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Cache-coherent  nonuniform  memory  access 
(CC-NUMA)  machines  have  been  shown to be 
a  promising  paradigm for exploiting distributed 
execution.  CC-NUMA  systems  can  provide 
performance  typically  associated with parallel 
machines, without the  high cost associated 
with parallel  programming.  This is because a 
single  image  of  memory is provided on a CC- 
NUMA  machine.  Past  research  on  CC-NUMA 
machines  has  focused  on modifications to the 
memory  hierarchy,  interconnect  topology, 
and  memory  consistency  protocols,  which 
are all areas critical to achieving  scalable 
performance.  The  research  described  here 
expands this focus to issues  associated with 
operating  system structures which  can 
increase  system  scalability. We describe  a 
hardware/software prototyping study  which 
investigates  how  changes to the operating 
system  of  a  commercial  IBM AS/400@' system 
can  provide  scalable  performance  when 
running  transaction  processing  workloads. The 
project described was a joint effort between 
researchers at the  IBM  Thomas J. Watson 
Research  Center  and  a  team from the AS/400 
development  laboratory in Rochester, 
Minnesota.  This  paper  describes  various 
aspects  of  the  project,  including  changes 
made to the  operating  system to enable 
scalable  performance,  and  the  associated 
hardware  and  software  performance tools 

developed to identify  bottlenecks in the 
existing  operating  system  structures. 

1. Introduction 
A major  roadblock  to realizing  scalable performance  on a 
shared-memory  multiprocessor system is the  amount of 
data  transferred  between  processor  caches  (and processing 
nodes). Ideally we would  like to  schedule  jobs  on 
processors  or  partition  our  data effectively to minimize 
this  interprocessor  or  internode  bus traffic. If we can 
capture  workload  characteristics  through  hardware 
monitoring  and  relate  them  to  internode  bus traffic, we 
can  make specific changes  to  improve  upon  various  aspects 
of the  operating system responsible  for such functions as 
task  scheduling and memory allocation. 

This  paper  describes  an AS/400*-based prototyping 
study aimed  at improving multiprocessor scalability for 
coarse-grained  parallel  commercial  (transaction-based) 
applications.  The system structure  considered  here 
comprises  four single-processor, distributed processing 
nodes.  Each  node  contains  its own physically distributed 
node memory. Figure 1 shows the basic  configuration of 
our  hardware system.  While our  prototype system contains 
only four  nodes, we depict a  system containing  additional 
nodes, since we are  interested in  studying higher  degrees 
of scalability. Each local  memory is fully acc.essible from 
all other  nodes, so that  the  combined  node  memories 
appear  to  be a  single, linear  address  space.  The  nodes  are 
connected by buses  or switched links. The  operating 
system, although partially partitioned,  presents  an image 

"Copyright 1997 by International Business Machines  Corporation. Copying in printed  form  for  private use 1s permitted  without  payment of royalty provided that (1) each 
reproduction is done  without  alteration  and (2) the Journal reference  and IBM copyright notice are included on the first page. The title  and  abstract,  but no other  portions, 
of this  paper may be  copied or distributed royalty free without further permission by computer-based  and  other  information-service systems. Permission  to republish any  other 

portion  of  this  paper  must  be  obtained  from  the  Editor. 

0018-8646/97/$5.00 Q 1997 IBM 

IBM J. RES. DEVELOP.  VOL. 41 NO. 3 MAY 1997 D. R. KAELI ET AL. 



CC-NUMAAS/400 prototype system. 

of a homogeneous  multiprocessor system. Although similar 
systems  have recently  been  explored [ l ,  21, the 
developments  produced by these  studies have been  limited 
to  memory  management  hardware  and memory 
consistency  policies. The  workloads  used in these  studies 
have been limited to scientific and  engineering 
applications [3, 41. We  focus  instead  on possible 
modifications to  the  operating system structures  and 
evaluate  these modifications  while running  commercial 
applications. 

A prototype system has  been  constructed  to assess 
scalability on our  CC-NUMA system. The  prototype 
hardware consists of four  single-processor,  bus-connected 
nodes,  each with its own assigned portion of physical 
memory. This system was  originally designed  to  function 
as  a tightly coupled  four-processor system, but by making 
substantial  changes  to  the  memory-allocation  and  task- 
scheduling  portions of the  operating system, we have been 
able  to  embed a distributed system structure within  a 
tightly coupled AS/400 system. 

The  prototype  software  comprises a  modified, object- 
based OS/400* commercial  operating system [5] and two 
transaction-processing  benchmarks.  The  prototype was 
modified to  obtain  complete,  object-typed  reference  traces, 
as well as  instrumentation samples. With every traced 
memory reference we are  able  to identify  its source  and 
destination  on  our system, as well as the  source of the 
reference in the  operating system or  user  application. 

on  the  prototype,  changes  were  made in the  task- 
dispatching  and  page-allocation  algorithms of the 
operating system, and  further  traces  were  collected.  The 
conclusion  was that  internode  reference traffic could 

206 ultimately  be  reduced sufficiently to achieve near-linear 

By using the  traces  and  instrumentation  data  obtained 
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scalability on a  system  comprising 16  processors  running 
transaction-processing applications.  While other CC- 
NUMA  studies have demonstrated  higher  degrees of 
scalability, not  one of these  studies  has  addressed 
transaction-processing  application  environments. 

This  paper  describes  various  aspects of the  prototype 
project, including the system  modifications and system 
monitoring tools, as well as proposed modifications to  the 
final  system and accompanying operating system  software. 
Section 2 addresses a number of CC-NUMA design  issues. 
Section 3 examines the  set of tools we have developed  for 
this research.  Sections 4 and 5 provide  results which 
demonstrate  the  value of these tools. Section 6 concludes 
with  a summary of this work. 

2. Distributed  shared-memory  issues 
Flynn’s well-known  classification of computer systems 
divides machines  into  four  categories:  single-instruction 
single-data  (SISD),  single-instruction  multiple-data 
(SIMD),  multiple-instruction  single-data  (MISD),  and 
multiple-instruction  multiple-data  (MIMD).  This taxonomy 
is based  on  the  amount of parallelism  present in the 
instruction  stream  and  the  data  stream [6]. A better  model 
for  differentiating  the  multiprocessor  machines of today is 
to classify them on the basis of memory organization.  The 
model  structure  chosen  for  our  prototype system can  be 
classified as a nonuniform  Femory access (NUMA) 
machine [7] or,  more generally,  a distributed  shared- 
memory (DSM)  machine.  The specific model we discuss  is 
called CC-NUMA  (cache-coherent  nonuniform memory 
access). 

A CC-NUMA system locates a pool of local  memory 
near  each  processor.  Each  processor  additionally  has 
access to  the local memories of every other  processor.  The 
cost of accessing nonlocal  memory (i.e., addresses  that 
resolve to  memory  local  to  other  processors) is typically 
much greater  than  the  cost of accessing  local memory. 
This  cost is a combination of the  greater  latency (i.e., 
electrical  distance)  to  nonlocal  memory  and  the 
contention  encountered in the  processor/memory 
interconnect. Local caches  are  provided,  and all caches  are 
maintained  to  support a  single image of coherent memory. 
This  requires  substantial  communication  between  nodes 
when internode accesses take place. 

The key design  issue addressed by this  prototype  study 
is how to minimize the  number of internode  memory 
references  generated by commercial processing workloads 
(TPC-A** [8, 91 and  RAMP-C [lo]). A major  barrier  to 
scalable  performance  on  CC-NUMA  machines is the  large 
latency  associated  with  internode  references.  To  capture 
the  cause of internode  references  requires  precise 
measurement of the  occurrence  and  source of all memory 
accesses. We  need  to identify  which application  or 
operating system component  generated  the memory 
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reference,  and  what  data type (read/write)  or  object class 
was the  target of the  reference.  To  measure  these 
reference  parameters,  high-resolution system monitoring 
tools  were  developed,  and  changes  to  the  memory- 
allocation  and  task-dispatching  algorithms of the OS/400 
operating system were  made  to  support  these tools. The 
data  obtained allow precise  prediction of the gains 
associated with planned  operating system  modifications. 

CC-NUMA systems are specifically designed with the 
assumption  that most  memory  accesses will be resolved 
locally on  the  requesting  node.  To  better  understand  the 
impact of memory  access latencies,  an analytical model of 
our  proposed  CC-NUMA system was developed.  The 
model  developed  the worst-case scenario  that  could  be 
tolerated while still  achieving scalable  performance.  The 
model  included  submodels of the  memory, local bus 
architecture, AS/400 processor,  and scalable interconnect 
technology which would be available during  the 
development  time  frame of this system. On  the basis of 
this model,  for  our  CC-NUMA system to achieve near- 
linear scalability (i.e., performance  increasing linearly  as 
additional  processors  are  added),  internode  (between two 
bus-based  node  clusters) accesses  must be  limited  to less 
than 5% of all accesses.’ 

To reach this  level of reference locality, incremental 
system software  changes  were  made.  After  each  set of 
changes  were  implemented,  additional  measurements  were 
made,  and  simulations  were  performed  to  judge  the effect. 
The  result is a series of system modifications required  to 
achieve  scalable performance. Next, we describe  the 
tracing  and  monitoring  tools  used  to identify the  causes of 
internode traffic. 

3. Typed traces on a CC-NUMA machine 
Trace  data have  commonly been  used  to  evaluate design 
trade-offs of proposed  computer systems [11-131. Traces 
have been used to  evaluate  the  performance of memory 
hierarchies [14], branch  predictors [15], and  computer 
pipelines [16]. Many  issues are  associated with obtaining 
useful  trace  data: 

1. Tracing overhead: How is the system perturbed in order 
to log  a trace  sample? 

2. Trace content: What is the  amount of data necessary to 
capture  per  trace  sample? 

3. Trace length: What is the  appropriate  number of 
records  to  capture  for  the  proposed  simulation  study? 

4. Tracing speed: What is the  peak  trace  record  production 
rate on the system under  test? 

A  discussion of these issues can  be  found in [17]. While 
many of these  problems apply to  any  tracing  environment, 
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tracing  in a distributed  multiprocessor  environment 
introduces a number of additional  concerns: 

1. Multiple execution streams-Parallel capture  and 
accurate  time  stamping  become  an issue here. 

2. Synchronization-Any perturbation of the system can 
skew the  interaction  between  multiple,  competing tasks, 
generating a very different access stream. 

3. Timing dependencies-Multiple tasks may be  requesting 
service from a shared device (e.g., disk) which runs in 
real  time. 

A  discussion of these  concerns  can  be  found in [MI. 
Many of these  problems  occur only when we attempt  to 
use a trace  taken  from  one  multiprocessor system  as input 
to a simulation of a second system. It is difficult to  predict 
how  a trace  obtained  on  one  CC-NUMA  machine would 
execute on a second  machine with  a different  hardware 
organization.  The  ordering of executions may differ 
greatly  because of changes in queuing effects and  shared 
data access. In this work we do  not  attempt  to  use  the 
traces  for this purpose  (though we have used  these  traces 
to  obtain  cache miss information).  Instead, we use  the 
trace  information  to identify which elements in the 
operating system and  user  applications  are  responsible  for 
internode accesses. 

Real-time  tracing and instrumentation 
To  enable us to  quantify  the  impact of our  operating 
system changes  and  to  predict  the  impact of proposed 
changes, precise  tracing  hardware  and  software  tools  were 
developed. In addition  to allowing traces  to  be  gathered  in 
real  time (i.e., without slowing down the system), we also 
provide  the capability to profile the  reference  patterns by 
an object’s  type. Figure 2 shows how the  monitoring 
system interfaces with the  prototype system. Again  note 
that  our  prototype  contains only four  nodes, while we 
depict a  system containing  additional  nodes. 

Hooks  are  inserted  through  an  additional AS/400 
memory card which monitors  all accesses to memory (the 
bus is effectively “snooped”).  This fifth memory  card is 
fully addressable  from all processors in the system.  A 
daughter  card was designed  that  sits  on  top of the fifth 
memory card.  The  daughter  card is addressed using  a 
portion of the  address  range of the fifth memory  card. 
This  daughter  card  contains  dual-ported  SRAM which 
maintains  information  for all object types currently 
present in  physical memory.  This  SRAM  can  be  written  to 
or  read  from by any processor.  The  hardware  tools rely on 
software modifications to allow for  the  creation of object- 
typed information  to  be  stored in the  SRAM. 

Our  trace  capture  methodology  takes  advantage of the 
fact  that  on  an AS/400 system,  all user  entities  and  nearly 
all system entities  are  stored in separate  virtual  memory 
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segments  and  are  treated in an  object-based  fashion by the 
operating system. The  virtual  address  space is partitioned 
into  temporary  and  transient  ranges.  Each  persistent 
segment  has a permanent  virtual  address  allocated  from 
the  permanent  range.  Private  task  objects  are  suballocated 
from special storage  segments  for efficient  swapping. 
Further, a protected  header in each  segment  contains or 
points  to  precise type information. By using these  various 
page-type identifiers, we are  able  to  determine  page type 
at memory allocation  or  page-in  time with  minimal 
overhead. 

This  page-type  information is stored (by the  operating 
system)  in  a  memory array (on the  daughter  card in the 
dual-ported  SRAM)  on  our  prototype.  The memory array 
contains a  byte of memory  for every page in our physical 
address  space.  The  operating system  was  modified to  store 
page-type  information in the  memory  array  whenever a 
page is brought  into memory or is reallocated.  This  stored 
information allows  accesses to any particular  page  to  be 
uniquely identified.  The  card  monitors all memory  bus 
accesses and  indexes  into  the  SRAM  to identify  what type 
of access is being  performed.  This  information is read  out 
and  recorded,  along with the  address,  requesting  processor 
ID,  read/write  indication,  and access length,  and is 
captured by a real-time  tracing system (see [19] for a 
description of this  system). The  real-time  tracing system 
allows for  capture of trace  data  without significantly 
perturbing  the  traced system (at a sustained  rate of 25 
megasamples  per  second). Any introduced  overhead 

208 appears  during  an  initial  page  allocation.  The  page  type is 

dynamically deduced,  and a store is issued to  the  page- 
type array.  This  results in  a few extra  instructions  being 
issued on  page  allocations, which are typically infrequent 
events. 

In  addition  to collecting  a finite-length  trace (64 million 
samples), we have the capability to  count  the  various 
access  types on our  prototype system. We provide  a bank 
of fast  counters which effectively gives us an infinite time 
sample.  The  counter  instrumentation  (constructed  out of 
programmable  array logic) breaks down the accesses on 
the basis of requesting  processor  ID,  target  node  memory, 
access  type, and  read/write. While object-type  counts have 
proven  to  be useful  in our work, they  fail  to  capture  the 
temporal  patterns  associated with memory  addresses.  For 
this reason we use  both  sources of data  to  guide  our  work. 

Target workload 
Two different  workloads  are  used in this work. RAMP-C 
is an  IBM  proprietary  benchmark  used  to  evaluate 
transaction-processing  performance [lo]. It consists of 
transactions of four complexity  levels  in  accessing multiple 
data files. The files are in sequential,  random,  and indexed 
organizations,  and  the files are  shared  among  transactions. 
TPC-A is an  industry-standard  benchmark which is based 
on the  Debitcredit  transaction-processing  benchmark.  An 
excellent  discussion of the  TPC  benchmarks  can  be  found 
in [8]. 

4. Object-typed performance data 
To  demonstrate  the utility of trace  and  instrumentation 
information, we provide examples taken  from our 
prototype  project  results which were  used  to identify the 
barriers  to scalability on  our system. We  began by studying 
the access patterns  on  our unmodified system. From  these 
data, we were  able  to  plan a series of modifications to  the 
software system which would  limit the  number of 
internode  references. 

Figure 3 plots  the  percentage of all  accesses per  object- 
type  classification. These  categories  were  chosen  to  be 
semantically meaningful  and predictively  useful. Each 
category  represents  as  much as  possible  a collection of 
homogeneously used  pages. Where necessary, references 
to individual data  structures, such as single  locks  within  a 
page,  were  isolated.  Each  category is represented by a 
unique  bit  pattern in the  object-type memory. Further, 
each  category  represents a group of references which will 
be  predictably  affected by system  modifications. The  data 
were  captured using the  monitoring  tools  described 
previously. 

Object types 
We  take  advantage of the  fact  that  our AS/400 system 
makes  use of its object-based  nature.  Object  references  on 
an AS/400 system can  be identified with a  fairly fine 
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Access by object type: RAMP-C (dark  bars) and TPC-A (light bars). 

granularity.  First,  objects  are  grouped  into  one of three 
categories: 1) process  (objects  used by the  operating 
system in direct  support of a  user’s process); 2) operating 
system (objects identified  as operating system data 
structures  and  codes,  and  not identified  with any user 
processes);  and 3) shared  application  (objects used by 
processes  and system services). Process,  operating system, 
and  shared-application  objects  are  described in Tables 1, 
2, and 3, respectively. 

workloads. More  than 50% of the memory  accesses 
generated by both  workloads  are  references  to  temporary 
storage for a  process and nonpageable  operating system 
code. The  latter is not surprising, since the OS/400 database 
system is incorporated directly into the operating system. 

In  Figure 3, we see  marked  similarities  between  the two 

This  object-type  breakdown is used to identify which 
object  references in the system are  responsible  for 
internode  references. 

Figure 4 shows the  breakdown of reads  versus writes, 
and local  versus nonlocal,  for  each  object classification 
when  running TPC-A. The Reads bar  indicates  the 
percentage of accesses which are  reads  (one  hundred 
minus this percentage is the  percentage of accesses which 
are writes). The Locality bar  indicates  the  percentage of 
accesses which are resolved in the local memory  (one 
hundred  minus this percentage is the  percentage of 
accesses  resolved  in nonlocal  memory).  We  focus heavily 
on  the locality results, since the success of our  prototype 
project is heavily dependent  on limiting the  number of 
internode  references. 209 
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Table 1 Process objects. 

Twe  Description 

PagOW, PagNo, Pag (process access group) is a  container for process-specific temporary storage 
PagTC including invocation work areas, program automatic/static storage areas, and 

file/data path information 

PRObj Process control blocks 

StkFR Call stacks used in saving states  for calls between user process and operating 
system functions 

IOPrm I/O request blocks containing parameters to be passed to I/O controllers 

Table 2 Operating system objects. 

Type Description 

PRDir Primary storage directory which  is embedded in the inverted page tables used 
in virtual address translation 

AxDir  Auxiliary storage directories; used to control allocation and deallocation of 
disk space 

MKDat System microcode data including processor-related control information 

MKCod  System microcodes for implementing complex  system instructions 

KRCod Nonpageable operating system codes, excluding storage management functions 

PGSys Nonpageable codes for storage management functions 

KRDat Nonpageable operating control blocks, excluding those for storage 
management functions 

PGDat Nonpageable storage management controls, including storage management 
locks 

OSPag Pageable operating system codes 

GbST Transient storage (heaps) for operating system functions 

VALTD Nonpageable temporary storage objects, excluding StkFR and PRobj objects 

Table 3 Shared-application objects. 

Type Description 

LckTB  System-wide locking tables; infrastructure to support lock/unlock high-level 
instructions 

NonDB Permanent objects; data and codes of user application and system services 
which are not flagged as database objects 

DBObj Database objects, including indices 

Temps Temporary objects; data used by applications and system services 

5. System  modifications captured  data on our  prototype.  Remember  that our 
The following describes  the  staged  changes to the OS/400 prototype consists of a four-processor,  single-processor- 
operating system that  had  to  be  made  to  obtain near- per-node, CC-NUMA system, and  that we are  projecting 
linear  speed-up  on  our  proposed  16-processor system. results  to a 16-processor,  four-processor-per-node, CC- 

21 0 These  changes  are  selected  and  evaluated using the NUMA system. To support  the validity of our results, we 
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Access characteristics by object type (TPC-A): reads  (dark  bars); locality (light bars). 
. . ." 

also captured  measurements  on a four-processor, tightly 
coupled  multiprocessor system (i.e., the  equivalent of a 
single node  on a 16-processor  CC-NUMA system). 

Remember  that  our goal  was to limit the  number of 
internode  references.  We followed  a set of incremental 
changes to our system to  reach  this goal. While it is 
beyond the  scope of the  prototyping  project  to  implement 
all of these  changes, we are  able  to  estimate  their effect 
on reference locality from  the  data  capturing using the 
instrumentation  tools available on our  CC-NUMA 
machine. 

In Figure 5 we move through a series of stages, starting 
with the Original stage, which represents our original 
unmodified OW400 operating system. Stage 1 implements 
changes  to task dispatching  and  page  allocation.  The task- 
dispatching  changes  made  to  our OW400 system involved 
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modifying dispatching  structures  to  enforce  node affinity 
[20]. The main idea  here is to  reschedule  jobs  on  the  node 
where they last  ran  (not necessarily the  same  processor) 
instead of migrating  them  to  other  nodes.  This will limit 
the  number of internode  references  due  to  job  migration. 
Changes  to  the  page  allocation mechanism involved 
various  strategies  for placing newly allocated memory (on 
which node  should  the  requested  page  be  placed). 
Experimentation was done  on allocating  memory on  the 
requesting  or  faulting task node,  and basing this decision 
on  the type of page  that was being  requested (e.g., the 
Pag objects, database  data,  operating system control 
areas). Since OS/400 is object-based,  each  page  has a 
unique  type  that is identifiable  upon  allocation. Making 
these two major  changes  to  the  operating system, we were 
able  to  cut  the  number of internode  references to 50%. 
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21 2 

Locality for  a  four-node (16-processor) CC-NUMA: RAMP-C 
(dark  bars)  and  TF’C-A  (light bars). 

. . .. 

Stage 2 implements  the  use of local memory  for  the  stack 
frames  (StkFR), 1 / 0  parameter block areas  (IOPrm),  and 
process  objects  (PRObj).  The  internode  references  were 
reduced  an  additional 5%. 

The  remainder of the  changes  described  are  based 
on  measurements  produced using the  customized 
instrumentation facilities. We specifically captured  the 
counts of read  and  write  data  for  both local and  nonlocal 
references so that we were well positioned  to  make  these 
projections accurately. The validity of the  projected 
numbers is based  on  the following assumptions: 

Local clocking mechanisms  do  not  introduce significant 
overhead  to  each  node  (they  should actually simplify 
some  operations). 
None of these modifications  severely change  the 
reference locality of accesses to  other  data types  in the 
system. 
The  changes in  technology do  not severely perturb  the 
access patterns  that we are  currently  seeing. 
Sufficient memory is added  to  the system to allow for 
the  increase in code size generated by code  replication 
and  CISC-to-RISC  code expansions. 

The next stage  implements  R/ORep  (read-only 
replication).  In Stage 3, all read-only  areas  are  replicated 
across  each  node.  These  areas  include  shared  application 
and service codes  (portions of NonDB), system 
microcodes  (MKCod),  and  operating system codes 

(OSPag).  This is a  sizable improvement, as can  be  seen in 
Figure 5. 

Stage 4 changes  include modifications to  the  primary 
page  table,  hash  tables  (PRDir in the AS/400 uses  an 
inverted  page  table [21]), servicing of 1 / 0  interrupts by the 
requesting  processors  (IOPrm  allocated by a  local node 
should  be serviced by a  local node),  and  replication of the 
hardware clock on  each  node  (portions of MKDat). 

Changes in Stage 5 address modifications to  the  storage 
management locking structures  to  provide  node-based 
locks  in  a hierarchical  partitioning  (PGDat, AxDir), and 
replicating  server tasks on each  node (e.g., hardware clock 
services and 1 / 0  service tasks).  This  pushes locality to  the 
95% local  line,  as indicated in Figure 5. 

As  the AS/400 platform moves to a PowerPC*-based 
processor, a natural  code expansion will take place 
(caused by moving from a CISC  architecture  to a RISC 
architecture).  This will further  increase  the locality of the 
code  (estimated  to  be  approximately 1%), and is 
accounted  for in Stage 6. 

that was responsible  for a large  percentage of the 
internode memory references  on  our  prototype system. 
Through a series of changes  and  additional 
instrumentation  runs, we were  able  to design  a  system 
that will provide linear  scalable  performance, up to 16 
processors.  Very few systems  today can  boast such 
aggressive speed-up, especially when  running  transaction- 
processing  workloads. 

6. Conclusions 
The  results of this  study have been  used  to influence 
future  CC-NUMA designs  within  IBM. The insight 
provided by this study would not have been possible 
without  the availability of such  detailed  performance  data. 
We  feel  that  the typed address  trace  approach used  in this 
prototype study is a  novel approach  to providing software 
designers with  insight into how their  operating systems 
and system software  execute on CC-NUMA machines. 

Several important conclusions  follow from  the  data 
obtained using these  instrumentation tools. First is the 
quantitative  observation  that  shared  user  objects (i.e., 
database  objects  and  associated locks)  play only a  small 
role  in  the  total  references  generated by transaction- 
processing  workloads, and a correspondingly small role in 
CC-NUMA  exploitation.  We  observed only approximately 
5% of the  total  references  to  these  categories.  In  marked 
contrast  to engineering/scientific  workloads, commercial 
transactions typically perform only simple data 
manipulations  but  require complex  system support. 

and  structures,  are  responsible  for  the  bulk of all 
references.  We  observed  approximately 80% of all 
references  to  these  categories.  Thus,  for  these  transaction- 

We  were  able  to effectively isolate  the system software 

Second, system and  user  code,  as well as process  objects 
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based  workloads,  replication of read-only  pages is 
absolutely  crucial in  reducing  the  number of nonlocal 
references. Equally  critical, process  pages  must  be  placed 
local to  the owning process  at  initial  page  allocation.  The 
remaining  references  are  made  to a  diverse set of system 
objects (i.e., tables, indexes, synchronization  variables) 
which must  be  partitioned as  much as possible. 

Finally, to  carry  out  correct  page  placement  at  page-in 
time,  the OS must  be  structured  to  provide  semantic  hints 
about  page  content.  This is a requirement  for all but  the 
most  cursory  page  placement.  In  our case, important OS 
components  are  structured  as  objects  stored in virtual 
memory segments with protected, self-typing headers, 
Further  hints  are  provided  through  the virtual addresses 
assigned to  persistent  and  temporary objects. 
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