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Logic  synthesis  is the process of automatically 
generating  optimized  logic-level  representation 
from a  high-level  description.  With the rapid 
advances in integrated circuit  technology  and 
the resultant growth in  design  complexity, 
designers  increasingly  rely on logic  synthesis 
to  shorten the design time while  achieving 
performance objectives. This paper  describes 
the IBM logic  synthesis  system  BooleDozer", 
including  its  organization,  main  algorithms, 
and  how it fits into the design  process.  The 
BooleDozer  logic  synthesis  system  has been 
widely  used  within IBM to successfully 
synthesize  processor  and  ASIC  designs. 

1. Introduction 
Logic synthesis is the process which compiles  a  register- 
transfer-level (RTL)  description  into  an  optimized 
technology-specific  network implementation.  The design 
process,  including BooleDozerTM, is shown  in Figure 1. 
The designer  writes  a structural  and  behavioral  description 
of the circuit  using  a  high-level  design language  (HDL) 
such  as VHDL or Verilog@. The  behavior of this 
description is checked using simulation.  The high-level 
design  is compiled  into  an  RTL  network by a  behavioral 
synthesis  tool  such  as HIS [l]. The  RTL  network is 
composed of equation blocks, functional blocks  such as 
adders  and multiplexors, and primitive gates.  The  RTL 
network is the  input  to logic synthesis. 

To  illustrate  this process,  a  simple VHDL example, 
shown  in Figure 2, is used. This  input is processed by 
HIS,  producing  the  RTL  network shown  in Figure 3. This 
network consists of technology-independent gates;  it is not 
optimized  from a combinational  point of view (since that 
is the  job of logic synthesis), but  the  sequential  behavior 
has  been  determined.  The multiplexor MUX was inferred 
from  the  second i f statement, in which (depending  on  the 
value of A) one of two values is assigned to R. Because of 
the first i f statement,  the value of R is stored in a register. 

The  output of logic synthesis is a  network of gates in  a 
target technology,  as shown in Figure 4. The network has 
undergone  some  major changes,  discussed in the next 
section, which affect the  performance of the  network  but 
not  the logical function.  This network is passed on to 
physical design (PD) for  placement, layout, and wiring. 
Physical design information (e.g., wire capacitance, wire 
resistance,  and  placement  information)  can  be  fed back 
into logic synthesis to allow iterative  refinement of the 
design. 

Logic  synthesis requires a description of the  target 
technology  in which the design is to  be  implemented. 
Information  includes physical information such as size and 
delay of gates,  and  functional  information such as logic 
equations  for gates. To  optimize a  design for  performance, 
a  timing system is needed which can provide accurate 
delay estimates quickly. BooleDozer uses an  incremental 
timing system called EinsTimerTM.  Other  important  inputs 
to logic synthesis are  the  performance goals for  the design 
(e.g., cycle time  and  area). 
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Design methodology. 

Boolean checking can  be  used  along with simulation  to 
ensure  that logic synthesis has  not  changed  the  behavior 
of the design. Static timing analysis and  simulation  can 
be used to verify the timing of the design. 

from  other synthesis tools in  several ways. The first 
requirement is larger capacity (about 100000 gates) 
than  the  current industry  practice. That implies not 
only an efficient database,  but also  efficient  algorithms. 
BooleDozer  relies  on compiler-like analysis techniques 
more  than two-level techniques [2, 31 or  those  based on 
binary  decision diagrams  (BDDs) [4], whose performance 
degrades  too quickly with increasing problem size. 

The  second  requirement is openness of all interfaces, 
which means  that local support  personnel  can write 
special-purpose  code in response  to designers’ needs. 
Also, the existing  design flow must  be easy to  rearrange 
to satisfy unique design requirements. 

The  third  requirement  concerns timing analysis. On one 
hand, timing analysis used  during synthesis  must  have the 
same accuracy  as the analysis used  for timing  verification. 
On  the  other  hand, it must  be efficient  in the synthesis 
environment,  where timing analysis is performed very 
frequently. 

The  fourth  requirement is for high reliability and 
testability. That implies that synthesis must  generate 

408 hardware testability structures, must produce highly 

To satisfy the various requirements,  BooleDozer differs 
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testable designs, and  must  handle special functions  for 
error  detection  and  fault isolation. 

The fifth requirement is for close interaction with the 
designer. A logic designer  uses many pieces of information 
to  construct a workable  ASIC design which fits the 
available area  and  meets  the timing requirements.  Most of 
the  research  and  development  in logic synthesis focuses on 
one  or two of these pieces, but a good  human  designer 
tries  to  consider all factors which affect each decision. 
Generally, only  a  small fraction of the  information 
considered by the  designer is  available to  the synthesis 
tool.  It is not difficult to  understand  the effect this  can 
have on  the quality of the  results. 

It is clear,  through  years of experience synthesizing 
high-performance VLSI designs, that even an  optimal 
Boolean minimization algorithm  coupled with an  ideal 
mapper  coupled with a state-of-the-art timing optimizer 
can still produce logic designs which do  not  meet  the 
designer’s needs.  Instead of reducing  the design time, 
we are  left with a network  that is unusable  as is, nearly 
impossible to  correlate  to  the  source  description,  and 
painful to analyze. Certainly, this outcome  does  not 
meet  our  goal  as  tool  developers  to  improve designer 
productivity. Designers may be  forced  to manually  design 
large  portions of their logic  down to  the cell level. Not 
only is this time-consuming and  error-prone,  but it forces 
gate-level simulation  and locks the design to a particular 
technology.  Bridging the  information  gap between 
designer  and  tool will give synthesis  a reasonable  chance 
of producing a  high-quality  network. 

The  rest of this  paper  describes  the  BooleDozer logic 
synthesis  system  designed to serve the design  community 
at IBM. Its design  draws on  the  experience  from  the 
previous IBM  internal synthesis tools [5, 61 as well as  from 
external synthesis tools [2,  7, 81. BooleDozer is the  result 
of a joint  project  among  IBM  Yorktown  Research,  the 
IBM  Advanced  Workstation Division, and  the  IBM 
Microelectronics Division. This  has  led  to a  powerful and 
customizable logic synthesis  system for  high-performance 
processors  and ASICs. 

Section 2 of this paper gives an overview of the 
BooleDozer synthesis  system. The following  sections 
(3 to  6)  each describe one of the  components  that  make 
up  BooleDozer.  Section 7 describes  a hierarchical design 
process showing how BooleDozer  can  be  used  to solve the 
problems of designing large  chips which have been divided 
into  multiple  partitions.  The final section  illustrates 
BooleDozer’s use on some  IBM  products. 

2. BooleDozer system overview 
The  orthogonal  decomposition of the logic synthesis 
problem  leads  to a modular design of the  BooleDozer 
logic synthesis system. Synthesis is done by a sequence 
of transformations, which constitute  the first part of 
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E N T I T Y   E x a m p l e   I S  
PORT (A,   B ,  C. D.  E : I N   B I T :  

CLK : I N   B I T :  
OUTPUT : OUT B I T :  
R : OUT B I T ) ;  

END Exampl  e : 

ARCHITECTURE B e h a v i o r  OF e x a m p l e   I S  
BEGIN 

PROCESS (CLK,  A,   B.  C .  D. E) 
VARIABLE S : B I T :  

BEGIN 
S := A o r  B; 
OUTPUT <= S or C :  

1 Sample VHDL description. 

the  orthogonal  decomposition.  There is a large  set of 
transformations  from which to  choose; most of them  are 
independent  and  can  be  applied in any order.  We have 
to  decide several  issues  in forming  the  sequence of 
transformations:  “What  to  apply?”,  “Where  to apply it?”, 
“Is it  beneficial?”, and  “Is it legal?”.  We  illustrate  the 
issues on a  simple  example of double  inverter removal. 
The  transformation  eliminates two inverters in  a row: 

C = N O T ( B ) ,  B = N O T ( A )  becomes C = A .  

We have already  settled  the first issue of what to apply by 
restricting our example to  double  inverter removal.  But  in 
general  there  are many transformations available, and  the 
most appropriate  must  be  selected by answering whether 
it is beneficial. 
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The next issue is where to apply. Possible  answers 
include “everywhere,”  “only on  the critical path,” “only 
where  the  designer explicitly specified.” The answer tends 
to  depend  on  the stage of synthesis. In early  stages, 
transformations  are allowed to  make  major changes, while 
in later  stages  tighter  restrictions  are  applied. Drivers 
are  used  to  focus a specific transformation  (or  set of 
transformations) on a specific piece of the  network. 
Drivers form  the  second  part of the  orthogonal 
decomposition. 

If the decision. of where  to apply is made automatically, 
one must  also consider  the  question of when  it should  be 
applied.  The  order may have  a  significant impact  on  the 
quality of the final result or on  CPU  time.  Even in our 
trivial  example of double  inverter removal, the  order is 409 
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S Scan clock 

Master clock 

. Slave clock 

Q"q-=u Scan input 

Design from VHDL compiler  before  optimization  by logic synthesis. 

___c . Slave clock 

Design after  optimization  by logic synthesis. 

significant, because  from  the  three  nets A ,  B , C, two 
disappear, including their  names. If there  were  more  than 
two inverters in  a row, different  nets  (and  different  net 
names) would disappear,  depending  on  the  order in which 
the  inverter  pairs  were removed. 

While doing  the  transformation,  one must  ask whether 
it is beneficial. Double  inverter removal tends  to  reduce 
area,  but its impact  on delay is less clear. If inverters  are 
used  to build  a fan-out  tree,  eliminating  them would make 
delay  worse. The issue of benefit  is one of the most 
difficult, because answering  it requires  predicting  the 
impact of the  remaining design stages  (rest of synthesis, 
placement, wiring,  etc.). Costbenefit  functions  are usually 
a combination of area, power, and delay. Separate 
modules  are  used  to  calculate  area, power, and timing 

41 0 information. All of the  modules  operate in an incremental 
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fashion,  and  therefore  can  be used to constantly monitor 
the  network  changes in  a very efficient way. As the design 
proceeds, they will be  fed with more  accurate  information 
and will calculate  more  precise  results.  These  predictors 
(estimators)  form  the  third  part of the  orthogonal 
decomposition. 

For  some  transformations,  one  must check explicitly 
whether they are functionally correct to  be  applied in this 
instance.  BooleDozer  relies  on a test  generator  to  check 
for logical correctness. Logical correctness  does  not 
really arise in the  case of double  inverter removal, but 
other types of functional  correctness (e.g., electrical 
correctness-can source A drive  sink C?) may be 
important.  Checkers  form  the last part of the  orthogonal 
decomposition. 

transformation, it is advantageous  to try to  keep  the issues 
orthogonal  to  one  another.  This way it is easy to  control 
where  transformations apply, and in what  order.  The 
same  transformation  can  be used to  improve  area, delay, 
testability,  power,  etc. just by changing the  parameters of 
"benefit." Also, by using independent  modules, we can 
easily take  advantage of new developments in BDDs,  test 
generators,  etc. 

While the above  issues tend  to  be specific to  each 

Logic synthesis stages 
In general, logic synthesis is divided into  three stages: 
technology-independent optimization, technology mapping, 
and timing optimization. As is the  case with  design 
automation in general,  earlier  stages have greater  freedom 
in restructuring  the logic, but have  a  less accurate  estimate 
of the  impact of the  restructuring  on  the final product. 

Technology-independent optimization 
The primary function of the  technology-independent 
optimization  stage is to  restructure  the logic to  decrease 
network  interconnections  and circuit area  and  to  remove 
logic redundancies.  This  stage  operates  on  the technology- 
independent  network, i.e., a network in which the  gates 
are  not  bound  to a particular technology  cell but  are 
generic logic gates. Area  estimates  are  based on number 
of connections (sink pins)  or  other  approximate  measures. 
A secondary objective of this  stage is to  create a  design 
that is free of gross  timing problems.  The overall goal of 
timing optimization  during this stage is to move forward 
nets which appear  to  be critical.  Timing estimates  are 
based on the  number of stages, with some  correction  for 
fan-in  and  fan-out.  In  spite of the inaccuracy of the delay 
prediction  at this stage, gross  timing problems  are  more 
easily fixed here  than in later stages. 

A  variety of algorithms exist to  restructure logic, each 
of which attempts  to  reduce  the circuit  complexity by 
reexpression of the logic  in  a form  that  requires fewer 
gates  and/or  connections. Since  most  logic-minimization 
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Table 1 Restructuring  levels. 

Optimization level Transforms used 

Dead Constant  propagation 
Redundancy  removal 

Flow Global flow 
Down  Transduction 
Flatten  Flattening 

Crush  Cube  expandireduce 

Destruct  Intensive  kernel  factoring 

Cube  factoring 

Kernel  factoring 

algorithms  are  NP-complete, special  heuristics  have been 
developed  that can be used to  optimize logic with near- 
optimal results. Depending  on  the  structure of the initial 
logic network, different  combinations of these  algorithms 
produce widely varying results. Therefore,  the logic- 
restructuring  function in BooleDozer synthesis has  been 
broken down into several different levels, each of which 
invokes combinations of transformations  found  to have 
similar  effects. At  each higher level of restructuring, 
transformations causing more  drastic logic changes  are 
invoked  along  with the  transformations of lower levels. 
These levels have been  named dead,  flow,  down,  flatten, 
crush, and destruct. Each of the levels has its own set of 
properties which it  maintains. When  the level dead is 
chosen,  the  transformations  should  not  increase  the 
fan-in/fan-out  on any path.  Major  actions  at this level 
are removing constants  and dangling logic and improving 
testability. When  the level flow is chosen, the  number of 
levels on any path may not  increase; however,  fan-inifan- 
out may increase.  At  the down level, the  area of the logic 
is guaranteed  not  to  increase.  This may be  done  at  the 
cost of increasing the  length of some  paths. Flatten allows 
the  area  to  increase  to  obtain  better timing  results. Crush 
flattens multilevel AND/OR  structures  into a two-level 
representation preserving some  important  structures such 
as XORs. Destruct flattens  the logic completely and totally 
rebuilds  the network. Table 1 shows the  transformations 
used at  each of these levels. The  transformations  are 
discussed in more  detail in Section 5. 

As  an example, two technology-independent 
transformations  are  applied  to  the  network of Figure 5. 
One possible transformation  eliminates  the  net S, 
resulting in Figure 5. This is an example of a  simple local 
transformation, where  the  amount of logic examined is 
bounded  to  the  immediate  neighborhood.  After  that, 
another  transformation  disconnects  net A from  one of the 
OR gates, resulting in Figure 6.  This is an example of a 
global transformation, in which the  amount of logic 
examined cannot  be  bounded  beforehand. 

It is important  to  notice  that  the  connection of A cannot 
be  eliminated in Figure 3. Thus,  the first transformation 

Master clock 
__c A Slave clock 

Scan clock 

Scan input 

L 

1 Design after combining OR gate S with  its sinks. 

Master clock 

Slave clock . 
Scanclock -1 1 

Design after removing a connection of A 

enables  the  second; since this is a very common  situation, 
the  sequence in which transformations  are  applied  can 
have  a significant impact  on  the final result. 

Technology mapping 
Technology mapping follows technology-independent 
optimization  and is the  implementation of a Boolean 
network,  referred  to as the  target network,  using 
technology-dependent  gates  from a prescribed library 
of primitives. 

is shown in Figure 7 (OR2, OR3, and MUXREG are 
One possible mapping of the  network  from  Figure 6 

names of technology  cells.) The primary  objective is area 
optimization,  although delay is also taken  into  account. 
Please  note  that in Figure 7 the multiplexor has  been 
absorbed  into a  special register  capable of the multiplexor 
function.  This is an example of the main challenge in 41 1 
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Design after  technology  mapping. 

technology mapping, namely how to  take  advantage 
of such  special features  provided by the cell library. 

Technology mapping in BooleDozer consists of two 
separate stages: matching  and covering. Matching is the 
identification of technology gates  from  the library which 
can  implement a subgraph of the  target network.  Covering 
is the  selection of a set of consistent  matches  as  an 
implementation of the  network with the objective 
of optimizing  a cost  function.  The  cost  functions of 
importance  are  area, delay, and power consumption. 
Transformations  for  matching  and covering are discussed 
in Section 5. 

Timing correction 
BooleDozer  relies  on  the  timing-correction  stage  to  ensure 
that  the synthesized network  meets  the timing constraints. 
Also,  timing correction is used to  ensure  that  there  are  no 
electrical design rule violations  in the design. Because 
of the  unpredictable  impact  on  the timing of the  total 
network, it is very difficult to  come  up with globally 
optimal synthesis algorithms  for timing correction. 
Another  approach is chosen in BooleDozer. A  collection 
of transformations  are  tested against the  network  and 
quickly evaluated.  Transformations providing the  greatest 
improvements  are  then  accepted  and  permanently  applied 
to  the network. In  some cases, transformations  are 
allowed to  make  the delay temporarily worse in  order  to 
prevent timing correction  from falling into a  local 
minimum. The  timing-correction  transformations  are 
general  transformations which change  the  structure in an 
attempt  to  improve  the delay  in  a network  and  are  not 
targeted  to  optimize a particular  term in  a  delay equation. 

For  instance,  the  network in Figure 7 might be 
41 2 transformed  into  that of Figure 4 if, according  to timing 

assertions,  the signal on  net A was late arriving. This 
change is made  at  the cost of increased  area. 

improvements  are  obtained in the initial  invocations. 
However, it gradually becomes  more difficult to  improve 
the timing. To allow the  designer  to  control  the  running 
time,  special commands  are provided  in the  scripting 
language  to  run  for a particular  amount of time [9]. 

Not only critical paths  are  important  during timing 
correction; working on noncritical logic can improve the 
overall  performance of the design. Slowing down  a 
noncritical  path  and  thereby  reducing  the  load  on  the 
critical path may speed  up  the critical path.  Therefore, 
the  timing-correction  stage  alternates  between working 
on critical and  noncritical  portions of the network. 

Targeting special architectures 
BooleDozer allows sets of transformations  to  be  grouped 
in new stages  to  target special architectures.  Field- 
programmable  gate  arrays  (FPGAs)  offer  one example. 
FPGAs provide  a popular  alternative  to  standard cells 
and mask programmed  gate  arrays  for  implementing low- 
volume ASICs. FPGAs  also provide rapid  and inexpensive 
prototype  development  and  shorten  the  development 
cycles. FPGAs consist of field-customizable logic blocks 
which are  selected  and configured. They also contain 
user-programmable  routing  networks which can  be  used 
to  interconnect logic blocks  in the  FPGA. 

A  special  technology-mapping stage  has  been  added 
to  BooleDozer  to  handle  lookup-table-based  FPGAs.  In 
addition,  for  those designs that  are  too  large  to fit on a 
single FPGA,  an  automatic  partitioning  stage is provided 
to divide  designs into a number of segments,  each of 
which can fit on a  single FPGA. 

Design representation 
One of the  fundamental  problems of designing  a  synthesis 
system is the choice of representation  for  internal design 
data.  Different classes of optimization  algorithms 
may require  different types of data  representations. 
Improper choice of data  representation may hinder  the 
effectiveness of an  optimization  algorithm  and  make  the 
implementation unnecessarily difficult. In  BooleDozer, 
several  different types of network representations  are 
used,  the primary form  being a technology-independent 
form.  This  form consists of sequential logic and 
combinatorial logic implemented by a  collection of gates 
ranging from basic  primitives  such as  ANDs, ORs, and 
XORs to complex gates such  as adders,  decoders, 
multiplexors, and  comparators. 

By including  complex gates as part of the basic  building 
blocks  in the design representation, a tremendous  amount 
of logical information  can  be  stored  at  each  node.  This 
information  can  often  be exploited to  create extremely 

Timing correction  has  the  property  that  large 
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efficient logic optimizations.  For example, the knowledge 
that if a gate is a decoder its outputs  are  orthogonal  can 
be directly  used by synthesis transformations.  It  enhances 
the ability of technology mapping  to find and  implement 
complex  technology gates. 

The technology  library is represented in  a format  that 
complements  the underlying representation of the design. 
Each technology gate  has  an  associated technology- 
independent  function. A  technology gate  that  does  not 
correspond  to any of the  technology-independent  functions 
is represented  either as  a  black box or  as a Boolean 
equation. 

3. Optimization targets 
The goal of synthesis is to  generate a logically correct 
implementation while  optimizing some  predefined  set 
of cost functions.  The cost functions  can  be  area, 
power,  delay, or  some  combination  thereof. A common 
optimization  target is the minimum area  implementation 
which satisfies the timing constraints  imposed by the 
designer.  An  alternate goal  might be  the  fastest 
implementation whose  power consumption is below a 
certain  threshold.  These  optimization  problems  are 
complicated by the  fact  that  some of the  optimization 
goals are in conflict with one  another, as is evident in the 
area-delay and power-delay trade-offs.  Area  and power 
fortunately  do  correlate with each  other  and  thus offer 
simplifications  in certain  optimization problems. In  the 
following subsections, the  estimation of these  cost 
functions is discussed. It is important  to  note  that 
none of these  estimates is a true  measurement of the 
corresponding physical values,  since physical design 
information is lacking at  this stage.  However,  they do 
provide an effective  guide for synthesis optimizations in 
the  sense  that  networks with a  lower area  cost usually 
occupy less chip  area,  and  the critical paths  are  indeed 
critical  in the  chip. 

Area 
In  the  technology-independent  phase,  the  area cost is 
estimated by the  number of connections in the network. 
Most of the synthesis transformations in the technology- 
independent  phase  target  reduction of the  number of 
connections.  In  the  technology-dependent  phase,  the  area 
cost is the  sum of the  areas of all of the technology- 
mapped  gates in the network. The wiring area is ignored 
in this  estimation. 

Power 
In  static  CMOS devices,  energy is dissipated  through 
gate-output  transition,  short circuit current,  and  leakage 
current.  At  the logic synthesis  level of abstraction, 
only the  contribution  due  to  gate-output  transition is 

considered.  The energy, E ,  dissipated per cycle of a 
static  CMOS  gate, g, is given by 

E = V2CgSg , 

where Vis  the positive  supply  voltage, Cg is the capacitive 
load  that g is driving, and Sg is the  number of times  the 
output of g switches. Hence,  for a given circuit, power 
estimation  reduces  to  measuring  the switching activity 
of every gate. 

sequence of input  vectors  applied  to  the network and  can 
be  computed using  simulation. For  the  purpose of logic 
synthesis, the power measurements  are used for guiding 
incremental  changes in the  network.  The  simulator is 
invoked very frequently  and must be very efficient. 
Therefore, a  simple  zero-delay simulator is used with a 
sample  sequence of Boolean  input vectors. The  sample 
input  sequence is supplied by the  designer  and is assumed 
to  be  representative of the power consumption  behavior 
under investigation. The  input  sequence is limited  in 
length, which makes  fast  incremental  updates possible. 
With  no timing information,  detailed  behavior (e.g., the 
effect of glitches and slew) is ignored. The  average  energy 
consumption  per cycle is computed  for  each  net  and is 
used to  guide  transformations  toward lower  power 
consumption. 

Switching activity can  also  be  estimated using  a 
probabilistic approach [lo]. BooleDozer avoided  this 
because it requires  functional  evaluation  at  each  gate, 
which could be very expensive. Furthermore,  temporal  and 
spatial  correlations of input signals are difficult to  account 
for with a  probabilistic approach. 

The switching activity of a gate  depends  on  the 

Timing 
The timing performance of a  design is often  the most 
important objective for logic synthesis. The  designer 
asserts  the timing constraints by specifying arrival times 
for  the primary inputs,  required times for  the primary 
outputs,  and cycle times  for  various clocks and  their 
relative phases. It is necessary to  compute delays of 
circuit components  and  propagate timing information 
to  determine  whether  the circuit  has met  the timing 
specifications. 

Circuit  simulation provides  accuracy but is infeasible 
for  determining  the delays  in  a large network. EinsTimer 
provides static timing analysis [ll, 121 as an  integral  part 
of BooleDozer.  In  static timing analysis, we ignore  the 
function of the design and  consider only the possible 
timing relationships within it. In doing so, we always 
consider  the worst  possible event  that could occur in any 
functional simulation. In  other words, the delay of a path 
obtained using static timing analysis is always conservative. 
By ignoring the  function of the logic, we eliminate  the 
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need  to  simulate  (or  time) all  possible input  vectors 
and/or  state  transitions, converting the  problem which 
requires  exponential  time  to  one which can  be  done in 
linear  time.  The  drawback of static timing analysis is that 
the critical paths may be  false  paths [13], causing the 
performance of the design to  be  underestimated. However, 
recent  experiments [14] have  shown that when  sufficient 
don’t-care  information is used in  synthesis,  timing-critical 
paths  are  rarely false. 

graph of the network. To  keep  the analysis time  linear 
in  the size of the  graph,  this  graph must be acyclic. 
EinsTimer  does have the capability to  break cyclic graphs. 
The vertices, or  nodes, of the  graph  are  the  points  at 
which events  can  occur (e.g., signals can  arrive)  and  are 
referred  to  as timing  points. The timing points  include 
boundary  pins  and pins on logic gates in the  network. 

Each timing point p in the  network  has  an  associated 
arrival time t , ( p )  and  an  associated required time t , (p) .  
Arrival  times  at  the primary inputs  are given. EinsTimer 
propagates  these arrival times  forward  through  the 
network  and calculates  arrival times  at all other timing 
points.  Similarly, required  times  are derived from  the 
required  times  at  the  primary  outputs  and  are  propagated 
backward through  the network. The slack s ( p )  of each 
timing point is now defined by s ( p )  = t , ( p )  - t , ( p ) .  The 
worst  slack s , ( p )  is defined  as the minimal  slack on any 
timing point in the  network.  Note  that a  critical path  can 
be defined as a path  from primary input  to primary output 
on which all  timing points will have the  same worst  slack 

To accurately predict  the effect of transformations on 

Timing analysis is conceptually performed  on a directed 

S,(P). 

the  total  network delay, it is important  that  the  same 
timing model  be used during  optimization  and  during 
timing  verification. Integrating a static  timer  into 
BooleDozer delivers the  required accuracy. Equally 
important is that  changes  to  the network can  be  evaluated 
quickly. Incremental  timing  analysis permits a very fast 
evaluation of what  a changed topology means in terms of 
the underlying  delay  model. Incremental  recalculation  can 
be  performed only if the timing system’s model is updated 
synchronously  with  BooleDozer’s  model. 

EinsTimer  can analyze hierarchical designs,  including 
those which include multiple uses of pieces of the 
hierarchy. This  feature is discussed later, in the  section 
on optimizing  designs  hierarchically. 

The  architecture of EinsTimer allows different delay 
calculators  to  be used  with the  static  timer.  For 
technology-independent  gates,  BooleDozer  uses a  simple 
linear delay model  based  on  load  and  number of inputs. 
For  technology-dependent  gates,  the delay model uses 
timing equations  from  the technology vendor’. 

I “DCL,” a CFIiOVI standard (in development). 41 4 
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EinsTimer also allows different  capacitance  calculators 
to  be  used,  permitting physical design information  to  be 
used during a logic synthesis run. Initially, statistical  data 
are used to  estimate  the wire capacitance on the basis of 
the  number of pins  connected  to a net.  After  placement 
has  been  done, a different  calculator  can  be used which 
estimates  the wire capacitance  on  the basis of wire length 
estimates  from  the  placement.  Once wiring has  been  done, 
the  capacitance values from  the physical design tools  can 
be used to  obtain  even  more  accurate values. 

4. Where to apply? 
In  BooleDozer,  the  code  to  decide  where  to apply an 
action is separated  from  the  code  to  perform  the  action. 
The  code which decides  where  to apply an  action is called 
a driver; the  code which performs  an  action is called 
a transformation. The drivers  invoke one  or  more 
transformations  and  determine  where  and in  what order 
transformations  should  be  applied  to a set of logic nodes. 
This  section describes the two main groups of drivers: 
general drivers and timing  drivers.  Also presented is a 
mechanism to  focus  these  transformations  on a subset 
of the  network by user directives. 

General drivers 
The  simplest drivers  apply  a list of transformations  to 
all of the  gates  or  nets in the network. Sometimes it is 
important  for  gates  or  nets  to  be  processed in  a specific 
order.  The “levelized” drivers  are  used  to  process  gates  or 
nets  from left to right (from  inputs  to  outputs)  or  from 
right to left. These  drivers  can  be used to improve run- 
time  performance if a transformation is known to modify 
logic only to  the  left  or  to  the right of the  selected  node. 
Sometimes only a subset of the  nodes  has  to  be  processed. 
The “with test” drivers allow a subset of nodes  to  be 
chosen  for processing. The first transformation in the list 
is called on a node; if it returns TRUE, the  rest of the 
transformations in the list are called on  the  node.  Drivers 
are also supplied  to allow a transformation  to  be  applied 
at a  single box or  net. 

Timing drivers 
Since  many of the  transformations  that  comprise delay 
optimization  are local  in  scope,  decisions on when and 
where  to apply them  become very important.  More 
complicated delay rules  reduce  the ability of an  algorithm 
to guess  what  effect changes  to  the  network will have on 
delay. To solve  this problem,  the  transformation  must 
actually be  applied in order  to collect accurate delay data. 
The timing  drivers  apply  a transformation, collect  cost 
and  benefit  data,  and  then  undo  the  transformation.  The 
drivers may try other  transformations  or  other places 
before picking the  “best”  place  to apply the  “best” 
transformation. 
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01: boolean critical,driver( critical-path,  xform-list 1 
02: I 
03 : initialize(  best-quality.  best-pin,  best-xform,  applied 1 
04 : 
05 : foreach  pin i n  critical-path 
06 : foreach  xform in  xform-list 
07 : quality = analyze(  pin,  xform 1 
08 : if( quality > best-quality 1 
09 : best-qual i ty = qual i ty 
10 : best-pi n = pin 
11:  best-xform = xform 
12:  appl i ed = true 
13: end  if 
14 : end  foreach 
15: end  foreach 
16: 
17 : if( applied == true 1 execute( best-pin. best-xform 1 
18: return  appl i ed 
20: I 

Critical driver pseudocode. 

These decisions are  the  sole responsibility of the timing 
drivers: c r i t i c a l ,   n o n c r i t i c a l ,  and q u i c k .  To  do  the 
what-if analysis, a  cost and a  benefit are associated with 
each  transformation  to define  its  overall q u a l  i t y .  In  the 
case of c r i t i  ca 1 and q u i  c k, the benefit is reduced 
circuit  delay and  the cost is area  or power. 

Critical 
The c r  i t i c a l  driver  applies a list of transformations 
to  the critical path in the network. Its goal is to find 
the  “best” pin  in the critical path  to apply the  “best” 
transformation.  Much analysis is performed  before a 
change  to  the  network is accepted.  The  pseudocode shown 
in Figure 8 describes  the  general  operation of c r i  t i c a l .  
Although  the  pseudocode  does  not  describe this, 
c r i t i  ca 1 can work on the  top N critical paths in the 
network. 

Quick 
The q u i  c k driver (Figure 9) applies a list of 
transformations  to  an  ordered list of pins. Unlike  the 
c r i ti c a 1 driver, q u i  c k does  not  attempt  to find the 
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“best” pin at which a transformation may be  applied. 
Instead,  at  each  pin in the list,  it applies whichever 
transformation  produces  the  best results. Thus,  the  order 
of the incoming list of pins is important.  The  pins  can  be 
processed in  a  “levelized” order (i.e., left  to  right)  or by 
the  number of critical paths passing through  them. 

Noncritical 
The no n c r i t i c a 1 driver is similar to q u i  c k in analysis, 
but its determination of qua 1 i t y  is very different. Its 
goal is to  reduce  area  and power at  the cost of delay 
along noncritical paths.  Thus, it is important  that all 
transformations  be symmetric or have complement 
functions such that all transformations  can easily be 
reversed. 

Designer interaction 
In  order  to  produce high-quality  designs, interaction 
between  the  designer  and synthesis tool is crucial. The 
synthesis tool must provide  adequate  feedback  to show the 
types of decisions it has  taken  and how they  relate  to  the 
design description  (VHDWVerilog).  The  designer  needs 
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I Quick driver pseudocode. 

control mechanisms to  change  the synthesis process in 
places where it is considered  inadequate. 

The  feedback  function in BooleDozer is provided 
through a  powerful graphical browser which possesses 
unique  capabilities  to interactively trace  the  important 
subsections of million-gate  designs. The  functional 
reconstruction of links to  the design source  helps  to 
correlate modified logic structure  to  the original 
functional  description. 

BooleDozer provides  a designer  control  mechanism 
through user  directives. User directives are  most effective 
when manipulating  factors  that have the  greatest influence 
on the final  results. For  example,  the  structure of the logic 
may either  prevent  or  enable  good  mapping  and  good 
timing correction. A designer  can  control  the  degree  to 

41 6 which the  structure  inherent in the  source logic model 

is preserved  or  altered  during  Boolean  optimization 
by selecting a restructuring level from  Table 1. This 
capability, though, is global to  the  entire  partition  being 
synthesized.  While this may seem sufficient,  it  works only 
when  the design is partitioned  into small  pieces, each of 
which has  homogeneous  structural  characteristics. 

described carefully. The  designer knows the  path delays 
through  the dataflow  fairly accurately  and  chooses  not  to 
let synthesis alter  the  structure.  Control logic, however, is 
much  less structured;  it  combines many unrelated signals 
which have  a  variety of path delays. The significance of 
the  structure in the  control logic description is low, and 
the  designer  chooses  to allow synthesis  full freedom in 
simplifying and  reducing  the  structure of the controls. 
Another way to view this is using  symmetry of the logic: 

Usually,  dataflow logic is highly structured  and is 
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Dataflow logic contains a great  deal of symmetry, while 
control logic has  little symmetry. 

Given the ability to select how extensively logic 
structure is affected by synthesis,  a designer  can 
repartition  the logic in  such  a way that  each  piece is 
predominantly dataflow or controls.  In reality,  this is more 
difficult and less desirable  than  it sounds. Often,  there is 
no natural  point  at which to divide controls  from dataflow. 
There may also be islands of dataflow-like logic in the 
control logic, or vice versa. Further,  there  are  other  trade- 
offs between  large  and small partitions. As partitions 
become  smaller,  the  number of partitions grows along with 
the  number of interconnections,  and  thus,  the  number of 
boundary  conditions such  as  timing relationships which 
the  designer must manage.  Moreover,  these  boundaries 
impose artificial barriers  to logic and timing optimization. 

It is better  to give the  designer a means of adding 
information  to  the design, partitioned intuitively, which 
describes  the type or style of logic being represented  than 
to  force a partition  because of logic synthesis. This helps 
bridge  the  information  gap  and allows synthesis to  treat 
different  sections of the  same  partition in different ways. 
These  internal  borders  between  sections  are simple to  add 
or remove,  have no boundary  conditions  to  manage,  and 
are invisible to timing; they do  not  hinder  propagation of 
delay information. 

The type of logic is indicated in VHDL using the 
VHDL  attribute LOG I C-STY  LE. This  attribute is applied 
to a label,  either  on a concurrent assignment statement 
or on a block. HIS assigns attributes  from  an assignment 
statement  to  the  node in the logic model which represents 
that  statement.  HIS places attributes  from a  block  label on 
the  nodes  representing all of the  statements  contained in 
the block. BooleDozer  then recognizes  this attribute  and 
reacts according to  the value of the  attribute. 

There  are  four possible  values for  the L O G I  C-STY L E  
attribute: CONTROL-FLOW,  PLA,  DATA-FLOW, and 
D I R E C T .  The value CONTROL-FLOW is assumed when no 
L O G I  C-STY L E  attribute is present,  and such logic is freely 
manipulated by BooleDozer  depending  on  the  amount of 
restructuring  selected  for  the  partition. P L A  is used  to 
indicate  areas in which two-level optimization may be 
applied. DATA-FLOW and D I R E C T  are  both used to  keep 
the  structure as the  designer  described it. D I R E C T  is used 
to  tighten  the designer’s control of the process. It provides 
a way to  force a particular  mapping  solution  without tying 
the logic description  to an  individual  technology. 

Within DATA-FLOW- and D I  RECT-s ty le  logic, BooleDozer 
examines the  nodes  representing assignment statements 
for  structural  elements.  It  does  not automatically 
decompose  assignments  into primitive functions,  and 
it collapses  identical  functions within  a statement  into 
single logic elements. A large  sum-of-products  statement 
becomes  an  AND-OR;  an  XOR of several  signals becomes 

a  single, N-way XOR.  This  structural  representation is 
maintained  throughout  the logic optimization  step  and 
into  mapping. D I R E C T  logic is mapped as closely as 
possible into  the  target technology. Designers usually 
expect  a one-for-one  relationship  between a VHDL 
statement  and a cell in the  network  (or  N-for-one  for 
vectored  statements).  BooleDozer  has  more  freedom with 
DATA-FLOW logic. Rather  than  mapping  this logic  directly 
into  the technology, the  structure is used  to  “seed”  the 
mapping  patterns [15], providing  what is known to  be a 
good  structure while allowing the  pattern-matching 
functions  to find other viable matches. Any D I R E C T  logic 
for which no direct technology map exists is treated  like 
DATA-FLOW logic. This allows a  design targeted  to  one 
technology to  be  mapped  into a different technology 
without special designer  intervention, while  still  preserving 
the  important  structure. 

Apart  from L O G I  C-STY  LE, there  are  other directives 
which allow the  designer  to specify lower-level controls on 
logic synthesis. These directives include  the following: 

Never change  this  gate  (same  as 
L O G I C - S T Y L E = D I R E C T ) .  
Do  not  duplicate this gate. 
Do  not  insert  buffer  after  this gate. 
Try  to  map logic to this gate. 
Do not  combine this register with other registers. 
Use special register  type (e.g., metastable-hardened). 
Preserve  this  net. 

These directives increase  both  the flexibility and  the 
complexity of BooleDozer. 

5. Transformations 
The previous sections discussed the drivers and  other 
mechanisms to  focus  transformations  on specific parts 
of the network. The  actual  “work” is done by the 
logic transformations themselves.  A subset of the 
transformations, which can  be  applied in the  various 
stages of BooleDozer, is described in the following 
sections. 

Cube factoring 
Historically the  term  “cube  factoring”  has  come  from a 
two-level logic representation,  where a cube is an  AND- 
expression. In  terms of gate networks, cube  factoring 
refers  to  extracting  one  common  gate  from several gates 
(see Figure 10). The  common  gate can be  extracted 
from a group of AND/NAND  gates,  from a group of 
OR/NOR  gates, or from a group of XORiXNOR  gates. 
Cube  factoring is used during  technology-independent 
optimization  to  reduce  estimated  area,  and is based on a 
rectangle-covering algorithm [ 2 ]  to find the  cubes which 
reduce  the  number of connections by the  largest  amount. 41 7 

LL. 996 L. STOK ET P 



41 8 

Cube factoring extracts OR gate BC: (a) original; (b) after cube 
factoring. 

9 Kernel factoring 
While cube  factoring  extracts a common  gate  from several 
unrelated  gates,  kernel  factoring  extracts a subnetwork 
from  one  cone of logic. In Figure 11 kernel  factoring 
operates on the  input  cone of P and  extracts  the  function 
Q. The word "kernel" is usually used in the  context of 
two-level logic representation,  but  BooleDozer  performs 
kernel  factoring on multilevel logic [16]. In multilevel 
logic, kernel  factoring  becomes a  specialized form of 
Shannon expansion; for example,  in Figure 11, Shannon 
expansion was done using the  net C.  Kernel  factoring is 
used during  technology-independent  optimization  to 
reduce  estimated  area. 

Optimization by global pow analysis 
Global flow [17], which borrows from similar techniques 
used in language  compilers,  attempts  to  reduce  the 
number of connections in  a network by analyzing the 
relationships  between  nets  on a  global basis. For example, 
in Figure 12, the  connections of the  net S are  reduced 
from  three  to  one.  For this transformation, two steps  are 

Kernel factoring extracts the OR gate ABE: (a) original; (b) after 
kernel factoring. 

. . ." . ". - .. ". _.̂ l_"." 

necessary. The first step  performed by global flow analysis 
determines which nets  become 0 whenever S = 0. The 
second  step  uses a  min-cut algorithm  to  determine  where 
to  connect S. This  transformation is performed  during 
technology-independent  optimization  to  reduce  estimated 
area,  but also tends  to have  a  beneficial  effect on delay. 

Transduction 
Transduction [18] replaces  some  functions with other, 
more efficient  ones. For example, in Figure 13 the 
function of S can  be  replaced by C v D, because  that is a 
so-called  "permissible function"  for  the original function 
of S. A function is permissible if it can  replace S without 
changing the  functionality of primary outputs. 

While some synthesis  systems  actually calculate  the 
permissible functions,  BooleDozer  does  not,  because it 
would consume  too much time  and  space.  Instead,  for a 
given net S, BooleDozer  forms  some  candidate  functions 
S '  that might potentially  replace S. The  functions S' may 
exist in the given network  or may be  formed by combining 
several  existing  functions. The choice of S' depends on the 
optimization objective: area or delay. The  candidates S' 
are  not  guaranteed  to  be permissible functions  for S; 
BooleDozer uses  quick  simulation with random  patterns  to 
form  candidates  that  are merely likely to  be permissible. 
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By using global flow analysis, connections of S are reduced: (a) 
original; (b) after global flow. 

I 

Before  the  transformation is allowed, test  generation is 
used to  determine  whether S' is actually  a  permissible 
function  for S. Transduction is used  during technology- 
independent  optimization  to  reduce  estimated  area,  and 
during timing optimization  to  reduce  estimated delay. 

Redundancy removal 
Redundancy removal is a  special case of transduction in 
that  the  candidates S' are  restricted  to  the  constants 0 and 
1. For example, in Figure 14, the  net A originally goes  into 
some  combinational logic represented by the  square box. 
Since that  connection is not  testable  for stuck-at-1, 
it can  be  replaced by the  constant 1, which can  then 
further simplify the logic. The  determination of the 
connections  that  are  redundant is described in Section 
6. Redundancy removal is used  during technology- 
independent  optimization  to improve area, delay, and 
testability. It is also used  after timing optimization  to 
ensure high testability  coverage. 

Technology  mapping 
Technology mapping follows technology-independent 
optimization  and is the  implementation of a Boolean 
network,  henceforth  referred  to  as  the  target  network, 
using technology-dependent  gates  from a prescribed 

996 

The original  function of S can be replaced by S': (a)  original; 
(b) after transduction. 

library of primitives. The  various  approaches  to this 
mapping  problem  can  be broadly  divided into  four 
categories: rule-based  mapping [19], graph  matching 
[20], direct  mapping [21], and  functional  matching [22]. 
Technology mapping in BooleDozer uses  a combination of 
all four  approaches  and divides the  mapping  process  into 
two separate phases: the  matching  phase  and  the covering 
phase.  Matching is the identification of a subgraph of the 
target network with technology implementations using 
gates  from  the library.  Covering is the  selection of a set of 
consistent  matches as an  implementation of the network 
with the objective of optimizing  a  cost function.  The cost 
function is based  on  area, delay, and power consumption. 

Matching 
A match  associated with a technology-independent 
subnetwork is a network of technology gates which 
implements  the  same  Boolean  function as the  subnetwork. 
A simple match is one  that  contains only one technology 
gate with possible  inversions at  the  inputs  and  outputs. 
A decomposition  match is a network which contains 41 9 
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more  than  one technology gate.  In  BooleDozer,  matches 
are  obtained by using different  matching  techniques, 
depending  on which is most effective and efficient for  the 
specific types of technology gates.  Registers  are  matched 
using  a rule-based  approach.  Matches  for basic  primitives 
such  as  NAND,  NOR,  OR,  AND, AO, AOI,  OA,  OAI, 
XOR,  and  XNOR  and  more complex  primitives  such  as 
ADDER,  MUX,  and  DECODER  are  obtained using rule- 
based  and  direct  matching  techniques.  Decomposition 
matches  are  obtained mainly by a  novel functional 
matching  technique known as  truth-table  matching [23]. 
The  Boolean  functions of the  subnetwork  and  the 
technology gates  are  represented by truth  tables, which 
are a more  convenient  representation  than  BDDs  for  the 
functional  decomposition  problem. 

Matches  for a network  are  obtained in the following 
fashion.  Each  node in the  target  network is visited. 
Subgraphs  rooted  at  the  node  are  matched  structurally 
(via pattern  matching)  or functionally (via truth-table 
matching),  and successful matches  are  attached  to  the 
node. 

Covering 
The covering problem is the  selection of matches  for 
a  functionally correct  implementation of the  network 
while  optimizing area, power, or delay. The  structural 
constraints  to  ensure  functional  correctness  can  be 
converted  to a Boolean satisfiability problem which 
can  then  be solved by a binate covering algorithm. 
Unfortunately, this solution is  infeasible because of its 
complexity. Therefore, we need  an efficient heuristic  to 420 
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guide us to a near-optimal  solution.  In  the  subsequent 
discussion, we focus on  the  area cost function. If the 
target  network is a tree,  the  minimum-area covering 
problem  can  be solved optimally by a  dynamic 
programming  technique [20]. Essentially, the  optimal 
solution  for a tree  can  be derived simply from  the  optimal 
solution  for  each of its subtrees.  For every match M at  the 
root of the  tree,  the  cumulative cost C, of an  optimal 
cover containing M is the  sum of the  cost of M and  the 
cost of an  optimal cover of each  subtree  rooted  at  the 
inputs of M .  The best match  at  the  root is the  match M b  
such that  the cumulative cost C,b at  the  root is minimal 
and C,b is the cost of an  optimal cover for  the  tree. 

For a general  directed acyclic graph  (DAG)  network, 
the dynamic programming  technique is no  longer  optimal. 
One  approach would be  to  partition  the network into  trees 
and cover each  one optimally [20]. This  approach would 
have been viable if the  resulting  tree  partitions  had  been 
large, so that  matches  across  tree  boundaries would 
contribute  to a second-order effect which could have 
been  treated by postprocessing.  Empirically,  however, the 
percentage of multiple-fan-out  nets in IBM designs is 
15 to 20 percent, which means  that  the size of a typical 
tree  partition is small. Therefore, we decided against tree 
partitioning  and have used a  global matching  and covering 
algorithm  instead.  The  matches  are  separated  into two 
different classes: those with copy nets and  those  without. 
A copy net is a net  internal  to a match which has fan-outs 
to  gates  outside  the  match  that  do  not  correspond  to  the 
outputs of the technology gates used  in the match. The 
following is the extension of the cost calculation  to a 
general  DAG.  The  cumulative cost at a net j ,  C,, of a 
match with j as an  output  and with no copies is simply 

where I is the  set of input  nets of the  match, W is the 
anticipated  cost of the  match, m is the  number of outputs 
of the  match, B, is the best cumulative cost at  net i, and 
f, is the  fan-out of net i. 

If a match  has copies, we compute  for  each copy net 1 
the  set S, of input  nets of the  match  that  are in the  cone 
of influence of 1. Let n, be  the  number of times i appears 
in the  sets S, for  each copy net. Then,  the cumulative  cost 
of the  match is 

The best match is the  match with the minimum  cumulative 
cost, and  this  minimum  cost is associated with net j as the 
best  cumulative cost. The initial condition is that  the best 
cumulative cost  at  the primary input  nets  and  register 
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output  nets is zero.  The  anticipated  cost of a match is the 
cumulative  cost  at  the  output of the  match if the best 
matches  at  the  input  nets of the  match  are  realized  and 
double  inverters  are  removed.  The  use of decomposition 
matches  and  anticipated costs obviates  the  use of double 
inverter  insertion  at every net. 

The  gates in the  combinational  network  are 
topologically sorted  from  inputs  to  outputs.  The  best 
cumulative  cost  for  each  net is computed in  this 
topological order.  With all of the best  cumulative  costs 
and best matches in place, the  target  network is bound  to 
the technology gates  chosen  as  best  matches.  The  order 
of binding is according  to  the following queue. All of the 
primary  output  nets  and  register  input  nets  are  put  on  the 
queue.  The  rest of the  nets  are  inserted  into  the  queue 
whenever all of the  gates  to which they fan  out  are  bound 
to technology. In  the  course of technology  binding, 
matches  that  can  no  longer  be realized are  invalidated.  In 
addition,  the technology  binding  affects the  fan-out of the 
nets, which in turn  changes  the cumulative cost of the 
matches. Therefore, we constantly  update  the cumulative 
costs, and  the  best  matches  are  replaced  as  more  favorable 
ones  take over. 

Let us turn  to Figure 15 for  an  illustration of the above 
concepts. The circuit  shown is part of a  bigger circuit,  and 
nets k and 1 are  primary  outputs.  The technology  library 
contains a  two-input NAND (NAND2) with area 2 and a 
four-input  two-port AND-OR (A022) with area 4. Each 
node is matched  to a NAND2. In  addition,  nodes b 4  and 
b5 are  each  matched  to  an A022, as indicated by the 
dotted  and  dashed  subgraphs, respectively. The  best 
cumulative cost  at  each  net is shown next to  the  net. 
The best  cumulative  cost calculations of b l  and b2 are 
straightforward, since there is only one  match  for  each 
node.  The best  cumulative cost of b 3  is 2 + 4 + 6/2 = 9 
using Equation (2). The best cumulative cost calculation 
of b5 demonstrates most of the fine points in  cost 
propagation.  The first match  at b5 is a NAND2, and its 
cumulative cost is 2 + 16/2 + 9/2 = 14.5. The  other  match 
is an A022 with copy nets  (nets h and j),  so Equation (3) 
must be used. The cumulative cost  for  the A022 is 
4 + 6/(1 + 1) + 8/(1 + 1) + 4/(1 + 1) + 6/(2 + 1) = 15. 
Hence,  the best match  at b5 is a NAND2, with best 
cumulative cost being 14.5. It is important  to  note  that 
the  resulting  implementation  depends on the  order of 
binding. If output 1 is bound first, the best match at b5 is a 
NAND2. The best match  at b 4  is an A022; hence, b2 and 
b 3  are  bound  to NAND2s, resulting in  a partial  area cost 
of 10. On  the  other  hand, if k is bound first, an A022 will 
be  implemented  at  the  net k, since the best match  at b4 
is an A022. The  node b2 must then  be  copied,  thereby 
increasing the  fan-outs of nets c and d to 2 and  reducing 
the  fan-out of h to 1. As a result,  the  best  match 
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at b5 changes  to  an A022. In this  case, the  partial 
implementation is two A022s with a partial  area cost of 8. 
We  do  not  currently have  a good  heuristic  for  ordering 
the  sequence of binding. 

Fan-out correction 
Fan-out  correction is the  process of repowering a net  that 
is distributed  to a large  number of sinks. This  can  be 
accomplished  in  several ways: 1) resizing the  output 
transistors; 2) duplicating  the logic feeding  the critical 
sinks; and 3) inserting  buffers  feeding  the  noncritical 
sinks. The  three  methods  are shown in Figure 16. Each 
solution  has  advantages  and disadvantages. For example, 
duplicating logic reduces  loading  on  the  current  gate  but 
increases  the  loading  on  each of the  input  nets  to  the 
current  gate.  Complementary  transformations  are  provided 
to resize the  output  transistors,  to  combine  duplicated 
logic, and  to  remove buffers. The noncritical  driver is used 
to apply these  transformations off the critical path(s).  It is 
the responsibility of the timing driver  to  determine which 
method  offers  the "best" solution.  The  optimal  solution is 
usually some  combination of the  three  methods,  and  the 
timing drivers  are  responsible  for making the necessary 
trade-offs. 

Fan-in reordering 
In  combinational logic circuits, one  often finds logic 
functions with  functionally identical  or  commutative 
inputs which have different delays. The signals connected 
to  these  inputs may have different arrival times.  These 
signals can  be assigned to  the  input  pins such that  the 
arrival  time  at  the logic function  output is as  small  as 
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Fan-out  correction  examples:  (a)  original; (b) after  resizing;  (c)  after 
duplication; (d) after  buffering. 

Fan-in  reordering  example: (a) original; (b) after  fan-in  reordering. 

possible. The  fan-in  ordering  problem is formulated  as a 
bipartite  matching  problem,  and  optimal  ordering  can  be 
found in O [ n 2 f i l n ( n ) ]  time,  where n is the  number 
of commutative pins. The  fan-in  ordering  algorithm 
employed  in BooleDozer [24] gives optimal  results 
over  a wide range of delay  models.  A simple example 
of fan-in  ordering is shown  in Figure 17. In this  example, 
if signal B is critical and signal C is not, they can  be 
switched so that signal B goes  through  one  gate  instead 
of two and signal C goes  through two gates  instead of 

422 one. 

Decomposition 
Because  the cost function in the technology mapping 
algorithm is area-based,  one  often finds gates  along  the 
critical path  that can be  sped  up if they are  decomposed 
into  their  Boolean primitives. Once  the  gates  are  broken 
down into  their primitives, BooleDozer  has  more 
granular  control over the  transistor sizing of gates  along 
the critical path. Also, simpler  gates allow a greater 
number of transformations  to  be  applied.  Some of these 
transformations, including  global flow and  factoring, have 
been  described  earlier. Figure 18 shows two applications 
of decomposition  to  the  same circuit. First  the  AND-OR 
gate is broken  up  into  four  NAND gates. Second,  the 
three-input  NAND which drives the  output is decomposed 
into  an  AND  gate  and a NAND  gate.  Recovering  routines 
based  on  the  truth-table  mapping  mentioned above can  be 
used to  undo a decomposition. 

Inverter motion 
It is important  to  be  able  to move inverters  and logic 
inversions through  the  network,  because inverting and 
noninverting technology gates  do  not usually perform in 
the  same way. There  are a group of transforms  based  on 
De Morgan’s theorem which do this. Figure 19 shows 
several different kinds of changes  that  can  be  made. Signal 
C goes  through  one less level of logic, while  signal D goes 
through  one  more level of logic. Signals A and B may 
arrive  sooner if inverting gates  are  faster  than 
noninverting  gates in this technology. 

FPGA technology mapping 
Technology mapping  for  FPGAs  can  be  performed by 
FPGA-specific technology mappers [25, 261 or by using 
library-based technology mappers [20]. BooleDozer 
provides both FPGA-specific and library-based  technology 
mappers  for  FPGAs. 

BooleDozer provides  FPGA-specific mapping  for any 
FPGA technology whose logic block is based  on a 
lookup  table (LUT). The  core  algorithm is based  on  an 
interesting  theoretical  result  for  optimal  tree  mapping 
[26]. The  time complexity is O{min[nk,  nlog(n)]},  where 
k is the  number of inputs  to  the  LUT  and n is the  number 
of nodes in the  tree.  We  make  use of this  algorithm 
directly by partitioning  the network into  trees  and 
applying the  optimal  tree mapping. Prior  to  partitioning, 
the XOR subgraphs in the  network  are  mapped.  This is 
accomplished by finding the  XOR  patterns  and  performing 
a standard technology mapping  on  the network. After 
tree  mapping,  further  optimization is done across tree 
boundaries  to  further  reduce  the  number of LUTs 
required.  This  procedure focuses  primarily on optimizing 
area. A crude  level-reduction  option is provided by 
merging the  remaining  root  nodes  along long paths.  Our 
experiments  indicate  that  on  average  the results obtained 
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by our FPGA-specific mapper  are  about 10% better (in 
area)  than  our library-based mapper.  When  the  target 
device is the Xilinx XC4000 series [27], it is necessary 
to  merge  the resulting  blocks together according to  the 
FPGA  architecture  to build  a  configurable logic block 
(CLB). A Xilinx XC4000 series  FPGA  contains two 
4-input LUTs, A and B, which feed a 3-input  LUT, C. 
The  output  from  the B LUT is available as  an  optional 
output of the CLB, thereby  resulting in  a 9-input  2-output 
CLB. The merging program  groups  LUTs  together in an 
architecture-legal way with the objectives of reducing area, 
path  length,  and  interblock wiring. The merging method 
used is structure-based  and favors merges which use  the 
full LUT  and  pin  resources of the CLB. It may be 
necessary for  the  program  to  duplicate logic in order 
to  get  the  best  mapping of LUTs  into CLBs. 

The library-based  technology mapper of BooleDozer 
is described in the subsection on technology mapping. 
In order  to  use this  technology mapper  for  LUT-based 
FPGAs, we must  provide the  mapper with an  FPGA 
library.  Most vendors provide an ASIC-like  technology 
library to  facilitate  use of standard technology mappers. 
For small  values of k ,  a  library which effectively consists 
of all possible k-input  functions  can  be  generated. In 
practice,  the  number of all possible k-input  functions  (22k) 
is prohibitively large  for k greater  than 3. The size of the 
library can  be  reduced significantly by using equivalent 
classes  based on symmetries and  input/output inversions 
[28, 291. For example, the library  size for  4-input  LUTs 
can be  reduced  from  65536  to 223 functions.  The  results 
for  the  BooleDozer library-based  technology mapper using 
these  reduced  libraries  are  better on average than  some 
FPGA-specific  technology mappers [29]. 

FPGA partitioning 
In recent years,  designs  using FPGAs have grown from 
single-chip applications  to multichip implementations of 
large logic networks.  A  special transformation  has  been 
added  to  BooleDozer  to provide an efficient method of 
partitioning a  design. The underlying algorithm of the 
partitioner is based on a linear  time  graph  partitioning 
heuristic [30]. The  BooleDozer  partitioner  uses a  novel 
multistep  partitioning  process [31] which is geared toward 
minimizing both  the  number of segments  and  the  total 
number of 1/0 pins in the resulting partition.  The 
following is a brief overview of the  partitioning process. 

An  FPGA  has a fixed number of 1/0 pins  and logic 
blocks. The  partitioning  problem  for  FPGAs  can  be  stated 
as follows. A partitioning is feasible if each  segment in the 
partition fits on a  single FPGA. A partitioning is infeasible 
if there is at  least  one  segment  that  does  not fit on a 
single FPGA  because  the I/O limit is exceeded,  the logic 
block  limit is exceeded,  or  both. Given  a  design that  does 
not fit on a  single FPGA  and  the size and  the maximum 
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Decomposition example: (a) original; (b) after first decomposition; 
(c) after second  decomposition. 

1 

Inverter  motion example: (a) original; (b) after inverter motion 

number of I/Os allowed per  FPGA,  the goal is a feasible 
partitioning with the minimum number of segments. 

The  partitioner  can  be used in two different modes. 
In  the initial mode, it generates a  feasible partition by 
iteratively bipartitioning  the design. In the  improvement 
mode,  the  partitioner  attempts  to improve an existing 
feasible  solution by reducing  the  number of segments, by 
reducing the  total  number of 1/0 pins  in the  partition,  or 
both. 

A  design is initially modeled by a hypergraph 
H = {V, E } ,  where Vis  a set of nodes  and E is a 
set of edges. V consists of a set of internal  nodes  that 
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correspond  either  to  the logic modules in the design or  to 
a  subdesign  in the case of hierarchical designs, and a set 
of terminal  nodes  that  correspond  to  the primary I/Os of 
the design. E consists of the  set of nets which connect V 
in the design. 

The following is a brief outline of the overall scheme 
employed by the  partitioning process: 

1. Construct a hypergraph H = {V, E )  to  model  the 
design  as described above. 

2. Run  the  partitioner in the initial mode on H and 
generate a  feasible partitioning. 

3. Derive  a  hierarchical hypergraph, H‘,  by treating  each 
segment in the  partitioning as  a node in H‘. 

4. Partition H’ under  the  same size and I/O constraints 
to  reduce  the  number of segments in the feasible 
partitioning. 

5 .  Recover H by flattening H‘,  which imparts its 
partitioning  information  on  the  nodes of H .  

6. Run  the  partitioner in the improvement mode  on H 
with its new partitioning as the initial setting.  Repeat 
steps 3 to 6 until no further  improvement is observed. 

Because the  partitioning  process is simple and  fast, it is 
possible to  perform multiple runs of the  partitioner. By 
providing procedures  to  generate  and  flatten  hypergraphs, 
a more powerful (and potentially more expensive) 
technique of perturbation  and relaxation [31] can  be used 
to  further  reduce  the  total  number of segments.  Note  that 
the above partitioning  process assumes  a  single FPGA 
type. It  can  be  extended  to work with a  mixture of FPGA 
types with different sizes and I/Os. 

6. Boolean  reasoning  using a test generator 
All of the synthesis transformations  described above rely 
on  Boolean  algebra  to  ensure  the  correctness of their 
result.  While some  transformations (e.g., factoring)  need 
only a  subset of the whole Boolean  algebra,  others (e.g., 
transduction  and  redundancy  removal)  require all of it. 
As is common in other synthesis systems, reasoning 
about  Boolean  algebra  need  not  be built into  each 
transformation using it; instead,  transformations  can 
call a separate  module  dedicated  to  Boolean reasoning. 

Mechanisms for  Boolean  reasoning  are closely tied  to 
the way in which Boolean  functions  are  represented. A 
crucial consideration is the size of this representation;  as 
design size grows, more  and  more  compact  representations 
are  required. 

Originally Boolean  reasoning was performed on truth 
tables [32]. Since the size of a truth  table is guaranteed  to 
be  exponential in the  number of input variables, truth 
tables were replaced by two-level representations [33]. A 
two-level representation  tends  to  be smaller than a truth 
table,  but its  size may also grow exponentially. Therefore, 424 
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instead of representing  the whole function in two levels, 
the  function  can  be  partitioned  into  “nodes,”  and  each 
node is then given a  two-level representation [2]. So that 
optimization of individual nodes can take  advantage of the 
rest of the  function,  the  latter is represented in the  form 
of “don’t cares.” Since the two-level don’t-care 
representation also grows exponentially, not all of the 
function  can  be  represented [34]. Therefore, two-level 
representations have been  replaced by BDDs.  While 
BDDs  tend  to  be  more  compact, they  still may grow 
exponentially with the size of the  network.  Therefore, in 
BooleDozer,  Boolean  reasoning is performed by a test 
generator [35, 361, which operates on a gate network, thus 
avoiding the  problems of other existing representations. 

It has been shown that  there is no  theoretical loss 
in  using  a test  generator [37]; any network  can be 
transformed  to any equivalent network by transformations, 
which do  no  Boolean  reasoning except to ask the  test 
generator  whether  or  not  certain  faults  are  testable. While 
in theory  that is the only question  that has to  be  asked, in 
practice  several other tasks are  performed.  Some of them 
involve a simulator, which is commonly  a part of any test- 
generation package.  Simulation with random  patterns 
allows us to answer some  questions  faster  than by calling 
the test generator. 

generator: justification questions  and propagation 
questions.  The first involves propagation of values  toward 
primary inputs only, while the second  also involves 
propagation of values toward primary outputs.  Each 
type of question uses  a different type of simulation as a 
possible shortcut  to answering the  question. Good-machine 
simulation is used to  speed  up justification questions,  and 
fault simulation is used to  speed  up  propagation questions. 

Justification questions ask whether  there exists an  input 
pattern  that would  simultaneously satisfy conditions of the 
form Net, = Val,, ’ . ’ , Net, = Val,, where  each Net is 
any net of the network, and  each Val is either 0 or 1. For 
example, the  common  question  whether x = i implies 
s = j (for  nets x, s and  Boolean values i ,  j )  would be 
given to  the  test  generator as  justification of x = i, s = 7. 
If the  test  generator is able  to justify those two conditions 
(Le., does find an  input  pattern),  the implication is false; 
if the  test  generator  can prove that  there is no such input 
pattern,  the implication is true. Justification questions  are 
used in selector  generation [38], false-path analysis 
[39, 401, and  other synthesis tasks. 

Before using the  test  generator,  BooleDozer  performs 
good-machine simulation of the whole  design. The  number 
of patterns is a parameter, which is discussed later.  The 
objective of the simulation is to associate  a  bit  string with 
every net;  the length of the bit  string is the  number of 
patterns  simulated.  Each primary input  and latch output is 
initialized to a random bit  string, and  the simulation then 

There  are two types of questions  asked of the  test 
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assigns a  bit string  to  each  internal  net  according  to  the 
net’s function. 

Every time  the  test  generator is asked a  justification 
question,  the  simulation values can  be used to  determine 
whether  one of the  random  patterns satisfies the 
conditions  to  be justified. If so, the answer to  the 
justification question is affirmative, and  there is no  need 
to call the  test  generator.  The  test  generator is called only 
if none of the  random  patterns satisfies the  conditions of 
the justification question.  As a result, many  justification 
questions  can  be  answered using the  simulation  patterns, 
which takes  constant  time  independent of the design size. 

Propagation-type  questions  are of the  form  “Suppose a 
net S computes a function f .  I f f  is replaced by a different 
function g ,  will that  change  the functionality F of the 
whole design?”  This  question is asked in transduction, 
redundancy removal,  verification [41], and  incremental 
synthesis [42]. To answer  this question in general, we use 
the following lemma. 

Lemma 1 

F ( f )  = F ( g )  iff F ( f $ g )  = F ( 0 ) ;  

F ( f )  = F ( i j )  iff F ( f @ g )  = F(1). 

The expression F ( f  g) represents a replacement of a 
subfunction f with f @ g. Then  the  test  generator is asked 
whether  the  net S (which is now the  output of the XOR 
gate) is testable  for  stuck-at-0  or  stuck-at-1 faults. If it is 
not  testable  for  stuck-at-0  faults [i.e., F ( f  @ g )  = F(O)] ,  
g can  replace f without changing the functionality of the 
whole  design [i.e., F ( f )  = F ( g ) ] .  If S is not  testable  for 
stuck-at-1  faults [i.e., F ( f  @ g) = F(1)], i j  can  replace f 
without changing the functionality of the whole  design 
[i.e., F( f )  = F( i j ) ] .  

In  the simple case of redundancy removal, f @ g 
simplifies to  either f or 7, depending  on  whether g = 0 
or g = 1. Therefore, in the  case of redundancy removal, 
there is no  need  for  the XOR gate;  the testability of S is 
checked  directly. 

As  good-machine  simulation is used for a  quick  answer 
to justification-type questions,  fault  simulation is used for 
a  quick  answer to  propagation-type  questions. However, 
fault  simulation may take  time  proportional  to  the size 
of the design, which tends  to  be  too slow. Therefore, 
BooleDozer  sometimes uses approximate  fault  simulation 
[43] ,  which may give us an affirmative  answer in constant 
time.  However,  in contrast  to  good-machine  simulation, 
approximate  fault  simulation may err on either side; 
therefore,  an affirmative  answer given by approximate 
fault  simulation  can  be used to reject a change  to logic, 
but  should  not  be used to  accept a  change. 

For  both  simulation  and  test  generation  there is a 
trade-off between  effectiveness and  the  amount of 
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resources  consumed.  The  simulator  takes as parameter  the 
number of random  patterns to simulate.  The  larger  that 
number,  the  longer it takes  to  simulate,  the  more memory 
it takes  to  store  the  results,  but  the less often is there a 
need to call the  test  generator.  The  test  generator  takes 
as parameter  the  number of backtracks. The  larger  that 
number,  the  longer it may take  to deliver an answer, but 
the less often will the  test  generator fail to  decide. 

For any  practical  value of the  parameter, it is possible 
that  the  test  generator may not  be  able  to  decide  one 
way or the  other. Any transformation relying on  the  test 
generator must control how much time  the  test  generator 
is allowed and must be  prepared  for  the possibility of an 
undetermined answer. The  frequency of an  undetermined 
answer is very much application-dependent,  and it is hard 
to  predict; however, BooleDozer  adopted a test-generator- 
based  approach,  because in our  applications it  fails  less 
often  than  other  methods, in particular,  BDD-based 
methods. 

7. Optimizing  designs  hierarchically 
As  the size of VLSI designs grows rapidly,  synthesis of 
very large flat  designs becomes expensive and  time- 
consuming. The  traditional way  of dealing  with these 
problems is through  the  introduction of hierarchy  in the 
designs. Hierarchical designs can  be  created such that  the 
individual  pieces of the hierarchy are of a good size for 
synthesis and  the  number of pieces in the  hierarchy is 
proportional  to  the size of the designs.  Synthesis can  be 
run separately  on  each piece of the hierarchy, and  these 
jobs  can  be  run in parallel  to  reduce  the  total  run time. 

Technology-independent  optimization  and technology 
mapping  can  be  dealt with effectively in a parallel  fashion. 
However, the timing correction of a large  hierarchical 
design is a difficult problem.  Unless  strict  latch-bounding 
constraints  are  imposed, it is difficult to resolve the  results 
of timing  a hierarchical piece by itself with the results of 
timing that hierarchical piece in the  context of the timing 
model  for  the  entire design. 

Consider  the following approach  to  performing 
hierarchical timing correction.  The  entire design is timed 
keeping  track of the hierarchy boundaries. Timing 
constraint  management is done to adjust the  measured 
arrival and  required  times  at hierarchical boundaries. 
This is done in order to drive  timing correction  to 
correct cross-hierarchy  timing paths  that  violate timing 
constraints. Timing constraint files are  generated  for  each 
piece  in the  hierarchy specifying primary input arrival 
times, transition times,  primary output  required times, 
etc. Next,  timing correction is run in parallel on all of the 
pieces using these timing constraint files. The  process of 
constraint file generation  and timing correction is repeated 
until all timing constraints  are  met, or until  no  further 
progress is made. 425 
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_"""""""""""""""""""""""""~~ Feedback  path  outside  current piece 

Piece  being  timing-corrected 

1 Arrival time  problem with static  boundary  constraints. 

improvement is being  made by timing correction),  and  the 
degree of parallelism. In  the trivial case,  where  there is 
no timing correction  to  be  done,  there is no oscillation 
no  matter  what  the  degree of parallelism.  Similarly, there 
are  no convergence problems if the  degree of parallelism 
is 1, no  matter how much  time is being  extracted  from 
the network. 

The following approach, called parallel hierarchical 
timing correction (PHTC), addresses  both  problems.  PHTC 
uses the  hierarchical timing propagation  capabilities of 
EinsTimer  to  reduce  the  boundary  problems. If the 
hierarchy is available, EinsTimer will correctly reflect 
reductions in delay for  piece A, in Figure 20, as changes 
to arrival times  at  piece B. The  parallel timing correction 
convergence  problem is managed by controlling  the 
number of peer timing correction processes running in 
parallel. 

Each  process is in  an endless  loop: 

In this approach  the  boundary  constraints specified by 
the timing constraint files are  static,  and this causes  the 
so-called boundary problems. In Figure 20, any effort  to 
apply  timing correction  to  the logic in piece A fed 
by the  register  output  does  not  result in an  equivalent 
improvement in  arrival time  at  the  input of the logic in 
piece B. This  can  lead  to  overcorrection of the logic. 

Another  problem  for  hierarchical timing correction is 
that of parallel-timing-correction convergence. Consider  the 
situation shown  in Figure 21, a hierarchical design  with 
two timing-correctable  pieces A and B and a net which is 
driven  in piece A and used  in piece B. At  the beginning of 
the first timing correction  iteration, piece A drives the  net 
with  a buffer.  Piece B also buffers  the  net  and  distributes 
it to a number of sinks. If the signal is late, timing 
correction will make  an  attempt  to fix it. Timing 
correction is run  on  the two pieces  in parallel.  The 
timing correction  job  on A decides  to  eliminate  the  buffer 
because  the  net is lightly loaded by B. Simultaneously, the 
timing correction  job  on B drops  the  input  buffer  because 
the drive strength of the  output  buffer in A is sufficient to 
drive all of the sinks in B. The timing constraint files, 
which have not  changed  to reflect the work done by the 
timing correction  run,  are used by both  jobs  to  measure 
an  improvement of the timing characteristics of the  net. 
However,  when the hierarchy is reassembled,  no  progress 
has  been  made,  and  indeed  the timing may have gotten 
worse. If timing correction is attempted in parallel  another 
time,  the  reverse  happens,  and  both  the  input  and  the 
output  are  rebuffered,  putting  the design  back in its 
original state. 

The  magnitude of the oscillation is dependent  on two 
426 factors,  the gain of the timing correction (how  much 
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1. Choose  the next hierarchy piece to timing-correct, 
ensuring  that  the piece is not  being  timing-corrected 
by any of the  other processes. 

2. Broadcast  the  name of the piece,  such that all other 
processes  are  aware  that it is being  timing-corrected. 

3. Timing-correct the  chosen  piece. 
4. Lock the netlist  directory. 
5. Output  the netlist of the newly timing-corrected  piece 

to  the netlist  directory. 
6. Read in all other  hierarchy pieces that have been 

changed by other processes from  the netlist  directory. 
7. Unlock  the netlist directory. 
8. Reinitialize  the timing  subsystem. 
9. Go to 1. 

When a raw (not  yet  timing-corrected)  model is loaded 
into  the system, the gross problems  that  are  corrected  far 
outnumber  the  subtle  boundary-oriented convergence 
problems, and  the system can  tolerate a large  number 
of processes  running simultaneously.  As time progresses, 
and  the fixes being introduced  become  more specific, the 
susceptibility of those fixes to oscillation grows. However, 
the probability of PHTC working on  both  the  input  and 
output sides of a hierarchical  boundary  at  the  same  time 
diminishes as  the  number of processes  running is reduced. 

The pieces in the  hierarchy may be  processed  multiple 
times. The  amount of synthesis effort  applied is based 
on  the  number of times  that  the  piece  has  been visited. 
Gross  problems in not yet timing-corrected pieces of the 
hierarchy may cause the timing correction of the  other 
pieces to work on  the wrong  problems. Thus, it is not 
worthwhile to  spend a lot of effort in  timing correction 
until  the gross problems in  all of the  pieces have been 
fixed. The first time  around  the  hierarchy, timing 
correction is applied  requesting a  small amount of effort, 
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fixing gross problems.  The second time  around, a greater 
level of effort is requested,  and so on.  It is not  until all of 
the easy  cross-hierarchy timing problems have been solved 
that  the most advanced heuristics are  chosen. 

In  general, it may not  be necessary to  process all of 
the pieces in the hierarchy with medium  or high levels of 
effort.  Often,  the critical path is contained in  a few of the 
hierarchical  elements,  and  the  rest of the design warrants 
only a  cursory pass of timing correction  to  eliminate gross 
problems.  It is advantageous  to  select  the  elements in the 
hierarchy on  the basis of some  measure of the work  they 
need.  The  heuristic  PHTC uses  in  choosing the next 
hierarchy piece to timing-correct is as follows: 

1. For  each synthesizable piece,  determine  the worst slack 
in the piece, the sum of the worst slacks for  the 32 
worst  points, and  the  number of times timing correction 
has  been  applied  to  the piece. 

2. Build a list of these pieces, ordering first by the worst 
slack, and second by the sum of the worst 32 points. 

3. Truncate  the list to  the pieces on  the worst path 
(all of the hierarchy  pieces on  the worst path will 
have the  same worst slack, and will appear  on  the  top 
of the list), or five pieces,  whichever is longer. 

4. Choose  the piece from  the  truncated list that  has  had 
the least amount of timing correction  applied,  and 
apply  timing correction with the  effort  based  on  the 
number of previous  timing correction passes to  that 
piece. 

Any discussion about hierarchical  timing correction must 
address  the issue of hierarchy reuse.  When  BooleDozer's 
timing correction  routines  request a slack for a particular 
point in the  network, they provide  a hierarchy-unique 
specifier of that  point.  The slack returned is specific 
to  that  point in the hierarchy. One way to  deal with 
hierarchy  reuse is to clone these  portions of the hierarchy 
before timing correction.  This is actually not such an 
onerous  burden.  Generally, we get  the most advantage  out 
of timing correction  on  control logic, and  control logic can 
seldom be  reused. However, it would be a  simple change 
to  the timing  subsystem to  return  the slack  across  all 
instances of that  point in the  entire hierarchy. In  this way, 
the timing correction  routines would  never make a change 
in  a  multiply  used  hierarchy element  that would be 
beneficial to  one  instance  and  detrimental  to  another. 

One  feature of PHTC is that it can be  used in an 
incremental  fashion virtually unchanged.  Take a 
hypothetical change in the  HDL  for  one of the 
hierarchical  pieces. This piece is pushed  through 
technology-independent  optimization  and technology 
mapping,  and  inserted  into  the  rest of the design, which 
has already  had a significant amount of timing correction 
applied  to it. Because of the timing correction  counts  that 
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3 Piece A Piece B 

+l 
f Cross-boundaxy optimization problem. 

are associated with all elements in the  hierarchy, if the 
new design appears in the critical path, it will be  the 
immediate focus of timing correction.  Used in this fashion, 
PHTC allows last-minute  changes  to  the design to be 
processed efficiently. 

8. Design  examples 
BooleDozer  has  been used  within IBM  to design many 
high-performance  microprocessors  and  ASIC chips. 
A short  description of some  representative designs is 
given below. 

The  control logic for  the  PowerPC 601TM [44], PowerPC 
603", and  PowerPC 604TM was designed  in  a proprietary 
high-level language, DSL, and synthesized using 
BooleDozer. 
A high-performance  PowerPCTM  chip  set  optimized  for 
commercial operations.  It uses  BiCMOS  technology and 
includes bit stacks. The  chips  were  designed in VHDL. 
A  single-chip PowerPC  processor.  It was designed 
entirely in VHDL  and uses  a pure  ASIC  CMOS 
technology, CMOS 5L. This  processor  makes extensive 
use of the LOG1 C-STY LE  attribute  to  tune synthesis. 
A large, high-performance,  semicustom,  superscalar 
microprocessor,  containing approximately 80 timing- 
correctable  entities with a total of close to 300K cells  of 
synthesized control logic. This is the first production  use 
of the  PHTC system. 
A large System/390@ processor designed in VHDL. 
More  than a hundred  partitions were  synthesized, 
ranging  in  size from a couple of hundred  lines of VHDL 
to close to  ten  thousand lines. Resulting networks 
contained a few hundred  to  thousands of logic cells, 
each  matching  the timing requirements of a few hundred 
MHz. 
An  MPEG-2 video decoder  chip which decompresses 
digital  video data.  The  module receives the  compressed 
data at  a rate of up  to 15 Mb/s. 
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An  MPEG-2 video encoder  chip set. It  supports full- 
motion video up  to  CCIR 601 resolution, 720 X 480 
at 30 Hz  or 720 X 576 at 25 Hz. 
A set of I/O and memory  subsystem  chips.  They are 
pure CMOS 5L ASICs,  completely  synthesized  designs. 
All  were  designed  using VHDL. 

9. Conclusions 
In  this  paper  the  major  features, algorithms, and design 
representations which comprise  the  BooleDozer logic 
synthesis  have been  presented.  State-of-the-art synthesis 
algorithms  and a fast  incremental timing  subsystem  have 
been used to  create a leading synthesis tool.  BooleDozer 
uses a modular design  following an orthogonal 
decomposition of the logic synthesis problem.  This 
has  led  to a  collection of transformations  operating 
under  the  control of a set of drivers which can  be  ordered 
using  a  powerful  scripting language  to  accommodate 
a  wide  variety of design styles. 
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