Performance
analysis

on a CC-NUMA
prototype

Cache-coherent nonuniform memory access
(CC-NUMA) machines have been shown to be
a promising paradigm for exploiting distributed
execution. CC-NUMA systems can provide
performance typically associated with parallel
machines, without the high cost associated
with parallel programming. This is because a
single image of memory is provided on a CC-
NUMA machine. Past research on CC-NUMA
machines has focused on modifications to the
memory hierarchy, interconnect topology,
and memory consistency protocols, which
are all areas critical to achieving scalable
performance. The research described here
expands this focus to issues associated with
operating system structures which can
increase system scalability. We describe a
hardware/software prototyping study which
investigates how changes to the operating
system of a commercial IBM AS/400® system
can provide scalable performance when
running transaction processing workloads. The
project described was a joint effort between
researchers at the IBM Thomas J. Watson
Research Center and a team from the AS/400
development laboratory in Rochester,
Minnesota. This paper describes various
aspects of the project, including changes
made to the operating system to enable
scalable performance, and the associated
hardware and software performance tools

developed to identify bottlenecks in the
existing operating system structures.

1. Introduction

A major roadblock to realizing scalable performance on a
shared-memory multiprocessor system is the amount of
data transferred between processor caches (and processing
nodes). Ideally we would like to schedule jobs on
processors or partition our data effectively to minimize
this interprocessor or internode bus traffic. If we can
capture workload characteristics through hardware
monitoring and relate them to internode bus traffic, we
can make specific changes to improve upon various aspects
of the operating system responsible for such functions as
task scheduling and memory allocation.

This paper describes an AS/400*-based prototyping
study aimed at improving multiprocessor scalability for
coarse-grained paralle] commercial (transaction-based)
applications. The system structure considered here
comprises four single-processor, distributed processing
nodes. Each node contains its own physically distributed
node memory. Figure 1 shows the basic configuration of
our hardware system. While our prototype system contains
only four nodes, we depict a system containing additional
nodes, since we are interested in studying higher degrees
of scalability. Each local memory is fully accessible from
all other nodes, so that the combined node memories
appear to be a single, linear address space. The nodes are
connected by buses or switched links. The operating
system, although partially partitioned, presents an image
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CC-NUMA AS/400 prototype system.

of a homogeneous multiprocessor system. Although similar
systems have recently been explored [1, 2], the
developments produced by these studies have been limited
to memory management hardware and memory
consistency policies. The workloads used in these studies
have been limited to scientific and engineering
applications [3, 4]. We focus instead on possible
modifications to the operating system structures and
evaluate these modifications while running commercial
applications.

A prototype system has been constructed to assess
scalability on our CC-NUMA system. The prototype
hardware consists of four single-processor, bus-connected
nodes, each with its own assigned portion of physical
memory. This system was originally designed to function
as a tightly coupled four-processor system, but by making
substantial changes to the memory-allocation and task-
scheduling portions of the operating system, we have been
able to embed a distributed system structure within a

tightly coupled AS/400 system.

The prototype software comprises a modified, object-
based 0S8/400* commercial operating system [5] and two
transaction-processing benchmarks. The prototype was
modified to obtain complete, object-typed reference traces,
as well as instrumentation samples. With every traced
memory reference we are able to identify its source and
destination on our system, as well as the source of the
reference in the operating system or user application.

By using the traces and instrumentation data obtained
on the prototype, changes were made in the task-
dispatching and page-allocation algorithms of the
operating system, and further traces were collected. The
conclusion was that internode reference traffic could
ultimately be reduced sufficiently to achieve near-linear
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scalability on a system comprising 16 processors running
transaction-processing applications. While other CC-
NUMA studies have demonstrated higher degrees of
scalability, not one of these studies has addressed
transaction-processing application environments.

This paper describes various aspects of the prototype
project, including the system modifications and system
monitoring tools, as well as proposed modifications to the
final system and accompanying operating system software.
Section 2 addresses a number of CC-NUMA design issues.
Section 3 examines the set of tools we have developed for
this research. Sections 4 and 5 provide results which
demonstrate the value of these tools. Section 6 concludes
with a summary of this work.

2. Distributed shared-memory issues

Flynn’s well-known classification of computer systems
divides machines into four categories: single-instruction
single-data (SISD), single-instruction multiple-data
(SIMD), muitiple-instruction single-data (MISD}), and
multiple-instruction multiple-data (MIMD). This taxonomy
is based on the amount of parallelism present in the
instruction stream and the data stream [6]. A better model
for differentiating the multiprocessor machines of today is
to classify them on the basis of memory organization. The
model structure chosen for our prototype system can be
classified as a nonuniform memory access (NUMA)
machine [7] or, more generally, a distributed shared-
memory (DSM) machine. The specific model we discuss is
called CC-NUMA (cache-coherent nonuniform memory
access).

A CC-NUMA system locates a pool of local memory
near each processor. Each processor additionally has
access to the local memories of every other processor. The
cost of accessing nonlocal memory (i.e., addresses that
resolve to memory local to other processors) is typically
much greater than the cost of accessing local memory.
This cost is a combination of the greater latency (i.e.,
electrical distance) to nonlocal memory and the
contention encountered in the processor/memory
interconnect. Local caches are provided, and all caches are
maintained to support a single image of coherent memory.
This requires substantial communication between nodes
when internode accesses take place.

The key design issue addressed by this prototype study
is how to minimize the number of internode memory
references generated by commercial processing workloads
(TPC-A** [8, 9] and RAMP-C [10]). A major barrier to
scalable performance on CC-NUMA machines is the large
latency associated with internode references. To capture
the cause of internode references requires precise
measurement of the occurrence and source of all memory
accesses. We need to identify which application or
operating system component generated the memory
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reference, and what data type (read/write) or object class
was the target of the reference. To measure these
reference parameters, high-resolution system monitoring
tools were developed, and changes to the memory-
allocation and task-dispatching algorithms of the OS/400
operating system were made to support these tools. The
data obtained allow precise prediction of the gains
associated with planned operating system modifications.

CC-NUMA systems are specifically designed with the
assumption that most memory accesses will be resolved
locally on the requesting node. To better understand the
impact of memory access latencies, an analytical model of
our proposed CC-NUMA system was developed. The
model developed the worst-case scenario that could be
tolerated while still achieving scalable performance. The
model included submodels of the memory, local bus
architecture, AS/400 processor, and scalable interconnect
technology which would be available during the
development time frame of this system. On the basis of
this model, for our CC-NUMA system to achieve near-
linear scalability (i.e., performance increasing linearly as
additional processors are added), internode (between two
bus-based node clusters) accesses must be limited to less
than 5% of all accesses."

To reach this level of reference locality, incremental
system software changes were made. After each set of
changes were implemented, additional measurements were
made, and simulations were performed to judge the effect.
The result is a series of system modifications required to
achieve scalable performance. Next, we describe the
tracing and monitoring tools used to identify the causes of
internode traffic.

3. Typed traces on a CC-NUMA machine
Trace data have commonly been used to evaluate design
trade-offs of proposed computer systems [11-13]. Traces
have been used to evaluate the performance of memory
hierarchies [14], branch predictors {15], and computer
pipelines [16]. Many issues are associated with obtaining
useful trace data:

1. Tracing overhead: How is the system perturbed in order
to log a trace sample?

2. Trace content: What is the amount of data necessary to
capture per trace sample?

3. Trace length: What is the appropriate number of
records to capture for the proposed simulation study?

4. Tracing speed: What is the peak trace record production
rate on the system under test?

A discussion of these issues can be found in [17]. While
many of these problems apply to any tracing environment,

'IBM internal communication.
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tracing in a distributed multiprocessor environment
introduces a number of additional concerns:

1. Multiple execution streams—Parallel capture and
accurate time stamping become an issue here.

2. Synchronization—Any perturbation of the system can
skew the interaction between multiple, competing tasks,
generating a very different access stream.

3. Timing dependencies—Multiple tasks may be requesting
service from a shared device (e.g., disk) which runs in
real time.

A discussion of these concerns can be found in [18].
Many of these problems occur only when we attempt to
use a trace taken from one multiprocessor system as input
to a simulation of a second system. It is difficult to predict
how a trace obtained on one CC-NUMA machine would
execute on a second machine with a different hardware
organization. The ordering of executions may differ
greatly because of changes in queuing effects and shared
data access. In this work we do not attempt to use the
traces for this purpose (though we have used these traces
to obtain cache miss information). Instead, we use the
trace information to identify which elements in the
operating system and user applications are responsible for
internode accesses.

® Real-time tracing and instrumentation

To enable us to quantify the impact of our operating
system changes and to predict the impact of proposed
changes, precise tracing hardware and software tools were
developed. In addition to allowing traces to be gathered in
real time (i.e., without slowing down the system), we also
provide the capability to profile the reference patterns by
an object’s type. Figure 2 shows how the monitoring
system interfaces with the prototype system. Again note
that our prototype contains only four nodes, while we
depict a system containing additional nodes.

Hooks are inserted through an additional AS/400
memory card which monitors all accesses to memory (the
bus is effectively “snooped”). This fifth memory card is
fully addressable from all processors in the system. A
daughter card was designed that sits on top of the fifth
memory card. The daughter card is addressed using a
portion of the address range of the fifth memory card.
This daughter card contains dual-ported SRAM which
maintains information for all object types currently
present in physical memory. This SRAM can be written to
or read from by any processor. The hardware tools rely on
software modifications to allow for the creation of object-
typed information to be stored in the SRAM.

Our trace capture methodology takes advantage of the
fact that on an AS/400 system, all user entities and nearly

all system entities are stored in separate virtual memory 207
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segments and are treated in an object-based fashion by the
operating system. The virtual address space is partitioned
into temporary and transient ranges. Each persistent
segment has a permanent virtual address allocated from
the permanent range. Private task objects are suballocated
from special storage segments for efficient swapping.
Further, a protected header in each segment contains or
points to precise type information. By using these various
page-type identifiers, we are able to determine page type
at memory allocation or page-in time with minimal
overhead.

This page-type information is stored (by the operating
system) in a memory array (on the daughter card in the
dual-ported SRAM) on our prototype. The memory array
contains a byte of memory for every page in our physical
address space. The operating system was modified to store
page-type information in the memory array whenever a
page is brought into memory or is reallocated. This stored
information allows accesses to any particular page to be
uniquely identified. The card monitors all memory bus
accesses and indexes into the SRAM to identify what type
of access is being performed. This information is read out
and recorded, along with the address, requesting processor
1D, read/write indication, and access length, and is
captured by a real-time tracing system (see [19] for a
description of this system). The real-time tracing system
allows for capture of trace data without significantly
perturbing the traced system (at a sustained rate of 25
megasamples per second). Any introduced overhead
appears during an initial page allocation. The page type is
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dynamically deduced, and a store is issued to the page-
type array. This results in a few extra instructions being
issued on page allocations, which are typically infrequent
events.

In addition to collecting a finite-length trace (64 million
samples), we have the capability to count the various
access types on our prototype system. We provide a bank
of fast counters which effectively gives us an infinite time
sample. The counter instrumentation (constructed out of
programmable array logic) breaks down the accesses on
the basis of requesting processor ID, target node memory,
access type, and read/write. While object-type counts have
proven to be useful in our work, they fail to capture the
temporal patterns associated with memory addresses. For
this reason we use both sources of data to guide our work.

o Target workload

Two different workloads are used in this work. RAMP-C
is an IBM proprietary benchmark used to evaluate
transaction-processing performance [10]. It consists of
transactions of four complexity levels in accessing multiple
data files. The files are in sequential, random, and indexed
organizations, and the files are shared among transactions.
TPC-A is an industry-standard benchmark which is based
on the DebitCredit transaction-processing benchmark. An
excellent discussion of the TPC benchmarks can be found
in [8].

4. Object-typed performance data

To demonstrate the utility of trace and instrumentation
information, we provide examples taken from our
prototype project results which were used to identify the
barriers to scalability on our system. We began by studying
the access patterns on our unmodified system. From these
data, we were able to plan a series of modifications to the
software system which would limit the number of
internode references.

Figure 3 plots the percentage of all accesses per object-
type classification. These categories were chosen to be
semantically meaningful and predictively useful. Each
category represents as much as possible a collection of
homogeneously used pages. Where necessary, references
to individual data structures, such as single locks within a
page, were isolated. Each category is represented by a
unique bit pattern in the object-type memory. Further,
each category represents a group of references which will
be predictably affected by system modifications. The data
were captured using the monitoring tools described
previously.

o Object types

We take advantage of the fact that our AS/400 system
makes use of its object-based nature. Object references on
an AS/400 system can be identified with a fairly fine
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Access by object type: RAMP-C (dark bars) and TPC-A (light bars).

granularity. First, objects are grouped into one of three
categories: 1) process {objects used by the operating
system in direct support of a user’s process); 2) operating
system (objects identified as operating system data
structures and codes, and not identified with any user
processes); and 3) shared application (objects used by
processes and system services). Process, operating system,
and shared-application objects are described in Tables 1,
2, and 3, respectively.

In Figure 3, we see marked similarities between the two
workloads. More than 50% of the memory accesses
generated by both workloads are references to temporary
storage for a process and nonpageable operating system
code. The latter is not surprising, since the OS/400 database
system is incorporated directly into the operating system.

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997

This object-type breakdown is used to identify which
object references in the system are responsible for

internode references.

Figure 4 shows the breakdown of reads versus writes,
and local versus nonlocal, for each object classification
when running TPC-A. The Reads bar indicates the
percentage of accesses which are reads (one hundred
minus this percentage is the percentage of accesses which
are writes). The Locality bar indicates the percentage of
accesses which are resolved in the local memory (one
hundred minus this percentage is the percentage of
accesses resolved in nonlocal memory). We focus heavily
on the locality results, since the success of our prototype
project is heavily dependent on limiting the number of
internode references.

D. R. KAELI ET AL.
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Table 1 Process objects.

Type Description
PagOW, PagNo, Pag (process access group) is a container for process-specific temporary storage
PagTC including invocation work areas, program automatic/static storage areas, and
file/data path information
PROb;j Process control blocks
StkFR Call stacks used in saving states for calls between user process and operating

system functions

IOPrm I/O request blocks containing parameters to be passed to I/O controllers

Table 2 Operating system objects.

Type Description

PRDir Primary storage directory which is embedded in the inverted page tables used
in virtual address translation

AxDir Auxiliary storage directories; used to control allocation and deallocation of
disk space

MKDat System microcode data including processor-related control information

MKCod System microcodes for implementing complex system instructions

KRCod Nonpageable operating system codes, excluding storage management functions

PGSys Nonpageable codes for storage management functions

KRDat Nonpageable operating control blocks, excluding those for storage
management functions

PGDat Nonpageable storage management controls, including storage management
locks

OSPag Pageable operating system codes

GbST Transient storage (heaps) for operating system functions

VALTD Nonpageable temporary storage objects, excluding StkFR and PRobj objects

Table 3 Shared-application objects.

Type Description
LckTB System-wide locking tables; infrastructure to support lock/untock high-level
instructions
NonDB Permanent objects; data and codes of user application and system services
which are not flagged as database objects
DBOb;j Database objects, including indices
Temps Temporary objects; data used by applications and system services
5. System modifications captured data on our prototype. Remember that our
The following describes the staged changes to the OS/400 prototype consists of a four-processor, single-processor-
operating system that had to be made to obtain near- per-node, CC-NUMA system, and that we are projecting
linear speed-up on our proposed 16-processor system. results to a 16-processor, four-processor-per-node, CC-
210 These changes are selected and evaluated using the NUMA system. To support the validity of our results, we
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System object type

Access characteristics by object type (TPC-A): reads (dark bars); locality (light bars).

also captured measurements on a four-processor, tightly
coupled multiprocessor system (i.e., the equivalent of a
single node on a 16-processor CC-NUMA system).

Remember that our goal was to limit the number of
internode references. We followed a set of incremental
changes to our system to reach this goal. While it is
beyond the scope of the prototyping project to implement
all of these changes, we are able to estimate their effect
on reference locality from the data capturing using the
instrumentation tools available on our CC-NUMA
machine.

In Figure 5 we move through a series of stages, starting
with the Original stage, which represents our original
unmodified OS/400 operating system. Stage I implements
changes to task dispatching and page allocation. The task-
dispatching changes made to our OS/400 system involved

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997

modifying dispatching structures to enforce node affinity
[20]. The main idea here is to reschedule jobs on the node
where they last ran (not necessarily the same processor)
instead of migrating them to other nodes. This will limit
the number of internode references due to job migration.
Changes to the page allocation mechanism involved
various strategies for placing newly allocated memory (on
which node should the requested page be placed).
Experimentation was done on allocating memory on the
requesting or faulting task node, and basing this decision
on the type of page that was being requested (e.g., the
Pag objects, database data, operating system control
areas). Since OS/400 is object-based, each page has a
unique type that is identifiable upon allocation. Making
these two major changes to the operating system, we were
able to cut the number of internode references to 50%.

D. R. KAELI ET AL.
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System modifications

Locality for a four-node (16-processor) CC-NUMA: RAMP-C
(dark bars) and TPC-A (light bars).

Stage 2 implements the use of local memory for the stack
frames (StkFR), I/O parameter block areas (IOPrm), and
process objects (PRODbj). The internode references were
reduced an additional 5%.

The remainder of the changes described are based
on measurements produced using the customized
instrumentation facilities. We specifically captured the
counts of read and write data for both local and nonlocal
references so that we were well positioned to make these
projections accurately. The validity of the projected
numbers is based on the following assumptions:

¢ Local clocking mechanisms do not introduce significant
overhead to each node (they should actually simplify
some operations).

< None of these modifications severely change the
refetence locality of accesses to other data types in the
system.

« The changes in technology do not severely perturb the

access patterns that we are currently seeing.

Sufficient memory is added to the system to allow for

the increase in code size generated by code replication

and CISC-to-RISC code expansions.

The next stage implements R/ORep (read-only
replication). In Stage 3, all read-only areas are replicated
across each node. These areas include shared application
and service codes (portions of NonDB), system
microcodes (MKCod), and operating system codes

D. R. KAELI ET AL.

(OSPag). This is a sizable improvement, as can be seen in
Figure 5.

Stage 4 changes include modifications to the primary
page table, hash tables (PRDir in the AS/400 uses an
inverted page table [21]), servicing of I/O interrupts by the
requesting processors (IOPrm allocated by a local node
should be serviced by a local node), and replication of the
hardware clock on each node (portions of MKDat).

Changes in Stage 5 address modifications to the storage
management locking structures to provide node-based
locks in a hierarchical partitioning (PGDat, AxDir), and
replicating server tasks on each node (e.g., hardware clock
services and I/O service tasks). This pushes locality to the
95% local line, as indicated in Figure 5.

As the AS/400 platform moves to a PowerPC*-based
processor, a natural code expansion will take place
(caused by moving from a CISC architecture to a RISC
architecture). This will further increase the locality of the
code (estimated to be approximately 1%), and is
accounted for in Stage 6.

We were able to effectively isolate the system software
that was responsible for a large percentage of the
internode memory references on our prototype system.
Through a series of changes and additional
instrumentation runs, we were able to design a system
that will provide linear scalable performance, up to 16
processors. Very few systems today can boast such
aggressive speed-up, especially when running transaction-
processing workloads.

6. Conclusions
The results of this study have been used to influence
future CC-NUMA designs within IBM. The insight
provided by this study would not have been possible
without the availability of such detailed performance data.
We feel that the typed address trace approach used in this
prototype study is a novel approach to providing software
designers with insight into how their operating systems
and system software execute on CC-NUMA machines.
Several important conclusions follow from the data
obtained using these instrumentation tools. First is the
quantitative observation that shared user objects (i.e.,
database objects and associated locks) play only a small
role in the total references generated by transaction-
processing workloads, and a correspondingly small role in
CC-NUMA exploitation. We observed only approximately
5% of the total references to these categories. In marked
contrast to engineering/scientific workloads, commercial
transactions typically perform only simple data
manipulations but require complex system support.
Second, system and user code, as well as process objects
and structures, are responsible for the bulk of all
references. We observed approximately 80% of all
references to these categories. Thus, for these transaction-
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based workloads, replication of read-only pages is
absolutely crucial in reducing the number of nonlocal
references. Equally critical, process pages must be placed
local to the owning process at initial page allocation. The
remaining references are made to a diverse set of system
objects (i.e., tables, indexes, synchronization variables)
which must be partitioned as much as possible.

Finally, to carry out correct page placement at page-in
time, the OS must be structured to provide semantic hints
about page content. This is a requirement for all but the
most cursory page placement. In our case, important OS
components are structured as objects stored in virtual
memory segments with protected, self-typing headers,
Further hints are provided through the virtual addresses
assigned to persistent and temporary objects.
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