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Data compression allows more efficient use  of 
storage media  and communication bandwidth, 
and standard compression offerings for tape 
storage have  been well established since the 
late 1980s. Compression technology lowers 
the cost of storage without changing 
applications or data access methods. The 
desire to extend these cost/performance 
benefits to higher-data-rate media  and broader 
media  forms, such as  DASD storage 
subsystems, motivated the design and 
development  of the IBMLZ1 compression 
algorithm and its implementing technology. 
The IBMLZ1 compression algorithm was 
designed not only for robust and highly 
efficient compression, but also for extremely 
high reliability. Because compression removes 
redundancy in  the source, the compressed 
data become extremely  vulnerable to data 
corruption. Key design objectives for  the 
IBMLZ1 development team were efficient 
hardware execution, efficient use  of silicon 
technology,  and minimum system-integration 
overhead.  Through  new observations of 

pattern matching, match-length distribution, 
and the use  of graph vertex coloring for 
evaluating data flows, the IBMLZ1 
compression algorithm and the chip family 
achieved the above  objectives. 

Introduction 
The  addition of compression  capability to a DASD 
subsystem facilitates  more efficient  use of subsystem 
resources such as cache,  data  path bandwidth, and disk 
capacity  in a manner  transparent  to  the system storing  the 
data.  Compression allows existing platforms  and 
applications  to benefit from a lower storage cost and 
potentially higher performance with no  change  to system 
hardware  or  software.  The maximum benefit is achieved 
when the compression is performed  without  performance 
loss. This  requires a technology which is capable of 
running  at  channel  speeds (18MB/s for  ESCON@'),  and 
the ability to  pipeline  data  through  the  compressor 
without significant store-and-forward  penalties. 

I ESCON", or Enterprise  Systems  Connection  Architccturco,  dcfincs  full-duplex 
architecture  between  channels  and  control  units;  the  maximum  peak  data  ratc is 
19.62 MBIs. 
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In addition to the obvious  benefits in disk  capacity (the 
IBMLZl  compression algorithm  described below typically 
achieves better  than  a  3:l savings in DASD capacity for 
high-end  systems), there  are  additional benefits to  the 
subsystem. If the  data  are  compressed as they enter  the 
subsystem (see Figure l), the cache resource  has 
effectively been  tripled.  Customers  can  either benefit  from 
improved performance  due  to  better hit ratios,  or  reduce 
their cost by configuring smaller  amounts of cache. An 
added benefit of data compression  upon entry to the 
subsystem is reduced utilization of internal buses and 
DASD  paths as data flow through  the subsystem.  Finally, 
sequential  performance  can be improved. In general, on 
high-end systems with ESCON-attached  DASD,  the 
throughput of sequential  operations is gated by the  DASD 
data  rate, typically less than  the 18MBls capability of the 
channel. When the device is transferring  compressed  data, 
the  transfer  rate is effectively multiplied by the 
compression ratio, allowing the full capability of the 
channel  to  be  realized. 

The  development of a new compression  algorithm and 
technology was necessary for  the  direct  pipeline  support of 
18MBls ESCON,  up to 40MB/s for  tape,  and  for  the 
emerging  higher-speed  communication  protocols.  The  core 
of the 3490 IDRC' compression algorithm is the 
FileCOMP file compression model, with the BAC' 
compression chip as engine [2]. The  FileCOMP and the 
~I 

IDRC, or  lmproved  Data  Recording  Capability [ I ] ,  is a data compression  and 

The  BAC,  or  Binary  Adaptwe  Coder,  chip  was  developed in 19x1-1982 on a 3Kb 
compaction  standard. 

LSI log~c CMOS  array. 'The BAC c h ~ p  is also referrcd  to as  the skcw codc r   ch~p ,  
because  the twelve augends  were 2 \ k r w ,  or 2 ~' through 2 I' 604 
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BAC  were  developed between 1980 and 1983. The  largest 
gate-array sizes for  CMOS technology  available in 1981 
were 3-4K gates, which was one of the key limiting factors 
in the selection of the compression  algorithm at  that  time. 
To  date,  the full functional  IBMLZl compression chip  has 
120 times  the  BAC circuits,  delivers  16 times  BAC 
throughput at twice the  BAC clocking rate, and  achieves 
about 30% better  compression. 

Overview of compression  algorithm and 
system 
A compression system (Figure 2) generally  consists of a 
model  unit and  a coding unit.  The objectives of the  model 
unit are 1) to provide a  context model for  the  data  or  to 
characterize  the  data as string symbols, and 2) to provide 
a statistics model  for  the  distribution of the  extracted 
symbols. Common  methods used for  redundancy  reduction 
are  run-length  encoding,  pattern  matching,  transformation, 
and  transform coding. The  outputs of the  model  unit  are 
the  extracted symbols, and possibly the statistics of the 
symbol distribution.  The objective of the coding  unit is to 
minimize the overall coded  length by assigning an  optimal 
code word for  each symbol according to its  assumed 
probability. It is important  to  note  that the efjFect of 
compression can take place in the model unit, the coding 
unit, or both. Well-matched  model  and coding  units give 
the most compression benefit. Nevertheless,  the 
computational complexity of hardware  or  software  often 
limits the practical  choice of the  model  and coding units 
for  intended applications. 

Two common choices for  the  coder unit are  Huffman 
coding  [3] and  arithmetic coding [4-61. In Huffman 
coding, each  input symbol is mapped  to  a  code word 
composed of an  integer  number of bits. The  coded  stream 
is a  concatenated  sequence of code words. The  Huffman 
code satisfies the Kraft  inequality [7] and can be uniquely 
decoded.  The worst-case redundancy, defined as expected 
code length  less the binary Shannon's  entropy4 [8], occurs 
when the most probable symbol probability is greater  than 
50%. This  case occurs quite  often in the  compression of 
black-and-white  images. Arithmetic coding does well in 
broad binary symbol cases. The  code  length of the 
arithmetic coding  can be  made arbitrarily  close to  the 
Shannon's  entropy of the  information,  and  thus achieves 
very low redundancy.  The  arithmetic coding method  can 
be  thought of as a  generalization of Huffman coding 
without  the  need  for prefix codes  or  integer-length  code 
words. The  Huffman  code, however, remains  the most 

Shannon's  cntropy  dcfincs thc average ;amount o f  information. 1, p, X 

with  probability p,. Information, in a sense,  describes  a degree of surprise.  The 
log2 ( l l p , ) .  tor a hmary  systcm; log, ( l i p , )  is the  binary information  for  symbol i 

m ~ r c  frequent \yrnbol requlres a shorter  number o f  hits  to  code. If thr  symhols 0 
and 1 appear 93.75% and b .Z% o f  the  time,  respectively,  the  opt~mal  code  lengths 
for 0 and 1 arc 0.091 hit and 4 hits,  respectwely. 
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popular  encoding  method  for its simplicity and its general 
effectiveness. 

Arithmetic coding encourages 19-11] a  clear  separation 
between the  model  and coding  units, and  accommodates 
the  adaptive  model in a  natural  and  coherent  manner.  The 
coded  output  stream of the  arithmetic  coder  resembles  a 
single number of extremely high precision. The  result is 
the sum of sequences of addition  and shift operations. 
Arithmetic coding, though conceptually more complex, 
lends itself well to  adaptation  and excellent  coding 
efficiency [12]. 

in [13] the  method was made symbolwise recursive. 
Development of the full arithmetic coding technique  that 
is known today is due  to Pasco and  Rissanen.  The 
complexity of the  model,  adaptor,  and  arithmetic  coder, 
however,  delayed the practical  use of arithmetic coding in 
hardware  and  software until a  sequence of significant 
computational simplifications was made.  The successful 
integration of approximate  counting [2, 14, 151 and 
probability estimation [16]; the simplification of 
multiplication and division by operator  strength  reduction 
to fixed-augend-based addition  and  subtraction;  and  a 
simplified common adaptive mechanism shared  among 
large possible contexts  for  adaptation  resulted in a 
hardware  reduction of more  than 50 to 1 and  a  software 
speed-up as well. The  BAC chip, developed in 1981-1982 
121, and  the black-white image-compression system 
(ICOM) [17] both benefited from  the  drastic  reduction in 
complexity. A  further  major  computational  reduction 
which affected  both  hardware  and  software was the 
Q-coder algorithm [MI. The ABIC [19] chip, which is based 
on the  ICOM  model  and  Q-coder, is used in IBM high- 
speed check-processing products.  The  SUNSET gray-scale 
image-compression  algorithm based  on  the  BAC  chip 
influenced the  JPEG’  standard.  IBM also developed  a 
simulated  annealing  method  for  the  automated 
optimization of the  arithmetic  coder  probability-estimation 
table [20]. 

Review of L Z l  and LZ2 compression algorithms 
Ziv and Lempel’s compression algorithm 1 1211 and 
algorithm  2 [22] are commonly known as the  LZ1  and 
LZ2 compression  algorithms. The  LZ1  and  the  LZ2, in 
their original form, expressed the  notions of a coding 
model  and  bounds  on  compression.  Professor Lempel 
noted  that  more  than 90 percent of the  compression 
software in the  PC world is derived from  either  LZ1-  or 
LZ2-class  algorithms. 

compression  algorithm  are  the following: 

Shannon conceived the  notion of arithmetic coding, and 

The basic data  structures  and  operations of the  LZ1 

JPEG usually denotes the gray-scale image compression  standard  proposed and 
defined by the ISOiCClTT Jomt Photographlc Experts  Group. 

,@” 

7Ta< 
5 

Compression  system  with  a  model  unit  and a coding  unit. 

History buffer Incoming  data  stream 

Shifting 1 2 3 4 5 Shifting 

I I 

Matching 2 

Matching 1 

1 Pattern  matching of string. Two  matchings of  the  maximal 
incoming  substring aaa are  indicated in the  above  five-element 

1 shift  register  history  buffer. 

Construct  a history structure of the past stream  or 
of the most recent  part of the past stream. 
Use  pattern matching to find the maximal incoming 
substream  that  matches  a  substream residing in the 
history structure. 
Replace  the incoming substream with a  pointer  into  the 
history structure  to  the matching substream  and  length 
(or  their  equivalents) if the  coded  description is shorter 
than  the original substring. 

Conceptually, the history structure used in the  LZ1 
algorithm is a sliding window of  fixed size. One  can 
consider it as a shift register of  fixed length, which 
contains  the  recent past symbols. Figure 3 shows maximal 
(length)  matches of the incoming  substring found in two 
locations.  Match number 1 starts  at  location 1; match 
number  2  starts  at  location 5 and  extends  into  the 
inputting  stream.  The  matching string is aaa, which usually 
takes 24 bits  to code.  Since aaa is also found in the 
history buffer,  the  alternative coding form is to use three 605 
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History buffer Input characters 
QQQQQQQQQQQQQQ~ t 
QQQQQQQQQBQQQQt h note: t i s   i n  match   po in t  1 
QQQQQQQQQQQ~Qth e note:  t i s   s t i l l   i n  match   po in t  1 
@QQQQQ8QQQQQthe r 
QQQQBQQQQ80ther e match  length:  1. match  points:  2. 
QQQQQBQQQQthere f 
QQQQQQQQQtheref o 
QQQQDQOQtherefo r match  length:  1. match  points:  3,  
QQQQQQQtherefor  e match  length:  2. match  points:  3. 
QQQQQQtherefore 
88QQQtherefore t match  length:  1. match p o i n t s :  13. 
QQQQtherefore t h match  length:  2 .  match  points:  8. 
Q Q Q t h e r e f o r e   t h  e match  length:  3. match  points:  8. 
QQtherefore  the  match  length:  1. match  points:  9. 
Q t h e r e f o r e   t h e  t match  length:  2 .  match  po ints :  9 .  
t h e r e f o r e   t h e  t h match  length:  3. match  po ints :  9. 
h e r e f o r e   t h e   t h  e match  length:  4 ,  match  po ints :  9. 
e r e f o r e   t h e   t h e  in 
r e f o r e   t h e  them e match  length:  1. match  points:  4. 8. 12. 0,  
e f o r e   t h e  theme match  length:  2. match  points:  8. 12. 

o r e   t h e  theme t h match l eng th :  4 .  match p o i n t s :  8. 12, 
f o r e   t h e  theme t match l eng th :  3. match po in ts :  8. 12. 

r e   t h e  theme t h  e match l eng th :  5 .  match p o i n t s :  8. 12. 
e t h e  theme t h e  n 

t h e  theme then f 

e theme t h e n   f o  r 
he theme then f o 

theme t h e n   f o r  w 
theme then  forw a 
heme then  forwa r match  length:  1. match  po ints :  11. 

me then  fo rward   match   leng th :  1. match  points:  3 .  8. 
eme then  fo rwar  d 

e then  forward t match  length:  2 .  match  po ints :  3 .  
then  forward t h match  length:  3. match  points:  3. 

t h e n   f o r w a r d   t h  e match  length:  4 .  match  po ints :  3 .  
hen fo rward   the  r match  length:  1. match  po ints :  11. 14. 
en f o r w a r d   t h e r  e 
n f o r w a r d   t h e r e  

t h e  theme then  match  length:  1. match  po ints :  9. 13, 3,  

1 One-byte prefix extension and history buffer size = 15. 

bits  denoting  the  starting  address,  another  three bits for 
the maximal matching length, and one bit tag to state whether 
there is a substitution  or  not.  In  this example, we can 
replace  the 24-bit aaa substring with 7-bit coded words 
(1-bit tag, 3-bit length, and 3-bit starting  address). In fact, in 
this  example, if even  a  single  byte matched it  would be 
beneficial to use the  coded  form.  The  alternative provides 
a  1-bit saving, using 7 bits  instead of 8 bits. In  the  event 
no match is found,  the  input byte is coded with 9  bits,  a 
1-bit  tag  denoting  no  match followed by the original byte. 

In 1976, Jackson  and Rack1 described a data expansion 
apparatus with which, in a  long data  stream,  the  repeated 
sections of data  can  be saved by the  substitution of tag, 
address,  length,  and  number of repetitions  for  storage 
space saving. The  idea is essentially the  same as the LZ1. 
It was filed in  a patent  application in 1976, and  became a 
U.S. patent in  1977 [23]. In  the  patent  description,  some 
types of the LZ2 algorithm  were also described. 

The LZ2 compression  algorithm [22, 241 follows the 
same  principle,  but normally  has  a tree-structured history 606 
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buffer  for improved software efficiency in the  search  for 
matches. 

Hardware flow speed-up 
Fast LZ1 hardware  organization is normally based  on two 
themes:  the  use of prefix extension [25] and  the  use of 
very powerful parallel  combinatorial  operators.  For 
instance,  the longest match in Figure 3 is aaa. Instead of 
finding the longest match in one  operation, prefix 
extension is a  simple divide-and-conquer  approach.  The 
operation is broken down into  the  smaller  job of searching 
for  one byte, two bytes, or any  small fixed number of bytes 
in the  input  stream.  For  the  one-byte case, prefix 
extension finds first letter a to  be  the first prefix, then  tries 
to  extend  the prefix. The substring aa becomes  the 
extended prefix, since a was the prefix for aa. Next, aaa 
becomes  the  extended prefix. However, aaa is not a prefix 
to a longer match; Le., aaa cannot  be  further  extended. 
Prefix extension then  concludes  that  the prefix aaa is itself 
the longest match.  For  the powerful parallel  combinatorial 
operator  aspect, arrays of massive parallel  comparators 
are used for  the  high-speed LZ1 hardware  organization. 
Prefixes of one byte or multiple  bytes are simultaneously 
compared against all storage  locations in the history 
buffer.  Since the above organization  resembles  the 
function of content-addressable memory,  it is often 
referred  to as CAM. 

Figure 4 shows the  use of prefix extension of one byte 
and a  history buffer  storing  the fifteen  previous  bytes. The 
prefix-extension algorithm used is greedy. If a  byte match 
is found, it assumes  that it is itself the first prefix and  tries 
to  extend  the prefix from  that byte on. 

It is interesting  to  note  that  the  use of prefix extension 
and  parallel  compare  operators  resembles  the  algorithmic 
notion of radix sort [26]. As in any two-input comparison- 
based  sorting  algorithm,  the  running  time is bounded 
lower by the  information  theoretic n log n ,  where n is the 
input size.  Radix sort, with its more powerful comparing 
operator  and  sequential  sort  through  each index of each 
number, is able  to achieve  a linear  relationship  between 
run  time  and  input size. Our  development of the high- 
speed LZ1 compression data flow follows the radix-sort- 
like mathematical  notion of using more powerful parallel 
and  compounded  operators  to lower the  number of 
machine cycles needed  for  compressing  or  decompressing 
a byte to  one cycle, or  even a fraction of a cycle. 

Development of the IBMLZ1 algorithm  and 
implementing  technology 
In  addition  to  its objectives of robust  and efficient 
compression,  the IBMLZl compression  algorithm was 
designed for reliability. The objectives for  the IBMLZl 
compression  algorithm (Figure 5) which were  established 
at  the  outset were 
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Extremely high reliability: One  undetected  error in 10". 
Because  compression  removes  redundancy in the  source, 
the  compressed  data  become extremely vulnerable  to 
data  corruption.  A single  bit error in the  coded  stream 
could  result in a  total  decoding  failure  from  that bit 
location  onward. 
Hardware execution efficiency: The  hardware  architecture 
should use  as few machine cycles as  possible to 
compress  or  decompress  a byte. The  architecture should 
maintain low complexity and use the silicon  technology 
effectively. In  addition, it is desired  to minimize 
increases in complexity as the CPB' becomes small. 
Robust compression: Good coding efficiency should be 
achieved for  broad  applications. 
Minimal system integration overhead: The maximum 
benefit from compression is achieved  when the 
compression can  be  performed without performance 
loss. This  requires  a technology that is capable of 
running  at  channel  speeds (18MBls for  ESCON)  and  the 
ability to  pipeline  data  through  the  compressor  without 
significant store-and-forward  penalties. 

Extremely high reliability 
Extremely high reliability (one  undetected  error in lo'") 
is achieved through  the  combined  use of highly reliable 
CMOS technology and  the  compression-decompression 
coupled-checking scheme. Figure 6 shows that  the  CRC 
(cyclic redundancy  code) of the original data is checked 
against the  CRC of the  decompressed  data.  The four-byte 
CRC check  improves  checking  power by a  factor of almost 
10". Two copies of the  CRCs  are  compared by two 
independent  comparators  to avoid a single point of 
failure. 

The  compression-decompression  pair  does  present 
system constraints.  The  compressor may not  emit any code 
word for  a long while during  the passage of a highly 
compressible stream.  The maximal compression latency is 
the  number of original bytes the  compressor  takes  before 
it emits  a  code  word.  At  peak  compression,  the 
decompressor will be  running  behind  the  compressor by 
an amount  equal  to  the maximum latency. This implies 
that  the FIFO buffer between the  compressor  and 
decompressor must be  at least the latency times  the  data 
expansion' factor in size; this constraint  compels  the 
design of IBMLZl  to  keep  the latency  small. A smaller 
compression latency  also  improves the  response  time of 
the  storage  control system. 

6 The  CPB (cycle5 per  byte) I S  the  number of machine cyclcr needed  to compress 
or  decompress  a byte. CPB rescmblcs the use of CPI,  or cycles per inwuction,  for 
measurement of computer architecture1 cffectlveness m RISC and  ClSC 

compression algorithm 15 largcr than  the Eize of the input.  The maximum 
7 Data expansion occurs when the size of the  output strcam  generatcd by the 

compression achlevdblc IS bounded below by the entropy, w h ~ c h  15 data-dependent. 
In addition,  there  are  factors  that drivc the  codcd size away from optimal: coding 
overheads  and  imperfect  models.  The  worst-m?e expansion factor  for IBMLZl is 
12.5%. 

Compression 
efficiency 

Reliability 

L 

System 
requirements 

Efficient use of 
silicon  technology 

IBMLZI compression algorithm development   ob jec t ives .  

Original  data 

CRC  generation b buffer 

i { Compression and decompression pair for encoding reliability 

CAM scrubbing operation As pointed  out  earlier,  the 
operation of the  CAM is based on  using very powerful 
parallel combinatorial  operators,  and  the  search  for  the 
longest  match is done by prefix extension.  What if the 
prefix extension hardware were to fail? The incoming 
stream would then  be  coded  as raw bytes in every case, 
since no match longer  than  one byte could be  found.  The 
coded  output  stream would then  be  expanded by 12.5% 
owing to  the  tag bit  used to  indicate  whether  or 
not  a  substitution  occurred.  In this  case, the 
compression-decompression  pair would not  be  able  to 
detect any error  at all, since the  coded  stream could be 
correctly decoded.  This is the class of performance 
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EII Original byte 

IBMLZI coding format. 

I \  
4 4 

/ \  

I)/ \ I 
/ \  

o /  \ I 
/ \  

X 8 
I)/ \ I o /  \ 1 
/ \  

I6 256 
/ \  

16 Recursion 

degradation  error  that  the  CAM scrubbing is intended t o  
prevent. 

During  CAM scrubbing, the  CAM is split into two 
halves. A minimum of 768 test patterns  are  run  through 
each half CAM.  Outputs at every cycle are  compared 
during this time. 

Hurdwure execution efficiency: Low CPB and low 
complexity 
CPB,  the  number of machine cycles needed  to  compress 
or  decompress  a byte, is a  measure of architectural 
effectiveness for  the compression and  decompression 
units. The first data flow developed  had  a mixture of 
CPR = 3 and CPR = 5 for  compression.  For 
decompression,  the CPB was 1.  With  a  chip  running 
at 40 MHz,  the  data flow delivered about 10 MBis in the 
compression mode,  and 40 MBis in the  decompression 

608 mode. 
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The asymmetrical compression  and  decompression  rates 
of the first data flow were undesirable.  The variable 
encoding  rate also presented  undesirable  control 
overhead.  Efforts  to improve the original data flow were 
not fruitful until the  data flow was mapped  to  a  data- 
dependency  graph.  The  graph  appeared  to  contain  a 
clique (all-connected  subgraph) of degree 3 and  a self- 
loop on the exiting vertex of that  clique.  The clique 
corresponded  to  three  irreducible  computation cycles, and 
the self-loop represented  the  variable two additional 
cycles. As a result of these findings, the first data flow was 
dropped. 

A new data flow was sought,  one which would exhibit a 
bipartite  data-dependency  graph.  That  property allows a 
data flow to be converted directly into  a fully pipelined, 
two-phase  clocking  design. Our approach was to seek 
new, more powerful  parallel combinatorial  operators 
which run two or  more prefix extensions in parallel 1271. 
Encouragingly,  these  also  removed the  need  for  interstage 
control logic altogether.  Control  dependency, in a  sense, is 
a  function of distant past data  dependency. In the new 
data flow, since each execution  stage depends only on the 
data  from  the previous stage,  the  need  for  interstage 
control is removed.  Our  second  data flow achieved rather 
impressive, symmetrical CPR = 1 for compression and 
decompression (most LZ1-  and LZ2-type compressors 
today  have CPB ranging from  2  to 5) without the  need  for 
interstage  control. 

286LZ1, IBMLZI,  and  ALDC code development The 
IBMLZ1  compression coding algorithm  (format) is a 
subset of the  28hLZI  algorithm [28]. The  IBMLZl is used 
in IBM high-performance DASD controllers.  tape drives, 
and  the AIXO file system with compression.  The  ALDC 
(Adaptive Lossless Data  Compression) algorithm is a 
smaller  subset of the 286LZ1 algorithm. The  ALDC 
algorithm  has been approved as the  Quarter-Inch 
Cartridge Drive Standard,  or QIC-154. 

depicted in Figure 7. The tag, the first bit, is chosen 
similar to Jackson’s [23]. When the  tag bit is a 0, the next 
field is the &bit  original  byte. The existence of this  tag  bit 
accounts  for  the worst-case  12.5%  expansion for  IBMLZl 
technology. When  the  tag bit is a I ,  the next field is either 
a variable-length field or  a  control field. If the  length field 
is used, the next field is the  displacement.  The 
displacement field is a  pointer  to  the history buffer,  where 
the head of the match is located. If the  control field is 
chosen,  there might be 0, 1,  or multiple  extension fields. 
The  control field is assigned for several important 
purposes. It allows messages to  be  embedded in 
(effectively, “pipelined” with) the  compressed  data  stream. 
It can  also be  designated  for  future  decoder  redirection. 

The  generic  IBMLZl compression code word format is 
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The  displacement  field is not  encodcd.  One  study'  has 
shown  that  encoding  the  displacement  has  limited  benefit 
for  restricted  types,  such  as PC object  codes.  For  broader 
applications,  and  for  hardware  simplicity,  the  decision  was 
made  not  to  encode  the  displacement  field. 

The  lengthicontrol field of the  IBMLZl  algorithm 
contains  286  code  words  (Figure 8) grouped  in five 
"buckets." 'The bucket  scheme  appears in the  SUNSET 
[2Y] gray-scale  compression  algorithm, JPEG, and  other 
coding  schemes.  For  the first four  buckets,  the  number of 
code  words  in  each  bucket  is  twice  the  number  in  the 
preceding  bucket,  creating  a  "lopsided  tree."  The  30  code 
words  in  the first four  buckets  approximate  the  observed 
exponential  distribution. 

distribution  from  one  test  case.  There  were  738  counts of 
zero  match  found  in  the  CAM;  7623  counts of match 
length = I ;  3000  counts of match  length = 2;  798  counts 
o f  match  length = 3; and so on. The  exponential 
distribution  (or  fractal) of code  length is clearly  shown. 

9 Enlpiricul study of rnutch-length stutistics 
Forty-four  test  cases of expected  data  were  chosen  as  the 
IBMLZl  algorithm  development  test  suite.  They 
encompassed  databases,  programs,  object  code,  system 
code,  and  documents in two  languages  from  major 
applications on VM, MVS", RS/6000", and PC. 
K-code' was used  as  the  basis  for  the  experimental 
lengthicontrol  code  study  (see  Figures 10 and 11). 

Key lzew observations The  empirical  experiment of 
analyzing  the  match-length  distribution  over  the  44-case 
suite  and  also  over  largc  volumes of data  produced  two 
important  observations: 

I. If maximal  match  length is limited  to 192, the  increase 
in  total  compressed  bytes of the  test  suite is less  than 
0.5% in comparison  to  the  maximal  match  length = 

2048  case. 
2. For maximal  match  length = 286,  the  match-length 

distribution is exponential  until  the  match  length 
reaches  approximately 27. Beyond 27, the  distribution is 
very low and  appears  to  have no order. 

Figure 9 shows  analytical  results of a  simpler 

The  192-match-length-limit  observation  was  encouraging, 
since it suggested  that a smaller  set of length  codes  would 
suffer  only  insignificant loss compared to the  set  with 
2048  length  codes.  The  shorter  match  length  presented 
considerable  (logic)  savings  for  the  compression- 
decompression  checking  mechanism. In addition,  short 
match  lcngth  corresponds  to  lower  latency  for  the  storage 
_____ 
* b h u d  0.  K d r t l ~ n ,  " t v d l u , ~ t ~ o ~ ~  and t n h m c c m c n t  u t  LZ-l Bawd Da1.i 
Cornpresslon Systcrns." IBM SCICIICC and Icchnulogy, H a l t a  Kc\carch Group, 
draft, I Y I  1 

Match Match Coded 
length count bits 

0 738 6642 
1 7623 68607 

Matched symbols: 4514 

Match 
length 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
25 
33 
38 
92 
98 

109 
130 
131 
132 
176 
271 
286 

Entropy: 

Match 
count 
3 000 

798 
301 
159 
87 
44 
22 
3 1  
13  

9 
10 
4 
4 
4 
2 
2 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

12 

Coded Probability 
bits Entropy 
6000  0.66460  0.39174 
1596  0.17678  0.44195 
1204  0.06668  0.26050 
636 0.03522 0.17004 
348 0.01927 0. 10981 
176 0.00975 0.06512 
132 0.00487 (3.03743 
186 0.00687 (3.04935 
78 0.00288 0.02431 
54 0.00199 0.01788 
60 0.00222 0.Q1954 
24 0.00089 0.00899 
24 0.00089 0.00899 
24 0.00089 0.00899 
16 0.00044 0.00494 
16 0.00044 0.00494 
8 0.00022 0. 00269 
8 0.00022 0.00269 

12 0.00022 0.00269 
12 0.08022 0.00269 
12 0.00022 0.00269 
12 0.00022 0.00269 
12 0.00022 0.00269 
12 0.00022 0.00269 
12 0.00022 0.00269 
12 @.@K322 0.00269 
12 0.00022 0.00269 
12 0.08022 0.00269 

144 0.00266 0.02274 

1.67951 bits/syrnbol 

system  controller  (or  decoder  latency),  where  thc  response 
time is crucial.  The  maximal  match  length  for  the final 
IBMLZl  algorithm is 271 (Figure 1 1 ) .  

The  second  observation  was  extremely  crucial  to  the 
algorithmic  decision.  Since  the  distribution is exponential, 
it indicated  that  more  complex  adaptive  arithmetic  coding, 
in this  case,  could  perform  only  slightly  better  than 
Huffman  coding.  The  more  complex  adaptive  coding 
scheme  was  thus  discarded. 609 
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Bucket Bucket 
prefix size 

0 2 
10 4 
110 8 

1110 1 6  
11110 3 2  

111110 64 
1111110 1 2 8  

11111110 2 5 6  
. . .  5 1 2  

1024 
. . .  

Code words 

2 .. 3 
4 a .  7 
8 .. 1 5  

16  .. 3 1  
3 2  .. 63 
64 . . 127 

128  . . 255 
256 . . 5 1 1  
5 1 2  . . 1023 

1024 , .  2047 
. . . . . . . . 

I K-code length and control fields. 

Bucket  Bucket  Code words 
prefix size 

0 2 0B . . 01 
16 4 180 . . 111 

110 8 110000 . . 110111 
1110 16 11100000 .. 11101111 
1111 256 111108000000 .. 111111111111 

Five code buckets  are  used:  the  prefixes  are 0, 10, 
110,  1110, and 1111; the numbers of code words, 
respectively,  are 2, 4, 8, 16, and 256 in the  five  buckets. 

Length and control fields of the 286L.21 algorithm. 

The  second  part of the  second  observation  led us to 
significant  coding  simplification and  fast  hardware 
operation.  The  observation suggested that all K-code 
words of length  greater  than 27 could be  lumped  into a 
single bucket.  The resulting 286LZ1  algorithm has 286 
code words  in five buckets; 270  of them  are used for  the 
length  description  from 2 to 271, and  16 of them  are 
assigned for  controls  and  end of file. 

Since there  are only five buckets of code words, the 
encoding  and  decoding  can  be  sped up by precomputing 
all possible code  lengths.  For  instance, since the  parser is 

61 0 on  the  speed-critical  path  for  decoding, we can  compute 
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all five possible  length variations  and archive  multibyte 
decompression in  a  single machine cycle. 

There  were  questions  raised  regarding  the  theoretical 
reasoning  for  the  second  observation  above.  More analyses 
can  be  made  to classify the  distribution. A somewhat 
relevant  study is the  paper by Cleary and  Witten  on 
partial  string matching [30]. The  experimental  results 
showed the  optimal  model  order  for  compressing  text, 
program,  numeric  data, binary code, gray-scale  image, and 
so on. 

IBMLZl compression results 
Figure 12 shows the  compress-to  ratios of IBMLZl 
variants.  The IBM-1K and IBM-2K variants  result  from 
the  use of  1K and 2K history  buffers,  respectively. The 
IBM-1KF  and  IBM-2KF  are  the  results  from  fast-attack 
[28] versions that  aimed at improving the initial  coding 
efficiency when the history buffer is partially filled. The 
block  size denotes  the size  limit at which the  compression 
is restarted.  The blocking  effect appears  on  the  channel  to 
the  storage  controller,  where 4K  is the most typical block 
size and  the next most common block  size is 2K. The 
CAM of a 1K history buffer is about 60K equivalent-cell 
area, suggesting that a 1K CAM  instead of 2K  will yield 
good  compression while  minimizing  circuit  size. 

IBMLZ1 compression  technology  for  storage 
controllers 
A family of compression  chips based  on  the  IBMLZl 
compression  algorithm  has  been  developed.  An  0.8-pm 
75 000-gate array achieved 40MBls throughput [31]; 
a 0.5-pm version is expected  to  reach 5OMBls throughput. 
Figure 13 depicts a comprehensive  compression subsystem 
chip with the  compression  macro  imbedded.  The  chip 
operates  at 40 MBls and is pipelined between the  ESCON 
and  the  cache unit for  the  array  storage  controller. As 
mentioned  earlier,  pipelined  operation yields the maximal 
system benefit. 

Log-structured  storage  management provides  efficient 
integration of compression  for  the  storage  controller.  In 
CKD  (count key data)  environments, individual  blocks of 
data  are  frequently  updated. Since the compression  effect 
is data-dependent,  the newly compressed  data  cannot  be 
guaranteed  to fit in the  space left by the  old  data. 
The  log-structured  technique  for dealing with this 
unpredictability is not  to  attempt  updates in place, but 
rather  to collect changed  data in a log and  write  the  data 
to  DASD in free space, maintaining a directory which 
maps  the logical address of the  data  to  the  actual physical 
location.  The  directory  can  then  be reviewed  periodically 
to find sparsely populated  areas  on disk and collect the 
space  for  reuse. 
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Summary  and remarks on  future  development 
The  IBMLZl  algorithm  and technology  have been 
designed for high-compression/decompression throughput 
with efficient hardware  implementation, high reliability, 
low system overhead,  and  robust compression. Data 
integrity and reliability are  ensured by coupled 
compression-decompression checking, the scrubbing 
operation,  and extensive  built-in  checking.  Extremely low 
(CPB = 1) compression  and  decompression have been 
achieved. The extremely high-compressionidecompression 
throughput of 30-50 MBis allows a transparent  mode of 
operation  and,  thus, minimal  system overhead.  The 
IBMLZl algorithm compresses well over the  VM, MVS, 
RS/6000, and  PC  test cases. Future tasks include 
developing format-compatible lower-CPB and low- 
overhead  data integrity  checking architectures. 
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