Design
methodology
for IBM ASIC

products

by J. J. Engel

S. Guzowski
Hunt

E.

D. Pickup
A. Proctor
Reynolds
M. Rincon

J.
T
A.
D.
L.
R.
K.
A.
D. R. Stauffer

The IBM ASIC design methodology enables a
product developer to fully incorporate the
high-density, high-performance capabilities
of the IBM CMOS technologies in the design
of leading-edge products. The methodology
allows the full exploitation of technology
density, performance, and high testability in
an ASIC design environment. The IBM ASIC
design methodology builds upon years of
experience within IBM in developing design
flows that optimize performance, testability,
chip density, and time to market for internal
products. It has also been achieved by using
industry-standard design tools and system
design approaches, allowing IBM ASIC
products to be marketed externally as well as
to IBM internal product developers. This paper
describes the IBM ASIC design methodology,
and then focuses on the key areas of the
methodology that enable a customer to exploit
the technology in terms of performance,
density, and testability, all in a fast-time-to-
market ASIC paradigm. Also emphasized are
aspects of the methodology that allow IBM to
market its design experience and intellectual

property.

Introduction: Overview of IBM ASIC design
The IBM ASIC design methodology is a process for
designing high-density, high-performance, highly testable,

fast-time-to-market ASIC chips. It can be used for both
standard cell and gate-array designs in chip sizes of up
to 1.6 million wirable gates. Sign-off (final approval) for
fabrication of an IBM ASIC is based on attaining high-
coverage testability through full-scan design and timing
verification using static timing analysis." Support for
numerous electronic design automation (EDA) tools is
provided in a design kit containing model libraries for
each IBM ASIC technology. The steps supported in the
IBM flow are described below and shown in Figure 1.

® Design entry

Most customers designing large ASICs today (more than
50 000 gates) enter their designs in a hardware description
language (HDL) such as VHDL® or Verilog®. This is
accomplished via manual HDL language entry, or through
the use of HDL entry tools from an EDA vendor. For
those customers desiring direct schematic entry of their
design, symbol libraries for various schematic editors {1, 2]
are provided.

® [ogic synthesis

Complete library support is provided for logic synthesis,
which optimizes the customer’s technology-independent
HDL and maps it into a gate-level, technology-dependent
representation. Component instantiation of gate-level
library elements in the high-level description is also

t David Lackey, “IBM ASIC Design Methodology Overview,” ASIC Application
Note (IBM internal document), IBM Microelectronics Division, Essex Junction,
VT, 1995.

2 VHDL: VHSIC Hardware Description Language, IEEE Standard 1076.

©Copyright 1996 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,

of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

387

0018-8646/96/$5.00 © 1996 IBM

IBM J. RES. DEVELOP. VOL. 40 NO. 4 JULY 1996

J. J. ENGEL ET AL.

388

Design
entry

¥

Simulation
(functional)

1
Logic synthesis
and test logic

insertion

F I » %
1 ¥ Y Y v
Static Simulation Test
o Formal CMOS
b it tlmmg (gate verification stz.ucmfe checks
analysis level) verification
T T Py Py T

oo
Front-end
processing

[
Pre-layout
sign-off

¥
Layout

(]

(~—) [Final static
w timing analysis
[]
Post-layout
sign-off
¥

ATPG and release]|
to manufacturing

Floor+
planning

S

Flowchart of IBM ASIC design methodology.

supported. By using the IBM design methodology, a
gate-level design is synthesized from the same functional
HDL design representation that is simulated for logical
correctness.

Using either IBM internal or external design synthesis
tools, the IBM ASIC logic synthesis methodology produces
a design-that satisfies level-sensitive scan design (LSSD)
design-for-test requirements.

® Simulation

IBM supports a variety of leading-edge tools for
functional and gate-level simulation for designs using
VHDL, Verilog [3], and design languages internal to IBM.
Included are simulators that allow mixed simulation of
VHDL and Verilog.

Delay simulation is supported with back-annotation
using standard delay format (SDF) files [4] created by the
IBM EinsTimer™ [5] delay calculator. This SDF is based
upon the early timing estimator (ETE) rules and nonlinear

J. J. ENGEL ET AL

delay models that have been qualified for the IBM ASIC
hardware component libraries. Timing simulation is
supported in several tools; however, static timing analysis
is the hardware sign-off criterion for timing without the
need for simulation test vectors. Delay simulation is
subject to the maximum timing accuracy of the simulation
tool used, as well as the ability of the SDF to accurately
represent the delay data. Thus, EinsTimer, when used as a
static timing analysis tool, is needed to fully realize the
accuracy of EinsTimer’s delay calculations using the ETE
and nonlinear delay models.

® Floorplanning
Floorplanning, which allows the customer to introduce
estimates for the placement of functional blocks early in
the design cycle, is supported in the design methodology.
Without floorplanning, estimates of capacitance for global
nets can be highly inaccurate. Floorplanning can provide
accurate estimates to guide synthesis of the logic design
and, later, to guide the layout process. Floorplanning also
provides indications of wiring congestion on the chip,
allowing the designer to minimize congestion problems
early in the design. Integration of floorplanning with
logic synthesis [6] is supported, allowing the customer to
iteratively improve design performance using the improved
timing characterization enabled by the layout data.
Additionally, a “bit-stacking” process is provided
whereby various dataflow blocks in the design are better
optimized for timing and area and are fed into the
floorplanning/synthesis cycle for optimal design
integration.

® Test structure verification

IBM requires that all ASICs pass test structure verification
(TSV), which uses the IBM internal test structure
verification and automatic test pattern generation (ATPG)
tool. This ensures compliance with LSSD requirements for
scan, clock control, and random-access memory (RAM)
and read-only memory (ROM) access requirements.

A design that meets these requirements contains fully
testable, race-free hardware [7]. TSV forms the basis

for the unique ability of the IBM foundry not to require
test vectors from the customer.

® Static timing analysis

The sign-off tool for timing analysis is EinsTimer.
EinsTimer accepts both Electronic Data Interchange File
(EDIF) and the IBM VLSI integrated model (VIM)
netlist formats. Timing assertions [5] are provided by the
customer to characterize the design in terms of its primary
inputs (PIs), primary outputs (POs), expected time of
arrival (ETA), clock phases (PHS), and don’t-care-and-
adjust (DCA) data that specify multicycle and “false”
paths in the design.

IBM J. RES. DEVELOP. VOL. 40 NO. 4 JULY 1996

Additional static timing analysis tools from external
EDA vendors are supported for use in the customer’s
design environment, but EinsTimer is required for sign-off.

® Formal verification

The IBM ASIC methodology supports a formal
verification method known as Boolean equivalence
checking (BEC) [8, 9] which is used at various steps

in the design flow to ensure that changes made to the
netlist, including those made in test insertion, front-end
processing, and chip layout, still preserve the original
functional HDL design of the chip. This process is far
more thorough and cost-effective than simulation.
Requirements for expensive and time-consuming gate-level
simulation late in the design cycle are drastically reduced.
Simulation resources can be focused instead on the
original functional HDL design early in the design cycle,
where simulation is most effective and the design least
costly to correct.

® CMOS checks

All IBM ASICs must pass a series of CMOS rules

checks (CMOS checks). These checks include electrical
connectivity checks such as fan-out, and checks for
conformance to I/O requirements, including IBM
boundary scan. The CMOS checks utilize rules available in
the design kit. CMOS checks provide the remaining checks
not otherwise covered in the design methodology to
ensure design success in IBM CMOS processes.

® Design handoff

When a design team is ready to turn its design over to
IBM for layout and fabrication, it provides the IBM
design center with a netlist, timing assertion files, an 1/0
placement list, and specification of any preplaced macros.
If floorplanning was used by the customer, placement
specifications, region constraints, and parasitic data are
provided.

® Front-end processing

By customer agreementS, the IBM ASIC design services
organization provides certain netlist transformations
(transforms) [10], such as clock tree and test logic
insertion. After the transforms have been applied, the
netlist is verified by using TSV to check design compliance
with LSSD guidelines, and with static timing analysis to
ensure that performance targets are met. An SDF file
produced by the EinsTimer tool is then provided to the
customer for delay simulation, and for any further timing
analysis or synthesis optimization that may take place.

3 David Koller, “Initial Design Review,” ASIC Application Note (IBM internal
document), IBM Microelectronics Division, Essex Junction, VT, 1995.

IBM J. RES. DEVELOP. VOL. 40 NO. 4 JULY 1996

® Pre-layout sign-off

After all transforms, static timing analysis, and TSV have
been run on the customer’s netlist, the updated netlist,
the verification reports, and the SDF are returned

to the customer for simulation and timing analysis, as
well as formal verification for those customers with that
capability. This step enables the customer to verify that no
errors were introduced into the design as a result of the
transforms. It is also a checkpoint for the designer and
IBM to track how closely the results from EinsTimer
match the timing results of the customer’s front-end tools.
The customer must be satisfied with the EinsTimer timing
analysis results before pre-layout sign-off can be
completed”.

® Layout

After pre-layout sign-off is achieved, IBM begins the
detailed layout of the customer’s design. If the customer
is designing in the IBM CMOS 4 technology, the layout is
done on the IBM mainframe-based physical design system.
If the customer is designing in one of the IBM CMOS 5
technologies, layout of the chip is done using workstation-
based tools [11].

An IBM ASIC design can be laid out utilizing either a
flat or a hierarchical process. Whereas the hierarchical
design process may be necessary for a large-gate-count
design, the flat design process is often more efficient for
smaller designs. Layout is driven by the performance
objectives of the design, using capacitance targets
generated by static timing analysis, and by linking static
timing analysis to the optimization steps within the layout
process.

The final netlist and timing delay files are written in
the EDIF and SDF languages respectively, and returned
to the customer in either flat or hierarchical formats,
depending upon whether a flat or hierarchical physical
design methodology was used.

® Post-layout sign-off

The post-layout netlist, the SDF file, and the timing
reports are returned to the customer for final logic and
timing verification. The customer can verify that the
integrity of his logic function was not corrupted by the
physical design process by using either post-layout
simulation of the design or formal verification. The
customer can use the SDF to re-examine timing for
critical paths, using either static timing analysis or delay
simulation, and to correlate the results to the path data
in the post-layout timing report. The timing reports from
EinsTimer are used for post-layout sign-off before the chip
enters the fabrication process. If the customer is satisfied

4 Ann Rincon, “Release to Layout Sign-off,” ASIC Application Note (I1BM internal
document), IBM Microelectronics Division, Essex Junction, VT, 1995.

J. J. ENGEL ET AL.

390

with the function and performance of the chip’s physical
design, post-layout sign-off can be completed”.

® Tape-out to manufacturing

After post-layout sign-off, the IBM design center takes the
customer’s design into final-shapes generation (creation

of mask data), and logical-to-physical and ground-rule
checking. At this time the design is run through ATPG to
create the patterns that will be used at the manufacturing
tester. The mask data and test patterns are delivered to
the manufacturing control center for fabrication.

Automatic model generation and verification
One of the challenges in supporting EDA systems from
multiple vendors is maintaining a consistent set of model
libraries. These libraries must be identical in their
modeling of a logic cell’s functional behavior, timing, and
electrical parameters, yet provide the syntax required by a
diverse set of tools. To answer this need, an automatic
model generation and verification system known as
LibTools™ was developed. This system makes use of a
common technology database for consistency and a
common set of code for cross-verification.

The common technology database contains most of the
information pertinent to synthesis, simulation, and test-
generation models. Timing data are retrieved from the
early timing estimator (ETE) and delay calculator
language (DCL) timing models [5]. The information
contained in the database includes cell names, pin names,
power levels, cell area, cell functions, and pin functions.
Additional model-specific data are stored as required
[12-14].

Since timing information is not stored in the database
itself, a common set of access routines is used to obtain
the data in the timing models. This takes the form of an
ETE parser, replaced recently by direct access to the
EinsTimer timing analysis tool, which obtains timing data
from the models.

Numerous model types are generated from the LibTools
database, including

¢ IBM BooleDozer™ models.

e Synopsys Design Compiler™ and Test Compiler™
models.

¢ Cadence Verilog-XL™ and Veritime™ models.

e VITAL (VHDL Initiative Towards ASIC Libraries)
models.

¢ Cadence Composer™ symbols.

¢ IBM TestBench™ models.

e Mentor QuickSim II™ models.

e Compass PMD format, which is used by the Compass

5 Ann Rincon, “Release to Manufacturing Sign-off,” ASIC Application Note (IBM
internal document), IBM Microelectronics Division, Essex Junction, VT, 1995.

J. J. ENGEL ET AL.

Mercury™ Library Development Tools to provide
models for vendor tools such as Viewlogic VIEWSIM®,

A typical model-generation function accesses a
requested cell in the LibTools database, retrieving both
generic and model-specific data for construction of the
target model type. The common database preserves data
consistency, whereas multiple model-generation functions
provide the diverse set of models required in supporting
a diverse set of customers.

Verification of the generated models is done by
applying a simulation pattern set, generated from a
transistor-level representation of each library cell
that has been qualified against manufactured hardware.
Additionally, the various model types are cross-verified
for consistency and additional coverage. This is important
for patterns not easily realized in actual hardware, yet
realizable in simulators, such as conflicting data on two
ports of a latch, and other patterns designed to cause
failures or to identify opportunities for pessimism
reduction.

The verification program contains a pattern generator,
which accesses the common database to determine a
suitable pattern set for the function of the target cell. For
combinational circuits, an exhaustive pattern set is used,
whereas for bidirectional (BIDI) elements, the high-
impedance Z state is added to the existing 0, 1, and
unknown (X) value set. The BIDI element is tested
exhaustively both as a driver and as a receiver; then an
X state is applied to the driver-enable circuit for testing
in an unknown mode. Latches, multiple-bit cells, and
memories have unique pattern generators which fully
exercise the cell.

A common data structure is used to define the test
patterns. Common parsing routines are used to create the
pattern formats unique to each target tool type. Patterns
are submitted to the known good reference, or “golden,”
simulator to generate the golden pattern set.

The IBM ASIC design methodology resolves the key
issue of accounting for subtle differences in behavior
among the various tools. Whereas differences between
tool behavior and the golden pattern set would normally
signify a model or tool error, some differences are found
to be justified, and a correction action must occur. Either
a global correction file or a model-specific correction file
can be employed in this situation.

An example of a global correction is that made for a
circuit that produces a pessimistic result. A multiplexor
would produce an X output given an X on the select pin
in the golden pattern set, which was generated from the
transistor-level schematic. However, in the case of equal
data inputs, the output is, in fact, known despite the X
value of the select pin. This known value is incorporated

IBM J. RES. DEVELOP. VOL. 40 NO. 4 JULY 1996

in the global correction file, allowing simulation to be less
pessimistic.

A model-specific correction is applied, for example,
when a target tool cannot fully implement a certain
function. A common example among simulators is the
approximation of the behavior of a bidirectional pin.

An automatic cotrection file generator has been
developed that produces a file of recognized differences
between the golden pattern set and the patterns of the
models and tools being verified. Each correction must be
manually signed off, however, before it can be added to
the actual correction files to be used for subsequent model
verification.

An output of verification is a list of successful and
unsuccessful pattern comparisons. This list is used to
determine when a model must be reverified, which occurs
when the prior comparison was unsuccessful, or when the
model has changed since a prior successful comparison.

Some complex cells, such as phase-locked loops [12-14],
require custom input patterns and manual examination
of output behavior. For such cells, manual sign-off is
required, and the justification is stored with the successful
comparison record in the database.

For logic synthesis models, a simulation model is
program-generated using the synthesis model behavior,
and the pattern-compare strategy is employed.

Consistency of timing behavior between the timing
models and the target tool is verified by creating an SDF
for each cell using EinsTimer, and loading the SDF into
each target tool. The ETE or DCL models, which contain
timing delays for input-to-output combinations as well as
specific checking scenarios, are compared against the
timing behavior of the target tool and model, and the
database is updated with the appropriate record of
successful or unsuccessful comparison.

Additional verification is provided by the generation
of an all-instance netlist containing one of each type of
library cell. Each cell’s input and output is a netlist I/O,
and the above verification steps are applied.

The above capabilities, depicted in Figure 2, provide
a powerful system for the automatic generation and
verification of a diverse set of technology models, using a
common database that ensures consistency among the
models and provides a strict audit trail of each model’s
quality.

Static timing analysis

The IBM ASIC design methodology incorporates a timing
verification methodology based on static timing analysis,
the product of almost twenty years of experience in
system development projects within IBM. This timing
methodology uses the IBM EinsTimer [5] tool as the
central timing analysis and delay calculation tool.

IBM J. RES. DEVELOP. VOL. 40 NO. 4 JULY 1996

Technology Generate
data patterns
Run reference
(golden)
LibTools simulator
database
Stimuli and
reference
(golden)
Target simulators results

Models

l

Update Compare reference
database (golden) results
with
target simulator
results

IBM ASIC model-generation process.

With the application of static timing analysis to ASIC
design, IBM is unique and a leader in an industry that has
traditionally used delay simulation for timing verification
and sign-off (3, 4, 15]. The effectiveness of delay
simulation is largely determined by how well the
simulation test-set covers all logic paths in the design.
Additionally, the timing granularity of the simulator is a
further limit on the effectiveness of the analysis. It has
been found that the EinsTimer static timing analysis tool
provides timing verification of greater accuracy as well as
greater speed. All paths are timed, as compared to the
limited and unknown path coverage of delay simulation,
which is the case regardless of the speed of the simulator,
and regardless of whether the simulator is a software tool
or a hardware accelerator.

For delay calculation, EinsTimer uses multiple wire-load
models for a design, rather than single capacitance and
RC estimates. These wire-load models contain capacitance
and RC data for a logical group of cells, either based on
the number of cells in the group, or as determined in an
analytic fashion by a floorplanning tool or by the results
of physical design.

For a flat, unfloorplanned chip, a single wire-load model
that applies to the given die size is used. This can include
flat (logically flattened) designs or designs that contain a
logical hierarchy.

J. J. ENGEL ET AL.

391

392

A chip can be floorplanned either with a single level of
physical hierarchy or as multiple floorplanned groups. The
parasitic (wire-load) data determined by the floorplanner
are used for the entire chip in the case of a single
hierarchical level. For multiple levels of physical hierarchy,
the parasitic information for each floorplanned group can
be used together with the chip-level parasitics for the
connections between groups. EinsTimer can also use wire-
load models derived by the customer using various tools,
allowing flexibility in the early development process.

EinsTimer has traditionally used, for gate-level timing
models, early timing estimator (ETE) models. ETE models
are a human-readable representation of input-to-output
timing paths, with pin capacitance and coefficients for
delay and transition, as well as tests (such as setup-and-
hold) to be performed between input pins. When using
ETE models, the delay calculator tool (EinsTimer)
contains the delay equations that make use of these
delays and parameters.

In advancing the effectiveness of delay calculation, IBM
has recently incorporated new delay rules (NDRs). These
new gate-level timing models replace the ETE models,
and are written in the delay calculation language (DCL),
which was developed by IBM but is becoming an industry
standard in the future evolution of EDA tools [16].

Through the use of NDRs, ownership of the delay
calculation equation is moved from the timing tool to the
ASIC foundry, by incorporating the delay equation in
DCL data provided by the foundry and compiled together
with the NDRs. The result is better correlation of timing
results across tools, such as static timing analysis and
synthesis optimization, which incorporate delay calculation
into their algorithms.

NDRs provide better protection of the intellectual
assets contained within the data, parameters, and
equations, as compared to ETE models, because the data
delivered by the ASIC foundry are compiled rather than
human-readable. NDRs require an application program
interface (API) to obtain the internal data.

For IBM ASIC timing sign-off, EinsTimer is run in
its linear-combination delay mode (LCD mode). A
combination of scaling factors and best-case/worst-case
delays is used to accurately account for process variation
in manufacturing. Specifically, path scaling factors are
used for the clocks to account for process-induced clock
skew:

¢ A scaling factor is applied to the path from the
oscillator input, through the clock-powering tree,
through the slave latch, and through combinatorial logic
to the master-latch data input.

* Another scaling factor is applied to the path from the
oscillator input, through the clock-powering tree to the
master-latch clock input.

J. I. ENGEL ET AL.

These factors account for variations across the chip in
channel length and width, threshold voltage, and wiring
density, which in turn have a number of causes. These
include nonplanarity of the wafer or mask; mask defects;
horizontal, vertical, rotational, or Z-axis skew between
mask and wafer; variation of feature density across the
chip; vibration; light intensity variation; implant variation;
and crystal defects.

LCD coefficients for a target technology are determined
through a combination of steps using EinsTimer and ASX
(a circuit-level simulator developed by IBM):

1. Using ASX, 3-sigma path delay variation for a number
of clock distribution paths is estimated, taking into
account variations in the target technology for the
physical factors described above. This estimation using
ASX simulation produces 3-sigma path delay variation,
a capacitance file, and an RC delay file.

2. LCD coefficients are determined iteratively, through
comparison of EinsTimer results (using estimated LCD
coefficients) with the ASX results. The LCD
coefficients are iteratively re-estimated until the
EinsTimer and ASX results match.

3. The above steps are executed for late-mode worst-case,
early-mode best-case, and late-mode nominal
conditions.

Correlation of timing characteristics
Because the IBM ASIC design methodology requires sign-
off using static timing analysis before design layout and
again before release to manufacturing, a high correlation
between the timing data driving synthesis and the
data driving the static timing analysis tool must exist.
Conversely, the degree of difference negates the efforts
of the designer to achieve performance targets through
timing optimization within the logic synthesis tool. For
customers using the IBM synthesis tool, this is not a
problem, since the EinsTimer delay calculator, which is
also used for static timing analysis, is used by synthesis for
timing optimization. For customers who are using the
Synopsys Design Compiler [17, 18], however, a different
form of timing model and a different delay calculator
are used. A method was developed to ensure that the
Synopsys timing models are generated to provide the
highest degree of correlation between Design Compiler
and EinsTimer timing results for IBM ASIC designs. For
worst-case process, temperature, and voltage, a difference
in the delay, computed on a path through a cell, of less
than 1% for the entire library is achieved by this method.
Synopsys nonlinear timing models consist of a two-
dimensional array of delay values indexed by input
transition time and output capacitance, allowing the
delay equation to be modeled as a set of values that best
match the timing behavior of a cell. The EinsTimer delay

IBM J. RES. DEVELOP. VOL. 40 NO. 4 JULY 1996

calculator is used to determine the delay values placed in
the nonlinear tables on the basis of the ETE or NDR
rules [5].

Once the models have been generated, the timing
correlation between Synopsys and EinsTimer is verified
using an “all-instances test case,” which is a test circuit
containing one of each type of cell in the technology
library. The delay of each input-to-output path of each
cell is measured by the EinsTimer delay calculator and
compared against the corresponding path delay calculated
by the Synopsys Design Compiler. Any delay difference
greater than 1% is analyzed. The Synopsys timing tables
are then further refined until the correlation target of less
than 1% is achieved.

Correlation on wire-load models is 100%, since
Synopsys and EinsTimer use the same method for
calculating wire delays. The Synopsys wire-load models
are derived directly from the EinsTimer models.

Since Synopsys currently has no way to account for the
degradation of rising and falling transitions due to the
effects of RC, any high-fan-out nets will cause timing
problems to be seen in EinsTimer that were not seen by
Design Compiler. This can be minimized by limiting fan-
out to less than fifteen. Testing has shown that once
RC transition degradation is taken into account, the
correlation between EinsTimer and Synopsys will be close
to 100% for worst-case assumptions.

Floorplanning

Wire delay for deep-submicron designs can be the
predominant part of total path delay. For this delay, a
significant advantage can be achieved with floorplanning,
which provides for early placement of logical functions,
macros, and inputs/outputs (I/Os) on the chip to meet
various goals.

Floorplanning increases in importance with greater
chip densities and higher performance requirements, and
generally becomes a necessary step in the design process
for chips with more than one million gates.

Without floorplanning, the prediction of parasitics is
based solely upon technology-level data or area-based
wire-load models, resulting in significant differences from
the actual net parasitics found in the physical design.
This limits the ability of logic synthesis to optimize for
performance because the synthesis tool is unable to
determine path delays accurately.

A logic design environment in which logic synthesis and
floorplanning are closely linked is key to shortening design
cycles and meeting performance objectives [6]. For one-
million-cell designs, a typical iteration through synthesis,
floorplanning, and back-annotation of less than one week
is typical. This is far less than the traditional iteration
through physical design (placement and wire routing).

IBM J. RES. DEVELOP. VOL. 40 NO. 4 JULY 1996

The advantages gained by customers using floorplanning
[19-21] on their designs include the following:

e The effects of a suboptimal 1/O assignment are easily
seen, giving the customer an earlier opportunity for
correction.

The customer can optimize earlier in the design cycle
for die size and metal layers.

e The customer can identify and insert all repowering
buffers necessitated by high-fan-out nets.

Timing closure using accurate parasitics occurs earlier
in the design cycle and in the customer’s hands, where
design changes are less costly.

The pre-layout static timing analysis sign-off is based
upon more accurate parasitics.

Time in physical design is shorter because of a more
predictable design and more accurate pre-layout timing
sign-off.

Improved physical design results are achieved through
early communication of the logic flow between the
foundry and the ASIC customer, enabling an optimized
preplacement of RAM, ROM, and growable register array
(GRA) macros [12-14]; cell grouping; and development
of region placement data for the physical design process.
This kind of floorplanning benefits the physical designer.
However, there is a far greater advantage if floorplanning
is done by the customer in the logic design process. With
the use of state-of-the-art floorplanning tools, the logic
designer can obtain parasitics and back-annotate these
into the synthesis tool, where reoptimization can improve
timing and reduce wire congestion. Results from these
operations are fed forward to the floorplanning tool.
Iteration continues until convergence is achieved.

A highly integrated floorplanning and synthesis
design loop is achieved using the “links-to-layout” {6]
methodology, which couples the floorplanning tool with
the synthesis tool. This is supported in the IBM ASIC
methodology using the Synopsys Design Compiler and
Floorplan Manager™ tools. An EDIF or Verilog netlist
is extracted from a synthesized design and fed into the
floorplanning tool, where partitioning and block placement
operations take place. The recommended maximum block
size is around 2 mm X 2 mm, with an aspect ratio of 0.5
to 2.0. Typically, customers begin with a physical partition
that matches the logical hierarchy. If analysis of the
floorplan indicates excessive congestion or timing
problems, it is possible to repartition the logic into a
hierarchy that is different from the logical partition. The
Synopsys Floorplan Manager can resolve these differences.
Normal floorplanning operations such as analysis of
congestion, connectivity between blocks, and wiring track
allocation are applied until a promising floorplan results.

At this time, the locations of RAMs, ROMs, GRAs, bit 393

J. J. ENGEL ET AL.

394

RTL-level design Bit-stack
structaral constructs
(function, bit position
identification)
Logic synthesis
Optimization
Netlist generation Function.
bit position
* PDEF cell clusters \ layout guidance
* Wire-load model
per floorplan Netlist |-+ - Funetion,
domain bit position
Updated S
o Inter-domiain PDEF identification
net capacitance clusters
Bit-stack
application
Floorplanner
i Floorplan
IIO. data
assignment l
Parasitic data
o
static timing
analysis

Flowchart of floorplanning and bit-stacking methodology.

stacks, and any other large macros are fixed. The next step
is a quick but detailed cell placement, yielding a very close
approximation of the final placement. Parasitics and wire-
load models from the floorplan are then extracted and
back-annotated to the logical design. There are various
strategies for back-annotation involving combinations of
exact parasitics and wire-load models. Normally, exact
parasitics are used for interdomain nets (nets connecting
to receiving and driving cells of floorplanning blocks),
and wire-load models are used for the remaining nets.
Changes to the logical design, based on the back-
annotation of parasitic data, can take several forms. The
easiest change is the modification of a cell’s power level.
With this, an engineering change order (ECO) file can be
used to communicate changes to the floorplanning tool,
and the existing floorplan can be reused, since no new
cells have been added. However, resynthesis of critical
paths results in a new netlist. To avoid a modification to
the floorplan, a physical definition (PDEF) file containing
cell cluster information is produced by the floorplan tool
and passed back to synthesis, which produces a new PDEF
file with cluster information that includes the new cells
in the design, preserving the existing floorplan. Logical

J. J. ENGEL ET AL.

restructuring or rearchitecting logic, however, is a more
extensive netlist change that requires a new floorplan.

Upon completion of the iterative synthesis/floorplanning
process, the designer provides region constraints and
preplacement data for I/Os, macros, bit stacks, and
interdomain cells to the physical design process. Parasitics
for all nets are extracted by the floorplanning tool and
fed to the IBM ASIC design center for static timing
analysis.

Early experience in processing chips which have been
floorplanned by ASIC designers has shown many of the
anticipated benefits. Areas for continued improvement in
floorplanning include better support of hierarchical design,
timing-driven floorplanning and apportionment of timing
paths across synthesized entities, optimization of wire
codes, porosity modeling, and reduction in time spent in
the synthesis/floorplanning cycle.

The floorplanning methodology flow, and its interactions
with the bit-stacking methodology (described in the next
section), are shown in Figure 3.

Bit stacking

The IBM ASIC bit-stacking methodology addresses the
need for greater chip density and performance. When

bit stacking is applied to designs with a high dataflow
content, such as processors using large arithmetic logic
units (ALUs), registers, multiplexors, and shifters, the
utilization of available gates (or density) is improved from
around 60% to well over 70%. This is achieved through
utilization by the dataflow logic of nearly 90% of the total
utilized area.

The design of a bit stack uses the following general
methodology. First, dataflow logic is logically separated
from control logic. Then, each dataflow bit position,
typically spanning numerous dataflow functions, is
isolated, and its circuits are placed along the same circuit
row, minimizing the amount of wire required for the
buses. Finally, control circuits that communicate with
functions common to all bits are placed across circuit
rows. Dataflow wires are placed horizontally on metal
levels 1, 3, and 5. Control wires are placed vertically on
metal levels 2 and 4.

In addition to reduced chip area, the above method
often results in smaller control and dataflow circuits owing
to a lower drive strength requirement, which in turn
provides improvements in performance of typically 10%
or more.

By comparison, current logic synthesis tools have
difficulty in distinguishing dataflow from control circuits.
Control circuitry is created without regard to dataflow
placement. A gating signal for a wide data bus, for
example, may contain synthesized buffers that fan out
to widely separated bit positions, creating unnecessary
additional wiring. Synthesized implementations of

IBM J. RES. DEVELOP. VOL. 40 NO. 4 JULY 1996

different dataflow bit positions and their corresponding
control logic often differ, sometimes with varying fan-in
of control signals.

Bit stacking is a partially manual process which involves
the following steps:

1. Datapath logic is partitioned separately from control
logic, and encoded in the HDL source language [3]
using structural constructs.

2. A bit stack may contain a single entity or a hierarchy of
entities. A netlist representing the bit stack is processed
to produce a floorplanning file that contains a fixed
placement location for each circuit relative to its
floorplanning group. The fixed-placement data are
processed in a floorplanning tool, resulting in highly
accurate parasitic data that are fed back to logic
synthesis for further optimization of those logic paths
that interact with the bit stack.

3. Iterative improvements can be made to the HDL of the
data path, taking advantage of open space revealed by
the prior steps.

4. During physical design of the chip, the bit stacks are
given fixed placements relative to the chip. Other
floorplanned regions are placed according to their
normal floorplanning constraints. Placement of the
remaining logic is determined solely by place-and-route
optimization. Since the bit stacks are already resolved,
run times for place-and-route are reduced.

An off-the-shelf library of bit-stack modules is under
development for the design of bit stacks in IBM ASIC
technologies; it includes

e Modules compatible with Synopsys DesignWare®,
with an emphasis on arithmetic functions.

e n-bit modules of functions typically found in dataflows,
including buffering trees, register slices, and
multiplexors.

e “Gate wrappers” that facilitate portability among
technologies by encapsulating technology-dependent
components within a technology-independent shell.

LSSD insertion using an external vendor
synthesis tool
Level-sensitive scan design (LSSD) is a requirement of the
design-for-test methodology for all IBM ASIC products.
One of the challenges faced in servicing the original
equipment manufacturer (OEM) market has been to
provide a means for customers to easily insert LSSD
elements into their designs.

The typical design methodology for circuits of more
than 50000 gates uses logic synthesis, in which the
designer begins with a register-transfer-level (RTL)

IBM J. RES. DEVELOP. VOL. 40 NO. 4 JULY 1996

description of the design, and uses a logic synthesis tool
to map the design into a gate-level netlist.

The most common design style in use today, because of
its ease in developing RTL descriptions and its support by
logic synthesis tools, is edge-triggered clocking, where flip-
flops are used as the sequential logic elements. Flip-flops
are not suitable for LSSD-based testing, however, because
they are not scannable (unless a multiplexor is added to
the flip-flop’s data port to provide scan access, adversely
affecting the performance and chip area of the design),
and they do not provide the race-free clock control that
LSSD master—slave clocking provides for the test
environment [7].

Because of the prevalence of edge-triggered designs in
the industry, and until recently the absence of LSSD in
the external market, a solution was needed that would
allow a customer to design using edge-triggered flip-flops,
yet produce an LSSD-compatible netlist.

The strategy to provide OEM customers the means to
map edge-triggered designs into LSSD applies the Design
Compiler and Test Compiler products of Synopsys [23,
24]. The IBM internal logic synthesis tool, BooleDozer
[10], provides equivalent capabilities.

When the RTL design is initially mapped into gates
by the Synopsys Design Compiler, the resulting netlist
contains edge-triggered flip-flops (plus transparent latches,
if any are used in the design). IBM ASICs provides
pseudo-cells in its design libraries that support these
functions. These pseudo-cells, however, are not part of
the final netlist and are not manufacturable.

Pseudo-cells are characterized by prefix characters in the
library cell name, which precede the name of the actual
LSSD cell that will be eventually mapped in place of the
pseudo-cell. The following is a list of the prefix types and
their functions:

D_ A D flip-flop that maps to an edge-triggered
LSSD shift register latch (also known as a
D-mimic SRL).

D_F A D flip-flop that maps to an F_ pseudo-cell
(a D-mimic temporary cell that is later
remapped to the final LSSD implementation).

F A D-mimic pseudo-cell that is mapped to a
combined master-slave LSSD SRL and a
clock splitter that converts the edge-triggered
clock into master and slave clocks.

L A transparent latch that is mapped to a
master—slave SRL whose output is taken from
the master latch instead of the slave latch.

L2_ A transparent latch that is mapped to a
master—slave SRL whose output is taken from
the slave latch, which is operated functionally
in flush mode.

J. 1. ENGEL ET AL.

395

396

Dosrl sr1 (D_mimic)

Datain D Q Data ot Data'in b Q Data out
Scandata i
E - Scan data
/l\ A
Edge clock LssD B
clocks
C-E
Edgelclock
D._F_sd B s
Datain b Q Data out Data in b 0 Data out
- Scan data 1 Data out
E A Scan data
5]
Edgelclock LSSDE - o B Sean dat
clocks
C E
2>
Edge clock
L_srl srl
Data in b Q Data out Datain D L1 Data out
Scdndata)! L2 == Scandata
Clock 1 = ClockLSSDC o
LSSD A A
LSSD B 8
L2 srl
Data in D Q Data out P.étﬂ... D L1
Scan data i s Data out
Clogk: - ClockiLSSDC x
LSSDA A Scan data
LSSD B B

Mapping of flip-flops and latches to LSSD.

These pseudo-cells are mapped into LSSD SRLs as
depicted in Figure 4 and described below.

The methodology that maps from D_ and D_F_ pseudo-
cells, using cither the Synopsys Test Compiler or IBM
BooleDozer, scans the netlist for these cells and replaces
them with their target cells (either a true D-mimic SRL in
the case of the D_ cell, or an F_ pseudo-cell in the case of
a D_F_). This process additionally adds the LSSD clock
(A, B, C) inputs, as well as the scan data (I) input. The
new LSSD clock inputs for all SRLs are driven in parallel
by new A, B, C inputs according to the customer’s design.
The scan data path becomes a serial connection: The
output of each SRL is connected to the scan input (I) of
the next SRL, creating a scan chain that connects to a
scan-in input port and a scan-out output port of the
customer’s design.

J. J. ENGEL ET AL.

The mapping of D_F_ pseudo-flip-flops to F_ pseudo-
D-mimics often provides advantages in chip area over the
D_ mapping [25]. The target cell of D_ mapping is an
edge-triggered LSSD SRL, which contains an internal
clock splitter that generates the master and slave clocks
from the edge-triggered clock. In contrast, the subsequent
mapping of the F_ cell creates a master—slave LSSD SRL,
plus a clock splitter that can be shared among several
SRLs, thus reducing the chip area overhead of LSSD. One
clock splitter is typically shared by ten to twenty SRLs.
The mapping from the F_ pseudo-cells is performed by
an IBM BooleDozer operation; this operation is not
provided by the Synopsys Test Compiler.

The algorithm that maps L_ and L2_ pseudo-cells is
similar to D_ mapping. The difference is that the system
clock is connected directly to the master clock input of the

IBM J. RES. DEVELOP. VOL. 40 NO. 4 JULY 1996

SRL. For the L_ mapping, since the data output is taken
from the master latch, transparent latch functionality is
preserved; the scan output is taken from the slave latch.
For the L2_ mapping, the B clock must be held high
during functional operation, providing flush operation
through the slave latch for system use, whereas the B
clock is used for shift operation during test.

Using a combination of logic and test synthesis
products, a customer can easily achieve LSSD compliance
in an edge-triggered design paradigm. Development
continues to achieve a more tightly integrated solution,
providing the customer still greater ease in achieving
LSSD compliance.

Integration of LSSD and industry-standard
design for test
IBM has developed design-for-test (DFT) methodologies
that integrate LSSD design structures with those design
structures standardized by the IEEE Joint Test Action
Group (JTAG), also known as the IEEE 1149.1 standard
[26]. This methodology integrates the master-slave
design practice, which results in a reliable, race-free test
capability [7], with the edge-triggered design practices
commonly used by OEM customers. This integration is
achieved both for the customers’ system design styles
and for their use of the IEEE 1149.1 test standard for
component, board, product, and field test. This integration
is referred to here as a co-compliant design structure.

This test methodology combines LSSD and IEEE 1149.1
test requirements in each of the following areas:

e Test access to the component internals.

e Boundary scan capability for both component and
intercomponent test.

¢ Internal scan capability.

¢ Logic built-in self-test (LBIST) [28].

e Array built-in self-test (ABIST) [12-14].

Co-compliant IBM ASICs provide the interfaces
required of LSSD test as well as those required for access
to the IEEE 1149.1 test access port controller (TAP
controller). Test of a co-compliant component is viewed
first as an LSSD-compliant component. Such a design,
including the IEEE 1149.1 compliance logic, must be fully
LSSD-compatible. The JTAG logic is fully tested, along
with the customer’s functional design, in IBM ASIC
component manufacturing. However, when the LSSD test
interface on the component is set for normal functional
operation, the TAP controller is functional, allowing test
in the customer’s environment. LSSD inputs required for
normal functional and IEEE 1149.1 operation are used as
IEEE 1149.1 compliance-enable inputs, which are defined
in the JTAG standard [26].

IBM J. RES. DEVELOP. VOL. 40 NO. 4 JULY 1996

Boundary scan for intercomponent test is a primary
objective of the IEEE 1149.1 standard. The TAP
controller implements a set of instructions which provide
the serial loading, unloading, and clocking of latches
which control and observe each functional input, output,
and bidirectional component pin. The logic at each pin
that provides this function is known as an IEEE 1149.1
boundary cell. Boundary cells have been implemented that
provide IEEE 1149.1 capability and support IBM ASIC
manufacturing requirements [12-14] for

¢ Reduced-pin component test (scan access to all I/Os for
full internal scan test using 64 or fewer test-access I/Os).

¢ Package test (component 1/Os to package pins, or to
scannable I/Os of other components in the case of
multiple-chip modules).

e 1/O wrap test (access to and from chip pins from
boundary cell latches).

Internal scan capability is supported but not required by
the IEEE 1149.1 standard. Only a subset of IBM ASIC
customers who use the IEEE 1149.1 capability also choose
to implement internal scan. However, customers have
successfully reused the inherent scan capabilities of the
internal LSSD-compatible latches, accessing these internal
scan chains from the IEEE 1149.1 TAP controller. The
TAP’s edge-triggered test clock, under the control of the
TAP’s instructions, is converted into nonoverlapping
master-slave clocks which shift the internal chain. The
internal chains are reconfigured for component access
at the IEEE 1149.1 test access port.

The use of built-in self-test (BIST) structures is a
growing requirement, both for manufacturing component
test and for customers’ in-product use. In conjunction with
co-compliant internal scan structures, a design structure
was developed that incorporates self-test using multiple-
input-signature registers and a shift register sequence
generator [28], also known as the STUMPS architecture,
for OEM customer designs. This implementation of
STUMPS provides

e Customer control of STUMPS using the TAP controller
for test of the component within the product, board,
and component test environments.

e Optional use of STUMPS in the IBM ASIC
manufacturing environment.

e Static and at-speed logic test via internal control of the
master and slave clocks, derived from the product edge
clock.

IBM ASIC RAMs contain an internal array BIST
(ABIST) controller for manufacturing test (including
at-speed) of the RAM memory cells. The above internal

scan and BIST structures can additionally reuse the RAM’s 397

J. J. ENGEL ET AL.

398

LSSD inputs. ' LSSD outputs

e

LSSD-
TAP -1 compatible . [+ BIST controller
VO <] IEEE 1149.1

TAP s

Clock can
T oo paths
Function Fusctional Function
o design with 1o
LSSD'scan

L] L] L] L] L5 T ¥
LSSD and IEEE 1149.1 compatible boundary cells
1 I 1 1 L | I 1]

Chip 1/0

Co-compliant test structure.

internal ABIST capability to provide customer control
of ABIST from the TAP controller for RAM test
in the customer’s environment.

The integrated capabilities described above (and
depicted in Figure 5) are being increasingly automated by
the IBM ASIC design center. At present, these capabilities
are incorporated through a combination of internal and
external logic synthesis tools, with some manual design
and connection steps. Work continues to automate these
capabilities fully.

Front-end processing
Front-end processing is a step in the IBM ASIC
methodology that is used, after logic synthesis, for the
design and optimization of technology-dependent clock
networks, test structures, and a set of prerequisite
foundry-specific circuits [12-14]. Traditional design
automation applications have been found to be inadequate
for these tasks, and manual entry is prohibitive from a
design productivity and verification standpoint.
Front-end processing begins with a design that may
contain

e Idealized clocks (i.e., no clock-repowering networks),

where a clock simply fans out to each target latch.
e Partial or no design-for-test structures.

J. J. ENGEL ET AL.

e Incomplete incorporation of foundry-support circuits
(such as I/O driver and receiver inhibit signals).

At the completion of front-end processing, the design
is fully implemented, from a logical standpoint, as a
manufacturable component that contains all required
functional and test circuits.

Front-end processing has traditionally been run by
the IBM ASIC design center, but it has recently been
packaged for customer use, enabling the customer to
verify that the final logical design meets foundry sign-off
criteria. Prior to this, customer pre-layout sign-off had
been done on an incomplete, abstracted version of the
design, resulting in inaccuracies and thus additional
iteration within the IBM ASIC design center.

Front-end processing uses two IBM software
applications. ClockPro™ [29] is used to determine the
requirements of the clocking network logic. BooleDozer
Lite, a subset of the IBM logic synthesis tool [10],
provides for user-defined logic transformation programs
in a script language. This is used to perform a variety of
logic editing and analysis functions, ranging from simple
net manipulation to complex network construction. These
accomplish specific postsynthesis logic insertion and
optimization tasks.

ClockPro is an IBM clock planning tool that uses
information about the design’s clock connections and
performance targets and the customer’s clock-tree
component preferences to calculate families of alternative
clock networks. These are sorted by latency and presented
with data describing cell utilization, the number of clock
buffer levels, fan-out per level, and estimated capacitance
at each level. A choice can then be made on the basis of
speed, size, structure, or power. The resulting selection is
then used as input to BooleDozer Lite for insertion into
the design.

Front-end processing performs several standard
tasks for a typical design, including clock planning and
construction, test insertion, and design finishing. Other
customized tasks are occasionally required. Standard or
custom tasks are always reviewed with the customer at a
preliminary requirements analysis session, to determine
the exact objectives and prerequisites before the design is
synthesized. New transformations are developed by the
IBM ASIC design center as required.

The supported netlist interfaces into IBM ASIC design
processing are EDIF 2.0.0 and VIM. For users of
Synopsys synthesis tools, IBM provides a script to write
the EDIF in the format compatible with the requirements
of front-end processing.

® Clock planning and construction
The initial design normally contains one or more system
clocks driving a large number of flip-flops and latches.

IBM J. RES. DEVELOP. VOL. 40 NO. 4 JULY 1996

PLL Functional clock

F_flip-flop cells Clock
Before ;
splitters SRLs
LSSD A clock After Master clock
LSSD'B clock
LSSD.C clock Slgyo clock
Y AT R
} - o §
Functional clock ~ o~ o =1
PLL B
. -~ I
) g1,
8 v
8 § L
£t —
E g LSSD A clock g =
=] - R ~
-
— f
/ o Clock
— splitters
] I P Master clock SRLs
LSSD B clock § = Slave clock
—] ' e
— %
&) =
L— —3
\ ~ f =
\LSSD C clock E —
2 =
S |
ol
I
| SR

ig

Clock planning and construction.

These are incorporated in the customer’s designs as logical
pseudo-cells, containing only the data functions and
clocks, without yet containing the LSSD functions.

The target implementation is a serially repowered
system clock tree [30] using clock driver cells that feed a
clock-splitter cell, which in turn drives LSSD shift-register
latches. The clock splitter creates two level-sensitive clocks
that control the system master and slave clocks of each
SRL. The clock splitter is treated as the leaf driver in
ClockPro when calculating the clock network. Also,
ClockPro inserts terminator cells (cells that capacitively
load a net) on branches of the tree to guarantee logical
balance and to provide a means of tuning the load, as
needed, on any branch.

Repowering networks can also be inserted for
nonsystem clocks. Normally, since performance is not as
critical for these clocks, ClockPro can be given relaxed
performance parameters, and the insertion of terminators
can be nullified, thus saving on chip area and wiring
congestion.

Figure 6 depicts how an idealized clock is transformed
into the required clock tree and clock-splitter logic.

IBM J. RES. DEVELOP. VOL. 40 NO. 4 JULY 1996

® Test insertion

If test logic has not been inserted by the customer,
front-end processing can be used to accomplish this
requirement. Latch pseudo-cells are replaced by LSSD
SRLs, the test clocks are connected to the SRLs, and the
SRLs are serially connected to form one or more scan
data paths [7]. These scan paths are balanced by length to
minimize the data-load time for the manufacturing tester
[12-14].

With front-end processing, multiple LSSD clocks can
be accommodated. This is sometimes needed to address
LBIST [28] configurations and to achieve race-free LSSD
operation. Gated clocks can also be used with front-end
processing, and are often required when test clocks are
used functionally, such as for internal system scan or for
low-power applications.

® RI/DI chaining

Receiver-inhibit and driver-inhibit (RI/DI) chaining
involves the daisy-chain connection of up to four driver-
inhibit signals and one receiver-inhibit signal using specific
ports on the I/O buffer cells, resulting in the insertion of

J. J. ENGEL ET AL.

399

400

e o i G

e el e T A T e e e iy

<« Reledse to layout checkpoint >1

I Target-driven placement and timing]4‘————

[Clock; sean, and timing optimization |
Y

{ Power and signal routing and timing | +———
¥
0K?

Final checking I
1

. = Release to checking checkpoint »

A ¥

______________ -

Flowchart of physical design methodology.

up to five inhibit chains [12-14]. A typical design has the
RI/DI inputs of the I/O cells tied to a noncontrolling
value (for functional simulation) upon entry of the design
into front-end processing. RI/DI chaining removes any
existing connections to the RI/DI ports and connects
them into the appropriate chains.

® Tie cell repowering

Often, signals that provide a constant logical one or zero
value can present layout problems for technologies with
explicit tie-up or tie-down cells, in that multiple usages of
a constant value can result in tie cells with high fan-out
and the use of a significant number of wiring channels on
the chip. Tie-cell repowering addresses this problem by
adding a tie cell for each pin fed by the original net. The
added cells are then connected one-to-one to those pins.
During physical design, the tie cell is placed close to the
receiving cell so that the corresponding wire length is
minimal.

Physical design

Customers designing in the IBM CMOS 4 technologies
must provide a flattened netlist to the design center for
layout using the IBM mainframe layout tool. Flattening
of the netlist can be done either by the customer or by

J. 1. ENGEL ET AL.

an IBM design center. Customers designing in the IBM
CMOS 5 technologies can use either a hierarchical or a
flat physical design process, using the IBM ChipBench™ [11]
layout tool. The hierarchical design process is generally
good for large designs, whereas small chips are often
processed more efficiently using the flat methodology. If it
is determined that the physical design of a CMOS 5 ASIC
is to be flat, a flattened netlist is provided to the IBM
design center.

If the physical design of the chip is to be done
hierarchically, the customer provides a two-level
hierarchical netlist. This netlist contains a top level that
calls out second-level entities or blocks, which in turn call
out individual cells or instances of register arrays or
RAMs. In the hierarchical methodology, each of the
blocks is individually placed and routed. The I/Os for the
set of blocks are interconnected and are connected to the
chip I/Os in a global wiring pass. The flow of the physical
design process is shown in Figure 7.

If the physical design of the chip is to be flat, only one
set of timing-assertion files [S] for the chip is required.

If the physical design is to be hierarchical, and if the
customer requires timing on each of the individual blocks,
the timing assertions must be provided for each of the
block entities as well as for the chip level. The customer
provides any additional timing assertions needed for static
timing analysis of the post-PD design.

In a hierarchical environment, if timing-driven design is
used, each of the blocks is placed and routed separately
with respect to the timing assertions provided. A second
pass through wiring connects the blocks together with
respect to the chip-level timing assertions.

Clock optimization and scan optimization processes are
applied to improve timing, wiring, and clock skew. Clock
optimization modifies the organization of the clock-tree
buffers and the clock splitters according to the layout of
the latches and the customer’s requirements for slew and
latency. Scan optimization reorders the scan chains to
minimize wiring congestion.

A high-performance CMOS 5 design may have to
iterate within the steps of the place-and-route process
and timing analysis in order to achieve the timing
targets of the design. Prior to the initial placement of
logic cells, EinsTimer is used to produce capacitance
targets for nets identified in the worst-case timing paths.
The capacitance targets guide ChipBench during initial
placement. Prior to clock optimization, static timing
analysis is applied again, using idealized clocks, to verify
the placement; the IBM ChipEdit [31] tool can be used at
this time to manually change the initial placement to
improve timing. After running clock optimization, the
option exists, again using ChipEdit, to manually prewire
worst-case nets prior to automatic wire routing.
ChipBench is then used for automatic routing, followed

IBM J. RES. DEVELOP. VOL. 40 NO. 4 JULY 1996

again by static timing analysis using actual clock-tree
characteristics instead of idealized clocks. ChipEdit can
be reapplied to fix any remaining timing problems. This
process is generally effective at eliminating the need to
recycle through the physical design methodology to meet
performance objectives.

Embedded “system building blocks” create
system-on-a-chip technology

System-on-a-chip, or “system building block,” technology
makes high-level functions, such as microprocessor cores,
signal-processing compression functions, and other system-
oriented functions available to ASIC chip designers as
part of the ASIC design process. The use of core macros
in the past required custom chip design by a dedicated
design team at the silicon vendor. The system building
block functions, or “cores,” are constructed as
predesigned building blocks, to be integrated as easily as
gates and latches. This idea is not evolutionary, as is going
from larger to smaller die sizes or increasing processing
speeds; it is completely revolutionizing the way in which
we design our chips by bringing core-plus-ASIC design

to the designer’s desktop [32].

There are two types of core macro functions, soft and
hard. Soft cores are delivered to the ASIC designer as
a hardware design language (HDL) design. The design
data for the soft core can be provided at various levels:
premapped to the ASIC vendor’s technology as a gate-
level netlist, or as synthesizable behavioral or register-
transfer-level code.

Once incorporated into the ASIC design through
synthesis or netlist “‘stitching,” the soft-core logic cannot
be distinguished from the rest of the ASIC design, and
therefore presents minimal methodology issues. Gate-level
timing, simulation, testability analysis, and floorplanning of
the soft core are accomplished using the models for the
standard ASIC library elements.

Soft-core macros do not have a predefined layout.
Soft-core gates are placed and routed as part of the
ASIC design. Because the layout is not predefined, it is
important that macro functions implemented as soft cores
do not have performance requirements that would drive
custom layout or custom library cells.

Hard cores are macro functions that have a predefined
layout. The core is modeled as a single library element,
or “black box,” much the same as a RAM or ROM
macro. Macro functions, such as microprocessors, are
implemented as hard cores for several reasons,
predominantly to preserve a custom layout of the circuit
that is required to meet the desired performance, and to
accommodate an ASIC vendor who chooses not to reveal
the detailed design of the macro.

Because a hard core is modeled as a single black box
rather than as the synthesizable code of a soft core, the

IBM J. RES. DEVELOP. VOL. 40 NO. 4 JULY 1996

internal description of the macro function is completely
“hidden” from the customer, providing intellectual
property protection for the ASIC vendor. Development of
these black-box models for a complex macro function, with
the accuracy required for use by the ASIC designer, often
requires significant effort and invention on the part of

the ASIC vendor.

Both hard- and soft-core macros provide valuable
predesigned function for use by the core-plus-ASIC
designer.

However, this new core-plus-ASIC technology has
created a new generation of integration challenges.
Integrating cores with various interface requirements often
requires significant “glue logic.” Because these interfaces
are now buried in the ASIC, system verification requires
better simulation models than have traditionally been
available for standard products. Larger gate counts drive
a need for better simulation tools and new approaches to
system verification. To support manufacturing test of the
ASIC, innovative solutions are required.

To solve these problems, many functions are marketed
as synthesizable “soft macros.” These macros are easily
integrated with the designer’s logic and can be customized
to meet individual design requirements.

The disadvantage of soft macros is that speed and
density are limited by the characteristics of the ASIC
standard cell library in which they are implemented.
Standard products often use custom circuit design to push
the speed and density of the technology beyond the limits
of a standard cell implementation. Corresponding core
products can take advantage of this by using a “hard
macro” approach. Because of the methodology challenges
associated with developing and testing hard cores, ASIC
designs using hard macros are usually designed by the
ASIC vendor to customer requirements. A few ASIC
vendors have developed the capability to support the next
level of design methodology, in which customers design
the ASIC logic around the hard macro, and the ASIC
vendor integrates the hard macro with this logic before
sign-off. In either case, the involvement of the ASIC
vendor in the design process limits availability of this
technology to only the highest-volume projects. Today’s
challenge is to provide tools and methodologies allowing
design, integration, and sign-off verification of the core-
plus-ASIC chip at the ASIC designer’s desktop, making
cores as easy to use as the traditional standard cell library.

The current trend for core libraries is to incorporate
functions originally designed as standard product chips.
Such functions may incorporate additional features not
required by the application, or may optimize the interface
around package technology limitations that do not apply
to a core implementation. ASIC designers often must
customize soft macros to achieve an optimal design. This

customization can require up to 30% redesign of the 401

J. J. ENGEL ET AL.

402

function. The interfacing of multiple cores may also
require significant glue logic.

As core libraries evolve and incorporate new functions
originating as core products, interfaces will develop that
are optimized for performance, routability, and flexibility,
unfettered by package pin-count limitations. Core designs
will become modular, with plug-in features that can
be included or deleted from the design, rather than
incorporating a wide range of features into a monolithic
design. Industry standards will develop for on-chip bus
architectures, allowing the integration of cores with little
or no additional glue logic. Development of modular cores
and on-chip bus standards makes it possible for tools to
emerge that can automatically “build” the netlist for an
overall system, using parameters entered by the ASIC
designer.

Simulation of an ASIC containing a core macro requires
a simulation model of the core to permit the designer to
determine whether the ASIC logic that communicates with
the core is functioning correctly. To minimize time to
market, hardware and software designs for a product
invariably proceed in parallel. The types of simulation
models available for a processor core can affect the
efficiency of this parallel design process. A range of
simulation models supporting the entire design process
is preferred.

During the synthesis step, the behavioral HDL for the
ASIC and any behavioral soft-macro cores are mapped to
technology-specific gates. Any logic originating from a soft
macro is then indistinguishable from the ASIC designer’s
logic. A hard-macro core, however, passes through the
synthesis step unchanged. It continues to be represented
as a single library element and is included as such in the
netlist output by the synthesis tool.

Testing of core-plus-ASIC designs presents challenges
that are added to those caused by traditional ASIC
methods. These include the need for core access and
isolation during scan-based testing and, in some cases, the
need to apply core functional patterns. Test patterns from
different source tools and for different technology libraries
must be merged and applied during core-plus-ASIC
testing.

After synthesis and DFT checking, the core-plus-ASIC
design is functionally verified at the gate level. At this
stage, simulation using an HDL full-timing model for
the hard-macro cores is appropriate, although the bus-
functional model is still an option.

Intellectual property protection is a concern for the
ASIC vendor providing the detailed full-timing simulation
model of the core. The model must be completely
accurate in terms of the behavior and timing
characteristics of the core, but it should not be described,
for example, in a way that exposes the actual design of
a microprocessor. The preferred method is to use an

J. J. ENGEL ET AL.

encrypted model originating from a detailed netlist of
the core macro, which has been compiled so that it is
“simulator-independent,” or able to work in a variety of
VHDL, Verilog, and other simulators. The full-timing
model for the hard-macro core must also be compatible
with the ASIC library in order to support a consistent
method of post-layout timing back-annotation. A
standardized format, such as standard delay file (SDF),
is often used for back-annotation of ASIC post-layout
timing.

For a hard-core macro, a static timing analysis model is
required that models delays and specifies timing checks at
the interface to the core. Internal timing assertions are
built into this model. For a soft macro, such information
must be provided as timing assertions or constraints to
be incorporated by the customer in the chip-level timing
analysis. The static timing analysis tool must be able to
handle and correctly interpret both the abstracted timing
model for the core and the timing models for the base
library elements.

Because a large hard-core macro is likely to occupy a
significant percentage of the chip’s area, floorplanning
becomes a requirement in order to achieve overall
chip timing and ensure wirability of the final design.
Floorplanning models that provide both timing and
blockage information for the core are required to help
the designer make layout trade-offs.

Core-plus-ASIC technology is being used to drive the
next step of evolution for a broad spectrum of electronic
products. A paradigm shift in the way designs are
conceived and created by a design team has already
begun. By the year 2000, ASIC vendors will be selected
on the basis of the availability of ASIC cores and of tool
support for those cores. The emergence of bus standards
optimized for on-chip buses will eliminate performance
limitations imposed by package pin counts and will
enable automated generation of system designs. New
methodologies are emerging that will make possible core-
plus-ASIC chip design at the designer’s desktop and make
this technology as easy to use as a standard cell library.
As a result, every ASIC designer will have access to the
vast intellectual property assets of the ASIC vendor.

The design methodology for core-plus-ASIC technology
is summarized in Figures 8 and 9.

Conclusion

As chip technologies continue to provide for increasing
circuit densities and performance, the ASIC design
methodology is increasingly challenged to provide product
designers with the means to exploit these technological
advances. The capabilities described in this paper are
being used today by IBM ASICs to give designers, both
within IBM and throughout the industry at large, the
ability to use leading-edge IBM CMOS technologies in the

IBM J. RES. DEVELOP. VOL. 40 NO. 4 JULY 1996

Behavioral
PVS for VHDL or .
| 6xx/4XX [<—>| Verilog VHDL/Verilog
; for ASIC
Processors simulator

Gate-level

netlist of
core+ASIC

—————

Co-simulation environment

SRR
Processor
instructions

Hardware/software co-design

Timing

assertions

Customer data

To IBM
design center

Flowchart of front-end process for embedded-cores methodology.

development of leading-edge products. These capabilities
are being extended and refined to meet the challenges
posed by further advances in chip technology.

Additionally, new methodologies are required to meet
these ever-increasing demands. The capabilities of cycle
simulation, hardware accelerators, and emulators must be
coupled with advances in formal verification, high-level
synthesis, and system-on-a-chip architectures to provide
designers with the increased logic design productivity
required by greater chip densities and shorter time-to-
market requirements. The ability to estimate chip power
consumption, more accurately and much earlier in the
design cycle, must be provided to ASIC designers. Finally,
the overall product design flow must become increasingly
integrated, as the electrical and physical factors involved
in chip realization affect logic design and system
architecture to a much greater extent.

IBM J. RES. DEVELOP. VOL. 40 NO. 4 JULY 1996

Design
entry Core bus functional model _
VHDLor]| ASIC library model
e Verilog
simulator
T |.____Coremodel
Logicand | _ | o _Softmacros____.
test synthesis ASIC library models
Test structure | ___Corctestmodel
verification ASIC library test models
(IBM TSV)
T Core bus functional model
VHDL/Verilog P e e =
gate-level | __ Core SmartModel __
simulator ASIC library models
Static timing __Core timing abstract __
analysis ASIC library timing models
Floorplanning <t -2 __. -~
ASIC library
‘ floorplan abstracts
Pre-layout
technology - Technology
checks checking rules

Acknowledgments

The authors wish to acknowledge the contributions of the
following individuals to the work described in this paper:
Steven F. Qakland, for contributions to the LSSD
mapping methodology and design of an LSSD-compatible
IEEE 1149.1 boundary-scan structure; James G. Swift,
for contributions to the front-end design methodology;
Michael T. Trick, for contributions to the physical design
methodology; Richard F. Paul, for contributions to the
timing-driven design methodologies; Jeannie H. Panner,
for contributions to the physical design, CMOS checking,
and release methodologies; Julie Druckerman, Ram
Kelkar, Ted Lattrell, and Don Pierson, for technical and
editorial contributions to the embedded core methodology;
and Michael D. O’Neill, for contribution to the overall
methodology.

J. J. ENGEL ET AL.

403

From customer

To customer

R~
ng:—levfel Logical netlist —
iy 0cessin; g
core+ASIC pr g aetlist

L

Timing i Releaseto .}

! t: i {

agsertions : layout review 1

SRt RECRSEIPEY ISR * _____
Layout

Final timing SDE

{

Post-layout

404

technology
checks
! i }
ATPG for ASIC 1. Release to
and core 1 mfgreview ! » ToFAB
I

__ Figure 9

Flowchart of layout process for embedded-cores methodology.

Verilog is a registered trademark, and Verilog-XL, Veritime,
and Composer are trademarks or registered trademarks, of
Cadence Design Systems, Inc.

EinsTimer, BooleDozer, TestBench, ClockPro, and ChipBench
are trademarks of International Business Machines
Corporation.

LibTools is a trademark of Integrated Development
Corporation.

Design Compiler, Test Compiler, and Floorplan Manager are
trademarks, and DesignWare is a registered trademark, of
Synopsys, Inc.

QuickSim is a trademark of Mentor Graphics Corporation.
Mercury is a trademark of DC Systems.
VIEWSIM is a registered trademark of Viewlogic Systems, Inc.

References

1. Wizard Users’ Guide, Version 1.5, IBM Corporation,
Hopewell Junction, NY 12533, 1995.

2. Design Entry: Composer Reference Manual, Version 4.3.4,
Cadence Design Systems, Inc., San Jose, CA 95134, 1995,

3. Verilog-XL Reference Manual, Version 2.2, Cadence Design
Systems, Inc., San Jose, CA 95134, 1995.

4. Standard Delay Format Specification, Version 2.1, Open
Verilog International, Las Gatos, CA 95032, February
1994 (correction, July 1994).

J. J. ENGEL ET AL.

10.

11.

12.

13.

14.

15.

. EinsTimer Users’ Guide and Language Reference, Version

1.3, IBM Microelectronics Division, Hopewell Junction,
NY 12533, 1995.

. “Linking to Physical Design Tools,” Design Compiler

Family Reference, Synopsys, Inc., Mountain View, CA
94043, 1995.

. “Level-Sensitive Scan Design: Concepts and

Applications,” TestBench Users’ Guide, Version 2.1, IBM
Microelectronics Division, Endicott, NY 13760, 1995.

. Chrysalis Design VERIFYer Users’ Guide, Version 2.06,

Chrysalis Symbolic Design, Inc., Andover, MA 01810,
1995.

. “Comparing Designs: Boolean Equivalence Checking,”

BooleDozer Synthesis Users’ Guide, Version 1.4, IBM
Microelectronics Division, Hopewell Junction, NY 12533,
1995.

BooleDozer Synthesis Users’ Guide, Version 1.4, IBM
Microelectronics Division, Hopewell Junction, NY 12533,
1995.

ChipBench 1.2 Users’ Guide, IBM Microelectronics
Division, Hopewell Junction, NY 12533, 1995.

CMQOS 4LP ASIC Products Databook, IBM
Microelectronics Division, Essex Junction, VT 05452,
1993.

CMOS 5L ASIC Products Databook, IBM Microelectronics
Division, Essex Junction, VT 05452, 1995.

CMOS 58 ASIC Products Databook, IBM Microelectronics
Division, Essex Junction, VT 05452, 1995.

VITAL (VHDL Initiative Toward ASIC Libraries), Version
2.2b, 1EEE, Inc., Piscataway, NJ 08855, 1995.

IBM J. RES. DEVELOP. VOL. 40 NO. 4 JULY 1996

16. Draft of Procedural Interface and DCL Language, CAD
Framework Initiative, Inc., Austin, TX 78759, 1995.

17. Design Compiler Reference Manual, Version 3.1a, Synopsys,
Inc., Mountain View, CA 94043, 1994.

18. Library Compiler Reference Manual, Version 3.1a, Synopsys,
Inc., Mountain View, CA 94043, 1994.

19. Hierarchical Design Planner Users’ Guide, Version 2.1, IBM
Microelectronics Division, Hopewell Junction, NY 12533,
1995.

20. Design Planner Reference, Version 3.1.2, High Level Design
Systems, Inc., Santa Clara, CA 95054, 1995.

21. Preview Cell3 Ensemble 4.3, Cadence Design Systems, Inc.,
San Jose, CA 95134, 1994.

22. DesignWare Users’ Guide, Version 3.1a, Synopsys, Inc.,
Mountain View, CA 94043, 1994.

23. Test Compiler Reference Manual, Version 3.1a, Synopsys,
Inc., Mountain View, CA 94043, 1994.

24. L. Pickup, “Using IBM’s LSSD Latches with Synopsys,”
ASIC Application Note, IBM Microelectronics Division,
Essex Junction, VT 05452, 1994.

25. D. Lackey, “Benefits of LSSD,” Application Note, IBM
Microelectronics Division, Essex Junction, VT 05452,
1994,

26. “IEEE Standard Test Access Port and Boundary-Scan
Architecture,” IEEE Standard 1149.1-1990, IEEE, Inc.,
Piscataway, NJ 08855.

27. S. Oakland, IEEE 1149.1 Boundary-Scan in IBM CMOS
5L ASICs, IBM Microelectronics Division, Essex Junction,
VT 05452, 1995.

28. Paul Bardell and William McAnney, ‘“Self-Testing of
Multiple Chip Modules,” Proceedings of the International
Test Conference, 1982, reprinted in 1970-1994 25th
Anniversary Compendium of Papers from the International
Test Conference, Washington, DC, 1994, pp. 535-539.

29. ChipOpt Users’ Guide, IBM Microelectronics Division,
Hopewell Junction, NY 12533, 1995.

30. Vivek Chickermane, Bernd Koenemann, Thomas
Guzowski, T. W. Williams, Andrew Sullivan, and Steven
Oakland, “DFT: Test Synthesis and Beyond,” Proceedings
of the International Test Conference, Test Synthesis
Seminar, TS Paper 3.3, Washington, DC, 1994, pp. 1-7.

31. ChipEdit Users’ Guide, IBM Microelectronics Division,
Hopewell Junction, NY 12533, 1995.

32. Julie Druckerman, Ram Kelkar, Ted Lattrell, Don
Pierson, Ann Rincon, and David Stauffer, “The Evolution
of Core Plus ASIC Methodology,” Integrated System
Design 7, No. 77, 30-41 (November 1995).

Received October 27, 1995; accepted for publication
April 5, 1996

IBM J. RES. DEVELOP. VOL. 40 NO. 4 JULY 1996

James J. Engel /BM Microelectronics Division, Burlington
facility, Essex Junction, Vermont 05452 (JENGEL at BTV;
jengel@vnet.ibm.com). Mr. Engel is a staff engineer in

the IBM ASIC Products group, responsible for timing
methodologies. He joined IBM in Poughkeepsie, New York,
in 1983, and holds a B.S.E.E. degree from the New York
Institute of Technology.

Thomas S. Guzowski IBM Microelectronics Division,
Burlington facility, Essex Junction, Vermont 05452 (GUZOWSKI
at BTV; tsg@vnet.ibm.com). Mr. Guzowski is a senior engineer
in the IBM ASIC Products group, responsible for front-end
design automation and design center methodologies. He
joined IBM in Essex Junction in 1978, and worked in IBM
Tucson, Arizona, from 1985 to 1992 before returning to Essex
Junction. Mr. Guzowski holds a B.S. degree in physics from
Indiana University of Pennsylvania.

Anderson Hunt /BM Microelectronics Division, Burlington
facility, Essex Junction, Vermont 05452 (HUNT at BTV;

buco__ fan@vnet.ibm.com). Mr. Hunt is an advisory engineer
in the IBM ASIC Products group, responsible for datapath
methodologies. He received a B.S.C.S. degree from the
University of Vermont in 1979, joining IBM in Kingston, New
York, in 1984.

David E. Lackey IBM Microelectronics Division, Burlington
facility, Essex Junction, Vermont 05452 (LACKEY at
BTVVMOFS; david_lackey@vnet.ibm.com). Mr. Lackey is a
senior engineer in the IBM ASIC Products group, responsible
for design for test, formal verification, and overall ASIC
methodologies. He joined IBM in Poughkeepsie, New York,
in 1978. Mr. Lackey holds a B.S.E.E. degree from Rensselaer
Polytechnic Institute and an M.S.C.E. degree from Syracuse
University. He is a member of IEEE and Eta Kappa Nu.

Lansing D. Pickup IBM Microelectronics Division,
Burlington facility, Essex Junction, Vermont 05452 (LPICKUP at
BTV; Ipickup@vnet.ibm.com). Mr. Pickup is a staff engineer in
the IBM ASIC Products group, responsible for simulation and
synthesis methodologies. He joined IBM in Essex Junction in
1988, and holds a B.S.E.E. degree from Clarkson University.
Mr. Pickup is a member of Tau Beta Pi and Eta Kappa Nu.

Robert A. Proctor IBM Microelectronics Division,
Burlington facility, Essex Junction, Vermont 05452 (PROCTOR
at BTVVMOFS; rproctor@vnet.ibm.com). Mr. Proctor is

an advisory engineer in the IBM ASIC Products group,
responsible for floorplanning methodologies. He joined IBM
in East Fishkill, New York, receiving a bachelor’s degree in
electrical engineering from Newark College of Engineering in
1971. Mr. Proctor has also worked at the IBM sites in
Poughkeepsie and Kingston, New York.

Karla Reynolds /BM Microelectronics Division, Burlington
facility, Essex Junction, Vermont 05452 (KREYNOLD at
BTVVMOFS; kreynold@vnet.ibm.com). Ms. Reynolds is an
advisory engineer in the ASIC Products group, responsible for

405

J. J. ENGEL ET AL.

406

logic synthesis methodologies. She has nineteen years of EDA
tool development experience at IBM Essex Junction, and
holds a B.S. degree in mathematics from the University of
Maine.

Ann Marie Rincon IBM Microelectronics Division,
Burlington facility, Essex Junction, Vermont 05452 (RINCON at
BTVVMOES; rincon@vnet.ibm.com). Ms. Rincon is a senior
engineer in the IBM ASIC Products group, responsible for
core-plus-ASIC and overall ASIC methodologies. She joined
IBM in Essex Junction in 1981, and holds a B.S. degree in
mathematics from St. Joseph’s College, Indiana.

David R. Stauffer IBM Microelectronics Division, Burlington
facility, Essex Junction, Vermont 05452 (STAUFFER at
BTVLABVM; dstauffer@vnet.ibm.com). Mr. Stauffer is an
advisory engineer in the IBM ASIC Products group,
responsible for core-plus-ASIC design. He joined IBM in
1984. Mr. Stauffer holds a B.S.E.E. degree from Pennsylvania
State University and an M.S.E.E. degree from the University
of Houston.

J. J. ENGEL ET AL

IBM J. RES. DEVELOP. VOL. 40 NO. 4 JULY 1996

