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IBM manufactures a very large number of
different application-specific integrated circuit
(ASIC) chips each year. Although these chips
are designed by many different customers
having various levels of test experience and
all having tight deadiines, IBM ASICs have a
reputation for their high quality. This quality
is due in large part to the heavy focus on
design for test (DFT) and the use of design
automation to help ensure that customers’
chips can be manufactured, tested, and
diagnosed with minimal engineering effort.
Prospective customers of IBM ASIC
technologies find an explicit set of DFT
methodologies to follow which provide a
relatively painless, almost push-button
approach to the generation of high-quality,
“sign-off”’ test vectors for their chips. This
paper discusses the DFT methodologies used
for IBM ASICs and the design automation
support that enables designers to be so
productive with these methodologies. Data
are given for several recently processed
chips, some designed outside IBM.

Introduction
There are many challenges to overcome in order to be
successful in the manufacturing test of application-specific

integrated circuits (ASICs). An ASIC manufacturer deals
with many different designs, and the volumes of individual
designs are often quite low, especially when compared
with high-profile chips such as microprocessors. The
customers are varied and use a variety of design styles
and tools, yet tests must be developed quickly to meet

the time-to-market requirements.

High quality is a requirement for all chips, because the
cost of allowing a defective chip to escape manufacturing
test is very high. ASICs today may contain more than one
million gates, and a single manufacturing defect could
cause an entire system to fail. When combining one or
more ASICs with other components in a system, it can be
very difficult to detect and locate the bad component.
Therefore, the most economical time to find defective
chips is during chip manufacturing test.

Since there are so many different ASIC designs being
processed at any one time, it is not economically feasible
to assign a large engineering staff to create the tests for
each ASIC. It is imperative that the test patterns be
generated automatically. The test patterns must obtain a
very high level of fault and defect coverage and should
have a very high probability of success when applied at the
tester. It is also important to have automated diagnostic
tools to help quickly determine the cause of any tester
fails. To achieve these goals, it is necessary for certain
design-for-test (DFT) features to be built into the chip
design.
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Chip designers need to be able to easily incorporate
the DFT features that are part of the IBM design
methodology. Support is available from an IBM design
center, but the tools and automated process must be used
by the customers directly or there will be a large impact to
the designers’ productivity. The tools must work together,
support a natural flow through the design methodology,
and support the requirements within the design
methodology for DFT and sign-off functions.

For many years IBM (internal use only) test automation
tools were provided for and executed on IBM mainframe
systems. More recently, a UNIX®-based set of test design
automation tools was developed that implements many
new features not available on the older system. The new
system, called TestBench™, is the basis for the test-
structure verification, test-pattern generation, and fault-
grading functions described in this paper. TestBench
has been commercially available since early 1994.

More recently, the integration of the collection of
tools used for DFT insertion and ASIC sign-off has
been undergoing significant changes. Starting from
totally separate tools and a methodology that required
considerable interaction with an IBM design center (for
any ASIC designer not fully familiar with the IBM ASIC
test methodology), the tools have now been placed in the
hands of the ASIC designer, with software to guide the
designer through the methodology.

In the IBM Microelectronics Division, we believe our
test methodology for ASICs meets all of the various
challenges. The methodology is based on level-sensitive
scan design (LSSD) [1], plus boundary scan and special
test controls; software aids are used to insert LSSD and
other DFT features into the design, to check the design,
and to generate and fault-grade test patterns. This test
methodology, combined into a user package for an entire
sign-off process, makes the tools, technology, and design
flow easier for the designers to use and understand.

The three main sections of this paper follow, with the
first describing the different kinds of testing done on IBM
ASICs and summarizing the test flow. The next section
describes the sign-off process used for IBM ASIC test and
how we make it work. The third section describes how
TestBench is used within our ASIC test methodology.

ASIC chip testing techniques used within IBM
IBM Microelectronics” ASIC test methodology has been
developed to ensure economical, high-quality testing for
high-density, high-performance ASICs. A range of tests,
described below, are applied within this methodology.

® Reduced-pin-count testing

Our ASIC test strategy is based on using LSSD boundary
scan to permit the use of relatively low-cost testers
containing fewer full-function pin channels (ac pins) than
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the number of signal 1/O (input/output) pins on the ASIC
devices being tested [2]. This allows us to use older 256-
pin testers and our internally developed 64-pin tester [3]
to test ASICs with a variety of signal counts, up to 2000.
We call the method “reduced-pin-count testing”; it can
save substantially on tester costs, since the cost of logic
testers is nearly directly proportional to the number of
tester pins, and ever-increasing signal counts can lead to
underutilization of existing investments in older testers.

Traditionally, boundary-scan capability is added to a
chip to aid in testing modules or boards at higher levels
of packaging. We take advantage of the boundary-scan
design approach to allow testing of the internal circuitry
of the chip using the boundary-scan latches to supply or
receive values for chip I/O pins that are not contacted by
the tester. All logic enclosed by the scan boundary can
be tested using only the relatively small subset of signal
I/0 pins (no more than 64) required to perform LSSD
clocking and scanning operations. These LSSD test-
function I/Os are constrained to occupy only a fixed subset
of physical chip I/O locations, thus permitting a standard
probe set to be used.

At final test of the packaged ASICs, we test all signal
1/Os either by the use of cheap parametric tester channels
or by using the limited ac channels contacted in groups
or banks. The boundary-scan latches are used to supply
and observe values in an external configuration. Our
test-generation software supports generation of the
appropriate patterns that make use of the boundary
latches and, when required, allow the patterns to be
applied to banks of I/O pins.

IBM’s reduced-pin-count testing requires LSSD
boundary scan; IEEE 1149.1 boundary scan is not
required. LSSD boundary-scan requirements are less
rigorous and do not require as much circuit area as 1149.1
boundary scan. LSSD-compatible versions of 1149.1
boundary scan can also serve as LSSD boundary scan. Our
ASIC customers can choose how best to implement LSSD
boundary scan on their designs. Checking tools ensure that
the design is sufficient for reduced-pin-count testing.

® Weighted random-pattern (WRP) tests

IBM has pioneered the approach of applying weighted
random patterns to chips as an effective way to improve
quality and reduce test data volume at the same time
[4]. Pseudorandom pattern generators (PRPGs) are
incorporated into tester hardware to produce a variable
distribution of logical 1s and 0s for each test-pattern
input bit. This method selectively biases, or weights, the
test-pattern inputs to a greater probability of 0 or 1, as
needed. Each scannable latch and each chip input receives
its own weight. By applying patterns with a variety of
weights, high test coverages can be achieved (as high

as with stored patterns), since random-pattern-resistant
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faults can be tested in a reasonable number of patterns.
Furthermore, WRP testing also involves compressing the
outputs into signature registers. The test data then consist
of weight sets and signatures.

This approach has been very successful [3, 5]. IBM
designed a tester which incorporates the weighting and
compressing hardware, and that tester is one of the
primary testers used by IBM Microelectronics for ASICs.

One potential drawback to WRP testing is that it can
result in far more patterns being applied than with stored-
pattern tests. While this may be good for detecting
unmodeled defects, it adds considerably to the test time.
To address this exposure, WRP, as applied by IBM
testers, allows the tester to skip over WRP tests that do
not detect any new faults, resulting in test vector counts
and test application times very near to the stored-pattern
approach. To allow for this skipping of WRP tests, the
tester has a “shadow” register for each PRPG that is
connected to each pin. Each cycle of a WRP test includes
the following sequence of operations;

1. Restore PRPGs from shadow registers.
2. Cycle PRPGs once.
3. Save PRPGs in shadow registers.

To skip a cycle, the second step is repeated for each cycle
desired to be skipped. By skipping over the PRPG states
that result in unproductive tests, we avoid the time
associated with loading those tests into the shift
registers—by far the main factor in tester time.

The weights for programming the tester are generated
by basically the same automatic test-pattern generation
(ATPG) engine that is used for creating stored-pattern
tests. Test patterns for many individual faults are
combined into a “weight set” that should generate
patterns to detect those faults and (it is hoped) many
other faults as well. The weight generation scheme
employs many heuristics to attempt to minimize both
the number of weight sets generated and the number of
WRP cycles required from all of the weight sets [6].

Because of the signature collection used for WRP
testing, circuits that cannot be prevented from generating
unpredictable responses are not compatible with WRP
testing. The following are examples of circuits that can
produce unpredictable responses:

¢ Uninitialized RAMs.
¢ Unterminated nets in a high-impedance state (Z).
¢ Qutputs from “black-box” macros.

WRP tests can be either static or delay tests. Delay testing
of most IBM ASICs is done with WRP tests. However,
most IBM ASICs are tested in a static mode, since such
tests are simpler to generate and apply.
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o Embedded memory tests

A majority of all very large-scale integrated (VLSI) chips
produced within the last few years have contained one

or more embedded memories: random-access memory
(RAM) or read-only memory (ROM). RAMs and ROMs
require a significant number of patterns to fully test these
devices, and these patterns are generally provided by the
memory designer. In previous generations of IBM ASICs,
use of a RAM or ROM required that it be possible to
establish one-to-one correspondence between chip I/O
pins and the memory I/O pins; test patterns for the
memory were then mapped out to the chip I/Os. Reduced-
pin-count testing runs counter to this test method, since
many embedded memories have more than 64 pins.

Also, the logical and physical design effort required to
provide the correspondence for all memory I/O pins is
considerable.

The DFT method used on current IBM ASICs is
to provide a self-test engine in the RAM or ROM
library element. This self-test is operated by setting an
initialization state and then pulsing one or more clocks
repeatedly. The patterns necessary to test the memory
are generated by the self-test engine, and the results are
stored in latches either as a pass/fail bit or a signature.
The latches are then scanned out and the results observed.
Provisions are also made for diagnosing defects once they
have been detected. This scheme provides a fast and
thorough test of the memory that uses very few signal
I/Os. The self-test engine is parameterized and compiled
along with the memory into the desired size and
configuration.

For very small RAMs, the size of the self-test engine
can be larger than for the memory. To avoid this problem,
small RAMs can be compiled into an array of scannable
latches which are then tested along with the rest of the
scan logic. The scannable RAMs can also be configured
with multiple read and write ports.

Embedded memory tests can be either static or delay
tests; some self-test engines are run at or close to the
system clock speed.

® [/O wrap

IBM Microelectronics 0.5-um and smaller ASICs use the
reduced-pin-count test concept to allow wafer testing of
the die by probing only a small subset (64) of the signal
I/Os. In order to be able to apply some tests to all of

the 1/Os, the noncontacted signal I/Os are made into
bidirectional pins if they are not already functionally
bidirectional. Then the boundary-scan external
configuration can drive a value through the output buffer,
and the input buffer can “see” it and latch it into a
boundary-scan latch. This tests the chip inputs and outputs
except for checking whether the drivers and receivers are

actually connected to the I/O pad and whether they can 463
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drive and receive valid voltage levels and current-carrying
capabilities (these are tested later).

® [nput and output tests

Chip input buffers must be tested to ensure that they
operate correctly for their specified voltage range. Thus,
each input receiver must be tested to ensure that it can
distinguish between the lowest voltage that should be
interpreted as a logical ““1,” and the highest voltage that
should be interpreted as a logical “0.” These tests are
called receiver tests.

Similarly, chip output buffers must be tested to ensure
that they can drive or drain current with various capacitive
loads applied while maintaining the requisite voltage
levels. Also, three-state output buffers must be tested to
verify that they can achieve a high-impedance state. These
tests are called driver tests; they ensure that the output
buffer meets its voltage specifications.

The driver and receiver tests are automatically
generated via ATPG. The IBM test-pattern-generation
software has a special fault definition used to describe
driver and receiver faults so that ATPG can create
meaningful tests for the inputs and outputs. A driver fault,
for example, must be observed at the primary output (or
bidirectional) pin to which it is attached; it is not allowed
to be observed at an internal scan latch or at any other
I/0 pin. The receiver faults force the driving I/O pin to be
used to excite the fault (requiring that any bidirectional
drivers be inhibited). Receiver faults are allowed to be
detected at any valid observation point; the boundary-scan
latch associated with the 1/O is typically used. If there are
multiple drivers attached to the same I/O net, each driver
has its own set of faults associated with it to ensure that
each driver is fully tested for drive strength. Similarly,
if there are multiple receivers attached to an 1/O net,
each such receiver has faults which must be tested
independently of the other receivers. The driver and
receiver tests are static stored-pattern tests only.

& Stored-pattern ATPG ftests
Stored-pattern tests are used for a number of different
applications in IBM ASIC testing. Chip internal testing
can be done with stored patterns or with WRP. Stored
patterns can be applied on any logic tester, unlike WRP,
thus allowing some testing to use older existing testers.
Stored patterns can be used to test chips that do not
conform to the boundary-scan signature-based testing
requirements of the WRP testers. Also, stored patterns
are used for the driver and receiver tests. Stored-pattern
tests can be either static or delay tests, though they are
mostly used as static tests.

By the use of full-scan LSSD in the chip designs,
ATPG can achieve a very high (99.5%+) stuck-fault test
coverage. In addition, stored-pattern tests produced by the
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TestBench ATPG system are very tightly compacted so
that more tests can fit into the tester buffers. However,
the pattern count required for high coverage on especially
large (e.g., 700000 gates) chips or chips that are difficult
to test can exceed even large stored-pattern tester buffers.
When the generated test patterns exceed the capacity of
the tester despite considerable effort to compact them,

a decision must be made as to whether to use multiple
tester buffer loads (at substantial additional expense), or
to truncate the pattern set so that it will fit on the tester.
TestBench provides a means to sort the test vectors to
place the less effective vectors at the end of the set. This
makes it easy for manufacturing to decide whether to
truncate and where, since each group of test patterns
includes an indication of the test coverage obtained after
applying all patterns up to that point in the pattern set.

® I (quiescent current test)

Checking for current leakage can be executed to very

low current specifications on static CMOS circuits. It is
necessary to inhibit any current-drawing paths while I,
test measurements are being taken. IBM has been doing
limited (fewer than ten patterns) I, testing for many
years to screen out chips that use excessive current even
though they may not exhibit other symptoms of being
defective. Usually the I, vectors are generated
algorithmically, using the LSSD shift registers and chip
inputs to condition the circuits to a few different states.
The pattern generation is done by manufacturing software,
which uses information about the LSSD operation of the
chip. The signals that are needed to inhibit current draw
(as can happen with resistive pull-ups or differential
receivers) are specially identified so that their states will
be applied correctly. Part of the chip design and checking
software ensures that these special signals are propetly
connected inside the chip.

For the future, automatically generated I, tests are
being considered. To keep manufacturing test costs low,
only a few such patterns can be applied, since the time
required to let the chip settle into a quiescent state is
relatively long. However, many studies [7-9] have shown
that a small number of patterns can achieve a very high
defect coverage level.

& Burn-in

Because some types of defects cause semiconductor chips
to fail early in their expected life, IBM ASIC customers
are offered the choice of a high reliability grade. To weed
out these defects, the high-reliability chips are generally
“burned in” (patterns are run through the chip at an
elevated voltage and temperature). This simulates the
early life of the chip and brings out defects that can
shorten chip life. By applying test patterns that achieve
high stuck-fault coverage in burn-in conditions, a very high
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percentage of nodes in the circuit are forced to both logic
0 and logic 1. By observing the outputs during burn-in
(known as in sifu burn-in), soft defects that occur only at
higher temperatures can also be detected. The standard
burn-in procedure for IBM ASICs is to use weighted
random patterns and embedded-memory self-test at
elevated voltage and temperature conditions. By using
weighted random patterns, we feel that most logic in the
chip will have significant amounts of switching activity. A
number of packaged chips are mounted on a burn-in
board and the outputs of one chip are monitored, rotating
through all the chips for the duration of burn-in. The
chips then undergo a final test at normal conditions after
burn-in.

® Delay test

Delay testing is not actually a separate test in IBM. The
WRP or stored-pattern (logic or embedded-memory) tests
can be generated in such a manner as to target delay
defects [10]. Software is also available to use the wiring
delay data (e.g., from a standard delay file) to generate
pin timings for the tests under the constraints of the tester
timing specifications. Occasionally, the tests are run to
tighter timing constraints than the functional operation
would require.

The test software can usually obtain 90-98% coverage
of transition faults in addition to providing pin timings.
Our experience has shown that applying delay tests
with tight timing constraints can be very beneficial for
improving the perceived quality of the chips. However,
there is definitely an additional cost associated with
creating and using delay tests:

e There are more tests, so the tester buffer capacity may
be exceeded.

* The generated pin timing data sometimes have to be
modified at the tester because the delay data were not
accurate enough.

Delay test is an optional test feature, available to our
ASIC customers.

® [ogic built-in self-test

Logic BIST (LBIST) is not currently a prime ASIC chip
testing technique in IBM, although it is used more
entensively in processor chips. Weighted random patterns
can achieve better fault coverage in much less tester time
than LBIST takes. However, LBIST support elements are
available in the technology cell libraries to allow designing
an LBIST feature into a chip. Test tools can be used to
compute expected signatures and fault coverage for the
chip [11]. Running LBIST tests as an additional chip test
can be accommodated for an additional charge; however,
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LBIST alone cannot attain the fault coverage usually
needed to ensure a high quality for the chips that pass.

® ASIC test methodology summary
As described above, several different types of tests are
applied to ASIC chips, some of them during wafer test.
Since wafer test on the newer IBM ASIC technologies is
done by probing only 64 signal 1/Os, not all tests can be
applied at this point. The wafer tests are used as a screen,
so that the chips put into module packages have a high
probability of being good. The final package test must
provide the highest practical coverage of the potential
chip defects.

The IBM ASIC chips are tested on stored-pattern
testers at the wafer level, using only 64 or fewer signal
I/Os. The tests applied are

L. I, tests to check both for leakage due to process
problems and for random defects that can cause high
static current.

2. Stored-pattern internal tests to test the bulk of the
logic internal to the boundary-scan latches. These
tests are typically truncated to achieve 70-90% fault
coverage to reduce wafer test time or, for very large
designs, to allow fitting the tests into the tester buffers.
Full internal test is completed after the chips are
packaged.

3. RAM and ROM BIST to test any embedded RAMs
and ROMs.

4. 1/O wrap patterns to test the basic function of the off-
chip input and output buffers (receivers and drivers).

The chips that pass these tests are diced and mounted
on module packages, and are then tested again. Most
ASIC chips are tested on the IBM WRP tester, though
some package types are tested on stored-pattern testers.
The tests applied at the WRP tester are

1. Ipp, tests.

2. WRP internal tests to test the bulk of the logic internal
to the boundary-scan latches (to a high stuck-fault
coverage).

3. RAM and ROM BIST to test any embedded RAMs
and ROMs.

4. Driver and receiver tests to fully test the chip input and
output buffers.

If the package is tested on a stored-pattern tester,
stored-pattern internal tests are substituted for the WRP
internal tests. If the chips are to undergo burn-in, it is
done on the packaged modules. Full module test is
repeated after burn-in. If the chips are to be delay-tested,
this is done at the package test as part of the internal
logic test.

P. S. GILLIS ET AL.

465




466

Wafer from fab line

Wafer tests:
DDQ,
Stored-pattern internal,
RAM/ROM BIST,
T/O wrap

Defecﬂve Chlps

s Select few —» Defect d1agnos1s

Mount chip on module package.
Apply package tests:

1bDQ,

‘WRP internal,

RAM/ROM BIST,

Driver & receiver

No
@ Defective chips
Yes Select few —| Defect diagnosis

Customer option:
Burn-in
Repeat package tests

Defectlve ChlpS
Select few —» Defect d1agnos1s

Chlp is good

Flow of a typical ASIC through manufacturing test. Diagnosis is

I
% performed in low-yield or common-fail conditions.

There is no standard flow for applying logic BIST to an
ASIC; it could be applied at either wafer test or package
test. If applied at package test, it must be supplemented
by other logic patterns (WRP or stored patterns) to attain
the requisite high fault coverage.

A typical ASIC test flow during manufacturing testing is
depicted in Figure 1.

IBM ASIC sign-off process

® Need for a sign-off process
One way to help ensure quality in a design is to enforce
the use of a design methodology which has been
successful. For the IBM ASIC business, this is an LSSD
methodology. Furthermore, it is a methodology utilizing
static timing analysis and test structure verification as sign-
offs for design transfer from customer to manufacturing.
Many customers of IBM ASICs are not familiar with
LSSD. Success in this type of customer environment relies
upon four elements:
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1. Documentation of the methodology.

2. A user framework to support and audit the
methodology.

3. Integrated tools to support the methodology.

4. Methodology experts to assist customers in the process.

The better integrated these four elements are, the easier
the design process will be for the customers, the faster the
design and manufacture cycle will go, and the greater the
number of designs that can be processed.

® History of the IBM ASIC sign-off process

The beginning

IBM has been moving to an environment that
incrementally integrates and automates methodology
documentation, framework, tools, and expert support.
Coming from a history of internal supply and demand
where the technology and methodology were well
understood, IBM has had to learn how to make these
elements available, understandable, and of increasing
business advantage to customers less familiar with them.
IBM ASICs initially supported a series of point tools
strung together with the strong support of design centers
(Figure 2).

As Figure 2 shows, the initial support provided to
customers of IBM ASICs incorporated both IBM tools
(boxes with “I”’) and non-IBM tools. The IBM-supplied
tools were those created by the IBM design center
(ClockPro for clock planning) and by the IBM Electronic
Design Automation group [TestBench Test Structure
Verification (TSV) for test validation, EinsTimer™ for
timing analysis, CMOS Checks for technology checking,
and BooleDozer™ for test insertion, clock synthesis, and
chip finishing]. While there were some variations to this
flow, this was the most common approach.

The use of these tools occurred in two phases (with
loops within each phase). The first phase, completed by
the ASIC designers, ensured that the design satisfied test
verification, static timing analysis, and technology usage
requirements necessary to hand off the design to the IBM
design center. Once the design had been verified with the
TSV, EinsTimer, and CMOS Checks tools, it moved to the
second phase, which took place at the IBM design center.
Here, the netlist entered into an exclusive IBM design
tool methodology. These tools did additional test insertion
and mapping, clock tree construction, and chip finishing.
Again, test verification, timing analysis, and technology
checking had to be run to ensure that the design was
manufacturable.

This design flow relied heavily on two things:
proactive participation of the IBM design center and
reprocessing of designs within the IBM design center.
The participation of the design center was considerable
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because of the need to educate customers on design styles,
tools, technologies, and methodologies. The design center
had to tie the methodology to the tools, since the tools
themselves were not directly tied to the methodology.

The reprocessing of the designs came about for the same
reasons: The design center had to ensure that everything
was done and run correctly because the methodology and
tools were new to the customers and unconnected to the
specific methodology.

The process resulted in many successful designs.
However, customers felt frustrated that they did not have
access to the best tools for the job. There was also a lot
of pressure, and some natural limits, on what the IBM
design center could do and the number of customers and
designs that could be handled at one time.

The next step

The first incremental improvement did little to strengthen
the links between the methodology and tools or the ability
to audit the use of the tools; however, it did immediately
improve the customers’ interaction with the tools.
BooleDozer, a tool which had been used only in the
design center, was made available for direct use by the
ASIC designers. This enabled customers to understand
and use the same tool used by the design center for
IBM-compliant test insertion and design modification.
BooleDozer’s programmable interface, which was a great
advantage to the design center, was now available to

IBM ASIC customers. They could now synthesize, change,
and tailor their designs much faster and in the same way
as the IBM design center.

The additional advantage this provided was that the
design center could ship to the customers specific
synthesis transforms which were the same ones that they
themselves used. BooleDozer was heavily requested by the
IBM ASIC customers, and the design center was eager
to be able to supply it, since it meant that both customer
and design center would be using the same tool on the
same design. With this, designs flowed more easily from
customer to design center, fixes went more easily from
design center to customer, the design-to-manufacture
cycle was reduced, and the design center throughput was
increased, all resulting in increased customer satisfaction.

A need for function

Getting BooleDozer into the hands of customers helped
considerably, but more function was needed. Many unique
synthesis transforms were being done by the design

center on a customer-by-customer basis. This greatly
increased the time it took to process a large number of
customers, because the transforms were so specific to
each individual customer that reuse of the transforms

for additional customers was too difficult. A generalized
package of synthesis and test insertion functions was
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needed to handle generic cases so that customers could
develop to those standards. The ability to customize would
still be required, because one size does not fit all.

The design center produced a list of requirements for
design-for-test synthesis (DFTS) based on past customer
experiences. That list was used to evaluate what a total
customer/design center solution would be. Even after
supplying BooleDozer to customers, and once the DFTS
needs were filled, the design center would still have to
tie together the tools and the methodology in order to
improve customer understanding and throughput.

The DFTS requirements were addressed by a group
within the IBM EDA organization which was already
working with the IBM design center. As it turned out,
IBM EDA already had many of the DFTS functions
completed and many more already in-plan for near-term
completion. IBM EDA had already been developing and
assisting customers with a DFTS package but had not
linked up with ASICs. Once the connection was made,
collaboration on a total solution began.

® Making the methodology work

ASIC sign-off kit formulation

The need to present a cohesive collection of tools tied to
a methodology became a major work item for IBM ASICs
and IBM EDA. Once it was clear that the IBM DFTS
product [12] could supply all of the DFT synthesis
functions required by the IBM ASIC design center,

the ASIC sign-off kit (ASOK) was conceived. 467
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The ASIC design center knew the goal it wanted to
achieve: moving the bulk of the actual design work to
those who knew the design the best—the customers (see
Figure 3). This would dramatically reduce the amount of
“retooling” done by the design center. “Retooling” is
both the rerunning of the same tools the customer has
already run (Figure 2) and the amount of repetitive tool
customization done for each customer.

P. S. GILLIS ET AL.

Moving the design work to the customer required
moving the methodology and tools to the customer. This
triggered many actions:

& The tools would have to be more understandable, since
much more of the running of the tools would be done
by the customers.

& The methodology would have to be well documented,
and preferably used to drive the tools, so that the
customers could not easily go astray with a set of tools
that could handle many different types of design styles
and options.

& The design would have to be auditable to ensure that
the customers used all of the correct tool options and
followed the methodology in the prescribed manner.

& More documentation on the methodology and the fit of
the tools within that methodology would be needed,
since this would be completely new to most customers.

The concept behind the ASOK would have to be
something that could tie tools to methodology and make
those tools look more cohesive, as well as something that
would be auditable so that the design center’s rerunning
of the tools could be minimized. The conceptual
architecture, as shown in Figure 4, became the driving
force behind how IBM ASIC would go from what it
had (a strong but overworked design center staff and
unconnected point tools) to what it needed (a design
center that acted as consultants, and tools that were
linked and methodology-based).

In order to address these needs and to assist customers
quickly, a multistep approach was adopted. This allowed
function to be rolled out to the design center and to
the customer incrementally rather than waiting for the
ultimate package to be complete. The steps were defined
as follows:

& Step 1: Cosmetic cohesiveness (base integration)  This
is simply the ability to launch, from a single consistent
interface, all of the point tools supplied to customers
in the tool kit.

& Step 2: Partial integration ~ This adds a documented
methodology linked to the single tool interface which
could be used to assist the customer in selecting which
tool to run next and how to use it.

& Step 3: Euphoric integration (final integration)  This
step gives ASOK the ability to control the launching of
the tools and provides the ability to audit the running of
the tools and methodology.

ASOK Step 1

The conceptual view of Step 1 is represented in Figure 5.
The intent of this step is to quickly assemble a system that
loosely couples the point tools and forms the basis of a
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larger integrated solution. The output of Step 1 is for use
only in the IBM ASIC design center, so that users can
refine their detailed requirements for a more cohesive
total solution.

The reality that came from the conceptual view is
represented in Figure 6. As the figure shows, the resulting
ASOK menu contains many parameter specification areas
and submenus. These are the direct result of the input
from the design center. In fact, as with many
applications, further changes are expected as more
users are exposed to it.

An important piece of this menu was the
“Methodologies” section, which is designed into the
Step 1 menu as documentation for the methodology to
follow. In Step 2, this becomes the section which helps
users to understand what tools to run when and how.

ASOK Step 2

The “partial integration” step was the first step intended
for use by customers of IBM ASICs. It first linked a
documented methodology with the tools to be used in
each step of that methodology. The intent was to have a
single launching point for the tools (the Step 1 menu) and
an on-line methodology that could be used to teach the
user the order in which to use them. Additionally, the
methodology, actually an outline of steps to run,

contains information on how to run the tools.

Many of the tools in the ASOK have multiple steps to
run once the user is within the tool. The methodology is
intended to be used as an on-line guide both for getting
into the tool and for using the tool once inside. The user
can read the methodology to understand which tool to
launch (from the “Tools” pull-down). The user can also
have the methodology window up, once the tool is started,
to explain what to do within the tool. This allows the user
to read the methodology explanation of steps, set the
appropriate options, and run the tools.

Although there is no way in the ASOK Step 2
implementation to ensure that the users run the tools in
the order they are supposed to, or in the way they are
supposed to, Step 2 makes the link between point tools
and design methodology.

® Future improvements

ASOK Step 3

Step 3, euphoric integration, while not yet available, is the
next logical step in the ASOK solution. It will be a strong
linking of the methodology to the controlling of the
processing. Instead of just displaying information on what
tools to run when and how, the on-line methodology guide
will enable the user to launch tools directly without
subsequent pull-down menus.
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In Step 3 the methodology will be active; that is,
the user will be able to click on action lines in the
methodology and launch tools. The user will be able to
click on documentation lines and obtain extended help
documentation. The user will also be able to see what
steps in the methodology have been completed, are
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available to be run, and cannot yet be run at this time.
This will be done primarily through automatic methodology
control. The user will also be able to restart at a
particular step, resetting the methodology to that point.
In short, the methodology will be the control and the audit
for ensuring that the tools are run in the proper order.

Step 3 will still not be able to run tasks within a tool,
but it will be able to initiate the tool. The user will no
longer have to read what to do and then take a separate
action to start the tool (e.g., move to the “Tools”
pull-down to start the tool). The flexibility will also still
exist to deviate from the methodology at any time and
launch tools from the “Tools” pull-down. This will permit
a user to pursue alternative processing solutions to specific
customer needs.

Test tool requirements

Because of the wide range of test techniques that must be
supported, the test automation tools must support a broad
range of test types. The tools must keep track of the
different test types and understand which manufacturing
tester can handle each type of test. The test patterns for
each type of test must be clearly identified and kept
separate. The test coverage for each type of test must be
accounted for and accumulated with coverage for other
tests where appropriate.

It is also important to conceal as much of the
complexity as possible from the logic designers. Much of
the complexity can be hidden by using DFT synthesis
tools, such as the DFT insertion products available from
IBM EDA. This can quickly convert a nonscan design
to full (or partial) scan, and can insert IEEE 1149.1
boundary scan [13] and/or IBM boundary-scan structures
into a chip design. This can remove much of the manual
effort from the DFT for a chip and can shorten a design
cycle by many days.

® Ensuring high-quality fault models

In order to be confident of the quality of chips shipped
from the factory, IBM manufacturing strongly encourages
the use of test vectors that achieve a total of at least
99.5% static-fault coverage. The fault model currently
used for static faults is a gate-level (pin-fault) model.
Although many companies choose to fault only the pins
on the boundary of the cell library members, IBM feels
strongly that by assigning faults to the gates inside each
cell library member, the generated patterns will target a
higher percentage of potential defects. In addition, since
some of the defects to which certain technology cells may
be susceptible are not well modeled by the pin stuck-at
fault model, these technology cells have faults added to
them to ensure that the ATPG tools will generate patterns
to excite the otherwise unmodeled defects. The cell
libraries take advantage of the TestBench product to add
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(user- or technology-specified) “pattern” faults to the fault
model [14].

A pattern fault is simply a fault that is defined by the
pattern(s) that are required to excite the fault and how
and where the effect of the fault first appears. For
example, a multiplexor (MUX) cell may be susceptible to
a particular pattern that is not guaranteed to be created
by a test generator targeting pin stuck-at faults. By adding
pattern faults to the MUX definition, it is possible to
force a test generator to create the patterns for which the
MUX is susceptible. In the extreme, it is also possible to
add pattern faults to a cell definition that would force an
exhaustive set of patterns to be generated for the cell.
TestBench, by default, uses pattern faults to model defects
for certain primitive functions (LATCH, XOR) that could
easily contain defects not well modeled by pin stuck-at
faults.

Many studies have shown that high stuck-fault coverage
does not necessarily imply high coverage of potential
defects [15]. Thus, being able to target known defect
mechanisms that do not manifest themselves as pin stuck-
at faults is essential to ensuring that the generated test
vectors are the best possible.

TestBench computes separate test coverages for the
following different classes of fault models:

& Primary input faults.
& Primary output faults.
& Driver faults.

» Receiver faults.

& Static faults.

& Dynamic faults.

s I faults.

® Test modes

The TestBench product permits many different (test)
modes of operation to be defined for the circuit being
processed. Each test mode represents a particular
configuration or setup in which to apply patterns to the
circuit. When a test mode is defined, the pins that perform
some type of test function (clocks, scan pins, etc.) are
identified to the tool, usually via properties on the I/O
pins. Other information is also supplied to indicate the
target tester (and its capabilities), the type of tests
desired, and the type of faults to be targeted by this
test mode.

A test mode may be defined for boundary-scan internal
or external testing. Test modes can have “fixed-value”
latches that are set to a specific state to enable the
particular mode of operation for the circuit. This avoids
having to make all mode-select signals primary input
pins and works in a manner similar to the IEEE 1149.1
instruction register.
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Once a test mode has been defined by the user, the tool
attempts to discover the test structures that are enabled in
that mode. Once the test structures have been understood,
these structures (shift registers, for example) can be listed
by the user to verify that the logic is configured correctly.
Any errors in the test structures can be analyzed
interactively, with the TestBench circuit tracing and
analysis features.

The various test types described in the section on test
methodologies can be handled by using several different
test modes. Manufacturing test can then pick from among
the different test modes for the test patterns to apply at
each stage of product testing. This allows a manufacturing
location to pick different styles of test data (e.g., WRP
and stored pattern) for different stages of test, such as
die test and packaged chip test. The test data and fault
detection credit accounting must be tracked very carefully.
If three test modes are used for final test of a packaged
chip, the total fault coverage for these modes (and not
others) must be accurately accumulated. TestBench
supports keeping track of different groupings of test
modes in order to compute a total fault coverage for the
group and to allow faults detected in one test mode to be
either retargeted or considered already detected in a
different test mode.

® Test data types
TestBench currently supports the following types of test
data:

e Stored-pattern
o Static or dynamic logic tests.
e Static or dynamic embedded macro tests.
o Shift register flush and scan tests.
o Parametric tests.
/O wrap tests.
e Interconnect tests (for multichip modules or boards).
e Signature-based
o Static or dynamic WRP logic tests.
¢ Static or dynamic logic BIST.
o Static or dynamic embedded macro BIST.

® Support for low-pin-count testers
As described in the section on test methodologies, IBM
ASICs are tested on testers that usually have fewer full-
function logic test pins than the product has signal I/O
pins. To support this concept, TestBench is able to
generate patterns using only the test control pins and
boundary-scan latches. TestBench is also able to generate
patterns to test the full set of chip I/O, using the boundary-
scan latches. These will be separate test modes.

The tester often has a large number (512) of slow
parametric units that can be used to test the chip external
boundary logic. For those cases in which the number of
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chip pins is greater than the number of parametric units
available on the tester, a bank switching of parametric
units is assumed. Bank switching implies that not all
pins can be contacted at the same time, which imposes
additional restrictions on the test-generation software

to ensure that all pins being stimulated or measured
during a test are contacted by the tester for the duration
of the test. These options are fully supported by
TestBench.

® Diagnostics

Part of the lower costs associated with the highly
structured DFT approach taken by IBM ASICs is achieved
by having highly automated and accurate diagnostics to
call out the net in the chip most likely to be the cause of
the failure(s). Scan-based diagnostics work extremely well,
except for those chips that fail so completely that even the
shift registers do not function correctly. The WRP tests
can be diagnosed by logging the scan and output data for
a specific failing signature interval (typically 256 cycles)
and using software simulation to compute the expected
data to find the miscomparing output pins and latches
[16]. Alternatively, the WRP (and logic BIST) cycles

can be expanded into a set of equivalent stored-pattern
vectors, allowing normal stored-pattern diagnostic
approaches to be used.

Many years ago, IBM manufacturing used a fault
dictionary approach to diagnostics. This worked
reasonably well with small circuits, but became unreliable
and impractical with large, dense chips. Now we use
software simulation to perform diagnostics against the
tester fail data.

® Sign-off for test vectors

The IBM ASIC development group goes through a
rigorous qualification cycle for each new technology

cell library to ensure that the test tool (TestBench)
simulator(s) predict correct values and the test generators
generate tests for all faults being modeled. While edge-
triggered scan and LSSD both may achieve a desired high
test coverage by making latches scannable, the level-
sensitive aspect of LSSD allows the whole question of
accurate delay models to be avoided as long as the DFT
guidelines are followed. The TestBench product provides
a comprehensive set of audits to allow the manufacturing
site that receives the test data to determine what types of
DFT violations exist for the circuit. Resimulation of the
test patterns by manufacturing using a “golden simulator”
is not required and, indeed, is not performed. If there
are no audit failures, manufacturing can be very confident
that the test vectors will work the first time. If there are
any audit failures, the test data may be suspect, and
engineering resource may be needed to investigate zero-

yield conditions; although in most cases the test data will 471
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Table 1

Data for some recently processed ASIC chips.

Chip No. of No. of No. of No. of No. of No. of Fault
name gates latches RAMs faults test vectors coverage
modes (%)
IBM1 650,000 65,000 19 1,500,000 5 8900 99.85
IBM2 140,000 23,800 60 490,000 7 5600 99.75
IBM3 150,000 25,200 4 661,000 7 5841 99.59
IBM4 100,000 16,300 2 455,500 6 4400 99.90
externl 330,000 54,200 0 1,475,000 5 3274 99.64
extern2 640,000 49,500 38 1,950,000 4 4803 99.89

simply be pessimistic (by assuming unknown responses),
resulting in lower fault coverage. Audit check failures
usually require an explanation from the customer.

The audited information includes

¢ Cell library version used.

e Modeling errors discovered during circuit import.

¢ DFT guideline violations.

e Fault coverage.

e Test types (to ensure that all required types are
included).

¢ Test data audits (e.g., three-state conflicts exist in test
data).

Currently, most external customers are required
only to verify that their circuit does not violate the DFT
guidelines. IBM generates the test data automatically once
the design netlist is delivered for processing. For these
customers, the “sign-off” is actually against the logic
design, not the test vectors.

Data for a few recently processed chips

The IBM Microelectronics Division manufactures many
different ASIC chips during any given year. Recently,
external customers have been able to obtain ASICs built
by IBM. Many of these are high-performance chips for
various functions, such as MPEG2 encoders and decoders,
graphics accelerators, and main processors for large
systems. In Table 1, we provide data for a small sample
of some chips that were processed during 1995. The

fault coverage reported in the table accounts for only the
(static) logic faults and does not include coverage for
faults within any embedded memories. The actual fault
coverage will be higher since the embedded-memory BIST
achieves 100% coverage.

Conclusions and future directions

The test techniques used in testing IBM ASIC chips are
very comprehensive. The TestBench tool usually attains
close to 100% fault coverage using ATPG when the DFT
guidelines are followed. The test vectors have a very high
probability of working at the tester (if the audits indicate
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that no problems were found). IBM manufacturing can
quickly check the audit data to determine how confident
they can be in the quality of the test patterns. The result
is a very high quality level in the ASICs shipped to the
customer and a quick bring-up of the manufacturing
test.

The ASOK sign-off process minimizes the impact to
the customer’s design cycle. DFT synthesis products
make insertion of the test features relatively simple.
Checking tools ensure that all of the manufacturing test
requirements have been met. An on-line methodology
guide helps the designer run the various tools as
appropriate to the methodology. The test sign-off of a
manufacturable ASIC is done on the design rather than
the test patterns themselves, and this sign-off is a smooth
one because the checking tools are first run directly by the
ASIC designers. Automatic test-pattern generation can
then create test patterns in all of the test modes required
by manufacturing.

Future improvements will allow the DFT insertion and
checking tools to be run from one common interface as
part of ASOK Step 3. This will simplify running the tools
and will ensure that the tools are run in the proper order.

The IBM ASIC test methodology has been run
successfully on many IBM and non-IBM designs. The
combination of test techniques, DFT insertion tools,
checking tools, and test-generation tools can make the
whole test experience a low impact to the design cycle
with only moderate effort from the designers.

Future enhancements may include the use of LBIST for
early wafer screen testing, the addition of a limited set of
path delay tests, and enhancements to better support
embedded “core” macros.
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