
A fast, highly
reliable data
compression
chip and
algorithm for
storage systems

by J.-M. Cheng
L. M. Duyanovich
D. J. Craft

Data compression allows more efficient use of
storage media and communication bandwidth,
and standard compression offerings for tape
storage have been well established since the
late 1980s. Compression technology lowers
the cost of storage without changing
applications or data access methods. The
desire to extend these cost/performance
benefits to higher-data-rate media and broader
media forms, such as DASD storage
subsystems, motivated the design and
development of the IBMLZ1 compression
algorithm and its implementing technology.
The IBMLZ1 compression algorithm was
designed not only for robust and highly
efficient compression, but also for extremely
high reliability. Because compression removes
redundancy in the source, the compressed
data become extremely vulnerable to data
corruption. Key design objectives for the
IBMLZ1 development team were efficient
hardware execution, efficient use of silicon
technology, and minimum system-integration
overhead. Through new observations of

pattern matching, match-length distribution,
and the use of graph vertex coloring for
evaluating data flows, the IBMLZ1
compression algorithm and the chip family
achieved the above objectives.

Introduction
The addition of compression capability to a DASD
subsystem facilitates more efficient use of subsystem
resources such as cache, data path bandwidth, and disk
capacity in a manner transparent to the system storing the
data. Compression allows existing platforms and
applications to benefit from a lower storage cost and
potentially higher performance with no change to system
hardware or software. The maximum benefit is achieved
when the compression is performed without performance
loss. This requires a technology which is capable of
running at channel speeds (18MB/s for ESCON@'), and
the ability to pipeline data through the compressor
without significant store-and-forward penalties.

I ESCON", or Enterprise Systems Connection Architccturco, dcfincs full-duplex
architecture between channels and control units; the maximum peak data ratc is
19.62 MBIs.

"Cnpyright 1996 by International Business Machines Corporation. Copying in printed form fbr private u\c is permitted without payment of royalty provided that (I) each
reproduction is done without alteration and (2) the Journol refercncc and IBM copyright nutice arc included on the first page. The title and abstract, hut nu other portions,
o f this paper may he copied o r distrihuted royalty free without further permission hy computcr-based and other infi)rmation-service systems. Pcrmissiun to republish any other

portion o t this paper must he obtained trom thc Editor.

0018-8646/96/$5.00 0 1996 IBM

1BM 1. RES. DEVELOP. VOL. 40 NO. 6 NOVEMBER 1996 J:M. CHENG, I,. M. DUYANOVICH, AND D. J . CRAFT

1 XMB/s ESCON

Computer Storage controller
hosts

Head-dlsk awembly

HDA array

: Storage controller with compression capabllity.

In addition to the obvious benefits in disk capacity (the
IBMLZl compression algorithm described below typically
achieves better than a 3:l savings in DASD capacity for
high-end systems), there are additional benefits to the
subsystem. If the data are compressed as they enter the
subsystem (see Figure l), the cache resource has
effectively been tripled. Customers can either benefit from
improved performance due to better hit ratios, or reduce
their cost by configuring smaller amounts of cache. An
added benefit of data compression upon entry to the
subsystem is reduced utilization of internal buses and
DASD paths as data flow through the subsystem. Finally,
sequential performance can be improved. In general, on
high-end systems with ESCON-attached DASD, the
throughput of sequential operations is gated by the DASD
data rate, typically less than the 18MBls capability of the
channel. When the device is transferring compressed data,
the transfer rate is effectively multiplied by the
compression ratio, allowing the full capability of the
channel to be realized.

The development of a new compression algorithm and
technology was necessary for the direct pipeline support of
18MBls ESCON, up to 40MB/s for tape, and for the
emerging higher-speed communication protocols. The core
of the 3490 IDRC' compression algorithm is the
FileCOMP file compression model, with the BAC'
compression chip as engine [2]. The FileCOMP and the
~I

IDRC, or lmproved Data Recording Capability [I] , is a data compression and

The BAC, or Binary Adaptwe Coder, chip was developed in 19x1-1982 on a 3Kb
compaction standard.

LSI log~c CMOS array. 'The BAC c h ~ p is also referrcd to as the skcw codc r ch~p ,
because the twelve augends were 2 \ k r w , or 2 ~' through 2 I' 604

J:M. C H E N F , 1.. M. DUYANOVICH, AND D. I CRAFT IBM J. RES. DEVEIX

BAC were developed between 1980 and 1983. The largest
gate-array sizes for CMOS technology available in 1981
were 3-4K gates, which was one of the key limiting factors
in the selection of the compression algorithm at that time.
To date, the full functional IBMLZl compression chip has
120 times the BAC circuits, delivers 16 times BAC
throughput at twice the BAC clocking rate, and achieves
about 30% better compression.

Overview of compression algorithm and
system
A compression system (Figure 2) generally consists of a
model unit and a coding unit. The objectives of the model
unit are 1) to provide a context model for the data or to
characterize the data as string symbols, and 2) to provide
a statistics model for the distribution of the extracted
symbols. Common methods used for redundancy reduction
are run-length encoding, pattern matching, transformation,
and transform coding. The outputs of the model unit are
the extracted symbols, and possibly the statistics of the
symbol distribution. The objective of the coding unit is to
minimize the overall coded length by assigning an optimal
code word for each symbol according to its assumed
probability. It is important to note that the efjFect of
compression can take place in the model unit, the coding
unit, or both. Well-matched model and coding units give
the most compression benefit. Nevertheless, the
computational complexity of hardware or software often
limits the practical choice of the model and coding units
for intended applications.

Two common choices for the coder unit are Huffman
coding [3] and arithmetic coding [4-61. In Huffman
coding, each input symbol is mapped to a code word
composed of an integer number of bits. The coded stream
is a concatenated sequence of code words. The Huffman
code satisfies the Kraft inequality [7] and can be uniquely
decoded. The worst-case redundancy, defined as expected
code length less the binary Shannon's entropy4 [8], occurs
when the most probable symbol probability is greater than
50%. This case occurs quite often in the compression of
black-and-white images. Arithmetic coding does well in
broad binary symbol cases. The code length of the
arithmetic coding can be made arbitrarily close to the
Shannon's entropy of the information, and thus achieves
very low redundancy. The arithmetic coding method can
be thought of as a generalization of Huffman coding
without the need for prefix codes or integer-length code
words. The Huffman code, however, remains the most

Shannon's cntropy dcfincs thc average ;amount o f information. 1, p, X

with probability p,. Information, in a sense, describes a degree of surprise. The
log2 (l l p ,) . tor a hmary systcm; log, (l i p ,) is the binary information for symbol i

m ~ r c frequent \yrnbol requlres a shorter number o f hits to code. If thr symhols 0
and 1 appear 93.75% and b .Z% o f the time, respectively, the opt~mal code lengths
for 0 and 1 arc 0.091 hit and 4 hits, respectwely.

IP. VO1.. 41) NO. 6 NOVEMBER 1996

popular encoding method for its simplicity and its general
effectiveness.

Arithmetic coding encourages 19-11] a clear separation
between the model and coding units, and accommodates
the adaptive model in a natural and coherent manner. The
coded output stream of the arithmetic coder resembles a
single number of extremely high precision. The result is
the sum of sequences of addition and shift operations.
Arithmetic coding, though conceptually more complex,
lends itself well to adaptation and excellent coding
efficiency [12].

in [13] the method was made symbolwise recursive.
Development of the full arithmetic coding technique that
is known today is due to Pasco and Rissanen. The
complexity of the model, adaptor, and arithmetic coder,
however, delayed the practical use of arithmetic coding in
hardware and software until a sequence of significant
computational simplifications was made. The successful
integration of approximate counting [2, 14, 151 and
probability estimation [16]; the simplification of
multiplication and division by operator strength reduction
to fixed-augend-based addition and subtraction; and a
simplified common adaptive mechanism shared among
large possible contexts for adaptation resulted in a
hardware reduction of more than 50 to 1 and a software
speed-up as well. The BAC chip, developed in 1981-1982
121, and the black-white image-compression system
(ICOM) [17] both benefited from the drastic reduction in
complexity. A further major computational reduction
which affected both hardware and software was the
Q-coder algorithm [MI. The ABIC [19] chip, which is based
on the ICOM model and Q-coder, is used in IBM high-
speed check-processing products. The SUNSET gray-scale
image-compression algorithm based on the BAC chip
influenced the JPEG’ standard. IBM also developed a
simulated annealing method for the automated
optimization of the arithmetic coder probability-estimation
table [20].

Review of L Z l and LZ2 compression algorithms
Ziv and Lempel’s compression algorithm 1 1211 and
algorithm 2 [22] are commonly known as the LZ1 and
LZ2 compression algorithms. The LZ1 and the LZ2, in
their original form, expressed the notions of a coding
model and bounds on compression. Professor Lempel
noted that more than 90 percent of the compression
software in the PC world is derived from either LZ1- or
LZ2-class algorithms.

compression algorithm are the following:

Shannon conceived the notion of arithmetic coding, and

The basic data structures and operations of the LZ1

JPEG usually denotes the gray-scale image compression standard proposed and
defined by the ISOiCClTT Jomt Photographlc Experts Group.

,@”

7Ta<
5

Compression system with a model unit and a coding unit.

History buffer Incoming data stream

Shifting 1 2 3 4 5 Shifting

I I

Matching 2

Matching 1

1 Pattern matching of string. Two matchings of the maximal
incoming substring aaa are indicated in the above five-element

1 shift register history buffer.

Construct a history structure of the past stream or
of the most recent part of the past stream.
Use pattern matching to find the maximal incoming
substream that matches a substream residing in the
history structure.
Replace the incoming substream with a pointer into the
history structure to the matching substream and length
(or their equivalents) if the coded description is shorter
than the original substring.

Conceptually, the history structure used in the LZ1
algorithm is a sliding window of fixed size. One can
consider it as a shift register of fixed length, which
contains the recent past symbols. Figure 3 shows maximal
(length) matches of the incoming substring found in two
locations. Match number 1 starts at location 1; match
number 2 starts at location 5 and extends into the
inputting stream. The matching string is aaa, which usually
takes 24 bits to code. Since aaa is also found in the
history buffer, the alternative coding form is to use three 605

IBM J . RES. DEVELOP. VOL. 40 NO. 6 NOVEMBER lYY6 J:M. CHENG, L. M. DUYANOVICH, AND D. J. CRAFT

History buffer Input characters
QQQQQQQQQQQQQQ~ t
QQQQQQQQQBQQQQt h note: t i s i n match po in t 1
QQQQQQQQQQQ~Qth e note: t i s s t i l l i n match po in t 1
@QQQQQ8QQQQQthe r
QQQQBQQQQ80ther e match length: 1. match points: 2.
QQQQQBQQQQthere f
QQQQQQQQQtheref o
QQQQDQOQtherefo r match length: 1. match points: 3,
QQQQQQQtherefor e match length: 2. match points: 3.
QQQQQQtherefore
88QQQtherefore t match length: 1. match p o i n t s : 13.
QQQQtherefore t h match length: 2 . match points: 8.
Q Q Q t h e r e f o r e t h e match length: 3. match points: 8.
QQtherefore the match length: 1. match points: 9.
Q t h e r e f o r e t h e t match length: 2 . match po ints : 9 .
t h e r e f o r e t h e t h match length: 3. match po ints : 9.
h e r e f o r e t h e t h e match length: 4 , match po ints : 9.
e r e f o r e t h e t h e in
r e f o r e t h e them e match length: 1. match points: 4. 8. 12. 0,
e f o r e t h e theme match length: 2. match points: 8. 12.

o r e t h e theme t h match l eng th : 4 . match p o i n t s : 8. 12,
f o r e t h e theme t match l eng th : 3. match po in ts : 8. 12.

r e t h e theme t h e match l eng th : 5 . match p o i n t s : 8. 12.
e t h e theme t h e n

t h e theme then f

e theme t h e n f o r
he theme then f o

theme t h e n f o r w
theme then forw a
heme then forwa r match length: 1. match po ints : 11.

me then fo rward match leng th : 1. match points: 3 . 8.
eme then fo rwar d

e then forward t match length: 2 . match po ints : 3 .
then forward t h match length: 3. match points: 3.

t h e n f o r w a r d t h e match length: 4 . match po ints : 3 .
hen fo rward the r match length: 1. match po ints : 11. 14.
en f o r w a r d t h e r e
n f o r w a r d t h e r e

t h e theme then match length: 1. match po ints : 9. 13, 3,

1 One-byte prefix extension and history buffer size = 15.

bits denoting the starting address, another three bits for
the maximal matching length, and one bit tag to state whether
there is a substitution or not. In this example, we can
replace the 24-bit aaa substring with 7-bit coded words
(1-bit tag, 3-bit length, and 3-bit starting address). In fact, in
this example, if even a single byte matched it would be
beneficial to use the coded form. The alternative provides
a 1-bit saving, using 7 bits instead of 8 bits. In the event
no match is found, the input byte is coded with 9 bits, a
1-bit tag denoting no match followed by the original byte.

In 1976, Jackson and Rack1 described a data expansion
apparatus with which, in a long data stream, the repeated
sections of data can be saved by the substitution of tag,
address, length, and number of repetitions for storage
space saving. The idea is essentially the same as the LZ1.
It was filed in a patent application in 1976, and became a
U.S. patent in 1977 [23]. In the patent description, some
types of the LZ2 algorithm were also described.

The LZ2 compression algorithm [22, 241 follows the
same principle, but normally has a tree-structured history 606

J:M. (

buffer for improved software efficiency in the search for
matches.

Hardware flow speed-up
Fast LZ1 hardware organization is normally based on two
themes: the use of prefix extension [25] and the use of
very powerful parallel combinatorial operators. For
instance, the longest match in Figure 3 is aaa. Instead of
finding the longest match in one operation, prefix
extension is a simple divide-and-conquer approach. The
operation is broken down into the smaller job of searching
for one byte, two bytes, or any small fixed number of bytes
in the input stream. For the one-byte case, prefix
extension finds first letter a to be the first prefix, then tries
to extend the prefix. The substring aa becomes the
extended prefix, since a was the prefix for aa. Next, aaa
becomes the extended prefix. However, aaa is not a prefix
to a longer match; Le., aaa cannot be further extended.
Prefix extension then concludes that the prefix aaa is itself
the longest match. For the powerful parallel combinatorial
operator aspect, arrays of massive parallel comparators
are used for the high-speed LZ1 hardware organization.
Prefixes of one byte or multiple bytes are simultaneously
compared against all storage locations in the history
buffer. Since the above organization resembles the
function of content-addressable memory, it is often
referred to as CAM.

Figure 4 shows the use of prefix extension of one byte
and a history buffer storing the fifteen previous bytes. The
prefix-extension algorithm used is greedy. If a byte match
is found, it assumes that it is itself the first prefix and tries
to extend the prefix from that byte on.

It is interesting to note that the use of prefix extension
and parallel compare operators resembles the algorithmic
notion of radix sort [26]. As in any two-input comparison-
based sorting algorithm, the running time is bounded
lower by the information theoretic n log n , where n is the
input size. Radix sort, with its more powerful comparing
operator and sequential sort through each index of each
number, is able to achieve a linear relationship between
run time and input size. Our development of the high-
speed LZ1 compression data flow follows the radix-sort-
like mathematical notion of using more powerful parallel
and compounded operators to lower the number of
machine cycles needed for compressing or decompressing
a byte to one cycle, or even a fraction of a cycle.

Development of the IBMLZ1 algorithm and
implementing technology
In addition to its objectives of robust and efficient
compression, the IBMLZl compression algorithm was
designed for reliability. The objectives for the IBMLZl
compression algorithm (Figure 5) which were established
at the outset were

ZHENG, L. M. DUYANOVICH, AND D. J. CRAFT IBM J RES. DEVELOP VOL. 40 NO. 6 NOVEMBER 1996

Extremely high reliability: One undetected error in 10".
Because compression removes redundancy in the source,
the compressed data become extremely vulnerable to
data corruption. A single bit error in the coded stream
could result in a total decoding failure from that bit
location onward.
Hardware execution efficiency: The hardware architecture
should use as few machine cycles as possible to
compress or decompress a byte. The architecture should
maintain low complexity and use the silicon technology
effectively. In addition, it is desired to minimize
increases in complexity as the CPB' becomes small.
Robust compression: Good coding efficiency should be
achieved for broad applications.
Minimal system integration overhead: The maximum
benefit from compression is achieved when the
compression can be performed without performance
loss. This requires a technology that is capable of
running at channel speeds (18MBls for ESCON) and the
ability to pipeline data through the compressor without
significant store-and-forward penalties.

Extremely high reliability
Extremely high reliability (one undetected error in lo'")
is achieved through the combined use of highly reliable
CMOS technology and the compression-decompression
coupled-checking scheme. Figure 6 shows that the CRC
(cyclic redundancy code) of the original data is checked
against the CRC of the decompressed data. The four-byte
CRC check improves checking power by a factor of almost
10". Two copies of the CRCs are compared by two
independent comparators to avoid a single point of
failure.

The compression-decompression pair does present
system constraints. The compressor may not emit any code
word for a long while during the passage of a highly
compressible stream. The maximal compression latency is
the number of original bytes the compressor takes before
it emits a code word. At peak compression, the
decompressor will be running behind the compressor by
an amount equal to the maximum latency. This implies
that the FIFO buffer between the compressor and
decompressor must be at least the latency times the data
expansion' factor in size; this constraint compels the
design of IBMLZl to keep the latency small. A smaller
compression latency also improves the response time of
the storage control system.

6 The CPB (cycle5 per byte) I S the number of machine cyclcr needed to compress
or decompress a byte. CPB rescmblcs the use of CPI, or cycles per inwuction, for
measurement of computer architecture1 cffectlveness m RISC and ClSC

compression algorithm 15 largcr than the Eize of the input. The maximum
7 Data expansion occurs when the size of the output strcam generatcd by the

compression achlevdblc IS bounded below by the entropy, w h ~ c h 15 data-dependent.
In addition, there are factors that drivc the codcd size away from optimal: coding
overheads and imperfect models. The worst-m?e expansion factor for IBMLZl is
12.5%.

Compression
efficiency

Reliability

L

System
requirements

Efficient use of
silicon technology

IBMLZI compression algorithm development ob jec t ives .

Original data

CRC generation b buffer

i { Compression and decompression pair for encoding reliability

CAM scrubbing operation As pointed out earlier, the
operation of the CAM is based on using very powerful
parallel combinatorial operators, and the search for the
longest match is done by prefix extension. What if the
prefix extension hardware were to fail? The incoming
stream would then be coded as raw bytes in every case,
since no match longer than one byte could be found. The
coded output stream would then be expanded by 12.5%
owing to the tag bit used to indicate whether or
not a substitution occurred. In this case, the
compression-decompression pair would not be able to
detect any error at all, since the coded stream could be
correctly decoded. This is the class of performance

IBM J. RES. I IEVELOP. VOL. 40 NO. 6 NOVEMBER 1996 J.-M. CHENG, L. M DUYANOVICH, AND D. J. C

607

:RAFT

EII Original byte

IBMLZI coding format.

I \
4 4

/ \

I)/ \ I
/ \

o / \ I
/ \

X 8
I)/ \ I o / \ 1
/ \

I6 256
/ \

16 Recursion

degradation error that the CAM scrubbing is intended t o
prevent.

During CAM scrubbing, the CAM is split into two
halves. A minimum of 768 test patterns are run through
each half CAM. Outputs at every cycle are compared
during this time.

Hurdwure execution efficiency: Low CPB and low
complexity
CPB, the number of machine cycles needed to compress
or decompress a byte, is a measure of architectural
effectiveness for the compression and decompression
units. The first data flow developed had a mixture of
CPR = 3 and CPR = 5 for compression. For
decompression, the CPB was 1. With a chip running
at 40 MHz, the data flow delivered about 10 MBis in the
compression mode, and 40 MBis in the decompression

608 mode.

J:M. (‘HEN(;, I.. M . DIJYANOVICH. A N D D. J. CRAFT

The asymmetrical compression and decompression rates
of the first data flow were undesirable. The variable
encoding rate also presented undesirable control
overhead. Efforts to improve the original data flow were
not fruitful until the data flow was mapped to a data-
dependency graph. The graph appeared to contain a
clique (all-connected subgraph) of degree 3 and a self-
loop on the exiting vertex of that clique. The clique
corresponded to three irreducible computation cycles, and
the self-loop represented the variable two additional
cycles. As a result of these findings, the first data flow was
dropped.

A new data flow was sought, one which would exhibit a
bipartite data-dependency graph. That property allows a
data flow to be converted directly into a fully pipelined,
two-phase clocking design. Our approach was to seek
new, more powerful parallel combinatorial operators
which run two or more prefix extensions in parallel 1271.
Encouragingly, these also removed the need for interstage
control logic altogether. Control dependency, in a sense, is
a function of distant past data dependency. In the new
data flow, since each execution stage depends only on the
data from the previous stage, the need for interstage
control is removed. Our second data flow achieved rather
impressive, symmetrical CPR = 1 for compression and
decompression (most LZ1- and LZ2-type compressors
today have CPB ranging from 2 to 5) without the need for
interstage control.

286LZ1, IBMLZI, and ALDC code development The
IBMLZ1 compression coding algorithm (format) is a
subset of the 28hLZI algorithm [28]. The IBMLZl is used
in IBM high-performance DASD controllers. tape drives,
and the AIXO file system with compression. The ALDC
(Adaptive Lossless Data Compression) algorithm is a
smaller subset of the 286LZ1 algorithm. The ALDC
algorithm has been approved as the Quarter-Inch
Cartridge Drive Standard, or QIC-154.

depicted in Figure 7. The tag, the first bit, is chosen
similar to Jackson’s [23]. When the tag bit is a 0, the next
field is the &bit original byte. The existence of this tag bit
accounts for the worst-case 12.5% expansion for IBMLZl
technology. When the tag bit is a I , the next field is either
a variable-length field or a control field. If the length field
is used, the next field is the displacement. The
displacement field is a pointer to the history buffer, where
the head of the match is located. If the control field is
chosen, there might be 0, 1, or multiple extension fields.
The control field is assigned for several important
purposes. It allows messages to be embedded in
(effectively, “pipelined” with) the compressed data stream.
It can also be designated for future decoder redirection.

The generic IBMLZl compression code word format is

IBM J RFS DEVELOP. VO1. 40 NO h NOVEMBER 1YYh

The displacement field is not encodcd. One study' has
shown that encoding the displacement has limited benefit
for restricted types, such as PC object codes. For broader
applications, and for hardware simplicity, the decision was
made not to encode the displacement field.

The lengthicontrol field of the IBMLZl algorithm
contains 286 code words (Figure 8) grouped in five
"buckets." 'The bucket scheme appears in the SUNSET
[2Y] gray-scale compression algorithm, JPEG, and other
coding schemes. For the first four buckets, the number of
code words in each bucket is twice the number in the
preceding bucket, creating a "lopsided tree." The 30 code
words in the first four buckets approximate the observed
exponential distribution.

distribution from one test case. There were 738 counts of
zero match found in the CAM; 7623 counts of match
length = I ; 3000 counts of match length = 2; 798 counts
o f match length = 3; and so on. The exponential
distribution (or fractal) of code length is clearly shown.

9 Enlpiricul study of rnutch-length stutistics
Forty-four test cases of expected data were chosen as the
IBMLZl algorithm development test suite. They
encompassed databases, programs, object code, system
code, and documents in two languages from major
applications on VM, MVS", RS/6000", and PC.
K-code' was used as the basis for the experimental
lengthicontrol code study (see Figures 10 and 11).

Key lzew observations The empirical experiment of
analyzing the match-length distribution over the 44-case
suite and also over largc volumes of data produced two
important observations:

I. If maximal match length is limited to 192, the increase
in total compressed bytes of the test suite is less than
0.5% in comparison to the maximal match length =

2048 case.
2. For maximal match length = 286, the match-length

distribution is exponential until the match length
reaches approximately 27. Beyond 27, the distribution is
very low and appears to have no order.

Figure 9 shows analytical results of a simpler

The 192-match-length-limit observation was encouraging,
since it suggested that a smaller set of length codes would
suffer only insignificant loss compared to the set with
2048 length codes. The shorter match length presented
considerable (logic) savings for the compression-
decompression checking mechanism. In addition, short
match lcngth corresponds to lower latency for the storage

* b h u d 0. K d r t l ~ n , " t v d l u , ~ t ~ o ~ ~ and t n h m c c m c n t u t LZ-l Bawd Da1.i
Cornpresslon Systcrns." IBM SCICIICC and Icchnulogy, H a l t a Kc\carch Group,
draft, I Y I 1

Match Match Coded
length count bits

0 738 6642
1 7623 68607

Matched symbols: 4514

Match
length

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
25
33
38
92
98

109
130
131
132
176
271
286

Entropy:

Match
count
3 000

798
301
159
87
44
22
3 1
13

9
10
4
4
4
2
2
1
1
1
1
1
1
1
1
1
1
1
1

12

Coded Probability
bits Entropy
6000 0.66460 0.39174
1596 0.17678 0.44195
1204 0.06668 0.26050
636 0.03522 0.17004
348 0.01927 0. 10981
176 0.00975 0.06512
132 0.00487 (3.03743
186 0.00687 (3.04935
78 0.00288 0.02431
54 0.00199 0.01788
60 0.00222 0.Q1954
24 0.00089 0.00899
24 0.00089 0.00899
24 0.00089 0.00899
16 0.00044 0.00494
16 0.00044 0.00494
8 0.00022 0. 00269
8 0.00022 0.00269

12 0.00022 0.00269
12 0.08022 0.00269
12 0.00022 0.00269
12 0.00022 0.00269
12 0.00022 0.00269
12 0.00022 0.00269
12 0.00022 0.00269
12 @.@K322 0.00269
12 0.00022 0.00269
12 0.08022 0.00269

144 0.00266 0.02274

1.67951 bits/syrnbol

system controller (or decoder latency), where thc response
time is crucial. The maximal match length for the final
IBMLZl algorithm is 271 (Figure 1 1) .

The second observation was extremely crucial to the
algorithmic decision. Since the distribution is exponential,
it indicated that more complex adaptive arithmetic coding,
in this case, could perform only slightly better than
Huffman coding. The more complex adaptive coding
scheme was thus discarded. 609

W h J:M. C'HLNG. 1. M DUYANOVICH. AND I). J. CKAI."I' I BM J . f. !CS . 0 t V E I . O P . VOL.. 4(1 NO. h N O V E M B L R I

Bucket Bucket
prefix size

0 2
10 4
110 8

1110 1 6
11110 3 2

111110 64
1111110 1 2 8

11111110 2 5 6
. . . 5 1 2

1024
. . .

Code words

2 .. 3
4 a . 7
8 .. 1 5

16 .. 3 1
3 2 .. 63
64 . . 127

128 . . 255
256 . . 5 1 1
5 1 2 . . 1023

1024 , . 2047
.

I K-code length and control fields.

Bucket Bucket Code words
prefix size

0 2 0B . . 01
16 4 180 . . 111

110 8 110000 . . 110111
1110 16 11100000 .. 11101111
1111 256 111108000000 .. 111111111111

Five code buckets are used: the prefixes are 0, 10,
110, 1110, and 1111; the numbers of code words,
respectively, are 2, 4, 8, 16, and 256 in the five buckets.

Length and control fields of the 286L.21 algorithm.

The second part of the second observation led us to
significant coding simplification and fast hardware
operation. The observation suggested that all K-code
words of length greater than 27 could be lumped into a
single bucket. The resulting 286LZ1 algorithm has 286
code words in five buckets; 270 of them are used for the
length description from 2 to 271, and 16 of them are
assigned for controls and end of file.

Since there are only five buckets of code words, the
encoding and decoding can be sped up by precomputing
all possible code lengths. For instance, since the parser is

61 0 on the speed-critical path for decoding, we can compute

.I.". CHENG, L. M. DUYANOVICH, AND D. I. CRAFT

all five possible length variations and archive multibyte
decompression in a single machine cycle.

There were questions raised regarding the theoretical
reasoning for the second observation above. More analyses
can be made to classify the distribution. A somewhat
relevant study is the paper by Cleary and Witten on
partial string matching [30]. The experimental results
showed the optimal model order for compressing text,
program, numeric data, binary code, gray-scale image, and
so on.

IBMLZl compression results
Figure 12 shows the compress-to ratios of IBMLZl
variants. The IBM-1K and IBM-2K variants result from
the use of 1K and 2K history buffers, respectively. The
IBM-1KF and IBM-2KF are the results from fast-attack
[28] versions that aimed at improving the initial coding
efficiency when the history buffer is partially filled. The
block size denotes the size limit at which the compression
is restarted. The blocking effect appears on the channel to
the storage controller, where 4K is the most typical block
size and the next most common block size is 2K. The
CAM of a 1K history buffer is about 60K equivalent-cell
area, suggesting that a 1K CAM instead of 2K will yield
good compression while minimizing circuit size.

IBMLZ1 compression technology for storage
controllers
A family of compression chips based on the IBMLZl
compression algorithm has been developed. An 0.8-pm
75 000-gate array achieved 40MBls throughput [31];
a 0.5-pm version is expected to reach 5OMBls throughput.
Figure 13 depicts a comprehensive compression subsystem
chip with the compression macro imbedded. The chip
operates at 40 MBls and is pipelined between the ESCON
and the cache unit for the array storage controller. As
mentioned earlier, pipelined operation yields the maximal
system benefit.

Log-structured storage management provides efficient
integration of compression for the storage controller. In
CKD (count key data) environments, individual blocks of
data are frequently updated. Since the compression effect
is data-dependent, the newly compressed data cannot be
guaranteed to fit in the space left by the old data.
The log-structured technique for dealing with this
unpredictability is not to attempt updates in place, but
rather to collect changed data in a log and write the data
to DASD in free space, maintaining a directory which
maps the logical address of the data to the actual physical
location. The directory can then be reviewed periodically
to find sparsely populated areas on disk and collect the
space for reuse.

IBM .I. RES. DEVELOP. VOL. 40 NO. 6 NOVEMBER 1996 I

Summary and remarks on future development
The IBMLZl algorithm and technology have been
designed for high-compression/decompression throughput
with efficient hardware implementation, high reliability,
low system overhead, and robust compression. Data
integrity and reliability are ensured by coupled
compression-decompression checking, the scrubbing
operation, and extensive built-in checking. Extremely low
(CPB = 1) compression and decompression have been
achieved. The extremely high-compressionidecompression
throughput of 30-50 MBis allows a transparent mode of
operation and, thus, minimal system overhead. The
IBMLZl algorithm compresses well over the VM, MVS,
RS/6000, and PC test cases. Future tasks include
developing format-compatible lower-CPB and low-
overhead data integrity checking architectures.

Acknowledgments
The results reported in this paper could not have been
achieved without the vision and leadership of T. R.
Lattrell (IBM Microelectronics Division); the technical
leadership of Ehud Karnin; the extensive coding
performance analysis and verification by Larry Garibay
and Mayank Patel; high-performance physical design by
Kenneth Gray and Michael Digby; project leadership by
T. H. Lee; outstanding data flow architecturing, design,
verification, test generation, and bring-up efforts by Gary
K. Chan, Rudy Farmer, Greg B. Bishop, Starla Miller,
Sonny Nguyen, Yancy Cheng, Lisa Wang, and Steven Lee;
and extended design automation support and consultation
by Hugh McDevitt, Mitchell Tidwell, James Clark, Brad
Peterson, Barinder Nijjar, and Catherine Chow. We wish
to express our warm appreciation to them all and to those
we might have overlooked, and our special thanks to IBM
Fellow Arvind Patel for his in-depth guidance on CRC
aspects and analysis, and to IBM Fellow James Brady for
his assistance with control system performance aspects.
The authors would like to express their gratitude to Dr.
Glen G. Langdon, Professor at UC Santa Cruz and the
developer of BAC, FileCOMP, ICOM, SUNSET, and
many other key compression algorithms and systems, for
his long-term guidance with respect to compression
algorithms.

ESCON, Enterprise Systems Connection Architecture, Si390,
ASI400, AIX, and MVS are registered trademarks, and
RSi6000 is a trademark, of International Business Machines
Corporation.

References and notes
1. Mayank Patel, Neil MacLean, and Glen G. Langdon, Jr.,

“An Economical Hardware-Oriented High-speed Data
Compression Scheme,” Research Report “9170, IBM
Research Laboratory, San Jose, CA, January 11, 1993.

2. Glen G. Langdon, Joe-Ming Cheng, Ronald B. Arps, and
Patrick E. Mantey, “Hardware-Optimized Compression

46

44 -
“--c I B M - I K - 4 2 - - IBM-2K 5

.S 40 -
- I B M - I K F

E
2 3 8 -
P

E

- IBM-2KF
0

3 6 -

3 3 4 -

32 -

30 512 ,024 2d48 40196 81b2 I

Block size

IBMLZl compression chip for disk array controller.

and the Skew Coder LSI Chip,” described the BAC chip
(completed in 1982) and the research efforts on three
applications: file, binary image, and gray-scale
compression, 1983-1984; Reseurch Report RJ-8611, IBM
Research Laboratory, San Jose, CA, February 6, 1992.

3. David A. Huffman, “A Method for the Construction of
Minimum Redundancy Codes,” Proc. IRE 40, 1098-1 101
(1952).

IBM J. RES. DEVELOP. VOL. 40 NO. 6 NOVEMBER 1996 1.”. CHENG, L. M. DUYANOVICH. AND D. I. CRAFT

4. J. J. Rissanen, “Generalized Kraft Inequality and
Arithmetic Coding,” IBM J. Res. Develop. 20, No. 3,

5. Richard C. Pasco, “Source Coding Algorithm for Fast
198-203 (1976).

Data Compression,” Ph.D. thesis, Department of
Electrical Engineering, Stanford University, Stanford, CA,
1976.

Coding,” IBM J. Res. Develop. 28, No. 2, 135-149 (March
1984).

Huffman,” IEEE Trans. Info. Theory IT-24, No. 6,
668-674 (November 1978).

ISBN 0-13-139139-9, Prentice-Hall, Inc., Englewood Cliffs,
NJ, 1980.

9. J. Rissanen and G. G. Langdon, Jr., “Arithmetic Coding,”
IBM J. Res. Develop. 23, No. 2, 149-162 (March 1979).

Modeling and Coding,” IEEE Trans. Info. Theory IT-27,
No. 1, 12-23 (January 1981).

11. Ian H. Witten, Radford M. Neal, and John G. Cleary,
“Arithmetic Coding for Data Compression,” Commun.
ACM 30, No. 6, 520-540 (June 1987).

Compression with QM-AYA Adaptive Binary Arithmetic
Coder,” SPIE Proc. 1771 (Application of Digital Image
Processing AT‘), 413-423 (1992).

13. N. Abramson, Information Theory and Coding, McGraw-
Hill Book Co., Inc., New York, 1963, pp. 61-62.

14. R. Morris, “Counting Large Numbers of Events in Small
Registers,” Commun. ACM 21, 840-842 (1978).

15. Philippe Flajolet, “Approximate Counting: A Detailed
Analysis,” BIT 25, 113-134 (1985).

16. Daniel R. Helman, Glen G. Langdon, N. Martin, and
Stephen Todd, “Statistics Collection for Compression
Coding with Randomizing Feature,” IBM Tech. Disclosure
Bull. 24, 4917 (1982).

17. Glen G. Langdon and Jorma Rissanen, “Compression of
Black-White Images with Arithmetic Coding,” IEEE
Trans. Commun. COM-29, 858-867 (June 1981).

R. B. Arps, “An Overview of the Basic Principles of the
Q-Coder Adaptive Binary Arithmetic Coder,” IBM J. Res.
Develop. 32, No. 6, 717-726 (November 1988). W. B.
Pennebaker and J. L. Mitchell, “Probability Estimation for
the Q-Coder,” IBM J. Res. Develop. 32, No. 6, 137-752
(November 1988).

19. R. B. Arps, T. K. Truong, D. J. Lu, R. C. Pascoe, and
T. D. Friedman, “A Multi-Purpose VLSI Chip for
Adaptive Data Compression of Bilevel Images,” IBM J.
Res. Develop. 32, No. 6, 775-795 (November 1988).

20. Joe-Ming Cheng and Glen G. Langdon, “Modified
Metropolis Annealing Algorithm for QM-AYA Arithmetic
Coder Design Optimization,” SPIE Proc. 2028 (Application
of Digital Image Processing), 2-12 (1993).

21. Jacob Ziv and Abraham Lempel, “A Universal Algorithm
for Sequential Data Compression,” IEEE Trans. Info.
Theory IT-23, No. 3, 337-343 (May 1977).

Individual Sequences via Variable-Rate Coding,” IEEE
Trans. Info. Theory IT-24, No. 5, 530-536 (September
1978).

23. Rory D. Jackson and Willi K. Rack1 (both from the IBM
Poughkeepsie Laboratory), “Data Expansion Apparatus,”
essentially described the LZ1; patent filed on June 30,
1976; U.S. Patent 4,054,951, October 18, 1977.

24. Victor S. Miller and Mark N. Wegman, “Variation on a
Theme by Ziv and Lempel,” Research Report RC-10630,
IBM Thomas J. Watson Research Center, Yorktown
Heights, NY, July 31, 1984.

6. Glen G. Langdon, Jr., “An Introduction to Arithmetic

7. Robert G. Gallager, “Variations on a Theme by

8. Richard W. Hamming, Coding and Information Theory,

10. Jorma Rissanen and Glen G. Langdon, “Universal

12. Joe-Ming Cheng and Glen G. Langdon, “Image

18. W. B. Pennebaker, J. L. Mitchell, G. G. Langdon, Jr., and

22. Jacob Ziv and Abraham Lempel, “Compression of

25. Thomas H. Cormen, Charles E. Leiserson, and Ronald L.
Rivest, “String Matching,” Introduction to Algorithms,
McGraw-Hill Book Co., Inc., New York, 1990, Ch. 34.

26. Thomas H. Cormen, Charles E. Leiserson, and Ronald L.
Rivest, “Radix Sort,” Introduction to Algorithms, McGraw-
Hill Book Co., Inc., New York, 1990, Ch. 9.

27. Joe-Ming Cheng and Yancy L. Cheng, “A Method and
Means for Character String Pattern Matching for
Compression and the Like Using Minimal Cycle per
Character,” U.S. Patent 5,525,982, June 11, 1996.

28. Joe-Ming Cheng, Ehud D. Karnin, David J. Craft, and
Larry J. Garibay, “Effective 286 LZliJR Compression
Coding Format for Hardware and Software and the Fast
Attack Option,” SA9-94-061, IBM filed U.S. patent
application, 1995.

Gray-Scale Image Compression,” presented at the IBM
Conference on Pattern Recognition and Image Processing,
Session C1, IBM Thomas J. Watson Research Center,
November 14, 1984; also known as the “SUNSET
algorithm,” reprinted as IBM Research Report “6426,
September 1988.

30. J. G. Cleary and I. H. Witten, “Data Compression Using
Adaptive Coding and Partial String Matching,” IEEE
Trans. Commun. COM-32, No. 4, 396-402 (April 1984).

31. Ted Lattrell, “40 MB/sec Throughput IBM Compression
Chip and Macro Announcement,” EE Times, front page,
August 16, 1993.

29. Glen G. Langdon, “Further Development in Lossless

Received June 15, 1995; accepted for publication
August 5, 1996

Joe-Ming Cheng IBM Storage Systems Division, 5600 Cottle
Road, San Jose, California 95193 (joeming~)vnet.ibm.com). Dr.
Cheng received a B.S. in physics from CYU, Taiwan, in 1971;
the Air Force Teaching Credential, Taiwan, in 1973; an M.S.
in (electronics) scientific instrumentation from the University
of California at Santa Barbara in 1975; and a Ph.D. in
computer engineering from UC Santa Cruz in 1996. Dr.
Cheng was an LSI tester designer at Macrodata Inc. and a
missile system design lead at Teledyne Systems. He joined
IBM Research (San Jose) in 1978. Dr. Cheng designed the
first binary arithmetic compression chip at IBM Research and
the image compression system board. With Professor Glen G.
Langdon, he dcveloped the modified Metropolis simulated
annealing algorithm for probability estimation state machine
optimization, which achieved the highest-scored JPEG and
JBlG QM coding; and an integrated Huffman-arithmetic code
called AMSAC (Approximated Multi-Symbol Arithmetic
Coding). Dr. Cheng also developed adaptive AMSAC coding,
extended Huffman coding redundancy-bound formulations,
and formulated the AMSAC coding redundancy bounds. He
worked on related projects at the IBM Zurich Research
Laboratory. Since 1991, Dr. Cheng has led compression-
algorithm and chip-development teams at the IBM Storage
Systems Division in San Jose. He has received three divisional
awards, a first-level invention award, an Outstanding
Technical Achievement Award, and an Outstanding
Innovation Award. 61 2

J:M. CHENG, L. M. DUYANOVICH, AND D. J. CRAFT IBM J. I; :ES. DEVELOP. VOL. 40 NO 6 NOVEMBER 1996

Linda M. Duyanovich MatriDigm Corporation, 47207
Buyside Parkway, Frernont, California 94.538. Ms. Duyanovich
received her B.S. in mathematics from California State
University, Stanislaus, in 1976, and her M.S. in operations
research from Stanford University in 1978. She joined the
IBM General Products Division in 1978, and spent several
years involved in software and hardware performance and
modeling. While a member of the hardware performance
modeling group, she designed and led the implementation of
DCAT, a disk subsystem modeling tool i n use by IBM
Marketing which utilizes performance information from
existing systems to predict improvements that could be gained
with IBM’s newest products. In 1991, Ms. Duyanovich became
manager of the Future Products Architecture and Design
team, which completed a new architecture and high-level
design for high-performance, large-capacity IiO subsystems.
These subsystems were designed to support compression, and
used Dr. Cheng’s algorithm and chip. Ms. Duyanovich then
worked as the leader of a cross-functional team involved in
strategy and new product proposals. She left IBM in 1996,
and now works for MatriDigm Corporation as executive
assistant to the CEO and manager of Beta Projects.

David J. Craft IBM Microelectronics Division, 11400 Burnet
Road, Austin, Texas 78758 (dunstan(~vnet.ibm.com). Mr. Craft
is a senior engineeriscientist, currently working in the areas
of advanced ASIC chip architectures, data compression
subsystems design, and compression algorithms. He received a
B.S. in physics from the Imperial College, London University
(U.K.), in 1963 and joined IBM in 1965. He has worked on
many advanced development projects, in IBM laboratories in
Hursley (U.K.), until 1978, and then subsequently in Boulder,
Tucson, and Austin (U.S.). Mr. Craft holds 15 issued patents
and has 10 more recent applications currently in process. He
is a recipient of two IBM Special Contribution Awards and an
IBM Outstanding Technical Achievement Award, the latter
for his work on extremely fast hardware data compression
designs. One 1974 patent (US . 3,818,447), on a serial bus
arbitration mechanism, is now the basis for the arbitration in
the PC industry “Plug and Play” standard, and also the 51850
and CAN serial bus protocols, now very widely used in thc
automotive, industrial, and consumer electronics industries.

