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Design planning is emerging as a solution to 
some  of the most difficult challenges  of the 
deep-submicron VLSl design era.  Reducing 
design turnaround time for extremely large 
designs with ever-increasing clock speeds, 
while ensuring first-pass implementation 
success, is exhausting the capabilities of 
traditional design tools. To solve this problem, 
we  have  designed  and implemented a 
hierarchical design planning system that 
consists of  a tightly integrated set of design 
and  analysis tools. The integrated run-time 
environment, with  its  rich set of hierarchical, 
timing-driven design planning and 
implementation functions, provides an 
advanced platform  for realizing a variety  of 
ASIC and custom methodologies. One  of 
the system's particular strengths is  its  tight 
integration with an  incremental, static timing 
engine that assists in achieving timing closure 
in high-performance designs.  The design 
planner is in production use at IBM internal 
and at external ASIC design centers. 

Introduction 
High-performance designs  beyond sub-half-micron 
technologies, with clock frequencies in excess of 100 MHz, 
have  received  much attention  from  the design  community 
and  the  Electronic Design Automation  (EDA) industry  in 
recent years. Interconnect delay has  become  a significant 
factor affecting  design performance.  The key challenges 
have centered  upon managing  design  complexity and 
satisfying timing and  other design constraints in a small 
number of design iterations, so as to  reduce  the overall 
chip design cycle time  and  time  to  market.  The  traditional 
approach of sequential, flat physical design (PD), with 
multiple iterations of placement, routing, and timing 
verification,  can no  longer provide an effective chip design 
solution  for  dense CMOS technologies. Alternative 
approaches,  based on hierarchical, timing-driven  design 
methodologies  that  reduce  the  number of iterations of 
physical design, are  required. 

In this paper, we describe an effective approach  and 
solution  centered  around design  planning. Design planning 
is the process of progressively and continuously  improving 
a design concurrently with refining the logic and physical 
implementations.  It is based on analyzing implementation 
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HDP within integrated ChipBench environment in support of 
high-performance ASIC design. 

in the world. First-pass success through  automatic 
placement,  routing,  and checking has  been achieved in 
many  designs with the  help of our design  planning. 

Hierarchical Design Planner (HDP”) environment.  The 
key features  implemented in HDP  to  meet  the  sub-half- 
micron design challenges  include 

Our  solution  to design planning  has  been realized in the 

Reflecting physical design and technology constraints 
early in the design process  to minimize the  number of 
design iterations. 
Supporting a  seamless,  multilevel hierarchy  to  manage 
design  complexity  while  preserving the  optimization 
possible  with  flat  designs. 
Supporting improved  coupling between  the  front  end 
and  the back end of the design process  to  ensure close 
correlation  between  predicted  and  actual timing. 
Supporting a mixed level of design detail  at any  level 
of the hierarchy during design  (physical and timing) 
planning  and analysis to  optimize designs that  are 
presented  at varying levels of implementation  detail. 
Implementing a state-of-the-art timing closure 
methodology,  based on pervasive  timing-driven 
capabilities, to drive rapid timing convergence within 
the  constraints of the design. 
Integrating  placement within  design planning  to  support 
a streamlined timing closure  methodology. 
Supporting localized and  controlled  customization in the 
ASIC library,  such  as  growable array  structures  (GRAs) 
and  their customized  power  supplies. 
Supporting  an efficient and  granular  engineering  change 
methodology that  optimizes  the  changed  area while 
minimizing the  perturbation  on  the physical design 
of the  rest of the chip. 
Improving interoperability with key vendor tools. 

HDP  can  be invoked  in  a stand-alone  mode as an  early 
planner/floorplanner in the logical  design environment, 
or as  a hub  to  manage  the full physical design process 
in the  ChipBenchTM  environment [l]. The  ChipBench 
environment  (see Figures 1 and 2) is an  integrated, 
hierarchical physical design environment  for  ASIC  and 
structured-custom  methodologies  that includes HDP  and 
a number of other  tools  that  make  up  the  environment. 
Figure 1 highlights the key capabilities of each  tool 
and shows the  general  ASIC design  processing  using 
ChipBench  tools  in  coordination with HDP. 

(see Figure 3) in  any of these configurations. In  either 
setting, HDP analysis and design functions  operate 
seamlessly on hierarchical design elements.  HDP provides 
effective interaction  between logical  design and physical 
design,  driving PD  constraints upward to synthesis and 
other logic design tools  to improve  synthesis results,  and 

HDP  supports  integrated early and  detailed  planning 

effects as early in the design  decision process as feasible, 
continually moving the design through successive closure 
stages.  Design planning  includes early chip-area  planning 
and analysis, timinddesign  target  generation  and 
budgeting,  early  and  detailed  structure  planning  and 
floorplanning, wirability and  congestion analysis, global 
routing  and wire planning,  prerouting RC delay 
estimation,  and  hierarchical  pin assignment. 

Beyond the  early timing planning of the chip,  design 
planning also  drives and  optimizes  the  detailed physical 
design to satisfy timing and  other design constraints.  As 
currently  implemented,  these  advanced  capabilities have 
been used effectively to  support a continuum of analysis 
and design actions,  from synthesis to  detailed physical 

432 design, at  one of the most  advanced ASIC design settings 
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I HDP concurrent  hierarchical design planning  environment. 
.. . 

accepting design targets  from logical design as early in the 
design cycle as  design details  become available. Operating 
in the  hub  mode,  HDP provides the  components  and  the 
execution  environment for the timing-driven hierarchical 
physical design  methodology (see Figure 4). 

HDP  functions  and  ChipBench services to  implement a 
complete physical design  process, is described in this 
paper in the  section  entitled  “Performing PD using 
HDP/ChipBench.” HDP supports  top-down,  middle-out, 
and  bottom-up design implementation  methods.  It allows 
the  independent  implementation of large design entities, 
as well as the in-context implementation of other 
entities.  Means  are provided for  encapsulating  and 
isolating  hierarchical entities, effectively allowing flat 

A hierarchical timing-driven  design  methodology,  using 

implementation of the overall  chip. HDP brings together 
the  components of region placement,  target  generation 
and  budgeting,  and  incremental timing  analysis to  ensure 
timing closure  at  the  end of a single cycle of placement 
and  routing  (see Figure 5) .  The HDP timing closure 
methodology successively refines the timing targets  and 
implementation  constraints, moving the design  in  a 
process  characterized by rapid timing convergence. 
During  this process, HDP  trades off area, wiring length, 
alternative  implementations, wirability, congestion,  and 
other design constraints while incrementally invoking the 
IBM static timing analysis tool,  EinsTimerTM [ 2 ] ,  during 
this convergence process  (Figure 1). 

The success of this  methodology within the context of 
large  hierarchical designs is ensured by a  wide repertoire 433 
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of ChipBench  and  HDP services that provide  selective, 
incremental,  and  on-demand access to a sufficient amount 
of design and  implementation  data.  This involves the 
pervasive use of abstractions  and  controlled access to 
detailed  data  as  needed, while shielding the user from 
the  burden of explicitly managing the  propagation 
effects  across levels of  the design hierarchy. 

in floorplanning  and design planning [3, 41. These  tools 
provide some limited  linkages between design  functions. 
The key features  that distinguish HDP from  those design 
planning  solutions  include 

Recently,  several DA vendors have released  tools  to  aid 

Tight integration of a sophisticated, hierarchical, 
incremental,  and versatile  timing-analysis engine.  The 
integration is on-line (i.e., it operates within the  same 
process space). 
Integration of physical design structure  planning  and 
timing planning capabilities of preparing physical and 
timing encapsulation of hierarchical design entities.  The 
process uses  selective hierarchy expansion  accounting 
for in-context  effects. The quality of results of a 
subsequent  application of the analysis and  optimization 
functions is fully consistent, as if we are  operating  on 
the fully expanded design. 
Integration of in-context and  encapsulated  hierarchical 
design  capabilities, coupled with distributed tool 
activation, which allows the  user  to  operate in top-down 
and  bottom-up  implementation  methodologies in the 
same design environment. 
Integration of hierarchy manipulation  and logic 
optimization services  within  a physical design 
environment, which allows the  user  to  restructure 
and modify the design  with instantaneous access to 
analysis, optimization,  and  implementation  functions. 
Availability of functions  that uniformly and 
transparently work on  combinations of available 
detailed,  estimated,  or  asserted  information  or 
actual  implementation, providing various  degrees of 
accuracy. 

In  HDP, a designer  can  monitor  the delay  across  a 
critical  timing path  (see  Figure 5 )  that crosses the 
hierarchy  where  some  nets  are fully wired, some  are 
partially  wired, and  some  entities  are  abstracted,  and  some 
entities  are placed. The delay  across nets may have been 
derived  using  a  simple  delay model  (Elmore delay) or a 
more  accurate  evaluation (asymptotic wave evaluation,  or 
AWE). Later, a cell is moved  (interactively or by using an 
integrated  automatic  function),  another cell uses  another 
implementation,  and  the critical path  chart is updated 
incrementally using EinsTimer  static timing analysis. In 
the  meantime,  the  implementation of a net  that was 
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I Example of HDP integrated  hierarchical timing analysis 

wired  automatically is updated  for  the  portions  that 
were  affected by the move. Concurrently,  one of the 
hierarchical entities could be  under  automatic  detail 
placement  and  another  under  automatic  detail wiring 
(see  Figure 2), while the  static timing analysis is using the 
timing abstraction of these  entities.  After  those  actions  are 
completed,  the timing abstraction of the modified entities 
can be  regenerated  to reflect the  latest  detail,  and  the 
path  chart is updated, all without leaving HDP. 

of HDP  and  the timing closure  methodology.  There  are 
two design  examples that  illustrate  the timing closure 
methodology  using HDP. Finally, as  part of the 
conclusions, there is a brief description of areas 
of potential  future  enhancement. 

The following sections provide details of the capabilities 

IBM J .  RES. DEVELOP. VOL. 40 NO. 4 JULY 1996 

Functional elements of HDP 
This section details  the key functional  capabilities 
contained in HDP. All HDP  functions  are  availablein  a 
sophisticated multi-windowing graphic  user  interface 
(GUI) environment  that  permits  the  designer  to view, 
invoke functions,  and  operate on  hierarchical  design 
entities in  design context  and/or individually. Background 
activation is available for  CPU-intensive  applications. 
Figures 2 and 5 illustrate some of the GUI capabilities of HDP. 

One key thread across all functions  that  deals with 
the  performance  elements of a design, whether  during 
analysis, evaluation,  or  optimization, is the  use of the 
IBM static timing analysis toolkit,  EinsTimer. Underlying 
EinsTimer is a  central delay calculation  engine, based on 
the  emerging delay  calculation language (DCL) standard 435 
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[5]. The  EinsTimer  toolkit  contains a  rich set of 
capabilities,  such as  hierarchical analysis, generation 
and  use of abstractions  for  hierarchical blocks, and 
incremental analysis to  support small changes in the 
design. These  capabilities  are fully integrated in HDP  and 
can  be activated  as needed  during  an  HDP session. 

Partitioning 
The  hierarchical design capabilities in HDP enable a 
designer  to realize the full potential of the “divide-and- 
conquer”  approach in containing  the  combinatorial 
explosion  in  design  complexity that  arises  from  ever- 
increasing  design sizes. These  capabilities  are  further 
complemented by a rich set of hierarchy  manipulation 
functions.  For  the  purpose of physical design, one  can  use 
a  hierarchical  netlist from  the  front-end design  process, or 
a  reconfigured  hierarchy based  on physical considerations. 
Thus,  the  designer  can  realize a reduction in  design 
complexity without  compromising  the ability to  optimize 
and achieve  timing closure. 

in HDP  can  make  changes in  hierarchy and effectively 
manage  these changes. The  hierarchy  creation  function 
creates a new hierarchy  specified by the  designer  or by an 
application such  as the  partitioner.  The new hierarchy is 
specified as a set of disjoint clusters of objects. Each 
multi-object cluster  becomes a  new block. Single-object 
clusters  are left untouched.  The  hierarchy  flattening 
function  flattens all  blocks or a  specified subset of 
blocks  in  a  netlist. 

The  hierarchy  prototyping  and  reconfiguration facilities 

A novel feature of the  hierarchy  prototyping facilities 
enables a designer  to quickly evaluate  alternative 
hierarchical  decompositions  without  discarding a 
designated  stable  hierarchy.  At any point,  the  designer  can 
maintain a stable version of one hierarchy “on  the  side,” 
while evaluating an alternative  “temporary”  hierarchy. 

The  hierarchy  manipulation  functions  are typically 
needed only if the netlist is very large  and flat, or if 
the  use of hierarchy  provided by the  front-end logical 
design tools  leads  to design closure  problems. 

The  partitioning  function  decomposes a  design into a 
collection of clusters  that satisfy minimum and maximum 
area  constraints.  These  clusters  are passed to  the 
hierarchy prototyping services to  create a new temporary 
hierarchy.  The  function  can  be invoked at any level of the 
hierarchy.  The  partitioner  does  simultaneous  partitioning 
and  floorplanning by default.  This  permits  accurate 
analysis of global nets, which is essential  for  accurate 
timing estimation. 

Overall, the principal strength of the  partitioner in 
HDP is its ability to  handle  multiple  performance-related 
optimization  costs  and its understanding of physical design 
constraints.  It  can  handle  pre-placed blocks. It  can also be 
used to  create  an  approximate  placement of objects in 436 
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regions  corresponding  to  the  partitions,  instead of actually 
creating a new hierarchy. This capability,  called region 
placement, is quite  versatile, as evidenced by its various 
uses in the timing closure  methodology  described  later.  It 
can  be used for early placement  feedback,  as  an  element 
of the  HDP  floorplanning  repertoire.  It  can also serve as 
the  front  end of a quick  placement  program,  where  the 
back end  performs  legalization  and  overlap removal. 
Moreover, it is used to find optimized  placement of large 
blocks in netlists  that  are  otherwise flat. This  problem 
is referred  to in the  literature  as  the  “rocks  and  sand” 
problem.  The next subsection discusses  HDP’s  main 
floorplanning  engine. 

Early  and  detailed floorplanning 
Floorplanning is the  element of HDP  that  interacts with 
the  largest  number of optimization, analysis, and  planning 
functions.  Additionally, floorplanning  addresses  problems 
at  various levels of design completion,  from  early 
floorplanning  through  detailed  floorplanning  and  coarse 
placement. 

The  engine  for  automatic  floorplan design is based  on 
the  simulated  annealing algorithm [6, 71. Annealing is 
suited  for  this  function,  because it is one of the most 
versatile  algorithms  for  performing “placement-like’’ 
optimizations.  Its versatility  lies  in  its  capability to mix 
and  match  objects  that  are  large  and small,  soft and  hard, 
reshapable  and rigid.  Additionally,  it can  be used to 
optimize any  cost function  that  can  be  incrementally 
recalculated quickly. 

In exchange for its  versatility, the  annealing  algorithm is 
relatively  time-consuming and complex to  control.  This is 
particularly  true if the netlist is heterogeneous  or  contains 
a  wide  variety of different objects, or if the cost function 
contains a large  number of different costs. The  former 
problem,  that of long run times, is less of an issue in 
floorplanning than in detailed placement, because floorplanning 
tends  to  deal with significantly fewer  design objects  than 
does  placement.  The insights gained  from  designer 
experiences  can  potentially  be  encapsulated in recipes  for 
controlling  the  application of the  annealing functions. 

Interaction with  other  analysis  and optimization tools 
The  annealing-based  floorplanner  can move and  reshape 
floorplan  entities  and, in the process, monitor  and 
optimize a very wide  variety of costs. The  floorplanner 
uses a large  set of analysis tools  to  evaluate  the  cost of a 
floorplan: overlap  computation,  overhang  computation 
(representing  the overflow of cells outside  their  parent 
boundary), wire length  estimation, timing analysis and 
estimation,  capacitance  estimation,  etc.  The  other 
optimization  tools with which the  floorplanner  has 
the most interaction  are  the  partitioner  and  the  pin 
assignment functions. 
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Interaction with planning tools 
The  annealing-based floorplan engine essentially operates 
on one level of a hierarchical design at a time.  Therefore, 
the  timing  budgeting, timing target  generation,  and  area 
planning  tools play a  crucial role in the success of the 
floorplanner, in that they reflect the influence of design 
objects that  are  deep inside the lower levels of the 
hierarchy,  and they propagate  constraints  from  higher 
levels  in the design  hierarchy onto  the level being 
floorplanned. 

Support for early jloorplanning 
The  engine  for  automatic early floorplan design is the 
same  as  that in the  detailed  floorplanner. A primary issue 
in early  floorplan design is to  provide  the mechanisms for 
asserting design attributes  for unknown portions of the 
design. The  floorplanner in HDP  accepts a  variety of such 
asserted design attributes  through  robust  user  interfaces 
and provides capabilities  to  estimate  these design 
attributes.  For example, the  designer  can specify or 
estimate sizes and  shapes of blocks that have not yet been 
synthesized, approximate  locations of unassigned pins in 
the netlist using the  port  area  construct,  and  approximate 
delay models  for  large  macros whose internals have not 
yet been  designed.  Early  area  and timing planning  provide 
the  core  functions  for  these  estimation applications. 

Support for floorplan editing 
All operations  that  are  performed by the  automatic 
floorplanner  are available for invocation  manually as 
a floorplan  editor.  This capability,  in conjunction with 
the rich set of analysis tools available in the  HDP 
environment,  enables designers to interactively floorplan 
complex  hierarchical designs. 

4 0  planning 
Floorplanning,  placement,  and wiring tools  are specialized 
for carrying out highly optimized  and effective  design 
tasks  within the confines of chip  or  “child” cell 
boundaries. In a  hierarchical  design, each of these 
tasks  must be  carried  out multiple times  on  different 
hierarchical  entities  before  the  chip design is completed. 
These  hierarchical  entities  (macro cells)  have 
dependencies on one another-for example, one cell 
may contain  another, one cell may compete with another 
for  area on the chip, or a  critical  timing path may pass 
through two macro cells  such that  there is a constraint 
on the sum of the  path delays through  the two cells. 
Therefore, in order  to  make  the resulting  design meet  the 
design requirements, initial  design planning work must  be 
done  to  apportion  the design resources  (for  example, 
placement  area  and slots, wiring space, permissible path 
delays) among  the  entities in the hierarchy. 
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The basic hierarchical design planning in HDP is done 
using two tools: the area planner and  the timing planner. 
The  area  planner  deals with the  three  dimensions of cell 
width, cell height,  and wiring layers. The timing planner 
deals with the  fourth  dimension of timing and delays. 

Area planning 
The  area  planning  functions in HDP provide the user with 
automatic  capabilities  for  apportioning  placement  and 
wiring resources  among  different  hierarchical  entities.  The 
inputs  to  area  planning  are  the  hierarchical logic  netlist of 
the design, physical data  about  predefined  macro cells and 
the library elements  at  the leaf levels of the hierarchy, and 
technology information  such as the  number of wiring 
layers and  the  total  number of available wiring tracks 
on  each layer. There  are two kinds of area  planning 
functions,  the early  area plan and  the update area plan. 

The  HDP  area  planner  has  several  enhancements over 
previously  existing area  planning  approaches  found in 
EDA tools. The most  significant is that  HDP  operates in 
context within  a hierarchical design and  understands  both 
aspects of hierarchical design models (full  expansion and 
reuse).  In  the process,  it uses a statistical  estimate of 
wire demand  for  each  hierarchical  entity  (macro cell) 
to  determine its  size,  as opposed  to  an  estimate of the 
“placement”  space  augmented with  an adjustment  factor. 
It automatically  analyzes  wire demand  to  determine  the 
number of wiring layers needed  for  each  macro cell, and 
isolates  the wiring problems  for  different  entities  from 
one  another  rather  than using  a preassigned wiring  layer 
assignment or  depending purely on  the user’s judgment. 
It  automatically  determines a suitable  placement grid for 
each  macro cell by analyzing the  distribution of sizes of 
the child cells  in the  macro,  and  takes  into  account  this 
placement grid information in sizing the  parent  macro cell. 
It automatically generates  shape  constraints  (aspect  ratio 
bounds)  for  each  macro cell by considering  bottom-up as 
well as top-down constraints.  These  shape  constraints 
are used locally by the  floorplanner  to  guide it while 
floorplanning  at a particular hierarchy  level, without 
having to access data  at  other levels. 

Early  area plan The  early  area plan function is used to 
generate initial physical data  (macro cell shape,  macro 
cell wiring space  reservations, etc.) for a “raw” netlist 
produced by logic synthesis. It  uses  information  about 
the library  cells and  the wiring layers and  produces  the 
following outputs: 

Basic area estimation A physical shape (width and 
height) is generated  for every macro cell  in the 
hierarchy. The basic area  estimation  function 
incorporates  methods  to  compute wire demand 
estimates  for  the  nets  at a certain hierarchy  level, 
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on  the basis of a statistical  technique  for  computing 
average wire  lengths.* 
Wiring area and wire reservations The  area  planner 
creates wiring-reserved  areas for  each  macro cell  such 
that  the  various  macro cells  in the hierarchy are  isolated 
from  one  another.  This allows the wiring of the  nets  to 
be  carried  out  one  macro cell at a time in an  arbitrary 
sequence.  The wiring tool  can  work with the blockage 
and congestion data  at  each level using an  abstracted 
model of the blockages that  are  seen  at  that level. 

A  wiring-reserved area is a  region of a wiring layer 
that is reserved  for use by the  nets of a  specified macro 
cell. This region is seen as free  and  clear  space  for 
wiring the  nets owned by that  macro cell, but also  as  a 
blockage region when nets  are being  wired for any other 
cell in the hierarchy. 

Wire  reservation  determines  where wires from a 
selected  parent cell have to  use  the reserved wiring 
capacity of its child cells. This is a second-order 
approximation  to  that  made by area  reservation. 
Area  reservation  makes  the first approximation by 
determining  the  area of the cell and its  ceiling 
(representing  the  space  above  the cell). 

distribution of the  shapes  and sizes of the library  cells 
that  occur in each  macro cell, determines  an  “optimal” 
periodicity of circuit rows or columns, and  creates  the 
placement  structures accordingly  in each  macro cell. 
This  enables  the  placement  functions  to  operate 
independently  on  different  macro cells. Note  that  the 
placement  background is prespecified in certain  chip 
technologies. The  area  planning  functions  observe 
these  constraints in placement  structure  generation. 

The  area  estimation  function  described above 
determines  an  appropriate width and height for  each 
macro cell  in the hierarchy, based  on  the wire demand 
in the x and y directions, as well as for any child  cells 
(or other  descendants down the  hierarchy)  that have 
rigid shapes. However,  in order  to fit each  macro cell 
and its  “sibling” macro cells into  the  parent  macro cell 
in an effective way, the  floorplanning tool must have  a 
range of legal shapes  for  each of the sibling macro cells. 
The  area  planner derives these  ranges  for  each  macro 
cell in the  form of “aspect  ratio  bounds.”  These  aspect 
ratio  bounds,  generated by the  area  planner, have the 
objective of ensuring  that  the  floorplanner  has  the 
maximum legal flexibility in macro cell shapes  and 
that a  legal floorplan exists at  each  hierarchy level. 

Using the  number of inputs  and  outputs of each 
macro cell, the  area  planner  computes a wiring  buffer on 
each  edge of the cell. This is a specific number of wiring 

Placement  constraints The  area  planner analyzes the 
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tracks alongside each  edge  that  are  to  be  kept  free  and 
clear by the  floorplanner  for  use as  a wiring channel 
when  it  places the  macro cells  within  a parent cell. 
These  channels  are  needed  for  the wiring program  to 
gain access to  the  inputs  and  outputs of each  macro cell 
and  to  help provide connections  between  the  macro 
cells. The  information  about  the wiring buffers is 
provided  to  the  floorplanner as one of the  inputs  that 
influence  its operation. 
Area  adjustment In  general,  the  requirements  for a 
chip design are  to fit it on the smallest  available die 
size for which there is a chip image in the library. The 
area  planning tool can  be  run in a mode in which it 
determines  the smallest estimated  required size of the 
top-level cell in the hierarchy (Le., the whole chip).  The 
user  can  then select the next largest  die size from  the 
library. This  results in additional  placement  and wiring 
space  at  the  top  hierarchy level. The  area  planner  has 
an  area  adjustment  function  that  propagates  this  space 
down the  hierarchy, so that  the  benefit of the  extra 
space is seen at  all  hierarchy levels. 

Update area plan The  update  area  planning  function 
makes adjustments  to  the initial area  plan using feedback 
from  floorplanning,  placement,  and wiring. This  function 
performs  actions  that  are similar to  those in  early area 
planning;  however,  they are modified to  use  feedback 
rather  than  to  generate initial  plans. 

Timing  planning 
The  second  major  component of the design planning 
capabilities of HDP is the timing planning  function.  This 
function  deals with planning  the  fourth  dimension of the 
chip design,  delays and timing,  across  hierarchy levels. The 
data provided to  the  function consist of the delay models 
of the leaf-level elements  and  the timing assertions 
(constraints) specified at  the primary I/Os at  the  top level 
of the design.  Using  this information,  the timing planner 

Apportions  the permissible  delays  across  various 
hierarchy levels, taking  into  account  intrinsic library 
cell delays as well as net delays. 
Generates timing assertions  at  the  boundaries of the 
various  macro cells and  capacitance  constraints  on 
the  nets across the hierarchy,  such that if all of these 
constraints  are  met,  the timing requirements of the 
design will be  met. 

The  hierarchical timing planner  enables  these timing 
optimization  functions by generating  the  capacitance 
constraints (or targets)  on  the  nets as well as the timing 
assertions  at  the  macro cell boundaries,  thus allowing the 
timing-driven floorplanning/placement/wiring runs  to  be 
carried out  for each macro cell in isolation from the others. 
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Note  that  the use of net weights during  placement 
and wiring [8] is perhaps  the most popular  technique of 
timing-driven physical design in the  EDA industry. Net 
weights are  priority  numbers  generated  for  the  nets  on  the 
basis of their  relative timing  slack  values; these weights 
are used to influence physical design  decisions to  help 
reduce delays on  nets  that  are relatively  critical. HDP 
uses the  more powerful technique of net constraints rather 
than  net weights to drive physical design,  since the  former 
allows a  much more  accurate  and effective  fast  evaluation 
of the timing  quality of a  design, even as the physical 
design process is being carried  out. 

The hierarchical  timing planning  function  contains 
two algorithms  described briefly below: HITARGET and 
HIBUDGET. The primary difference  between  them is as 
follows: The  former works across the hierarchy,  processing 
all nets and cells in the hierarchy simultaneously; the  latter 
takes  advantage of timing abstractions  for  the  macro 
cells to process the hierarchy  a portion  at a time  and 
propagate  constraints  and  estimates across different 
portions  up  and down the hierarchy. 

HITARGET This is a target-generation  algorithm  that 
processes the timing assertions  on a  design and  generates 
capacitance  targets  (upper-bound  constraints)  on  the  nets 
in the design  such that if the individual capacitance  targets 
are  met by placement  and wiring, the resulting  design will 
meet  the overall  timing requirements.  Target  generation 
algorithms have been  developed  and  published in the 
referenced  literature [8-101 and  are  thus  not  described in 
detail  here.  One of the key enhancements in HDP is that 
it  uses  a  truly hierarchical  approach  to  target  generation, 
in which net  capacitances  are  apportioned  not only among 
different  nets  at  the  same  hierarchy level, but also  across 
net  segments  that  are  connected  to  one  another  through 
ports of macro cells across the hierarchy. An  algorithm 
using a  similar approach was recently reported in [ll]. 

HIBUDGET This  algorithm, which is an extension of 
HITARGET,  uses timing abstractions  to  break down a 
very large  hierarchical netlist into  portions  that can 
be  processed  one  at a time.  It  makes  use of timing 
abstractions  for  macro cells, both  to  propagate  estimated 
“delay  demand”  information  for  macro cells up  the 
hierarchy and  to  propagate  asserted delay constraints 
down the hierarchy. 

Integrated net analysis functions 
A net in the  HDP  environment is basically a  collection 
of ports.  In a hierarchical design,  a port  has two 
nets-internal and  external.  An  input  port is a  driver 
for its internal  net  and a  receiver for its external  net. 
Similarly,  an output  port is a  receiver for its internal  net 
and a driver  for its external  net. A bidirectional  port is 
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both a  driver and a  receiver for  both  the  internal  and  the 
external nets. A routing  on a net may be specified by 
performing global wiring or detailed wiring in HDP,  or by 
loading it from  the  persistent design database  for wires. 
For  the  purpose of analysis, the wiring on a previously 
unrouted  net is estimated using a Steiner  tree. If a net is 
only partially  wired (i.e., all  its ports  are  not topologically 
connected),  HDP uses “Steiner-like”  segments  to  complete 
the wiring. The analysis of a net consists of two main 
steps: 

1. Extraction of the electrical RC network from the physical 
routing Each  segment in the physical routing is 
modeled as a distributed RC element. A  receiver 
port with no internal  net is modeled as  a lumped 
capacitance  obtained  from  the timing (DCL)  rule of 
its cell or  from  an  abstraction.  The  capacitance  for a 
receiver port with no  external  net is obtained  from  the 
timing assertion  constraints used by EinsTimer. 

the design data model The effective load  presented by 
an electrical RC network on its  driver port  can  be 
modeled fairly well by a II-model consisting of two 
grounded  capacitors  joined  together by a resistor [12]. 
The  solution of the electrical RC network for a net  at a 
certain level of the hierarchy  begins by computing  the 
II-model  at  each of its  driver ports, given the  II-model 
at  each of its  receiver ports.  Therefore,  the very first 
step is to  ensure  that  these  II-models have been 
computed (or updated)  at  each of its  receiver ports. 
This is done by “walking through”  the hierarchy 
until  a  receiver port is reached with either  no  internal 
net or no  external  net.  At  the  request of the  user, 
the RC delay,  voltage drop,  or  resistance  for  each 
driver-receiver pair of a net may also be  computed. 
The RC delay  could be a  simple Elmore delay [13] or 
it  could be  obtained by using the asymptotic  waveform 
evaluation  (AWE)  method [14]. In this  case,  every 
distributed  capacitance is replaced by a lumped 
capacitance of half its  value at  either of its two 
nodes in the  electrical  network. 

2.  Solving the RC network and storing the results back in 

In  addition  to  the choice of delay computation  methods, 
several options  are available to  the  HDP user for 
controlling net analysis. The  user can  select the type of 
analysis to  be  performed (RC delay, resistance,  or voltage 
drop  for  each driver-receiver pair),  and  the  mode of 
analysis (extract  the network from its routing, i.e., step 1 
above, or model all wires  as having zero  length, which 
helps in some  cases when the  user wants to know how 
fast the design can  run with zero-length  interconnections. 
The  user is also given a  choice of different  Steiner  tree 
heuristics and  an  “adjust  factor,” which is used  to  increase 
the  lengths of all of the  Steiner  tree  segments. 439 
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Integrated timing analysis 
The primary  mechanism for  supporting all timing closure 
activities  in the design planner is a set of functions 
referred  to  as  the timing services layer. This layer  provides 
a comprehensive  array of services that  can  be broadly 
classified into  three  categories,  described in detail below. 

Tight integration between HDP and  incremental timing 
analysis 
The results of tight integration  between HDP  and  an 
incremental timing analysis tool  (EinsTimer in HDP) may 
be viewed as  a  system that consists of two communicating 
processes cooperating  to deliver accurate analysis results 
whenever physical design changes  are  made  either 
automatically or manually. For example,  when the 
placement of a  cell is changed  and  the new slack at a 
port  on  the cell is requested, this request is passed to 
EinsTimer by HDP.  EinsTimer, in turn, asks HDP 
to supply the delay  values and  loading of those 
interconnections  that must be  rerouted  because of the cell 
move. These new interconnection delay and  loading values 
are used by EinsTimer,  and  the new slack is reported  back 
to  HDP.  This  form of tight integration  between a PD 
system and a  timing analysis tool  has many  benefits. From 
the perspective of facilitating  timing  closure, the  three 
most  important  are 

To  ensure  that  the  PD  environment  uses  the  same 
yardstick to  measure timing closure as is used by the 
designers of the  front-end logical  design. This  eliminates 
mismatches in timing analysis results  between  the  front 
end  and  PD. 
To permit  automation  tools  and  manual  changes  made 
in the  PD  environment  to have in-memory  interactions 
with the  timer.  This  permits  incremental  PD  changes  to 
be  evaluated using fundamental timing metrics (e.g., 
slack,  arrival time),  rather  than derived metrics such as 
capacitances, RC delays, and wire lengths. 

between PD  and final sign-off,  in  a manner similar to 
that used for  IBM  CMOS 5 ASICs. 

As in the first item  above,  to  eliminate  mismatches 

Targeted timing estimation services 
Tight  integration of the  form  described above is useful  in 
many situations. However, several  automatic  optimization 
methods exist that must support a very high sustained  rate 
of analysis queries.  The  amount of time  spent in inter-tool 
communication  and  accurate delay and timing calculation 
in the above scenario  proves  to  be  too expensive for  use 
in the  inner  loop of these  optimization  methods.  One 
example of such  optimization  methods is simulated 

potentially  result in several timing  analysis queries.  This 
demanding  rate of timing queries is not  sustainable 
by even an extremely fast  incremental  timer such as 
EinsTimer.  Therefore,  the timing  services  layer  in HDP 
provides some timing estimation  tools  that  can  be  used 
in the  inner  loop of very demanding  optimizers  such as 
simulated  annealing. 

Visualization  aids for timing results 
Timing analysis typically produces very voluminous 
timing reports. While these  are extremely  useful from  the 
perspective of comprehensive analysis of a  design, there is 
a  critical need  to  provide “hot-spot’’  identification tools, 
which are  embedded  in  the physical design system and 
allow the  designer  to  concentrate  on  problem  areas 
without sifting through  substantial  amounts of data.  HDP 
provides  a very powerful set of such  timing  visualization 
tools, which support  “timing  closure” activities. One 
example of a  visualization tool is illustrated in Figure 5 .  
This  tool provides  a detailed  pictorial  breakdown of delays 
(load-independent cell  delay, load-dependent cell delay, 
interconnection delay), transition times, etc.,  along 
the worst-case paths in the design. Each of the delay 
components is back-annotated  to  the  corresponding design 
object  (cell, net,  etc.). A user  who  wants  to  perform 
interactive timing analysis and  correction  during  and  after 
the physical design phase  has simply to  bring  up this tool, 
click on the  offending design entity,  and  make  changes  to 
it  in order  to  correct timing. This  feature  has proved to  be 
an invaluable  aid to  designers. 

In-place optimization 
ASIC design  systems that  force a complete  separation 
between  front-end (logic  synthesis) and  back-end (physical 
design) tools  almost invariably generate unsatisfiable 
timing constraints  on  the  back-end  tools in the first 
design pass. This  has  been  the  experience of designers of 
0.5-pm ASICs, and is likely to continue  into  the  future  as 
fabrication  technologies  become  more aggressive. The 
primary reason  for  this  situation is that timing constraints 
generated by the  front  end  and passed  down to  the  back 
end  are  based  on a  timing analysis performed by the 
front  end, using  rough or  rule-of-thumb  estimates of 
interconnection delay and loading. These  estimates  are 
often  inaccurate by a large margin because  the  geometry 
of nets  cannot  be accurately predicted  before  placement is 
performed.  The  errors  are especially large in ASIC designs 
(as  opposed  to  structured  and  hierarchical  microprocessor 
design), because such  designs tend  to  be flat,  making  it 
difficult to  bound  the  geometries of nets in the netlist. 

Such  errors in interconnect  estimation  were of little 
annealing-based  placement.  The  annealer in HDP makes consequence in fabrication  technologies  where  the 
of the  order of 10000 moves per  second  on a RISC interconnection delay and  loading  were a very small 
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I technologies, this  component of the  path delay can  be as 
large  as 40% or more of the  total  path delay. Therefore, 
timing constraints  produced  on  the basis of the  incorrect 
interconnect  estimates  tend  to yield unattainable timing 
targets. 

One of the  techniques  for overcoming  this problem 
of incorrect  estimations resulting  in unattainable timing 
constraints is to  iterate  between  placement  and logic 
synthesis, and  to  use  the  results of placement in one 
iteration  to  improve  on  the  estimation  and  constraint 
generation  for  the next iteration.  This  technique is rather 
time-consuming and  leads  to very long ASIC design 
times,  especially for  large, flat submicron designs. 
Additionally, there is no guarantee  that  the  iterations will 
converge. We have  provided an  alternative  technique  for 
obtaining timing closure in such  aggressive  designs by 
integrating  some simple logic synthesis operations  into 
the physical design environment. Broadly  speaking, all 
synthesis operations  that result  in  netlist-preserving 
changes  are  candidates  for  integration  into  the physical 
design environment.  Some examples of candidate 
operations  are  gate sizing (also known  as  power-level 
optimization)  and  buffer  insertion.  Current  HDP 
implementations  include  gate sizing functions. 

Gate sizing in HDP can  be invoked  manually or by 
any of an  assortment of new automatic heuristics. The 
automatic heuristics are a combination of local “greedy” 
approaches  and global techniques.  The  purpose of the 
automatic  function is to resize gates in  critical portions 
of the design in order  to  eliminate slack, slew, and 
capacitance limit violations while minimizing placement 
perturbation.  The heuristics are extremely fast, working 
in a fraction of the  time  required  to  iterate  between 
placement  and logic synthesis. Our  experience  has  been 
that they are always successful  in eliminating negative 
slack and  capacitance limit violations, and  are  able  to 
correct a very large  percentage of slew violations  in the 
design. Once  the resizing is completed, any new resulting 
physical violations  such as  overlaps  can  be removed 
in the rich physical design environment of HDP. 

In summary, by providing the capability to actually 
make small logic changes in a placed design  without 
leaving the physical design environment, we have been 
able  to achieve  timing closure on ASIC designs having 
constraints  that  are essentially  impossible to satisfy by 
performing purely physical changes.  Designers have found 
this feature in HDP  to  be invaluable for  meeting timing 
closure  requirements. 

I 
Global wiring 

Global wiring, in the  context of design planning as 
addressed in this paper, is an analysis tool  that  creates 
information used to  help  make  better design  decisions. 
The  output of the global router is used to display 
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congestion maps,  as well as  guide-pin assignment and 
wire reservation.  Global wiring can also be  used  for 
early  net analysis and timing prediction. 

The image on which the  router works  consists of a 
checkerboard  pattern of tiles on  each of the physical 
layers.  Wires,  blockage, and capacity are  separately 
accounted  for on the  boundaries of each tile and within  its 
interior.  The  representation of these  quantities inside the 
tile as well as on its boundary  makes  the  results of global 
wiring less sensitive to tile  size. 

Global wiring consists of several  iterations.  Each 
iteration involves evaluating  the  current  solution, selecting 
nets  for  rerouting on the basis of that  evaluation,  and 
finding alternative global paths  for  the  selected nets. 
Iterations  stop  whenever a  user-specified limit is reached 
or  the worst local congestion is less than  a  target congestion. 

The first iteration quickly approximates a  minimum 
Steiner  tree  for all user-selected nets.  Layer  assignment 
and L-flipping are  performed  to even out  congestion.  The 
Steiner  routing provides an initial estimate of congestion 
and a  basis for  subsequently  constraining  the  length of 
the  net relative to its capacitance  target.  Paths  that  are 
contained in  tiles or that  cross  tile  boundaries having the 
worst  congestion are  selected  for  reordering  during  an 
iteration.  These  paths  are  sorted so that  paths  that  tend 
to  occur in  regions with a high congestion  gradient  are 
visited earlier in an  iteration. 

The second and  subsequent  iterations involve rerouting 
a path using a  cost-driven maze  runner.  Before  each 
path is rerouted,  the existing path is used to  set cost 
parameters. Cost parameters  are set  in order  to  make 
finding  a path similar to  the existing one very expensive 
and a path  that improves on the  characteristics of 
the existing path less  expensive. Some of the  path 
characteristics  considered  are congestion, length,  and 
via count. 

When a parent cell has child cells that in turn have 
hierarchy,  a  special  image is created if global wiring is 
being used  in conjunction with pin assignment or wire 
reservation. Recall that  area  reservation is used to 
determine  the  area of a  cell and its ceiling. The ceiling is 
used to  reserve  the wiring capacity of a cell from  the first 
wiring  layer to its  ceiling.  Normally,  global  wiring at  the 
parent cell would see  the  reserved wiring capacity of a 
child cell as a  blockage. 

the ability to recognize two levels of the hierarchy at a 
time. This provides more  accurate wiring for  nets  that 
cross hierarchical boundaries.  Furthermore,  the global 
wiring function places  wires on individual  layers  as  it 
proceeds. Since the electrical and  geometric  properties 
of wires can vary substantially by layer,  this ability 
provides better  planning  and  estimation capabilities. 

Global wiring in HDP  offers  advantages in that it has 
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Estimation  and  block-level  (early)  floorplanning 

Moving  beyond these wirability-driven  cell port assignments, 
HDP provides a set of port and I/O assignment functions: 

I/O assignment functions with “legal”  placement  on I/O 
drivers,  in locations  designated  for I/O cells on a chip 
image, if such constraints exist. 
Bottom-up assignment  services to allow the  propagation 
of the  implementation of child cells. 
Early macro cell pin  assignment functions  to  determine 
vicinities of cell ports  after a floorplanning  step.  These 
“port  areas” can be  used  to  further  constrain  the 
wirability-driven port assignment  process. 

The  advantage of macro pin  assignment is again that it 
has the ability to recognize two levels of hierarchy at a 
time. The positioning of a macro  pin is determined by 
examining the  macro child pins  to which a macro  pin is 
connected, as well as the  pins of other cells at  the  same 
level of hierarchy  as the  macro. Blockages  inside the 
macro  are  considered  as well as the blockage outside  the 

I I macro.  Other  considerations  include  the width of the wire 
accessing the pin and  the  congestion  due  to  other wires 
in the vicinity of the pin. These  considerations  provide 
higher  confidence that  the  pin will be assigned without 

In  addition,  the  relationship of the pin with other pins 
in the  net is considered  to provide  pin alignment. 

Achieve  (physical design) timing closure 

Wiring and post-wiring ECs  and final timing  corrections shorting  to a  blockage and will be accessible during wiring. 

To final timing  verification  and  checking 

Front-to-back  hierarchical  design  planning  methodology. 

Piniport  assignment 
Detailed  macro cell  pin  assignment determines  the 
locations of pins belonging to cells with hierarchy.  Pin 
assignment can  be  performed on the pins of the child cells 
of a selected  parent cell or on the pins of the  parent cell 
itself if it is not  the chip. 

On  the child cells, a pin  location is chosen  to 
correspond as closely as possible to a point  on  the 
boundary of the child cell crossed by previously generated 
global paths  for  the  net owning the pin. The global paths 
are  optimized  to avoid congestion  and minimize length. 
A pin  assignment is also chosen  to  optimize  the  alignment 
of pins  within the  same  net. 

In  addition  to pin  assignment, there is a placement 
buffer  that expresses an  approximation of the  free  space 
needed on an outside  boundary of a cell in order  for its 
pins  to  escape. Normally, the  placement is close to  being 
finalized before  pin assignment, so the  buffer is used to 

442 make small adjustments only. 

Power  and clock routinglplanning 
Power routing is used to establish  a network of metal 
interconnections  to  distribute power from  source  to sink 
points.  The  current  methods of establishing  this network 
assume that  the  designer has some basic pattern in mind 
for  the power network.  In  practice, this pattern  has 
been a  grid of horizontal  and vertical lines  occurring 
on  horizontal  and vertical  wiring  layers,  respectively. 

pattern  as  an  input,  the  router modifies the  location 
elements of the  pattern with respect  to  the  source  and 
sink points.  This is done in a manner  not much different 
than fitting  a  curve (pattern)  to a set of data  points 
(source  and sink points). 

pattern is implemented  to  be  consistent with a set of 
constraints.  The  constraints  include limits on  the width 
of the  metal, how the  metal  should  be  terminated,  the 
distance by which the  center of the  metal  can vary from 
the  center of its pattern  element,  and  the  circumstances 
under which the  metal  can  be  interrupted.  The  pattern is 
implemented in the  presence of blockages with a  simple 
shape-based  maze  runner. 

The  implemented  pattern  comprises  the bulk of the 
metal  network of the power distribution system. In 
practice, this metal  network  has also been sufficient to 

The final phase of power routing is planning.  With  the 

Once  the  planning is done,  each of the  elements of the 
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connect all of the  source  and sink points. If not,  the power 
router offers additional capabilities for  connecting any 
unconnected  source  and sink points with the  metal 
network  corresponding to the  pattern. 

to the power router; it is a rectilinear polygon whose 
horizontal  and vertical elements may occur on  different 
layers. Often, a  ring  occurs  inside  a child cell. When this 
happens,  the  pattern specified to  the power router is 
interrupted  at  the ring and  not  implemented inside the 
ring. Hence, a  ring prevents any power implementation 
from  occurring inside  its borders.  It also prevents  source 
and sink points existing inside  its borders  from influencing 
the power  planning. 

With  hierarchy, the power routing  implementation 
was designed to  implement  and  plan all of the power 
distribution  from  the  top cell of the hierarchy down to the 
bottom cells. It is assumed that  the  same  pattern is used 
throughout  the hierarchy. If this is not  the case,  rings are 
entered  into  the cells not following this pattern. Except 
for  connecting  into  them,  no  further  implementation  or 
planning is done inside these rings or within  any other 
cells occurring  inside  the rings. After power planning  has 
been  done,  representations of the power at  the  top level 
cell are placed  within  all ancestor cells, so that design of 
these cells can  proceed  independently of their  parent 
cells, but with knowledge of the power at the  top level. 

The  advantage of power routing in HDP is that it 
recognizes  hierarchy in all of its operations  and  permits 
approximations of the power to exist during  early 
planning. The power router  can  implement a complete 
power network  from  the chip level that is valid at a given 
level of the  hierarchy. On the  other  hand, if it is desired 
to  keep  the power  network outside  the  boundaries of a 
cell somewhere in the hierarchy below the chip, it is 
possible to  do so by implementing rings  inside the cell. 
The  early  approximation of the power permits  other 
planning activities to  proceed while taking into  account 
some  form of the power  network. 

ChipBench,  through  the  use of the clock optimization 
function  and  HDP,  supports clock planning  for  balanced 
wiring. The  results of the  process  are fed to  the  detail 
wiring program. A companion  paper [15] discusses the 
details of these functions. 

A  ring is a  special  object that signals different behavior 

Performing  PD  using HDPKhipBench 
This section  discusses the  use of HDP  capabilities in a 
general  front-to-back methodology setting  (see  Figure 3), 
as well as its application in a physical design setting 
(see  Figure 4). 

General design planning methodology 
HDP is designed to provide the  enabling technology for a 
general methodology  based on timing-driven hierarchical 
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One-level expansion shown 

0 N-level hierarchical cell with ASIC design style a Two-level hierarchical cell with ASIC design style 

c? Hierarchical cell with ASIC design style 

a Hierarchical cell with custom design style implementation 
0 Hierarchical cell with  early specification 

[7 Library (leaf) cell 
(no detail logic implementation) 

(e&, random logic macros) 

(predetermined floorplan boundary) 

.~ 

Hierarchical design including entities with mixed-level implemen- 

design  planning.  As shown in Figure 6, this  begins with a 
high-level representation of the design,  as  in structural 
and behavioral VHDL (verification hardware  description 
language),  or  Verilog@,  and  introduces physical design 
planning  early in the design cycle. In this  process, 
HDP is used as  an early physical design estimator  and 
floorplanner,  interacting with high-level synthesis. For 
example, in an ASIC design environment, HDP interaction 
with the main vendor synthesis tool, Synopsys Design 
CompilerTM, is facilitated by the  Floorplan  ManagerTM [16] 
or  an  equivalent  enabler  application.  Note  that  the 
interaction  between HDP  and  BooleDozerTM [17] (an 
IBM-EDA  synthesis tool), occurs in a natural design flow, 
with no intermediate hierarchy management  facilitator 
required, since both  internal  IBM  front-end  and back-end 
environments use the  same  data  representation  and  the 
common EinsTimer timing engine. As  a  design  progresses, 
HDP provides  planning, analysis, and  implementation 
support  for  the mixed-level design, incorporating  entities 
that  are  at  different  and varying degrees of realization. 
This  assortment of implementation levels, illustrated in 
Figure 7, is handled in a seamless  fashion, since the  HDP 
environment is capable of carrying the design to any 
required level of detailed  implementation, including the 
phases  required to generate  the  actual layout data.  This 
environment  also  permits  the mixing of automatically 
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Early in-context hierarchical area and porosity estimation by cell 

planning step sequence. 
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generated  models  and  asserted  (or manually entered) 
models. 

As illustrated in Figure 6, the  hierarchical physical 
design component of the methodology (see  Figure 4) and 
its underlying HDP  functional  elements  are  integral  to 
this overall design planning flow. The physical subset of 
the  methodology  can  be viewed as  planning  and physical 
implementation  performed in an  ASIC  supplier design 
center, while the  front-end  elements  are  carried  out in a 
customer design center  performing  the high-level and logic 
design. The  use of the  same  planning technology is key to 
ensuring first-pass  success  in hardware  implementation. 
We envision that  more physical design implementation 
steps will be  executed in ASIC  customer design centers 
to  ensure timing closure  and  shorten  the  time  to  market. 

Physical and timing planning, as well as the  budgeting 
phases of the  methodology,  are  prevalent  throughout  the 
process  (see  Figures 4 and 5). Figures 7-11 illustrate  the 
methodology described in this  section  and show the  state 
of the  hierarchical design after  the  application of the 
several functions in HDP.  Starting with  timing constraints 
at  the  boundary of a chip (generally in the  form of arrival 
and  required arrival times  and clocking requirements),  the 
budgeting  process  allocates delay budgets  and provides 
for  propagated  assertions  to  hierarchical child entities 
at  the  option of the  designer.  This  process is used  in the 
synthesis domain  to drive the  detailed  netlist  generation. 
In  the physical design evaluation  or  implementation 
phases, it is used to drive and assist the  floorplanning 
or  placement  functions. Timing abstractions  for any 
hierarchical design entity  can  be  generated  and used in 
the timing analysis or in  timing-driven applications  at any 
stage of the  implementation of a  design (Figure 11). All 
processes involving timing are tightly integrated  and  are 
based  on  the  same timing  technology as  that available  in 
EinsTimer. 

In  parallel, physical design planning  uses available early 
or  detailed  implementations  to  allocate physical space 
to  the  hierarchical  structures.  This  allocation is three- 
dimensional, since  it involves the  allocation of wiring 
spaces.  As an  integral  part of this  wiring area  planning, 
power and clock routing  requirements  are  accounted  for, 
and  early  implementations  are  performed as needed. As 
does its companion timing-budgeting  process, the physical- 
structure  planning  process  can  operate with different 
granularity levels, from  asserted  space  requirements  to 
derived detailed  requirements. 

The  multidimensional physical- and timing-planning 
processes  are used to  generate  constraints  for client 
applications as well as  to define the  elements  that allow 
for  encapsulated  implementations of different hierarchical 
entities. All planning  and  encapsulation  capabilities  are 
available and  operational in the  context of the full design 
hierarchy. This in-context function  set  includes a  full 
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repertoire of port assignment functions  that cover the 
spectrum  from  chip I/O assignments to wirability-driven 
final detail  macro assignments (Figure 9). The  latter 
operates in concert with wire- and  path-reservation 
functions, which are  also  driven by the  same global wiring 
engine. Also, the clock and power structures  are  planned 
during  the  planning processes. The  planning of the 
clock typically involves a different  rebuild of the clock 
tree  and results  in  netlist  changes. The  planning  and 
implementation of the power  supply may involve the 
activation of signal integrity and verification functions. The 
clock and power planning capabilities are functions that 
operate and  optimize hierarchically within a design context. 

HDP provides an  integrated  implementation of 
detailed  placement  at  the  detail  implementation  stage 
of a  hierarchical  design  entity. The  placement  and 
floorplanning  methodologies  are fully integrated  and 
are  supported by the  incremental timing  capability of 
EinsTimer, providing active critical path monitoring during 
the  placement process. During  the execution of the overall 
timing-driven,  hierarchical, physical design phase of our 
recommended methodology, clock optimization  and  other 
support  functions such  as  scan-chain reconnection  can  be 
executed.  We also propose  the  incorporation of data-flow 
and  data-path  element  support as an  integrated extension 
to  the  proposed  placement methodology. 

implementation  constraints  are  generated  and passed to 
ChipBench  routing  tools  or  to  third-party  vendor wiring 
tools. Throughout  the design flow, designers can  bring  up 
detail  implementations  that could  have been  carried 
out in an  external  environment.  This  includes  the 
accommodation of custom implementations of subsets of 
the design, as well as  accessing electrical analysis results 
generated  outside  our tools.  Such interoperability in 
support of this  design implementation  methodology 
is facilitated by our repository and by the  related 
environment services. The  environment services include 
ports  to existing and  emerging industry standards. 

Integrated analysis functions, including  timing 
analysis, can  be  executed  at any stage of planning  and 
implementation in HDP.  The timing analysis is supported 
by net analysis functions  that  take  combinations of 
available implementations, including the  automatic 
utilization of the most detailed  section of a  hierarchical 
net,  and  combine  them with the necessary or available 
estimations,  or  the global path.  For  detailed timing 
verification, EinsTimer can be  fed  the  results of the timing 
extraction as generated by HDP.  In  addition  to advanced 
analysis, HDP provides  timing correction capabilities 
(see  Figure  5).  The  HDP  functions  deal with detailed 
implementation  and mainly involve the  repowering of 
cells, while synthesis actions may involve the resynthesis 
of a  block or a  collection of blocks. 

In  the  postplacement  phase,  performance  and 
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k Design  shown after (in-context)  timing  planning  steps: 
- (In-context)  physical  planning  steps 
- Initial  hierarchical  clock  planning 
- Timing-abstraction  generation 
- Port  assertions  generation  at  child cells 
- Net  capacitance  generatiodbudgeting 
- Port  area  generation  for  child cells 

y :  ...., Original  top-down cell port  assignments 
(with  port  area  based on floorplan  only) 

of  port  area  based on target  generatiodbudgeting 
C 3  Top-down cell port  assignments  with  modifications 

Design after  in-context  timing  planning  steps  in  preparation  for 
final  detail PD steps on individual  hierarchial entities. 

Engineering  change  order  (ECO)  capabilities  are 
available and  applicable  throughout  the process. In-place 
optimizations  can effectively take place at any stage of 
the process. The level of engineering  changes  that  can  be 
supported  ranges  from  the issuance of an  ECO  command, 
to  automatic  detection of a  netlist change,  to  the  re- 
implementation of a large  hierarchical  entity  and its 
seamless re-imbedding in the  rest of the design. 

placement timing closure methodology, starting with a 
two-level hierarchical  situation. 

At this point, we take a closer look at  the  hierarchical 

Two-level (fiat) placement timing closure methodology 
The  placement timing closure  methodology provides  a 
general,  customizable  strategy  for achieving  timing  closure. 
It  has  been  used with considerable success by HDP users 
in designing high-performance ASICs, and  has improved 
timing closure  and  reduced  turnaround  time by more  than 
70%. The methodology has  been exercised on  chips having 
several million transistors  and  more  than 250000 placeable 
objects  (corresponding  to  about  one million gates), 
including large blocks  such as growable array  structures. 

The overall  methodology  consists of three stages. The 
first stage  creates  an  optimal  placement of the  large 
blocks, and derives  an  effective set of net-capacitance 
constraints  for timing-driven placement.  The  large blocks 
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Alternative execution modes of timing-driven  operations: in- 
context execution with possible use of timing  abstractions (top) 
and  stand-alone  (bottom). 

are  kept fixed in location  during  and  after this stage.  The 
second  stage  performs  detailed timing-driven placement. 
The  third  and final stage  performs  optimization of scan 
chains  and of the clock-distribution network,  along with 
removal of subsequent overlaps. 

The first stage  iterates  between  region  placement  and 
net-capacitance  target  generation. All runs of region 
placement except the first are timing-driven and  use  the 
capacitance  targets  generated in the previous iteration. 
The  cluster sizes are  set  to  be very small, so the  locations 
are very close to  those of an  overlap-free  placement. 
The  iterations dramatically  improve the feasibility of the 
generated  targets,  resulting in typical improvements in 
critical path delays of 10-30% of the cycle time.  The 
strong  correlation in  timing between  the  output of region 
placement  and  the final overlap-free  placement allows one 
to  test for timing closure  without removing  overlaps. This 
improves the  time  per  iteration by more  than 50%. The 
timing is usually tested  after a trial in-place optimization 
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timing closure is achieved, or when progress toward it 
ceases. 

The  second  stage  performs  low-temperature,  simulated- 
annealing, timing-driven detailed  placement  on  the initial 
placement  from  the first stage.  This is done in two phases. 
The first phase uses only net-capacitance  constraints  and 
restricts  the  range of movement of objects  from  their 
initial location.  This helps  minimize overlaps while 
maintaining  the  optimization achieved in the first stage. 
The  second  phase  runs  without  these move constraints, 
but with capacitance  constraints as well as  critical paths. 
This  phase  marks several short  annealing  runs  interspersed 
with the  updating of timing-critical paths.  This typically 
improves the delay on  the worst path by another 10%. 

The final stage  performs  optimizations of the scan 
chains and of the clock distribution network. This is 
followed by removal of any overlaps  created by clock 
optimization, which is done with  a very low-temperature 
simulated-annealing  run of timing-driven detailed 
placement  to  preserve timing  closure. 

Hierarchical timing closure methodology 
HDP allows for a  wide spectrum of choices for processing 
the design,  ranging from completely  flat placement  and 
wiring at  one  extreme  to processing  across  multiple levels 
of hierarchy at  the  other. If a particular design is small 
enough  to  be  processed comfortably without  partitioning, 
the  designer may choose  to  process  the design  flat;  in  this 
case, the placement methodology of 4D planning is applied. 

However, in many situations a hierarchical  approach is 
more effective, and  sometimes it is necessary. The  criteria 
include  the size of the design, the mix  of critical and 
noncritical  components,  the level of reuse of high-level 
components,  and  the existence of a mixture of design 
styles  across different design partitions. For example, if 
some  partitions  contain  random  standard logic while 
others  contain  structured-custom logic, it may be  more 
effective and  practical  to apply different  placement 
algorithms  to  different  portions. 

The  placement timing closure  methodology  can  be 
readily adapted  to any level of the hierarchy, using the 
region placement,  floorplanning,  or  detailed  placement 
function with the  hierarchical timing planning  functions 
described in the subsection on 4D planning. This extension 
forms  the  core top-down hierarchical timing closure 
methodology. The  last  stage of the  placement 
methodology, which performs  scan-chain  and clock 
optimization, is applied only at  the very end.  The modified 
methodology using the  floorplanner is described below. 
If placement  constraints such  as  row structures  are  to  be 
observed,  the  detailed  placement  tool is used. Region 
placement may be used in the first stage if the design 
contains a large  number of small  cells,  with only a few 
large unplaced blocks. 
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Top-down hierarchical timing closure methodology 
The modified,  top-down  methodology  consists of the 
following steps: 

1. If the design contains only leaf-level elements, apply 
the  placement timing  closure  methodology. 

2. Find a  good  set of targets:  Iterate  between quick 
floorplanning  and timing planning  to  generate 
capacitanceiRC  targets  on  nets  and delay assertions  on 
hierarchical blocks, until  timing closure is achieved or 
progress  toward it  ceases. All but  the first floorplanning 
runs  are timing-driven, based  on  net-capacitance 
targets.  These  runs  are  kept  short by permitting 
overlaps,  as  long  as the  overlaps  are small. 

3. Perform  the final timing-driven floorplanning  to  create 
an  overlap-free floorplan. Use  both timing-driven 
features,  and  perform several short,  low-temperature 
runs  interspersed with the  updating of critical paths: 
The  floorplanner also creates  port  areas  for unassigned 
macro  ports  to drive the design at  the next level. Finish 
with timing planning  to refine  timing budgets  and 
create  boundary timing assertions  for all child blocks. 

4. Recursively  apply the  top-down  hierarchical timing 
closure  methodology  to every  child macro. 

The overall hierarchical timing closure  methodology is as 
follows: 

1. Perform  the following preprocessing steps: 
a.  Starting with the logical hierarchy, carry  out 

automatic or manual  repartitioning of the design 
(if desired)  to  obtain a physical hierarchy (see  the 
subsection on  partitioning). 

b. Perform quick floorplanning  and  placement over the 
hierarchy (this  step is optional; it  provides  a better 
starting  point  for timing  planning). 

2. Perform  bottom-up timing abstraction  generation  (see 
the  subsections  on  4D  planning  and  integrated timing 
analysis). 

3. Apply the top-down  hierarchical  timing closure 
methodology. If timing closure is achieved, exit. 

4. If significant progress  has  not  been  made  toward timing 
closure, selectively flatten  the  problem blocks, and 
either  repartition  them  or leave them flat. Return  to 
step 3 (in  all cases). 

Summary of HDP timing closure methodology 
The driving factors in our  proposed design  methodology 
are physical design and timing closure. HDP brings 
together  the  components of physical structure 
planning,  floorplanning  and  detailed  placement,  target 
generationibudgeting,  and  incremental timing analysis to 
achieve  timing closure. By being able  to  operate  on mixed- 
level designs, and by taking advantage of logic estimation 
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and  emerging  front-end  floorplan  data  management 
technologies, we are effectively blurring  the artificial 
boundaries  between physical design and high-level  design. 

The goal of this  timing closure methodology is to 
achieve closure by the  end of the  placement  phase, so that 
first-pass routing success can  be effectively achieved. HDP 
timing closure methodology successively refines the timing 
targets  and  implementation  constraints, moving the design 
in a process  characterized by rapid timing convergence. 
HDP timing closure methodology trades off area, wiring 
length,  alternative  implementation, wirability, congestion, 
and  other design constraints while invoking EinsTimer 
incrementally during this  convergence  process.  As  design 
entities  are  sent  to a wiring tool  that  observes  the 
constraints  generated by HDP,  the wired  designs 
are  guaranteed  to satisfy the timing and  electrical 
requirements. 

The success of this  methodology  within the  context of 
large designs is ensured by a  wide repertoire of system 
services. In  HDP,  the basic mode of operation is selective 
and  incremental access to a sufficient amount of design 
and  implementation  data  on  demand.  The  use of 
abstractions  and  controlled access to  detailed  data is 
achieved while shielding the user from  the  burden of 
explicitly managing  the  propagation of implementation 
effects  across levels of the design  hierarchy. 

Concurrent launching of back-end PD processes 
One of the key components in supporting  an advanced 
design planning methodology is to allow the  concurrent 
activation of functions  on hierarchical entities. In a typical 
utilization scenario, a designer is capable of starting  (from 
within HDP) back-end placement  and wiring functions as 
separate  processes  on  entities below the  chip level. This 
permits  concurrent, side-by-side  design on  the  same  chip 
by one  or more designers. All of [he tools shown in Figures 
1 and 2 can be activated concurrently if the  state of the design 
permits.  HDP  and  the  integrated  ChipBench  environment 
manage all required locking, data integrity controls,  and 
any  necessary data exchanges  among interacting tools. 
Furthermore, all data  propagation  among  hierarchical 
design entities is performed  without  intervention  from  the 
designer. Future extensions of the  environment services 
will provide the  user with more  scenario  and  control 
capabilities, allowing for  further  exploitation of the 
network-centric  computing  paradigm. 

Structured-custom extensions 
The  ChipBench  environment offers structured-custom 
extensions which provide an active  link between 
ChipBench  tools (primarily through  HDP)  and IBM-EDA 
CircuitBenchTM  tools (primarily through  the layout-editing 
environment  GYM). Passive links with third-party  vendor 
tools  are available through a GDSII-based  interface  that 
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can  be  complemented by constraints exchange  using the 
Physical Design Language  (PDL)  and  the  ECO facilities 
available in ChipBench.  Both  elements of bottom-up 
(full-custom) and  top-down  (semi-custom) design 
methodologies  are  supported in the  current  release of 
ChipBench. Physical design constraints  are exchanged 
between  the  interacting tools. ChipBench  supports 
continuous activation and  interaction  between  HDP  and 
GYM.  HDP  can  currently pass outline  and  pin  location 
constraints  to  GYM. Physical design abstractions  are 
automatically generated, allowing the  seamless  integration 
between  editing a  library entity  and applying  place and 
route  tools  on its parent. 

Design  examples  using HDP timing  closure 
methodology 
The effectiveness of our flat  timing closure  methodology 
in  achieving  timing closure on large, flat  timing-critical 
designs is demonstrated in this section with two typical 
designs that  were successfully completed with the 
methodology. Examples 1 and 2  below track  the successive 
improvement in the worst  timing  slack  in the designs as 
they  proceeded  through  the process. 

Design example 1 
1.5M-transistor design (CMOS 5L). 
26 large  GRAs automatically  placed. 
480 I/Os. 
10-ns cycle time. 
Two iterations of region placement  and  target 
generation followed by timing-driven 
floorplanning/placement, in-place optimization,  overlap 
removal, and user-assisted path fixing. 

imDrovement  over 
T iming  s l a c k  

p r e v i o u s   s t e p  
( n s )  

N e t - l e n g t h - d r i v e n  - 
C a  t a r g e t -  1 .7  

t ' i i v e n   ( a l l   n e t s )  + 
t a r g e t   g e n e r a t i o n  

C r i t i c a l   t i m i n g   p a t h s  + 
c a p - t a r g e t - d r i v e n  

1 .0  

I n - p l a c e   o p t i m i z a t i o n  + 
over lap  removal  

1.8 

U s e r - a s s i s t e d   p a t h   f i x i n g  0.3 

Total   improvement 4.8 ns ( m e e t s   t i m i n g  
i n   t i m i n g   r e q u i r e m e n t )  

Design example 2 
1M-transistor design (CMOS 5L). 

300 I/Os. 
17-ns cycle time. 
Three  iterations of region placement  and 

32  large  GRAs  automatically  placed. 

target  generation followed by timing-driven 448 
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floorplanning/placement, in-place optimization, 
and  overlap removal. 

improvement  over 
T iming  s l a c k  

p r e v i o u s   s t e p  
( n s )  

N e t - l e n g t h - d r i v e n  - 
C a  t a r g e t -  1.3 

8 i i v e n   ( a l l   n e t s )  + 
t a r g e t   g e n e r a t i o n  

C r i t i c a l   t i m i n g   p a t h s  + 
c a p - t a r g e t - d r i v e n  

I n - p l a c e   o p t i m i z a t i o n  + 
over laD  removal  

0.6 

1.4 

Total   improvement 3.3 ns (mee ts   t im ing  
i n   t i m i n g  requ i   remen t )  

The examples  show that  our tightly integrated timing- 
driven capabilities  lead  to  substantial  improvements over 
net-length-driven physical design. Furthermore,  the 
integration of these  capabilities in one design environment 
permits  the  user  to  perform successive timing closure  steps 
without having to  incur  the  overhead of switching tools  or 
execution  domains. 

Traditional synthesis bases its predictions of timing 
on statistical  connection-length  estimates. While  such 
estimates may be  accurate  on  the  average,  they have 
potential  for  leading  to  poor timing estimates.  This 
phenomenon was not  evident  until designs became  large 
while feature sizes became  smaller  and  wire-dependent 
delays became a factor.  Our  experience  has  been  that  the 
slack predicted by synthesis  is  generally overly optimistic. 
Accounting  for  the  effects of physical design early in 
the design process  should substantially reduce  the 
potential discrepancy between  predicted  and achievable 
timing. 

The majority of the designs that have been  processed 
to  date  through  HDP  and  ChipBench have  used  a  flat PD 
methodology,  primarily because of our system's ability to 
process a  flat physical design efficiently and  the growing 
popularity of the ASIC-plus-cores  design  style.  However, 
as  design  sizes and  functions have  grown and  the  need  for 
planning  the design  in the  front-end  domain  has  increased 
for  high-end ASICs, we are witnessing more designs that 
must be  processed hierarchically  in PD. 

Summary  and  future  directions 
In this paper we have described  the  Hierarchical Design 
Planner  (HDP), which provides a combined  environment 
for  hierarchical physical design and  for  both  interactive 
and  automatic design  planning. HDP  includes a partitioner 
that  can  create a physical hierarchy from a  design that 
either is flat or  has a logical hierarchy,  and a floorplanner 
with many  advanced features.  Both  are tightly integrated 
with EinsTimer  to  provide  true timing-driven  capabilities. 
They are  capable of handling many other  constraints  to 
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make  both  the  partitioner  and  the  floorplanner truly 
versatile tools. HDP also  comes with advanced checking 
capabilities and a  global router  that provides valuable 
feedback  to  the  floorplanner  and also  drives detailed 
routing.  Because of the tight integration of floorplanning 
and timing, HDP provides  a natural  environment  to 
achieve  timing closure  through quick iterations of 
design scenarios in complex  designs. 

Using HDP within  advanced ASIC design centers, 
to  activate  and  control a  truly integrated timing-driven 
methodology in the  setting of IBM  ChipBench  for physical 
design, has  led  to  substantial  reductions in  design time  for 
timing-critical  applications. The  paper  has  presented 
some design  examples  in which large  improvements  were 
achieved in terms of timing over  traditional  net-length- 
based physical design optimization.  More significantly, this 
was accomplished without having to  perform synthesis or 
return  to a front-end design environment. 

Looking into  the  future, we see  cores  and  embedded 
macros as one of the key challenges.  While HDP  handles 
macros today, we expect their type and complexity to 
increase in step with the  development of new technologies. 
Designs with complex cores  are  just beginning to  emerge. 
Because they now appear  as  “black boxes,” the  challenge 
from a floorplanning  point of view will be  to  extract 
enough timing (path  and  pin-to-pin delays) and physical 
data  (pin  locations,  feed-throughs, blockages) to  ensure 
that  the  cores  can  be  placed  amidst  their  surrounding 
logic. But that is only the beginning. Soon, cores may be 
described only logically or abstractly, and  their physical 
and possibly detailed logical design may have to  be  done 
along with the  rest of the logic, but with particular 
restrictions (size, area,  shape, all with limited  knowledge 
of their  internal  design)  that  pertain  to  their  internal 
characteristics  and  periphery. 

Another key area of enhancement involves linkage with 
behavioral-level  design and synthesis.  While  links exist to 
back-annotate timing and  some physical data,  the  future 
requires design planning  to  be  tied  to  the  behavioral  and 
architectural levels of design, where  estimates of timing 
of critical paths  and physical shapes  and sizes will allow 
rapid  estimation of performance,  cost,  and size. At  the 
architectural level, feedback  on physical data will also 
allow the system designer  to  decide  the “cut-points’’ 
between  hardware  and  software in  a  hardware-software 
co-design environment. 
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