A document
recognition
system and

its applications

by A. Yamashita
T. Amano
Y. Hirayama
N. ltoh
S. Katoh
T. Mano
K. Toyokawa

This paper describes a document entry system
called the Document Recognition System
(DRS), which facilitates the conversion of
printed documents into electronic form. DRS
was developed on a personal computer (PC)
with an adapter card for recognizing more
than 3000 Kanji characters. It provides a
flexible framework for object-oriented
management of data and processing modules.
The framework allows the user to change the
combination of processing modules and to
select pipelining (parallel processing) or
sequential processing. DRS includes
processing modules for layout analysis
functions such as blob detection, block
segmentation, and model matching, and

for character recognition functions such

as Kanji character recognition, Japanese
postprocessing, postprocessing by a user, and
error correction through a user interface. The
character recognition functions on the card
and the other processing-related recognition
functions on the PC work cooperatively in

the proposed framework. Within the basic
framework, we have customized DRS for
practical applications. Examples of successful
applications—entry into a text database,
creation of an electronic catalog, entry of
family registration data, and entry of tag data
in a manufacturing process—provide evidence

of the processing accuracy and robustness of
the framework.

Introduction
Although office automation has advanced rapidly, making
it possible to create, send, and receive documents via
electronic media, we are still surrounded by a flood of
printed information.

Conversion of documents from paper to electronic form
is therefore still a difficult problem in constructing a
document database. In particular, an application using
hypermedia and multimedia databases may have to
process not only text data, but also image data (such as
pictures in a document) and table data, as well as the
physical page layout and logical structure of a document.

In the field of document recognition applications, it is
not possible to develop a comprehensive entry system to
meet all of the requirements of varied applications. Some
applications deal with simple reports, while others involve
documents that have complicated layouts. Some require
every page to be converted, while others require only parts
of documents to be converted. Some may attach priority
to processing speed, some to high recognition accuracy,
and some to both. In particular, when a large number of
documents must be entered, it is necessary to consider not
only what kind of processing should be applied, but also
how to maximize the quality of each type of processing.
This variety of requirements means that customization is
indispensable in developing any given entry system for
practical applications.

©Copyright 1996 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,

of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

0018-8646/96/$5.00 © 1996 IBM

IBM J. RES. DEVELOP. VOL. 40 NO. 3 MAY 1996

A. YAMASHITA ET AL.

342

After the development of the first experimental systems
for recognizing documents [1-4], integrated systems were
devised for practical applications such as recognizing
addresses on postcards and reading letters in typical
formats [5-7]. Each research project aimed to develop
a system for recognizing a specific type of document.

To meet the various requirements of each application,
the structure of an entry system should be a combination
of building block modules, and its components should be
easy to rearrange.

Our Document Recognition System (DRS) is an
integrated, workstation-based document entry system with
a flexible framework of processing modules [8]. Since
processing modules and data objects are designed in an
object-oriented fashion, the combination of functions
can easily be modified according to the application, and
several processes can run concurrently, allowing the
computing resources to be distributed effectively.

DRS provides functions for image capture, layout
analysis, character recognition with contextual
postprocessing, and error correction through a user
interface. All of those functions except image capture and
character recognition have been implemented in software
which runs on the IBM 0S/2® operating system.

The rest of this paper is organized in four sections. The
first section presents a framework for cooperative work
by the functions. The second section briefly describes the
configuration of DRS and explains the functions that it
supports. Typical examples of applications are presented
in the third section, and the last section summarizes the
characteristics of the system.

Framework for cooperative work and
extension

DRS is implemented on an IBM PS/55 personal computer,
which is compatible with the IBM PS/2® line of personal
computers.

A binary page image is captured with 400-dpi resolution
by an image scanner. The Japanese OCR processor card,
hereafter called the OCR card, is dedicated to recognizing
about 3000 Japanese characters, including Kanji, Kana,
and alphanumerics. This card consists of a Motorola 68040
microprocessor, memory for an image and recognition
dictionary (template), and two large-scale integrated
circuits (LSIs) for feature extraction and discrimination.
The following subsections describe the software
architecture of DRS.

® Design objective

During the process of document recognition, elementary
data—character strings, characters, lines, and picture
elements—are extracted from documents. Each of these
physical data objects has a position in the page image,

a size, and various attributes.

A. YAMASHITA ET AL.

The relationships among those data, such as “part-of,”
“next-left,” and “under,” are often specific to a particular
kind of document. How the data objects are queried also
depends on which processing module is being applied
to them at the request of the application. Sometimes
character data in a line are queried, sometimes characters
whose height is over a threshold level, and sometimes leaf
lines in tree-structured data.

The management and structure of data can vary
according to the types of queries that are frequently called
by the application. Therefore, we defined the DRS
framework according to the following criteria:

e Represent a document by using objects of two kinds:
elementary data objects (“entities”), and objects that
maintain relationships among the data objects (“maps™).

¢ Provide a unified protocol for calling the various
functions, so that these functions (“parts”) can be
put together for specific purposes.

¢ Place process control information in data objects.

Entities primarily represent document elements. There
are five typical entities: a page image; a character; a blob,
which represents a rectangle surrounding separated black
pixels; a block, which represents a character line and its
parents with “part-of”’ relations; and a content word,
which is produced by Japanese postprocessing.

“Maps” manage the relationships among entities. A
map includes the structure of the pointers to certain
entities that are generated by processing modules. For
instance, an object of this type manages the result of
layout analysis, which represents a whole page as a set
of tree-structured block data. A “block-tree map” can
respond to commands such as “Give all the character lines
composing the abstract block” and “Delete two lines from
the body block.”

“Parts” generate entities and set their attributes; for
example, a generated character object has the attributes
of position, size, recognition results, and contextual
postprocessing results. Parts also investigate relationships
among entities in order to generate new maps. Typical
parts in DRS are layout analysis modules, character
recognition modules, postprocessing modules, and user-
interface modules. Execution and parameter setting can
be requested by sending appropriate messages to the
appropriate combination of one or more parts.

An application program can access entities only by
sending appropriate messages to a map. The map
receiving a message returns pointers indicating the
applicable entities. Figure 1 shows an example of typical
objects of three types and their messages. If some
application requires specific management for certain
entities or a new process exclusive to the application, a

IBM J. RES. DEVELOP. VOL. 40 NO. 3 MAY 1996

user can design and add a new map and a new part that
can accept the appropriate series of messages.

® Two types of process flow

The application program can send messages to parts in
order to set entities for processing, set parameters, and
start execution. Several parts are defined in such a way
that they can accept either a pipeline (parallel) flow

or a sequential one.

Figure 2 illustrates these two flows. Figure 2(a)
represents the sequential flow of the layout analysis of
DRS. In sequential flow, all target entities and a start-
message are sent to the first part. Since a user-defined
message can be sent from a part to any object when the
process is completed, an end-message is returned to the
program in this flow. The program then sends the data to
the second part and starts it.

Figure 2(b) represents the parallel process of character
recognition in DRS. The OCR card has its own
microprocessor, and the process of recognizing Japanese
characters is executed separately from the host PC. All
other processes associated with recognition, such as the
postprocessing and the display of results through a user
interface, are executed on the PC. For effective use of
resources, processes should work cooperatively in a
pipeline, especially the card’s process for recognizing
characters and other processes on the PC.

Each entity has a set of flags representing whether
each process should be applied, skipped, or completed. In a
pipeline flow, the application program first sets the apply-
flags of all related parts to the target entities, and sets the
entities as targets of the parts. The program then sends
to the first part the same number of step messages as
there are entities. Whenever the process for an entity is
completed, the first part sets a complete-flag to the entity
and sends an end-message and a step-message to the
next part. The second part investigates which entities are
current targets under conditions in which (a) the previous
process is complete; (b) the current process is scheduled

to be applied; and (c) the current process has not yet been

completed. The part then starts the process for the target
entities. By this mechanism, step-messages are repeatedly
transferred to the next series of parts.

Since the entity units used for processing are not
common to all of the processes, an asynchronous pipeline
flow should be applied. For example, the Japanese
postprocessing actually selects an optimal sequence of
morphemes when it encounters a punctuation mark, and
therefore generally processes several character lines at a
time, whereas the previous process (character recognition)
and the next process (displaying the results through a
user interface) process text line by line.

The proposed data-driven protocol resolves the
problem. Related processes can work cooperatively, and

IBM J. RES. DEVELOP. VOL. 40 NO. 3 MAY 1996

New/Delete

=T

New/Delete

Map/Entity l

I Map/Entity I |

Set target Set target

[Le=1]

New

| Map/Entity |

Query Set target
[pee]

New/Modify

| Map/Entity | |

(a) (b)

Step

[T [P [T e]

Query

New/Modify

Map/Entity

each process asynchronously transfers data to the next.
The end-message is only a permissive trigger to the next
process, which may not in fact start until it has received
several end-messages from the previous process. At that
time, the next process will execute all possible targets. The
protocol has the added advantage that a new part can
casily be added and an unused one deleted at any node

of the pipeline.

Characteristic parts in DRS

Figure 3 shows the typical process flow of DRS. The
processes are roughly separated into two groups: layout
analysis and character recognition. In layout analysis, a
page image is analyzed so that figure blocks, table blocks,

A. YAMASHITA ET AL.

Layout analysis
P =]
i l Blob detection l i
1 " T : ¥
! 1
1 Block segmentation - l |
! ; R o : f
: l © - “Miodel matching ‘ ! :
Vo e b e e e |
Chatacter yecognition

e et S v T T T e |
I ‘) Ly '
] | - Kanji récognition . I |
1 = Y |
‘ : “Japatiese postprocessing . i
‘ }

| ;
|
: l User postprocessing I i
i B y ;
I Display. __I {
: gistel

Typical process flow of DRS.

and text blocks can be extracted. When a model for the
page is specified, text blocks are further analyzed to
extract the block structure defined in the model. The
processes work sequentially, as explained in the previous
section.

In character recognition, text blocks are recognized and
postprocessed, and the results are displayed. All processes
work cooperatively in the pipeline, using the proposed
mechanism.

Summaries of the algorithms for several parts are given
in the following subsections.

® Blob detection

A captured image [Figure 4(a)] is first segmented into
blobs (rectangles on the image) and classified into
components of character strings, lines, and picture
elements [9]. Later, processing regarding the layout
analysis is performed in the domain of these rectangle
data.

In the process of raster scanning, smeared run-length
data (starting positions and lengths) are generated by
replacing short horizontal white runs with black runs. The
top and bottom boundaries are detected by comparing
run-length data from two vertically consecutive lines.

A black run located under a white run is considered to

be part of a top boundary. Bottom boundaries can be
detected in a corresponding manner. The coordinates of
rectangles sandwiched between top and bottom boundaries
are calculated and stored in a buffer.

A. YAMASHITA ET AL.

Several adjacent rectangles are integrated into a single
component under certain conditions. The smearing
technique sometimes mistakenly connects characters
to graphics, or to characters in the next line (when an
input image is skewed). To avoid such connections, we
employ several constraints; for example, rectangles with
approximately equal heights can be integrated, while a
newly integrated rectangle should not intersect other
rectangles. The results of the integration are classified
as character lines, horizontal lines, or other objects,
according to the height of the rectangle.

® Block segmentation

Block segmentation can classify detected blobs into text
blocks and figure blocks, and create character lines from
blobs [10]. The method does not use any specific model
for a page, but automatically segments the page into
several blocks with attributes.

First, two histograms are made to represent the height
and distance of character strings (character line blobs).
The “distance” of character strings means the vertical
distance between the baselines of two adjacent character
strings.

Since character strings in text areas are arranged
regularly, they can be merged into groups by analyzing this
regularity. In each histogram, distributed elements have
peaks and are classified into several groups. Character
lines in a group are expected to have similar height and
a regular baseline pitch. Thus, groups are extracted by
investigating whether elements have the same peak in
the distribution of their distance and height.

The maximum distance and height in a group are used
as thresholds for the grouping of character strings. Two
adjacent character strings in a group are merged into a
text group if their heights and the distance between them
are within the threshold. Groups of character strings are
then constructed in the image, as shown in Figure 4(b).

In the second step, vertical border lines are drawn along
the left and right edges of the text groups. These border
lines are extended until they reach the edge of the image
or other elements. Horizontal border lines are then drawn
at the top and bottom of the vertical border lines. The
whole image is segmented into smaller areas by the
extended vertical and horizontal border lines. To avoid
oversegmentation, if an element of the image lies in two
areas, those areas are merged into a single unified block.
Thus, the whole image is segmented into several blocks
[Figure 4(c)].

If a block includes only character strings, it can be
recognized as a text area. However, some blocks include
not only character strings but also horizontal lines, vertical
lines, and other blobs. A projection-profile method is
therefore applied to the unified blocks in order to segment
them into text and figure areas. Two kinds of projection—

IBM J. RES. DEVELOP. VOL. 40 NO. 3 MAY 1996

S am =
L RR e

S e

=]
—_———
—
a o
B Text area Figure area
(@) (b) © Y]

E Block segmentation process: (a) sample document image; (b) text groups; (c) a page segmented according to border lines; (d) result of block
i segmentation.

of character strings (text groups) and of lines and other
elements—are created in our approach. From the
projection, a unified block is further segmented into text
and figure areas. As a result, text areas and figure areas
in the columns are detected as shown in Figure 4(d).

® Model matching

Form-processing-type applications require that parts of a
page image be converted into fields and the specific fields
separated for registration. These requirements can be met
by adopting a layout model that defines which text blocks
should be extracted, and using the model to analyze the
page image.

Table 1 shows an example of a layout model for printed
forms [11]. The model is declared as a table. The table
structure is simple enough to be prepared by using a
general text editor.

“Name” is the name of the block. “Num.” indicates
the minimum and maximum number of lines. “Mark.”
indicates whether or not a block is defined as a marker.
Markers such as running heads and logos are used to
detect other target blocks defined in the model. The
“X, Y, SX, SY” column shows the x, y-coordinates of a
block relative to a marker.

First, marker blocks are extracted; any blobs in the
window defined in the model are extracted and integrated
into a marker. The absolute coordinates of an extraction
window are calculated from the x, y-coordinates of the
detected markers and the relative coordinates defined in
the model. Character string blobs within the window are
then detected, integrated into a character line, and
registered as a target block.

IBM J. RES. DEVELOP. VOL. 40 NO. 3 MAY 1996

Table 1 Example of a layout model.
Nest Name Num. Mark. X, Y, SX, §SY
0 Tag I, 1 N/A 0, 0, 1024, 1024
1 Marker I, N Yes 200, 100, 800, 80
| Field-1 1, 10 No 80, 400, 500, 400
1 Field-2 1. 10 No 800, 400, 500, 400
1 Field-3 1,5 No 160, 800, 800, 200

® Character recognition

In response to requests from the PC, characters are
recognized by the OCR card. Each character line is first
segmented into characters. Each segmented character
image is normalized in size to allow extraction of its
feature data.

The feature data consist of the distribution of local
contour directions and the distance from the frame
of the buffer to the nearest black pixel [12, 13].

The local directions are extracted from the normalized
48 X 48 image by scanning a 2 X 2 mask pattern. Four
directions are assigned according to the mask patterns.
The image is divided into twelve partitions in vertical,
horizontal, and two diagonal projections. Four local
directions are counted in each partition; thus, the number
of feature data for local contour directions is 192
(48 partitions X 4 directions). The local directions
are also counted in each direction, and the 192 local
directions are reclassified into four summarized feature
data.

The image is divided into six partitions in vertical and
horizontal projections in order to extract the distance

A. YAMASHITA ET Al.

345

346

Images

o
Recognition 7“ b 7 I*
results
(candidates) i

T=IR—RCANTAE [~

“ea ki (Katiji)

ANT ~

I\ be (Katakana)

be (Hiragana)

Detected Noun Post-

morphemes position
be (Katakana)
Tdentified by context

] .
! Japanese contextual postprocessing.
:

47 ka (Katakana)

jj ryoki-(Kanji)

Verb Auxiliary vetb

be (Hiragana
e (Hiragans) Identically or similarly

shaped characters

feature. The distance from a frame is calculated in a
partition, and therefore the number of feature data
for the distance is 24 (6 partitions X 4 frames).

The set of extracted feature data is matched with every
template in a recognition dictionary, and “city-block”
distances are calculated. The four summarized direction
features and the 24 distance features are used for
preclassification. The 192 local direction features are
used to select up to five candidate characters.

® Japanese contextual postprocessing

The results obtained by the OCR card are sent to the
contextual postprocessing module to improve the
recognition accuracy [14]. As shown in Figure 5, some
Japanese characters have the same shape but different
meanings. The character recognition process cannot
discriminate among these characters. The postprocessing
module selects a probable character sequence from a
lattice of recognition candidates by using a Japanese
dictionary (containing about 100000 morphemes and
constraints on morpheme transitions).

As a result, the two characters in our example are
identified as parts of a noun meaning “database” (the first
morpheme in Figure 5) and an auxiliary verb meaning
“should” (the last morpheme), and the correct character
codes are then decided. Through a comparison of the
results with the original ones, uncertain characters are
detected, and some of them are replaced with candidates
that are lower-ranked, but more likely in the context.

In addition, the postprocessing module can detect
frequently occurring content words in the selected

A. YAMASHITA ET AL.

morpheme sequence. These are good candidates for
keywords, which are useful for retrieving documents.

® User postprocessing and display

A user can define a specific type of postprocessing, such as
a process employing a user dictionary, and apply it to the
recognition results in the user postprocessing part. The
part obtains the recognition results for a character line,
modifies them, and replaces them with new ones. This is a
simple process, but it reveals a typical method for adding
new parts to the system. If the module can prepare
defined messages and can access, via a map, entities such
as other recognition modules, it can easily be integrated
into the system as a part.

Figure 6 shows a screen on which the recognition
results for a page of a report are displayed. Three lines of
Japanese are shown in each window. The upper window
shows a portion of the captured image (bitmap) and the
lower window the related portion of the results (in a
particular font). The results are displayed by using outline
fonts whose position and size are similar to those of the
character images. Thus, the layout of the result with
vertical and horizontal spacing is almost identical with
that of the original bitmap.

The result in error is displayed by the pop-up correction
window, which shows an enlarged character bitmap at the
top, the five candidates generated by the recognition
part in the middle, and the candidate selected by the
postprocessing part at the bottom. DRS notifies the user
of which portions should be checked according to the
result of the contextual postprocessing (these portions are

IBM 1. RES. DEVELOP. VOL. 40 NO. 3 MAY 1996

q * 55

T

R XE DB 8

HATA - E— - zafRetti, ABAY TR

. IBM E-Kﬁﬁﬁm./ 25 4/2 (IBM AutoRec

HE 71« E—-

SESTELIFE 3%

S

;ﬁw S

i

Results on the screen.

indicated by highlighted characters on the screen). In the
example, the second candidate is selected as the correct
one by the postprocessing part. The user can correct
recognition errors in the window by using a mouse or
keyboard.

The display-module part can receive step-messages,
retrieve processed results, display them on the screen, and
send an end-message to the main program. Thus, a user
can easily redesign the display part or exchange it for
another as necessary, according to the application.

Examples of application

To meet the special requirements of specific applications,
one may need to develop new parts or customize existing
parts; to accommodate this, the framework of the DRS
system is robust and flexible enough to be used for a wide
range of applications. We have developed many entry
systems based on DRS, which are composed of various

IBM 1. RES. DEVELOP. VOL. 40 NO. 3 MAY 199

combinations of parts on the framework. The following
subsections describe several typical systems that offer
important proof of the flexibility of the DRS architecture.

Examples of combinations of parts in DRS are shown in
Table 2. The table shows which parts are used for each
application. A circle means that the original general-
purpose part is used, a dash that the part is not used, and
a description that some appropriate customization is used
in the application. The following sections give details of
each application.

* Document database entry

Creating a document database is the most general
application of DRS. Target documents include academic
papers, patents, public administration documents, and
company reports. In some applications, all of the pages
of a document must be converted into text and stored in

a text database, while in others, the first several pages, 347

A. YAMASHITA ET AL,

9“7 msm

/ﬂ

3o 225°

== k

22740A

2?31 [2219384750]

12 a1

221473 ..

.

i “ (22318822787

-1 ! {8607~ —8807
(5)—F 381.98012 3217264100
T g :I;: zmz-sanav ﬁ
0 1V . [90099.0

IANNA NCAAL]

{ Example from a catalog.

Table 2 Combinations of parts in various applications.

Part Application
Document entry Electronic catalog Tag recognition Family registration

Blob detection O ©] O @)

Block segmentation O — — —_

Model matching — — O Specific one
Kanji recognition O Alphanumeric Tuned Tuned, vertical
Postprocessing Japanese — Patterns City names
User postprocessing — Logical check — —

User interface O Specific interface — —

348

including the index, are converted into text, and all of the
page images and some parts of the text to be searched for
are stored in an image database.

Since the volume of texts to be recognized is generally
large, accurate recognition is a key to success. When

A. YAMASHITA ET AL.

many documents of the same kind must be entered,
it is effective to customize the template for the fonts
used in the documents, and to register frequently
occurring “unknown” words in the postprocessing
dictionary.

[BM J. RES. DEVELOP. VOL. 40 NO. 3 MAY 1996

To verify the effectiveness of the layout analysis, we
conducted an experiment in which 61 pages from Japanese
journals and magazines were tested for block segmentation
parts.

The time needed for layout analysis was typically about
10 to 20 seconds. The 61 pages were segmented into 267
text areas and 133 figure areas. On these pages, 249 of
267 text areas (93.3%) and 124 of 133 figure areas
(93.2%) were segmented correctly [10].

The character recognition on the card and the
postprocessing on the PC were performed at speeds of
45 and 60 characters per second, respectively. Since the
processing on the card and on the PC work in parallel, the
recognition speed (40 characters per second, including
postprocessing) is considerably faster than would be the
case for sequential processing (20 characters per second).

® Electronic catalog creation

Figure 7 shows an example from an automobile parts
catalog (a part of a diagram and, in the inset, the results
of processing). A certain motor company has more than
40000 diagrams, which used to be delivered to parts
dealers as printed documents. The parts dealers had to
search for a necessary part by looking it up in a catalog,
then typing the number at an on-line terminal. To make
the job easier and to avoid wrong orders caused by
mistyping, a new parts-ordering system was developed. In
the new system, parts catalogs are delivered as CD-ROMs,
which contain compressed diagram images and part
numbers associated with their locations. The operator
finds the required part in the diagram on the display, and
orders it by selecting the part number with the mouse. For
these CD-ROMs to be issued, coded data such as part
numbers and their locations must be entered with scanned
image data. DRS provides semiautomatic entry of the
coded data by extracting areas containing part numbers
from captured images and recognizing them (extracted
part numbers are surrounded by rectangles in Figure 7).

In this case, page structure analysis is not required;
instead, the detected character string blobs are recognized
and stored. Since part numbers consist of alphanumeric
characters, and their arrangement is governed by special
rules, the character recognition part is replaced by a
software part that can recognize only alphanumeric
characters, and special logic is added for checking
numbers as a user postprocessing part.

Before actual processing, a test was performed to
ascertain the accuracy of part number extraction and
character recognition [9]. In the test, 89 actual diagrams
created by five different artwork vendors were scanned
and tested. The 89 diagrams included 3090 part numbers
(each consisting of 6 to 11 alphanumeric characters)
of which 2859 (92.5%) were correctly extracted and

IBM J. RES. DEVELOP. VOL. 40 NO. 3 MAY 1996

r; w2 > PR 1L/ 2U:53:45\
A .

[¢v% 229 - vNO| Marker

- -
Fieldl Field2
n*LyrNo HDE
& 99
002 -
003
L
D.No BYVCP 16
G.No BVCP-16

; Example of a CD lot-tag.

recognized. Of the remaining 7.5%, 0.9% were not
extracted at all, 3.8% were extracted incorrectly, and
2.8% included at least one recognition error. Missing and
incorrect extractions of part numbers were caused mainly
by discontinuities in smeared runs to be connected. The
diagrams include characters of various sizes and pitches
which sometimes impinge on graphical part figures, with
the result that separated portions of part numbers and
part numbers with added noise were neglected or
extracted incorrectly.

A character string displayed in reverse video indicates
that it does not obey the format rules. The operator can
cancel character strings other than part numbers by
clicking a mouse, specify a new area for a part number
by dragging a mouse, and modify the recognized results
by keyboard input.

® Tag recognition on a manufacturing line

Figure 8 shows an example of a printed tag attached to a
set of music CDs at a certain factory. The tag includes
information such as the number of CDs produced, which
machines were used, and the customer that ordered them.
The set of CDs is transferred together with the tag for
subsequent processing, verification testing, label printing,
and packaging. In these processes, data necessary for
operations are obtained from the tag and the host
database. Certain indexes from the tag are re-entered
into the computer to query the host database, and a new

A. YAMASHITA ET AL.

349

350

3y

® Bl

ERORRNESE BN IR D TR

%

PROHBATEREAREHE o g Y Ea R
8 bag

RORGTD | ISRt aR A
© BRoSaER

@ B> FuBYAEE N3

T4 | JEHREAHRANERDE A0 o IRERH

8 ko VRMER)

NnerriadFagaebeis

—

H#BBU4 | FHHREFHAAR

$ut

3 13- DR B 3

=
-

A [Title Form date
Legal domicile
Head of a family
B | Item (transfer) | Transfer date
Old domicile
C |Personal info. | Sex

Birth date
Relations
Father's name
Mother's name
Name Kana name
Kanji name

3
*
#
R

EXn %

apsymanaad |

D | Identity (birth)| Birth place
Birth date
Reported by

el

Example from a family register.

printed form indicating the next operation is printed. The
manufacturers decided to change from the conventional
process to automatic data entry using DRS. DRS
recognizes several hundred tags a day and transfers data
to the printing program for the new forms. The printing
program requests information from the database by
using the recognized index in the tag, and both the data
recognized by DRS and those requested from the database
are merged and printed.

To meet the requirements of the application, we defined
a layout model to recognize three portions of a tag.
(A marker and three fields are defined in the model, as
shown in Figure 8). When DRS is integrated into the
flow of daily operations, the number of characters to be
recognized is generally not very large; however, high
recognition accuracy is indispensable if interactive
verification is to be eliminated. We replaced the original
Kanji template with one tuned for the printing fonts used
in the tags, and replaced the word dictionary with the
number patterns appearing in the tags. By using
postprocessing with the pattern dictionary, the
postprocessor can rectify substitution errors involving

A. YAMASHITA ET AL.

similarly shaped characters such as B and 8; O, D, and 0;
G and 6.

An experiment was performed for 50 CD lot-tags,
which included 150 fields and 550 character strings to be
recognized. Of these tags, 80% were correctly processed
without any error correction. The errors in the remaining
cases were caused by misidentification of fields (8%) and
misrecognition of character strings (12%), because of
darts and blurred printing. These errors are checked and
corrected in subsequent processes on the system.

& Family registration data entry
Figure 9 shows a copy of a family register. Each Japanese
citizen is legally required to have his or her name entered
in a family register. Whenever a birth, marriage, or death
occurs, a family member must report it to the local
government so that the family register can be updated.
The problem until recently was that all registers were
handled in the form of paper documents.

In June 1994, the Japanese government amended the
law for family registration to permit registers to be
handled as electronic documents. We customized DRS to

IBM J. RES. DEVELOP. VOL. 40 NO. 3 MAY 1996

create an entry system for family registration, which can
take microfilms of printed pages, capture image data
from microfilms, convert them into character data, parse
sentences to extract data items, and register them in a
database.

We have developed a new layout model and an analysis
module for this application. In the model, a form is
defined as a combination of vertical and horizontal lines.
Each line is recorded in the model, along with its position
and size. Several models can be described in a profile. In
this case, six models were defined in the profile. The
module first detects lines on the basis of blobs and
searches for an appropriate model in the profile, and
then extracts fields, which are also defined in the model
as rectangles, by using relations between ruled lines and
field edges. As shown in the figure, sentences are printed
vertically, whereas layout analysis modules assume that
character lines are printed horizontally. Therefore, all
page images are rotated 90° and input to DRS, which
analyzes the layout of the rotated images. Before
character recognition, a segmented image of a character
is rotated through 270° and re-stored in the original
direction. Since ruled lines sometimes touch or intersect
characters, they are eliminated before recognition. The
template was newly generated for printed fonts, and the
word dictionary was also regenerated to include specific
words and names of cities.

The results of our experiment showed that the layout
was correctly analyzed for 305 of 317 pages (96.2%) and
that 5100 of 5527 Japanese characters (92.3%) were
correctly recognized [15]. Recognition errors were caused
primarily by overlaps between seal impressions and
characters, and by handwritten annotations.

After an initial trial in which 10000 registers were
entered, all of the data contained in 137000 registers
(a register consists of three to four pages on average)
in a certain Tokyo ward were entered by the end of 1994,
The target registrations included both typed (50%) and
handwritten (50%) forms, and about 75% of the typed
forms were processed by using the system. The results
were registered in the database after several manual
correction and examination processes, along with other
text data manually entered from handwritten forms.

Concluding remarks

The Document Recognition System that we have
developed has a flexible framework for customization.
DRS manages data, the relationships among data, and
processing modules as independent objects, and the

framework allows processing modules to work sequentially

or in a pipeline. Consequently, it is easy to replace the
original modules with enhanced ones, and to change the

combination of modules, the flow, and the style of working

according to the requirements of a particular application.

IBM J. RES. DEVELOP. VOL. 40 NO. 3 MAY 199

In this paper, we have introduced several specific
applications and described how DRS can be used in
practical entry systems. These examples demonstrate the
robustness of the flexible framework, which allows DRS
to be customized for various types of application.

We are continuing to enhance DRS by developing new
processing modules, expanding the range of applications,
and improving the quality of the existing processing
modules.

Acknowledgment

We wish to thank Yuka Tateishi, Yoshiharu Katoh,
Yoshinao Kobayashi, and Hiroyasu Takahashi for their
advice and cooperation in developing the system. We also
thank Toyota Motor Corporation, the Victor Company of
Japan, Ltd., and the Toshima Ward Office in Tokyo for
their cooperation in providing examples of its use.

0S/2 and PS/2 are registered trademarks of the International
Business Machines Corporation.

References

1. K. Y. Wong, R. G. Casey, and F. M. Wahl, “Document
Analysis System,” IBM J. Res. Develop. 26, No. 6, 647-656
(1982).

2. H. Kida, O. Iwaki, and K. Kawada, “Document
Recognition System for Office Automation,” Proceedings
of the 8th International Conference on Pattern Recognition,
IAPR (International Association for Pattern Recognition),
Paris, 1984, pp. 446-448.

3. K. Inagaki, T. Kato, T. Hiroshima, and T. Sakali,
“MACSYM: A Hierarchical Parallel Image Processing
System for Event-Driven Pattern Understanding of
Documents,” Pattern Recogn. 17, No. 1, 85-108 (1984).

4. 1. Masuda, N. Hagita, T. Akiyama, T. Takahashi, and
S. Naito, “Approach to Smart Document Reader System,”
Proceedings of the Conference on Computer Vision and
Pattern Recognition, IEEE, San Francisco, 1985, pp.
550-557.

5. 8. N. Srihari, “From Pixels to Paragraphs: The Use of
Contextual Models in Text Recognition,” Proceedings of
the International Conference on Document Analysis and
Recognition, IAPR, Tsukuba Science City, Japan, 1993,
pp. 416-423.

6. J. Kreich, “Robust Recognition of Documents,”
Proceedings of the International Conference on Document
Analysis and Recognition, IAPR, Tsukuba Science City,
Japan, 1993, pp. 444-447.

7. T. A. Bayer, “Understanding Structured Text Documents
by a Model Based Document Analysis System,”
Proceedings of the International Conference on Document
Analysis and Recognition, IAPR, Tsukuba Science City,
Japan, 1993, pp. 448-453.

8. T. Amano, A. Yamashita, N. Itoh, Y. Kobayashi,

S. Katoh, K. Toyokawa, and H. Takahashi, “DRS: A
Workstation-Based Document Recognition System for
Text Entry,” IEEE Computer 25, No. 7, 67-71 (1992).

9. T. Amano, A. Yamashita, and H. Takahashi, “A
Character String Detection Algorithm Using Horizontal
Boundaries and Its Application to a Part Number Entry
System,” Proc. SPIE 1452, 330-336 (1991).

10. Y. Hirayama, “A Block Segmentation Method for
Document Images with Complicated Column Structures,”
Proceedings of the International Conference on Document
Analysis and Recognition, 1993, pp. 91-94. 351

A. YAMASHITA ET AL.

352

I1. A. Yamashita, T. Amano., H. Takahashi, and K.
Toyokawa, A Model Based Layout Understanding
Method for the Document Recognition System (DRS),”
Proceedings of the International Conference on Document
Analysis and Recognition, IAPR, Saint Malo, France, 1991,
pp- 131-138.

12. Y. Nakamura and H. Takahashi, ""Character Recognition
Apparatus,” IBM Tech. Disclosure Bull. 28, No. 9,
3990-3992 (1986).

13. H. Takahashi, A Simple Recognition Method for
Handwritten Kanji Characters by Using Primitive
Connective Directions of Thinning,” Trans. Inst. Electron.
Info. & Commun. Eng. PRL82-8, 57-62 (1982) (in
Japanese).

14. N. Itoh and H. Maruyama, A Method of Detecting and
Correcting Errors in the Results of Japanese OCR,”
Trans. Info. Proc. Soc. 33, No. 5, 664-670 (1992) (in
Japanese).

15. T. Amano, K. Toyokawa, T. Mano, and S. Toriyama,

*A Document Image Analysis and Recognition System for
Japanese Family Registration,” Proceedings of the Asian
Conference on Computer Vision, IEEE, Singapore, 1995,
Vol. LI, pp. 373-377.

Received August 24, 1994, accepted for publication
November 8, 1995

Akio Yamashita /BM Research Division, Tokyo Research
Laboratory, 1623-14 Shimotsuruma, Yamato-shi, Kanagawa-ken
242, Japan (YAMASITA at TRL, yamasita@trl.ibm.co.jp). Mr.
Yamashita received the B.E. and M.E. degrees in electrical
engineering from the University of Tokyo in 1983 and 1985,
respectively. In 1985 he joined IBM Japan Ltd., where he is
currently a member of a pattern recognition group at the
Tokyo Research Laboratory. His research interests include
pattern recognition, image processing, and document
understanding. Since joining IBM, he has conducted research
on alphanumeric OCR, model-based layout analysis, and
printed Kanji OCR (DRS).

Tomio Amano IBM Research Division, Tokyo Research
Laboratory, 1623-14 Shimotsuruma, Yamato-shi, Kanagawa-ken
242, Japan (AMANO at TRL, amano@trl.ibm.co.jp). Mr.
Amano received the B.E. and M.E. degrees from Keio
University in 1982 and 1984, respectively. In 1984 he joined
IBM Japan Ltd., where he is a research staff member at the
Tokyo Research Laboratory. He is a member of a pattern
recognition group, where his research interests include pattern
recognition, document image processing, and user interface.
Since joining IBM, he has conducted research on OCR and
block segmentation of document images.

Yuki Hirayama IBM Research Division, Tokyo Research
Laboratory, 1623-14 Shimotsuruma, Yamato-shi, Kanagawa-ken
242, Japan (HIRAYAMA at TRL, hirayama@trl.ibm.com). Mr.
Hirayama received the B.E. degree in mechanical engineering
and the M.E. degree in information engineering from Tokyo
University in 1989 and 1991, respectively. In 1991 he joined
IBM Japan Ltd., where he is a member of a pattern
recognition group at the Tokyo Research Laboratory,
working on layout analysis for OCRs.

A. YAMASHITA ET AL.

Nobuyasu Hoh /BM Research Division, Tokyo Research
Laboratory, 1623-14 Shimotsuruma, Yamato-shi, Kanagawa-
ken 242, Japan (ITON at TRL, iton@trl.ibm.com). Mr. Itoh
received the B.E. and M.E. degrees in biological engineering
from Osaka University in 1982 and 1984, respectively. In
1984 he joined IBM Japan Ltd., where he was a member of a
pattern recognition group at the Tokyo Research Laboratory,
working on linguistic postprocessing for OCRs and on-line
handwriting recognition. He is currently on the staff of a user
interface group, and his primary research interest is in
language modeling for Japanese speech recognition.

Shin Katoh RIOS Systems Co., Ltd., 90-6 Kawakami-cho,
Totsuka-ku, Yokohama-shi, Kanagawa-ken 244, Japan
(Kato_Shin@notes.rios-systems.co.jp). Mr. Katoh received the
B.E. and MLE. degrees in chemical engineering from the
Tokyo Institute of Technology in 1978 and 1980, respectively.
In 1982 he joined IBM Japan Ltd., where he was a member
of a pattern recognition group at the Tokyo Research
Laboratory until 1995, working on Kanji OCR systems and
on-line handwriting recognition systems. He is now on
temporary assignment with RIOS Systems, a subsidiary

firm of IBM Japan, where he works on the planning of OCR
and image products for the consumer market.

Takashi Mano Software Development, Yamato Laboratory,
1623-14 Shimotsuruma, Yamato-shi, Kanagawa-ken 242, Japan
(JL05269 at YMTVM4). Dr. Mano received the B.S., M.S., and
Ph.D. degrees in mathematics from Sophia University, Tokyo.
In 1984, he joined IBM Japan Ltd., where he has worked in
areas related to image processing and pattern recognition.

In 1992, he worked with the Tokyo Research Laboratory
research staff to develop the system for family registration
data entry.

Kazuharu Toyokawa IBM Research Division, Tokyo
Research Laboratory, 1623-14 Shimotsuruma, Yamato-

shi, Kanagawa-ken 242, Japan (TOYOKAWA at TRL,

toyokawa @trl.ibm.co.jp). Dr. Toyokawa received the B.S.,
M.S., and Ph.D. degrees in physics from Osaka University,
Osaka, Japan, in 1969, 1971, and 1974, respectively. From
1974 to 1975, he was a research fellow at the Yukawa
Foundation at Osaka University; in 1976, he was a research
fellow at the Broadcast Science Research Laboratory at the
Japan Broadcast Corporation, NHK. In 1977 he joined IBM
Japan Ltd., where he has worked in areas related to thin
films, display technology, image processing, and pattern
recognition. From 1982 to 1984, he was an international
assignee at the IBM Thomas J. Watson Research Center in
Yorktown Heights, New York, where he conducted research
related to data compression. He is a research staff member at
the IBM Tokyo Research Laboratory and currently manages a
group doing research in areas related to image processing and
pattern recognition.

IBM J. RES. DEVELOP. VOL. 40 NO. 3 MAY 1996

	Pages from ibmrd4003F.pdf
	page 1

