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In this paper,  we  study  the  problem  of  optimal 
Transmission  Control Protocol (TCP)  segment 
size for file transfer from hosts to clients.  The 
criterion of  optimality is the minimization of 
the amount  of TCP and  IP  (Internet  Protocol) 
processing  by the sender.  The  parameters that 
govern the host-processing cost include  the 
cost for processing both the  outgoing TCP 
segments  and  incoming  TCP  acknowledgments, 
the TCP window size, the maximum 
transferable unit (MTU)  size  of the network, 
and  the network reliability  factor. We study  the 
variations of the sender  processing cost as a 
function of the TCP segment  size  and the 
network reliability factor. We show that there 
exists  a network reliability factor yo such that 
1) for all network reliability factors y 5 yo, the 
optimal TCP segment  size  equals  the MTU size 
less  the  sizes  of  the TCP and IP headers  (the 
sender  processing cost increases with the 
TCP segment  size in this case);  and 2) for each 
y > yo, there  exists an optimal TCP segment 
size  that is greater  than  the MTU size. 
Moreover,  the  optimal TCP segment  size is an 
increasing function of the network reliability 
factor. We also  derive  a  sufficient  condition for 
the optimal TCP  segment  size to be  greater 
than  the MTU  size. In this case, a  lower  bound 
for the optimal TCP segment  size  can  be 
obtained as a  simple function of the network 
reliability factor. 

Introduction 
In  this  paper, we consider  the  problem of optimal  TCP 
(Transmission  Control  Protocol)  segment size for file 
transfer  from  hosts  to  clients  (outbound).  The  criterion of 
optimality is the minimization of the  amount of TCP/IP 
(Internet  Protocol) processing by the  sender.  The  TCP 
segment size is usually chosen  to maximize file-transfer 
throughput  (see (1-51 and  the  references  therein). 
However, on some hosts,  such  as the IBM S/390* and 
AS/400* large  mainframe  servers,  the processing cost is 
expensive, and  there is thus a need  to minimize the 
TCP/IP processing. In  addition,  these systems are  required 
to  support high transaction  rates  for  database  and file 
server  applications, so there is a need  to minimize the 
consumption of CPU cycles. To the  best of the  author's 
knowledge,  this type of optimization  has  not  been  studied 
prior  to this  work. 

The system we describe' consists of a file server 
connected  to  clients  through a TCP/IP  communications 
network. In most TCP  implementations known to  the 
author,  the size of a TCP  segment  equals  the maximum 
transferable  unit  (MTU) size,  a function of the  network, 
less  the sizes of TCP,  IP,  and  network-medium  headers. 
The  processing of small TCP  segments  and  TCP 
acknowledgments  can  be costly  in  systems where 
input/output processing is expensive-particularly the 
processing of TCP acknowledgments, as  these  are very 
small  in  size  yet require processing all the way from  the 
network layer to  the  TCP  layer.  One  then may be inclined 
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to ask  how to reduce the processing of acknowledgments. 
One way is to increase the size of TCP segments. By 
making the size of TCP segments large, we reduce the 
amount of outbound and inbound (acknowledgments) 
processing because, for a fixed file size, the number of 
TCP segments and acknowledgments to be processed 
decreases as the  TCP segment size increases. However, 
using large TCP segments may cause other problems, as 
we explain below. 

As described in detail in the following section, when the 
IP layer receives a TCP segment larger than  the MTU size 
of the network medium, it fragments it into smaller pieces 
equal to the MTU size, for network transmission. IP 
fragmentation is often thought of as bad for performance 
because when  such a fragment is lost or erroneous, 
the entire  TCP segment that contains it  must  be 
retransmitted. Such TCP segments must then be 
reprocessed at  the IP layer and retransmitted, which 
causes the host processing cost to increase. 

cost of network-communications processing decreases as 
the TCP segment size increases because the number of 
TCP segments and acknowledgments to be processed 
decreases. On the  other hand, the network- 
communications processing cost increases as the TCP 
segment size increases because of the retransmissions of 
TCP segments that occur when one of their fragments is 
lost or erroneous. This suggests that  there is  an optimal 
TCP segment size-one that leads to the smallest number 
of host CPU cycles consumed. This optimum size is a 
function of the various host processing costs and the 
network reliability factor. 

methodology to calculate the network reliability factor, 
y (the long-term average of the  ratio of the number of 
successfully received network packets to the total number 
of transmitted packets). This depends on several 
parameters, such as the number of hops in the network- 
communications path,  the error rate of each hop, the 
buffer size of the switching nodes, and the traffic intensity. 
A detailed and precise study of this subject exceeds the 
scope of this paper and should be the topic for  further 
investigation. However, for some particular cases, such as 
one- or two-hop networks, one could make a rough 
estimate of y by experimentation. 

such that 1) for all network reliability factors y 5 yn, the 
optimal TCP segment size equals the MTU size  less the 
sizes of the TCP and IP headers (the sender processing 
cost increases with the TCP segment size  in this case); and 
2) for each y > yo, there exists  an optimal TCP segment 
size that is greater than the MTU size less the  header 
sizes. Moreover, the optimal TCP segment size  is an 

We then have the following situation. On one hand,  the 

It is not our goal in this paper to develop a 

We  show that  there exists a network reliability factor ?/o 
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increasing function of the network reliability factor. We 
also derive a sufficient condition for  the optimal TCP 
segment size to be greater  than the MTU size. In this 
case, a lower bound for the optimal TCP segment size can 
be obtained as a simple function of the network reliability 
factor. 

The  paper is organized as  follows. In the following 
section, we formulate the problem, and in the next 
section, we analyze it, determining for which network 
reliability factors the optimal TCP segment size is larger 
than the MTU  size. For such network reliability factors, 
we prove the existence of a unique optimal TCP segment 
size, at which the host processing cost reaches a global 
minimum. In the section on bounds, we derive a sufficient 
condition on the network reliability factor for the optimal 
TCP segment size to be greater than  the MTU size. We 
also obtain a lower bound for  the optimal TCP segment 
size  as a simple function of the network reliability factor. 
In the following section, we present some examples of 
optimal TCP segment size computation. We  draw 
conclusions in the final section. 

Problem  formulation 
In this section, we formulate the problem to be solved. 
First, we briefly  review the File Transfer Protocol (FTP) 
algorithm. The data flow for outbound  TCP/IP  data 
transmission is depicted in Figure 1. Data  are read from 
disks or other storage media of the host by the FTP layer 
and transferred in blocks of equal size to  the TCP layer 
for processing. The TCP layer then encapsulates the data 
into segments of equal size, calculates the checksum of the 
data (parity check for data integrity), prepares  a TCP 
header, and passes control to  the  IP layer. The latter 
breaks each TCP segment (if necessary) into IP datagrams 
of equal size, prepares  a  header for each IP datagram, and 
invokes the network layer, which appends  a network- 
medium header  and transmits the packet(s). We ignore 
the anomalies associated with the final blocks, segments, 
and datagrams. For a detailed overview  of TCP/IP, the 
reader is referred to [l]. The amount of data in a network 
packet equals the MTU size less the sizes of headers  for 
the network medium, TCP, and IP. Upon successful 
reception of the  data, the receiver of the TCP layer sends 
an acknowledgment to  the sender.  The  TCP architecture 
suggests that  an acknowledgment be sent for every 
two TCP segments received; however, different 
implementations may use different acknowledgment 
algorithms. For the sake of simplicity, we do not take  into 
account the size of TCP, IP, or network-medium headers 
in the problem formulation. These header sizes are 
typically  twenty to forty bytes each. 

We  now define the variables used in the problem 
formulation: 
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S, (bytes):  Size of data block transferred  between  FTP 

p (bytes):  Maximum  network packet size (MTU). 
n :  Number of network  packets of size p in  a TCP 

and  TCP. 

segment.  (TCP  segment size equals np . )  We  assume  that 
n is an  integer. 

9 Cm (instructions  per byte): Data-moving cost. This is the 
cost per byte to move data  from  the  FTP  buffer  to  the 
TCP  buffer. 
C, (instructions  per byte): Cost  per byte to  calculate  the 
checksum in a TCP  segment. 
C, (instructions  per  data block): Fixed overhead cost to 
transfer a data block from  the  FTP layer to  the  TCP 
layer. 
C ( n )  (instructions):  Total  host cost to  process a data 
block, from  FTP  through  IP levels. 

Our  model consists of moving two TCP  segments  from 
the  IP layer to  the network  layer. The  reason  for two 
segments is that  once  an  acknowledgment is  received from 
the  recipient,  there is room  for two more  segments in the 
TCP window (maximum number of unacknowledged data 
bytes transmitted by the  sender).  We  assume  here  that  the 
data flow is in equilibrium. If we define 

C,,, (instructions): Cost to move the  contents of the  IP 
buffer,  containing  one  or  more  IP  datagrams,  from  the 
IP layer to  the  network layer (or  from  the  network layer 
to  the  IP  layer), 
C,,,(n) (instructions): Cost to move two TCP  segments 
of size np each  from  the  IP layer to  the  network  layer, 
and 
SIP,, (bytes):  size of IP  buffer  (assumed  to  be fixed), 

then 

TCP header 
Checksum 

""""""" 

where  ceil(x)  denotes  the smallest integer  greater  than 
or  equal  to x .  The  inequality follows from ceil (nx) 5 

nceil(x). To complete  the  description of variables, we 
define 

a (instructions  per  segment):  TCP processing  cost to 
prepare a header  (independent of segment size). This is 
also  the  cost  to  process  an acknowledgment. 

to  prepare a header  (independent of packet size). 

IP  and  network processing  cost. 

acknowledgment):  TCP,  IP,  and  network processing cost. 

transmission. 

d (instructions  per  network  packet): IP processing cost 

b = d + C,,,,,(1)/2 (instructions  per  network  packet): 

c ( a  + d + C,,,)/2 (instructions  per  TCP 

y : Probability of a  successful network  packet 

a transmission in TCPlIP networks. 

r CIP,/2a:  Ratio of network processing cost  to  the 

rn = ceil(2p/S1,,): Number of times to invoke the 
sum of the  TCP  and  IP processing costs (when a = d ) .  

network layer to  read  or write  two packets  from  or  to 
the  network, respectively. 

It is assumed  throughout this paper  that  each  network 
packet  carries p bytes, the maximum amount of data 
allowed by the  network  medium.  When  the  TCP  segment 359 
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increasing in y, it  follows that  a) y, is unique; b) for all sides of Equations (13) and  (14)  are strictly  negative. 
y > y,, A(n, y) > 0; and  c)  for all y < y,, A(n, y) < 0. Using  these  results in Equation (12) demonstrates  that 
This finishes the  proof of Lemma 1. A(n + 1, 7,) < 0. This finishes the  proof. 

Proof  of Lemma 2 Proof of Lemma 3 
According to  the definition of y, and  Equation ( 5 ) ,  we The limit of the  sequence { y n }  as n + M exists because it 
have is monotonically increasing and  upper  bounded by 1. From 

A(n, yn) = ~ ( n  - 1)y: + (b  + c)ny:"' - nb - c = 0 
Equation (6) ,  we have, by using the  inequality y," < y1-l 

(6) twice, 

a(n - 1) + (b  + c)n 

= any;+] + (b + c ) ( n  + 1)y; - (n + 1)b - c < 0. (7) 

For all n > 1, if A(n + 1, y n )  < 0, it follows that < [ a(n - 1) + (b + c)n 
for n > 1. (15) 

y,,, > yn, since the function A(n + 1, y)  is monotonically 
increasing  in y. Thus, we can  prove  the  lemma by proving 
that A(n + 1, y,,) < 0. We  can express A(n + 1, y) as 

Using the  inequality y," < y,"-' twice with respect  to  the 
left-hand  side of Equation (9), we have 

a(n - 1)y; + (b  + c)ny:: < a(n - 1)yi + (b + c)ny;" 
+ 1, yfl) = ?,[ab - 117; + (b + c)nf"I 

+ ay;" + (b + c )y ;  - b - nb - c. 
< a(n - 1)y;" + (b  + c)nyZ". 

(8) 

We  rewrite  Equation (6) in the following two forms: 
Replacing  the  middle sum with the  right-hand  side 
of Equation (9) and dividing  all three  sums by 

a(n - 1)yE + (b  + c)nyt" l  = nb + c ,  (9) a(n  - 1)  + (b  + c)n produces 

and nb + c 
': < a(n - 1) + (b + c)n c: "-" nb + c - n(b + c)y;" 

ay ;  = 
n - 1  (lo) Let us designate  the  center  term by X ,  a  positive quantity 

less than 1 that  approaches b/(a + b + c) as n -+ 00. 
We  then have Substituting  Equations (9) and (10) for  the first and 

second  terms on the  right-hand  side of Equation (S), 
respectively, we obtain Xl / (n -1 )  < y, < XI',. 

(ab + C)Y, - n(b + c)?: Since both  and X", tend  to 1 as n + m, it follows 
A(n + 1, y,,) = yn(nb + c )  + that y, + 1 as n + 00. This finishes the  proof. 

n - 1  

+ (b + ~ ) y ;  - b - (nb + c). 

After simplification, we have 

(n - l )A(n + 1, yn) = b[n2(yn - 1) + 1 - y:] 

+ c[n(y, - 1) + 1 - y;].  

Then, however, 

47, - 1) + 1 - r:: 
= (y, - l)[n - (1 + y, + yf + . . . + y;-I)],  

and 

n 2 ( y ,  - 1) + 1 - y; 

= (yn - l)[n'- (1 + y, + 7," + . . . + y;-I)]. 

(1 1) Proof  of Lemma 4 
Because A(n, y) is strictly  monotonically  increasing  in y, 
we have for all n > 1 and y < y, that A(n, y)  < A(n, yJ. 
Because of Lemma 2, we have A(n, y2) 5 A(n, y,). 
Finally, because of Lemma 1, we have A(n, 7,) = 0. 

y < y,. For y 2 y2, again since A(2, y) is monotonically 
increasing  in y, we have A(2, y )  2 A(2, y 2 )  = 0; hence, 
C(2) 5 C(1) and  there exists n 2 2 such that e ( n )  5 C(1). 

one  point  (designated no)  or  two  adjacent  points.  Let us 
extend  the  domain of n to  the  set of real  numbers,  and  let 
[ ( n )  be  the  first-order  derivative of C(1) - (n)  with 
respect  to n ,  which equals  the derivative of A(n, y) /ny" .  

(I2) Thus, A(n, y) < 0, so C(1) < C(n) for all n > 1 and 

(13) We now show that e(n )  has a global minimum at 

(14) Calculating this quantity  leads  to  the following  expression: 
Since y, < 1, it follows that 1 + y, + 7,' + . . * + 7l-l 

< n < n2 for n > 1. Hence,  the expressions on  the right- 
(n2y")[(n) = ay"  + b(l0g y )n2  + c(l0g y)n + c. (16) 

hand  sides of Equations (13) and (14) are strictly  negative, The first term  on  the  right-hand  side of Equation (16) is 
from which it follows that  the expressions on  the  left-hand monotonically decreasing in n,  has value a at n = 0, and 
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approaches 0 as n + 00. The remaining three  terms  form 
a  quadratic in n that has a global maximum at some n < 0, 
has  value c at n = 0, and  approaches - -w as n -+ m. 

Thus,  the  quadratic is decreasing  for n 2 0. Consequently, 
the  right-hand  side of Equation (16), which is the sum of 
the first term  and  the remaining quadratic, must be  zero 
at  some  point,  denoted no, in the  range (0, 00). Moreover, 
for n > no, the right-hand side is  negativc:, and  for n < no, 
the right-hand  side is positive. Hence, C(1) - e ( n )  has  a 
global maximum at n = no, from which it follows that e(n)  
has  a  global  minimum at n = no. This linishes the  proof. 

Bounds  for optimal transmissioln 

I In this section, 

1. We  determine a sufficient condition  on  the network 
reliability factor y for  the  optimal  TCP  segment size to 
be  greater  than  the  MTU size (the  condition is that  the 
network  reliability factor be greater  than  some  function 
of n).  

2. We derive  a  lower bound of the  optimal  TCP segment 
size, for any given network  reliability factor y which is 
a function of the given network  reliability factor y. 

3. We show that  the cost function e ( n )  is concave  upward. 

We  make only the  reasonable assumption that  the  TCP 
processing  cost per  segment  equals  the IP processing  cost 
per network packet-i.e., a = d (defin1:d in  the  section on 
problem  formulation).  We normalize the cost difference 
[Equation (5)] by dividing it by the  TCP  and  IP processing 
costs. This  leads  to a  cost difference  that is  a function of 
the  ratio of the network-layer  processing  cost to  the  TCP 
and  IP processing  costs, r, and  the  number of times the 
network  layer  is  invoked to drive two network packets  out 
to  the network, m. (These two latter variables are also 
defined in the section on  problem  formulation).  The 
concavity property of e ( n )  enables us to  determine how 
fast e(n)  decreases as  a function of n, and  thus how 
sensitive the  choice of the  optimal  TCP  segment size is 
with respect to  the network  reliability factor. 

above.  Using the definitions of b, c, C,,,s(l), m, and r 
with a = d, one derives in a straightforward  manner 

b 
- = l + m r  (17) 

We now proceed  to accomplish our first goal  described 

U 

and 

- = 1 + r .  
C 

U 

Using these two equalities  in  Equation ( 5 ) ,  we obtain 

362 - (1 + mr)n - (1 + r).  (19) 
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Using Equation (19) and A(n, 7") = 0, we derive the 
following equality: 

(n - 1)y; + 2ny;-' - (n + 1) 
r 

= 1 + mn - (m + ~ ) n y ; - ' .  

(20) 

Also,  using Equation (19) and A(n, y,) = 0, for n > 1, 
we have the following nontrivial  equality,  derived by 
adding [l + (m + l ) r ] ( n  - l)y," + [2 + (m + l)r]ny,"y,n-l 
to both sides of A(n, y,) = 0 and  rearranging terms: 

(n - 1)y; + 2ny;" - (n + 1) 

[I + (m + ~)rl[(n - 1)y: + ny;" + 13 
2 + (m + 1)r 

- - 

n(1 + + (n  - 1)r 

2 + (m + 1)r 
+ (21) 

Since all terms  on  the  right-hand side of Equation (21) 
are positive, the  left-hand  side, which is the  numerator of 
the  left-hand side of Equation (20),  must be strictly 
positive. Consequently,  the  right-hand side  is  strictly 
positive. For n > 1, we then  deduce  that 

1 + mn Mn-1) 

v n + 7 4  . (22) 

[ (m  + l b l  . (23 1 

From  Lemma 1, we have that a sufficient condition for 
A(n, y) > 0 is 

1 + mn li (n-1)  

y" ____ 

We next derive  the following sufficient condition, which is 
independent of n, for  the  optimal  TCP segment  size to  be 
larger  than  the  MTU size: 

1 + 2m 
2(m + I) ' 

y" 

To  demonstrate  Equation (24),  we define the  sequence 

(24) 

1 + mn 1 iC-1)  

x, = ~ 

Then xn is the  unique  root,  in  the  range (0, l), 
of the monotonically  increasing function in x, 
( m  + 1)nx"" - nm - 1. This  latter  function  equals 
A(n, x )  given by Equation (5) if a = 0, b = m, and c = 1. 
We follow  exactly the same steps  as  those in the proof of 
Lemma 2, with x, replacing y,, to prove that x, is strictly 
monotonically increasing. Hence xn 2 x2 for all n > 1. 
Equation (24) then follows from  Equation (23). This 
establishes our first goal stated in the introduction of this 
section. 

[ b  + 1)n I  
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We next derive a  lower bound  for  the  optimal  TCP 
segment size. Denoting by no the  solution  of [ (n )  = 0 
in Equation (16), and using equalities (17) and (18), 
we have, by a straightforward  manipulation of terms, 

1 +rnr  

l + r  
(log y,n; + (log y)n, + 1 = _ _ .  

l + r  (25 1 

Since rn 2 1, we have (1 + m r ) / ( l  + r )  5 rn. This  and 
the  facts  that log y < 0 and y > 0 lead  to 

m(log + (1% y)no + 1 

1 f m r  - Y 'Q 

l + r  
5"- 

l + r  
(log y)n,2 + (log y)n,  + 1 = __ < 0 .  (26) 

The feasible solution set of  rn(1og y)ni + (log y)n, + 1 < 0 
is n, > t~, where 

-log y - J(log y)* - 4m log y 

2rn log y 
n= (27) 

We remark  at  this  point  that n,, the  solution of 
Equation (25), is  a real  number  and  not necessarily an 
integer.  The  integer  solution  that minimizes the processing 
cost ? ( a )  is either floor(n,) or ceil(n,,). Since  it is a 
difficult task to  determine in every case  the exact integer 
that minimizes C(n), we use the  approximation round(n,,) 
for  the  integer  solution,  where  round(x) = integer 
part of (x + l / Z ) .  From n, > n, it follows that 
round(n,) 5 round( n), and we may thus  use  round (I.) as 
an  approximate  lower  bound  for  the  optimal  TCP  segment 
size. The sufficient condition (24) enables us to  check 
whether  the  optimal  TCP  segment size is greater  than  the 
MTU size, independently of the host-processing-cost 
parameters.  When  condition (24) is  satisfied, the lower 
bound round (m) is easy to  calculate  from  Equation (27) 
and,  again,  does  not  require knowledge of the  host- 
processing-cost parameters.  In many cases, rn = 1; thus 
Equation (24) becomes y 2 0.75, which is probably 
satisfied by many  networks. For m = 1, approximate 
values for  the  optimal  TCP  segment size are given in 
Table 1 as  a function of y. (In the  table, [a,  b )  is the 
notation for a < y 5 b.) We also  graph  the  optimal  TCP 
segment size as a function of y in Figure 2. 

It is worth  mentioning  at this point  that as rn increases, 
the  average  throughput  (the  number of bytes successfully 
received per  unit  time) of the file transfer  decreases.  The 
relative  decrease in throughput [with respect  to  the  case 
when the  TCP  segment size equals  the  MTU size (n = 1)] 
is 1 - yn" (this  does  not  take  into  account  other  factors 
governing the  throughput, such as  the  sender's ability to 
recover from  the loss of a packet  without having to  resort 
to a timeout).  It is therefore  important  to  consider  the 
effects of the  number of packets  per  TCP  segment on the 
average  throughput of the file transfer. 

IBM J .  RES. DEVELOP. VOL. 41 NO. 3 MAY 1997 

Approximate optimal TCP segment size as a function of the 1 network  reliability factor. 

Table i Optimal TCP segment size (number of network 
packets) for various ranges of network reliability factor 
( m  = 1) .  

Range of network Approximate  optimal 
reliability factors y TCP segment size 

round (m) 

[0.7500,  0.7659) 1 
[0.7659,  0.8920) 2 
10.8920,  0.9385) 3 
[0.9385,  0.9604) 4 
[0.9604, 0.9724) 5 
[0.9724, 0.9797) 6 
[0.9797,  0.9844) 7 
[0.9844,  0.9877) 8 
[0.9877,  0.9900) 9 
[0.9900, 0.9918) 10 

We now  show that  the cost function e(n )  is  concave 
upward  in n. A necessary and sufficient condition  for this 
to  be  the  case is that  the  second derivative of e(n )  be 
non-negative  for all values of n 2 1. If we denote this 
second derivative by c""(n) and  note  that  Equation (16) is 
the first  derivative of -C(n)  (ignoring a  positive constant 
factor), we have 

CJ " (n)  
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We show that  the  numerator of Equation (28) is non- 
negative.  Since m 2 1, we have from  Equations (17) and 
(18) that b 2 c > a .  Also, because y 5 1, it follows 
that 2c - 2ay" > 0. It  thus suffices to show that 
b(log y)nZ + cQog y)n + 2c is non-positive for n 2 I, 
since (log y)n < 0. The two roots of this  quadratic 
in n are  [c(log y )  2 d 2 ] / ( - 2 b  log y) ,  where 
A = c2(log y ) z  - 8bc(log y) .  The  root  for --dT is 
clearly  negative  (since log y < 0), and if we show that 
the  other  root is negative, that will demonstrate  our 
claim (because  the  quadratic  has  the  same sign as 
b(log y) < 0 outside  the  roots).  But since  log y < 0, 
it follows that -bc log y > 0, a n d A  > c2(log y)', 
which implies that a z I C  log yI = -c  log y. This 
finishes the  proof. 

We now present  some examples of optimal  TCP 
segment size. 

Example 
Consider a file server with the following  processing costs 
and  parameters  for  outbound  data  transfer.  The goal is to 
show to  the  reader how to calculate  the  optimal  TCP 
segment size and  to  point  out  the  host-processing savings, 
in CPU cycles, by using the  larger  TCP  segment size. 
Assume  the following values: 

a = 500 instructions  per  segment  TCP processing  cost. 
b = 3000 instructions  per  packet  IP  and network-layer 

c = 3000 instructions  per  TCP  acknowledgment in 

d = 500 instructions  per  packet  IP processing  cost. 
Cm = 0.15 instructions  per byte data-moving cost. 
C, = 0.628 instructions  per byte TCP checksum  cost. 
C, = 5000 instructions, fixed processing cost  to  transfer 
a data block from  the  FTP layer to  the  TCP layer. 
S,,, = 65536 bytes  in  the network-layer  buffer. 
S, = 32768 bytes  in each  data block transferred  between 

processing  cost. 

processing  cost. 

FTP  and  TCP. 

In Figure 3, we graph  the  upper  bound  on cost function, 
e ( n ) ,  for  various  values of y, the  probability  that a 
network  packet is received  successfully, and  for a selected 
set of network  packet  sizesp.  Note  that in Figure 3(a), for 
y = 1, the  optimum  TCP  segment size is infinite,  since the 
penalty  for  retransmission is never  incurred. In all cases 
presented,  the  greatest  improvement in  processing  cost 
(measured in CPU cycles) comes  from  increasing  the  TCP 
segment size fromp  to 2p. This is because  the  cost 
function e ( n )  is concave  upward  in n, so when  the 
function is decreasing,  the  greatest  cost savings come  from 
increasing  the  segment size from p to 2p. Intuitively, we 
reason  that e ( n )  is concave  upward because  as  the 
segment size increases,  the  cost of retransmission of 
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Table 2 Value of n- for various network reliability factors. 

Y 
1 .  

n- round (tu) 

0.98 6.553 
0.92 2.999 
0.85 2.030 
0.75 1.430 

network  packets  increases  faster  than  the  cost of 
processing TCP  segments  and  acknowledgments  decreases. 
Hence,  the  percentage of cost  savings  (in CPU cycles 
consumed)  decreases as the  TCP  segment Size increases. 
The cost reduction  due  to choosing  a non-optimal  TCP 
segment size (at  least 2p in size) is not overly  sensitive to 
the  network reliability factor y, and it is not a major 
problem if the  sender  does  not have accurate knowledge 
of y. 

Using the  parameters  for this  example  in Equation (6) ,  
we calculate yo (= 7,) to  be 0.73. All of the values 
of y used in the  example  are  greater  than 0.73, which 
guarantees  that  the  optimal  TCP  segment size is greater 
than  the  MTU size. Note also that  the sufficient condition 
of Equation (24), y > 0.75, is satisfied in each case. The 
values of n- given by Equation (27) are shown  in Table 2. 
Note  that  the  absolute value of the  difference of raund(tu) 
and  the  optimal  segment size  (in Figure 3 )  is less than  or 
equal  to 1. 

Conclusion 
In this paper, we studied  the  problem of selecting  the 
optimal  TCP  segment size  in order  to minimize the 
TCP/IP processing  cost for file transfer  from  hosts  to 
clients. In  the  literature,  the  TCP  segment size  is  usually 
designed to maximize file-transfer  throughput. However, 
some file servers  cannot  afford  to  consume many CPU 
cycles on network-communications processing. There is 
thus a need  to minimize TCP/IP processing for such file 
servers.  We  formulated  the  sender processing cost 
as  a function of the  TCP  segment size and of the 
acknowledgments processing. The  parameters of this  cost 
function  are  costs  for  the  TCP,  IP,  and  network-layer 
processing,  checksum calculation,  and  data moves, for 
processing both  inbound  (acknowledgments)  and  outbound 
data.  Other  parameters  are  the  TCP window size, the 
maximum network  packet size, and  the  network reliability 
factor.  The vqriable  in  this cost  function is the  TCP 
segment size. 

We proved the existence of a network reliability factor 
yo with the following property.  For any network reliability 
factor y I y,,, the  optimal  TCP  segment size equals  the 
maximum network  packet size (less the  TCP  and  IP 
headers).  In this case,  the processing-cost function 
increases with the  segment size. For y > yo, the  cost 
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function  has a global minimum at a segment size greater 
than  the  MTU size. Also, the  optimal  TCP  segment size 
increases with y because,  as  the  TCP  network reliability 
factor  increases,  the  average  number of retransmitted  TCP 
segments  decreases. We also derived a  sufficient condition 
on  the  network reliability factor  for  the  optimal  TCP 
segment size to  be  greater  than  the  MTU size. In  this 
case, we obtained a  lower bound  for  the  optimal  TCP 
segment size as a simple  function of the  network reliability 
factor. 

It is worth  mentioning  that  the  amount of TCP/IP 
processing at  the receiving node also decreases as  a result 
of larger  TCP  segment sizes. This is because,  just as 
in the  sender case, the network-layer  processing cost 
decreases  as a result of a larger  batch of network  packet 
arrivals, and  the  TCP cost decreases  as a result of 
processing  fewer  incoming segments  and  outgoing 
acknowledgments. The receiver TCPIIP, however, must 
efficiently implement  the reassembly of IP  datagrams  into 
TCP  segments.  Otherwise,  the  CPU savings in cycles due 
to  larger  segments will be lost because of the expensive 
processing cost of TCP-segment reassembly. 

*Trademark or registered  trademark of International Business 
Machines  Corporation. 
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