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In this paper, we study the problem of optimal
Transmission Control Protocol (TCP) segment
size for file transfer from hosts to clients. The
criterion of optimality is the minimization of
the amount of TCP and IP (Internet Protocol)
processing by the sender. The parameters that
govern the host-processing cost include the
cost for processing both the outgoing TCP
segments and incoming TCP acknowledgments,
the TCP window size, the maximum
transferable unit (MTU) size of the network,
and the network reliability factor. We study the
variations of the sender processing cost as a
function of the TCP segment size and the
network reliability factor. We show that there
exists a network reliability factor v, such that
1) for all network reliability factors y = v, the
optimal TCP segment size equals the MTU size
less the sizes of the TCP and IP headers (the
sender processing cost increases with the
TCP segment size in this case); and 2) for each
Y > v, there exists an optimal TCP segment
size that is greater than the MTU size.
Moreover, the optimal TCP segment size is an
increasing function of the network reliability
factor. We also derive a sufficient condition for
the optimal TCP segment size to be greater
than the MTU size. In this case, a lower bound
for the optimal TCP segment size can be
obtained as a simple function of the network
reliability factor.

Introduction

In this paper, we consider the problem of optimal TCP
(Transmission Control Protocol) segment size for file
transfer from hosts to clients (outbound). The criterion of
optimality is the minimization of the amount of TCP/IP
(Internet Protocol) processing by the sender. The TCP
segment size is usually chosen to maximize file-transfer
throughput (see [1-5] and the references therein).
However, on some hosts, such as the IBM S/390* and
AS/400* large mainframe servers, the processing cost is
expensive, and there is thus a need to minimize the
TCP/P processing. In addition, these systems are required
to support high transaction rates for database and file
server applications, so there is a need to minimize the
consumption of CPU cycles. To the best of the author’s
knowledge, this type of optimization has not been studied
prior to this work.

The system we describe' consists of a file server
connected to clients through a TCP/IP communications
network. In most TCP implementations known to the
author, the size of a TCP segment equals the maximum
transferable unit (MTU) size, a function of the network,
less the sizes of TCP, IP, and network-medium headers.
The processing of small TCP segments and TCP
acknowledgments can be costly in systems where
input/output processing is expensive—particularly the
processing of TCP acknowledgments, as these are very
small in size yet require processing all the way from the
network layer to the TCP layer. One then may be inclined
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to ask how to reduce the processing of acknowledgments.
One way is to increase the size of TCP segments. By
making the size of TCP segments large, we reduce the
amount of outbound and inbound (acknowledgments)
processing because, for a fixed file size, the number of
TCP segments and acknowledgments to be processed
decreases as the TCP segment size increases. However,
using large TCP segments may cause other problems, as
we explain below.

As described in detail in the following section, when the
IP layer receives a TCP segment larger than the MTU size
of the network medium, it fragments it into smaller pieces
equal to the MTU size, for network transmission. IP
fragmentation is often thought of as bad for performance
because when such a fragment is lost or erroneous,
the entire TCP segment that contains it must be
retransmitted. Such TCP segments must then be
reprocessed at the IP layer and retransmitted, which
causes the host processing cost to increase.

We then have the following situation. On one hand, the
cost of network-communications processing decreases as
the TCP segment size increases because the number of
TCP segments and acknowledgments to be processed
decreases. On the other hand, the network-
communications processing cost increases as the TCP
segment size increases because of the retransmissions of
TCP segments that occur when one of their fragments is
lost or erroneous. This suggests that there is an optimal
TCP segment size—one that leads to the smallest number
of host CPU cycles consumed. This optimum size is a
function of the various host processing costs and the
network reliability factor.

It is not our goal in this paper to develop a
methodology to calculate the network reliability factor,

v (the long-term average of the ratio of the number of
successfully received network packets to the total number
of transmitted packets). This depends on several
parameters, such as the number of hops in the network-
communications path, the error rate of each hop, the
buffer size of the switching nodes, and the traffic intensity.
A detailed and precise study of this subject exceeds the
scope of this paper and should be the topic for further
investigation. However, for some particular cases, such as
one- or two-hop networks, one could make a rough
estimate of y by experimentation.

We show that there exists a network reliability factor v,
such that 1) for all network reliability factors y < v,, the
optimal TCP segment size equals the MTU size less the
sizes of the TCP and IP headers (the sender processing
cost increases with the TCP segment size in this case); and
2) for each y > v, there exists an optimal TCP segment
size that is greater than the MTU size less the header
sizes. Moreover, the optimal TCP segment size is an
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increasing function of the network reliability factor. We
also derive a sufficient condition for the optimal TCP
segment size to be greater than the MTU size. In this
case, a lower bound for the optimal TCP segment size can
be obtained as a simple function of the network reliability
factor.

The paper is organized as follows. In the following
section, we formulate the problem, and in the next
section, we analyze it, determining for which network
reliability factors the optimal TCP segment size is larger
than the MTU size. For such network reliability factors,
we prove the existence of a unique optimal TCP segment
size, at which the host processing cost reaches a global
minimum. In the section on bounds, we derive a sufficient
condition on the network reliability factor for the optimal
TCP segment size to be greater than the MTU size. We
also obtain a lower bound for the optimal TCP segment
size as a simple function of the network reliability factor.
In the following section, we present some examples of
optimal TCP segment size computation. We draw
conclusions in the final section.

Problem formulation
In this section, we formulate the problem to be solved.
First, we briefly review the File Transfer Protocol (FTP)
algorithm, The data flow for outbound TCP/IP data
transmission is depicted in Figure 1. Data are read from
disks or other storage media of the host by the FTP layer
and transferred in blocks of equal size to the TCP layer
for processing. The TCP layer then encapsulates the data
into segments of equal size, calculates the checksum of the
data (parity check for data integrity), prepares a TCP
header, and passes control to the IP layer. The latter
breaks each TCP segment (if necessary) into IP datagrams
of equal size, prepares a header for each IP datagram, and
invokes the network layer, which appends a network-
medium header and transmits the packet(s). We ignore
the anomalies associated with the final blocks, segments,
and datagrams. For a detailed overview of TCP/IP, the
reader is referred to [1]. The amount of data in a network
packet equals the MTU size less the sizes of headers for
the network medium, TCP, and IP. Upon successful
reception of the data, the receiver of the TCP layer sends
an acknowledgment to the sender. The TCP architecture
suggests that an acknowledgment be sent for every
two TCP segments received; however, different
implementations may use different acknowledgment
algorithms. For the sake of simplicity, we do not take into
account the size of TCP, IP, or network-medium headers
in the problem formulation. These header sizes are
typically twenty to forty bytes each.

We now define the variables used in the problem
formulation:
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* S, (bytes): Size of data block transferred between FTP
and TCP.

~p (bytes): Maximum network packet size (MTU).

. n: Number of network packets of size p in a TCP
segment. (TCP segment size equals np.) We assume that
n is an integer.

« C_ (instructions per byte): Data-moving cost. This is the
cost per byte to move data from the FTP buffer to the
TCP buffer.

«.C, (instructions per byte): Cost per byte to calculate the
checksum in a TCP segment.

«.C, (instructions per data block): Fixed overhead cost to
transfer a data block from the FTP layer to the TCP
layer.

» C(n) (instructions): Total host cost to process a data
block, from FTP through IP levels.

Our model consists of moving two TCP segments from
the IP layer to the network layer. The reason for two
segments is that once an acknowledgment is received from
the recipient, there is room for two more segments in the
TCP window (maximum number of unacknowledged data
bytes transmitted by the sender). We assume here that the
data flow is in equilibrium. If we define

* C,,, (instructions): Cost to move the contents of the IP
buffer, containing one or more IP datagrams, from the
IP layer to the network layer (or from the network layer
to the IP layer),

* Crep () (instructions): Cost to move two TCP segments
of size np each from the IP layer to the network layer,
and

S, (bytes): size of IP buffer (assumed to be fixed),

then

_[2np
Corepn) = ceil{ = |Cppy = nCrrep (1), 0y

Sle
where ceil (x) denotes the smallest integer greater than
or equal to x. The inequality follows from ceil (nx) =
neceil(x). To complete the description of variables, we
define

»a (instructions per segment): TCP processing cost to
prepare a header (independent of segment size). This is
also the cost to process an acknowledgment.

«.d (instructions per network packet): IP processing cost
to prepare a header (independent of packet size).

ob =d + C,,(1)/2 (instructions per network packet):
IP and network processing cost.

s%c=(a +d+ Cp)/2 (instructions per TCP
acknowledgment): TCP, IP, and network processing cost.

+, v : Probability of a successful network packet
transmission.
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% Data flow (processing layers and data entities) for outbound (host-
:

to-client) data transmission in TCP/IP networks.

/2a: Ratio of network processing cost to the
sum of the TCP and IP processing costs (when a = d).

e in = ceil(2p/S ;) Number of times to invoke the
network layer to read or write two packets from or to
the network, respectively.

r=Cp,

It is assumed throughout this paper that each network
packet carries p bytes, the maximum amount of data
allowed by the network medium. When the TCP segment
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size is equal to the MTU size (less the sizes of the TCP,
IP, and network-medium headers), the total host cost to
process a block of data from FTP to IP levels is given by

S, b+c
Cy=c +(C_ + CJS, + — (a + ) . (2)
p Y
In Equation (2), the cost due to TCP, IP, and network
processing (the third term on the right-hand side) is
calculated as follows. For each TCP segment, there
is a TCP processing cost of a, there are IP and
network processing costs totaling b, and there is an
acknowledgment-processing cost of c. Note that when a
TCP segment is retransmitted, it is reprocessed by the IP
and 1/O layers only. The average number of times a
packet is transmitted until it is received successfully, when
the probability of successful network transmission of a
packet is v, is given by /7.
When the TCP segment size is an integral multiple n of
the MTU size p, the total host processing cost is bounded
by

nb + ¢

n)zemy 3)
Y

S
Cln) =C, +(C, + C)S, +n—; (a +

In Equation (3), the host network-processing cost per data
block due to TCP, IP, and network processing (the third
term on the right-hand side) is calculated as follows. The
cost of TCP processing equals a per segment, and the cost
of IP and network-layer processing per TCP segment is
bounded by nb, where the bound follows from Equation
(1). The cost per TCP Segment to process the incoming
acknowledgments sent by the receiver is c. The average
number of times a TCP segment is transmitted before it is
received successfully equals 1/9", because when a network
packet fails to reach its destination successfully, the entire
TCP segment that contains it must be retransmitted.

To determine the optimal TCP segment size, we study
the difference

C(l) - €(n)

Sb

n

fatn ~ Dy + np + )y b~ c] 4)

as a function of vy, We study the difference C(1) — €n)
rather than C(1) - C(n) to make the problem easier to
analyze. We determine the values of v for which this
difference is positive, which is equivalent to determining
the values of network reliability for which it is more
economical to transmit TCP segment sizes larger than the
MTU size. To simplify the notation, we define

A(n, y)=a(n - Dy*+ G +cny" ' —nb -, ()

For any value of y that makes A(n, y) positive, ie.,
C(n) < C(1), we study the behavior of the cost function
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€(n) as a function of n. Our goal is to determine the
integer value of n, denoted n,, that minimizes C(n) for
the given value of y. Note that the optimal number of
network packets in each TCP segment must not be greater
than S./p; hence, it is the smaller of n, and the floor of
Sy/p [floor (x) denotes the largest integer < x].

Problem analysis
In this section, we analyze the problem formulated in the
previous section. Specifically, we establish the following.

Lemma 1

For every n > 1, there exists a unique vy, < 1, such that
A(n, v,) = 0, where A(n, ) is as given by Equation (5).
Moreover, for all y > Yo A(n, ¥) > 0 [ie, C(n) < c(1)],
and for all y < Y, A(n, v) < 0.

Lemma 2
The sequence {7} is strictly monotonically increasing in
n, forn > 1.

Lemma 3
v, tends to 1 as n — oo,

Lemma 4

* For each fixed y < Y, =7, C(1) < C(n) forall n > 1.

* For each fixed y = Y, there exists an integer n, =2
that minimizes €(n). Moreover, for all n < n,, C(n) is
decreasing, and for all n > ny, €(n) is increasing.

In Lemma 1, we establish, for any number, n, of network
packets in a TCP segment, the existence of a range of
network reliability factors for which it is more economical
to use a segment size larger than the MTU size. One
important application of Lemma 2 is to demonstrate that
an optimal TCP segment size larger than the MTU size
exists if and only if the network reliability factor v is
greater than or equal to 7,- Lemma 3 states that the
network reliability threshold (the point that determines
whether or not it is optimal to design a TCP segment size
larger than the MTU size) increases to 1 as the TCP
segment sizes become indefinitely large. Finally, Lemma 4
enables us to empirically calculate the optimal TCP
segment size for a given network reliability factor.

Let us begin by proving Lemma 1 above.

Proof of Lemma 1

Calculating the values of A(n, ) given by Equation %)
for y = 0 and y = 1, we have for everyn > 1,

A(n, 0) = —nb — ¢ < 0, and A, 1) = (n - 1)(a + c)>0.
Hence, by the continuity of A(n, v) in v, there exists at
least one value of v, denoted Y, in the interval (0, 1) such
that A(n, ) = 0. Since A(n, y) is monotonically
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increasing in v, it follows that a) -y, is unique; b} for all
vy >y, A(n, v) > 0; and c) for all ¥ < y,, A(n, y) < 0.
This finishes the proof of Lemma 1.

Proof of Lemma 2
According to the definition of y, and Equation (5), we
have

A(n,y)=a(n— Dy +(b+omy ™ —nb—c=0  (6)
and
An+1,7v)

=any'+ b+t DY, - (r+ Db -c<0. (7

Foralln > 1,if A(n + 1, y,) < 0, it follows that
Y.+ > 7, since the function A(z + 1, ) is monotonically
increasing in . Thus, we can prove the lemma by proving
that A(n + 1, y,) < 0. We can express A(n + 1, y) as

An+1,y) = ylaln — Dy, + (b +cny. ']
+ay" + (b+e)y,~b-nb-c. (8)
We rewrite Equation (6) in the following two forms:
aln = 1)y + (b +ony’ ' =nb +c, 9
and
nb+c—nb+c)y
ay, = I E— (10)

Substituting Equations (9) and (10) for the first and
second terms on the right-hand side of Equation (8),
respectively, we obtain

(nb +c)y, —nb+c)y,

+ = +
Arn+1,7y) =v,(nb+c¢) |

+(b+c)y,—b—(nb+c). (11)
After simplification, we have

(n— DA +1,5) =bfn’(y, - D +1-7]

+efn(y, - 1) +1-7v1] (12)
Then, however,
n(y,-D+1-7
=(y,-Dn—-0+y,+y+ - +y] (13)

and
nz(yn— H+1-4
=(y, - DIn’ - (L+y,+y + -+ 9] (14)

Since y, < 1, it follows that 1 + 5, + v, + -+ + v~
< n < n’ forn > 1. Hence, the expressions on the right-
hand sides of Equations (13) and (14) are strictly negative,
from which it follows that the expressions on the left-hand
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sides of Equations (13) and (14) are strictly negative.
Using these results in Equation (12) demonstrates that
A(n + 1, y,) < 0. This finishes the proof.

Proof of Lemma 3

The limit of the sequence {y,} as n — = exists because it
is monotonically increasing and upper bounded by 1. From
Equation (6), we have, by using the inequality v <y~

twice,
nb+¢ Hin=
<
[a(n -D+ B+ c)n} &
nb+¢ ln
< >
an—=1) + (B +on forn >1. (15

Using the inequality y* < y'~' twice with respect to the
left-hand side of Equation (9), we have

an — 1)y + (b + ny: <aln = 1)y’ + (b + cIny '
<aln - 1)'y:"1 + (b + c)ny:%.

Replacing the middle sum with the right-hand side
of Equation (9) and dividing all three sums by
a{n — 1) + (b + c)n produces

nb +c¢

n n—-1

<<y
WS am-D+Brom

Let us designate the center term by X, a positive quantity
less than 1 that approaches b/(a + b + ¢) asn — .
We then have

X]/(nAI) < 'Y,, <X1/n'

Since both X"® ™ and X" tend to 1 as n — o, it follows
that vy — 1 as #n — o, This finishes the proof.

Proof of Lemma 4

Because A(n, ) is strictly monotonically increasing in vy,
we have for all n > 1 and y < v, that A(n, y) < A(n, v,).
Because of Lemma 2, we have A(n, v,) = A(n, v,).
Finally, because of Lemma 1, we have A(n, v,) = 0.
Thus, A(n, y) <0, so C(1) < €(n) foralln > 1 and

y < v,. For y = v,, again since A(2, y) is monotonically
increasing in vy, we have A(2, y) = A(2, v,) = 0; hence,
€(2) = C(1) and there exists n = 2 such that C(n) = C(1).
We now show that €(n) has a global minimum at

one point (designated n,) or two adjacent points. Let us
extend the domain of n to the set of real numbers, and let
{(n) be the first-order derivative of C(1) — €(n) with
respect to n, which equals the derivative of A(n, y)/nvy".
Calculating this quantity leads to the following expression:

(n*y"){(n) = ay" + b(log y)n* + c(log y)n + c. (16)

The first term on the right-hand side of Equation (16) is
monotonically decreasing in n, has value a at n = 0, and
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approaches 0 as # — . The remaining three terms form
a quadratic in n that has a global maximum at some n < 0,
has value ¢ at n = 0, and approaches —-® as n — .
Thus, the quadratic is decreasing for n = 0. Consequently,
the right-hand side of Equation (16), which is the sum of
the first term and the remaining quadratic, must be zero
at some point, denoted n,, in the range (0, »). Moreover,
for n > n,, the right-hand side is negative, and for n < n,,
the right-hand side is positive. Hence, C(1) — C(n) has a
global maximum at n = n;, from which it follows that C(n)
has a global minimum at #n = n,. This finishes the proof.

Bounds for optimal transmission
In this section,

1. We determine a sufficient condition on the network
reliability factor y for the optimal TCP segment size to
be greater than the MTU size (the condition is that the
network reliability factor be greater than some function
of n).

2. We derive a lower bound of the optimal TCP segment
size, for any given network reliability factor y which is
a function of the given network reliability factor v.

3. We show that the cost function €(n) is concave upward.

We make only the reasonable assumption that the TCP
processing cost per segment equals the IP processing cost
per network packet—i.e., a = d (defined in the section on
problem formulation). We normalize the cost difference
[Equation (5)] by dividing it by the TCP and IP processing
costs. This leads to a cost difference that is a function of
the ratio of the network-layer processing cost to the TCP
and IP processing costs, r, and the number of times the
network layer is invoked to drive two network packets out
to the network, m. (These two latter variables are also
defined in the section on problem formulation). The
concavity property of C(n) enables us to determine how
fast C(n) decreases as a function of n, and thus how
sensitive the choice of the optimal TCP segment size is
with respect to the network reliability factor.

We now proceed to accomplish our first goal described
above. Using the definitions of b, ¢, C . (1), m, and r
with a = d, one derives in a straightforward manner

b

;= 1+ mr (17)
and

(4

a-= 14r. (18)

Using these two equalities in Equation (5), we obtain

Aln, )

=(n- Dy +[2+ (m+ Driny™™

—1+mrn—->0+7r). (19)
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Using Equation (19) and A(n, v,) = 0, we derive the
following equality:

(n—1)yy, + 2ny:"1 —-(n+1)

=1+mn—~(m+ 1)ny:_l.

(20)
Also, using Equation (19) and A(n, v,) = 0, forn > 1,
we have the following nontrivial equality, derived by
adding [1 + (m + D)rl(n — 1)y" + [2 + (m + Driny.™"
to both sides of A(n, v,) = 0 and rearranging terms:

r

(n=1y+ 2y = (n+1)

[1+ (m+ Drl[(n ~ Dyl +ny "' + 1]
- 24 (m+1)r

n(1+y )+ (n-Dr
+ . 21
24+ (m+ Dr

Since all terms on the right-hand side of Equation (21)
are positive, the left-hand side, which is the numerator of
the left-hand side of Equation (20), must be strictly
positive. Consequently, the right-hand side is strictly
positive. For n > 1, we then deduce that

1+mn VY
Y, < l:m] . (22)

From Lemma 1, we have that a sufficient condition for
A(n, y) > 0is

1+mn Y
= . 23
Y ’:(m + l)n] (23)

We next derive the following sufficient condition, which is
independent of n, for the optimal TCP segment size to be
larger than the MTU size:

1+ 2m

72——-—2(m+1) . (24)

To demonstrate Equation (24), we define the sequence

(m+ Dn

1+ mn J¥0
R

Then x, is the unique root, in the range (0, 1),

of the monotonically increasing function in x,

(m + Dnx""' — nm — 1. This latter function equals
A(n, x) given by Equation (5) ifa = 0,b = m, andc = 1.
We follow exactly the same steps as those in the proof of
Lemma 2, with x_ replacing v,, to prove that x, is strictly
monotonically increasing. Hence x, = x, for alln > 1.
Equation (24) then follows from Equation (23). This
establishes our first goal stated in the introduction of this
section.
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We next derive a lower bound for the optimal TCP
segment size. Denoting by n, the solution of {(n) = 0
in Equation (16), and using equalities (17) and (18),
we have, by a straightforward manipulation of terms,

1+ mr , . —y™
2 1=
15 (log y)n, + (log y)n, T

(25)

Since m = 1, we have (1 + mr)/(1 + r) < m. This and
the facts that log vy < 0 and y > 0 lead to

m(log 7)n(2) + (log v)n, + 1
1+ mr —y"

2 -_
<~ (og Yny + (log yiny + 1=1-— <0. (26)

The feasible solution set of m(log y)ng + (log yn, + 1 <0
is n, > n, where

~log v — V(log v)* — 4m log v
2m log vy '

n = (27)

We remark at this point that n,, the solution of
Equation (25), is a real number and not necessarily an
integer. The integer solution that minimizes the processing
cost C(n) is either floor(n,) or ceil(n,). Since it is a
difficult task to determine in every case the exact integer
that minimizes € (n), we use the approximation round(n,)
for the integer solution, where round(x) = integer
part of (x + 1/2). From n, > n, it follows that
round (n,) = round(n), and we may thus use round (n) as
an approximate lower bound for the optimal TCP segment
size. The sufficient condition (24) enables us to check
whether the optimal TCP segment size is greater than the
MTU size, independently of the host-processing-cost
parameters. When condition (24) is satisfied, the lower
bound round (n) is easy to calculate from Equation (27)
and, again, does not require knowledge of the host-
processing-cost parameters. In many cases, m = 1; thus
Equation (24) becomes y = 0.75, which is probably
satisfied by many networks. For m = 1, approximate
values for the optimal TCP segment size are given in
Table 1 as a function of y. (In the table, [a, b) is the
notation for a < y = b.) We also graph the optimal TCP
segment size as a function of vy in Figure 2.

It is worth mentioning at this point that as n increases,
the average throughput (the number of bytes successfully
received per unit time) of the file transfer decreases. The
relative decrease in throughput [with respect to the case
when the TCP segment size equals the MTU size (n = 1)]
is 1 ~ ¢y (this does not take into account other factors
governing the throughput, such as the sender’s ability to
recover from the loss of a packet without having to resort
to a timeout). It is therefore important to consider the
effects of the number of packets per TCP segment on the
average throughput of the file transfer.
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Table 1 Optimal TCP segment size (number of network
packets) for various ranges of network reliability factor
(m =1).

Range of network Approximate optimal
reliability factors y TCP segment size
round (n)

[0.7500, 0.7659)
[0.7659, 0.8920)
[0.8920, 0.9385)
[0.9385, 0.9604)
[0.9604, 0.9724)
[0.9724, 0.9797)
[0.9797, 0.9844)
[0.9844, 0.9877)
[0.9877, 0.9900)
[0.9900, 0.9918)

O VOB WN =

—

We now show that the cost function €(n) is concave
upward in n. A necessary and sufficient condition for this
to be the case is that the second derivative of C(n) be
non-negative for all values of » = 1. If we denote this
second derivative by C"(r) and note that Equation (16) is
the first derivative of —C(n) (ignoring a positive constant
factor), we have

C"(n)

2¢ —2ay" + b(log y)’n® + c(log y)*n” + 2¢(log y)n

n}_yrt
(28)
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We show that the numerator of Equation (28) is non-
negative. Since m = 1, we have from Equations (17) and
(18) that b = ¢ > a. Also, because y < 1, it follows
that 2¢ — 2ay" > 0. It thus suffices to show that
b(log y)n* + c(log y)n + 2c is non-positive for n = 1,
since (log y)n < 0. The two roots of this quadratic
in n are [c(log y) = VA]/(—2b log y), where
A = c¢*(log v)> — 8bc(log ). The root for ~ VA is
clearly negative (since log vy < 0), and if we show that
the other root is negative, that will demonstrate our
claim (because the quadratic has the same sign as
b(log v) < 0 outside the roots). But since log y < 0,
it follows that —bc log y > 0, and 4 > ¢’(log v)’,
which implies that VA = |c log y| = —c log . This
finishes the proof.

We now present some examples of optimal TCP
segment size.

Example

Consider a file server with the following processing costs
and parameters for outbound data transfer. The goal is to
show to the reader how to calculate the optimal TCP
segment size and to point out the host-processing savings,
in CPU cycles, by using the larger TCP segment size.
Assume the following values:

« g = 500 instructions per segment TCP processing cost.

« b = 3000 instructions per packet IP and network-layer
processing cost.

« ¢ = 3000 instructions per TCP acknowledgment in
processing cost.

« d = 500 instructions per packet IP processing cost.

« C_ = 0.15 instructions per byte data-moving cost.

s C, = 0.628 instructions per byte TCP checksum cost.

» C, = 5000 instructions, fixed processing cost to transfer
a data block from the FTP layer to the TCP layer.

s 8, = 65536 bytes in the network-layer buffer.

« §, = 32768 bytes in each data block transferred between
FTP and TCP.

In Figure 3, we graph the upper bound on cost function,
C(n), for various values of y, the probability that a
network packet is received successfully, and for a selected
set of network packet sizes p. Note that in Figure 3(a), for
v = 1, the optimum TCP segment size is infinite, since the
penalty for retransmission is never incurred. In all cases
presented, the greatest improvement in processing cost
(measured in CPU cycles) comes from increasing the TCP
segment size from p to 2p. This is because the cost
function C(n) is concave upward in z, so when the
function is decreasing, the greatest cost savings come from
increasing the segment size from p to 2p. Intuitively, we
reason that C(n) is concave upward because as the
segment size increases, the cost of retransmission of
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Table 2 Value of n for various network reliability factors.

v n round (n)
0.98 6.553 7
0.92 2.999 3
0.85 2.030 2
0.75 1

1.430

network packets increases faster than the cost of
processing TCP segments and acknowledgments decreases.
Hence, the percentage of cost savings (in CPU cycles
consumed) decreases as the TCP segment size increases.
The cost reduction due to choosing a non-optimal TCP
segment size (at least 2p in size) is not overly sensitive to
the network reliability factor v, and it is not a major
problem if the sender does not have accurate knowledge
of v.

Using the parameters for this example in Equation (6),
we calculate vy, (= v,) to be 0.73. All of the values
of y used in the example are greater than 0.73, which
guarantees that the optimal TCP segment size is greater
than the MTU size. Note also that the sufficient condition
of Equation (24), y > 0.75, is satisfied in each case. The
values of n given by Equation (27) are shown in Table 2.
Note that the absolute value of the difference of round(n)
and the optimal segment size (in Figure 3) is less than or
equal to 1.

Conclusion

In this paper, we studied the problem of selecting the
optimal TCP segment size in order to minimize the
TCP/IP processing cost for file transfer from hosts to
clients. In the literature, the TCP segment size is usually
designed to maximize file-transfer throughput. However,
some file servers cannot afford to consume many CPU
cycles on network-communications processing. There is
thus a need to minimize TCP/IP processing for such file
servers. We formulated the sender processing cost

as a function of the TCP segment size and of the
acknowledgments processing. The parameters of this cost
function are costs for the TCP, IP, and network-layer
processing, checksum calculation, and data moves, for
processing both inbound (acknowledgments) and outbound
data. Other parameters are the TCP window size, the
maximum network packet size, and the network reliability
factor. The variable in this cost function is the TCP
segment size.

We proved the existence of a network reliability factor
v, with the following property. For any network reliability
factor y < v,, the optimal TCP segment size equals the
maximum network packet size (less the TCP and IP
headers). In this case, the processing-cost function

increases with the segment size. For y > y,, the cost 365
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function has a global minimum at a segment size greater
than the MTU size. Also, the optimal TCP segment size
increases with vy because, as the TCP network reliability
factor increases, the average number of retransmitted TCP
segments decreases. We also derived a sufficient condition
on the network reliability factor for the optimal TCP
segment size to be greater than the MTU size. In this
case, we obtained a lower bound for the optimal TCP
segment size as a simple function of the network reliability
factor.

It is worth mentioning that the amount of TCP/IP
processing at the receiving node also decreases as a result
of larger TCP segment sizes. This is because, just as
in the sender case, the network-layer processing cost
decreases as a result of a larger batch of network packet
arrivals, and the TCP cost decreases as a result of
processing fewer incoming segments and outgoing
acknowledgments. The receiver TCP/IP, however, must
efficiently implement the reassembly of IP datagrams into
TCP segments. Otherwise, the CPU savings in cycles due
to larger segments will be lost because of the expensive
processing cost of TCP-segment reassembly.

*Trademark or registered trademark of International Business
Machines Corporation.
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