BooleDozer:
Logic
synthesis
for ASICs

0p)
—t
@)

~

by

2
Ay
C
S
(@]

. Brand

. D. Drumm
. J. Sullivan
. N. Reddy
. Hieter

. J. Geiger
. H. Chao

. J. Osler

TIUZr>>000r

Logic synthesis is the process of automatically
generating optimized logic-level representation
from a high-level description. With the rapid
advances in integrated circuit technology and
the resultant growth in design complexity,
designers increasingly rely on logic synthesis
to shorten the design time while achieving
performance objectives. This paper describes
the IBM logic synthesis system BooleDozer™,
including its organization, main algorithms,
and how it fits into the design process. The
BooleDozer logic synthesis system has been
widely used within IBM to successfully
synthesize processor and ASIC designs.

1. Introduction

Logic synthesis is the process which compiles a register-
transfer-level (RTL) description into an optimized
technology-specific network implementation. The design
process, including BooleDozer™, is shown in Figure 1.
The designer writes a structural and behavioral description
of the circuit using a high-level design language (HDL)
such as VHDL or Verilog®. The behavior of this
description is checked using simulation. The high-level
design is compiled into an RTL network by a behavioral
synthesis tool such as HIS [1]. The RTL network is
composed of equation blocks, functional blocks such as
adders and multiplexors, and primitive gates. The RTL
network is the input to logic synthesis.

To illustrate this process, a simple VHDL example,
shown in Figure 2, is used. This input is processed by
HIS, producing the RTL network shown in Figure 3. This
network consists of technology-independent gates; it is not
optimized from a combinational point of view (since that
is the job of logic synthesis), but the sequential behavior
has been determined. The multiplexor MUX was inferred
from the second if statement, in which (depending on the
value of A) one of two values is assigned to R. Because of
the first 1 f statement, the value of R is stored in a register.

The output of logic synthesis is a network of gates in a
target technology, as shown in Figure 4. The network has
undergone some major changes, discussed in the next
section, which affect the performance of the network but
not the logical function. This network is passed on to
physical design (PD) for placement, layout, and wiring.
Physical design information (e.g., wire capacitance, wire
resistance, and placement information) can be fed back
into logic synthesis to allow iterative refinement of the
design.

Logic synthesis requires a description of the target
technology in which the design is to be implemented.
Information includes physical information such as size and
delay of gates, and functional information such as logic
equations for gates. To optimize a design for performance,
a timing system is needed which can provide accurate
delay estimates quickly. BooleDozer uses an incremental
timing system called EinsTimer™. Other important inputs
to logic synthesis are the performance goals for the design
(e.g., cycle time and area).

©Copyright 1996 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,

of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

407

0018-8646/96/$5.00 © 1996 IBM

IBM J. RES. DEVELOP. VOL. 40 NO. 4 JULY 1996

L. STOK ET AL.

408

Simulation

VHDL,
Verilog
HIS
behavioral Techriology
synthesis library

BooleDozer
logic syntt

Boolean
checking

EinsTimer

Physical
design

Design methodology.

Boolean checking can be used along with simulation to
ensure that logic synthesis has not changed the behavior
of the design. Static timing analysis and simulation can
be used to verify the timing of the design.

To satisfy the various requirements, BooleDozer differs
from other synthesis tools in several ways. The first
requirement is larger capacity (about 100000 gates)
than the current industry practice. That implies not
only an efficient database, but also efficient algorithms.
BooleDozer relies on compiler-like analysis techniques
more than two-level techniques (2, 3] or those based on
binary decision diagrams (BDDs) [4], whose performance
degrades too quickly with increasing problem size.

The second requirement is openness of all interfaces,
which means that local support personnel can write
special-purpose code in response to designers’ needs.
Also, the existing design flow must be easy to rearrange
to satisfy unique design requirements.

The third requirement concerns timing analysis. On one
hand, timing analysis used during synthesis must have the
same accuracy as the analysis used for timing verification.
On the other hand, it must be efficient in the synthesis
environment, where timing analysis is performed very
frequently.

The fourth requirement is for high reliability and
testability. That implies that synthesis must generate
hardware testability structures, must produce highly

L. STOK ET AL.

testable designs, and must handle special functions for
error detection and fault isolation.

The fifth requirement is for close interaction with the
designer. A logic designer uses many pieces of information
to construct a workable ASIC design which fits the
available area and meets the timing requirements. Most of
the research and development in logic synthesis focuses on
one or two of these pieces, but a good human designer
tries to consider all factors which affect each decision.
Generally, only a small fraction of the information
considered by the designer is available to the synthesis
tool. It is not difficult to understand the effect this can
have on the quality of the results.

It is clear, through years of experience synthesizing
high-performance VLSI designs, that even an optimal
Boolean minimization algorithm coupled with an ideal
mapper coupled with a state-of-the-art timing optimizer
can still produce logic designs which do not meet the
designer’s needs. Instead of reducing the design time,
we are left with a network that is unusable as is, nearly
impossible to correlate to the source description, and
painful to analyze. Certainly, this outcome does not
meet our goal as tool developers to improve designer
productivity. Designers may be forced to manually design
large portions of their logic down to the cell level. Not
only is this time-consuming and error-prone, but it forces
gate-level simulation and locks the design to a particular
technology. Bridging the information gap between
designer and tool will give synthesis a reasonable chance
of producing a high-quality network.

The rest of this paper describes the BooleDozer logic
synthesis system designed to serve the design community
at IBM. Its design draws on the experience from the
previous IBM internal synthesis tools [5, 6] as well as from
external synthesis tools {2, 7, 8]. BooleDozer is the result
of a joint project among IBM Yorktown Research, the
IBM Advanced Workstation Division, and the IBM
Microelectronics Division. This has led to a powerful and
customizable logic synthesis system for high-performance
processors and ASICs.

Section 2 of this paper gives an overview of the
BooleDozer synthesis system. The following sections
(3 to 6) each describe one of the components that make
up BooleDozer. Section 7 describes a hierarchical design
process showing how BooleDozer can be used to solve the
problems of designing large chips which have been divided
into multiple partitions. The final section illustrates
BooleDozer’s use on some IBM products.

2. BooleDozer system overview

The orthogonal decomposition of the logic synthesis
problem leads to a modular design of the BooleDozer
logic synthesis system. Synthesis is done by a sequence
of transformations, which constitute the first part of

IBM J. RES. DEVELOP. VOL. 40 NO. 4 JULY 1996

ENTITY Example IS
PORT (A, B, C, D, E
CLK
QuTPUT
R
END Exampie;

IN BIT:
IN BIT;

: OUT BIT;
OUT BIT);

ARCHITECTURE Behavior OF example IS

BEGIN

PROCESS (CLK, A, B, C, D, E)

VARIABLE S

BEGIN
S = A or B;

QUTPUT <= S or C;

: BIT;

IF (not CLK'STABLE) and (CLK = '1') THEN

IF (A ="

0
THEN R <= S or D;
<= E

ELSE R

.
.

END 1F;

END IF;
END PROCESS;
END Behavior;

Sample VHDL description.

the orthogonal decomposition. There is a large set of
transformations from which to choose; most of them are
independent and can be applied in any order. We have
to decide several issues in forming the sequence of
transformations: “What to apply?”, “Where to apply it?”,
“Is it beneficial?”, and “Is it legal?”. We illustrate the
issues on a simple example of double inverter removal.
The transformation eliminates two inverters in a row:

C = NOT(B), B = NOT(A) becomes C = A.

We have already settled the first issue of what to apply by
restricting our example to double inverter removal. But in
general there are many transformations available, and the
most appropriate must be selected by answering whether
it is beneficial.

IBM J. RES. DEVELOP. VOL. 40 NO. 4 JULY 1996

The next issue is where to apply. Possible answers
include “everywhere,” “only on the critical path,” “only
where the designer explicitly specified.” The answer tends
to depend on the stage of synthesis. In early stages,
transformations are allowed to make major changes, while
in later stages tighter restrictions are applied. Drivers
are used to focus a specific transformation (or set of
transformations) on a specific piece of the network.
Drivers form the second part of the orthogonal
decomposition.

If the decision. of where to apply is made automatically,
one must also consider the question of when it should be
applied. The order may have a significant impact on the
quality of the final result or on CPU time. Even in our
trivial example of double inverter removal, the order is

L. STOK ET AL.

409

410

C
- Out Master clock
T—————————
=
Slave clock
B -
e
A s Scan clock R
fe —
Scan input
- —_——
D
—
E

i [I N
R Out Master clock
e e
2

Slave clock
o .
Scan clock
e

Scan input
—————————

lu
- [
QumXcg

Design after optimization by logic synthesis.

significant, because from the three nets A, B, C, two
disappear, including their names. If there were more than
two inverters in a row, different nets (and different net
names) would disappear, depending on the order in which
the inverter pairs were removed.

While doing the transformation, one must ask whether
it is beneficial. Double inverter removal tends to reduce
area, but its impact on delay is less clear. If inverters are
used to build a fan-out tree, eliminating them would make
delay worse. The issue of benefit is one of the most
difficult, because answering it requires predicting the
impact of the remaining design stages (rest of synthesis,
placement, wiring, etc.). Cost/benefit functions are usually
a combination of area, power, and delay. Separate
modules are used to calculate area, power, and timing
information. All of the modules operate in an incremental

L. STOK ET AL.

fashion, and therefore can be used to constantly monitor
the network changes in a very efficient way. As the design
proceeds, they will be fed with more accurate information
and will calculate more precise results. These predictors
(estimators) form the third part of the orthogonal
decomposition.

For some transformations, one must check explicitly
whether they are functionally correct to be applied in this
instance. BooleDozer relies on a test generator to check
for logical correctness. Logical correctness does not
really arise in the case of double inverter removal, but
other types of functional correctness (e.g., electrical
correctness—can source A drive sink C?) may be
important. Checkers form the last part of the orthogonal
decomposition.

While the above issues tend to be specific to each
transformation, it is advantageous to try to keep the issues
orthogonal to one another. This way it is easy to control
where transformations apply, and in what order. The
same transformation can be used to improve area, delay,
testability, power, etc. just by changing the parameters of
“benefit.” Also, by using independent modules, we can
easily take advantage of new developments in BDDs, test
generators, etc.

® Logic synthesis stages

In general, logic synthesis is divided into three stages:
technology-independent optimization, technology mapping,
and timing optimization. As is the case with design
automation in general, earlier stages have greater freedom
in restructuring the logic, but have a less accurate estimate
of the impact of the restructuring on the final product.

Technology-independent optimization

The primary function of the technology-independent
optimization stage is to restructure the logic to decrease
network interconnections and circuit area and to remove
logic redundancies. This stage operates on the technology-
independent network, i.e., a network in which the gates
are not bound to a particular technology cell but are
generic logic gates. Area estimates are based on number
of connections (sink pins) or other approximate measures.
A secondary objective of this stage is to create a design
that is free of gross timing problems. The overall goal of
timing optimization during this stage is to move forward
nets which appear to be critical. Timing estimates are
based on the number of stages, with some correction for
fan-in and fan-out. In spite of the inaccuracy of the delay
prediction at this stage, gross timing problems are more
easily fixed here than in later stages.

A variety of algorithms exist to restructure logic, each
of which attempts to reduce the circuit complexity by
reexpression of the logic in a form that requires fewer
gates and/or connections. Since most logic-minimization

IBM J. RES. DEVELOP. VOL. 40 NO. 4 JULY 1996

Table 1 Restructuring levels.

Optimization level Transforms used

Dead Constant propagation
Redundancy removal

Flow Global flow

Down Transduction

Flatten Flattening
Cube factoring

Crush Cube expand/reduce
Kernel factoring

Destruct Intensive kernel factoring

algorithms are NP-complete, special heuristics have been
developed that can be used to optimize logic with near-
optimal results. Depending on the structure of the initial
logic network, different combinations of these algorithms
produce widely varying results. Therefore, the logic-
restructuring function in BooleDozer synthesis has been
broken down into several different levels, each of which
invokes combinations of transformations found to have
similar effects. At each higher level of restructuring,
transformations causing more drastic logic changes are
invoked along with the transformations of lower levels.
These levels have been named dead, flow, down, flatten,
crush, and destruct. Each of the levels has its own set of
properties which it maintains. When the level dead is
chosen, the transformations should not increase the
fan-in/fan-out on any path. Major actions at this level

are removing constants and dangling logic and improving
testability. When the level flow is chosen, the number of
levels on any path may not increase; however, fan-in/fan-
out may increase. At the down level, the area of the logic
is guaranteed not to increase. This may be done at the
cost of increasing the length of some paths. Flatten allows
the area to increase to obtain better timing results. Crush
flattens multilevel AND/OR structures into a two-level
representation preserving some important structures such
as XORs. Destruct flattens the logic completely and totally
rebuilds the network. Table 1 shows the transformations
used at each of these levels. The transformations are
discussed in more detail in Section 5.

As an example, two technology-independent
transformations are applied to the network of Figure 3.
One possible transformation eliminates the net S,
resulting in Figure 5. This is an example of a simple local
transformation, where the amount of logic examined is
bounded to the immediate neighborhood. After that,
another transformation disconnects net A from one of the
OR gates, resulting in Figure 6. This is an example of a
global transformation, in which the amount of logic
examined cannot be bounded beforehand.

It is important to notice that the connection of A cannot
be eliminated in Figure 3. Thus, the first transformation

IBM J. RES. DEVELOP. VOL. 40 NO. 4 JULY 1996

c)
B - Out Master clock
A
e Slave clock
P ——-
Scan clock
R
Scan input
b) S _—
B M
U
A——> E X (I
T

—_—

Design after combining OR gate S with its sinks.

€

B Out Master clock

A

™ Slave clock
—_—
Scan clock
PISURN—" R
Scan input

b)) —

B M

U
! / E X .
——
A T

Design after removing a connection of A.

enables the second; since this is a very common situation,
the sequence in which transformations are applied can
have a significant impact on the final result.

Technology mapping
Technology mapping follows technology-independent
optimization and is the implementation of a Boolean
network, referred to as the target network, using
technology-dependent gates from a prescribed library
of primitives.

One possible mapping of the network from Figure 6
is shown in Figure 7 (OR2, OR3, and MUXREG are
names of technology cells.) The primary objective is area
optimization, although delay is also taken into account.
Please note that in Figure 7 the multiplexor has been
absorbed into a special register capable of the multiplexor

function. This is an example of the main challenge in 411

L. STOK ET AL.

412

Master clock
S T
Slave clock
ftiort il b 1)

. Scanclock
e CRsoecmerrs o

Scan input

QO R

Design after technology mapping.

technology mapping, namely how to take advantage
of such special features provided by the cell library.
Technology mapping in BooleDozer consists of two
separate stages: matching and covering. Matching is the
identification of technology gates from the library which
can implement a subgraph of the target network. Covering
is the selection of a set of consistent matches as an
implementation of the network with the objective
of optimizing a cost function. The cost functions of
importance are area, delay, and power consumption.
Transformations for matching and covering are discussed
in Section 5.

Timing correction
BooleDozer relies on the timing-correction stage to ensure
that the synthesized network meets the timing constraints.
Also, timing correction is used to ensure that there are no
electrical design rule violations in the design. Because
of the unpredictable impact on the timing of the total
network, it is very difficult to come up with globally
optimal synthesis algorithms for timing correction.
Another approach is chosen in BooleDozer. A collection
of transformations are tested against the network and
quickly evaluated. Transformations providing the greatest
improvements are then accepted and permanently applied
to the network. In some cases, transformations are
allowed to make the delay temporarily worse in order to
prevent timing correction from falling into a local
minimum. The timing-correction transformations are
general transformations which change the structure in an
attempt to improve the delay in a network and are not
targeted to optimize a particular term in a delay equation.
For instance, the network in Figure 7 might be
transformed into that of Figure 4 if, according to timing

L. STOK ET AL.

assertions, the signal on net A was late arriving. This
change is made at the cost of increased area.

Timing correction has the property that large
improvements are obtained in the initial invocations.
However, it gradually becomes more difficult to improve
the timing. To allow the designer to control the running
time, special commands are provided in the scripting
language to run for a particular amount of time [9].

Not only critical paths are important during timing
correction; working on noncritical logic can improve the
overall performance of the design. Slowing down a
noncritical path and thereby reducing the load on the
critical path may speed up the critical path. Therefore,
the timing-correction stage alternates between working
on critical and noncritical portions of the network.

Targeting special architectures
BooleDozer allows sets of transformations to be grouped
in new stages to target special architectures. Field-
programmable gate arrays (FPGAs) offer one example.
FPGAs provide a popular alternative to standard cells
and mask programmed gate arrays for implementing low-
volume ASICs. FPGAs also provide rapid and inexpensive
prototype development and shorten the development
cycles. FPGAs consist of field-customizable logic blocks
which are selected and configured. They also contain
user-programmable routing networks which can be used
to interconnect logic blocks in the FPGA.

A special technology-mapping stage has been added
to BooleDozer to handle lookup-table-based FPGAs. In
addition, for those designs that are too large to fit on a
single FPGA, an automatic partitioning stage is provided
to divide designs into a number of segments, each of
which can fit on a single FPGA.

® Design representation

One of the fundamental problems of designing a synthesis
system is the choice of representation for internal design
data. Different classes of optimization algorithms

may require different types of data representations.
Improper choice of data representation may hinder the
effectiveness of an optimization algorithm and make the
implementation unnecessarily difficult. In BooleDozer,
several different types of network representations are
used, the primary form being a technology-independent
form. This form consists of sequential logic and
combinatorial logic implemented by a collection of gates
ranging from basic primitives such as ANDs, ORs, and
XORs to complex gates such as adders, decoders,
multiplexors, and comparators.

By including complex gates as part of the basic building
blocks in the design representation, a tremendous amount
of logical information can be stored at each node. This
information can often be exploited to create extremely

IBM I. RES. DEVELOP. VOL. 40 NO. 4 JULY 1996

efficient logic optimizations. For example, the knowledge
that if a gate is a decoder its outputs are orthogonal can
be directly used by synthesis transformations. It enhances
the ability of technology mapping to find and implement
complex technology gates.

The technology library is represented in a format that
complements the underlying representation of the design.
Each technology gate has an associated technology-
independent function. A technology gate that does not
correspond to any of the technology-independent functions
is represented either as a black box or as a Boolean
equation.

3. Optimization targets

The goal of synthesis is to generate a logically correct
implementation while optimizing some predefined set

of cost functions. The cost functions can be area,
power, delay, or some combination thereof. A common
optimization target is the minimum area implementation
which satisfies the timing constraints imposed by the
designer. An alternate goal might be the fastest
implementation whose power consumption is below a
certain threshold. These optimization problems are
complicated by the fact that some of the optimization
goals are in conflict with one another, as is evident in the
area—delay and power—delay trade-offs. Area and power
fortunately do correlate with each other and thus offer
simplifications in certain optimization problems. In the
following subsections, the estimation of these cost
functions is discussed. It is important to note that

none of these estimates is a true measurement of the
corresponding physical values, since physical design
information is lacking at this stage. However, they do
provide an effective guide for synthesis optimizations in
the sense that networks with a lower area cost usually
occupy less chip area, and the critical paths are indeed
critical in the chip.

® Area

In the technology-independent phase, the area cost is
estimated by the number of connections in the network.
Most of the synthesis transformations in the technology-
independent phase target reduction of the number of
connections. In the technology-dependent phase, the area
cost is the sum of the areas of all of the technology-
mapped gates in the network. The wiring area is ignored
in this estimation.

® Power

In static CMOS devices, energy is dissipated through
gate-output transition, short circuit current, and leakage
current. At the logic synthesis level of abstraction,

only the contribution due to gate-output transition is

IBM J. RES. DEVELOP. VOL. 40 NO. 4 JULY 1996

considered. The energy, E, dissipated per cycle of a
static CMOS gate, g, is given by

E=3VC,S,, (1)

where 1 is the positive supply voltage, C, is the capacitive
load that g is driving, and S is the number of times the
output of g switches. Hence, for a given circuit, power
estimation reduces to measuring the switching activity

of every gate.

The switching activity of a gate depends on the
sequence of input vectors applied to the network and can
be computed using simulation. For the purpose of logic
synthesis, the power measurements are used for guiding
incremental changes in the network. The simulator is
invoked very frequently and must be very efficient.
Therefore, a simple zero-delay simulator is used with a
sample sequence of Boolean input vectors. The sample
input sequence is supplied by the designer and is assumed
to be representative of the power consumption behavior
under investigation. The input sequence is limited in
length, which makes fast incremental updates possible.
With no timing information, detailed behavior (e.g., the
effect of glitches and slew) is ignored. The average energy
consumption per cycle is computed for each net and is
used to guide transformations toward lower power
consumption.

Switching activity can also be estimated using a
probabilistic approach [10]. BooleDozer avoided this
because it requires functional evaluation at each gate,
which could be very expensive. Furthermore, temporal and
spatial correlations of input signals are difficult to account
for with a probabilistic approach.

e Timing

The timing performance of a design is often the most
important objective for logic synthesis. The designer
asserts the timing constraints by specifying arrival times
for the primary inputs, required times for the primary
outputs, and cycle times for various clocks and their
relative phases. It is necessary to compute delays of
circuit components and propagate timing information
to determine whether the circuit has met the timing
specifications.

Circuit simulation provides accuracy but is infeasible
for determining the delays in a large network. EinsTimer
provides static timing analysis [11, 12] as an integral part
of BooleDozer. In static timing analysis, we ignore the
function of the design and consider only the possible
timing relationships within it. In doing so, we always
consider the worst possible event that could occur in any
functional simulation. In other words, the delay of a path
obtained using static timing analysis is always conservative.

By ignoring the function of the logic, we eliminate the 413

L. STOK ET AL.

414

need to simulate (or time) all possible input vectors
and/or state transitions, converting the problem which
requires exponential time to one which can be done in
linear time. The drawback of static timing analysis is that
the critical paths may be false paths [13], causing the
performance of the design to be underestimated. However,
recent experiments [14] have shown that when sufficient
don’t-care information is used in synthesis, timing-critical
paths are rarely false.

Timing analysis is conceptually performed on a directed
graph of the network. To keep the analysis time linear
in the size of the graph, this graph must be acyclic.
EinsTimer does have the capability to break cyclic graphs.
The vertices, or nodes, of the graph are the points at
which events can occur (e.g., signals can arrive) and are
referred to as timing points. The timing points include
boundary pins and pins on logic gates in the network.

Each timing point p in the network has an associated
arrival time t (p) and an associated required time t (p).
Arrival times at the primary inputs are given. EinsTimer
propagates these arrival times forward through the
network and calculates arrival times at all other timing
points. Similarly, required times are derived from the
required times at the primary outputs and are propagated
backward through the network. The slack s(p) of each
timing point is now defined by s(p) = t(p) — ¢,(p). The
worst slack s_(p) is defined as the minimal slack on any
timing point in the network. Note that a critical path can
be defined as a path from primary input to primary output
on which all timing points will have the same worst slack
5,(p).

To accurately predict the effect of transformations on
the total network delay, it is important that the same
timing model be used during optimization and during
timing verification. Integrating a static timer into
BooleDozer delivers the required accuracy. Equally
important is that changes to the network can be evaluated
quickly. Incremental timing analysis permits a very fast
evaluation of what a changed topology means in terms of
the underlying delay model. Incremental recalculation can
be performed only if the timing system’s model is updated
synchronously with BooleDozer’s model.

EinsTimer can analyze hierarchical designs, including
those which include multiple uses of pieces of the
hierarchy. This feature is discussed later, in the section
on optimizing designs hierarchically.

The architecture of EinsTimer allows different delay
calculators to be used with the static timer. For
technology-independent gates, BooleDozer uses a simple
linear delay model based on load and number of inputs.
For technology-dependent gates, the delay model uses
timing equations from the technology vendor'.

1 “DCL,” a CFI/OVI standard (in development).

L. STOK ET AL.

EinsTimer also allows different capacitance calculators
to be used, permitting physical design information to be
used during a logic synthesis run. Initially, statistical data
are used to estimate the wire capacitance on the basis of
the number of pins connected to a net. After placement
has been done, a different calculator can be used which
estimates the wire capacitance on the basis of wire length
estimates from the placement. Once wiring has been done,
the capacitance values from the physical design tools can
be used to obtain even more accurate values.

4. Where to apply?

In BooleDozer, the code to decide where to apply an
action is separated from the code to perform the action.
The code which decides where to apply an action is called
a driver; the code which performs an action is called

a transformation. The drivers invoke one or more
transformations and determine where and in what order
transformations should be applied to a set of logic nodes.
This section describes the two main groups of drivers:
general drivers and timing drivers. Also presented is a
mechanism to focus these transformations on a subset

of the network by user directives.

® General drivers

The simplest drivers apply a list of transformations to

all of the gates or nets in the network. Sometimes it is
important for gates or nets to be processed in a specific
order. The “levelized” drivers are used to process gates or
nets from left to right (from inputs to outputs) or from
right to left. These drivers can be used to improve run-
time performance if a transformation is known to modify
logic only to the left or to the right of the selected node.
Sometimes only a subset of the nodes has to be processed.
The “with test” drivers allow a subset of nodes to be
chosen for processing. The first transformation in the list
is called on a node; if it returns TRUE, the rest of the
transformations in the list are called on the node. Drivers
are also supplied to allow a transformation to be applied
at a single box or net.

® Timing drivers

Since many of the transformations that comprise delay
optimization are local in scope, decisions on when and
where to apply them become very important. More
complicated delay rules reduce the ability of an algorithm
to guess what effect changes to the network will have on
delay. To solve this problem, the transformation must
actually be applied in order to collect accurate delay data.
The timing drivers apply a transformation, collect cost
and benefit data, and then undo the transformation. The
drivers may try other transformations or other places
before picking the “best” place to apply the “best”
transformation.

IBM J. RES. DEVELOP. VOL. 40 NO. 4 JULY 1996

01: boolean critical_driver(critical_path, xform_1ist)

02: {

03: initialize(best_quality, best_pin, best_xform, applied)
04:

05: foreach pin in critical_path

06: foreach xform in xform_list

07: quality = analyze(pin, xform)

08: if(quality > best_quality)

09: best_quality = quality

10: best_pin = pin

11: best_xform = xform.

12: applied = true

13: end if

14: end foreach

15: end foreach

16:

17: if(applied == true) execute(best_pin, best_xform)
18: return applied

20:)

Critical driver pseudocode.

These decisions are the sole responsibility of the timing
drivers: critical, noncritical, and quick. To do the
what-if analysis, a cost and a benefit are associated with
each transformation to define its overall quality. In the
case of critical and quick, the benefit is reduced
circuit delay and the cost is area or power.

Critical

The critical driver applies a list of transformations

to the critical path in the network. Its goal is to find

the “best” pin in the critical path to apply the “best”
transformation. Much analysis is performed before a
change to the network is accepted. The pseudocode shown
in Figure 8 describes the general operation of critical.
Although the pseudocode does not describe this,
critical can work on the top N critical paths in the
network.

Quick

The quick driver (Figure 9) applies a list of
transformations to an ordered list of pins. Unlike the
critical driver, quick does not attempt to find the

IBM J. RES. DEVELOP. VOL. 40 NO. 4 JULY 1996

“best” pin at which a transformation may be applied.
Instead, at each pin in the list, it applies whichever
transformation produces the best results. Thus, the order
of the incoming list of pins is important. The pins can be
processed in a “levelized” order (i.e., left to right) or by
the number of critical paths passing through them.

Noncritical

The noncritical driver is similar to quick in analysis,
but its determination of quality is very different. Its
goal is to reduce area and power at the cost of delay
along noncritical paths. Thus, it is important that all
transformations be symmetric or have complement
functions such that all transformations can easily be
reversed.

® Designer interaction

In order to produce high-quality designs, interaction
between the designer and synthesis tool is crucial. The
synthesis tool must provide adequate feedback to show the
types of decisions it has taken and how they relate to the
design description (VHDL/Verilog). The designer needs

L. STOK ET AL.

415

416

01: integer quick. driver(pin_Tist, xform list:)

02: 4

03: foreach pin in pin_list

04:

05+ initialize(best_quality, best_pin, best_xform, applied)
06:

07: foreach xform in xform:.1ist

08+ quality =-analyze(pin, xform:)
09: if quality > best.quality)
10: best_quality = quality

11: best_pin =-pin

12: best xform = Xform

13: applied = ‘true

14+ end if

15 end foreach

16: :

17: ifC applied == true)

18: execute(-best_pin, best.xform)
19: num_applied++

20: end if

21:

22 end foreach

23:

24 return num_applied

25:1

i Quick driver pseudocode.

control mechanisms to change the synthesis process in
places where it is considered inadequate.

The feedback function in BooleDozer is provided
through a powerful graphical browser which possesses
unique capabilities to interactively trace the important
subsections of million-gate designs. The functional
reconstruction of links to the design source helps to
correlate modified logic structure to the original
functional description.

BooleDozer provides a designer control mechanism
through user directives. User directives are most effective
when manipulating factors that have the greatest influence
on the final results. For example, the structure of the logic
may either prevent or enable good mapping and good
timing correction. A designer can control the degree to
which the structure inherent in the source logic model

L. STOK ET AL.

is preserved or altered during Boolean optimization
by selecting a restructuring level from Table 1. This
capability, though, is global to the entire partition being
synthesized. While this may seem sufficient, it works only
when the design is partitioned into small pieces, each of
which has homogeneous structural characteristics.
Usually, dataflow logic is highly structured and is
described carefully. The designer knows the path delays
through the dataflow fairly accurately and chooses not to
let synthesis alter the structure. Control logic, however, is
much less structured; it combines many unrelated signals
which have a variety of path delays. The significance of
the structure in the control logic description is low, and
the designer chooses to allow synthesis full freedom in
simplifying and reducing the structure of the controls.
Another way to view this is using symmetry of the logic:

IBM J. RES. DEVELOP. VOL. 40 NO. 4 JULY 1996

Dataflow logic contains a great deal of symmetry, while
control logic has little symmetry.

Given the ability to select how extensively logic
structure is affected by synthesis, a designer can
repartition the logic in such a way that each piece is
predominantly dataflow or controls. In reality, this is more
difficult and less desirable than it sounds. Often, there is
no natural point at which to divide controls from dataflow.
There may also be islands of dataflow-like logic in the
control logic, or vice versa. Further, there are other trade-
offs between large and small partitions. As partitions
become smaller, the number of partitions grows along with
the number of interconnections, and thus, the number of
boundary conditions such as timing relationships which
the designer must manage. Moreover, these boundaries
impose artificial barriers to logic and timing optimization.

It is better to give the designer a means of adding
information to the design, partitioned intuitively, which
describes the type or style of logic being represented than
to force a partition because of logic synthesis. This helps
bridge the information gap and allows synthesis to treat
different sections of the same partition in different ways.
These internal borders between sections are simple to add
or remove, have no boundary conditions to manage, and
are invisible to timing; they do not hinder propagation of
delay information.

The type of logic is indicated in VHDL using the
VHDL attribute LOGIC_STYLE. This attribute is applied
to a label, either on a concurrent assignment statement
or on a block. HIS assigns attributes from an assignment
statement to the node in the logic model which represents
that statement. HIS places attributes from a block label on
the nodes representing all of the statements contained in
the block. BooleDozer then recognizes this attribute and
reacts according to the value of the attribute.

There are four possible values for the LOGIC_STYLE
attribute: CONTROL_FLOW, PLA, DATA_FLOW, and
DIRECT. The value CONTROL_FLOW is assumed when no
LOGIC_STYLE attribute is present, and such logic is freely
manipulated by BooleDozer depending on the amount of
restructuring selected for the partition. PLA is used to
indicate areas in which two-level optimization may be
applied. DATA_FLOW and DIRECT are both used to keep
the structure as the designer described it. DIRECT is used
to tighten the designer’s control of the process. It provides
a way to force a particular mapping solution without tying
the logic description to an individual technology.

Within DATA_FLOW- and DIRECT-style logic, BooleDozer
examines the nodes representing assignment statements
for structural elements. It does not automatically
decompose assignments into primitive functions, and
it collapses identical functions within a statement into
single logic elements. A large sum-of-products statement
becomes an AND-OR; an XOR of several signals becomes

IBM J. RES. DEVELOP. VOL. 40 NO. 4 JULY 199

a single, N-way XOR. This structural representation is
maintained throughout the logic optimization step and
into mapping. DIRECT logic is mapped as closely as
possible into the target technology. Designers usually
expect a one-for-one relationship between a VHDL
statement and a cell in the network (or N-for-one for
vectored statements). BooleDozer has more freedom with
DATA_FLOW logic. Rather than mapping this logic directly
into the technology, the structure is used to “seed” the
mapping patterns [15], providing what is known to be a
good structure while allowing the pattern-matching
functions to find other viable matches. Any DIRECT logic
for which no direct technology map exists is treated like
DATA_FLOW logic. This allows a design targeted to one
technology to be mapped into a different technology
without special designer intervention, while still preserving
the important structure.

Apart from LOGIC_STYLE, there are other directives
which allow the designer to specify lower-level controls on
logic synthesis. These directives include the following:

¢ Never change this gate (same as
LOGIC_STYLE=DIRECT).

¢ Do not duplicate this gate.

¢ Do not insert buffer after this gate.

¢ Try to map logic to this gate.

¢ Do not combine this register with other registers.

e Use special register type (e.g., metastable-hardened).

e Preserve this net.

These directives increase both the flexibility and the
complexity of BooleDozer.

5. Transformations

The previous sections discussed the drivers and other
mechanisms to focus transformations on specific parts
of the network. The actual “work” is done by the
logic transformations themselves. A subset of the
transformations, which can be applied in the various
stages of BooleDozer, is described in the following
sections.

® Cube factoring

Historically the term “cube factoring” has come from a
two-level logic representation, where a cube is an AND-
expression. In terms of gate networks, cube factoring
refers to extracting one common gate from several gates
(see Figure 10). The common gate can be extracted
from a group of AND/NAND gates, from a group of
OR/NOR gates, or from a group of XOR/XNOR gates.
Cube factoring is used during technology-independent
optimization to reduce estimated area, and is based on a
rectangle-covering algorithm [2] to find the cubes which

reduce the number of connections by the largest amount. 417

L. STOK ET AL.

418

Cube factoring extracts OR gate BC: (a) original; (b) after cube
factoring.

® Kernel factoring

While cube factoring extracts a common gate from several
unrelated gates, kernel factoring extracts a subnetwork
from one cone of logic. In Figure 11 kernel factoring
operates on the input cone of P and extracts the function
Q. The word “kernel” is usually used in the context of
two-level logic representation, but BooleDozer performs
kernel factoring on multilevel logic [16]. In multilevel
logic, kernel factoring becomes a specialized form of
Shannon expansion; for example, in Figure 11, Shannon
expansion was done using the net C. Kernel factoring is
used during technology-independent optimization to
reduce estimated area.

® Optimization by global flow analysis

Global flow [17], which borrows from similar techniques
used in language compilers, attempts to reduce the
number of connections in a network by analyzing the
relationships between nets on a global basis. For example,
in Figure 12, the connections of the net S are reduced
from three to one. For this transformation, two steps are

L. STOK ET AL.

(a)

mw|>
o

|
|

()

Kernel factoring extracts the OR gate ABE: (a) original; (b) after
kernel factoring.

necessary. The first step performed by global flow analysis
determines which nets become 0 whenever S = 0. The
second step uses a min-cut algorithm to determine where
to connect S. This transformation is performed during
technology-independent optimization to reduce estimated
area, but also tends to have a beneficial effect on delay.

® Transduction

Transduction [18] replaces some functions with other,
more efficient ones. For example, in Figure 13 the
function of S can be replaced by C v D, because that is a
so-called “permissible function” for the original function
of S. A function is permissible if it can replace S without
changing the functionality of primary outputs.

While some synthesis systems actually calculate the
permissible functions, BooleDozer does not, because it
would consume too much time and space. Instead, for a
given net S, BooleDozer forms some candidate functions
S’ that might potentially replace S. The functions S’ may
exist in the given network or may be formed by combining
several existing functions. The choice of S’ depends on the
optimization objective: area or delay. The candidates S’
are not guaranteed to be permissible functions for S;
BooleDozer uses quick simulation with random patterns to
form candidates that are merely likely to be permissible.

IBM J. RES. DEVELOP. VOL. 40 NO. 4 JULY 1996

S
B
——-
e
(a)
D
e
A }
e
B
e e
C
(S .
E D—
e |

(b)

By using global flow analysis, connections of S are reduced: (a)
original; (b) after global flow.

Before the transformation is allowed, test generation is
used to determine whether S’ is actually a permissible
function for S. Transduction is used during technology-
independent optimization to reduce estimated area, and
during timing optimization to reduce estimated delay.

® Redundancy removal

Redundancy removal is a special case of transduction in
that the candidates S’ are restricted to the constants 0 and
1. For example, in Figure 14, the net A originally goes into
some combinational logic represented by the square box.
Since that connection is not testable for stuck-at-1,

it can be replaced by the constant 1, which can then
further simplify the logic. The determination of the
connections that are redundant is described in Section

6. Redundancy removal is used during technology-
independent optimization to improve area, delay, and
testability. It is also used after timing optimization to
ensure high testability coverage.

® Technology mapping

Technology mapping follows technology-independent
optimization and is the implementation of a Boolean
network, henceforth referred to as the target network,
using technology-dependent gates from a prescribed

IBM J. RES. DEVELOP. VOL. 40 NO. 4 JULY 1996

CE T
LH
099G

(@)

(®)

The original function of S can be replaced by S': (a) original;
(b) after transduction.

library of primitives. The various approaches to this
mapping problem can be broadly divided into four
categories: rule-based mapping [19], graph matching

[20], direct mapping [21], and functional matching [22].
Technology mapping in BooleDozer uses a combination of
all four approaches and divides the mapping process into
two separate phases: the matching phase and the covering
phase. Matching is the identification of a subgraph of the
target network with technology implementations using
gates from the library. Covering is the selection of a set of
consistent matches as an implementation of the network
with the objective of optimizing a cost function. The cost
function is based on area, delay, and power consumption.

Matching

A match associated with a technology-independent
subnetwork is a network of technology gates which
implements the same Boolean function as the subnetwork.
A simple match is one that contains only one technology
gate with possible inversions at the inputs and outputs.

A decomposition match is a network which contains

L. STOK ET AL.

419

420

A
(@

1
(b)

s

The original connection of A can be replaced with constant 1: (a)
original; (b) after redundancy removal.

more than one technology gate. In BooleDozer, matches
are obtained by using different matching techniques,
depending on which is most effective and efficient for the
specific types of technology gates. Registers are matched
using a rule-based approach. Matches for basic primitives
such as NAND, NOR, OR, AND, AO, AOI, OA, OAI,
XOR, and XNOR and more complex primitives such as
ADDER, MUX, and DECODER are obtained using rule-
based and direct matching techniques. Decomposition
matches are obtained mainly by a novel functional
matching technique known as truth-table matching [23].
The Boolean functions of the subnetwork and the
technology gates are represented by truth tables, which
are a more convenient representation than BDDs for the
functional decomposition problem.

Matches for a network are obtained in the following
fashion. Each node in the target network is visited.
Subgraphs rooted at the node are matched structurally
(via pattern matching) or functionally (via truth-table
matching), and successful matches are attached to the
node.

Covering

The covering problem is the selection of matches for

a functionally correct implementation of the network
while optimizing area, power, or delay. The structural
constraints to ensure functional correctness can be
converted to a Boolean satisfiability problem which
can then be solved by a binate covering algorithm.
Unfortunately, this solution is infeasible because of its
complexity. Therefore, we need an efficient heuristic to

L. STOK ET AL.

guide us to a near-optimal solution. In the subsequent
discussion, we focus on the area cost function. If the
target network is a tree, the minimum-area covering
problem can be solved optimally by a dynamic
programming technique [20]. Essentially, the optimal
solution for a tree can be derived simply from the optimal
solution for each of its subtrees. For every match M at the
root of the tree, the cumulative cost C,, of an optimal
cover containing M is the sum of the cost of M and the
cost of an optimal cover of each subtree rooted at the
inputs of M. The best match at the root is the match M”
such that the cumulative cost C,+ at the root is minimal
and C,,+ is the cost of an optimal cover for the tree.

For a general directed acyclic graph (DAG) network,
the dynamic programming technique is no longer optimal.
One approach would be to partition the network into trees
and cover each one optimally [20]. This approach would
have been viable if the resulting tree partitions had been
large, so that matches across tree boundaries would
contribute to a second-order effect which could have
been treated by postprocessing. Empirically, however, the
percentage of multiple-fan-out nets in IBM designs is
15 to 20 percent, which means that the size of a typical
tree partition is small. Therefore, we decided against tree
partitioning and have used a global matching and covering
algorithm instead. The matches are separated into two
different classes: those with copy nets and those without.
A copy net is a net internal to a match which has fan-outs
to gates outside the match that do not correspond to the
outputs of the technology gates used in the match. The
following is the extension of the cost calculation to a
general DAG. The cumulative cost at a net j, C’., of a
match with j as an output and with no copies is simply

Q=K+Z%, @)

ier’t

where I is the set of input nets of the match, W is the
anticipated cost of the match, m is the number of outputs
of the match, B, is the best cumulative cost at net i, and
f; is the fan-out of net i.

If a match has copies, we compute for each copy net |
the set §, of input nets of the match that are in the cone
of influence of I. Let n, be the number of times i appears
in the sets §, for each copy net. Then, the cumulative cost
of the match is

4 B,
=+ .
G 2 @

The best match is the match with the minimum cumulative
cost, and this minimum cost is associated with net j as the
best cumulative cost. The initial condition is that the best
cumulative cost at the primary input nets and register

IBM J. RES. DEVELOP. VOL. 40 NO. 4 JULY 1996

output nets is zero. The anticipated cost of a match is the
cumulative cost at the output of the match if the best
matches at the input nets of the match are realized and
double inverters are removed. The use of decomposition
matches and anticipated costs obviates the use of double
inverter insertion at every net.

The gates in the combinational network are
topologically sorted from inputs to outputs. The best
cumulative cost for each net is computed in this
topological order. With all of the best cumulative costs
and best matches in place, the target network is bound to
the technology gates chosen as best matches. The order
of binding is according to the following queue. All of the
primary output nets and register input nets are put on the
queue. The rest of the nets are inserted into the queue
whenever all of the gates to which they fan out are bound
to technology. In the course of technology binding,
matches that can no longer be realized are invalidated. In
addition, the technology binding affects the fan-out of the
nets, which in turn changes the cumulative cost of the
matches. Therefore, we constantly update the cumulative
costs, and the best matches are replaced as more favorable
ones take over.

Let us turn to Figure 15 for an illustration of the above
concepts. The circuit shown is part of a bigger circuit, and
nets k and 1 are primary outputs. The technology library
contains a two-input NAND (NAND2) with area 2 and a
four-input two-port AND-OR (A022) with area 4. Each
node is matched to a NAND?2. In addition, nodes b4 and
b5 are each matched to an AQ22, as indicated by the
dotted and dashed subgraphs, respectively. The best
cumulative cost at each net is shown next to the net.

The best cumulative cost calculations of bl and b2 are
straightforward, since there is only one match for each
node. The best cumulative cost of b3 is2 + 4 + 6/2 =9
using Equation (2). The best cumulative cost calculation
of b5 demonstrates most of the fine points in cost
propagation. The first match at b5 is a NAND2, and its
cumulative cost is 2 + 16/2 + 9/2 = 14.5. The other match
is an AO22 with copy nets (nets h and j), so Equation (3)
must be used. The cumulative cost for the AO22 is
4+6/(1+1)+8A+1)+4(1+1)+62+1)=15.
Hence, the best match at b5 is a NAND2, with best
cumulative cost being 14.5. It is important to note that
the resulting implementation depends on the order of
binding. If output 1 is bound first, the best match at b5 is a
NAND?2. The best match at b4 is an AO22; hence, b2 and
b3 are bound to NAND2s, resulting in a partial area cost
of 10. On the other hand, if k is bound first, an AO22 will
be implemented at the net k, since the best match at b4
is an AO22. The node b2 must then be copied, thereby
increasing the fan-outs of nets ¢ and d to 2 and reducing
the fan-out of h to 1. As a result, the best match

IBM J. RES. DEVELOP. VOL. 40 NO. 4 JULY 1996

i Cost propagation for technology mapping.

at b5 changes to an AO22. In this case, the partial
implementation is two AO22s with a partial area cost of 8.
We do not currently have a good heuristic for ordering
the sequence of binding.

® Fan-out correction

Fan-out correction is the process of repowering a net that
is distributed to a large number of sinks. This can be
accomplished in several ways: 1) resizing the output
transistors; 2) duplicating the logic feeding the critical
sinks; and 3) inserting buffers feeding the noncritical
sinks. The three methods are shown in Figure 16. Each
solution has advantages and disadvantages. For example,
duplicating logic reduces loading on the current gate but
increases the loading on each of the input nets to the
current gate. Complementary transformations are provided
to resize the output transistors, to combine duplicated
logic, and to remove buffers. The noncritical driver is used
to apply these transformations off the critical path(s). It is
the responsibility of the timing driver to determine which
method offers the “best” solution. The optimal solution is
usually some combination of the three methods, and the
timing drivers are responsible for making the necessary
trade-offs.

® Fan-in reordering

In combinational logic circuits, one often finds logic
functions with functionally identical or commutative
inputs which have different delays. The signals connected
to these inputs may have different arrival times. These
signals can be assigned to the input pins such that the
arrival time at the logic function output is as small as

L. STOK ET AL.

421

422

il

bs
= Li

©

(@

Fan-out correction examples: (a) original; (b) after resizing; (c) after
duplication; (d) after buffering.

B B

lvalel
v]

(@) (b)

Fan-in reordering example: (a) original; (b) after fan-in reordering.

possible. The fan-in ordering problem is formulated as a
bipartite matching problem, and optimal ordering can be
found in O[n’VnlIn(n)] time, where n is the number

of commutative pins. The fan-in ordering algorithm
employed in BooleDozer [24] gives optimal results

over a wide range of delay models. A simple example

of fan-in ordering is shown in Figure 17. In this example,
if signal B is critical and signal C is not, they can be
switched so that signal B goes through one gate instead
of two and signal C goes through two gates instead of
one.

L. STOK ET AL.

® Decomposition

Because the cost function in the technology mapping
algorithm is area-based, one often finds gates along the
critical path that can be sped up if they are decomposed
into their Boolean primitives. Once the gates are broken
down into their primitives, BooleDozer has more

granular control over the transistor sizing of gates along
the critical path. Also, simpler gates allow a greater
number of transformations to be applied. Some of these
transformations, including global flow and factoring, have
been described earlier. Figure 18 shows two applications
of decomposition to the same circuit. First the AND-OR
gate is broken up into four NAND gates. Second, the
three-input NAND which drives the output is decomposed
into an AND gate and a NAND gate. Recovering routines
based on the truth-table mapping mentioned above can be
used to undo a decomposition.

® Inverter motion

It is important to be able to move inverters and logic
inversions through the network, because inverting and
noninverting technology gates do not usually perform in
the same way. There are a group of transforms based on
De Morgan’s theorem which do this. Figure 19 shows
several different kinds of changes that can be made. Signal
C goes through one less level of logic, while signal D goes
through one more level of logic. Signals A and B may
arrive sooner if inverting gates are faster than
noninverting gates in this technology.

® FPGA technology mapping
Technology mapping for FPGAs can be performed by
FPGA-specific technology mappers [25, 26] or by using
library-based technology mappers [20]. BooleDozer
provides both FPGA-specific and library-based technology
mappers for FPGAs.

BooleDozer provides FPGA-specific mapping for any
FPGA technology whose logic block is based on a
lookup table (LUT). The core algorithm is based on an
interesting theoretical result for optimal tree mapping
[26]. The time complexity is O {min[nk, nlog(n)]}, where
k is the number of inputs to the LUT and »n is the number
of nodes in the tree. We make use of this algorithm
directly by partitioning the network into trees and
applying the optimal tree mapping. Prior to partitioning,
the XOR subgraphs in the network are mapped. This is
accomplished by finding the XOR patterns and performing
a standard technology mapping on the network. After
tree mapping, further optimization is done across tree
boundaries to further reduce the number of LUTs
required. This procedure focuses primarily on optimizing
area. A crude level-reduction option is provided by
merging the remaining root nodes along long paths. Our
experiments indicate that on average the results obtained

IBM J. RES. DEVELOP. VOL. 40 NO. 4 JULY 1996

by our FPGA-specific mapper are about 10% better (in
area) than our library-based mapper. When the target
device is the Xilinx XC4000 series [27], it is necessary
to merge the resulting blocks together according to the
FPGA architecture to build a configurable logic block
(CLB). A Xilinx XC4000 series FPGA contains two
4-input LUTs, A and B, which feed a 3-input LUT, C.
The output from the B LUT is available as an optional
output of the CLB, thereby resulting in a 9-input 2-output
CLB. The merging program groups LUTs together in an
architecture-legal way with the objectives of reducing area,
path length, and interblock wiring. The merging method
used is structure-based and favors merges which use the
full LUT and pin resources of the CLB. It may be
necessary for the program to duplicate logic in order
to get the best mapping of LUTs into CLBs.

The library-based technology mapper of BooleDozer
is described in the subsection on technology mapping.
In order to use this technology mapper for LUT-based
FPGAs, we must provide the mapper with an FPGA
library. Most vendors provide an ASIC-like technology
library to facilitate use of standard technology mappers.
For small values of k, a library which effectively consists
of all possible k-input functions can be generated. In
practice, the number of all possible k-input functions (22k)
is prohibitively large for k£ greater than 3. The size of the
library can be reduced significantly by using equivalent
classes based on symmetries and input/output inversions
[28, 29]. For example, the library size for 4-input LUTs
can be reduced from 65536 to 223 functions. The results
for the BooleDozer library-based technology mapper using
these reduced libraries are better on average than some
FPGA-specific technology mappers [29].

® FPGA partitioning
In recent years, designs using FPGAs have grown from
single-chip applications to multichip implementations of
large logic networks. A special transformation has been
added to BooleDozer to provide an efficient method of
partitioning a design. The underlying algorithm of the
partitioner is based on a linear time graph partitioning
heuristic [30]. The BooleDozer partitioner uses a novel
multistep partitioning process [31] which is geared toward
minimizing both the number of segments and the total
number of I/O pins in the resulting partition. The
following is a brief overview of the partitioning process.
An FPGA has a fixed number of I/O pins and logic
blocks. The partitioning problem for FPGAs can be stated
as follows. A partitioning is feasible if each segment in the
partition fits on a single FPGA. A partitioning is infeasible
if there is at least one segment that does not fit on a
single FPGA because the I/O limit is exceeded, the logic
block limit is exceeded, or both. Given a design that does
not fit on a single FPGA and the size and the maximum

IBM J. RES. DEVELOP. VOL. 40 NO. 4 JULY 1996

(a) (b)

(©)

Decomposition example: (a) original; (b) after first decomposition;
(c) after second decomposition.

Inverter motion example: (a) original; (b) after inverter motion.

number of I/Os allowed per FPGA, the goal is a feasible
partitioning with the minimum number of segments.

The partitioner can be used in two different modes.
In the initial mode, it generates a feasible partition by
iteratively bipartitioning the design. In the improvement
mode, the partitioner attempts to improve an existing
feasible solution by reducing the number of segments, by
reducing the total number of I/O pins in the partition, or
both.

A design is initially modeled by a hypergraph
H = {V, E}, where V is a set of nodes and E is a
set of edges. V' consists of a set of internal nodes that

L. STOK ET AL.

423

424

correspond either to the logic modules in the design or to
a subdesign in the case of hierarchical designs, and a set
of terminal nodes that correspond to the primary I/Os of
the design. E consists of the set of nets which connect V
in the design.

The following is a brief outline of the overall scheme
employed by the partitioning process:

1. Construct a hypergraph H = {V/, E} to model the
design as described above.

2. Run the partitioner in the initial mode on H and
generate a feasible partitioning.

3. Derive a hierarchical hypergraph, H', by treating each
segment in the partitioning as a node in H'.

4. Partition H' under the same size and I/O constraints
to reduce the number of segments in the feasible
partitioning.

5. Recover H by flattening H', which imparts its
partitioning information on the nodes of H.

6. Run the partitioner in the improvement mode on H
with its new partitioning as the initial setting. Repeat
steps 3 to 6 until no further improvement is observed.

Because the partitioning process is simple and fast, it is
possible to perform multiple runs of the partitioner. By
providing procedures to generate and flatten hypergraphs,
a more powerful (and potentially more expensive)
technique of perturbation and relaxation [31] can be used
to further reduce the total number of segments. Note that
the above partitioning process assumes a single FPGA
type. It can be extended to work with a mixture of FPGA
types with different sizes and I/Os.

6. Boolean reasoning using a test generator
All of the synthesis transformations described above rely
on Boolean algebra to ensure the correctness of their
result. While some transformations (e.g., factoring) need
only a subset of the whole Boolean algebra, others (e.g.,
transduction and redundancy removal) require ail of it.
As is common in other synthesis systems, reasoning
about Boolean algebra need not be built into each
transformation using it; instead, transformations can

call a separate module dedicated to Boolean reasoning.

Mechanisms for Boolean reasoning are closely tied to
the way in which Boolean functions are represented. A
crucial consideration is the size of this representation; as
design size grows, more and more compact representations
are required.

Originally Boolean reasoning was performed on truth
tables [32]. Since the size of a truth table is guaranteed to
be exponential in the number of input variables, truth
tables were replaced by two-level representations [33]. A
two-level representation tends to be smaller than a truth
table, but its size may also grow exponentially. Therefore,

L. STOK ET AL.

instead of representing the whole function in two levels,
the function can be partitioned into “nodes,” and each
node is then given a two-level representation [2]. So that
optimization of individual nodes can take advantage of the
rest of the function, the latter is represented in the form
of “don’t cares.” Since the two-level don’t-care
representation also grows exponentially, not all of the
function can be represented [34]. Therefore, two-level
representations have been replaced by BDDs. While
BDDs tend to be more compact, they still may grow
exponentially with the size of the network. Therefore, in
BooleDozer, Boolean reasoning is performed by a test
generator [35, 36], which operates on a gate network, thus
avoiding the problems of other existing representations.

It has been shown that there is no theoretical loss
in using a test generator [37]; any network can be
transformed to any equivalent network by transformations,
which do no Boolean reasoning except to ask the test
generator whether or not certain faults are testable. While
in theory that is the only question that has to be asked, in
practice several other tasks are performed. Some of them
involve a simulator, which is commonly a part of any test-
generation package. Simulation with random patterns
allows us to answer some questions faster than by calling
the test generator.

There are two types of questions asked of the test
generator: justification questions and propagation
questions. The first involves propagation of values toward
primary inputs only, while the second also involves
propagation of values toward primary outputs. Each
type of question uses a different type of simulation as a
possible shortcut to answering the question. Good-machine
simulation is used to speed up justification questions, and
fault simulation is used to speed up propagation questiomns.

Justification questions ask whether there exists an input
pattern that would simultaneously satisfy conditions of the
form Net, = Val,, - -+, Net, = Val,, where each Net is
any net of the network, and each Val is either 0 or 1. For
example, the common question whether x = i implies
s = j (for nets x, s and Boolean values i, j) would be
given to the test generator as justification of x = i, s = j.
If the test generator is able to justify those two conditions
(i.e., does find an input pattern), the implication is false;
if the test generator can prove that there is no such input
pattern, the implication is true. Justification questions are
used in selector generation [38], false-path analysis
[39, 40], and other synthesis tasks.

Before using the test generator, BooleDozer performs
good-machine simulation of the whole design. The number
of patterns is a parameter, which is discussed later. The
objective of the simulation is to associate a bit string with
every net; the length of the bit string is the number of
patterns simulated. Each primary input and latch output is
initialized to a random bit string, and the simulation then

IBM J. RES. DEVELOP. VOL. 40 NO. 4 JULY 1996

assigns a bit string to each internal net according to the
net’s function.

Every time the test generator is asked a justification
question, the simulation values can be used to determine
whether one of the random patterns satisfies the
conditions to be justified. If so, the answer to the
justification question is affirmative, and there is no need
to call the test generator. The test generator is called only
if none of the random patterns satisfies the conditions of
the justification question. As a result, many justification
questions can be answered using the simulation patterns,
which takes constant time independent of the design size.

Propagation-type questions are of the form “Suppose a
net § computes a function f. If f is replaced by a different
function g, will that change the functionality F of the
whole design?”’ This question is asked in transduction,
redundancy removal, verification [41], and incremental
synthesis [42]. To answer this question in general, we use
the following lemma.

Lemma 1
F(f)=F(g)iff F(f@g) = F(0);
F(f)=F(@ ifft F(f©g) =F(1).

The expression F(f © g) represents a replacement of a
subfunction f with f @ g. Then the test generator is asked
whether the net S (which is now the output of the XOR
gate) is testable for stuck-at-0 or stuck-at-1 faults. If it is
not testable for stuck-at-0 faults [i.e., F(f © g) = F(0)],
g can replace f without changing the functionality of the
whole design [i.e., F(f) = F(g)]. If S is not testable for
stuck-at-1 faults [i.e., F(f © g) = F(1)], g can replace f
without changing the functionality of the whole design
lie., F(f) = F(9)].

In the simple case of redundancy removal, f © ¢
simplifies to either f or f, depending on whether g = 0
or g = 1. Therefore, in the case of redundancy removal,
there is no need for the XOR gate; the testability of S is
checked directly.

As good-machine simulation is used for a quick answer
to justification-type questions, fault simulation is used for
a quick answer to propagation-type questions. However,
fault simulation may take time proportional to the size
of the design, which tends to be too slow. Therefore,
BooleDozer sometimes uses approximate fault simulation
[43], which may give us an affirmative answer in constant
time. However, in contrast to good-machine simulation,
approximate fault simulation may err on either side;
therefore, an affirmative answer given by approximate
fault simulation can be used to reject a change to logic,
but should not be used to accept a change.

For both simulation and test generation there is a
trade-off between effectiveness and the amount of

IBM 1. RES. DEVELOP. VOL. 40 NO. 4 JULY 1996

resources consumed. The simulator takes as parameter the
number of random patterns to simulate. The larger that
number, the longer it takes to simulate, the more memory
it takes to store the results, but the less often is there a
need to call the test generator. The test generator takes
as parameter the number of backtracks. The larger that
number, the longer it may take to deliver an answer, but
the less often will the test generator fail to decide.

For any practical value of the parameter, it is possible
that the test generator may not be able to decide one
way or the other. Any transformation relying on the test
generator must control how much time the test generator
is allowed and must be prepared for the possibility of an
undetermined answer. The frequency of an undetermined
answer is very much application-dependent, and it is hard
to predict; however, BooleDozer adopted a test-generator-
based approach, because in our applications it fails less
often than other methods, in particular, BDD-based
methods.

7. Optimizing designs hierarchically

As the size of VLSI designs grows rapidly, synthesis of
very large flat designs becomes expensive and time-
consuming. The traditional way of dealing with these
problems is through the introduction of hierarchy in the
designs. Hierarchical designs can be created such that the
individual pieces of the hierarchy are of a good size for
synthesis and the number of pieces in the hierarchy is
proportional to the size of the designs. Synthesis can be
run separately on each piece of the hierarchy, and these
jobs can be run in parallel to reduce the total run time.

Technology-independent optimization and technology
mapping can be dealt with effectively in a parallel fashion.
However, the timing correction of a large hierarchical
design is a difficult problem. Unless strict latch-bounding
constraints are imposed, it is difficult to resolve the results
of timing a hierarchical piece by itself with the results of
timing that hierarchical piece in the context of the timing
model for the entire design.

Consider the following approach to performing
hierarchical timing correction. The entire design is timed
keeping track of the hierarchy boundaries. Timing
constraint management is done to adjust the measured
arrival and required times at hierarchical boundaries.
This is done in order to drive timing correction to
correct cross-hierarchy timing paths that violate timing
constraints. Timing constraint files are generated for each
piece in the hierarchy specifying primary input arrival
times, transition times, primary output required times,
etc. Next, timing correction is run in parallel on all of the
pieces using these timing constraint files. The process of
constraint file generation and timing correction is repeated
until all timing constraints are met, or until no further

progress is made. 425

L. STOK ET AL.

426

Feedback path outside current piece

Piece being timing-corrected

: -
} Arrival time problem with static boundary constraints.

In this approach the boundary constraints specified by
the timing constraint files are static, and this causes the
so-called boundary problems. In Figure 20, any effort to
apply timing correction to the logic in piece A fed
by the register output does not result in an equivalent
improvement in arrival time at the input of the logic in
piece B. This can lead to overcorrection of the logic.

Another problem for hierarchical timing correction is
that of parallel-timing-correction convergence. Consider the
situation shown in Figure 21, a hierarchical design with
two timing-correctable pieces A and B and a net which is
driven in piece A and used in piece B. At the beginning of
the first timing correction iteration, piece A drives the net
with a buffer. Piece B also buffers the net and distributes
it to a number of sinks. If the signal is late, timing
correction will make an attempt to fix it. Timing
correction is run on the two pieces in parallel. The
timing correction job on A decides to eliminate the buffer
because the net is lightly loaded by B. Simultaneously, the
timing correction job on B drops the input buffer because
the drive strength of the output buffer in A is sufficient to
drive all of the sinks in B. The timing constraint files,
which have not changed to reflect the work done by the
timing correction run, are used by both jobs to measure
an improvement of the timing characteristics of the net.
However, when the hierarchy is reassembled, no progress
has been made, and indeed the timing may have gotten
worse. If timing correction is attempted in parallel another
time, the reverse happens, and both the input and the
output are rebuffered, putting the design back in its
original state.

The magnitude of the oscillation is dependent on two
factors, the gain of the timing correction (how much

L. STOK ET AL.

improvement is being made by timing correction), and the
degree of parallelism. In the trivial case, where there is
no timing correction to be done, there is no oscillation
no matter what the degree of parallelism. Similarly, there
are no convergence problems if the degree of parallelism
is 1, no matter how much time is being extracted from
the network.

The following approach, called parallel hierarchical
timing correction (PHTC), addresses both problems. PHTC
uses the hierarchical timing propagation capabilities of
EinsTimer to reduce the boundary problems. If the
hierarchy is available, EinsTimer will correctly reflect
reductions in delay for piece A, in Figure 20, as changes
to arrival times at piece B. The parallel timing correction
convergence problem is managed by controlling the
number of peer timing correction processes running in
parallel.

Each process is in an endless loop:

1. Choose the next hierarchy piece to timing-correct,
ensuring that the piece is not being timing-corrected
by any of the other processes.

2. Broadcast the name of the piece, such that all other
processes are aware that it is being timing-corrected.

3. Timing-correct the chosen piece.

4. Lock the netlist directory.

5. Output the netlist of the newly timing-corrected piece
to the netlist directory.

6. Read in all other hierarchy pieces that have been
changed by other processes from the netlist directory.

7. Unlock the netlist directory.

. Reinitialize the timing subsystem.

9. Gotol.

oo

When a raw (not yet timing-corrected) model is loaded
into the system, the gross problems that are corrected far
outnumber the subtle boundary-oriented convergence
problems, and the system can tolerate a large number
of processes running simultaneously. As time progresses,
and the fixes being introduced become more specific, the
susceptibility of those fixes to oscillation grows. However,
the probability of PHTC working on both the input and
output sides of a hierarchical boundary at the same time
diminishes as the number of processes running is reduced.
The pieces in the hierarchy may be processed multiple
times. The amount of synthesis effort applied is based
on the number of times that the piece has been visited.
Gross problems in not yet timing-corrected pieces of the
hierarchy may cause the timing correction of the other
pieces to work on the wrong problems. Thus, it is not
worthwhile to spend a lot of effort in timing correction
until the gross problems in all of the pieces have been
fixed. The first time around the hierarchy, timing
correction is applied requesting a small amount of effort,

IBM J. RES. DEVELOP. VOL. 40 NO. 4 JULY 1996

fixing gross problems. The second time around, a greater
level of effort is requested, and so on. It is not until all of
the easy cross-hierarchy timing problems have been solved
that the most advanced heuristics are chosen.

In general, it may not be necessary to process all of
the pieces in the hierarchy with medium or high levels of
effort. Often, the critical path is contained in a few of the
hierarchical elements, and the rest of the design warrants
only a cursory pass of timing correction to eliminate gross
problems. It is advantageous to select the elements in the
hierarchy on the basis of some measure of the work they
need. The heuristic PHTC uses in choosing the next
hierarchy piece to timing-correct is as follows:

1. For each synthesizable piece, determine the worst slack
in the piece, the sum of the worst slacks for the 32
worst points, and the number of times timing correction
has been applied to the piece.

2. Build a list of these pieces, ordering first by the worst
slack, and second by the sum of the worst 32 points.

3. Truncate the list to the pieces on the worst path
(all of the hierarchy pieces on the worst path will
have the same worst slack, and will appear on the top
of the list), or five pieces, whichever is longer.

4. Choose the piece from the truncated list that has had
the least amount of timing correction applied, and
apply timing correction with the effort based on the
number of previous timing correction passes to that
piece.

Any discussion about hierarchical timing correction must
address the issue of hierarchy reuse. When BooleDozer’s
timing correction routines request a slack for a particular
point in the network, they provide a hierarchy-unique
specifier of that point. The slack returned is specific
to that point in the hierarchy. One way to deal with
hierarchy reuse is to clone these portions of the hierarchy
before timing correction. This is actually not such an
onerous burden. Generally, we get the most advantage out
of timing correction on control logic, and control logic can
seldom be reused. However, it would be a simple change
to the timing subsystem to return the slack across all
instances of that point in the entire hierarchy. In this way,
the timing correction routines would never make a change
in a multiply used hierarchy element that would be
beneficial to one instance and detrimental to another.
One feature of PHTC is that it can be used in an
incremental fashion virtually unchanged. Take a
hypothetical change in the HDL for one of the
hierarchical pieces. This piece is pushed through
technology-independent optimization and technology
mapping, and inserted into the rest of the design, which
has already had a significant amount of timing correction
applied to it. Because of the timing correction counts that

IBM J. RES. DEVELOP. VOL. 40 NO. 4 JULY 1996

Piece A Piece B

Cross-boundary optimization problem.

are associated with all elements in the hierarchy, if the
new design appears in the critical path, it will be the
immediate focus of timing correction. Used in this fashion,
PHTC allows last-minute changes to the design to be
processed efficiently.

8. Design examples

BooleDozer has been used within IBM to design many
high-performance microprocessors and ASIC chips.

A short description of some representative designs is
given below.

e The control logic for the PowerPC 601™ [44], PowerPC
603™, and PowerPC 604™ was designed in a proprietary
high-level language, DSL, and synthesized using
BooleDozer.

¢ A high-performance PowerPC™ chip set optimized for
commercial operations. It uses BiCMOS technology and
includes bit stacks. The chips were designed in VHDL.

e A single-chip PowerPC processor. It was designed
entirely in VHDL and uses a pure ASIC CMOS
technology, CMOS SL. This processor makes extensive
use of the LOGIC_STYLE attribute to tune synthesis.

¢ A large, high-performance, semicustom, superscalar
microprocessor, containing approximately 80 timing-
correctable entities with a total of close to 300K cells of
synthesized control logic. This is the first production use
of the PHTC system.

o A large System/390® processor designed in VHDL.
More than a hundred partitions were synthesized,
ranging in size from a couple of hundred lines of VHDL
to close to ten thousand lines. Resulting networks
contained a few hundred to thousands of logic cells,
cach matching the timing requirements of a few hundred
MHez.

¢ An MPEG-2 video decoder chip which decompresses
digital video data. The module receives the compressed
data at a rate of up to 15 Mby/s.

L. STOK ET AL.

427

428

* An MPEG-2 video encoder chip set. It supports full-
motion video up to CCIR 601 resolution, 720 X 480
at 30 Hz or 720 X 576 at 25 Hz.

¢ A set of I/O and memory subsystem chips. They are
pure CMOS 5L ASICs, completely synthesized designs.
All were designed using VHDL.

9. Conclusions

In this paper the major features, algorithms, and design
representations which comprise the BooleDozer logic
synthesis have been presented. State-of-the-art synthesis
algorithms and a fast incremental timing subsystem have
been used to create a leading synthesis tool. BooleDozer
uses a modular design following an orthogonal
decomposition of the logic synthesis problem. This

has led to a collection of transformations operating
under the control of a set of drivers which can be ordered
using a powerful scripting language to accommodate

a wide variety of design styles.

Acknowledgments

As an open system, BooleDozer has benefited greatly
from the many contributions of the IBM synthesis
codevelopment and user community. The quality of this
paper was greatly improved by the very useful comments
of the reviewers.

BooleDozer, EinsTimer, PowerPC 601, PowerPC 603,
PowerPC 604, and PowerPC are trademarks, and System/390
is a registered trademark, of International Business Machines
Corporation.

Verilog is a registered trademark of Cadence Design Systems,
Inc.

References

1. R. A. Bergamaschi, R. A. O’Connor, L. Stok, M. Z.
Moricz, S. Prakash, A. Kuehlmann, and D. S. Rao, “High-
Level Synthesis in an Industrial Environment,” IBM J.
Res. Develop. 39, 131-148 (January/March 1995).

2. R. K. Brayton, G. Hachtel, C. McMullen, and A.
Sangiovanni-Vincentelli, Logic Minimization Algorithms
for VLSI Synthesis, Kluwer Academic Publishers, The
Netherlands, 1985.

3. S.]. Hong, R. G. Cain, and D. L. Ostapko, “MINI: A
Heuristic Approach for Logic Minimization,” IBM J. Res.
Develop. 18, 443-458 (September 1974).

4. R. E. Bryant, “Graph Based Algorithms for Boolean
Function Manipulation,” IEEE Trans. Computers C-35,
677-691 (August 1986).

5. John A. Darringer, William H. Joyner, C. Leonard
Berman, and Louise Trevillyan, “Logic Synthesis Through
Local Transformations,” IBM J. Res. Develop. 25, 272-280
(July 1981).

6. John A. Darringer, Daniel Brand, John V. Gerbi, William
H. Joyner, and Louise Trevillyan, “LSS: A System for
Production Logic Synthesis,” IBM J. Res. Develop. 28,
537-545 (September 1984).

7. R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and
A. Wang, “MIS: A Multiple-Level Logic Optimization
System,” IEEE Trans. Computer-Aided Design CAD-6,
1062-1081 (November 1987).

L. STOK ET AL.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

. E. Detjens, G. Gannot, R. Rudell, A. Sangiovanni-

Vincentelli, and A. Wang, “Technology Mapping in MIS,”
Proceedings of the IEEE International Conference on
Computer-Aided Design, November 1987, pp. 116-119.

. D. Brand, R. Damiano, L. van Ginneken, and A. Drumm,

“In the Driver’s Seat of BooleDozer,” Proceedings of the
IEEE International Conference on Computer-Aided Design,
October 1994, pp. 518-521.

F. N. Najm, “A Survey of Power Estimation Techniques
in VLSI Circuits,” IEEE Trans. VLSI 2, 446-455
(December 1994).

Robert B. Hitchcock, Sr., Gordon L. Smith, and David D.
Cheng, “Timing Analysis of Computer Hardware,” IBM J.
Res. Develop. 26, 100-105 (January 1982).

R. B. Hitchcock, Sr., “Timing Verification and the Timing
Analysis Program,” Proceedings of the 19th ACM/IEEE
Design Automation Conference, June 1982, pp. 594—604.
D. Brand and V. S. Iyengar, “Timing Analysis Using
Functional Analysis,” IEEE Trans. Computers 37,
1309-1314 (October 1988).

D. Brand, R. Bergamaschi, and L. Stok, “Don’t Cares in
Synthesis: Theoretical Pitfalls and Practical Solutions,”
Computer Science Technical Report RC-20127, IBM
Thomas J. Watson Research Center, Yorktown Heights,
NY, September 1995.

D. Kung, R. Damiano, T. Nix, and D. Geiger,
“BDDMAP: A Technology Mapper Based on a New
Covering Algorithm,” Proceedings of the 29th ACM/IEEE
Design Automation Conference, June 1992, pp. 484-487.
D. Brand, “PLA-Based Synthesis Without PLAs,”
Proceedings of the International Workshop on Logic
Synthesis, MCNC/IEEE/ACM, May 1989, p. 8.1.

L. Berman and L. Trevillyan, “Global Flow Optimization
in Automatic Logic Design,” IEEE Trans. Computer-Aided
Design 10, 557-564 (May 1991).

S. Muroga, Y. Kambayashi, H. C. Lai, and J. N. Culliney,
“The Transduction Method—Design of Logic Networks
Based on Permissible Functions,” IEEE Trans. Computers
38, 1404-1424 (October 1989).

D. Gregory, K. Bartlett, A. de Geus, and G. Hachtel,
“Socrates: A System for Automatically Synthesizing and
Optimizing Combinational Logic,” Proceedings of the 23rd
ACM/IEEE Design Automation Conference, June 1986, pp.
79-85.

K. Keutzer, “DAGON: Technology Binding and Local
Optimization by DAG Matching,” Proceedings of the 24th
ACM/IEEE Design Automation Conference, June 1987, pp.
341-347.

M. Lega, “Mapping Properties of Multi-Level Logic
Synthesis Operations,” Proceedings of the IEEE
International Conference on Computer Design, October
1988, pp. 257-260.

F. Mailhot and G. De Micheli, “Technology Mapping
Using Boolean Matching and Don’t Care Sets,”
Proceedings of the IEEE European Design Automation
Conference, March 1990, pp. 212-216.

L. Trevillyan, R. Damiano, D. Geiger, D. Kung, J.
Ludwig, and T. Nix, “Method for Identitying Technology
Primitives in Logic Functions,” IBM Tech. Disclosure Bull.,
pp. 359-361 (May 1992).

L. P. P. P. van Ginneken, “Fanin Ordering in Multi-Slot
Timing Analysis,” Proceedings of the IEEE International
Conference on Computer Design, 1992, pp. 44-47.

R. J. Francis, J. Rose, and K. Chung, “Chortle: A
Technology Mapping Program for Lookup Table-Based
Field Programmable Gate Arrays,” Proceedings of the 27th
ACM/IEEE Design Automation Conference, June 1990, pp.
613-619.

A. H. Farrahi and M. Sarrafzadeh, “Complexity of

the Lookup-Table Minimization Problem for FPGA

IBM J. RES. DEVELOP. VOL. 40 NO. 4 JULY 1996

Technology Mapping” IEEE Trans. Computer-Aided
Design 13, 1319-1332 (November 1994).

27. The Programmable Logic Data Book, Xilinx Corporation,
San Jose, CA, 1994.

28. S. Trimberger, “A Small, Complete Mapping Library for
Lookup-Table-Based FPGAs,” presented at the 2nd
International Workshop on Field Programmable Logic
and Applications, August 1992.

29. L. Trevillyan, “An Experiment in Technology Mapping
for FPGAs Using a Fixed Library,” Proceedings of the
International Workshop on Logic Synthesis, IEEE/ACM,
1993.

30. C. M. Fidducia and R. M. Mattheyses, “A Linear Time
Heuristic for Improving Network Partitions,” Proceedings
of the 19th ACM/IEEE Design Automation Conference,
June 1982, pp. 175-181.

31. D. Kung and L. N. Reddy, “A Multi-Chip Device
Partitioning Process,” Patent Application Y0994-218,
IBM Corporation, October 1994.

32. M. Karnaugh, “The Map Method for Synthesis of
Combinational Logic Circuits,” Trans. AIEE 72, 593-599
(1953).

33. E. J. McCluskey, Introduction to the Theory of Switching
Circuits, McGraw-Hill Book Co., Inc., New York, 1965.

34, A. Saldanha, A. R. Wang, R. K. Brayton, and A.
Sangiovanni-Vincentelli, “Multi-Level Logic Simplification
Using Don’t Cares and Filters,” Proceedings of the 26th
ACM/IEEE Design Automation Conference, June 1989, pp.
227-282.

35. S. Kundu, L. H. Huisman, I. Nair, V. S. Iyengar, and
L. N. Reddy, “A Small Test Generator for Large
Designs,” Proceedings of the IEEE International Test
Conference, September 1992, pp. 30-40.

36. R. P. Kunda, P. Narain, J. A. Abraham, and B. D. Rathi,
“Speed Up of Test Generation Using High-Level
Primitives,” Proceedings of the 27th ACM/IEEE Design
Automation Conference, June 1990, pp. 594-599.

37. W. Kunz and P. R. Menon, “Multi-Level Logic
Optimization by Implication Analysis,” Proceedings of the
IEEE International Conference on Computer-Aided Design,
November 1994, pp. 6-13.

38. M. Berkelaar and L. P. P. P. van Ginneken, “Efficient
Orthonormality Testing for Synthesis with Pass-Transistor
Selectors,” Proceedings of the International Workshop on
Logic Synthesis, IEEE/ACM, May 1995.

39. D. Brand and V. S. Iyengar, “Timing Analysis Using
Functional Analysis,” IEEE Trans. Computers 37,
1309-1314 (October 1988).

40. P. C. McGeer and R. K. Brayton, Integrating Functional
and Temporal Domains in Logic Synthesis, Kluwer
Academic Publishers, The Netherlands, 1991.

41. D. Brand, “Verification of Large Synthesized Designs,”
Proceedings of the IEEE International Conference on
Computer-Aided Design, November 1993, pp. 534-537.

42. D. Brand, A. Drumm, S. Kundu, and P. Narain,
“Incremental Synthesis,” Proceedings of the IEEE
International Conference on Computer-Aided Design,
November 1994, pp. 14-18.

43, M. Abramovici, P. R. Menon, and D. J. Miller, “Critical
Path Tracing: An Alternative to Fault Simulation,” IEEE
Design & Test 1, 83-93 (February 1984).

44, T. B. Brodnax, R. V. Billings, S. C. Glenn, and
P. T. Patel, “Implementation of the PowerPC 601
Microprocessor,” IBM J. Res. Develop. 38, 621-632
(September 1994).

Received October 20, 1995; accepted for publication
February 29, 1996

IBM J. RES. DEVELOP. VOL. 40 NO. 4 JULY 19%

Leon Stok IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (stokl@watson.ibm.com). Dr. Stok studied electrical
engineering at the Eindhoven University of Technology, The
Netherlands, from which he graduated with honors in 1986.
In 1991 he received the Ph.D. degree from the Eindhoven
University. He is currently manager of the Logic Synthesis
group in the Systems, Technology and Science Department.
Prior to this assignment, Dr. Stok worked in the
“Unternehmensbereich Kommunikations-und Datentechnik”
of Siemens AG in Munich in 1985, and in the Mathematical
Sciences Department of the IBM Thomas J. Watson Research
Center during the second half of 1989 and the first half of
1990. Dr. Stok has published several papers on various aspects
of logic, high-level and architectural synthesis, and automatic
placement and routing of schematic diagrams. His research
interests include high-level and logic synthesis, layout
synthesis, and system synthesis and verification. He is a
member of the Institute of Electrical and Electronics
Engineers.

David S. Kung IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (kung@watson.ibm.com). Dr. Kung received the B.A.
from the University of California at Berkeley, the M.A. from
Harvard University, and the Ph.D. from Stanford University,
all in physics. He spent two years as a postdoctoral fellow at
Stanford before joining IBM in 1986. Dr. Kung is currently in
the Logic Synthesis group at Yorktown. His research interests
are logic and asynchronous synthesis.

Daniel Brand IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (brand @watson.ibm.com). Dr. Brand received the Ph.D.
degree in computer science from the University of Toronto in
1976. Since then he has worked at the IBM Thomas J. Watson
Research Center, with temporary stays at the IBM Zurich
Research Laboratory, the Beijing Institute of Aeronautics and
Astronautics, and the Kyushu Institute of Technology. Dr.
Brand has worked in the areas of verification, communication
protocols, and logic synthesis.

Anthony D. Drumm IBM Systems Technology and
Architecture Division, Rochester, Minnesota 55901
(drumm@vnet.ibm.com). Mr. Drumm received his B.S.
degree in electrical engineering cum laude from Ohio State
University in 1977. He received his M.S. degree in computer
engineering from Syracuse University in 1983. In 1977, he
joined IBM in Endicott, New York, as a designer in mid-
range computers. Mr. Drumm began working on logic
synthesis tools in 1984; he was one of the original architects
of the BooleDozer logic synthesis system. In 1992, he
transferred to IBM Rochester, where he continues this work.
He is currently a senior engineer with technical responsibility
for logic synthesis in the IBM Systems Technology and
Architecture Division. Mr. Drumm has coauthored papers
on logic synthesis; he holds three U.S. patents.

Andrew J. Sullivan IBM Microelectronics Division, East
Fishkill facility, Hopewell Junction, New York 12533
(sullia@vnet.ibm.com). Mr. Sullivan received his
undergraduate degree in electrical engineering from
Washington University in 1989, joining IBM in 1990.

He is currently a member of the synthesis development

team at the IBM Corporation in East Fishkill, New York. 429

L. STOK ET AL.

430

Lakshmi N. Reddy IBM Microelectronics Division,

East Fishkill facility, Hopewell Junction, New York 12533
(Inreddy@vnet.ibm.com). Dr. Reddy received the B.E. degree
in electronics and communication engineering from Osmania
University, Hyderabad, India, in 1987, and the Ph.D. degree
in electrical and computer engineering from the University
of Iowa in 1992. He is currently a staff member at the IBM
Corporation, East Fishkill, New York. Dr. Reddy worked at
the IBM Thomas J. Watson Research Center in the summer
of 1991; he was with the Motorola ASIC CAD Division,
Chandler, Arizona, during the summer of 1990. His research
interests include logic and FPGA synthesis, testing of VLSI
circuits, design for testability, and partitioning. He is a
member of the Institute of Electrical and Electronics
Engineers.

Nathaniel Hieter /BM Microelectronics Division, East
Fishkill facility, Hopewell Junction, New York 12533
(hieter@vnet.ibm.com). Mr. Hieter studied electrical
engineering at the California Institute of Technology,

from which he received his undergraduate degree in 1991.
He has been a member of the BooleDozer Logic Synthesis
development team since 1990. His research interests include
high-level and logic synthesis, specifically delay optimization.

David J. Geiger IBM Microelectronics Division, Rochester,
Minnesota 55901 (David_Geiger@vnet.ibm.com). Dr. Geiger
received his Ph.D. in electrical engineering from Carnegie
Mellon University in 1989. He has worked at the IBM EDA
Laboratory since then on high-level and logic synthesis.

Han Hsun Chao /BM Microelectronics Division,

East Fishkill facility, Hopewell Junction, New York 12533
(hhchao@pksmrvm.vnet.ibm.com). Dr. Chao received his M.S.
degree in electrical engineering from Rutgers University in
1982, joining IBM in 1983. He was granted an IBM Resident
Study Award from 1990 to 1991 to complete Ph.D. studies in
computer engineering from Syracuse University. His research
interests include logic synthesis, verification and diagnosis,
and layout synthesis.

Peter J. Osler IBM Microelectronics Division, Burlington
facility, Essex Junction, Vermont 05452 (osler@btv.ibm.com).
Mr. Osler studied electrical engineering and computer science
at M.I.T.,, receiving bachelor’s degrees in computer science
and electrical engineering in 1983, and, after a two-year hiatus
at the IBM Thomas J. Watson Research Center, his master’s
degree in electrical engineering in 1987. Since then he has
participated in the design of many CMOS VLSI circuits for
the IBM Microelectronics Division, providing tools support
for simulation, synthesis, Boolean comparison, and static
timing analysis. He is currently an advisory engineer, in
charge of static timing analysis and timing correction

on a large, high-performance, superscalar, semicustom
MiCroprocessor.

L. STOK ET AL.

IBM J. RES. DEVELOP.

VOL. 40 NO. 4 JULY 1996

