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Recent advances in integrated circuit
technology have imposed new requirements
on the chip physical design process. At the
same time that performance requirements are
increasing, the effects of wiring on delay are
becoming more significant. Larger chips are
also increasing the chip wiring demand, and
the ability to efficiently process these large
chips in reasonable time and space requires
new capabilities from the physical design
tools. Circuit placement is done using
algorithms which have been used within IBM
for many years, with enhancements as
required to support additional technologies
and larger data volumes. To meet timing
requirements, placement may be run iteratively
using successively refined timing-derived
constraints. Chip optimization tools are used
to physically optimize the clock trees and scan
connections, both to improve clock skew and
to improve wirability. These tools interchange

sinks of equivalent nets, move and create
parallel copies of clock buffers, add load
circuits to balance clock net loads, and
generate balanced clock tree routes. Routing
is done using a grid-based, technology-
independent router that has been used over
the years to wire chips. There are numerous
user controls for specifying router behavior
in particular areas and on particular
interconnection levels, as well as adjacency
restrictions.

Introduction

Traditionally, the goals of chip physical design have been
to find placements which are legal (i.e., are in valid
locations and do not overlap each other) and wirable for
all circuits in a fixed netlist, and to route wires of uniform
width on a small number of layers (two or three) to
complete the interconnections specified in that netlist. The
physical design process has been divided into two parts:
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placement, which is the assignment of circuits in the
netlist to locations, or cells, on the chip image, and wiring,
which is the generation of routes, using the available
interconnection layers, to complete the connections
specified in the netlist.

Recently, new technology characteristics and constraints
and increased performance pressures on designs have
required new capabilities from the chip physical design
process. Wiring is now the dominant contributor to
total net load and delay, and its contribution may vary
significantly depending on the physical design solution
chosen. This requires timing controls [1-4] for placement
and wiring. Newer and larger chip technologies also
provide more layers of wiring which must be
accommodated by the wiring programs. These large chips
also typically contain tens of thousands of latches, each
requiring scan and clock connections. Such connections,
as they appear in the input netlist to physical design, are
usually somewhat arbitrary. Reordering the scan chain
and rebuilding the clock distribution tree to reduce wire
demand can significantly improve the physical design,
since even with increased wiring layers these chips tend to
be wire-limited. Clock trees must also be optimized to
minimize clock skew, which has a direct impact on chip
performance. Physical constraints on wire length and
width to avoid electromigration failures and to limit noise
must also be taken into consideration.

Hierarchical design of these large chips also imposes
some new requirements on the physical design of the
hierarchical components. However, in this paper we
generally concentrate on the physical design of a single
hierarchical component; other consequences of hierarchy
are addressed in [1].

The design tools and the methodology for their use
described in this paper have evolved from those used
for earlier IBM technologies [2-4].

Physical design methodology

Many interdependencies exist among placement, clock and
scan optimization, wiring, and hierarchical design planning
[1]. Ordering of steps in the physical design process is
required in order to give the best results and to ensure
that the necessary prerequisites for each step are
available. The general flow is as follows:

1. Identify connections to be optimized after placement,
so that they will not influence placement. These
include the scan and clock connections to latches.

2. Generate constraints for placement on the basis of a
timing analysis done using idealized clock arrival times
at latches and estimates of wire load and RC delay
before physical design. These constraints include limits
on the capacitance of selected nets and limits on the
resistance or RC delay for selected connections.
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3. Perform an initial placement to determine an
improved basis for constraint generation, and
optionally to fix the placement of large objects.

4. Generate new constraints for placement on the basis
of a timing analysis done using wire load and RC
delay values derived from the initial placement.

5. Perform placement.

6. Optimize the clock trees and scan connections.

7. Make logic changes, including changes to circuit
power levels, to fix timing problems.

8. Legalize placement.

9. Generate new timing constraints for wiring on the
basis of a timing analysis done using the actual clock
tree and wire load and RC delay values derived from
the final placement.

10. Perform routing.

Note that evaluation of the timing is performed at many
points in this process, and the results determine whether
to proceed to the next step or to go back through some of
the previous steps. In particular, the user may need to
iterate on constraint generation, placement, optimization,
and timing until the design meets its timing goals. The
user must also evaluate the wirability of the design
throughout the process, and make adjustments to
constraints or methodology if necessary.

Placement

Placement can be used at several points in the design
process, and different algorithms are appropriate
depending upon the state of the design.

Placement is often run before the logic has been
finalized to obtain an early indication of the timing and
wirability. At this point, the feedback may be used to
influence logic changes. This may also be the time at
which the locations of large objects are determined. The
placement program may run more quickly by not
considering such details as legality, and there may be less
emphasis on achieving the best possible result. The results
of this placement may be used as input to the tool which
generates capacitance constraints used to drive subsequent
placements.

Legality incorporates such constraints as the circuits not
overlapping one another and remaining within the bounds
of their placement area, being placed in valid orientations
and in rows specified in the chip image, satisfying other
restrictions supplied by either the user or the technology
supplier, and ensuring that there are no circuit-to-power
shorts (a concern in some custom circuits).

In the past, all legal location restrictions were specified
to the placement programs in the form of “rules” which
specify for a particular chip image and circuit type where
on the chip circuits of this type can be placed. Now the
program is expected, in most cases, to determine this
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itself, in part because of the extensive number of available
chip images and the large amount of data which might be
involved.

Once the logic has stabilized, more emphasis is placed
on achieving a high-quality, and legal, placement. Some
placement tools ignore at least some aspects of legality
during the optimization phase, relying upon a separate
legalization postprocessing step. Others attempt to
ensure that they produce a completely legal result, while
permitting such conditions as overlaps (with penalty)
during the optimization.

Both clock optimization and power optimization
(switching implementations of circuits in order to improve
timing) can produce overlaps. These overlaps can simply
be removed through a “brute force” technique, or overlap
removal can be performed with some form of placement
optimization. It is important to ensure that the quality of
the placement is maintained: Clock skew, timing, and
wirability should not worsen. It is often necessary to
compromise between these conflicting factors. For
example, the smallest clock skew is achieved by preventing
the circuits in timing-critical clock trees from moving
during overlap removal, but this can cause the other
circuits to move much farther and can affect both the
timing and the wirability.

The basic algorithms used in our placement programs
are simulated annealing [5] and quadratic placement with
iterative improvement [6, 7]. These are by no means
new techniques, but the programs have been continually
enhanced to give better results, in general, and to support
the new specific technology-driven requirements. For
example, the simulated annealing placement program
now has the capability of performing low-temperature
simulated annealing (LTSA). LTSA determines the
temperature at which an existing placement is in
equilibrium, and starts cooling from that temperature, thus
effecting local improvements to a placement without
disrupting the global placement characteristics.

Both simulated annealing and quadratic placement
accept many controls. They include preplacement, floor-
planning, specification of circuits to be placed in adjacent
locations, net capacitance and source-to-sink resistance
constraints, and weights for the various components of the
scoring function (including net length, congestion, and
population balancing).

Chip optimization

Generally, the netlist which is the input to the physical
design process contains all connections and circuits
required in the design, and must be preserved exactly
through the physical design process. Connections within
clock trees (and other large signal-repowering trees) and
latch scan chains (and other types of serial connections
such as driver inhibit lines), however, may be reconfigured

IBM J. RES. DEVELOP. VOL. 40 NO. 4 JULY 1996

to improve chip wirability and performance. The best
configuration of these connections depends on the results
of chip placement, and thus the final construction of these
types of structures must be a part of the physical design
process. We call these special physical design processes
chip optimization.

Chip optimization consists of two major parts. First,
because many of the connections in the portions of the
design being optimized will change after placement,
they must be identified before placement is done and
communicated to the placement tools so that they do
not influence the placement process. We call this process
tracing. Second, after placement is done we must actually
perform the optimization of these special sections of logic.
The specific optimization steps differ for clock trees and
for scan chains.

Tracing and optimization of clock trees have been done
for several years using separate programs. Recently these
functions have been taken over by a new combined clock
tracing and optimization program. The tracing function in
the earlier tool is essentially the same as that in the new
one. The optimization capability, however, has been
significantly enhanced. The earlier clock optimization
program could interchange connections of equivalent nets
(as identified by the tracer) using a simulated annealing
algorithm, could move dummy load circuits (terminators),
and could move driving buffer circuits to the center of the
sinks being driven. All of these actions were performed to
reduce wiring and to balance the load and estimated RC
delay on equivalent nets. In the remainder of this paper
we describe the capabilities of and results from the new
combined tracing and optimization program when
discussing clock tree optimization.

Tracing of clock trees takes as its input a list of starting
nets (the roots of the clock tree) and a description of the
stopping points. Tracing proceeds forward through all
points reachable in a forward trace from the starting nets
and stops when latches or other explicitly specified types
of circuits are reached, or when other explicitly specified
stopping nets are reached. Placement is told to ignore all
connections within the clock tree.

Tracing of scan chains takes as its input a list of
connections to be kept and a list of points at which the
chains should be broken. Tracing proceeds by finding
the scan inputs of latches and tracing back from them,
through buffers and inverters if present, to their source
latches. These scan connections are then collected into
chains. Placement is told to ignore all connections in the
scan chains which will be subject to reordering, and the
list of these scan chain connections and the polarity of
each (the net inversion from the beginning of the scan
chain) are passed as input to the scan optimization
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Load-balanced clock nets for levels (a) 1, (b) 2, and (¢) 3.

A variety of styles of clock distribution network have
been described in recent years. Several of these styles use
a single large driver or a collection of drivers to drive a
single clock net. Mesh clock distribution [8] and trunk and
branch distribution [8] methods attempt to minimize clock
skew by directly minimizing delay. This requires wide
clock wiring (and/or many clock wires in the case of
mesh distribution), thus causing a significant impact on
wirability, and significant power expenditure to switch the
high-capacitance clock net. H-tree [9] and balanced wire
tree distribution [10-12] methods attempt to equalize the
RC delay to all clock sinks using a delay-balanced binary
tree distribution network. These methods tend to create
long clock distribution delays owing to long electrical
paths to the clock sinks. To avoid current density
limitations of the clock conductors and excessive clock
pulse degradation, these methods generally also require
wide nets toward the root of the clock tree, again affecting
wirability and power consumption. The delay problems of
the single net distribution schemes are basically due to the
O (n?) increase of RC delay with wire length. By limiting
the length and load of any individual clock net in the
clock distribution tree, this behavior is eliminated. For
these reasons, our clock optimization methodology is
directed toward a distributed buffer tree clock distribution
network [10, 13].

The goals of the optimization vary for different levels of
the clock tree. Toward the root, where the interconnection
distances are large (and hence the RC delay is significant)
and the number of nets is small, RC-balanced binary tree
routing is used to help balance skew. Toward the leaves,
where interconnection distances are very small (and hence
RC delays are negligible) and where the number of nets is
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large, normal minimum Steiner routing is used, and the
optimization goal is to balance the net loadings in order
to balance the driving circuit delays. Because balanced
tree routing requires more wiring resource than minimum
Steiner routing, this approach tends to improve chip
wirability.

Optimization of any fan-out tree always has as one goal
the minimization of wiring congestion. For clock trees,
an additional (and often more important) goal is the
minimization of clock skew. The clock optimization
performed includes the interchange of equivalent
connections, the placement of circuits in the clock tree,
the adjustment of the number of buffers needed in the
clock tree, and the generation of balanced wiring routes
for skew control. The new clock tracing and optimization
program is designed as a collection of optimization
algorithms which are called out by a Scheme language
[14] script which is modifiable by the user. New features
include the following:

o It can directly optimize a cross-hierarchical clock tree.

& It can add and delete terminators to better balance the
capacitive load.

o It can make parallel copies of clock buffers. This means
that the netlist can start with a skeleton clock tree that
has the correct number of levels, but only one buffer at
each level, and the optimizer will fill out the tree with
the necessary number of buffers at each stage.

» It has an option to generate balanced wire routes for
long skew-critical nets. This option creates “floor-plan
routes” which are subsequently embedded in detail by
the wiring program. By avoiding the issues of detailed
wiring in the optimizer, we eliminate the data volume
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required for detailed blockage information, which in
turn makes it easier to perform cross-hierarchy
optimization.

It operates in several passes from the leaves to the root
of the clock tree, allowing it to consider the locations of
both inputs (established during the previous pass) and
outputs of a block when determining its location.

¢ A combination of greedy initialization and iterative
improvement functions offers performance improvements
over the simulated annealing algorithm used in the
previous clock optimization tool.

An example of the results of load balancing is shown in
Figure 1. The three parts of the figure illustrate the three
levels of a clock tree on an IBM Penta technology [15]
chip containing 72000 circuits and 13000 latches, and
occupying 713000 image cells on a 14.5-mm image. The
characteristics of the resultant trees, before addition of
dummy loads for final load balancing, are shown in
Table 1.

Scan chain optimization is performed using a simulated
annealing algorithm to reconfigure the connections in each
chain in order to minimize wire length. If the user has
specified breaks in the chain, the program optimizes
each section of the chain separately. The program also
preserves the polarity of each latch in a scan chain.

Each latch is connected such that the parity (evenness
or oddness) of the number of inversion between it and
the start of the chain is preserved. Future work in this
area will replace the simulated annealing optimization
algorithm with a greedy initialization function followed
by an iterative refinement step, in a manner similar to
that employed in the new clock optimization program.

Routing

The routing program [16] has evolved over the years in
response to a variety of pressures. With improvements in
devices, routing plays an increasingly larger part in the
design performance. Users need tighter control over

the routing to improve the design and achieve greater
productivity. The routing program has also had to handle
the rapid increases in chip sizes and density.

As circuits become faster and wires become narrower,
wires comprise a much larger part of path delays. Before
routing, timing analysis is run using estimated paths. On
the basis of this analysis, capacitance limits are generated
for the critical nets and used by the routing program. In
resolving congested areas, the capacitance of these critical
nets is not allowed to exceed the limits. Less critical nets
are rerouted around the area of congestion.

The routing program receives guidance from the clock
optimization program for nets in clock and other timing-
critical trees, in the form of floorplan routes. The routing
program breaks each of these multi-pin nets into a group
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Table 1

Clock tree load-balancing results.

Tree Number Estimated net load

level  of nets (fF)
Maximum  Minimum  Mean  Standard
deviation
1 24 1142 731 947 112
2 123 1446 773 1078 108
3 1120 646 285 529 20

of point-to-point subnets. Each of these subnets is then
routed to match the delay selected by the clock
optimization program as closely as possible.

To achieve the desired electrical and noise
characteristics, users can specify the wire width and
spacing to be used for each net. Noise becomes a problem
when the switching of one net causes a significant change
in voltage on an adjacent net because of capacitive
coupling. Clock nets are often given a wider width and
spacing to reduce their resistance, capacitance, and noise.

High clock speeds and long narrow wires can result in a
reliability problem known as electromigration. Over time,
the movement of electrons can move the metal atoms and
result in a break in the wire. To avoid this problem, the
nets are evaluated prior to routing to determine which are
susceptible to electromigration failure. These nets are
then assigned capacitance limits and may be assigned
a greater wire width.

Users often want to fine-tune the wires for some
nets, such as clocks, and keep these wires fixed through
multiple passes of engineering changes. Users would also
like to stop between iterations of routing to verify that the
routing of the selected nets has met all criteria before
continuing. To accommodate these requirements, the
routing program allows nets and wire segments to be
assigned to groups. The user can specify how to treat
existing wires on the basis of the group they are in. For
each iteration, all existing wires in a group can be

e Fixed (not allowed to be rerouted).
e Fixed unless erroneous (segments which are invalid
after an engineering change can be rerouted).
e Allowed to be rerouted if needed to complete another
connection.
Deleted (in the case of a major logic or placement change).

At the end of routing, all new wire segments are
assigned to a user-specified group. The routing program
makes sure that nets routed in one iteration do not
prevent the remaining nets from being completed. This
allows the user to have the program route just the clock

nets in the first iteration. Once it has been verified that 457

D. J. HATHAWAY ET AL.




458

these routes meet the clock skew objectives, the wires for
these nets can be fixed during the remaining iterations.
A set of timing-critical nets can be routed in the second
iteration. After analysis has verified that these nets meet
their timing objectives, the remaining nets can be routed
in the third iteration without changing the wires for the
clock and timing-critical nets. This methodology allows
tight clock skew and timing objectives to be met; it also
allows timing problems requiring logic or placement
changes to be identified quickly, before running a
relatively long routing iteration on the majority of the
nets.

Current chips can measure over twenty millimeters on a
side and contain up to six layers of routing requiring 1600
megabytes to describe if kept in an uncompressed format.
Designs can contain over a third of a million nets and a
million pins which must be connected with over 300
meters of wire. The routing program uses compressed
forms of the image, pin, and wire data in order to reduce
system requirements and be able to handle these large
designs on a workstation, even in flat mode. The 1600-
megabyte chip description can be compressed to three
megabytes. The data representation of 300 meters of wire,
made up of over three million wire segments and two
million vias, can be compressed to only 35 megabytes.

Before starting a potentially long routing run on a large
design, the routing program allows the user to evaluate
the design. A fast global routing step can be run to
identify areas of congestion which may have to be resolved
by changing the placement. The global results can also be
fed to timing analysis to determine whether placement or
logic changes must be made before detailed routing should
be started. A single iteration of detailed routing can also
be run to help identify congestion and timing problems
before making a full routing run. A special iteration of
routing can be made to identify pins which are inaccessible
because of errors in the design rules, placement, or power
routes.

Logic and placement are often changed to improve the
design after the first routing run. The routing program
automatically determines how these changes affect the
wires and makes the required updates. This includes
detecting old wires which are now shorted to new or
moved circuits. The checking and update phases of the
routing program run quickly when the logic and placement
changes have been limited to small areas.

The user can control the cost of routing in each
direction by interconnection level for up to four groups of
nets. This can be used to have the short nets prefer the
lower interconnection levels and the long nets use the
upper interconnection levels. These weights can be set by
area. This method is useful between macros where there is
a high demand parallel to the edges of the macros and
little demand to enter the macros.
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In addition to congestion, timing, clock skew, and data
volume, the routing program must handle special features
of the technology. The routing program is often given
multiple points at which it can connect to a pin. These
points are in groups connected through high-resistance
polysilicon. The routing program is prevented from
routing into one group of a pin and out another, so that
there is no polysilicon in the middle of a path to adversely
affect timing and reliability. Unused pins must be
connected to power or ground. The routing program
recognizes any unused pins and ties them to the proper
power bus.

If the routing program cannot resolve all of the
congestion and complete all connections, a “ghost” iteration
is run. This iteration completes as much of each of the
remaining connections as possible and routes special wires,
flagged as “ghosts,” where no room can be found. The
ghost wires may be replaced manually or automatically
using a new set of parameters. Timing analysis can be run
using these ghost wires as estimates. Display of the ghost
wires can help identify congested areas.

Summary

Changes in physical design tools and methodology have
been made to accommodate the higher performance
requirements, larger chip sizes, and increasing importance
of interconnect delay found in today’s chip designs.
Enhancements have been made to the placement, chip
optimization, and routing tools to improve their capacity
and performance and the quality of their results. Controls
and options have been added to the tools to help the
designer iteratively converge on a viable physical design
implementation. The tools have also been enhanced to
accommodate new requirements imposed by the
technology.

The placement, clock optimization, and routing tool
described here have been used on numerous timing-critical
CMOS designs. Clocks for these designs range from
50 MHz up to 250 MHz. The clock skew due to physical
design has been under 200 ps, although the skew due to
process, power supply, and other variation can be ten
times that. As an example, a design with 206000 objects
to be placed and 205000 nets to be routed has been
completed using a 15.5-mm chip image; it used more than
130 meters of wire and 1.6 million vias. Without clock and
scan optimization, this design might have used more than
200 meters of wire, requiring a larger chip image.
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that proved instrumental in shortening the design cycle of
chips and TCM modules. Mr. Habra holds a patent on
parallel interactive wiring; a second patent on parallel
automatic wiring is pending.
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publication.

Sara J. Rothman IBM Microelectronics Division, East
Fishkill facility, Route 52, Hopewell Junction, New York 12533
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part of the Engineering Design Systems organization, was to
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