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The IBM PowerPC  603eTM floating-point unit 
(FPU) is an on-chip functional unit to support 
IEEE 754 standard single- and double- 
precision binary floating-point arithmetic 
operations.  The design objectives are to be a 
low-cost, low-power, high-performance engine 
in a single-chip superscalar microprocessor. 
Using less than 15 mm2 of the available silicon 
area  on the chip (the  size  of the PowerPC 603e 
microprocessor is 98 mm2) and operating at 
the peak clock frequency  of 100 MHz, an 
average single-pumping multiply-add-fuse 
instruction has one-cycle throughput and four- 
cycle latency. An  average double-pumping 
multiply-add-fuse instruction has two-cycle 
throughput and five-cycle latency. The 
estimated performance at 100 MHz is 105 
against the SPECfp92'" benchmark. 

Introduction 
The  skeleton of the  IBM  PowerPC 603eTM FPU 
architecture is optimized  to  perform  a multiply and an 
add  operation [1-31 in a single floating-point  instruction: 

where FRT is the  target  operand,  and FRA, FRB, and 
FRC are  the  three  source  operands.  Each of the  four 
operands can be any one of the 32 user-accessible 
floating-point  registers  (FPRs).  The  floating-point move, 
add,  subtract,  and multiply instructions  can easily be 
derived from this multiply-add-fuse instruction by forcing 
FRC to  the  constant 1.0 or FRB to  the  constant 0.0. 

The 603e' FPU  data flow architecture  comprises  three 
independent  pipeline stages-the multiply, the carry- 
propagate-add  (CPA),  and  the  Writeback (WB). Each 
stage  requires only one clock cycle to  execute in a  normal 
situation. In addition  to  the 32 user-accessible FPRs, 
there  are  four floating-point rename buffers to provide 
temporary  storage  for  the execution result.  These  rename 
buffers are used to allow fast  result  forwarding  for  the 
next instruction  and  to avoid storage  dependency 
problems.  There is hardware  to  support floating-point 
divide, floating-point-to-integer conversion, denorm  input 
operands,  denorm  result,  IEEE exception handlers,  three 
new graphics instructions,  and  non-IEEE  mode  for fast 
execution. 

Figure 1 shows the 603e FPU as a  function  unit which 
takes  instructions  from  the  dispatch  unit.  The  operands 
can come  from  either  the  FPR  or  the  rename buffers. The 
result is placed at  the  preassigned  rename  buffer only. 

FRT = FRA * FRC + FRB, (1) t "PowerPC 603e" and "603~" denote  the Same  microprocessor. 
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The 603e FPU is a fully static-register base 
560 implementation with LSSD testability. The  implementation 
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employs  an ASIC design methodology approach  to  speed 
up  the design cycle time  for  chip  integration; however, 
most of the building elements of the 603e FPU  are fully 
custom  designed for  the specific application in order 
to achieve peak  performance.  The  control logic is 
synthesized,  placed, and  routed automatically. The logic 
is verified by a  random  test  generation  program  through 
both  an  FPU  stand-alone simulation model  and  a whole- 
chip  simulation  model. 

The 603e FPU has two types of execution modes- 
scientific mode  and  real-time  mode.  The scientific mode 
is implemented  for  precise scientific computations  and 
engineering  applications  that  require high precision and 
execution  power. This  mode  conforms  to  ANSIiIEEE 
Standard 754-1985 [4], the  “IEEE  Standard  for Binary 
Floating-point  Arithmetic”  (hereafter  referred  to as the 
“IEEE  standard”), including  all four  rounding  modes  and 
exception status  reporting, but it does have a  dependency 
on  supporting software in order  to  do so. All  floating- 
point  operations  conform  to  that  standard, except  when 
software sets  the floating-point non-IEEE  mode  (NI) bit 
in the  floating-point  status  and  control  register  (FPSCR) 
to 1, i.e., real-time  mode, in which case floating-point 
operations  conform  to  a  subset of the  IEEE standard- 
all results  are  produced  without software  assistance 
(without causing a  floating-point-enabled-type  program 
interrupt,  a floating-point-assist interrupt,  or  a  fast-trap). 
All exceptions are  handled by hardware,  and  default 
numbers such  as quiet  not-a-number  (QNaN), maximum, 
and  zero  are  output  according  to  the  exception. 

Basic  instruction  pipeline stage and  timing 
The  PowerPC 603e FPU comprises three  major  stages 
(Figure 2). The first stage of the  FPU  engine is the 
multiply stage.  It  performs  the main  multiply function of 
F R A  times FRC  using a 53 by 28-bit Booth  recoding 
Wallace tree  multiplier  array [S, 61 to  generate  the 
accumulated  partial  product in the  sum-and-carry  format. 
Concurrently, FRB is only right-shifted to align with the 
result of F R A  times FRC. Finally, the aligned FRB and 
the result of F R A  times FRC are  compressed by a  3-to-2 
carry-save adder. To save  silicon area,  the multiplier array 
is only implemented with half the size of a full 53 by 53- 
bit  array using three levels of 440-2 carry-save adders.  For 
a  double-precision multiply operation, it requires  double 
pumping  through  the  multiplier  array. 

The second stage is the carry-propagate-add stage, which 
performs  a 161-bit  one’s complement  add using a carry- 
lookahead  adder.  The result of the  operation  goes  through 
a  leading-zero  detector  for  normalization shift-count 
calculation. 

The  third  stage is the  WB  stage, which performs  the 
normalization left  shift, rounding,  and  status  generation 
operations.  The final result is stored in one of the  four 
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rename buffers and/or  forwarded back to  the multiply 
stage  for  the next instruction execution. The  rename 
buffer  content  does  not  update  the  FPR until the 
instruction is architecturally  completed. 

Figures 3 and 4 respectively show typical timing 
examples involving three single-pumping and  three 
double-pumping  instructions.  For single-precision  multiply 
instructions  (and  instructions which do  not have the 
multiply function  incorporated in them) without data 
dependency,  the  throughput is one  per clock cycle, and 
the latency is four cycles. For  double-precision multiply 
instructions without data  dependency,  the  throughput is 
one  per two clock cycles, and  the latency is  five cycles. 

Architecture/implementation 
Figure  4 shows the major  building elements in the 603e 
FPU  for  the multiply-add-fuse instruction.  The  three 
independent  pipeline  stages (multiply, CPA, WB) require 
one clock cycle to  execute  under a normal  situation.  Extra 
cycles are  required  for  situations such  as the following: 

For  a full double-precision multiply operation, an extra 
cycle is required  for  iterating in the multiply stage  to 
double-pump  the  operand  or  intermediate  result 
through  the  multiplier  array. 
The  normalization  shifter is implemented with a 63-bit 
left shifter,  and in the  event of mass cancellation in the 
mantissa  calculation, the WB stage could require  one 
or two extra clock cycles to execute. 

cycle in the  WB  stage  for  exponent  correction. 
Underflow and overflow exceptions require  an extra 

Denormalization of results requires an extra cycle. 

Bypass  unit 
The block diagram in Figure 5 shows a bypass unit- 
used to  handle  abnormal executions (Le., the  abnormal 
operands  NaN  and infinity, and  abnormal  operations such 
as divide by zero, infinity minus infinity, and infinity 
multiplied by zero).  The  normal multiply and  CPA  stages 
are bypassed, and  the  default result is fed  to  the WB 
state  to simplify the  datapath logic. The bypass unit also 
manipulates  the  FPSCR  for  FPSCR  instructions,  and 
handles  the  graphic-instruction floating-point conditional 
select  register. 

Multiplier  array 
The 603e multiplier is a  high-performance fully pipelined 
multiplier which uses radix-4 Booth  recoding [5] to halve 
the  summands  (partial  products) which must be  added  and 
a Wallace tree [6] of 4-to-2 CSAs to minimize the time 
necessary to  add  the  summands  together.  The  multiplier 
configuration is a 54 X 28 arrangement  capable of 
unsigned operations.  The 603e single-precision  floating- 
point multiplication can be operated  at  the  rate of one 
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instruction  per cycle. For  double-precision multiplications, 
the  operands  are  double-pumped at each  stage  to  obtain 
the  desired  results with the  required precision. 

Figure 6 shows the  multiplier  array  structure.  The two 
feedback  paths  for  the most significant bits of the sum and 
carry  each use a  2:l mux which allows the  results of the 
first pass to be incorporated  into  the second  pass. 

CPA (carry-propagate  adder) 
The  CPA is implemented as a 161-bit one's  complement 
adder with an end-around-carry  adjustment.  It  accepts 
one's  complement  input  from  the aligned FRB, and it 
accepts  the result of F R A  * FRC, which is always positive 
relative to F R B  from  the multiply  stage. The  output is 
represented in sign-magnitude  format with the sign bit 
handled in control logic. The  CPA consists of three pieces, 
as shown in Figure 7. Since the lower 26-bit product  from 
the multiply array is generated  from  the first CPA cycle by 
the  carry-lookahead  adder  (CLA)  and saved, the lower 
26-bit portion of the 161-bit CPA is an  incrementer 
instead of a CLA.  Since carry-lookahead  incrementers  are 
smaller and  faster  than  carry-lookahead  adders,  the  actual 
CLA is only X8 bits wide. 

The  propagate from the  carry-lookahead  incrementer 
and  the  group identifier generated by the 87-bit CLA  are 
fed back to  the carry-in to  correct  the  end-around-carry 
problem without  a closed loop. XOR gates  are used at 561 
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the  output  to invert the result  back to  sign-magnitude 
format.  The  one's  complement  adder is used in this 
implementation to make it easier  to  convert  the  result 
back to  sign-magnitude  format.  The  upper 63-bit portion 
of the 161-bit CPA result is examined for  the  number of 
leading  zeros  for  normalization shift count in the next 
stage. 

Alignment shifter 
The  alignment  shifter  for  the  B  mantissa is reduced  to  a 
53-bit-input  136-bit-output right shifter  through  double- 562 
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pumping.  It is implemented as a  partial  decode having 
three levels in a multistage  structure with  partial-shift 
groups,  or as a  modulo  shifter (maximum  shift count of 
143), since each  nested shift amount is calculated with 
modulo  arithmetic. Figure 8 shows the  three levels, which 
carry out shifts of binary (0, 1, 2, 3);  multiples of 4 bits 
(0, 4, 8, 12); and  multiples of 16  bits (0, 16, 32, 48, 64, 80, 
96, 112, 128),  respectively.  Shifting  arising from  a negative 
shift count is prevented by a bypass port in the  third level 
that  takes  advantage of critical  timing. Bypassing enables  a 
quicker shift count  calculation  for  the first two levels. The 
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alignment  shifter also  includes the  automatic sticky-bit 
detection logic for the bits that  are shifted  off. 

9 LZD (leading-zero  detector) 
Three 63-bit LZDs inside the  FPU  are used to calculate 
the  number of leading zeros. The most  time-critical one is 
at  the  CPA  stage  after  the 161-bit add. It is implemented 
by three levels of coarse  and fine  circuits. The first level 
contains sixteen  4-hit leading-zero-detect circuits. The 
second level contains  four 16-bit leading-zero-detect 
circuits. The final level contains  one 64-bit leading-zero- 
detect circuit. The  other two LZDs are  not time-critical 
and  are  implemented by synthesis. 

9 Normalization shifter 
The  normalization  shifter comprises three levels and is not 
a  complete  shifter.  The maximum shift count is 63. For  a 
normal CPA  lesult, it requires only one pass through  to 
generate  the  normalization  result.  For  the  case of mass 
cancellation from unlike-sign add  operations, it requires 
one  to two extra cycles to normalize the  result.  A sticky 
bit is also accumulated  for bits  beyond bit 53. 

FPRfile 
There  are 32 floating-point registers,  each containing a 
70-bit floating-point  number.  The  format of this  70-bit 
number includes a 3-bit tag, a 1-bit sign, a 13-bit 
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A 
161,k 

B +2 0010 +3 0011 -3  1100 
p j l  +3 0011 -2 1101 +2 0010 

+5 00101 +1 10000 1 Oll10 

Level e C y A 7 + 0  k-  oool  
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+2 0010 -2 1101 -3 1100 
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m .w.,. ~ _ _ _ ~  
- 1  01110 +lr10000 -5 11001 k I s b u l b 1  0001 ooo1" 

Sum (inverted) 0101 
(inverted) 

B B AXC B B 

Sum sum Sum 

CinB = Pa + Gc Cinb = Pa + P, + PC + P, +Gc) IGc = Gc 
Cine = Pa + P, + Pd +Gc Cin, = Pa + P, + G, 

exponent,  and  a 53-bit  mantissa. The  FPR  register  array 
has  one write port from one of the  four  rename buses. 
The  data  transfer  control signals and  address  for  the write 
come  from  the  completion  unit, which allows updates from 
either  the writeback  unit or the  loadistore unit. The  FPR 
register  array also  has three  read  ports for latching the 
three  operands ( F R A ,  FRB, and FRC) needed  to execute 
an instruction.  The  data  transfer  control signals and 
addresses  for  the  three  reads  come  from  the  dispatch  unit. 
Finally, the FPR register  array also has  one  more  read 
port  to  the  loadistore unit. The  data  transfer  control 
signals and  address  for this read  come  from  the  loadistore 
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unit.  The  four  reads  and  one write can take  place  at  the 
same  time. 

Division 
The 603e FPU employs a 2-bit nonrestoring division 
algorithm which produces two correct mantissa  bits per 
cycle. A normal single-precision  divide requires 18 cycles 
and a normal  double-precision divide requires 33 cycles 
to execute,  utilizing  most of the existing hardware. 

Exception detection and  handling 
The 603e FPU  detects exceptions in two parts-an early 
detect in the first cycle of instruction execution  (multiply) 
in the bypass unit, and a late  detect in the last cycle of 
instruction execution (WB). All seven invalid operations 
exceptions  (Inf - Inf, Inf * Zero,  SNan,  etc.)  and  the 
zero-divide  exception  fall in the  early-detect category, 
while all overflow, underflow, and inexact  exceptions  fall 
in the  late-detect category. For cases of exceptions  with 
corresponding  exception-enable bits that  are  clear in the 
FPSCR,  early  detection in the bypass unit is carried  out 
with exponent  and mantissa  checking, and  appropriate 
default  results  are  generated, while late  detection is 

564 handled by generating a  meaningful  result. For  enabled 
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exceptions, early-detect exceptions stall  the  dispatch  unit 
from  dispatching further  FPU  instructions,  whereas  for 
late-detect exceptions an  adjusted  result is prepared  and 
loaded  into  the  rename  bus. 

Figure 9 shows the exception module in the 603e FPU. 
The IEEE standard assumes that it should  be possible to 
identify the  instruction  that triggers an exception trap.  The 
603e FPU identifies each executed instruction with  a  3-bit 
IDN (ID number assigned during  dispatch), which is 
passed on to the  completion  unit  along with the finish 
signal for  an  instruction.  The  completion  unit  handles 
situations such as misplaced branches  and  out-of-order 
completion  among  the  FPU,  the fixed-point  unit (FXU), 
and  the  load  store  unit (LSU), and fires  a complete signal 
for  the  FPU  to  update  architected  registers. 

FPSCR control 
The  floating-point  status  and  condition  register  (FPSCR) 
is implemented inside the  FPU.  Each  bit in the  FPSCR 
belongs to  one of three  categories: 1) report exception 
(sticky), 2) status,  and  3)  enable  and  programming  mode 
control bits. The FPSCR is accessed by the following two 
groups of instructions: 
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1. FPSCR instructions This group  requires  machine 

2. Floating-point arithmetic, multiply-add, rounding, and 
conversion and compare instructions This  group  does 
not  require  instruction  serialization. However, two 
rename  FPSCRs  and  one  master  FPSCR  are  required 
to  maintain  the  FPSCRs in program  order.  The  update 
from  one of two rename  FPSCRs  to  the  master FPSCR 
takes place  when the  completion unit announces  that 
the  associated  instruction is completed. 

serialization. 

The  FPSCR is implemented with a full 32-bit master 
architectural  FPSCR  and two 17-bit FPSCR  rename 
buffers which are  implemented with a stack structure as 
shown in Figure 10. The  FPSCR  rename  buffers  contain 
the non-sticky-status  bits of ox, ux , x, x, vxsnan, vxisi, 
vxidi, vxzdz, vximz, vxvc, vxcvi, fr, fi, and fprf. 

The  FPSCR  renames  are  updated by the  instruction 
which is at  the final cycle  of the WB stage.  When  the 
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(update to 
fpscr rename) 1 

Complete 
(update to 
real fpscr) 

Stall-fpu 
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Target rename 2 
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Implementation of the FPSCR rename  stack and the  architectural 
FPSCR. 
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Cancel 

completion unit retires  the finished FPU  instruction,  the 
architectural  FPSCR is updated  from  the  bottom of the 
FPSCR  rename  stack,  and  the stack is decremented.  When 
both  FPSCR  renames in the  stack  are full, the  FPU will 
be stalled  until the  FPSCR  rename which is on  the  top of 
the  FPSCR  rename  stack is free again. Figure 10 and 
Figure 11 show the  implementation of the  FPSCR  rename 
and  the  state  diagram  for  the  FPSCR  rename  control. 
Under  the  assumptions listed below, the  performance lost 
due  to stall caused by the lack of FPSCR  rename  buffers 
is minimal: 

1. Given that  there  are only four  target  rename buffers 
which are being shared with the LSU, and assuming 
that  on  the average, the  FPU uses only half the  number 
of the  target  rename buffers, the  FPU will be  stalled 
in any case by the lack of target  rename buffers. 
Therefore, only two FPSCR  rename  buffers  are 
needed  to match the  four  target  rename buffers. 

2. The probability of having a long instruction (e.g., FXU 
divide, LSU with a miss) in front of a  floating-point 
instruction is very small.  Most FPU  applications will 
not  be  delayed. 

Prenormalization/denormalization 
In  the 603e FPU,  denormalized  source  operands  are 
prenormalized by using the  normalization  shifter in the 
writeback stage.2  The bypass unit contains  the logic which 
detects  denormalized  source  operands  and stalls the  FPU 
from accepting further  instructions.  The  denormalized 
operand bypasses the multiply and  CPA  stages  and is fed 

2 R.  Jrssani, C. Olwn,  and M. Putrino, work in progrcs\ 
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to  the  normalization  shifter.  Depending on the  number 
of denormalized  sources,  three  to five extra cycles are 
required  before  the  instruction  commences  execution. 
A single denormalized  source utilizes three  extra cycles, 
where two and  three  denormalized  sources  take  four  and 
five extra cycles, respectively. Prenormalization is carried 
out  for all instructions which could potentially  cause  an 
error in certain cases with denormalized  source  operands. 
The  prenormalized  number is fed back to  the  EIB  for 
normal execution via the  rename  bus  that was pre- 
assigned for  the  target  register of that  instruction. 

The  extra  hardware  required  for  handling  denormalized 
operands consists of a  leading-zero  detector  (LZD) in the 
bypass unit, and minimal logic to  detect  denormalized 
operands  and  to stall the  FPU.  The  LZD in the  CPA 
stage fell in a time-critical path  and was not  used, since 
introducing  a 2:l mux in the  path would compromise 
timing.  Since the bypass LZD was not time-critical, it was 
implemented using  synthesis. 

The  denormalization  operation  for  denormalized  results 
is handled  at  the writeback stage.  The  normalization 
shifter  can only left-shift from 0 to 63 bit  positions. After 
the  normalization  operation is completed  and  the final 
exponent is computed, if a  denorm  operation is required, 
the result is looped back to  the  WB  pipeline  register with 
a 56-bit hardwired right  shift while the multiply and  CPA 
stages  are  stalled.  Another left  shift is performed by left- 
shifting the  result by (56 minus the  number of the  denorm 
bit position).  The  denormalizing  operation  requires  an 
extra cycle. The  extra  hardware  required is an  extra  port 
in the writeback register. 

Design  methodology 
The 603e FPU was described in a  proprietary high-level 
register-transfer design language called  Design Structure 
Language  (DSL).  The  DSL  compilers  accept  hardware 
constructs in a  programlike  manner  and  support many 
levels of hierarchy for  a  macro design approach. 
Customized,  hand-placed circuits (off-the-shelf,  or  OTS, 
macros)  were used to  lead  to  optimal timing and density 
for memory elements, multiplexors, and challenging 
functions.  Control logic was developed by allowing 
synthesis to  map  the high-level, functional  model  for  each 
random logic macro  (RLM)  to primitive gates in the 
technology  library. The timing of critical paths was 
improved by reworking the  function, hiding a  desired 
implementation  from synthesis, or  altering synthesis  timing 
assertions.  MCSPICE was used for  detail circuit 
simulation on critical speed  paths,  before  and  after layout. 

Summary 
The IBM PowerPC 603e floating-point  unit is an  IEEE- 
754-compliant fused multiply-add design. With  complete 
hardware  support  for  denormalized  numbers, overflow and 566 
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underflow  processing, and invalid operation exceptions, 
the 603e requires  the  same minimum software  envelope 
as high-end RSi6000“  processors. Requiring less than 
15 mm’ area  and  operating  at I00 MHz,  the 603e floating- 
point unit represents  an excellent  cost-performance 
implementation. 

SPECfp92 is a  trademark of Standard  Performance Evaluation 
Corporation. 

PowerPC 603e and RSi6000 are  trademarks of lntcrnational 
Business Machines  Corporation. 
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