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The IBM ASIC design  methodology  enables a 
product developer to fully  incorporate the 
high-density,  high-performance  capabilities 
of  the IBM CMOS technologies in the  design 
of  leading-edge  products.  The  methodology 
allows  the full exploitation  of  technology 
density,  performance,  and  high testability in 
an ASIC design  environment.  The IBM ASIC 
design  methodology  builds  upon  years  of 
experience within IBM in developing  design 
flows that  optimize  performance,  testability, 
chip  density,  and time to market for internal 
products. It has  also  been  achieved  by  using 
industry-standard  design tools and  system 
design  approaches,  allowing IBM ASIC 
products to be  marketed  externally  as  well  as 
to IBM internal product developers.  This  paper 
describes  the IBM ASIC design  methodology, 
and then  focuses  on the key  areas  of  the 
methodology that enable  a  customer to exploit 
the  technology in terms  of  performance, 
density,  and  testability, all in a fast-time-to- 
market ASIC paradigm. Also emphasized  are 
aspects of the  methodology  that  allow IBM to 
market its design  experience  and  intellectual 
property. 

Introduction: Overview of IBM ASIC design 
The  IBM  ASIC design  methodology is a process  for 
designing  high-density, high-performance, highly testable, 

fast-time-to-market  ASIC chips. It can be used for  both 
standard cell and  gate-array designs in chip sizes of up 
to 1.6 million wirable gates. Sign-off (final approval)  for 
fabrication of an  IBM  ASIC is based on  attaining high- 
coverage  testability through full-scan  design and timing 
verification  using static timing  analysis.’ Support  for 
numerous  electronic design automation  (EDA)  tools is 
provided in a  design kit containing  model  libraries  for 
each  IBM  ASIC technology. The  steps  supported in the 
IBM flow are  described below and shown in Figure 1. 

Design entry 
Most customers designing large ASICs today  (more  than 
50 000 gates)  enter  their designs  in  a hardware  description 
language  (HDL) such  as VHDL’  or  Veriloga.  This is 
accomplished via manual  HDL  language  entry,  or  through 
the use of HDL entry  tools  from  an  EDA  vendor. For 
those  customers desiring direct  schematic  entry of their 
design, symbol libraries  for various schematic  editors [l, 21 
are  provided. 

Logic synthesis 
Complete library support is provided for logic synthesis, 
which optimizes  the customer’s technology-independent 
HDL  and maps it into a  gate-level, technology-dependent 
representation.  Component  instantiation of gate-level 
library elements in the high-level description is also 

t David  Lackey,  “IBM  ASIC  Design  Methodology  Overv~ew,” ASIC AppLcation 
Note (IBM internal  document),  IBM  Microelectrontcs  Division,  Essex  Junction, 
VT, 1995. 
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supported. By using the  IBM design methodology, a 
gate-level  design is synthesized from  the  same  functional 
HDL design representation  that is simulated  for logical 
correctness. 

Using either  IBM  internal  or  external design  synthesis 
tools, the  IBM  ASIC logic synthesis methodology  produces 
a  design that satisfies  level-sensitive  scan  design (LSSD) 
design-for-test  requirements. 

Simulation 
IBM  supports a  variety of leading-edge  tools  for 
functional  and gate-level simulation  for designs  using 
VHDL, Verilog [3], and design languages  internal to IBM. 
Included  are  simulators  that allow mixed simulation of 
VHDL  and Verilog. 

Delay  simulation is supported with back-annotation 
using standard delay format  (SDF) files [4] created by the 
IBM EinsTimer" [SI delay calculator.  This  SDF is based 
upon  the  early timing estimator  (ETE)  rules  and  nonlinear 

delay models  that have been qualified for  the  IBM  ASIC 
hardware  component  libraries. Timing  simulation is 
supported in  several tools; however, static timing analysis 
is the  hardware sign-off criterion  for timing without  the 
need  for simulation test vectors. Delay  simulation is 
subject to  the maximum  timing  accuracy of the  simulation 
tool  used, as well as  the ability of the  SDF  to accurately 
represent  the delay data.  Thus,  EinsTimer, when  used as a 
static timing analysis tool, is needed  to fully realize the 
accuracy of EinsTimer's delay calculations using the  ETE 
and  nonlinear delay  models. 

Floorplanning 
Floorplanning, which allows the  customer  to  introduce 
estimates  for  the  placement of functional blocks early in 
the design cycle, is supported in the design  methodology. 
Without  floorplanning,  estimates of capacitance  for global 
nets  can  be highly inaccurate.  Floorplanning  can  provide 
accurate  estimates  to  guide synthesis of the logic design 
and,  later,  to  guide  the layout  process. Floorplanning  also 
provides indications of wiring congestion on the chip, 
allowing the  designer  to minimize congestion  problems 
early in  the design. Integration of floorplanning with 
logic synthesis [6] is supported, allowing the  customer  to 
iteratively  improve  design performance using the  improved 
timing characterization  enabled by the layout data. 

Additionally,  a  "bit-stacking" process is  provided 
whereby various dataflow  blocks  in the design are  better 
optimized  for timing and  area  and  are  fed  into  the 
floorplanninglsynthesis cycle for  optimal design 
integration. 

Test  structure  verijication 
IBM  requires  that all ASICs  pass  test  structure verification 
(TSV), which uses  the  IBM  internal  test  structure 
verification and  automatic  test  pattern  generation  (ATPG) 
tool.  This  ensures  compliance with LSSD requirements  for 
scan, clock control,  and  random-access memory (RAM) 
and read-only  memory (ROM) access requirements. 
A  design that  meets  these  requirements  contains fully 
testable,  race-free  hardware [7]. TSV  forms  the basis 
for  the  unique ability of the  IBM  foundry  not  to  require 
test  vectors  from  the  customer. 

Static  timing  analysis 
The sign-off tool  for timing analysis is EinsTimer. 
EinsTimer  accepts  both  Electronic  Data  Interchange  File 
(EDIF)  and  the  IBM VLSI integrated  model  (VIM) 
netlist formats. Timing assertions [SI are  provided by the 
customer  to  characterize  the design in terms of its  primary 
inputs  (PIS), primary outputs  (POs),  expected  time of 
arrival (ETA), clock phases  (PHS),  and  don't-care-and- 
adjust  (DCA)  data  that specify  multicycle and "false" 
paths in the design. 
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Additional  static timing analysis tools  from  external 
EDA  vendors  are  supported  for  use in the customer’s 
design environment, but EinsTimer is required for sign-off. 

Formal verijication 
The  IBM  ASIC methodology supports a formal 
verification method known as  Boolean  equivalence 
checking (BEC) [8, 91 which is used  at  various  steps 
in the design flow to  ensure  that  changes  made  to  the 
netlist, including those  made in test  insertion,  front-end 
processing, and  chip layout, still preserve  the original 
functional  HDL design of the chip. This  process is far 
more  thorough  and cost-effective than simulation. 
Requirements  for expensive and time-consuming  gate-level 
simulation  late in the design cycle are drastically reduced. 
Simulation  resources  can  be  focused  instead on the 
original functional  HDL design  early in the design cycle, 
where  simulation is most  effective and  the design least 
costly to  correct. 

CMOS checks 
All IBM ASICs  must  pass  a series of CMOS  rules 
checks (CMOS checks). These checks include electrical 
connectivity  checks  such as fan-out,  and checks for 
conformance  to I/O requirements, including IBM 
boundary scan. The  CMOS checks  utilize rules available  in 
the design kit. CMOS checks  provide the  remaining checks 
not  otherwise  covered in the design methodology  to 
ensure design  success  in IBM  CMOS processes. 

Design handoff 
When a  design team is ready to  turn its  design  over to 
IBM  for layout and  fabrication, it provides the  IBM 
design center with a  netlist,  timing assertion files, an 1/0 
placement list, and specification of any preplaced macros. 
If floorplanning was used by the  customer,  placement 
specifications, region  constraints,  and  parasitic  data  are 
provided. 

Front-end processing 
By customer  agreement3,  the  IBM  ASIC design  services 
organization provides certain netlist transformations 
(transforms) [lo], such  as clock tree  and  test logic 
insertion.  After  the  transforms have been  applied,  the 
netlist is verified by using TSV to check  design compliance 
with LSSD  guidelines, and with static timing analysis to 
ensure  that  performance  targets  are  met.  An  SDF file 
produced by the  EinsTimer tool is then  provided  to  the 
customer  for delay simulation,  and  for any further timing 
analysis or synthesis optimization  that may take  place. 

David Koller, “Initial Design  Review,” ASIC Application  Note (IBM internal 
document), IBM Microelectronics Division, Essex Junction, VT, 1995. 
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Pre-layout sign-off 
After all transforms,  static timing analysis, and  TSV have 
been run on  the customer’s netlist,  the  updated  netlist, 
the verification reports,  and  the  SDF  are  returned 
to  the  customer  for  simulation  and timing analysis, as 
well as  formal verification for  those  customers with that 
capability. This  step  enables  the  customer to verify that  no 
errors were introduced  into  the design  as  a result of the 
transforms.  It is also a checkpoint  for  the  designer  and 
IBM  to  track how closely the  results  from  EinsTimer 
match  the timing results of the customer’s front-end tools. 
The  customer must be satisfied  with the  EinsTimer timing 
analysis results  before  pre-layout sign-off can  be 
completed4. 

Layout 
After  pre-layout sign-off is achieved, IBM begins the 
detailed layout of the customer’s  design. If the  customer 
is designing  in the  IBM  CMOS 4 technology, the layout is 
done  on  the  IBM  mainframe-based physical design system. 
If the  customer is designing in one of the  IBM  CMOS 5 
technologies,  layout of the  chip is done using workstation- 
based  tools [ll]. 

An  IBM  ASIC design can  be laid out utilizing either a 
flat or a hierarchical process. Whereas  the  hierarchical 
design  process may be necessary for a large-gate-count 
design, the flat  design process is often  more efficient for 
smaller designs.  Layout is driven by the  performance 
objectives of the design,  using capacitance  targets 
generated by static timing analysis, and by linking static 
timing analysis to  the  optimization  steps within the layout 
process. 

The final netlist  and timing  delay files are  written in 
the  EDIF  and  SDF languages  respectively, and  returned 
to  the  customer in either flat or  hierarchical  formats, 
depending  upon  whether a  flat or  hierarchical physical 
design  methodology was used. 

Post-layout sign-off 
The  post-layout  netlist,  the  SDF file, and  the timing 
reports  are  returned  to  the  customer  for final logic and 
timing  verification. The  customer can verify that  the 
integrity of his logic function was not  corrupted by the 
physical design process by using either post-layout 
simulation of the design or formal verification. The 
customer  can  use  the  SDF  to  re-examine timing for 
critical paths, using either  static timing analysis or delay 
simulation,  and  to  correlate  the  results  to  the  path  data 
in the post-layout  timing report.  The timing reports  from 
EinsTimer are used for post-layout sign-off before the chip 
enters  the  fabrication process. If the  customer is satisfied 

Ann Rincon,  “Release to Layout Sign-off,” ASIC Application  Note (IBM internal 
document), IBM Microelectronics Division, Essex Junction, VT, 1995. 
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with the  function  and  performance of the chip’s physical MercuryTM  Library Development  Tools to provide 
design, post-layout sign-off can  be completed’. models  for  vendor  tools such  as Viewlogic VIEWSIM’ 

Tape-out to manufacturing 
After post-layout  sign-off, the  IBM design center  takes  the 
customer’s  design into final-shapes generation  (creation 
of mask data),  and logical-to-physical and  ground-rule 
checking. At  this  time  the design is run  through  ATPG  to 
create  the  patterns  that will be  used  at  the  manufacturing 
tester.  The mask data  and  test  patterns  are delivered to 
the  manufacturing  control  center  for  fabrication. 

Automatic  model  generation  and  verification 
One of the challenges  in supporting  EDA systems from 
multiple  vendors is maintaining a consistent  set of model 
libraries. These  libraries must be  identical in their 
modeling of a logic cell’s functional  behavior, timing, and 
electrical parameters, yet provide  the syntax required by a 
diverse set of tools. To answer this  need,  an  automatic 
model  generation  and verification  system  known  as 
LibToolsTM  was developed.  This system makes  use of a 
common technology database  for consistency and a 
common  set of code  for cross-verification. 

The  common technology database  contains most of the 
information  pertinent  to synthesis, simulation,  and  test- 
generation models.  Timing data  are  retrieved  from  the 
early timing estimator  (ETE)  and delay calculator 
language  (DCL) timing models [5]. The  information 
contained in the  database  includes cell names, pin names, 
power levels, cell area, cell functions,  and  pin functions. 
Additional model-specific data  are  stored  as  required 
[12-141. 

Since  timing information is not  stored in the  database 
itself, a common  set of access routines is used  to  obtain 
the  data in the timing models.  This  takes  the  form of an 
ETE  parser,  replaced recently by direct access to  the 
EinsTimer timing analysis tool, which obtains timing data 
from  the models. 

Numerous  model types are  generated  from  the LibTools 
database, including 

IBM  BooleDozerTM models. 
Synopsys Design CompilerTM  and  Test  CompilerTM 

Cadence Verilog-XLTM and  VeritimeTM models. 
VITAL  (VHDL  Initiative  Towards  ASIC  Libraries) 

Cadence  ComposerTM symbols. 
IBM  TestBenchTM models. 
Mentor QuickSim 11’“ models. 
Compass  PMD  format, which is used by the  Compass 

models. 

models. 

390 
Ann Rincon,  “Release  to  Manufacturing Sign-off,” ASIC Application Note (IBM 

internal  document), IBM Microelectronics Division, Essex Junction, VT, 1995. 

A typical model-generation  function accesses  a 
requested cell in the  LibTools  database,  retrieving  both 
generic  and model-specific data  for  construction of the 
target  model type. The  common  database  preserves  data 
consistency, whereas  multiple  model-generation  functions 
provide the diverse set of models  required in supporting 
a  diverse set of customers. 

Verification of the  generated  models is done by 
applying  a simulation  pattern  set,  generated  from a 
transistor-level  representation of each library cell 
that  has  been qualified against  manufactured  hardware. 
Additionally, the  various  model types are cross-verified 
for consistency and  additional coverage. This is important 
for  patterns  not easily realized in actual  hardware, yet 
realizable  in simulators, such  as  conflicting data  on two 
ports of a latch,  and  other  patterns  designed  to  cause 
failures  or  to identify opportunities  for pessimism 
reduction. 

The verification program  contains a pattern  generator, 
which accesses the  common  database  to  determine a 
suitable  pattern  set  for  the  function of the  target cell. For 
combinational circuits, an exhaustive pattern  set is used, 
whereas  for  bidirectional  (BIDI)  elements,  the high- 
impedance Z state is added  to  the existing 0, 1, and 
unknown (X) value set.  The  BIDI  element is tested 
exhaustively both  as a driver  and as  a  receiver; then  an 
X state is applied  to  the  driver-enable circuit for  testing 
in  an  unknown mode.  Latches, multiple-bit cells, and 
memories have unique  pattern  generators which fully 
exercise the cell. 

A common  data  structure is used  to define the  test 
patterns.  Common parsing routines  are used to  create  the 
pattern  formats  unique  to  each  target  tool type. Patterns 
are  submitted  to  the known  good reference,  or  “golden,” 
simulator  to  generate  the  golden  pattern  set. 

The  IBM  ASIC design methodology resolves the key 
issue of accounting for  subtle  differences in behavior 
among  the various tools.  Whereas  differences  between 
tool  behavior  and  the  golden  pattern  set would  normally 
signify a model  or  tool  error,  some  differences  are  found 
to  be justified, and a correction  action  must occur. Either 
a  global correction file or a  model-specific correction file 
can  be employed  in this  situation. 

An example of a  global correction is that  made  for a 
circuit that  produces a  pessimistic result. A  multiplexor 
would produce an X output given an X on the  select  pin 
in the  golden  pattern  set, which was generated  from  the 
transistor-level  schematic. However,  in the  case of equal 
data  inputs,  the  output is, in fact, known despite  the X 
value of the  select  pin.  This known value is incorporated 
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in the global correction file, allowing simulation  to  be less 
pessimistic. 

A  model-specific correction is applied,  for example, 
when  a target  tool  cannot fully implement a certain 
function. A common example among  simulators is the 
approximation of the behavior of a bidirectional  pin. 

An  automatic  correction file generator  has  been 
developed  that  produces a file of recognized differences 
between  the  golden  pattern  set  and  the  patterns of the 
models  and  tools  being verified. Each  correction must be 
manually  signed  off,  however, before it can  be  added  to 
the  actual  correction files to  be used for  subsequent model 
verification. 

An  output of verification is a list of successful and 
unsuccessful pattern comparisons. This list is used  to 
determine when  a model must be reverified, which occurs 
when the  prior  comparison was  unsuccessful, or when the 
model  has  changed since  a prior successful comparison. 

require custom input  patterns  and  manual  examination 
of output behavior. For such  cells, manual sign-off is 
required,  and  the justification is stored with the successful 
comparison  record in the  database. 

For logic synthesis  models,  a simulation  model is 
program-generated using the synthesis model  behavior, 
and  the  pattern-compare strategy is employed. 

Consistency of timing behavior  between  the timing 
models  and  the  target tool is verified by creating  an  SDF 
for  each cell using EinsTimer,  and loading the  SDF  into 
each  target  tool.  The  ETE  or  DCL models, which contain 
timing  delays for  input-to-output  combinations  as well as 
specific checking  scenarios, are  compared  against  the 
timing behavior of the  target  tool  and  model,  and  the 
database is updated with the  appropriate  record of 
successful or unsuccessful comparison. 

Additional verification is provided by the  generation 
of an all-instance  netlist containing  one of each type of 
library cell. Each cell’s input  and  output is a  netlist I/O, 
and  the above  verification steps  are  applied. 

The above  capabilities, depicted in Figure 2, provide 
a  powerful system for  the  automatic  generation  and 
verification of a  diverse  set of technology  models,  using  a 
common  database  that  ensures consistency among  the 
models  and provides  a  strict audit  trail of each model’s 
quality. 

Some complex  cells,  such  as  phase-locked loops [12-141, 

Static timing  analysis 
The  IBM  ASIC design methodology  incorporates a  timing 
verification methodology based on static timing analysis, 
the  product of almost twenty years of experience in 
system development  projects within  IBM. This timing 
methodology uses  the  IBM  EinsTimer [5] tool as the 
central timing  analysis and delay  calculation tool. 

Technology 
data 

F? LibTools 

Run  reference 

simulator 
database 

(golden) 
Target  simulators  results 

Models 

Update  Compare  reference 
database  (golden)  results 

target  simulator 
results 

IBM ASIC model-generation process. 

With  the  application of static timing analysis to  ASIC 
design, IBM is unique  and a leader in an industry that  has 
traditionally  used delay simulation  for timing  verification 
and sign-off [3, 4, 151. The effectiveness of delay 
simulation is largely determined by how well the 
simulation  test-set covers all logic paths in the design. 
Additionally, the timing granularity of the  simulator is  a 
further limit on  the effectiveness of the analysis. It  has 
been  found  that  the  EinsTimer  static timing analysis tool 
provides  timing  verification of greater accuracy  as well as 
greater  speed. All paths  are  timed, as compared  to  the 
limited and unknown path coverage of delay simulation, 
which is the  case  regardless of the  speed of the  simulator, 
and  regardless of whether  the  simulator is a software  tool 
or a hardware  accelerator. 

For delay calculation,  EinsTimer uses multiple wire-load 
models  for a  design, rather  than single capacitance  and 
RC estimates.  These wire-load models  contain  capacitance 
and RC data  for a  logical group of cells, either  based  on 
the  number of cells  in the  group,  or as determined in an 
analytic fashion by a floorplanning  tool  or by the  results 
of physical design. 

that  applies  to  the given die size is used. This  can  include 
flat (logically flattened) designs or designs that  contain a 
logical hierarchy. 

For a  flat, unfloorplanned chip,  a  single  wire-load model 



A chip  can  be  floorplanned  either with  a  single level of 
physical hierarchy  or as multiple  floorplanned  groups.  The 
parasitic  (wire-load)  data  determined by the  floorplanner 
are used for  the  entire  chip in the  case of a  single 
hierarchical level. For  multiple levels of physical hierarchy, 
the  parasitic  information  for  each  floorplanned  group  can 
be  used  together with the chip-level  parasitics for  the 
connections  between  groups.  EinsTimer  can also  use  wire- 
load  models derived by the  customer using various tools, 
allowing flexibility in the early development process. 

EinsTimer  has  traditionally  used,  for gate-level  timing 
models,  early  timing estimator  (ETE) models. ETE  models 
are a human-readable  representation of input-to-output 
timing paths, with pin capacitance  and coefficients for 
delay and  transition,  as well as tests (such  as setup-and- 
hold)  to  be  performed  between  input pins. When using 
ETE models, the delay calculator  tool  (EinsTimer) 
contains  the delay equations  that  make  use of these 
delays and  parameters. 

has recently incorporated new  delay rules  (NDRs).  These 
new gate-level  timing models  replace  the  ETE models, 
and  are  written in the delay calculation  language  (DCL), 
which was developed by IBM  but is  becoming an industry 
standard in the  future evolution of EDA  tools [16]. 

Through  the  use of NDRs,  ownership of the delay 
calculation equation is moved from  the timing tool  to  the 
ASIC  foundry, by incorporating  the delay equation in 
DCL  data  provided by the  foundry  and compiled together 
with the  NDRs.  The  result is better  correlation of timing 
results across  tools,  such  as static timing analysis and 
synthesis optimization, which incorporate delay calculation 
into  their algorithms. 

assets contained within the  data,  parameters,  and 
equations,  as  compared  to ETE models, because  the  data 
delivered by the  ASIC  foundry  are  compiled  rather  than 
human-readable.  NDRs  require  an  application  program 
interface  (API)  to  obtain  the  internal  data. 

For  IBM  ASIC timing  sign-off, EinsTimer is run in 
its  linear-combination delay mode  (LCD  mode). A 
combination of scaling factors  and best-case/worst-case 
delays is used to  accurately  account  for  process  variation 
in manufacturing. Specifically, path scaling factors  are 
used  for  the clocks to  account  for process-induced  clock 
skew: 

In advancing the effectiveness of delay calculation,  IBM 

NDRs provide better  protection of the  intellectual 

A  scaling factor is applied  to  the  path  from  the 
oscillator input,  through  the clock-powering tree, 
through  the slave latch,  and  through  combinatorial logic 
to  the  master-latch  data  input. 

oscillator input,  through  the clock-powering tree  to  the 
Another scaling factor is applied  to  the  path  from  the 

392 master-latch clock input. 
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These  factors  account  for  variations across the  chip  in 
channel  length  and width, threshold voltage, and wiring 
density, which in turn have  a number of causes. These 
include  nonplanarity of the wafer or mask;  mask defects; 
horizontal,  vertical,  rotational,  or  Z-axis skew between 
mask and wafer; variation of feature density  across the 
chip; vibration; light  intensity variation;  implant  variation; 
and crystal  defects. 

LCD coefficients for a target technology are  determined 
through a combination of steps using EinsTimer  and  ASX 
(a circuit-level simulator  developed by IBM): 

1. Using ASX, 3-sigma path delay variation  for a number 
of clock distribution  paths is estimated, taking into 
account  variations in the  target technology for  the 
physical factors  described above. This  estimation using 
ASX  simulation  produces 3-sigma path delay variation, 
a capacitance file, and  an RC delay file. 

comparison of EinsTimer  results (using estimated  LCD 
coefficients) with the  ASX results. The  LCD 
coefficients are iteratively re-estimated until the 
EinsTimer  and  ASX  results  match. 

2.  LCD coefficients are  determined iteratively, through 

3. The above steps  are executed for  late-mode worst-case, 
early-mode best-case, and  late-mode  nominal 
conditions. 

Correlation of timing characteristics 
Because  the  IBM  ASIC design methodology  requires sign- 
off using static timing analysis before design  layout and 
again before  release  to  manufacturing, a high correlation 
between  the timing data driving  synthesis and  the 
data driving the  static timing analysis tool must exist. 
Conversely, the  degree of difference  negates  the  efforts 
of the  designer  to achieve performance  targets  through 
timing optimization within the logic synthesis tool.  For 
customers using the  IBM synthesis tool,  this B not a 
problem, since the  EinsTimer delay calculator, which is 
also used  for  static timing analysis, is used by synthesis for 
timing optimization.  For  customers  who  are using the 
Synopsys Design Compiler [17, 181, however,  a different 
form of timing model  and a different delay calculator 
are used.  A method was developed  to  ensure  that  the 
Synopsys timing models  are  generated  to provide the 
highest degree of correlation  between Design Compiler 
and  EinsTimer timing results  for  IBM  ASIC designs. For 
worst-case  process, temperature,  and voltage,  a difference 
in the delay, computed  on a path  through a  cell, of less 
than 1% for  the  entire library is achieved by this  method. 

Synopsys nonlinear timing models consist of a  two- 
dimensional  array of delay  values  indexed by input 
transition  time  and  output  capacitance, allowing the 
delay equation  to  be  modeled as  a set of values that  best 
match  the timing behavior of a cell. The  EinsTimer delay 
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calculator is used  to  determine  the delay  values placed in 
the  nonlinear  tables  on  the basis of the  ETE  or  NDR 
rules [5]. 

Once  the  models have been  generated,  the timing 
correlation  between Synopsys and  EinsTimer is verified 
using an  “all-instances  test  case,” which is a test circuit 
containing  one of each type of cell  in the technology 
library. The delay of each  input-to-output  path of each 
cell is measured by the  EinsTimer delay calculator  and 
compared against the  corresponding  path delay calculated 
by the Synopsys Design Compiler. Any  delay difference 
greater  than 1% is analyzed. The Synopsys timing tables 
are  then  further refined  until the  correlation  target of less 
than 1% is achieved. 

Correlation  on wire-load models is loo%, since 
Synopsys and  EinsTimer  use  the  same  method  for 
calculating  wire  delays. The Synopsys wire-load models 
are derived  directly from  the  EinsTimer  models. 

degradation of rising and falling transitions  due  to  the 
effects of RC, any high-fan-out  nets will cause timing 
problems  to  be  seen in EinsTimer  that  were  not  seen by 
Design Compiler.  This can be minimized by limiting fan- 
out  to less than fifteen. Testing  has shown that  once 
RC transition  degradation is taken  into  account,  the 
correlation  between  EinsTimer  and Synopsys will be close 
to 100% for worst-case  assumptions. 

Since Synopsys currently  has  no way to  account  for  the 

Floorplanning 
Wire delay for  deep-submicron designs can  be  the 
predominant  part of total  path delay. For  this delay,  a 
significant advantage  can  be achieved with floorplanning, 
which provides for early placement of logical functions, 
macros, and  inputs/outputs  (I/Os)  on  the  chip  to  meet 
various goals. 

Floorplanning  increases in importance with greater 
chip  densities  and  higher  performance  requirements,  and 
generally becomes a  necessary step in the design process 
for chips with more  than  one million  gates. 

Without  floorplanning,  the  prediction of parasitics is 
based solely upon technology-level data  or  area-based 
wire-load  models,  resulting in significant differences  from 
the  actual  net  parasitics  found in the physical design. 
This limits the ability of logic synthesis to  optimize  for 
performance  because  the synthesis tool is unable  to 
determine  path delays  accurately. 

A logic design environment in which logic synthesis and 
floorplanning  are closely linked is key to  shortening design 
cycles and  meeting  performance objectives [6]. For  one- 
million-cell  designs,  a typical iteration  through synthesis, 
floorplanning,  and  back-annotation of less than  one week 
is typical. This is far less than  the  traditional  iteration 
through physical design (placement  and wire routing). 
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The  advantages  gained by customers using floorplanning 
[19-211 on  their designs include  the following: 

The effects of a suboptimal  I/O assignment are easily 
seen, giving the  customer  an  earlier  opportunity  for 
correction. 
The  customer  can  optimize  earlier in the design cycle 
for  die size and  metal layers. 
The  customer  can identify and  insert all repowering 
buffers  necessitated by high-fan-out nets. 
Timing closure using accurate parasitics occurs  earlier 
in the design cycle and in the customer’s hands,  where 
design changes  are less costly. 

upon  more  accurate parasitics. 

predictable design and  more  accurate  pre-layout timing 
sign-off. 

The  pre-layout  static timing analysis sign-off is based 

Time in physical design is shorter  because of a more 

Improved physical design results  are achieved through 
early communication of the logic flow between  the 
foundry  and  the  ASIC  customer,  enabling  an  optimized 
preplacement of RAM,  ROM,  and growable register  array 
(GRA)  macros [12-141; cell  grouping; and  development 
of region placement  data  for  the physical design  process. 
This kind of floorplanning benefits the physical designer. 
However, there is a far  greater  advantage if floorplanning 
is done by the  customer in the logic design  process. With 
the  use of state-of-the-art  floorplanning tools, the logic 
designer  can  obtain parasitics and  back-annotate  these 
into  the synthesis tool,  where  reoptimization  can improve 
timing and  reduce wire  congestion. Results  from  these 
operations  are  fed  forward  to  the  floorplanning tool. 
Iteration  continues  until convergence  is  achieved. 

A highly integrated  floorplanning  and synthesis 
design loop is achieved  using the “links-to-layout” [6] 
methodology, which couples  the  floorplanning  tool with 
the synthesis tool.  This is supported in the IBM ASIC 
methodology using the Synopsys Design Compiler  and 
Floorplan  ManagerTM tools. An  EDIF  or  Verilog netlist 
is extracted  from a  synthesized  design and  fed  into  the 
floorplanning  tool,  where  partitioning  and block placement 
operations  take place. The  recommended maximum  block 
size is around 2 mm X 2  mm, with an  aspect  ratio of 0.5 
to 2.0. Typically, customers begin with a physical partition 
that  matches  the logical hierarchy. If analysis of the 
floorplan  indicates excessive congestion or timing 
problems,  it is possible to  repartition  the logic into a 
hierarchy that is different  from  the logical partition.  The 
Synopsys Floorplan  Manager  can resolve these differences. 
Normal  floorplanning  operations such  as analysis of 
congestion,  connectivity between blocks, and wiring track 
allocation  are  applied  until a  promising floorplan results. 
At  this time, the  locations of RAMS,  ROMs,  GRAs,  bit 
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Flowchart of floorplanning  and  bit-stacking methodology. 

stacks, and any other  large  macros  are fixed. The next step 
is a  quick but  detailed cell placement, yielding  a very close 
approximation of the final placement.  Parasitics  and wire- 
load  models  from  the  floorplan  are  then  extracted  and 
back-annotated  to  the logical  design. There  are  various 
strategies  for  back-annotation involving combinations of 
exact parasitics and wire-load  models.  Normally,  exact 
parasitics are  used  for  interdomain  nets  (nets  connecting 
to receiving and driving  cells of floorplanning blocks), 
and wire-load models  are used for  the  remaining  nets. 

Changes  to  the logical  design, based  on  the back- 
annotation of parasitic  data,  can  take several  forms. The 
easiest  change is the modification of a cell’s power level. 
With this, an  engineering  change  order  (ECO) file can  be 
used  to  communicate  changes  to  the  floorplanning  tool, 
and  the existing floorplan  can  be  reused, since no new 
cells  have been  added.  However, resynthesis of critical 
paths  results in  a new netlist. To avoid a  modification to 
the  floorplan, a physical definition (PDEF) file containing 
cell cluster  information is produced by the  floorplan  tool 
and passed  back to synthesis, which produces a new PDEF 
file with cluster  information  that  includes  the new cells 

394 in the design,  preserving the existing floorplan. Logical 

restructuring  or  rearchitecting logic, however, is a more 
extensive  netlist change  that  requires a new floorplan. 

process, the  designer provides  region constraints  and 
preplacement  data  for I/Os, macros, bit stacks, and 
interdomain cells to  the physical design  process. Parasitics 
for all nets  are  extracted by the  floorplanning tool and 
fed  to  the IBM ASIC design center  for  static timing 
analysis. 

Early  experience in  processing chips which have been 
floorplanned by ASIC  designers  has shown  many of the 
anticipated benefits. Areas  for  continued  improvement in 
floorplanning  include  better  support of hierarchical  design, 
timing-driven floorplanning  and  apportionment of timing 
paths across  synthesized entities,  optimization of wire 
codes, porosity  modeling, and  reduction in time  spent in 
the synthesis/floorplanning cycle. 

with the bit-stacking methodology  (described in the next 
section),  are shown in Figure 3. 

Upon  completion of the  iterative synthesis/floorplanning 

The  floorplanning methodology flow, and its interactions 

Bit stacking 
The IBM ASIC bit-stacking  methodology addresses  the 
need  for  greater  chip density and  performance.  When 
bit  stacking is applied  to designs  with  a high dataflow 
content, such  as processors using large  arithmetic logic 
units (ALUs), registers,  multiplexors, and  shifters,  the 
utilization of available gates  (or  density) is improved  from 
around  60%  to well over 70%. This is achieved through 
utilization by the dataflow logic of nearly 90% of the  total 
utilized area. 

The design of a bit  stack  uses  the following general 
methodology. First,  dataflow logic is logically separated 
from  control logic. Then,  each dataflow bit  position, 
typically spanning  numerous dataflow functions, is 
isolated,  and  its circuits are placed along  the  same circuit 
row, minimizing the  amount of wire required  for  the 
buses.  Finally, control circuits that  communicate with 
functions  common  to all bits  are  placed across  circuit 
rows. Dataflow  wires are  placed horizontally on  metal 
levels 1, 3, and 5 .  Control wires are  placed vertically on 
metal levels 2 and 4. 

In addition  to  reduced  chip  area,  the above method 
often  results in smaller  control  and dataflow  circuits owing 
to a  lower  drive strength  requirement, which in turn 
provides improvements in performance of typically 10% 
or  more. 

By comparison,  current logic synthesis tools have 
difficulty in  distinguishing  dataflow from  control circuits. 
Control circuitry is created  without  regard  to dataflow 
placement. A gating signal for a  wide data bus, for 
example, may contain synthesized buffers  that  fan  out 
to widely separated  bit positions, creating unnecessary 
additional wiring.  Synthesized implementations of 
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control logic often differ, sometimes with varying fan-in 
of control signals. 

the following steps: 
Bit stacking is a  partially manual  process which involves 

1. Datapath logic is partitioned  separately  from  control 
logic, and  encoded in the  HDL  source  language [3] 
using structural  constructs. 

2. A bit  stack may contain a  single entity  or a  hierarchy of 
entities. A netlist  representing  the bit stack is processed 
to  produce a floorplanning file that  contains a fixed 
placement  location  for  each circuit relative  to its 
floorplanning  group.  The fixed-placement data  are 
processed in  a floorplanning  tool, resulting  in highly 
accurate  parasitic  data  that  are  fed back to logic 
synthesis for  further  optimization of those logic paths 
that  interact with the bit  stack. 

3. Iterative  improvements  can  be  made  to  the  HDL of the 
data  path,  taking  advantage of open  space revealed by 
the  prior  steps. 

4. During physical design of the chip, the bit stacks  are 
given fixed placements  relative  to  the chip. Other 
floorplanned regions are  placed according to  their 
normal  floorplanning  constraints.  Placement of the 
remaining logic is determined solely by place-and-route 
optimization. Since the  bit stacks are  already resolved, 
run  times  for  place-and-route  are  reduced. 

An off-the-shelf  library of bit-stack modules is under 
development  for  the design of bit  stacks in IBM  ASIC 
technologies;  it includes 

Modules  compatible with Synopsys Designware@, 

n-bit  modules of functions typically found in dataflows, 
with an  emphasis on arithmetic  functions. 

including buffering  trees,  register slices, and 
multiplexors. 

technologies by encapsulating  technology-dependent 
components within  a technology-independent shell. 

"Gate wrappers" that  facilitate portability among 

LSSD insertion using an external vendor 
synthesis tool 
Level-sensitive  scan  design (LSSD) is a requirement of the 
design-for-test methodology for all  IBM ASIC  products. 
One of the  challenges  faced in  servicing the original 
equipment  manufacturer  (OEM)  market  has  been  to 
provide  a means  for  customers  to easily insert LSSD 
elements  into  their designs. 

than 50000 gates  uses logic synthesis, in which the 
designer begins with a register-transfer-level  (RTL) 

The typical design  methodology for circuits of more 
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to  map  the design into a  gate-level netlist. 
The most  common  design  style in use today, because of 

its ease in  developing RTL  descriptions  and  its  support by 
logic synthesis  tools, is edge-triggered clocking, where flip- 
flops are  used  as  the  sequential logic elements. Flip-flops 
are  not  suitable  for LSSD-based testing, however, because 
they are  not  scannable  (unless a  multiplexor is added  to 
the flip-flop's data  port  to  provide scan  access,  adversely 
affecting the  performance  and  chip  area of the design), 
and they do  not provide the  race-free clock control  that 
LSSD master-slave clocking  provides for  the  test 
environment [7]. 

the industry, and  until recently the  absence of LSSD in 
the  external  market, a solution was needed  that would 
allow a customer  to design  using edge-triggered flip-flops, 
yet produce  an LSSD-compatible  netlist. 

The  strategy  to provide OEM  customers  the  means  to 
map  edge-triggered designs into LSSD applies  the Design 
Compiler  and  Test  Compiler  products of Synopsys [23, 
241. The  IBM  internal logic synthesis tool,  BooleDozer 
[lo], provides equivalent capabilities. 

When  the  RTL design is initially mapped  into  gates 
by the Synopsys Design Compiler,  the resulting  netlist 
contains  edge-triggered flip-flops (plus  transparent  latches, 
if any are  used in the design). IBM  ASICs provides 
pseudo-cells in its  design libraries  that  support  these 
functions. These pseudo-cells,  however, are  not  part of 
the final  netlist and  are  not  manufacturable. 

Because of the  prevalence of edge-triggered designs  in 

Pseudo-cells are  characterized by prejix characters in the 
library  cell name, which precede  the  name of the  actual 
LSSD cell that will be eventually mapped in place of the 
pseudo-cell. The following is a list of the prefix types and 
their functions: 

D- A D flip-flop  that  maps  to  an  edge-triggered 
LSSD  shift  register  latch  (also  known  as a 
D-mimic  SRL). 

(a  D-mimic  temporary  cell  that  is  later 
remapped  to  the  final  LSSD  implementation). 
A D-mimic  pseudo-cell  that  is  mapped  to a 
combined  master-slave  LSSD SRL  and a 
clock  splitter that  converts  the  edge-triggered 
clock  into  master  and  slave  clocks. 

D-F- A D flip-flop  that  maps  to  an F- pseudo-cell 

L- A transparent  latch  that  is  mapped  to a 
master-slave S R L  whose  output  is  taken  from 
the  master  latch  instead of the  slave  latch. 

L2- A transparent  latch  that is mapped  to a 
master-slave SRL  whose  output is taken  from 
the  slave  latch,  which is operated  functionally 
in  flush  mode. 395 
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Mapping of flip-flops and latches to LSSD. 

These pseudo-cells are  mapped  into LSSD SRLs as 
depicted in Figure 4 and  described below. 

cells,  using either  the Synopsys Test  Compiler  or  IBM 
BooleDozer, scans the  netlist  for  these cells and  replaces 
them with their  target cells (either a true D-mimic SRL in 
the  case of the D- cell, or  an F- pseudo-cell in the  case of 
a D-F-). This  process  additionally  adds  the LSSD clock 
(A, B, C) inputs,  as well as the  scan  data (I) input.  The 
new LSSD  clock inputs  for all SRLs  are driven  in parallel 
by new A, B, C inputs  according  to  the customer’s  design. 
The scan data  path  becomes a serial  connection:  The 
output of each  SRL is connected  to  the scan input  (I) of 
the next SRL,  creating a  scan chain  that  connects  to a 
scan-in input  port  and a scan-out  output  port of the 

The  methodology  that  maps  from D- and D-F- pseudo- 

396 customer’s  design. 

The  mapping of  D-F- pseudo-flip-flops to F- pseudo- 
D-mimics often provides advantages in chip  area over the 
D- mapping [25]. The  target cell of  D- mapping is an 
edge-triggered LSSD SRL, which contains  an  internal 
clock splitter  that  generates  the  master  and slave clocks 
from  the  edge-triggered clock. In  contrast,  the  subsequent 
mapping of the F- cell creates a master-slave LSSD SRL, 
plus a  clock splitter  that  can  be shared among several 
SRLs,  thus  reducing  the  chip  area  overhead of LSSD. One 
clock splitter is typically shared by ten  to twenty SRLs. 
The  mapping  from  the F- pseudo-cells is performed by 
an  IBM  BooleDozer  operation;  this  operation is not 
provided by the Synopsys Test  Compiler. 

The  algorithm  that  maps L- and L2- pseudo-cells is 
similar to D- mapping. The  difference is that  the system 
clock is connected directly to  the  master clock input of the 
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SRL.  For  the L- mapping,  since the  data  output is taken 
from  the  master  latch,  transparent latch functionality is 
preserved;  the scan output is taken  from  the slave latch. 
For  the L2- mapping,  the B clock must be held high 
during  functional  operation, providing flush operation 
through  the slave latch  for system use, whereas  the B 
clock is used for shift operation  during  test. 

Using a combination of logic and  test synthesis 
products, a customer  can easily achieve  LSSD compliance 
in an  edge-triggered design paradigm.  Development 
continues  to achieve  a more tightly integrated  solution, 
providing the  customer still greater  ease in achieving 
LSSD compliance. 

Integration of LSSD and  industry-standard 
design  for test 
IBM  has  developed  design-for-test  (DFT)  methodologies 
that  integrate LSSD  design structures with those design 
structures  standardized by the  IEEE  Joint  Test  Action 
Group  (JTAG),  also known as  the  IEEE 1149.1 standard 
[26]. This methodology integrates  the master-slave 
design practice, which results in  a reliable,  race-free  test 
capability [7], with the  edge-triggered design practices 
commonly  used by OEM  customers.  This  integration is 
achieved both  for  the  customers’ system  design  styles 
and  for  their  use of the  IEEE 1149.1 test  standard  for 
component,  board,  product,  and field test.  This  integration 
is referred  to  here as  a co-compliant design structure. 

This  test  methodology combines LSSD and  IEEE 1149.1 
test  requirements in each of the following areas: 

Test access to  the  component  internals. 
Boundary scan  capability for  both  component  and 
intercomponent  test. 
Internal scan  capability. 
Logic  built-in  self-test (LBIST) [28]. 
Array built-in  self-test (ABIST) [12-141. 

Co-compliant  IBM ASICs  provide the  interfaces 
required of LSSD test as well as those  required  for access 
to  the  IEEE 1149.1 test access port  controller  (TAP 
controller).  Test of a  co-compliant component is viewed 
first as an LSSD-compliant component. Such  a  design, 
including the  IEEE 1149.1 compliance logic, must be fully 
LSSD-compatible. The  JTAG logic is fully tested,  along 
with the customer’s functional design,  in IBM  ASIC 
component  manufacturing. However,  when the LSSD test 
interface on the  component is set  for  normal  functional 
operation,  the  TAP  controller is functional, allowing test 
in the customer’s environment. LSSD inputs  required  for 
normal  functional  and  IEEE 1149.1 operation  are used  as 
IEEE 1149.1 compliance-enable  inputs, which are defined 
in the  JTAG  standard [26]. 
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Boundary scan for  intercomponent  test is a  primary 
objective of the  IEEE 1149.1 standard.  The  TAP 
controller  implements a set of instructions which provide 
the  serial loading, unloading,  and clocking of latches 
which control  and  observe  each  functional  input,  output, 
and  bidirectional  component  pin.  The logic at  each pin 
that provides  this function is known as an  IEEE 1149.1 
boundary cell. Boundary cells have been  implemented  that 
provide IEEE 1149.1  capability and  support  IBM  ASIC 
manufacturing  requirements [12-141 for 

Reduced-pin  component  test (scan  access to all I/Os  for 
full internal scan test using 64 or fewer  test-access I/Os). 
Package  test  (component  I/Os  to package  pins, or  to 
scannable  I/Os of other  components in the  case of 
multiple-chip modules). 

boundary cell latches). 
I/O  wrap  test (access to  and  from  chip  pins  from 

Internal scan  capability is supported  but  not  required by 
the  IEEE 1149.1 standard. Only  a  subset of IBM  ASIC 
customers  who  use  the  IEEE 1149.1  capability also  choose 
to  implement  internal scan.  However, customers have 
successfully reused  the  inherent scan capabilities of the 
internal  LSSD-compatible  latches, accessing these  internal 
scan chains  from  the  IEEE 1149.1 TAP  controller.  The 
TAP’s edge-triggered  test clock, under  the  control of the 
TAP’s instructions, is converted  into  nonoverlapping 
master-slave clocks which shift the  internal  chain.  The 
internal chains are reconfigured for  component access 
at  the  IEEE 1149.1 test access port. 

The  use of built-in self-test (BIST) structures is a 
growing requirement,  both  for  manufacturing  component 
test  and  for customers’ in-product use. In  conjunction with 
co-compliant internal scan structures, a  design structure 
was developed  that  incorporates  self-test using multiple- 
input-signature  registers  and a  shift register  sequence 
generator [28], also known  as the  STUMPS  architecture, 
for  OEM  customer designs. This  implementation of 
STUMPS provides 

Customer  control of STUMPS using the  TAP  controller 
for  test of the  component within the  product,  board, 
and  component  test  environments. 
Optional  use of STUMPS in the  IBM  ASIC 
manufacturing  environment. 
Static  and  at-speed logic test via internal  control of the 
master  and slave clocks, derived from  the  product  edge 
clock. 

IBM  ASIC  RAMS  contain  an  internal  array  BIST 
(ABIST)  controller  for  manufacturing  test (including 
at-speed) of the  RAM memory  cells. The  above  internal 
scan and BIST structures can additionally reuse the RAM’S 
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1 Co-compliant test  structure. 

internal  ABIST capability to provide customer  control 
of ABIST  from  the  TAP  controller  for  RAM  test 
in the customer’s environment. 

The  integrated  capabilities  described above (and 
depicted in Figure 5) are  being increasingly automated by 
the  IBM  ASIC design center.  At  present,  these capabilities 
are  incorporated  through a combination of internal  and 
external logic synthesis  tools, with some  manual design 
and  connection  steps.  Work  continues  to  automate  these 
capabilities fully. 

Front-end  processing 
Front-end processing is a step in the  IBM  ASIC 
methodology that is used,  after logic synthesis, for  the 
design and  optimization of technology-dependent clock 
networks, test  structures,  and a set of prerequisite 
foundry-specific  circuits [12-141. Traditional design 
automation  applications have been  found  to  be  inadequate 
for  these tasks, and  manual  entry is prohibitive  from a 
design  productivity and verification standpoint. 

Front-end processing  begins  with  a  design that may 
contain 

Idealized clocks (i.e., no clock-repowering networks), 
where a clock simply fans  out  to  each  target  latch. 

398 Partial or  no design-for-test  structures. 
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Incomplete  incorporation of foundry-support circuits 
(such  as I/O driver and receiver inhibit signals). 

At  the  completion of front-end processing, the design 
is fully implemented,  from a  logical standpoint, as  a 
manufacturable  component  that  contains all required 
functional  and  test circuits. 

Front-end processing has  traditionally  been run by 
the  IBM  ASIC design center,  but it has recently been 
packaged  for  customer use, enabling  the  customer  to 
verify that  the final  logical  design meets  foundry sign-off 
criteria.  Prior  to this, customer  pre-layout sign-off had 
been  done on an  incomplete,  abstracted version of the 
design,  resulting  in inaccuracies  and  thus  additional 
iteration within the  IBM  ASIC design center. 

applications.  ClockProTM [29] is used to  determine  the 
requirements of the clocking  network logic. BooleDozer 
Lite, a subset of the  IBM logic synthesis tool [lo], 
provides for  user-defined logic transformation  programs 
in  a script  language.  This is used to  perform a  variety of 
logic editing  and analysis functions, ranging from simple 
net  manipulation  to complex network  construction.  These 
accomplish specific postsynthesis logic insertion  and 
optimization tasks. 

ClockPro is an  IBM clock planning  tool  that uses 
information  about  the design’s clock connections  and 
performance  targets  and  the customer’s clock-tree 
component  preferences  to  calculate families of alternative 
clock networks. These  are  sorted by latency  and  presented 
with data describing  cell  utilization, the  number of clock 
buffer levels, fan-out  per level, and  estimated  capacitance 
at  each level. A  choice can  then  be  made on the basis of 
speed, size, structure, or power. The  resulting  selection is 
then used  as input  to  BooleDozer  Lite  for  insertion  into 
the design. 

tasks for a typical design,  including clock planning  and 
construction,  test  insertion,  and design finishing. Other 
customized  tasks are occasionally required.  Standard or 
custom tasks are always reviewed  with the  customer  at a 
preliminary requirements analysis session, to  determine 
the exact  objectives and  prerequisites  before  the design is 
synthesized. New transformations  are  developed by the 
IBM  ASIC design center as required. 

processing are  EDIF 2.0.0 and VIM. For  users of 
Synopsys synthesis  tools, IBM provides  a script  to  write 
the  EDIF in the  format  compatible with the  requirements 
of front-end processing. 

Front-end processing  uses two IBM  software 

Front-end processing performs several standard 

The  supported  netlist  interfaces  into  IBM  ASIC design 

Clock  planning  and construction 
The initial  design  normally contains  one  or  more system 
clocks  driving  a large  number of flip-flops and  latches. 
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Clock planning and construction. 

These  are  incorporated in the customer's  designs  as logical 
pseudo-cells, containing only the  data  functions  and 
clocks, without yet containing the LSSD functions. 

The  target  implementation is a  serially repowered 
system clock tree [30] using clock driver  cells that  feed a 
clock-splitter  cell, which in turn drives LSSD shift-register 
latches. The clock splitter  creates two level-sensitive clocks 
that  control  the system master  and slave clocks of each 
SRL.  The clock splitter is treated  as  the leaf driver in 
ClockPro when  calculating the clock  network. Also, 
ClockPro  inserts  terminator cells  (cells that capacitively 
load a net) on branches of the  tree  to  guarantee logical 
balance  and  to provide  a means of tuning  the  load, as 
needed,  on any branch. 

nonsystem clocks. Normally,  since performance is not as 
critical for  these clocks, ClockPro  can  be given relaxed 
performance  parameters,  and  the  insertion of terminators 
can  be nullified, thus saving on chip  area  and wiring 
congestion. 

into  the  required clock tree  and clock-splitter logic. 

Repowering  networks can  also be  inserted  for 

Figure 6 depicts how an  idealized clock is transformed 

Test insertion 
If test logic has  not  been  inserted by the  customer, 
front-end processing can  be  used  to accomplish  this 
requirement.  Latch pseudo-cells are  replaced by LSSD 
SRLs,  the test clocks are  connected  to  the  SRLs,  and  the 
SRLs  are serially connected  to  form  one or more scan 
data  paths [7]. These scan paths  are  balanced by length  to 
minimize the  data-load  time  for  the  manufacturing  tester 
[12-141. 

With  front-end processing,  multiple LSSD clocks can 
be  accommodated.  This is sometimes  needed  to  address 
LBIST [28] configurations and  to achieve race-free LSSD 
operation.  Gated clocks  can also  be  used with front-end 
processing, and  are  often  required when test clocks are 
used functionally,  such  as for  internal system scan or for 
low-power applications. 

RIIDI chaining 
Receiver-inhibit and driver-inhibit (RIIDI) chaining 
involves the daisy-chain connection of up  to  four  driver- 
inhibit  signals and  one receiver-inhibit  signal using specific 
ports  on  the I/O buffer cells,  resulting  in the  insertion of 399 
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Flowchart of physical design methodology. 

up  to five inhibit chains [12-141. A typical design has  the 
RI/DI  inputs of the I/O cells tied  to a noncontrolling 
value (for  functional  simulation)  upon  entry of the design 
into  front-end processing. RI/DI  chaining  removes any 
existing connections  to  the  RI/DI  ports  and  connects 
them  into  the  appropriate chains. 

Tie cell repowering 
Often, signals that  provide a constant logical one  or  zero 
value can present layout problems  for  technologies with 
explicit tie-up  or tie-down  cells,  in that  multiple usages of 
a constant  value  can  result  in  tie cells with high fan-out 
and  the  use of a significant number of wiring channels on 
the chip.  Tie-cell repowering  addresses this problem by 
adding a tie cell for  each pin fed by the original net.  The 
added cells are  then  connected  one-to-one  to  those pins. 
During physical design, the  tie cell is placed close to  the 
receiving cell so that  the  corresponding wire length is 
minimal. 

Physical design 
Customers designing in the  IBM  CMOS 4 technologies 
must  provide  a flattened  netlist  to  the design center  for 
layout using the  IBM  mainframe layout tool.  Flattening 

400 of the netlist can  be  done  either by the  customer  or by 

an  IBM design center.  Customers designing  in the  IBM 
CMOS 5 technologies  can  use  either a hierarchical  or a 
flat physical design process, using the  IBM ChipBenchTM [ l l ]  
layout  tool. The  hierarchical design process is generally 
good for  large designs, whereas small chips  are  often 
processed  more efficiently  using the flat methodology. If it 
is determined  that  the physical design of a CMOS 5 ASIC 
is to  be flat,  a flattened netlist is provided  to  the  IBM 
design center. 

If the physical design of the  chip is to  be  done 
hierarchically, the  customer provides  a two-level 
hierarchical netlist. This  netlist  contains a top level that 
calls out second-level entities  or blocks, which in turn call 
out individual  cells or  instances of register arrays or 
RAMS. In  the  hierarchical  methodology,  each of the 
blocks  is individually placed  and  routed.  The I/Os for  the 
set of blocks are  interconnected  and  are  connected  to  the 
chip I/Os in  a  global wiring pass. The flow of the physical 
design process is shown  in Figure 7. 

If the physical design of the  chip is to  be flat,  only one 
set of timing-assertion files [5] for  the  chip is required. 
If the physical design is to  be  hierarchical,  and if the 
customer  requires timing on each of the individual  blocks, 
the timing assertions  must  be  provided  for  each of the 
block entities  as well as for  the  chip level. The  customer 
provides any additional timing assertions  needed  for  static 
timing analysis of the  post-PD design. 

In a hierarchical  environment, if timing-driven  design is 
used,  each of the blocks is placed  and  routed  separately 
with respect  to  the timing assertions provided.  A second 
pass through wiring connects  the blocks together with 
respect  to  the chip-level  timing assertions. 

applied  to improve  timing, wiring, and clock skew. Clock 
optimization modifies the  organization of the  clock-tree 
buffers  and  the clock splitters according to  the layout of 
the  latches  and  the customer’s requirements  for slew and 
latency. Scan  optimization  reorders  the scan  chains to 
minimize wiring congestion. 

A high-performance  CMOS 5 design may have to 
iterate within the  steps of the  place-and-route  process 
and timing analysis in order  to achieve the timing 
targets of the design. Prior  to  the initial placement of 
logic cells, EinsTimer is used to  produce  capacitance 
targets  for  nets identified  in the worst-case  timing paths. 
The  capacitance  targets  guide  ChipBench  during initial 
placement.  Prior  to clock optimization,  static timing 
analysis is applied again,  using idealized clocks, to verify 
the  placement;  the  IBM  ChipEdit [31] tool  can  be used at 
this  time  to manually change  the initial placement  to 
improve  timing. After  running clock optimization,  the 
option exists, again  using ChipEdit,  to manually prewire 
worst-case nets  prior  to  automatic wire routing. 
ChipBench is then  used  for  automatic  routing, followed 

Clock optimization  and scan optimization  processes  are 
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again by static timing analysis using actual  clock-tree 
characteristics  instead of idealized clocks. ChipEdit  can 
be reapplied  to fix any remaining timing problems.  This 
process is generally  effective at  eliminating  the  need  to 
recycle through  the physical design methodology  to  meet 
performance objectives. 

Embedded  ‘‘system  building  blocks” create 
system-on-a-chip  technology 
System-on-a-chip, or “system  building  block,”  technology 
makes high-level functions,  such  as microprocessor cores, 
signal-processing  compression functions,  and  other system- 
oriented  functions available to  ASIC  chip  designers as 
part of the  ASIC design  process. The  use of core  macros 
in the  past  required  custom  chip design by a dedicated 
design team  at  the silicon vendor.  The system building 
block functions, or “cores,”  are  constructed  as 
predesigned building blocks, to  be  integrated as easily as 
gates  and  latches.  This  idea is not evolutionary,  as is going 
from  larger  to  smaller  die sizes or increasing  processing 
speeds; it is completely  revolutionizing the way in which 
we design our chips by bringing core-plus-ASIC design 
to  the designer’s desktop [32]. 

hard. Soft cores  are delivered to  the  ASIC  designer  as 
a hardware design language  (HDL) design. The design 
data  for  the soft core can be provided at  various levels: 
premapped  to  the  ASIC vendor’s  technology  as  a gate- 
level netlist, or  as synthesizable behavioral or register- 
transfer-level code. 

Once  incorporated  into  the  ASIC design through 
synthesis or netlist  “stitching,” the  soft-core logic cannot 
be distinguished from  the  rest of the  ASIC design, and 
therefore  presents minimal methodology issues. Gate-level 
timing, simulation, testability analysis, and  floorplanning of 
the soft core  are accomplished  using the  models  for  the 
standard  ASIC library elements. 

Soft-core  macros  do  not have  a predefined layout. 
Soft-core  gates  are placed and  routed as part of the 
ASIC design. Because  the layout is not  predefined, it is 
important  that  macro  functions  implemented as  soft cores 
do  not have performance  requirements  that would  drive 
custom  layout or custom library cells. 

layout. The  core is modeled as  a  single  library element, 
or “black box,” much the  same  as a RAM or ROM 
macro.  Macro  functions, such  as microprocessors,  are 
implemented  as  hard  cores  for several reasons, 
predominantly  to  preserve a custom layout of the circuit 
that is required  to  meet  the  desired  performance,  and  to 
accommodate  an  ASIC  vendor who chooses  not  to reveal 
the  detailed design of the  macro. 

Because a hard  core is modeled as  a  single  black box 
rather  than as the synthesizable code of a  soft core,  the 

There  are two types of core  macro  functions, soft and 

Hard  cores  are  macro  functions  that have  a predefined 

internal  description of the  macro  function is completely 
“hidden”  from  the  customer, providing intellectual 
property  protection  for  the  ASIC  vendor.  Development of 
these black-box models  for a  complex macro  function, with 
the accuracy required  for  use by the  ASIC  designer,  often 
requires significant effort  and invention on  the  part of 
the  ASIC  vendor. 

Both  hard-  and  soft-core  macros provide valuable 
predesigned  function  for  use by the  core-plus-ASIC 
designer. 

However,  this new core-plus-ASIC technology has 
created a new generation of integration challenges. 
Integrating  cores with various  interface  requirements  often 
requires significant  “glue logic.” Because  these  interfaces 
are now buried in the  ASIC, system  verification requires 
better simulation models  than have traditionally  been 
available for  standard  products.  Larger  gate  counts drive 
a need  for  better  simulation  tools  and new approaches  to 
system  verification. To  support  manufacturing  test of the 
ASIC, innovative solutions  are  required. 

To solve these problems,  many functions  are  marketed 
as  synthesizable  “soft macros.”  These  macros  are easily 
integrated with the designer’s  logic and can be customized 
to  meet individual  design requirements. 

The  disadvantage of soft macros is that  speed  and 
density are limited by the  characteristics of the  ASIC 
standard cell library in which they  are  implemented. 
Standard  products  often use custom circuit  design to push 
the  speed  and density of the technology  beyond the limits 
of a standard cell implementation.  Corresponding  core 
products  can  take  advantage of this by using  a “hard 
macro”  approach.  Because of the  methodology challenges 
associated with developing and  testing  hard  cores,  ASIC 
designs  using hard  macros  are usually designed by the 
ASIC  vendor  to  customer  requirements. A few ASIC 
vendors have developed  the capability to  support  the next 
level of design  methodology,  in which customers design 
the  ASIC logic around  the  hard  macro,  and  the  ASIC 
vendor  integrates  the  hard  macro with this logic before 
sign-off. In  either case, the involvement of the  ASIC 
vendor in the design process limits  availability of this 
technology to only the highest-volume  projects.  Today’s 
challenge is to provide tools  and  methodologies allowing 
design, integration,  and sign-off verification of the  core- 
plus-ASIC  chip  at  the  ASIC designer’s desktop, making 
cores as easy to  use as the  traditional  standard cell  library. 

The  current  trend  for  core  libraries is to  incorporate 
functions originally  designed as  standard  product chips. 
Such functions may incorporate  additional  features  not 
required by the  application, or may optimize  the  interface 
around package  technology limitations  that  do  not apply 
to a core  implementation.  ASIC  designers  often must 
customize  soft macros  to achieve an  optimal design. This 
customization  can  require  up  to 30% redesign of the 401 
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function.  The  interfacing of multiple  cores may also 
require significant glue logic. 

As  core  libraries evolve and  incorporate new functions 
originating as  core  products,  interfaces will develop  that 
are  optimized  for  performance, routability, and flexibility, 
unfettered by package pin-count  limitations.  Core designs 
will become  modular, with  plug-in features  that  can 
be included or  deleted  from  the design, rather  than 
incorporating a  wide range of features  into a monolithic 
design. Industry  standards will develop  for  on-chip bus 
architectures, allowing the  integration of cores with little 
or  no additional glue logic. Development of modular  cores 
and  on-chip bus standards  makes it  possible for  tools  to 
emerge  that  can automatically “build”  the  netlist  for  an 
overall system,  using parameters  entered by the  ASIC 
designer. 

Simulation of an  ASIC  containing a core  macro  requires 
a simulation  model of the  core  to  permit  the  designer  to 
determine  whether  the  ASIC logic that  communicates with 
the  core is functioning correctly. To minimize time  to 
market,  hardware  and  software designs for a product 
invariably proceed in parallel.  The types of simulation 
models available for a processor  core  can affect the 
efficiency of this parallel design  process.  A range of 
simulation  models  supporting  the  entire design process 
is preferred. 

During  the synthesis step,  the behavioral HDL  for  the 
ASIC  and any behavioral soft-macro  cores  are  mapped  to 
technology-specific gates. Any logic originating  from a  soft 
macro is then indistinguishable from  the  ASIC designer’s 
logic. A hard-macro  core, however,  passes through  the 
synthesis step  unchanged.  It  continues  to  be  represented 
as  a  single  library element  and is included  as  such in the 
netlist output by the synthesis  tool. 

Testing of core-plus-ASIC designs presents challenges 
that  are  added  to  those  caused by traditional  ASIC 
methods.  These  include  the  need  for  core access and 
isolation during  scan-based  testing  and, in some cases, the 
need  to apply core  functional  patterns.  Test  patterns  from 
different  source  tools  and  for  different technology libraries 
must be  merged  and  applied  during  core-plus-ASIC 
testing. 

design is functionally  verified at  the  gate level. At this 
stage,  simulation using an  HDL full-timing model  for 
the  hard-macro  cores is appropriate,  although  the bus- 
functional  model is still an  option. 

Intellectual  property  protection is a concern  for  the 
ASIC  vendor providing the  detailed full-timing simulation 
model of the  core.  The  model must be completely 
accurate in terms of the  behavior  and timing 
characteristics of the  core,  but it should  not  be  described, 
for example,  in  a way that exposes the  actual design of 
a  microprocessor. The  preferred  method is to  use  an 

After synthesis and  DFT checking, the  core-plus-ASIC 

402 

J.  J. ENGEL E 

encrypted  model  originating  from a detailed netlist of 
the  core  macro, which has  been  compiled so that it is 
“simulator-independent,”  or  able  to work  in  a  variety of 
VHDL, Verilog, and  other simulators. The full-timing 
model  for  the  hard-macro  core must also  be  compatible 
with the  ASIC library in order  to  support a consistent 
method of post-layout  timing back-annotation. A 
standardized  format, such  as standard delay file (SDF), 
is often  used  for  back-annotation of ASIC post-layout 
timing. 

For a hard-core  macro, a static timing analysis model is 
required  that  models delays and specifies  timing  checks at 
the  interface  to  the  core.  Internal timing assertions  are 
built into this model.  For a  soft macro, such information 
must be  provided as  timing assertions  or  constraints  to 
be  incorporated by the  customer in the chip-level  timing 
analysis. The  static timing analysis tool must be  able  to 
handle  and  correctly  interpret  both  the  abstracted timing 
model  for  the  core  and  the timing models  for  the  base 
library elements. 

significant percentage of the chip’s area,  floorplanning 
becomes a requirement in order  to achieve  overall 
chip  timing and  ensure wirability of the final  design. 
Floorplanning  models  that provide both timing and 
blockage information  for  the  core  are  required  to  help 
the  designer  make layout trade-offs. 

Core-plus-ASIC technology is being  used  to drive the 
next step of evolution for a broad  spectrum of electronic 
products. A paradigm shift  in the way designs are 
conceived and  created by a  design team  has  already 
begun. By the year 2000, ASIC  vendors will be  selected 
on the basis of the availability of ASIC  cores  and of tool 
support  for  those  cores.  The  emergence of bus standards 
optimized  for  on-chip  buses will eliminate  performance 
limitations  imposed by package pin counts  and will 
enable  automated  generation of system designs. New 
methodologies  are  emerging  that will make possible core- 
plus-ASIC  chip design at  the designer’s desktop  and  make 
this  technology  as easy to  use  as a standard cell library. 
As  a result, every ASIC  designer will have  access to  the 
vast intellectual  property assets of the  ASIC  vendor. 

is summarized in Figures 8 and 9. 

Because a large  hard-core  macro is likely to occupy  a 

The design  methodology for  core-plus-ASIC technology 

Conclusion 
As chip technologies  continue  to provide for increasing 
circuit densities  and  performance,  the  ASIC design 
methodology is increasingly challenged  to  provide  product 
designers with the  means  to exploit these technological 
advances. The  capabilities  described in  this paper  are 
being used today by IBM ASICs  to give designers,  both 
within IBM  and  throughout  the industry at  large,  the 
ability to  use  leading-edge  IBM  CMOS  technologies in the 
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1 Flowchart of front-end  process for embedded-cores methodology. 

development of leading-edge  products.  These  capabilities 
are  being  extended  and refined to  meet  the challenges 
posed by further advances in chip technology. 

Additionally, new methodologies  are  required  to  meet 
these  ever-increasing  demands.  The capabilities of cycle 
simulation,  hardware  accelerators,  and  emulators must be 
coupled with advances in formal verification, high-level 
synthesis, and system-on-a-chip architectures  to provide 
designers with the  increased logic design  productivity 
required by greater  chip  densities  and  shorter  time-to- 
market  requirements.  The ability to  estimate  chip power 
consumption,  more accurately and much earlier in the 
design cycle, must be provided to ASIC designers. Finally, 
the overall product design flow must become increasingly 
integrated, as the  electrical  and physical factors involved 
in chip  realization affect  logic  design and system 
architecture  to a  much greater  extent. 
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