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The IBM PowerPC 603e™ floating-point unit
(FPU) is an on-chip functional unit to support
IEEE 754 standard single- and double-
precision binary floating-point arithmetic
operations. The design objectives are to be a
low-cost, low-power, high-performance engine
in a single-chip superscalar microprocessor,
Using less than 15 mm?® of the available silicon
area on the chip (the size of the PowerPC 603e
microprocessor is 98 mm®) and operating at
the peak clock frequency of 100 MHz, an
average single-pumping multiply-add—fuse
instruction has one-cycle throughput and four-
cycle latency. An average double-pumping
multiply-add-fuse instruction has two-cycle
throughput and five-cycle latency. The
estimated performance at 100 MHz is 105
against the SPECfp92™ benchmark.

Introduction

The skeleton of the IBM PowerPC 603¢™ FPU
architecture is optimized to perform a multiply and an
add operation [1-3] in a single floating-point instruction:

FRT = FRA = FRC + FRB, (1)

where FRT is the target operand, and FRA, FRB, and
FRC are the three source operands. Each of the four
operands can be any one of the 32 user-accessible
floating-point registers (FPRs). The floating-point move,
add, subtract, and multiply instructions can easily be
derived from this multiply-add—fuse instruction by forcing
FRC to the constant 1.0 or FRB to the constant 0.0.

The 603e' FPU data flow architecture comprises three
independent pipeline stages—the multiply, the carry-
propagate-add (CPA), and the Writeback (WB). Each
stage requires only one clock cycle to execute in a normal
situation. In addition to the 32 user-accessible FPRs,
there are four floating-point rename buffers to provide
temporary storage for the execution result. These rename
buffers are used to allow fast result forwarding for the
next instruction and to avoid storage dependency
problems. There is hardware to support floating-point
divide, floating-point-to-integer conversion, denorm input
operands, denorm result, IEEE exception handlers, three
new graphics instructions, and non-IEEE mode for fast
execution.

Figure 1 shows the 603e FPU as a function unit which
takes instructions from the dispatch unit. The operands
can come from either the FPR or the rename buffers. The
result is placed at the preassigned rename buffer only.

L “powerPC 603e” and “603¢” denote the same microprocessor.

©Copyright 1996 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided thai (1) each

reproduction is done without alteration and (2) the Journal reference and 1BM copyright notice are included on the first page. The title and abstract, but no other portions,

of this paper may be copied or distributed royalty free without further permission by computer-based and other information-scrvice systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

0018-8646/96/$5.00 © 1996 IBM

IBM J. RES. DEVELOP. VOL. 40 NO. 5 SEPTEMBER 1996

R. M. JESSANI AND C. H. OLSON

559




560

z Instruction MMU/

Instruction {{ Branch 16KB instruction cache T
buffer unit ’* ‘]

Completion
buffer Y

-] Instruction decode

~~

:‘4‘_1 E mum—]
%] WD_MH ARAMEERIRTS TILAll mml

o | [ e fmas'} § fstosn = . |
2 lore| [L2 || = O
Int &3 SYsT | l FPRs ==
ISU Addr Data
N
Data MMU/
16KB data cache BIU J

"

External bus

Block diagram of the PowerPC 603e microprocessor.

——

DI FPR
e

Dl_ Pipeline register I
1

Dl Pipeline register l
T

Dl; Pipeline register —J
'

>

>[ Pipeline register I

¥
D{ Rename buffer —‘

Major stages of the 603e FPU.

The 603¢ FPU is a fully static-register base
implementation with LSSD testability. The implementation
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employs an ASIC design methodology approach to speed
up the design cycle time for chip integration; however,
most of the building elements of the 603e FPU are fully
custom designed for the specific application in order

to achieve peak performance. The control logic is
synthesized, placed, and routed automatically. The logic
is verified by a random test generation program through
both an FPU stand-alone simulation model and a whole-
chip simulation model.

The 603e FPU has two types of execution modes—
scientific mode and real-time mode. The scientific mode
is implemented for precise scientific computations and
engineering applications that require high precision and
execution power. This mode conforms to ANSI/IEEE
Standard 754-1985 [4], the “IEEE Standard for Binary
Floating-Point Arithmetic” (hereafter referred to as the
“IEEE standard”), including all four rounding modes and
exception status reporting, but it does have a dependency
on supporting software in order to do so. All floating-
point operations conform to that standard, except when
software sets the floating-point non-IEEE mode (NI) bit
in the floating-point status and control register (FPSCR)
to 1, i.e., real-time mode, in which case floating-point
operations conform to a subset of the IEEE standard—
all results are produced without software assistance
(without causing a floating-point-enabled-type program
interrupt, a floating-point-assist interrupt, or a fast-trap).
All exceptions are handled by hardware, and default
numbers such as quiet not-a-number (QNaN), maximum,
and zero are output according to the exception.

Basic instruction pipeline stage and timing

The PowerPC 603e FPU comprises three major stages
(Figure 2). The first stage of the FPU engine is the
multiply stage. It performs the main multiply function of
FRA times FRC using a 53 by 28-bit Booth recoding
Wallace tree multiplier array [5, 6] to generate the
accumulated partial product in the sum-and-carry format.
Concurrently, FRB is only right-shifted to align with the
result of FRA times FRC. Finally, the aligned FRB and
the result of FRA times FRC are compressed by a 3-to-2
carry-save adder. To save silicon area, the multiplier array
is only implemented with half the size of a full 53 by 53-
bit array using three levels of 4-to-2 carry-save adders. For
a double-precision multiply operation, it requires double
pumping through the multiplier array.

The second stage is the carry-propagate-add stage, which
performs a 161-bit one’s complement add using a carry-
lookahead adder. The result of the operation goes through
a leading-zero detector for normalization shift-count
calculation.

The third stage is the WB stage, which performs the
normalization left shift, rounding, and status generation
operations. The final result is stored in one of the four
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rename buffers and/or forwarded back to the multiply
stage for the next instruction execution. The rename
buffer content does not update the FPR until the
instruction is architecturally completed.

Figures 3 and 4 respectively show typical timing
examples involving three single-pumping and three
double-pumping instructions. For single-precision multiply
instructions (and instructions which do not have the
multiply function incorporated in them) without data
dependency, the throughput is one per clock cycle, and
the latency is four cycles. For double-precision multiply
instructions without data dependency, the throughput is
one per two clock cycles, and the latency is five cycles.

Architecture/implementation

Figure 4 shows the major building elements in the 603¢
FPU for the multiply-add-fuse instruction. The three
independent pipeline stages (multiply, CPA, WB) require
one clock cycle to execute under a normal situation. Extra
cycles are required for situations such as the following:

& For a full double-precision multiply operation, an extra
cycle is required for iterating in the multiply stage to
double-pump the operand or intermediate result
through the multiplier array.

« The normalization shifter is implemented with a 63-bit
left shifter, and in the event of mass cancellation in the
mantissa calculation, the WB stage could require one
or two extra clock cycles to execute.

« Underflow and overflow exceptions require an extra
cycle in the WB stage for exponent correction.

s Denormalization of results requires an extra cycle.

® Bypass unit

The block diagram in Figure 5 shows a bypass unit—
used to handle abnormal executions (i.e., the abnormal
operands NaN and infinity, and abnormal operations such
as divide by zero, infinity minus infinity, and infinity
multiplied by zero). The normal multiply and CPA stages
are bypassed, and the default result is fed to the WB
state to simplify the datapath logic. The bypass unit also
manipulates the FPSCR for FPSCR instructions, and
handles the graphic-instruction floating-point conditional
select register.

® Multiplier array

The 603e multiplier is a high-performance fully pipelined
multiplier which uses radix-4 Booth recoding [5] to halve
the summands (partial products) which must be added and
a Wallace tree [6] of 4-to-2 CSAs to minimize the time
necessary to add the summands together. The multiplier
configuration is a 54 X 28 arrangement capable of
unsigned operations. The 603¢ single-precision floating-

cycl cyc2 cyc3 cyc4 ‘cycS5 «cych

Multiply 1 2 3

CPA 1 2

WB ) 1 2 3

Rename 1 2 3 J

cyel cye2 cyc3 cyed “cycl cyc6 cyc? cyc8 cyc9

Multiply 1 1 2 2 3 3

CPA 1 1 2 2 3 3

WB 1 2 3
Rename 1 2 3

instruction per cycle. For double-precision multiplications,
the operands are double-pumped at each stage to obtain
the desired results with the required precision.

Figure 6 shows the multiplier array structure. The two
feedback paths for the most significant bits of the sum and
carry each use a 2:1 mux which allows the results of the
first pass to be incorporated into the second pass.

& CPA (carry-propagate adder)
The CPA is implemented as a 161-bit one’s complement
adder with an end-around-carry adjustment. It accepts
one’s complement input from the aligned FRB, and it
accepts the result of FRA = FRC, which is always positive
relative to FRB from the multiply stage. The output is
represented in sign-magnitude format with the sign bit
handled in control logic. The CPA consists of three pieces,
as shown in Figure 7. Since the lower 26-bit product from
the muitiply array is generated from the first CPA cycle by
the carry-lookahead adder (CLA) and saved, the lower
26-bit portion of the 161-bit CPA is an incrementer
instead of a CLA. Since carry-lookahead incrementers are
smaller and faster than carry-lookahead adders, the actual
CLA is only 88 bits wide.

The propagate from the carry-lookahead incrementer
and the group identifier generated by the 87-bit CLA are
fed back to the carry-in to correct the end-around-carry

point multiplication can be operated at the rate of one problem without a closed loop. XOR gates are used at 561
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_—

the output to invert the result back to sign-magnitude
format. The one’s complement adder is used in this
implementation to make it easier to convert the result
back to sign-magnitude format. The upper 63-bit portion
of the 161-bit CPA result is examined for the number of
leading zeros for normalization shift count in the next
stage.

o Alignment shifter
The alignment shifter for the B mantissa is reduced to a
53-bit-input 136-bit-output right shifter through double-
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pumping. It is implemented as a partial decode having
three levels in a multistage structure with partial-shift
groups, or as a modulo shifter (maximum shift count of
143), since each nested shift amount is calculated with
modulo arithmetic. Figure 8 shows the three levels, which
carry out shifts of binary (0, 1, 2, 3); multiples of 4 bits
(0, 4, 8, 12); and multiples of 16 bits (0, 16, 32, 48, 64, 80,
96, 112, 128), respectively. Shifting arising from a negative
shift count is prevented by a bypass port in the third level
that takes advantage of critical timing. Bypassing enables a
quicker shift count calculation for the first two levels. The
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alignment shifter also includes the automatic sticky-bit
detection logic for the bits that are shifted off.

® 17D (leading-zero detector)

Three 63-bit LZDs inside the FPU are used to calculate
the number of leading zeros. The most time-critical one is
at the CPA stage after the 161-bit add. It is implemented
by three levels of coarse and fine circuits. The first level
contains sixteen 4-bit leading-zero-detect circuits. The
second level contains four 16-bit leading-zero-detect
circuits. The final level contains one 64-bit leading-zero-
detect circuit. The other two LZDs are not time-critical
and are implemented by synthesis.

® Normalization shifter

The normalization shifter comprises three levels and is not
a complete shifter. The maximum shift count is 63. For a
normal CPA result, it requires only one pass through to
generate the normalization result. For the case of mass
cancellation from unlike-sign add operations, it requires
one to two extra cycles to normalize the result. A sticky
bit is also accumulated for bits beyond bit 53.

% (PR file

There are 32 floating-point registers, each containing a
70-bit floating-point number. The format of this 70-bit
number includes a 3-bit tag, a 1-bit sign, a 13-bit
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Carry-propagate adder. Level 1: CPA datatlow; Level 2: One's
complement adder examples with end-around-carry adjustments;
Level 3: Actual implementation for the 161-bit adder divided into
four sections.

exponent, and a 53-bit mantissa. The FPR register array
has one write port from one of the four rename buses.
The data transfer control signals and address for the write
come from the completion unit, which allows updates from
either the writeback unit or the load/store unit. The FPR
register array also has three read ports for latching the
three operands (FRA, FRB, and FRC) needed to execute
an instruction. The data transfer control signals and
addresses for the three reads come from the dispatch unit.
Finally, the FPR register array also has one more read
port to the load/store unit. The data transfer control
signals and address for this read come from the load/store
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unit. The four reads and one write can take place at the
same time.

® Division

The 603e FPU employs a 2-bit nonrestoring division
algorithm which produces two correct mantissa bits per
cycle. A normal single-precision divide requires 18 cycles
and a normal double-precision divide requires 33 cycles
to execute, utilizing most of the existing hardware.

Exception detection and handling

The 603e FPU detects exceptions in two parts—an early
detect in the first cycle of instruction execution (multiply)
in the bypass unit, and a late detect in the last cycle of
instruction execution (WB). All seven invalid operations
exceptions (Inf — Inf, Inf * Zero, SNan, etc.) and the
zero-divide exception fall in the early-detect category,
while all overflow, underflow, and inexact exceptions fall
in the late-detect category. For cases of exceptions with
corresponding exception-enable bits that are clear in the
FPSCR, early detection in the bypass unit is carried out
with exponent and mantissa checking, and appropriate
default results are generated, while late detection is
handled by generating a meaningful result. For enabled
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exceptions, early-detect exceptions stall the dispatch unit
from dispatching further FPU instructions, whereas for
late-detect exceptions an adjusted result is prepared and
loaded into the rename bus.

Figure 9 shows the exception module in the 603e FPU.
The IEEE standard assumes that it should be possible to
identify the instruction that triggers an exception trap. The
603e FPU identifies cach executed instruction with a 3-bit
IDN (ID number assigned during dispatch), which is
passed on to the completion unit along with the finish
signal for an instruction. The completion unit handles
situations such as misplaced branches and out-of-order
completion among the FPU, the fixed-point unit (FXU),
and the load store unit (ILSU), and fires a complete signal
for the FPU to update architected registers.

FPSCR control

The floating-point status and condition register (FPSCR)
is implemented inside the FPU. Each bit in the FPSCR
belongs to one of three categories: 1) report exception
(sticky), 2) status, and 3) enable and programming mode
control bits. The FPSCR is accessed by the following two
groups of instructions:

Rename bus addr "
4 fpr addr +:Completion unit
ol
218 g
o) 3
BLE 2
- Elg Aol g
SO 1 SE Bes =4I
R E g £ glile
.3 S\ 2=[38
Tie | ChE 81513
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Exception module.
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1. FPSCR instructions
serialization.

2. Floating-point arithmetic, multiply-add, rounding, and
conversion and compare instructions This group does

This group requires machine

not require instruction serialization. However, two
rename FPSCRs and one master FPSCR are required
to maintain the FPSCRs in program order. The update
from one of two rename FPSCRs to the master FPSCR
takes place when the completion unit announces that
the associated instruction is completed.

The FPSCR is implemented with a full 32-bit master
architectural FPSCR and two 17-bit FPSCR rename
buffers which are implemented with a stack structure as
shown in Figure 10. The FPSCR rename buffers contain
the non-sticky-status bits of ox, ux, zx, xx, vxsnan, vxisi,
vxidi, vxzdz, vximz, vxve, vxevi, fr, fi, and fprf.

The FPSCR renames are updated by the instruction
which is at the final cycle of the WB stage. When the
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Implementation of the FPSCR rename stack and the architectural
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State diagram for the FPSCR rename control.

completion unit retires the finished FPU instruction, the
architectural FPSCR is updated from the bottom of the
FPSCR rename stack, and the stack is decremented. When
both FPSCR renames in the stack are full, the FPU will
be stalled until the FPSCR rename which is on the top of
the FPSCR rename stack is free again. Figure 10 and
Figure 11 show the implementation of the FPSCR rename
and the state diagram for the FPSCR rename control.
Under the assumptions listed below, the performance lost
due to stall caused by the lack of FPSCR rename buffers
is minimal:

1. Given that there are only four target rename buffers
which are being shared with the LSU, and assuming
that on the average, the FPU uses only half the number
of the target rename buffers, the FPU will be stalled
in any case by the lack of target rename buffers.
Therefore, only two FPSCR rename buffers are
needed to match the four target rename buffers.

2. The probability of having a long instruction (e.g., FXU
divide, LSU with a miss) in front of a floating-point
instruction is very small. Most FPU applications will
not be delayed.

Prenormalization/denormalization

In the 603e FPU, denormalized source operands are
prenormalized by using the normalization shifter in the
writeback stage.” The bypass unit contains the logic which
detects denormalized source operands and stalls the FPU
from accepting further instructions. The denormalized
operand bypasses the multiply and CPA stages and is fed
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to the normalization shifter. Depending on the number
of denormalized sources, three to five extra cycles are
required before the instruction commences execution.

A single denormalized source utilizes three extra cycles,
where two and three denormalized sources take four and
five extra cycles, respectively. Prenormalization is carried
out for all instructions which could potentially cause an
error in certain cases with denormalized source operands.
The prenormalized number is fed back to the EIB for
normal execution via the rename bus that was pre-
assigned for the target register of that instruction.

The extra hardware required for handling denormalized
operands consists of a leading-zero detector (LZD) in the
bypass unit, and minimal logic to detect denormalized
operands and to stall the FPU. The LZD in the CPA
stage fell in a time-critical path and was not used, since
introducing a 2:1 mux in the path would compromise
timing. Since the bypass LZD was not time-critical, it was
implemented using synthesis.

The denormalization operation for denormalized results
is handled at the writeback stage. The normalization
shifter can only left-shift from 0 to 63 bit positions. After
the normalization operation is completed and the final
exponent is computed, if a denorm operation is required,
the result is looped back to the WB pipeline register with
a 56-bit hardwired right shift while the multiply and CPA
stages are stalled. Another left shift is performed by left-
shifting the result by (56 minus the number of the denorm
bit position). The denormalizing operation requires an
extra cycle. The extra hardware required is an extra port
in the writeback register.

Design methodology

The 603e FPU was described in a proprietary high-level
register-transfer design language called Design Structure
Language (DSL). The DSL compilers accept hardware
constructs in a programlike manner and support many
levels of hierarchy for a macro design approach.
Customized, hand-placed circuits (off-the-shelf, or OTS,
macros) were used to lead to optimal timing and density
for memory elements, multiplexors, and challenging
functions. Control logic was developed by allowing
synthesis to map the high-level, functional model for each
random logic macro (RLM) to primitive gates in the
technology library. The timing of critical paths was
improved by reworking the function, hiding a desired
implementation from synthesis, or altering synthesis timing
assertions. MCSPICE was used for detail circuit
simulation on critical speed paths, before and after layout.

Summary

The IBM PowerPC 603e floating-point unit is an IEEE-
754-compliant fused multiply—add design. With complete
hardware support for denormalized numbers, overflow and
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underflow processing, and invalid operation exceptions,
the 603e requires the same minimum software envelope
as high-end RS/6000™ processors. Requiring less than

15 mm’ area and operating at 100 MHz, the 603e floating-
point unit represents an excellent cost-performance
implementation.

SPEC{p92 is a trademark of Standard Performance Evaluation
Corporation.

PowerPC 603e and RS/6000 are trademarks of International
Business Machines Corporation.
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