and then the difference
between the two increases as the load increases. The
service times for RS are larger than for LS, indicating a
smaller average partition size. The reduction of total
response time for RS compared to LS is a result of much
smaller job wait time, caused by the ability of RS to pack
the jobs better and start their execution more promptly.
Because of the sublinear speedup behavior of our CFD
applications, efficiency improves when jobs run on
smaller partitions. This factor also helps RS to perform
better than LS. We note, however, that under the 23
policy jobs have an even larger service time than under
RS, indicating a smaller average partition size. Still,
wait times and total response times are smaller for
RS than for AS, thus showing the importance of
reconfiguration.

10. Related work

The SOP model of programming and the DRMS
framework that supports this model cover several topics
of interest to researchers in the area of parallel and
distributed computing. Five main areas are relevant to the
topic of this paper:
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Component costs of average job response time into service time and wait time components.

¢ Programming models that support dynamic
reconfiguration of parallel applications.

e Run-time environments that support the execution of
such reconfigurable applications.

« Language support for data distribution on
multiprocessor systems.

« Scheduling aspects of parallel applications.

» Reconfiguration of parallel and distributed applications
for software engineering purposes.

In Section 4, we discussed four other parallel
programming models (workers, fork-join, HPF, and AMP)
that support dynamic reconfigurations, and also the run-
time environments that support these programming models.
Extensive work has been done on language support for
data distribution in multiprocessors. DRMS data-
distribution annotations were strongly influenced by
FORTRAN D [32] and HPF [15], primarily because we
wanted to present a programming environment that was
already familiar to some users. Other languages with data-
distribution features include Vienna FORTRAN [33],
FORTRAN 90D [34], and pC++ [35]. We note that our
work differs substantially from these languages in that we
provide data distribution as a support for generating
dynamically reconfigurable explicit SPMD parallel
applications. Our language extensions incorporate
mechanisms for specifying resource requirements that are
used by the scheduling module of DRMS in dynamically
reallocating processors among competing applications.
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One of the benefits of dynamic application
reconfiguration is the ability to implement dynamic
scheduling policies. Many studies have shown that
processor-scheduling policies supporting dynamic
reconfiguration of processor partitions can alleviate the
problem of adapting to workload changes, at the expense
of additional reconfiguration overhead [1-8]. In particular,
[2-5] analyze the benefits of dynamic partitioning on
uniform-access, shared-memory systems and show that
dynamic reconfiguration policies outperform all other
space-sharing policies. In the realm of private-memory
(message-passing) systems, it has been demonstrated [6]
that dynamic reconfiguration policies outperform the other
policies. A discussion of the effects of different processor-
scheduling policies and reconfiguration overhead in
dynamically reconfigurable systems can be found in [7, 36].
Our work differs from the previously mentioned research
in that we have implemented a working environment
which supports dynamic reconfiguration of processor
partitions on a commercial message-passing system (IBM
RS/6000 SP). We provide the langnage extensions and
run-time services that allow users to easily port their
existing SPMD applications to execute on reconfigurable
partitions. We also provide all resource control and
scheduling mechanisms to coordinate the execution of
these jobs.

As we mentioned in the introductory section, the term
application reconfiguration is also used in the context of
software engineering of distributed applications: e.g.,
addition or replacement of modules, communication
channels, process migration, fault recovery, and load
balancing for performance tuning. Significant among
these are the Regis and its predecessor programming
environments [37] and Polylith and its extensions to
support dynamic reconfigurations [38, 39]. In all of these
environments, a separate language is provided for writing
scripts external to the application for describing the
application structure, its run-time behavior, and the
system-level actions to be taken at reconfiguration points.
Using these scripts, the run-time environment performs
the desired reconfiguration actions described above. In
Polylith, programmers can specify reconfiguration points,
which are similar to SOPs, in the application modules.

In this paper we have not addressed the issue of
application reconfiguration for fault tolerance. Task-
reconfiguration schemes, in which tasks that are performing
on a faulty processor are moved to a healthy one, are a
well-known approach to reconfiguration for fault tolerance
[40]. More related to our work, [41] addresses the issue of
reconfiguration of SPMD programs for fault tolerance. It
uses dynamic data redistribution to move the global data
structures into a target healthy processor partition, where
the computation is continued from the last checkpoint.
Different reconfiguration strategies are discussed in [41],
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but it does not provide the programming environment and
resource manager to automatically perform checkpoint or
data redistribution. The implementation of those is left
entirely to the application.

Octopus [42, 43] is another resource-management
system in which application reconfiguration plays a central
role. A system being managed by Octopus is divided into
independent domains, which can be further divided into
partitions. The domains and partitions can have their own
schedulers; thus, the system is controlled and managed in
a hierarchical manner. Octopus supports gang-scheduling
to perform both time-sharing and space-sharing of
resources among subpartitions. A mechanism called
flexible dynamic partitioning (FDP) is used to dynamically
reallocate resources among subpartitions. If a partition has
to have its resources reallocated while an application is
executing, the application must be reconfigured. Octopus
supports both bag-of-tasks (workers model) and symmetric
(SPMD model) reconfigurable applications. DRMS is
different from Octopus in that DRMS defines and
implements a new programming model specially designed
for the development of reconfigurable applications by
making only a few additive changes to existing parallel
applications. This programming model is extensively
supported in DRMS through a variety of data distributions
and resource-control constructs that can be used directly
by applications. Another difference is in the scheduling
component of the two systems. In Octopus, the scheduling
component is a central and integral part of the system,
whereas in DRMS, resource and job coordination is
central to the system. As a result, in the case of DRMS,
any external site-specific scheduler can be plugged in
to drive the system. This may be advantageous when
reconfiguration facilities are to be made available to
existing job-scheduling environments.

Finally, the Dome project {44] is also similar to DRMS
in that it supports the development of reconfigurable
applications using distributed data structures. It is
oriented toward new C++ applications that make use of
the Dome class libraries and preprocessor.

11. Conclusions

In this paper we have described the Distributed Resource
Management System (DRMS), a comprehensive
framework that supports dynamic reconfiguration of data
parallel applications. We have developed and tested our
particular implementation on a large-scale IBM RS/6000
SP system. The reconfiguration abstractions provided by
the SOP programming model, described in this paper, are
easy to use and are well suited for the SPMD applications
that constitute the bulk of the load in such systems. We
have seen, from our system-level performance evaluation,
that job-scheduling policies using the application

reconfiguration provided by DRMS can substantially 327
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improve the average job response time in an IBM
RS/6000 SP parallel system.

For reconfiguration purposes, in this paper we
considered parallel applications based on the SPMD
paradigm. To make these applications reconfigurable,
we used the manual-annotations approach, in which
appropriate annotations are inserted in the programs
manually. In the recent past, we have extended this work
on two fronts. First, we have successfully extended the
SOP programming model to HPF programs, as described
in [45]. We have also developed and implemented low-
level FORTRAN, C, and C++ APIs for application
reconfiguration that allow a finer resource and task
control than the language extensions discussed in this
paper. The API, which we have not discussed in this
paper, broadens the scope of the reconfigurable parallel
applications beyond the SPMD paradigm. On a second
front, using the SOP programming model, we have been
able to design and implement scalable checkpoint and
restart facilities for parallel applications under the DRMS
environment. With these facilities, a paraliel application
can checkpoint its execution state at an SOP in a task-
independent manner. Using this state information, the
application can be restarted with a different set of tasks
on a different set of processors. These facilities are useful
in providing fault tolerance, and for purposes of recovery
and migration.

Application reconfiguration must be performed
efficiently for it to deliver the promise of better system
and job performance. Although we have shown DRMS
reconfiguration to be effective for medium to large
applications, much work remains to be done. Our main
performance objective is to reduce further the relative
cost of reconfiguring a parallel application. As Table 8
shows, that cost today is close to 10% of the execution
time of the applications on a large processor partition. We
first note that even the NAS class B benchmarks are
relatively small applications. We are currently developing
reconfigurable versions of production-strength applications
that run for thousands of iterations and take several hours
of CPU on large processor partitions. Since these
applications have a dataset not much larger than APPBT,
we can expect to reconfigure them in 15 to 20 s, which
represents just a small fraction of their execution time.

In most cases the data redistribution time is not a
limiting factor in reconfiguration performance, especially
when the partitions involved are large. However, this
redistribution time scales with the problem size per
processor, evident for APPBT reconfiguring between 8 and
27 processors. As more powerful nodes in a parallel
system are used to address larger problems, we can
expect the percentage of reconfiguration taken by data
redistribution to increase. Theefore, we are taking steps to
optimize the redistribution operation by simplifying
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the computation of slices, eliminating some of the
intermediate buffer copying, and performing more
message aggregation.

More pressing at this time is to reduce both the
total cost and variability of the other components of
reconfiguration. From Table 8 it is clear that we can
double the performance of reconfiguration by eliminating
the external factors that cause variability. As discussed in
Section 8, most of these costs are outside the direct
control of DRMS, since they involve access to shared
resources such as the partition manager and the Ethernet.
Also, the processor partition we used for our experiments
consisted of nodes scattered throughout many physical
frames of an RS/6000 SP. We expect somewhat better
behavior from a full set of frames. Our strategy for
reducing the cost for partition reinitialization consists of
letting each node reconfigure its own partition data
structures directly. This avoids access to the shared
partition manager and also parallelizes the operation, thus
reducing its total time. We also wish to perform all inter-
TC communication and synchronization over the high-
performance switch instead of the Ethernet. We expect
this to reduce both the time and variability of the
operations, since communication over the switch is much
faster and subject to less interference from other nodes.
These improvements in inter-TC communication will result
in reductions in exit and spawn times. The time to spawn
a job on a new set of processors can be further reduced by
speeding up the process of loading the code in this new
set. This can be accomplished by starting the load while
the partition is being initialized, effectively overlapping
the two operations, and providing access to the code,
specifically for the new processors in a partition, through
the high-performance switch instead of the file system.
One of the reasons for first implementing inter-TC
communication over the Ethernet was to avoid
interference with application-domain communication. As
we move the TC communication to the high-performance
switch, we must reevaluate the impact on application
performance.

In addition to tuning DRMS for performance, we are
also working toward improving the functionality provided
by DRMS. As mentioned earlier, by providing a low-level
API, we are extending some of the capabilities to non-
SPMD applications that are developed using more general
programming paradigms such as MPMD and master-slave
programming models. Our future work includes
development of high-level programming abstractions for
these and other types of programs that are more
commonly in transaction-based applications. Another
important aspect of our future work is the development of
a compiler which, as discussed in Section 6, automatically
converts SPMD programs into the SOP programming
model. Similarly, we are working on developing true
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computational steering and interapplication coordination
facilities using the data distribution abstractions developed
for application-reconfiguration purposes. Some of the
issues involved have already been discussed in [46].

A unique feature of DRMS environment is that the
system provides a closer coupling between applications
and the resource coordination and scheduling activities
which are normally associated with the operating system.
With this arrangement we have seen that both the system
and the applications can benefit. However, this close
coupling can be extended further. Using the Performance
Data Gatherer (PDG) component of DRMS, JSA can
acquire performance characteristics of applications in the
system and the information on the current load on each
processor. By combining this type of past information with
active performance-predication capabilities about each
running application in the system, intelligent scheduling
decisions can be made. Currently, we are working toward
developing an efficient PDG subsystem and fast on-line
performance-prediction tools that can be accessed by JSA.
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