
Design
planning
for high-
performance
ASICs

by J. Y. Sayah
R. Gupta
D. D. Sherlekar
P. S. Honsinger
J. M. Apte
S. W. Bollinger
H. H. Chen
S. DasGupta
E. P. Hsieh
A. D. Huber
E. J. Hughes
Z. M. Kurzum
V. B. Rao
T. Tabtieng
V. Valijan
D. Y. Yang

Design planning is emerging as a solution to
some of the most difficult challenges of the
deep-submicron VLSl design era. Reducing
design turnaround time for extremely large
designs with ever-increasing clock speeds,
while ensuring first-pass implementation
success, is exhausting the capabilities of
traditional design tools. To solve this problem,
we have designed and implemented a
hierarchical design planning system that
consists of a tightly integrated set of design
and analysis tools. The integrated run-time
environment, with its rich set of hierarchical,
timing-driven design planning and
implementation functions, provides an
advanced platform for realizing a variety of
ASIC and custom methodologies. One of
the system's particular strengths is its tight
integration with an incremental, static timing
engine that assists in achieving timing closure
in high-performance designs. The design
planner is in production use at IBM internal
and at external ASIC design centers.

Introduction
High-performance designs beyond sub-half-micron
technologies, with clock frequencies in excess of 100 MHz,
have received much attention from the design community
and the Electronic Design Automation (EDA) industry in
recent years. Interconnect delay has become a significant
factor affecting design performance. The key challenges
have centered upon managing design complexity and
satisfying timing and other design constraints in a small
number of design iterations, so as to reduce the overall
chip design cycle time and time to market. The traditional
approach of sequential, flat physical design (PD), with
multiple iterations of placement, routing, and timing
verification, can no longer provide an effective chip design
solution for dense CMOS technologies. Alternative
approaches, based on hierarchical, timing-driven design
methodologies that reduce the number of iterations of
physical design, are required.

In this paper, we describe an effective approach and
solution centered around design planning. Design planning
is the process of progressively and continuously improving
a design concurrently with refining the logic and physical
implementations. It is based on analyzing implementation

Wopyright 1996 hy International Business Machlnzs Corporation Copying in printed form tor private use IS permitted without payment of royalty provided that (1) each

of this papcr may be copied o r distributed royalty frcc wlthout further permission by computcr-bascd and other Information-service systcms. Permiysion to republrsh any other
reproduction is dune without alteration and (2) thc Journal reference and IBM copyright notlcr are ~ncluded on the first page. The title and abstract, but no othzr portions,

portion of this paper must he obtained from the Edltor. 431
0018-8646/96/$5.00 0 1996 IBM

IBM J . RES, DEVELOP. VOL. 40 NO. 4 J U L Y 1996 J. Y. SAYAH ET AL.

HDP within integrated ChipBench environment in support of
high-performance ASIC design.

in the world. First-pass success through automatic
placement, routing, and checking has been achieved in
many designs with the help of our design planning.

Hierarchical Design Planner (HDP”) environment. The
key features implemented in HDP to meet the sub-half-
micron design challenges include

Our solution to design planning has been realized in the

Reflecting physical design and technology constraints
early in the design process to minimize the number of
design iterations.
Supporting a seamless, multilevel hierarchy to manage
design complexity while preserving the optimization
possible with flat designs.
Supporting improved coupling between the front end
and the back end of the design process to ensure close
correlation between predicted and actual timing.
Supporting a mixed level of design detail at any level
of the hierarchy during design (physical and timing)
planning and analysis to optimize designs that are
presented at varying levels of implementation detail.
Implementing a state-of-the-art timing closure
methodology, based on pervasive timing-driven
capabilities, to drive rapid timing convergence within
the constraints of the design.
Integrating placement within design planning to support
a streamlined timing closure methodology.
Supporting localized and controlled customization in the
ASIC library, such as growable array structures (GRAs)
and their customized power supplies.
Supporting an efficient and granular engineering change
methodology that optimizes the changed area while
minimizing the perturbation on the physical design
of the rest of the chip.
Improving interoperability with key vendor tools.

HDP can be invoked in a stand-alone mode as an early
planner/floorplanner in the logical design environment,
or as a hub to manage the full physical design process
in the ChipBenchTM environment [l]. The ChipBench
environment (see Figures 1 and 2) is an integrated,
hierarchical physical design environment for ASIC and
structured-custom methodologies that includes HDP and
a number of other tools that make up the environment.
Figure 1 highlights the key capabilities of each tool
and shows the general ASIC design processing using
ChipBench tools in coordination with HDP.

(see Figure 3) in any of these configurations. In either
setting, HDP analysis and design functions operate
seamlessly on hierarchical design elements. HDP provides
effective interaction between logical design and physical
design, driving PD constraints upward to synthesis and
other logic design tools to improve synthesis results, and

HDP supports integrated early and detailed planning

effects as early in the design decision process as feasible,
continually moving the design through successive closure
stages. Design planning includes early chip-area planning
and analysis, timinddesign target generation and
budgeting, early and detailed structure planning and
floorplanning, wirability and congestion analysis, global
routing and wire planning, prerouting RC delay
estimation, and hierarchical pin assignment.

Beyond the early timing planning of the chip, design
planning also drives and optimizes the detailed physical
design to satisfy timing and other design constraints. As
currently implemented, these advanced capabilities have
been used effectively to support a continuum of analysis
and design actions, from synthesis to detailed physical

432 design, at one of the most advanced ASIC design settings

J. Y. SAYAH ET AL. IBM J. RES. DEVELOP. VOL. 40 NO. 4 JULY 1996

I HDP concurrent hierarchical design planning environment.
.. .

accepting design targets from logical design as early in the
design cycle as design details become available. Operating
in the hub mode, HDP provides the components and the
execution environment for the timing-driven hierarchical
physical design methodology (see Figure 4).

HDP functions and ChipBench services to implement a
complete physical design process, is described in this
paper in the section entitled “Performing PD using
HDP/ChipBench.” HDP supports top-down, middle-out,
and bottom-up design implementation methods. It allows
the independent implementation of large design entities,
as well as the in-context implementation of other
entities. Means are provided for encapsulating and
isolating hierarchical entities, effectively allowing flat

A hierarchical timing-driven design methodology, using

implementation of the overall chip. HDP brings together
the components of region placement, target generation
and budgeting, and incremental timing analysis to ensure
timing closure at the end of a single cycle of placement
and routing (see Figure 5) . The HDP timing closure
methodology successively refines the timing targets and
implementation constraints, moving the design in a
process characterized by rapid timing convergence.
During this process, HDP trades off area, wiring length,
alternative implementations, wirability, congestion, and
other design constraints while incrementally invoking the
IBM static timing analysis tool, EinsTimerTM [2] , during
this convergence process (Figure 1).

The success of this methodology within the context of
large hierarchical designs is ensured by a wide repertoire 433

J. Y. SAYAH ET AL. 1BM J. RES. DEVELOP. VOL. 40 NO. 4 JULY 1996

1""-"""""~""""""""
I

I

I

I Front-end design I

I I

I Timing-driven high-level design and
I early planning and timing budgeting 7 i
I

I

I Hierarchical macro and chip physical
I design planning and timing budgeting

I
I

I
I

I I

1 hierarchical I

I physical design

I Final timingherification I
I

Checking and release

Setting for hierarchical design planning methodology.

From front-end design

(Hierarchical cell physical design and timing planning)

In-context hierarchical area/structnre/timing planning

(Timing-driven hierarchical physical design)

Timing-driven floorplanning and placement methodology

1 Achieve timing closure

I (Wiring and final detail physical design) I
I

Wiring and post-wiring ECs and final timing corrections

To final timing verification and checking

Hierarchical physical design planning.

434

J. Y. SAYAH ET P

of ChipBench and HDP services that provide selective,
incremental, and on-demand access to a sufficient amount
of design and implementation data. This involves the
pervasive use of abstractions and controlled access to
detailed data as needed, while shielding the user from
the burden of explicitly managing the propagation
effects across levels of the design hierarchy.

in floorplanning and design planning [3, 41. These tools
provide some limited linkages between design functions.
The key features that distinguish HDP from those design
planning solutions include

Recently, several DA vendors have released tools to aid

Tight integration of a sophisticated, hierarchical,
incremental, and versatile timing-analysis engine. The
integration is on-line (i.e., it operates within the same
process space).
Integration of physical design structure planning and
timing planning capabilities of preparing physical and
timing encapsulation of hierarchical design entities. The
process uses selective hierarchy expansion accounting
for in-context effects. The quality of results of a
subsequent application of the analysis and optimization
functions is fully consistent, as if we are operating on
the fully expanded design.
Integration of in-context and encapsulated hierarchical
design capabilities, coupled with distributed tool
activation, which allows the user to operate in top-down
and bottom-up implementation methodologies in the
same design environment.
Integration of hierarchy manipulation and logic
optimization services within a physical design
environment, which allows the user to restructure
and modify the design with instantaneous access to
analysis, optimization, and implementation functions.
Availability of functions that uniformly and
transparently work on combinations of available
detailed, estimated, or asserted information or
actual implementation, providing various degrees of
accuracy.

In HDP, a designer can monitor the delay across a
critical timing path (see Figure 5) that crosses the
hierarchy where some nets are fully wired, some are
partially wired, and some entities are abstracted, and some
entities are placed. The delay across nets may have been
derived using a simple delay model (Elmore delay) or a
more accurate evaluation (asymptotic wave evaluation, or
AWE). Later, a cell is moved (interactively or by using an
integrated automatic function), another cell uses another
implementation, and the critical path chart is updated
incrementally using EinsTimer static timing analysis. In
the meantime, the implementation of a net that was

LL. IBM J. RES. DEVELOP. VOL. 40 NO. 4 JULY I 996

I Example of HDP integrated hierarchical timing analysis

wired automatically is updated for the portions that
were affected by the move. Concurrently, one of the
hierarchical entities could be under automatic detail
placement and another under automatic detail wiring
(see Figure 2), while the static timing analysis is using the
timing abstraction of these entities. After those actions are
completed, the timing abstraction of the modified entities
can be regenerated to reflect the latest detail, and the
path chart is updated, all without leaving HDP.

of HDP and the timing closure methodology. There are
two design examples that illustrate the timing closure
methodology using HDP. Finally, as part of the
conclusions, there is a brief description of areas
of potential future enhancement.

The following sections provide details of the capabilities

IBM J . RES. DEVELOP. VOL. 40 NO. 4 JULY 1996

Functional elements of HDP
This section details the key functional capabilities
contained in HDP. All HDP functions are availablein a
sophisticated multi-windowing graphic user interface
(GUI) environment that permits the designer to view,
invoke functions, and operate on hierarchical design
entities in design context and/or individually. Background
activation is available for CPU-intensive applications.
Figures 2 and 5 illustrate some of the GUI capabilities of HDP.

One key thread across all functions that deals with
the performance elements of a design, whether during
analysis, evaluation, or optimization, is the use of the
IBM static timing analysis toolkit, EinsTimer. Underlying
EinsTimer is a central delay calculation engine, based on
the emerging delay calculation language (DCL) standard 435

J. Y. SAYAH ET AL.

[5]. The EinsTimer toolkit contains a rich set of
capabilities, such as hierarchical analysis, generation
and use of abstractions for hierarchical blocks, and
incremental analysis to support small changes in the
design. These capabilities are fully integrated in HDP and
can be activated as needed during an HDP session.

Partitioning
The hierarchical design capabilities in HDP enable a
designer to realize the full potential of the “divide-and-
conquer” approach in containing the combinatorial
explosion in design complexity that arises from ever-
increasing design sizes. These capabilities are further
complemented by a rich set of hierarchy manipulation
functions. For the purpose of physical design, one can use
a hierarchical netlist from the front-end design process, or
a reconfigured hierarchy based on physical considerations.
Thus, the designer can realize a reduction in design
complexity without compromising the ability to optimize
and achieve timing closure.

in HDP can make changes in hierarchy and effectively
manage these changes. The hierarchy creation function
creates a new hierarchy specified by the designer or by an
application such as the partitioner. The new hierarchy is
specified as a set of disjoint clusters of objects. Each
multi-object cluster becomes a new block. Single-object
clusters are left untouched. The hierarchy flattening
function flattens all blocks or a specified subset of
blocks in a netlist.

The hierarchy prototyping and reconfiguration facilities

A novel feature of the hierarchy prototyping facilities
enables a designer to quickly evaluate alternative
hierarchical decompositions without discarding a
designated stable hierarchy. At any point, the designer can
maintain a stable version of one hierarchy “on the side,”
while evaluating an alternative “temporary” hierarchy.

The hierarchy manipulation functions are typically
needed only if the netlist is very large and flat, or if
the use of hierarchy provided by the front-end logical
design tools leads to design closure problems.

The partitioning function decomposes a design into a
collection of clusters that satisfy minimum and maximum
area constraints. These clusters are passed to the
hierarchy prototyping services to create a new temporary
hierarchy. The function can be invoked at any level of the
hierarchy. The partitioner does simultaneous partitioning
and floorplanning by default. This permits accurate
analysis of global nets, which is essential for accurate
timing estimation.

Overall, the principal strength of the partitioner in
HDP is its ability to handle multiple performance-related
optimization costs and its understanding of physical design
constraints. It can handle pre-placed blocks. It can also be
used to create an approximate placement of objects in 436

.I. Y. SAYAH ET AL

regions corresponding to the partitions, instead of actually
creating a new hierarchy. This capability, called region
placement, is quite versatile, as evidenced by its various
uses in the timing closure methodology described later. It
can be used for early placement feedback, as an element
of the HDP floorplanning repertoire. It can also serve as
the front end of a quick placement program, where the
back end performs legalization and overlap removal.
Moreover, it is used to find optimized placement of large
blocks in netlists that are otherwise flat. This problem
is referred to in the literature as the “rocks and sand”
problem. The next subsection discusses HDP’s main
floorplanning engine.

Early and detailed floorplanning
Floorplanning is the element of HDP that interacts with
the largest number of optimization, analysis, and planning
functions. Additionally, floorplanning addresses problems
at various levels of design completion, from early
floorplanning through detailed floorplanning and coarse
placement.

The engine for automatic floorplan design is based on
the simulated annealing algorithm [6, 71. Annealing is
suited for this function, because it is one of the most
versatile algorithms for performing “placement-like’’
optimizations. Its versatility lies in its capability to mix
and match objects that are large and small, soft and hard,
reshapable and rigid. Additionally, it can be used to
optimize any cost function that can be incrementally
recalculated quickly.

In exchange for its versatility, the annealing algorithm is
relatively time-consuming and complex to control. This is
particularly true if the netlist is heterogeneous or contains
a wide variety of different objects, or if the cost function
contains a large number of different costs. The former
problem, that of long run times, is less of an issue in
floorplanning than in detailed placement, because floorplanning
tends to deal with significantly fewer design objects than
does placement. The insights gained from designer
experiences can potentially be encapsulated in recipes for
controlling the application of the annealing functions.

Interaction with other analysis and optimization tools
The annealing-based floorplanner can move and reshape
floorplan entities and, in the process, monitor and
optimize a very wide variety of costs. The floorplanner
uses a large set of analysis tools to evaluate the cost of a
floorplan: overlap computation, overhang computation
(representing the overflow of cells outside their parent
boundary), wire length estimation, timing analysis and
estimation, capacitance estimation, etc. The other
optimization tools with which the floorplanner has
the most interaction are the partitioner and the pin
assignment functions.

IBI iI J. RES. DEVELOP. VOL. 40 NO. 4 JULY 1996

Interaction with planning tools
The annealing-based floorplan engine essentially operates
on one level of a hierarchical design at a time. Therefore,
the timing budgeting, timing target generation, and area
planning tools play a crucial role in the success of the
floorplanner, in that they reflect the influence of design
objects that are deep inside the lower levels of the
hierarchy, and they propagate constraints from higher
levels in the design hierarchy onto the level being
floorplanned.

Support for early jloorplanning
The engine for automatic early floorplan design is the
same as that in the detailed floorplanner. A primary issue
in early floorplan design is to provide the mechanisms for
asserting design attributes for unknown portions of the
design. The floorplanner in HDP accepts a variety of such
asserted design attributes through robust user interfaces
and provides capabilities to estimate these design
attributes. For example, the designer can specify or
estimate sizes and shapes of blocks that have not yet been
synthesized, approximate locations of unassigned pins in
the netlist using the port area construct, and approximate
delay models for large macros whose internals have not
yet been designed. Early area and timing planning provide
the core functions for these estimation applications.

Support for floorplan editing
All operations that are performed by the automatic
floorplanner are available for invocation manually as
a floorplan editor. This capability, in conjunction with
the rich set of analysis tools available in the HDP
environment, enables designers to interactively floorplan
complex hierarchical designs.

4 0 planning
Floorplanning, placement, and wiring tools are specialized
for carrying out highly optimized and effective design
tasks within the confines of chip or “child” cell
boundaries. In a hierarchical design, each of these
tasks must be carried out multiple times on different
hierarchical entities before the chip design is completed.
These hierarchical entities (macro cells) have
dependencies on one another-for example, one cell
may contain another, one cell may compete with another
for area on the chip, or a critical timing path may pass
through two macro cells such that there is a constraint
on the sum of the path delays through the two cells.
Therefore, in order to make the resulting design meet the
design requirements, initial design planning work must be
done to apportion the design resources (for example,
placement area and slots, wiring space, permissible path
delays) among the entities in the hierarchy.

IBM J . RES. DEVELOP. VOL. 40 NO. 4 JULY 1996

The basic hierarchical design planning in HDP is done
using two tools: the area planner and the timing planner.
The area planner deals with the three dimensions of cell
width, cell height, and wiring layers. The timing planner
deals with the fourth dimension of timing and delays.

Area planning
The area planning functions in HDP provide the user with
automatic capabilities for apportioning placement and
wiring resources among different hierarchical entities. The
inputs to area planning are the hierarchical logic netlist of
the design, physical data about predefined macro cells and
the library elements at the leaf levels of the hierarchy, and
technology information such as the number of wiring
layers and the total number of available wiring tracks
on each layer. There are two kinds of area planning
functions, the early area plan and the update area plan.

The HDP area planner has several enhancements over
previously existing area planning approaches found in
EDA tools. The most significant is that HDP operates in
context within a hierarchical design and understands both
aspects of hierarchical design models (full expansion and
reuse). In the process, it uses a statistical estimate of
wire demand for each hierarchical entity (macro cell)
to determine its size, as opposed to an estimate of the
“placement” space augmented with an adjustment factor.
It automatically analyzes wire demand to determine the
number of wiring layers needed for each macro cell, and
isolates the wiring problems for different entities from
one another rather than using a preassigned wiring layer
assignment or depending purely on the user’s judgment.
It automatically determines a suitable placement grid for
each macro cell by analyzing the distribution of sizes of
the child cells in the macro, and takes into account this
placement grid information in sizing the parent macro cell.
It automatically generates shape constraints (aspect ratio
bounds) for each macro cell by considering bottom-up as
well as top-down constraints. These shape constraints
are used locally by the floorplanner to guide it while
floorplanning at a particular hierarchy level, without
having to access data at other levels.

Early area plan The early area plan function is used to
generate initial physical data (macro cell shape, macro
cell wiring space reservations, etc.) for a “raw” netlist
produced by logic synthesis. It uses information about
the library cells and the wiring layers and produces the
following outputs:

Basic area estimation A physical shape (width and
height) is generated for every macro cell in the
hierarchy. The basic area estimation function
incorporates methods to compute wire demand
estimates for the nets at a certain hierarchy level,

J. Y. SAYAH ET AL.

on the basis of a statistical technique for computing
average wire lengths.*
Wiring area and wire reservations The area planner
creates wiring-reserved areas for each macro cell such
that the various macro cells in the hierarchy are isolated
from one another. This allows the wiring of the nets to
be carried out one macro cell at a time in an arbitrary
sequence. The wiring tool can work with the blockage
and congestion data at each level using an abstracted
model of the blockages that are seen at that level.

A wiring-reserved area is a region of a wiring layer
that is reserved for use by the nets of a specified macro
cell. This region is seen as free and clear space for
wiring the nets owned by that macro cell, but also as a
blockage region when nets are being wired for any other
cell in the hierarchy.

Wire reservation determines where wires from a
selected parent cell have to use the reserved wiring
capacity of its child cells. This is a second-order
approximation to that made by area reservation.
Area reservation makes the first approximation by
determining the area of the cell and its ceiling
(representing the space above the cell).

distribution of the shapes and sizes of the library cells
that occur in each macro cell, determines an “optimal”
periodicity of circuit rows or columns, and creates the
placement structures accordingly in each macro cell.
This enables the placement functions to operate
independently on different macro cells. Note that the
placement background is prespecified in certain chip
technologies. The area planning functions observe
these constraints in placement structure generation.

The area estimation function described above
determines an appropriate width and height for each
macro cell in the hierarchy, based on the wire demand
in the x and y directions, as well as for any child cells
(or other descendants down the hierarchy) that have
rigid shapes. However, in order to fit each macro cell
and its “sibling” macro cells into the parent macro cell
in an effective way, the floorplanning tool must have a
range of legal shapes for each of the sibling macro cells.
The area planner derives these ranges for each macro
cell in the form of “aspect ratio bounds.” These aspect
ratio bounds, generated by the area planner, have the
objective of ensuring that the floorplanner has the
maximum legal flexibility in macro cell shapes and
that a legal floorplan exists at each hierarchy level.

Using the number of inputs and outputs of each
macro cell, the area planner computes a wiring buffer on
each edge of the cell. This is a specific number of wiring

Placement constraints The area planner analyzes the

43%
__

Junction, NY, private communications, 1990-1994.
*W. R. Heller, IBM Muoelectronics Division, East Fiahkill facility, Hopewell

tracks alongside each edge that are to be kept free and
clear by the floorplanner for use as a wiring channel
when it places the macro cells within a parent cell.
These channels are needed for the wiring program to
gain access to the inputs and outputs of each macro cell
and to help provide connections between the macro
cells. The information about the wiring buffers is
provided to the floorplanner as one of the inputs that
influence its operation.
Area adjustment In general, the requirements for a
chip design are to fit it on the smallest available die
size for which there is a chip image in the library. The
area planning tool can be run in a mode in which it
determines the smallest estimated required size of the
top-level cell in the hierarchy (Le., the whole chip). The
user can then select the next largest die size from the
library. This results in additional placement and wiring
space at the top hierarchy level. The area planner has
an area adjustment function that propagates this space
down the hierarchy, so that the benefit of the extra
space is seen at all hierarchy levels.

Update area plan The update area planning function
makes adjustments to the initial area plan using feedback
from floorplanning, placement, and wiring. This function
performs actions that are similar to those in early area
planning; however, they are modified to use feedback
rather than to generate initial plans.

Timing planning
The second major component of the design planning
capabilities of HDP is the timing planning function. This
function deals with planning the fourth dimension of the
chip design, delays and timing, across hierarchy levels. The
data provided to the function consist of the delay models
of the leaf-level elements and the timing assertions
(constraints) specified at the primary I/Os at the top level
of the design. Using this information, the timing planner

Apportions the permissible delays across various
hierarchy levels, taking into account intrinsic library
cell delays as well as net delays.
Generates timing assertions at the boundaries of the
various macro cells and capacitance constraints on
the nets across the hierarchy, such that if all of these
constraints are met, the timing requirements of the
design will be met.

The hierarchical timing planner enables these timing
optimization functions by generating the capacitance
constraints (or targets) on the nets as well as the timing
assertions at the macro cell boundaries, thus allowing the
timing-driven floorplanning/placement/wiring runs to be
carried out for each macro cell in isolation from the others.

J. Y. SAYAH ET AL. IBM J. RES. DEVELOP. VOL. 40 NO. 4 JULY 1996

Note that the use of net weights during placement
and wiring [8] is perhaps the most popular technique of
timing-driven physical design in the EDA industry. Net
weights are priority numbers generated for the nets on the
basis of their relative timing slack values; these weights
are used to influence physical design decisions to help
reduce delays on nets that are relatively critical. HDP
uses the more powerful technique of net constraints rather
than net weights to drive physical design, since the former
allows a much more accurate and effective fast evaluation
of the timing quality of a design, even as the physical
design process is being carried out.

The hierarchical timing planning function contains
two algorithms described briefly below: HITARGET and
HIBUDGET. The primary difference between them is as
follows: The former works across the hierarchy, processing
all nets and cells in the hierarchy simultaneously; the latter
takes advantage of timing abstractions for the macro
cells to process the hierarchy a portion at a time and
propagate constraints and estimates across different
portions up and down the hierarchy.

HITARGET This is a target-generation algorithm that
processes the timing assertions on a design and generates
capacitance targets (upper-bound constraints) on the nets
in the design such that if the individual capacitance targets
are met by placement and wiring, the resulting design will
meet the overall timing requirements. Target generation
algorithms have been developed and published in the
referenced literature [8-101 and are thus not described in
detail here. One of the key enhancements in HDP is that
it uses a truly hierarchical approach to target generation,
in which net capacitances are apportioned not only among
different nets at the same hierarchy level, but also across
net segments that are connected to one another through
ports of macro cells across the hierarchy. An algorithm
using a similar approach was recently reported in [ll].

HIBUDGET This algorithm, which is an extension of
HITARGET, uses timing abstractions to break down a
very large hierarchical netlist into portions that can
be processed one at a time. It makes use of timing
abstractions for macro cells, both to propagate estimated
“delay demand” information for macro cells up the
hierarchy and to propagate asserted delay constraints
down the hierarchy.

Integrated net analysis functions
A net in the HDP environment is basically a collection
of ports. In a hierarchical design, a port has two
nets-internal and external. An input port is a driver
for its internal net and a receiver for its external net.
Similarly, an output port is a receiver for its internal net
and a driver for its external net. A bidirectional port is

IBM J. RES. DEVELOP. T iOL. 40 NO. 4 JULY 1996

both a driver and a receiver for both the internal and the
external nets. A routing on a net may be specified by
performing global wiring or detailed wiring in HDP, or by
loading it from the persistent design database for wires.
For the purpose of analysis, the wiring on a previously
unrouted net is estimated using a Steiner tree. If a net is
only partially wired (i.e., all its ports are not topologically
connected), HDP uses “Steiner-like” segments to complete
the wiring. The analysis of a net consists of two main
steps:

1. Extraction of the electrical RC network from the physical
routing Each segment in the physical routing is
modeled as a distributed RC element. A receiver
port with no internal net is modeled as a lumped
capacitance obtained from the timing (DCL) rule of
its cell or from an abstraction. The capacitance for a
receiver port with no external net is obtained from the
timing assertion constraints used by EinsTimer.

the design data model The effective load presented by
an electrical RC network on its driver port can be
modeled fairly well by a II-model consisting of two
grounded capacitors joined together by a resistor [12].
The solution of the electrical RC network for a net at a
certain level of the hierarchy begins by computing the
II-model at each of its driver ports, given the II-model
at each of its receiver ports. Therefore, the very first
step is to ensure that these II-models have been
computed (or updated) at each of its receiver ports.
This is done by “walking through” the hierarchy
until a receiver port is reached with either no internal
net or no external net. At the request of the user,
the RC delay, voltage drop, or resistance for each
driver-receiver pair of a net may also be computed.
The RC delay could be a simple Elmore delay [13] or
it could be obtained by using the asymptotic waveform
evaluation (AWE) method [14]. In this case, every
distributed capacitance is replaced by a lumped
capacitance of half its value at either of its two
nodes in the electrical network.

2. Solving the RC network and storing the results back in

In addition to the choice of delay computation methods,
several options are available to the HDP user for
controlling net analysis. The user can select the type of
analysis to be performed (RC delay, resistance, or voltage
drop for each driver-receiver pair), and the mode of
analysis (extract the network from its routing, i.e., step 1
above, or model all wires as having zero length, which
helps in some cases when the user wants to know how
fast the design can run with zero-length interconnections.
The user is also given a choice of different Steiner tree
heuristics and an “adjust factor,” which is used to increase
the lengths of all of the Steiner tree segments. 439

J. Y. SAYAH ET AL.

Integrated timing analysis
The primary mechanism for supporting all timing closure
activities in the design planner is a set of functions
referred to as the timing services layer. This layer provides
a comprehensive array of services that can be broadly
classified into three categories, described in detail below.

Tight integration between HDP and incremental timing
analysis
The results of tight integration between HDP and an
incremental timing analysis tool (EinsTimer in HDP) may
be viewed as a system that consists of two communicating
processes cooperating to deliver accurate analysis results
whenever physical design changes are made either
automatically or manually. For example, when the
placement of a cell is changed and the new slack at a
port on the cell is requested, this request is passed to
EinsTimer by HDP. EinsTimer, in turn, asks HDP
to supply the delay values and loading of those
interconnections that must be rerouted because of the cell
move. These new interconnection delay and loading values
are used by EinsTimer, and the new slack is reported back
to HDP. This form of tight integration between a PD
system and a timing analysis tool has many benefits. From
the perspective of facilitating timing closure, the three
most important are

To ensure that the PD environment uses the same
yardstick to measure timing closure as is used by the
designers of the front-end logical design. This eliminates
mismatches in timing analysis results between the front
end and PD.
To permit automation tools and manual changes made
in the PD environment to have in-memory interactions
with the timer. This permits incremental PD changes to
be evaluated using fundamental timing metrics (e.g.,
slack, arrival time), rather than derived metrics such as
capacitances, RC delays, and wire lengths.

between PD and final sign-off, in a manner similar to
that used for IBM CMOS 5 ASICs.

As in the first item above, to eliminate mismatches

Targeted timing estimation services
Tight integration of the form described above is useful in
many situations. However, several automatic optimization
methods exist that must support a very high sustained rate
of analysis queries. The amount of time spent in inter-tool
communication and accurate delay and timing calculation
in the above scenario proves to be too expensive for use
in the inner loop of these optimization methods. One
example of such optimization methods is simulated

potentially result in several timing analysis queries. This
demanding rate of timing queries is not sustainable
by even an extremely fast incremental timer such as
EinsTimer. Therefore, the timing services layer in HDP
provides some timing estimation tools that can be used
in the inner loop of very demanding optimizers such as
simulated annealing.

Visualization aids for timing results
Timing analysis typically produces very voluminous
timing reports. While these are extremely useful from the
perspective of comprehensive analysis of a design, there is
a critical need to provide “hot-spot’’ identification tools,
which are embedded in the physical design system and
allow the designer to concentrate on problem areas
without sifting through substantial amounts of data. HDP
provides a very powerful set of such timing visualization
tools, which support “timing closure” activities. One
example of a visualization tool is illustrated in Figure 5 .
This tool provides a detailed pictorial breakdown of delays
(load-independent cell delay, load-dependent cell delay,
interconnection delay), transition times, etc., along
the worst-case paths in the design. Each of the delay
components is back-annotated to the corresponding design
object (cell, net, etc.). A user who wants to perform
interactive timing analysis and correction during and after
the physical design phase has simply to bring up this tool,
click on the offending design entity, and make changes to
it in order to correct timing. This feature has proved to be
an invaluable aid to designers.

In-place optimization
ASIC design systems that force a complete separation
between front-end (logic synthesis) and back-end (physical
design) tools almost invariably generate unsatisfiable
timing constraints on the back-end tools in the first
design pass. This has been the experience of designers of
0.5-pm ASICs, and is likely to continue into the future as
fabrication technologies become more aggressive. The
primary reason for this situation is that timing constraints
generated by the front end and passed down to the back
end are based on a timing analysis performed by the
front end, using rough or rule-of-thumb estimates of
interconnection delay and loading. These estimates are
often inaccurate by a large margin because the geometry
of nets cannot be accurately predicted before placement is
performed. The errors are especially large in ASIC designs
(as opposed to structured and hierarchical microprocessor
design), because such designs tend to be flat, making it
difficult to bound the geometries of nets in the netlist.

Such errors in interconnect estimation were of little
annealing-based placement. The annealer in HDP makes consequence in fabrication technologies where the
of the order of 10000 moves per second on a RISC interconnection delay and loading were a very small

440 System/6000@ Model 590 CPU server. Each move can percentage of the critical path delay. However, in 0.5-pm

I technologies, this component of the path delay can be as
large as 40% or more of the total path delay. Therefore,
timing constraints produced on the basis of the incorrect
interconnect estimates tend to yield unattainable timing
targets.

One of the techniques for overcoming this problem
of incorrect estimations resulting in unattainable timing
constraints is to iterate between placement and logic
synthesis, and to use the results of placement in one
iteration to improve on the estimation and constraint
generation for the next iteration. This technique is rather
time-consuming and leads to very long ASIC design
times, especially for large, flat submicron designs.
Additionally, there is no guarantee that the iterations will
converge. We have provided an alternative technique for
obtaining timing closure in such aggressive designs by
integrating some simple logic synthesis operations into
the physical design environment. Broadly speaking, all
synthesis operations that result in netlist-preserving
changes are candidates for integration into the physical
design environment. Some examples of candidate
operations are gate sizing (also known as power-level
optimization) and buffer insertion. Current HDP
implementations include gate sizing functions.

Gate sizing in HDP can be invoked manually or by
any of an assortment of new automatic heuristics. The
automatic heuristics are a combination of local “greedy”
approaches and global techniques. The purpose of the
automatic function is to resize gates in critical portions
of the design in order to eliminate slack, slew, and
capacitance limit violations while minimizing placement
perturbation. The heuristics are extremely fast, working
in a fraction of the time required to iterate between
placement and logic synthesis. Our experience has been
that they are always successful in eliminating negative
slack and capacitance limit violations, and are able to
correct a very large percentage of slew violations in the
design. Once the resizing is completed, any new resulting
physical violations such as overlaps can be removed
in the rich physical design environment of HDP.

In summary, by providing the capability to actually
make small logic changes in a placed design without
leaving the physical design environment, we have been
able to achieve timing closure on ASIC designs having
constraints that are essentially impossible to satisfy by
performing purely physical changes. Designers have found
this feature in HDP to be invaluable for meeting timing
closure requirements.

I
Global wiring

Global wiring, in the context of design planning as
addressed in this paper, is an analysis tool that creates
information used to help make better design decisions.
The output of the global router is used to display

IBM I. RES. DEVELOP. VOL. 40 NO. 4 JULY 1996

congestion maps, as well as guide-pin assignment and
wire reservation. Global wiring can also be used for
early net analysis and timing prediction.

The image on which the router works consists of a
checkerboard pattern of tiles on each of the physical
layers. Wires, blockage, and capacity are separately
accounted for on the boundaries of each tile and within its
interior. The representation of these quantities inside the
tile as well as on its boundary makes the results of global
wiring less sensitive to tile size.

Global wiring consists of several iterations. Each
iteration involves evaluating the current solution, selecting
nets for rerouting on the basis of that evaluation, and
finding alternative global paths for the selected nets.
Iterations stop whenever a user-specified limit is reached
or the worst local congestion is less than a target congestion.

The first iteration quickly approximates a minimum
Steiner tree for all user-selected nets. Layer assignment
and L-flipping are performed to even out congestion. The
Steiner routing provides an initial estimate of congestion
and a basis for subsequently constraining the length of
the net relative to its capacitance target. Paths that are
contained in tiles or that cross tile boundaries having the
worst congestion are selected for reordering during an
iteration. These paths are sorted so that paths that tend
to occur in regions with a high congestion gradient are
visited earlier in an iteration.

The second and subsequent iterations involve rerouting
a path using a cost-driven maze runner. Before each
path is rerouted, the existing path is used to set cost
parameters. Cost parameters are set in order to make
finding a path similar to the existing one very expensive
and a path that improves on the characteristics of
the existing path less expensive. Some of the path
characteristics considered are congestion, length, and
via count.

When a parent cell has child cells that in turn have
hierarchy, a special image is created if global wiring is
being used in conjunction with pin assignment or wire
reservation. Recall that area reservation is used to
determine the area of a cell and its ceiling. The ceiling is
used to reserve the wiring capacity of a cell from the first
wiring layer to its ceiling. Normally, global wiring at the
parent cell would see the reserved wiring capacity of a
child cell as a blockage.

the ability to recognize two levels of the hierarchy at a
time. This provides more accurate wiring for nets that
cross hierarchical boundaries. Furthermore, the global
wiring function places wires on individual layers as it
proceeds. Since the electrical and geometric properties
of wires can vary substantially by layer, this ability
provides better planning and estimation capabilities.

Global wiring in HDP offers advantages in that it has

1. Y. SAYAH ET AL.

Estimation and block-level (early) floorplanning

Moving beyond these wirability-driven cell port assignments,
HDP provides a set of port and I/O assignment functions:

I/O assignment functions with “legal” placement on I/O
drivers, in locations designated for I/O cells on a chip
image, if such constraints exist.
Bottom-up assignment services to allow the propagation
of the implementation of child cells.
Early macro cell pin assignment functions to determine
vicinities of cell ports after a floorplanning step. These
“port areas” can be used to further constrain the
wirability-driven port assignment process.

The advantage of macro pin assignment is again that it
has the ability to recognize two levels of hierarchy at a
time. The positioning of a macro pin is determined by
examining the macro child pins to which a macro pin is
connected, as well as the pins of other cells at the same
level of hierarchy as the macro. Blockages inside the
macro are considered as well as the blockage outside the

I I macro. Other considerations include the width of the wire
accessing the pin and the congestion due to other wires
in the vicinity of the pin. These considerations provide
higher confidence that the pin will be assigned without

In addition, the relationship of the pin with other pins
in the net is considered to provide pin alignment.

Achieve (physical design) timing closure

Wiring and post-wiring ECs and final timing corrections shorting to a blockage and will be accessible during wiring.

To final timing verification and checking

Front-to-back hierarchical design planning methodology.

Piniport assignment
Detailed macro cell pin assignment determines the
locations of pins belonging to cells with hierarchy. Pin
assignment can be performed on the pins of the child cells
of a selected parent cell or on the pins of the parent cell
itself if it is not the chip.

On the child cells, a pin location is chosen to
correspond as closely as possible to a point on the
boundary of the child cell crossed by previously generated
global paths for the net owning the pin. The global paths
are optimized to avoid congestion and minimize length.
A pin assignment is also chosen to optimize the alignment
of pins within the same net.

In addition to pin assignment, there is a placement
buffer that expresses an approximation of the free space
needed on an outside boundary of a cell in order for its
pins to escape. Normally, the placement is close to being
finalized before pin assignment, so the buffer is used to

442 make small adjustments only.

Power and clock routinglplanning
Power routing is used to establish a network of metal
interconnections to distribute power from source to sink
points. The current methods of establishing this network
assume that the designer has some basic pattern in mind
for the power network. In practice, this pattern has
been a grid of horizontal and vertical lines occurring
on horizontal and vertical wiring layers, respectively.

pattern as an input, the router modifies the location
elements of the pattern with respect to the source and
sink points. This is done in a manner not much different
than fitting a curve (pattern) to a set of data points
(source and sink points).

pattern is implemented to be consistent with a set of
constraints. The constraints include limits on the width
of the metal, how the metal should be terminated, the
distance by which the center of the metal can vary from
the center of its pattern element, and the circumstances
under which the metal can be interrupted. The pattern is
implemented in the presence of blockages with a simple
shape-based maze runner.

The implemented pattern comprises the bulk of the
metal network of the power distribution system. In
practice, this metal network has also been sufficient to

The final phase of power routing is planning. With the

Once the planning is done, each of the elements of the

J. Y. SAYAH ET AL. IBM J. RES. DEVELOP. VOL. 40 NO. 4 JULY 1996

connect all of the source and sink points. If not, the power
router offers additional capabilities for connecting any
unconnected source and sink points with the metal
network corresponding to the pattern.

to the power router; it is a rectilinear polygon whose
horizontal and vertical elements may occur on different
layers. Often, a ring occurs inside a child cell. When this
happens, the pattern specified to the power router is
interrupted at the ring and not implemented inside the
ring. Hence, a ring prevents any power implementation
from occurring inside its borders. It also prevents source
and sink points existing inside its borders from influencing
the power planning.

With hierarchy, the power routing implementation
was designed to implement and plan all of the power
distribution from the top cell of the hierarchy down to the
bottom cells. It is assumed that the same pattern is used
throughout the hierarchy. If this is not the case, rings are
entered into the cells not following this pattern. Except
for connecting into them, no further implementation or
planning is done inside these rings or within any other
cells occurring inside the rings. After power planning has
been done, representations of the power at the top level
cell are placed within all ancestor cells, so that design of
these cells can proceed independently of their parent
cells, but with knowledge of the power at the top level.

The advantage of power routing in HDP is that it
recognizes hierarchy in all of its operations and permits
approximations of the power to exist during early
planning. The power router can implement a complete
power network from the chip level that is valid at a given
level of the hierarchy. On the other hand, if it is desired
to keep the power network outside the boundaries of a
cell somewhere in the hierarchy below the chip, it is
possible to do so by implementing rings inside the cell.
The early approximation of the power permits other
planning activities to proceed while taking into account
some form of the power network.

ChipBench, through the use of the clock optimization
function and HDP, supports clock planning for balanced
wiring. The results of the process are fed to the detail
wiring program. A companion paper [15] discusses the
details of these functions.

A ring is a special object that signals different behavior

Performing PD using HDPKhipBench
This section discusses the use of HDP capabilities in a
general front-to-back methodology setting (see Figure 3),
as well as its application in a physical design setting
(see Figure 4).

General design planning methodology
HDP is designed to provide the enabling technology for a
general methodology based on timing-driven hierarchical

IBM J . RES. DEVELOP. VOL. 40 NO. 4 JULY 1996

One-level expansion shown

0 N-level hierarchical cell with ASIC design style a Two-level hierarchical cell with ASIC design style

c? Hierarchical cell with ASIC design style

a Hierarchical cell with custom design style implementation
0 Hierarchical cell with early specification

[7 Library (leaf) cell
(no detail logic implementation)

(e&, random logic macros)

(predetermined floorplan boundary)

.~

Hierarchical design including entities with mixed-level implemen-

design planning. As shown in Figure 6, this begins with a
high-level representation of the design, as in structural
and behavioral VHDL (verification hardware description
language), or Verilog@, and introduces physical design
planning early in the design cycle. In this process,
HDP is used as an early physical design estimator and
floorplanner, interacting with high-level synthesis. For
example, in an ASIC design environment, HDP interaction
with the main vendor synthesis tool, Synopsys Design
CompilerTM, is facilitated by the Floorplan ManagerTM [16]
or an equivalent enabler application. Note that the
interaction between HDP and BooleDozerTM [17] (an
IBM-EDA synthesis tool), occurs in a natural design flow,
with no intermediate hierarchy management facilitator
required, since both internal IBM front-end and back-end
environments use the same data representation and the
common EinsTimer timing engine. As a design progresses,
HDP provides planning, analysis, and implementation
support for the mixed-level design, incorporating entities
that are at different and varying degrees of realization.
This assortment of implementation levels, illustrated in
Figure 7, is handled in a seamless fashion, since the HDP
environment is capable of carrying the design to any
required level of detailed implementation, including the
phases required to generate the actual layout data. This
environment also permits the mixing of automatically

J . Y. SAYAH ET AL.

Early in-context hierarchical area and porosity estimation by cell

planning step sequence.

444

J. Y. SAYAH ET AL

generated models and asserted (or manually entered)
models.

As illustrated in Figure 6, the hierarchical physical
design component of the methodology (see Figure 4) and
its underlying HDP functional elements are integral to
this overall design planning flow. The physical subset of
the methodology can be viewed as planning and physical
implementation performed in an ASIC supplier design
center, while the front-end elements are carried out in a
customer design center performing the high-level and logic
design. The use of the same planning technology is key to
ensuring first-pass success in hardware implementation.
We envision that more physical design implementation
steps will be executed in ASIC customer design centers
to ensure timing closure and shorten the time to market.

Physical and timing planning, as well as the budgeting
phases of the methodology, are prevalent throughout the
process (see Figures 4 and 5). Figures 7-11 illustrate the
methodology described in this section and show the state
of the hierarchical design after the application of the
several functions in HDP. Starting with timing constraints
at the boundary of a chip (generally in the form of arrival
and required arrival times and clocking requirements), the
budgeting process allocates delay budgets and provides
for propagated assertions to hierarchical child entities
at the option of the designer. This process is used in the
synthesis domain to drive the detailed netlist generation.
In the physical design evaluation or implementation
phases, it is used to drive and assist the floorplanning
or placement functions. Timing abstractions for any
hierarchical design entity can be generated and used in
the timing analysis or in timing-driven applications at any
stage of the implementation of a design (Figure 11). All
processes involving timing are tightly integrated and are
based on the same timing technology as that available in
EinsTimer.

In parallel, physical design planning uses available early
or detailed implementations to allocate physical space
to the hierarchical structures. This allocation is three-
dimensional, since it involves the allocation of wiring
spaces. As an integral part of this wiring area planning,
power and clock routing requirements are accounted for,
and early implementations are performed as needed. As
does its companion timing-budgeting process, the physical-
structure planning process can operate with different
granularity levels, from asserted space requirements to
derived detailed requirements.

The multidimensional physical- and timing-planning
processes are used to generate constraints for client
applications as well as to define the elements that allow
for encapsulated implementations of different hierarchical
entities. All planning and encapsulation capabilities are
available and operational in the context of the full design
hierarchy. This in-context function set includes a full

IBM J . RES. DEVELOP. VOL. 40 NO. 4 JULY 1996

repertoire of port assignment functions that cover the
spectrum from chip I/O assignments to wirability-driven
final detail macro assignments (Figure 9). The latter
operates in concert with wire- and path-reservation
functions, which are also driven by the same global wiring
engine. Also, the clock and power structures are planned
during the planning processes. The planning of the
clock typically involves a different rebuild of the clock
tree and results in netlist changes. The planning and
implementation of the power supply may involve the
activation of signal integrity and verification functions. The
clock and power planning capabilities are functions that
operate and optimize hierarchically within a design context.

HDP provides an integrated implementation of
detailed placement at the detail implementation stage
of a hierarchical design entity. The placement and
floorplanning methodologies are fully integrated and
are supported by the incremental timing capability of
EinsTimer, providing active critical path monitoring during
the placement process. During the execution of the overall
timing-driven, hierarchical, physical design phase of our
recommended methodology, clock optimization and other
support functions such as scan-chain reconnection can be
executed. We also propose the incorporation of data-flow
and data-path element support as an integrated extension
to the proposed placement methodology.

implementation constraints are generated and passed to
ChipBench routing tools or to third-party vendor wiring
tools. Throughout the design flow, designers can bring up
detail implementations that could have been carried
out in an external environment. This includes the
accommodation of custom implementations of subsets of
the design, as well as accessing electrical analysis results
generated outside our tools. Such interoperability in
support of this design implementation methodology
is facilitated by our repository and by the related
environment services. The environment services include
ports to existing and emerging industry standards.

Integrated analysis functions, including timing
analysis, can be executed at any stage of planning and
implementation in HDP. The timing analysis is supported
by net analysis functions that take combinations of
available implementations, including the automatic
utilization of the most detailed section of a hierarchical
net, and combine them with the necessary or available
estimations, or the global path. For detailed timing
verification, EinsTimer can be fed the results of the timing
extraction as generated by HDP. In addition to advanced
analysis, HDP provides timing correction capabilities
(see Figure 5). The HDP functions deal with detailed
implementation and mainly involve the repowering of
cells, while synthesis actions may involve the resynthesis
of a block or a collection of blocks.

In the postplacement phase, performance and

IBM J. RES. DEVELOP. VOL. 40 NO. 4 JULY 1996

k Design shown after (in-context) timing planning steps:
- (In-context) physical planning steps
- Initial hierarchical clock planning
- Timing-abstraction generation
- Port assertions generation at child cells
- Net capacitance generatiodbudgeting
- Port area generation for child cells

y : , Original top-down cell port assignments
(with port area based on floorplan only)

of port area based on target generatiodbudgeting
C 3 Top-down cell port assignments with modifications

Design after in-context timing planning steps in preparation for
final detail PD steps on individual hierarchial entities.

Engineering change order (ECO) capabilities are
available and applicable throughout the process. In-place
optimizations can effectively take place at any stage of
the process. The level of engineering changes that can be
supported ranges from the issuance of an ECO command,
to automatic detection of a netlist change, to the re-
implementation of a large hierarchical entity and its
seamless re-imbedding in the rest of the design.

placement timing closure methodology, starting with a
two-level hierarchical situation.

At this point, we take a closer look at the hierarchical

Two-level (fiat) placement timing closure methodology
The placement timing closure methodology provides a
general, customizable strategy for achieving timing closure.
It has been used with considerable success by HDP users
in designing high-performance ASICs, and has improved
timing closure and reduced turnaround time by more than
70%. The methodology has been exercised on chips having
several million transistors and more than 250000 placeable
objects (corresponding to about one million gates),
including large blocks such as growable array structures.

The overall methodology consists of three stages. The
first stage creates an optimal placement of the large
blocks, and derives an effective set of net-capacitance
constraints for timing-driven placement. The large blocks

J. Y. SAYAH ET AL.

Alternative execution modes of timing-driven operations: in-
context execution with possible use of timing abstractions (top)
and stand-alone (bottom).

are kept fixed in location during and after this stage. The
second stage performs detailed timing-driven placement.
The third and final stage performs optimization of scan
chains and of the clock-distribution network, along with
removal of subsequent overlaps.

The first stage iterates between region placement and
net-capacitance target generation. All runs of region
placement except the first are timing-driven and use the
capacitance targets generated in the previous iteration.
The cluster sizes are set to be very small, so the locations
are very close to those of an overlap-free placement.
The iterations dramatically improve the feasibility of the
generated targets, resulting in typical improvements in
critical path delays of 10-30% of the cycle time. The
strong correlation in timing between the output of region
placement and the final overlap-free placement allows one
to test for timing closure without removing overlaps. This
improves the time per iteration by more than 50%. The
timing is usually tested after a trial in-place optimization

446 in HDP has been performed. The iterations stop when

J. Y. SAYAH ET AL.

timing closure is achieved, or when progress toward it
ceases.

The second stage performs low-temperature, simulated-
annealing, timing-driven detailed placement on the initial
placement from the first stage. This is done in two phases.
The first phase uses only net-capacitance constraints and
restricts the range of movement of objects from their
initial location. This helps minimize overlaps while
maintaining the optimization achieved in the first stage.
The second phase runs without these move constraints,
but with capacitance constraints as well as critical paths.
This phase marks several short annealing runs interspersed
with the updating of timing-critical paths. This typically
improves the delay on the worst path by another 10%.

The final stage performs optimizations of the scan
chains and of the clock distribution network. This is
followed by removal of any overlaps created by clock
optimization, which is done with a very low-temperature
simulated-annealing run of timing-driven detailed
placement to preserve timing closure.

Hierarchical timing closure methodology
HDP allows for a wide spectrum of choices for processing
the design, ranging from completely flat placement and
wiring at one extreme to processing across multiple levels
of hierarchy at the other. If a particular design is small
enough to be processed comfortably without partitioning,
the designer may choose to process the design flat; in this
case, the placement methodology of 4D planning is applied.

However, in many situations a hierarchical approach is
more effective, and sometimes it is necessary. The criteria
include the size of the design, the mix of critical and
noncritical components, the level of reuse of high-level
components, and the existence of a mixture of design
styles across different design partitions. For example, if
some partitions contain random standard logic while
others contain structured-custom logic, it may be more
effective and practical to apply different placement
algorithms to different portions.

The placement timing closure methodology can be
readily adapted to any level of the hierarchy, using the
region placement, floorplanning, or detailed placement
function with the hierarchical timing planning functions
described in the subsection on 4D planning. This extension
forms the core top-down hierarchical timing closure
methodology. The last stage of the placement
methodology, which performs scan-chain and clock
optimization, is applied only at the very end. The modified
methodology using the floorplanner is described below.
If placement constraints such as row structures are to be
observed, the detailed placement tool is used. Region
placement may be used in the first stage if the design
contains a large number of small cells, with only a few
large unplaced blocks.

IBM J. RES. DEVELOP. VOL. 40 NO. 4 JULY 1996

Top-down hierarchical timing closure methodology
The modified, top-down methodology consists of the
following steps:

1. If the design contains only leaf-level elements, apply
the placement timing closure methodology.

2. Find a good set of targets: Iterate between quick
floorplanning and timing planning to generate
capacitanceiRC targets on nets and delay assertions on
hierarchical blocks, until timing closure is achieved or
progress toward it ceases. All but the first floorplanning
runs are timing-driven, based on net-capacitance
targets. These runs are kept short by permitting
overlaps, as long as the overlaps are small.

3. Perform the final timing-driven floorplanning to create
an overlap-free floorplan. Use both timing-driven
features, and perform several short, low-temperature
runs interspersed with the updating of critical paths:
The floorplanner also creates port areas for unassigned
macro ports to drive the design at the next level. Finish
with timing planning to refine timing budgets and
create boundary timing assertions for all child blocks.

4. Recursively apply the top-down hierarchical timing
closure methodology to every child macro.

The overall hierarchical timing closure methodology is as
follows:

1. Perform the following preprocessing steps:
a. Starting with the logical hierarchy, carry out

automatic or manual repartitioning of the design
(if desired) to obtain a physical hierarchy (see the
subsection on partitioning).

b. Perform quick floorplanning and placement over the
hierarchy (this step is optional; it provides a better
starting point for timing planning).

2. Perform bottom-up timing abstraction generation (see
the subsections on 4D planning and integrated timing
analysis).

3. Apply the top-down hierarchical timing closure
methodology. If timing closure is achieved, exit.

4. If significant progress has not been made toward timing
closure, selectively flatten the problem blocks, and
either repartition them or leave them flat. Return to
step 3 (in all cases).

Summary of HDP timing closure methodology
The driving factors in our proposed design methodology
are physical design and timing closure. HDP brings
together the components of physical structure
planning, floorplanning and detailed placement, target
generationibudgeting, and incremental timing analysis to
achieve timing closure. By being able to operate on mixed-
level designs, and by taking advantage of logic estimation

IBM J . RES. DEVELOP. VOL. 40 NO. 4 JULY 1996

and emerging front-end floorplan data management
technologies, we are effectively blurring the artificial
boundaries between physical design and high-level design.

The goal of this timing closure methodology is to
achieve closure by the end of the placement phase, so that
first-pass routing success can be effectively achieved. HDP
timing closure methodology successively refines the timing
targets and implementation constraints, moving the design
in a process characterized by rapid timing convergence.
HDP timing closure methodology trades off area, wiring
length, alternative implementation, wirability, congestion,
and other design constraints while invoking EinsTimer
incrementally during this convergence process. As design
entities are sent to a wiring tool that observes the
constraints generated by HDP, the wired designs
are guaranteed to satisfy the timing and electrical
requirements.

The success of this methodology within the context of
large designs is ensured by a wide repertoire of system
services. In HDP, the basic mode of operation is selective
and incremental access to a sufficient amount of design
and implementation data on demand. The use of
abstractions and controlled access to detailed data is
achieved while shielding the user from the burden of
explicitly managing the propagation of implementation
effects across levels of the design hierarchy.

Concurrent launching of back-end PD processes
One of the key components in supporting an advanced
design planning methodology is to allow the concurrent
activation of functions on hierarchical entities. In a typical
utilization scenario, a designer is capable of starting (from
within HDP) back-end placement and wiring functions as
separate processes on entities below the chip level. This
permits concurrent, side-by-side design on the same chip
by one or more designers. All of [he tools shown in Figures
1 and 2 can be activated concurrently if the state of the design
permits. HDP and the integrated ChipBench environment
manage all required locking, data integrity controls, and
any necessary data exchanges among interacting tools.
Furthermore, all data propagation among hierarchical
design entities is performed without intervention from the
designer. Future extensions of the environment services
will provide the user with more scenario and control
capabilities, allowing for further exploitation of the
network-centric computing paradigm.

Structured-custom extensions
The ChipBench environment offers structured-custom
extensions which provide an active link between
ChipBench tools (primarily through HDP) and IBM-EDA
CircuitBenchTM tools (primarily through the layout-editing
environment GYM). Passive links with third-party vendor
tools are available through a GDSII-based interface that

J Y. SAYAH ET AL.

can be complemented by constraints exchange using the
Physical Design Language (PDL) and the ECO facilities
available in ChipBench. Both elements of bottom-up
(full-custom) and top-down (semi-custom) design
methodologies are supported in the current release of
ChipBench. Physical design constraints are exchanged
between the interacting tools. ChipBench supports
continuous activation and interaction between HDP and
GYM. HDP can currently pass outline and pin location
constraints to GYM. Physical design abstractions are
automatically generated, allowing the seamless integration
between editing a library entity and applying place and
route tools on its parent.

Design examples using HDP timing closure
methodology
The effectiveness of our flat timing closure methodology
in achieving timing closure on large, flat timing-critical
designs is demonstrated in this section with two typical
designs that were successfully completed with the
methodology. Examples 1 and 2 below track the successive
improvement in the worst timing slack in the designs as
they proceeded through the process.

Design example 1
1.5M-transistor design (CMOS 5L).
26 large GRAs automatically placed.
480 I/Os.
10-ns cycle time.
Two iterations of region placement and target
generation followed by timing-driven
floorplanning/placement, in-place optimization, overlap
removal, and user-assisted path fixing.

imDrovement over
T iming s l a c k

p r e v i o u s s t e p
(n s)

N e t - l e n g t h - d r i v e n -
C a t a r g e t - 1 .7

t ' i i v e n (a l l n e t s) +
t a r g e t g e n e r a t i o n

C r i t i c a l t i m i n g p a t h s +
c a p - t a r g e t - d r i v e n

1 .0

I n - p l a c e o p t i m i z a t i o n +
over lap removal

1.8

U s e r - a s s i s t e d p a t h f i x i n g 0.3

Total improvement 4.8 ns (m e e t s t i m i n g
i n t i m i n g r e q u i r e m e n t)

Design example 2
1M-transistor design (CMOS 5L).

300 I/Os.
17-ns cycle time.
Three iterations of region placement and

32 large GRAs automatically placed.

target generation followed by timing-driven 448

J. Y. SAYAH ET AL.

floorplanning/placement, in-place optimization,
and overlap removal.

improvement over
T iming s l a c k

p r e v i o u s s t e p
(n s)

N e t - l e n g t h - d r i v e n -
C a t a r g e t - 1.3

8 i i v e n (a l l n e t s) +
t a r g e t g e n e r a t i o n

C r i t i c a l t i m i n g p a t h s +
c a p - t a r g e t - d r i v e n

I n - p l a c e o p t i m i z a t i o n +
over laD removal

0.6

1.4

Total improvement 3.3 ns (mee ts t im ing
i n t i m i n g requ i remen t)

The examples show that our tightly integrated timing-
driven capabilities lead to substantial improvements over
net-length-driven physical design. Furthermore, the
integration of these capabilities in one design environment
permits the user to perform successive timing closure steps
without having to incur the overhead of switching tools or
execution domains.

Traditional synthesis bases its predictions of timing
on statistical connection-length estimates. While such
estimates may be accurate on the average, they have
potential for leading to poor timing estimates. This
phenomenon was not evident until designs became large
while feature sizes became smaller and wire-dependent
delays became a factor. Our experience has been that the
slack predicted by synthesis is generally overly optimistic.
Accounting for the effects of physical design early in
the design process should substantially reduce the
potential discrepancy between predicted and achievable
timing.

The majority of the designs that have been processed
to date through HDP and ChipBench have used a flat PD
methodology, primarily because of our system's ability to
process a flat physical design efficiently and the growing
popularity of the ASIC-plus-cores design style. However,
as design sizes and functions have grown and the need for
planning the design in the front-end domain has increased
for high-end ASICs, we are witnessing more designs that
must be processed hierarchically in PD.

Summary and future directions
In this paper we have described the Hierarchical Design
Planner (HDP), which provides a combined environment
for hierarchical physical design and for both interactive
and automatic design planning. HDP includes a partitioner
that can create a physical hierarchy from a design that
either is flat or has a logical hierarchy, and a floorplanner
with many advanced features. Both are tightly integrated
with EinsTimer to provide true timing-driven capabilities.
They are capable of handling many other constraints to

IBM J. RES. 1 3EVELOP. \ 70L. 40 NO. 4 JULY 1996

make both the partitioner and the floorplanner truly
versatile tools. HDP also comes with advanced checking
capabilities and a global router that provides valuable
feedback to the floorplanner and also drives detailed
routing. Because of the tight integration of floorplanning
and timing, HDP provides a natural environment to
achieve timing closure through quick iterations of
design scenarios in complex designs.

Using HDP within advanced ASIC design centers,
to activate and control a truly integrated timing-driven
methodology in the setting of IBM ChipBench for physical
design, has led to substantial reductions in design time for
timing-critical applications. The paper has presented
some design examples in which large improvements were
achieved in terms of timing over traditional net-length-
based physical design optimization. More significantly, this
was accomplished without having to perform synthesis or
return to a front-end design environment.

Looking into the future, we see cores and embedded
macros as one of the key challenges. While HDP handles
macros today, we expect their type and complexity to
increase in step with the development of new technologies.
Designs with complex cores are just beginning to emerge.
Because they now appear as “black boxes,” the challenge
from a floorplanning point of view will be to extract
enough timing (path and pin-to-pin delays) and physical
data (pin locations, feed-throughs, blockages) to ensure
that the cores can be placed amidst their surrounding
logic. But that is only the beginning. Soon, cores may be
described only logically or abstractly, and their physical
and possibly detailed logical design may have to be done
along with the rest of the logic, but with particular
restrictions (size, area, shape, all with limited knowledge
of their internal design) that pertain to their internal
characteristics and periphery.

Another key area of enhancement involves linkage with
behavioral-level design and synthesis. While links exist to
back-annotate timing and some physical data, the future
requires design planning to be tied to the behavioral and
architectural levels of design, where estimates of timing
of critical paths and physical shapes and sizes will allow
rapid estimation of performance, cost, and size. At the
architectural level, feedback on physical data will also
allow the system designer to decide the “cut-points’’
between hardware and software in a hardware-software
co-design environment.

Acknowledgments
The authors wish to express their appreciation to
J. Darringer, G. W. Doerre, and W. R. Kehrli for their
encouragement and support. We would also like to extend
our thanks and appreciation to the rest of the ChipBench,
EinsTimer development, and EDA support teams.

HDP, ChipBench, EinsTimer, BooleDozer, CircuitBench,
Chipplace, ChipOpt, Chipwiring, LGWire, and ChipEdit are
trademarks, and RISC System16000 is a registered trademark,
of International Business Machines Corporation.

Verilog is a registered trademark of Cadence Design Systems,
Inc.

Design Compiler and Floorplan Manager are trademarks of
Synopsys, Inc.

References
1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

“ChipBench at a Glance,” IBM-EDA Document
0020-5272, IBM Microelectronics Division, Hopewell
Junction, NY, April 1995.
“EinsTimer Users’ Guide and Language Reference,”
IBM-EDA Document 0020-5261, IBM Microelectronics
Division, Hopewell Junction, NY, March 1996.
“PREVIEW,” http:llwww.cadence.comlpreview.html,
Cadence Design Systems, Inc., San Jose, CA 95134, 1996.
“Design Planner 3.2, Reference,” HDL Systems, Inc.,
Santa Clara, CA 95054, 1995.
IEEE Standards Committee, “Common Delay Calculator
User’s Guide and Language Reference Manual” (draft of
DCL language), IEEE, Piscataway, NJ, 1995.
S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi,
“Optimization by Simulating Annealing,” Science 220,

C. Sechen and A. Sangiovanni-Vincentelli, “The
Timberwolf Placement and Routing Package,” IEEE J.
Solid-state Circuits SC-20, No. 2, 510-522 (1985).
W. K. Luk, “A Fast Physical Constraint Generator
for Timing-Driven Layout,” Proceedings of the 28th
ACMIIEEE Design Automation Conference, June 1991,

671-680 (1983).

-
pp. 626-631.
Peter S. Hawe. Ravi Nair. and Ellen J. Yoffa, “Circuit
Placement for Predictable ’Performance,” Proceedings of
the IEEE International Conference on Computer-Aided
Design, Santa Clara, CA, November 1987, pp. 88-91.
H. Youssef and E. Shragowitz, “Timing Constraints for
Correct Performance,” Proceedings of the IEEE
International Conference on Computer-Aided Design,
November 1990, pp. 24-27.
S. V. Venkatesh, “Hierarchical Timing-Driven
Floorplanning and Place and Route Using a Timing
Budgeter,” Proceedings of the Custom Integrated Circuits
Conference, May 1995, pp. 469-472.
P. R. O’Brien and T. L. Savarino, “Modeling the Driven-
Point Characteristic of Resistive Interconnect for
Accurate Delay Estimation,” Proceedings of the IEEE
International Conference on Computer-Aided Design,
November 1989, pp. 24-27.
W. C. Elmore, “The Transient Response of Damped
Linear Networks with Particular Regard to Wideband
Amplifiers,” J. Appl. Phys. 19, 55-63 (1948).
L. T. Pillage and R. A. Rohrer, “Asymptotic Waveform
Evaluation for Timing Analysis,” IEEE Trans. Computer-
Aided Design 9, 352-366 (1990).
D. J. Hathaway, R. R. Habra, E. C. Schanzenbach, and
S. J. Rothman, “Circuit Placement, Chip Optimization,
and Wire Routing,” IBM J. Res. Develop. 40, 453-460
(1996, this issue).
N. Deo, Deep Submicron Technology Design Methodology
Backgrounder, Synopsys, Inc., Mountain View, CA 94043,
June 1995.
L. Stok, D. S. Kung, D. Brand, A. D. Drumm, A. J.
Sullivan, L. N. Reddy, N. Hieter, D. J. Geiger, H. H.
Chao, and P. J. Osler, “BooleDozer: Logic Synthesis for
ASICs,” IBM J. Res. Develop. 40, No. 4, 407-430 (1996,
this issue).

V I

449

LL. BM J. RES. I)EVELOP. VOL. 40 NO. 4 JULY 1 996 J. Y. SAYAH ET P

Received November 7, 1995; accepted for publication
April 11, 1996

since 1982, working in EDA in the area of physical design.
He has extensive experience in high-performance wiring for
packaging, including considerations for noise and signal
integrity issues. He has coauthored several papers and holds
several patents.

John Y. Sayah IBM Microelectronics Division, Route 52,
Hopewell Junction, New York 12533 (sayah@vnet.ibm.com).
Dr. Sayah is a senior engineer/scientist at IBM
Microelectronics. He is the lead architect, principal designer,
and overall technical project lead of the Hierarchical Design
Planner (HDP) and ChipBench products in support of
advanced hierarchical VLSI design for deep-submicron
technologies. Dr. Sayah received a B.Sc. degree in
physics from the Faculty of Sciences at the Lebanese
University-Beirut, an M.Sc. degree in electrical and
electronics engineering from King’s College at the University
of London-UK, and a Ph.D. degree in electrical and
computer engineering from the University of Wisconsin
at Madison.

Rajesh Gupta IBM Microelectronics Division, Route 52,
Hopewell Junction, New York 12533 (rgupta@vnet.ibrn.com).
Dr. Gupta is an advisory engineeriscientist at IBM
Microelectronics. He is the technical project leader
responsible for the hierarchical planning functions and timing-
driven applications support in HDP. Dr. Gupta received the
B.Tech. degree in electronics engineering from the Indian
Institute of Technology, Madras, in 1985. He received the
M.S. and Ph.D. degrees in computer engineering from the
University of Southern California, Los Angeles, in 1987 and
1991, respectively. In 1979 he was awarded the National
Talent Scholarship by the Government of India. His interests
include various aspects of VLSI design and test, particularly
timing-driven physical design, hierarchical CAD frameworks,
and design for testability.

Deepak D. Sherlekar IBM Microelectronics Division, Route
52, Hopewell Junction, New York 12533 (deepak@vnet.ibm.com).
Dr. Sherlekar is an advisory engineeriscientist at IBM
Microelectronics. He is the technical project leader
responsible for the partitioning, floorplanning, and placement
functions in HDP. He received a B.E. degree in electronics
engineering from the University of Indore-India, an M.Tech.
degree in computer science from the Indian Institute of
Technology-Kanpur, and a Ph.D. degree in computer science
from the University of Maryland-College Park. Prior to
joining IBM, he was an assistant professor of electrical
engineering and computer science at the University of
Michigan-Ann Arbor. His interests include design automation
for high-performance VLSI, algorithms for combinatorial
optimization, and parallel computing.

Philip S. Honsinger IBM Microelectronics Division, Route
52, Hopewell Junction, New York 12533 (honsinge@vnet.ibm.com).
Dr. Honsinger is a senior engineeriscientist at IBM
Microelectronics. He is the technical project leader
responsible for chip wiring, which includes power routing,
global routing, detail routing, and macro pin assignment.
Dr. Honsinger received his Ph.D. degree in 1978 in high-energy
partick physics from Ohio University. He spent two years as
an assistant professor at West Virginia Wesleyan College,
returning to Ohio State University to obtain an M.S. degree
in computer science in 1981. Dr. Honsinger has been at IBM 450

J . Y. SAYAH ET AL. IBM J . RES. I

Jitendra M. Apte AT&T Laboratories, 101 Crawfords Corner
Road, Holmdel, New Jersey 07733. Dr. Apte is currently
working in the area of on-line services at AT&T Laboratories,
where he is pursuing various projects related to Internet-
based electronic commerce, as well as interactive and
multimedia services on the World Wide Web. Before joining
AT&T Laboratories, he worked in the Electronic Design
Automation Laboratory at IBM Microelectronics. There he
was involved in the development of algorithms and software
for several design planning problems: specifically, automatic
floorplanning design, timing-driven design, and interactions
between 1ogiciHL synthesis and design planning. Prior to his
work at IBM, Dr. Apte was involved in the development of
automation tools for physical design in the Design Technology
Laboratory of the Hewlett-Packard Company. There he
implemented floorplanning tools that were used in the design
of VLSI chips for manufacturing popular HP products,
including laser printers and high-performance workstations.
Dr. Apte’s current technical interests span a wide range of
topics, including on-line services that use real-time video and
audio content, secure-payment mechanisms for supporting
electronic commerce on the World Wide Web, development
of interactive client-executable Web content using emerging
languages such as Java, JavaScript, and VRML, as well as
issues in automatic design and analysis of hardware and
software systems. He received a bachelor’s degree in electrical
engineering from the Indian Institute of Technology, Bombay,
in 1985, and a Ph.D. degree in computer science from Duke
University in 1990.

s. Wayne Bollinger IBM Microelectronics Division, Route
52, Hopewell Junction, New York 12533 (bollinge@vnet.ibm.com).
Dr. Bollinger is an advisory engineer/scientist at IBM
Microelectronics. He joined IBM in 1992 and is actively
involved in the development of physical design applications,
providing technical direction in the areas of user interface,
intertool communication, and application integration and
architecture. His interests include object-oriented analysis
and design, software engineering, parallel and distributed
computing, design and optimization of VLSI circuits, and
switch-level test generation. Dr. Bollinger received B.S., M.S.,
and Ph.D. degrees in electrical engineering from Virginia
Polytechnic Institute and State University.

Hai Hsia Chen IBM Microelectronics Division, Route 52,
Hopewell Junction, New York 12533 (CHEN at FSHVMI).
Ms. Chen is part of the EDA group at IBM Microelectronics;
she has been with IBM since 1982. Her experience includes
work on routers for modules, cards, and boards, and she is
currently working on the power bus router. Ms. Chen received
a B.S. degree in physics from Taiwan Normal University in
1973 and an M.S. degree in computer science from Rensselaer
Polytechnic Institute in 1982.

IEVELOP. \ ‘OL. 40 NO. 4 JULY I 996

Sumit DasGupta SEMATECH Corporation, 2706
Montopolis Drive, Austin, Texas 78741. Dr. DasGupta is
currently on assignment from IBM at SEMATECH, where
he is the program manager for design for test and physical
design. Prior to that, he spent more than twenty years in
electronic design automation at IBM, with the greatest
emphasis on physical design and design for test. His last
assignment in EDA was as project manager for chip physical
design. Dr. DasGupta has earned the fourth-level Invention
Achievement Award at IBM. He has published more than
fifteen papers in external conferences and journals and has
received several awards for his activities in IEEE, of which he
is a senior member. Among his past and present activities
with IEEE, he is a past Chair, and current member, of the
Steering Committee for the IEEE Transactions on VLSI, past
Editor-in-Chief of the IEEE Design and Test of Computers
magazine, and past General Chair of the International
Conference on Computer Design. Dr. DasGupta received a
B.S. degree in electrical engineering from Jadavpur University,
Calcutta, India, an M.S. degree in electrical engineering from
Marquette University, and a Ph.D. degree in computer science
from Syracuse University.

Edward P. Hsieh IBM Microelectronics Division, Route 52,
Hopewell Junction, New York 12533 (hsiehe@vnet.ibm.com).
Dr. Hsieh is a senior engineering manager at IBM
Microelectronics. He has more than twenty years’ experience
in electronic design automation at IBM, in the areas of VLSI
chip and package physical design, test design automation, and
technologyimanufacturing automation. He currently manages
the development of advanced chip design tool capabilities in
support of deep-submicron technologies, including ChipBench
and Hierarchical Design Planner products. Dr. Hsieh received
a B.S. degree in electrical engineering from the National Taiwan
University, an M.S. degree in electrical engineering from
MIT, and a Ph.D. degree in electrical engineering and
computer science from Columbia University. He has served on
the Technical Committee of ICCD since 1990 in the capacities
of session chairs and vice chairman for design and test, and
he served as a technical committee member for MCMC.

Andrew D. Huber IBM Microelectronics Division, Route 52,
Hopewell Junction, New York 12533 (ahuber@vnet.ibm.com).
Mr. Huher is an advisory programmer at IBM
Microelectronics. He is currently responsible for technical
coordination of EDA chip physical design product releases.
He has recently been involved in software development and
providing technical direction in the areas of system and data
model support for the chip hierarchical physical design
system. Prior to that, he worked in the area of automatic
wiring tools, making significant contributions to the automatic
routing software for printed circuit boards, MCMs, and
TCMs. Mr. Huher also managed the EDS Chip Technology
Department, directing the development of chip automatic
placement and wiring tools. He received a bachelor’s degree
in computer science from Michigan State University in 1979.

Edward J. Hughes IBM Microelectronics Division, Route
52, Hopewell Junction, New York 12533 (hughese@vnet.ibm.com).
Mr. Hughes is a staff programmer at IBM Microelectronics
in the Electronic Design Automation laboratory. Here he

concentrates on physical design with a focus on user interface
and GUI. Since 1989, he has worked in an object-oriented
environment on multiple interactive application projects. He is
currently working on an interactive application architecture
toolkit with a built-in command language. Mr. Hughes
received a B.S. degree in information systems from the
University of Scranton in 1989.

Zahi M. Kurzum IBM Microelectronics Division, Route 52,
Hopewell Junction, New York 12533 (zkurzum@vnet.ibm.com).
Mr. Kurzum is a staff development engineer at IBM
Microelectronics. Joining IBM in 1989, he worked in the area
of physical design, making a significant contribution to the
development of global wiring and hierarchical pin assignment.
He is currently working on detailed placement for hierarchical
designs. Mr. Kurzum received his B.S. and M.S. degrees in
computer engineering from Clemson University in 1984 and
1989, respectively. He is a member of Tau Beta Pi.

Vasant B. Rao IBM Microelectronics Division, Route 52,
Hopewell Junction, New York 12533 (raov@vnet.ibm.com).
Dr. Rao received his B.Tech. degree in electrical engineering
(electronics) from the Indian Institute of Technology, Madras,
in 1980, and his M.S. and Ph.D. degrees in electrical and
computer engineering from the University of Illinois at
Urbana-Champaign in 1982 and 1985, respectively. In 1985,
he joined the faculty in the Department of Electrical and
Computer Engineering at the University of Illinois at
Urbana-Champaign as an assistant professor. In the summer
of 1987, he worked as a consultant with Texas Instruments,
Dallas. Dr. Rao joined the IBM EDA Laboratories in East
Fishkill, New York, in 1991; his research interests have
included static timing analysis, physical design, simulation
and optimization of VLSI circuits, stochastic algorithms
for combinatorial optimization, and graph theory. He has
published more than fifty papers in various journals and
conference proceedings.

Thepthai Tabtieng IBM Microelectronics Division, Route 52,
Hopewell Junction, New York 12533 (tabtieng@vnet.ibm.corn).
Mr. Tabtieng is a staff engineer at IBM Microelectronics.
He joined IBM in 1990 and is working on the development
of EDA physical design tools. He received a B.S. degree in
computer engineering from Northeastern University in 1985
and an M.S. degree in electrical engineering from Tufts
University in 1990. Mr. Tabtieng is a member of IEEE and the
IEEE Computer Society.

Vigen Valijan IBM Microelectronics Division, Route 52,
Hopewell Junction, New York 12533 (valijan@vnet.ibm.com).
Mr. Valijan is an advisory programmer at IBM
Microelectronics. He joined IBM in 1984 and has worked on
various GUI applications in the field of semiconductor design
(chips, cards, etc.) on MVS and AIXa platforms. Since 1990,
he has been a major contributor to an interactive application
architecture that provides an object-oriented paradigm for
multiwindow, multithreaded GUI applications using

IBM J. RES. DEVELOP. VOL. 40 NO. 4 JULY 1996 J Y. SAYAH ET AL.

X Windowsa/MotifB toolkits on AIX. Mr. Valijan received
a B.A. degree in mathematics and computer science from
Queens College, CUNY, in 1982, and an M.S. degree in
computer science from Marist College in 1988. He is a
member of Pi Mu Epsilon.

David Y. Yang IBM Microelectronics Division,
Route 52, Hopewell Junction, New York 12533
(DAVID- YANG@vnet.ibm.com). Mr. Yang is a staff
development programmer at IBM Microelectronics. He
joined IBM in 1990 and is currently working on ChipBench
environment and model services, in the area of system
interfaces and data models. Mr. Yang received a B.E. degree
in computer applications from Beijing Iron and Steel Institute,
Beijing, People’s Republic of China, in 1982, and an M.A.
degree in computer science from Queens College, CUNY, in
1990.

AIX is a registered trademark of International Business Machines Corporation

X Windows is a registered trademark of Massachusetts Institute of Technology.

Motif is a regstered trademark of Open Software Foundation, Inc.

452

J. Y. SAYAH ET AL. IBM J. RES. DEVELOP. VOL. 40 NO. 4 JULY 1 996

