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Efficient management of cached storage
control resources has been important since
the introduction of cached controllers in the
early 1980s, and it continues to grow more
important as technology advances. The need
for cache resource management is due to the
diversity of workloads that may coexist under
a given controller. Some workloads may
continually require the staging of new data
into cache memory, with almost no benefit

in terms of performance; other workloads

may reap major performance benefits while
requiring relatively little data staging. The
sharing of resources among various workloads
must therefore be controlled to ensure that
workloads in the former group do not interfere
too much with those in the latter. Management
of cache functions is often viewed as the job
of the host system to which the controller

is attached. But it is now also possible

for advanced controllers to perform such
management functions in a stand-alone
manner. Caching algorithms can change
adaptively to match the workloads presented.
This enables the controller to be ported across
multiple platforms without dependencies on
software support. This paper surveys the
variety of techniques that have been used for
cache resource control, and examines the
rapid evolution in such techniques that is now
occurring.

Introduction

Since the first cached DASD controllers were introduced
in the early 1980s, users of such controllers have observed
that data with poor locality of reference can interfere with
the service provided to the remaining data under the
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controller, because of the added demand that such data
place on cache resources. Each cache miss typically
causes a stage operation, in which the requested track is
transferred into the cache. If the staging rate for a subset
of the data served by a cache is high, this may cause high
loads on the disks containing the data and on the staging
paths. Such loads (especially high loads on the staging
paths) can, in turn, interfere with the service provided

to data that otherwise would cache well.

Contention can also occur for cache memory. In the
extreme case, the cache can be “flushed” by a rapid
succession of misses to data possessing no locality. In this
case, new data that do not benefit from the use of cache
replace older data that may have profited from cache
storage. Contention for memory is usually not as extreme
as in the example just described. It does, however, tend to
limit the effectiveness of the cache in cases where data
with poor locality are present, especially if the cache size
is small.

Since contention for memory and staging path resources
can interfere with the effectiveness of the cache, cached
controllers must manage these resources so as to mitigate
the effects of contention. Techniques for resource
management have become increasingly sophisticated.
Initially, the focus was on management via host-initiated
actions. These included the selective suppression of
caching for some volumes, and the use of Dynamic Cache
Management (DCM) and Dynamic Cache Management
Extended (DCME) on MVS systems. More recently, an
important trend has been to incorporate more and more
of the decision-making into the controller itself. This
paper examines the range of techniques that have come
into use, with a focus on adaptive strategies for use of
cache memory.

The next section begins by sketching the techniques for
resource management that are based on control by the
host. These techniques, and the use of storage control
cache in general, have typically been applied in large-
system environments.

As cached controllers have become more common in
small-system environments, the need to manage cache
functions without the assistance of host programs has
increased. The ability to adapt caching algorithms within
the storage controller enables the cache to be ported
across multiple platforms without dependencies on
software support. The section on self-controlling caches
describes various techniques that have been used to
accomplish this in recent storage products such as the
IBM 9340, the EMC? Symmetrix™, and the IBM
RAMAC™.

Technologies such as RAID and log-structured arrays
[1] place additional demands on the controller. These
demands will further increase the complexity of the
algorithms required to effectively manage the resources
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in a cached DASD controller. The section on trends and
speculations attempts to predict the future impact of such
technologies on cache resource management. The final
section traces some of the common themes that are
apparent in the diversity of approaches being surveyed.

Host-directed resource management: 1982 to
the present

This section presents a brief history of cached storage
controls for large systems. The emphasis is on storage
controls designed for use with the MVS, VM, and VSE
operating systems, and particularly on the use of these
storage controls under MVS. We consider first the storage
control hardware, then discuss the management of this
hardware by the host.

& Hardware resources

Until very recently, cache hardware could be grouped into
two separate families: cache for storing complete DASD
tracks, and cache for storing individual records. We
consider track cache first, since (until very recently) it

has been the standard for use in general large-system
environments.

Track caching

The first IBM DASD control unit featuring track cache
was the 3880 Model 13 Direct Access Storage Control,
introduced in 1982. This control unit provided a very small
cache by today’s standards, ranging in size from 4 to 16
megabytes. When a record not already contained in
memory was referenced, the 3880 Model 13 staged this
record into cache, as well as any other records that
followed it on the same track. This method of staging has
since been incorporated into all general-purpose IBM
storage controls.

As has also become the standard practice, 3880 Model
13 managed its memory space using a simple least-
recently-used (LRU) algorithm. This algorithm keeps a list
of the data items stored in memory (the LRU list). The
list is maintained using pointers, so that the positions
of items on the list can be changed without requiring
movement of the data. When a given data item is
referenced, it is removed from its current position on the
LRU list, if any, and placed at the top of the list. Space
required for inserting new data items is allocated from
the bottom of the list, thereby overwriting the oldest
(the “least recently used”) data. The effect of the LRU
algorithm is to retain the most recently referenced data,
up to the limit of the available memory.

The introduction of the 3880 Model 13 was
accompanied by the appearance of cache “hints” in
channel programs. These hints tell the controller how a
particular access can best be handled. They are supplied
to the controller as part of the Define Extent command,;
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this command, in turn, precedes the commands that call
for actual transfer of the data. The hints supported by the
3880 Model 13 included inhibit cache load, bypass cache,
and sequential.

Inhibit cache load is used for data predicted to exhibit
poor locality of reference. The controller will check the
cache for the presence of the data, but if they are not
found, will operate directly from the device and will not
place the data into cache memory. The bypass cache hint
is more special-purpose. It is typically used by programs
that are performing media maintenance and require direct
access to the device, or sometimes by applications which
transfer large amounts of data in a single channel
program.

Sequential is used to indicate that access is expected to
continue to subsequent tracks in sequential order from the
current reference point. This hint enables the control unit
to stay ahead of the program by prestaging data. In this
way, all of the accesses associated with transferring a file
(except the first) can be handled as hits. Also, the control
unit can remove data from the cache after transfer of
the data is complete, so as to save memory. The exact
handling of the sequential hint varies with the control unit.
The 3880 Model 13 prefetched a single track; subsequent
control units have prefetched larger amounts of data.

A variation of the sequential hint, called sequential
prestage, was added subsequent to the 3880 Model 13.
This variation requests that the controller not remove the
data after completion of the transfer. Instead, the data
are allowed to age out of cache via the normal LRU
mechanism. (By using first the sequential prestage hint,
followed by sequential, it is also possible to retain the data
in cache only until the second reference to the data, then
allow the controller to remove the data following the
second reference.)

The Model 13 lacked the ability to “fork” data. When
data were read, they would be transferred from the device
twice. The first read would satisfy the original request by
transferring the data to the channel; a second read would
then transfer the same data, plus the remainder of the
track from the point of reference, into cache memory.
When a write hit occurred in the Model 13, the data
would first be written to the device, and would then be
staged from the device into cache memory. This scheme
could place significant loads on the available staging paths,
of which there were fewer available than on current
controllers.

Specific workloads could benefit a great deal from using
the 3880 Model 13 cache; however, the device and path
activity due to staging could also degrade performance
for some types of data if cache hit ratios were not high
enough (for the 3880 Model 13, hit ratios of 70 percent or
higher were usually needed for effective operation). To
allow control over which types of data should use cache,
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the Model 13 provided the capability to suppress cache
functions at the volume level; i.e., cache could be “turned
off” for any specified volume or set of volumes.

The IBM 3880 Model 23 Direct Access Storage Control,
introduced in 1984, increased the maximum cache size to
64 megabytes [2, 3]. Also, this control unit introduced the
capability to “fork” data: to place data into cache memory
at the same time they are being transferred to or from the
device. While a read miss operation was being serviced,
the data could now be staged into the cache while being
sent to the channel. Write hit operations could now
update the cache copy of the data while the data were
being transferred from the channel to the device.

The forking capability and added cache memory of the
3880 Model 23 greatly reduced the performance penalty
associated with misses, compared to the Model 13. This
broadened the range of workloads for which cache could
be used effectively, and reduced (but did not eliminate)
the need to selectively suppress cache functions at the
volume level.

The IBM 3990 Model 3 Direct Access Storage Control,
introduced in 1988, added several new features important
to cache management. These included segmented cache
memory, a larger cache (256-megabyte maximum), and
(in 1989) nonvolatile storage (NVS).

The segmented memory management of the 3990 Model
3 allowed it to allocate cache in units less than a full track
slot, more efficiently using available cache space. Prior
control units had allocated track space in track slot sizes.

NVS allowed the 3990 Model 3 to store write data in
memory, as a shortcut to writing them to disk (the write
to disk could now occur later, after the completion of the
I/0). Such a shortcut was not possible in the 3880 Model
13 or Model 23, since a power failure would have resulted
in loss of the data before a permanent disk copy could be
made. The NVS retained a duplicate copy of written data
until the completion of the disk copy operation. The NVS
copy was used only in the event of a power failure or a
failure of the volatile cache memory. By drawing upon an
emergency battery-based power supply, the NVS was able
to retain data for 48 hours in the event of a power failure.

Two “hints” were introduced for controlling the use
of NVS. The handling of writes, as just described, was
provided by default. This capability was called “DASD
fast write.” The inhibit DASD fast write hint could be used
to perform a write operation directly to disk. The cache
fast write hint could be used when the use of volatile
memory (rather than NVS) was acceptable (for example,
cache fast write is often used for sort work files, since such
files can be reconstructed if they are lost because of a
power failure).

The 3990 Model 3 could provide handling at electronic
speed, via DASD fast write, for any write to data already
in the volatile cache. In the case of a write to data which
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could not be found in cache, the 3990 Model 3 would
stage the track so that the validity of the write operation
could be verified.

The introduction of NVS and DASD fast write opened
a new set of cache management issues revolving around
the management of written data not yet copied to DASD
(sometimes called “dirty” data). The 3990 Model 3
coordinated a highly granular NVS storage allocation
scheme with a destage mechanism that could speed up
or slow down as needed. These allowed the Model 3
controller to make the most out of a limited, four-
megabyte NVS area.

The IBM 3990 Model 6 Direct Access Storage Control,
introduced in 1993, extended the design of the 3990
Model 3 to larger sizes of cache and NVS. More
interestingly from the point of view of cache resource
management, the 3990 Model 6 became the platform for
IBM’s introduction of Record Cache for use in general-
purpose environments.

Record caching

So far, our discussion of cache algorithms has focused

on a track-based scheme for staging and memory
management. For random or nearly random access
patterns, a more finely grained management unit than the
track is often effective. If record caching is used instead
of track caching, the device busy times and path use per
cache miss are reduced, as is the amount of cache memory
required to store the staged data. Until very recently, such
record caches have been provided only in very specialized
environments. More specifically, such caches have
traditionally been used for paging (the IBM 3880 Model
11 Direct Access Storage Control and Model 21 Direct
Access Storage Control), and for high-throughput
transaction processing performed by the Transaction
Processing Facility (TPF) operating system.

When operating in these specialized environments, a
record cache is used for known fixed-size records. The
controller operates explicitly in record caching mode
and does not support track caching. This usage is not
appropriate in a general-purpose environment, but
provides advantages if there is very little spatial locality
in the data.

In cases of very little locality, a request for a particular
record on a track is not likely to be followed by requests
for other records on the same track. The overhead
of staging the remainder of the track, and the space
requirements to store it, are therefore likely to be wasted.
Record caching avoids these forms of waste, while still
allowing fast repeat access to individual records.

In March 1994, a record cache capability for general
MYVS environments (Record Cache I) was added to the
3990 Model 6. The use of Record Cache I was controlled
by “hints,” as discussed in the following section. Less than
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a year later, the Record Cache II feature was introduced.
This permitted the 3990 Model 6 itself to control the use
of record cache.

As part of Record Cache 1, the capability to accept
writes at electronic speed, even for data not in cache, was
added to the 3990 Model 6. This was done initially via a
host “hint” to indicate that there was no need to check
the format of the affected track before accepting the
write. The requirement for this hint regarding the format
of the written data was also eliminated within a short time
after the initial introduction of Record Cache 1. The 3990
Model 6 now retains, in cache memory, a table of those
tracks that conform to regular, stereotyped formats. These
include the tracks of almost all databases. The controller
accepts writes to such tracks at electronic speed, whether
or not the track is in cache.

® Host resource management
The mechanisms for management of the hardware
resources just outlined have been twofold:

e Use by the system programmer or others of volume-level
cache suppression.

¢ Use by the host software of channel program “hints” to
indicate to the controller which references should be
staged in the event of a miss.

We now discuss in more detail the use of hints.

Ever since the introduction of the 3880 Model 13, hints
have been used to choose the type of caching appropriate
for specific, special applications such as sequential
processing, sort, utilities, and so on. More recently,
however, hints have been applied to the problem of
dynamically controlling cache operation.

Dynamic control, in MVS environments that use System
Managed Storage (SMS) file management, has been
provided by the Dynamic Cache Management (DCM)
function introduced in 1990, and by the Dynamic Cache
Management Extended (DCME) function introduced in
1993. These software facilities use hints to indicate to the
controller which references should be staged in the event
of a miss. If a reference should not be staged, the inhibit
cache load hint is given to the cache. The selection of data
sets that should be supported by staging on a miss is based
on the performance priority of each data set (as indicated
by its SMS storage class), on the past effectiveness of the
cache in supporting the data set, and on current controller
load levels.

If a 3990 Model 6 storage control is present, DCME
may also instruct the storage control, via channel program
hints, to use record caching for some data sets. This is
done if little locality appears to be present in the access
pattern of the data set. At high subsystem loads,
increasing use is made of record cache as a mechanism
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for reducing the demands on storage control memory
and staging paths.

For its part, the 3990 Model 6 now keeps a history of
the patterns of locality exhibited by each track. If a given
track seldom receives references to more than one of its
records during a visit to the cache, the 3990 Model 6
stages the track in record mode even if not instructed
to do so by DCME.

® Summary

Various cache management techniques have been
successfully used for over a decade now. For most of this
time, caches have been managed via host control. With
hints in the Define Extent command, the host can collect
cache statistics, analyze cache behavior, and control cache
resources in real time.

Such real-time host control, however, is offered
mainly in MVS environments running under SMS file
management. Dynamic cache control using host hints is
much more limited on non-MVS platforms or in MVS
environments which are not yet taking advantage of SMS
file management.

Self-controlling caches

As technology advances, control units are becoming more
and more intelligent. The available computing power in
control units has increased to the point that controllers
are now capable of doing more than just reading and
writing disks. A desire to provide cached controllers for
non-MVS environments has led to the development of a
variety of approaches to providing effective control of
cache resources without host software support. This
section surveys the approaches taken in various I/O
subsystem offerings that have come on the market during
the early 1990°s (other than the 3990 Model 6, just
described in the previous section). Our sampling includes
the IBM 9340 Direct Access Storage Subsystem, the
EMC’ Symmetrix 4800 and 5500 Integrated Cached

Disk Arrays [4, 5], and the IBM 9394 RAMAC Array
Subsystem.

® The 9340 subsystem

The IBM 9340 Direct Access Storage Subsystem was
introduced, in 1992, mainly for use in small, non-MVS
environments, where use of storage control cache was

not as prevalent as it is for large systems. Initially the
controller built into this subsystem did not offer a caching
function, but potential customers of the 9340 quickly made
it clear that cache capability was now a requirement even
in small-system environments. Also, it became apparent
that a cached version of the 9340 would be useful in
some large-system environments (particularly ESCON®
environments). Cache capability was therefore added to
the 9340 subsystem shortly after its introduction. The
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9340 cache function, as well as the management of cache
resources, was provided as a transparent function of the
controller so as to avoid the need for host support.

The 9340 controller provided 64 megabytes of cache
memory. A cache of this size requires good memory
management or it can easily be overcommitted by data
with poor locality of reference. Data which can use cache
memory effectively must able to do so without being
adversely affected by “cache-hostile” data (data with hit
ratios so low that the resulting cache misses would flood
the cache and clog the staging paths). The Adaptive Cache
Management facility was incorporated into the 9340
subsystem as a way to provide the required cache control
and the required transparency relative to host software.

The 9340 adaptive cache algorithm associated a
particular caching behavior with a particular location on
DASD. The controller maintained cache performance
and utilization statistics, by device, for a series of fixed
cylinder bands. This allowed the controller to identify
cylinder ranges corresponding to data sets with poor
locality of reference and to disable cache usage for those
cylinder ranges.

The adaptive caching algorithm allowed the 9340 to
operate efficiently in a wide range of environments,
removing the need for manual tuning or host hints.
Despite the small amount of available cache memory, the
algorithm proved effective even in handling traditionally
“cache-hostile” applications such as DB2®.

® Symmetrix

Another approach to the cache management problem was
used by EMC® Corporation in their Symmetrix series (the
Symmetrix 4800 Integrated Cached Disk Array [4] and
Symmetrix 5500 Integrated Cached Disk Array [5]). The
Symmetrix controllers provide plug compatibility with the
IBM 3880 and 3990 controllers. The Symmetrix controller
accepts count-key-data (CKD) channel commands

of the type sent to 3880 and 3990 storage controls,

then “emulates” these commands so that they can be
performed on fixed-block architecture (FBA) devices
attached to the controller via a SCSI interface. To
accomplish the emulation function, all tracks are brought
into the cache, even those with cache hints that would
otherwise suppress staging of such tracks.

The Symmetrix philosophy has been to allow for the
availability of very large cache sizes in the design. The
Symmetrix series controllers were the first to offer the
capability to configure a gigabyte or more of cache
memory (other DASD vendors have since followed this
example). The capability to install very large cache sizes
provides Symmetrix controllers with the needed protection
from data with poor locality, since a very large cache is
more difficult to “flush.” Also, if path or device loads

become too high, there is a good chance that they can be 335
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reduced (along with the miss ratio) by taking advantage
of the cache size increases that are possible.

Extensive cache memory is also deployed in Symmetrix
controllers to provide auxiliary tables that assist with CKD
emulation. These tables incorporate a full description of
all track formats (not just the tracks currently in cache).
One benefit of such tables is that they allow the controller
to validate write misses without having to perform a
DASD access, thus avoiding the long service delays which
would otherwise be required by the emulation scheme to
perform a CKD write miss on the FBA DASD.

The Symmetrix series of controllers use battery backup
to handle dirty data. This differs from traditional NVS in
that, in the event of a power failure, batteries are used to
operate the entire I/O subsystem, including both cache
memory and the associated DASD, for long enough to
make permanent copies of all dirty data. Thus, a battery-
based backup for the power supply can be provided
without requiring a separate area of memory, such as
NVS, that can retain data for the duration of an extended
power outage.

The Symmetrix controllers retain a single copy of dirty
data in cache. The amount of dirty data which is accepted
in the controlier is adjustable so as to accommodate
differing policies for the management of the string in
the event of a power failure.

® Two-level cache designs (RAMAC)

Yet another approach to cache resource management was
recently introduced with RAMAC. RAMAC involves the
packaging of a RAID-5 disk architecture [6] in the form
of a DASD drawer. All control functions needed for
RAID-5 are incorporated into the drawer. The drawer
uses FBA disks attached via a SCSI interface, but
performs the emulation functions needed to make these
appear to be CKD devices from the point of view of the
storage control. Depending on the method of RAMAC
attachment, the storage control may be a 3990 Model 3
or Model 6 (for RAMAC Array DASD) or a controller
packaged in the same rack as the disks (for the RAMAC
Array Subsystem).

Each RAMAC drawer incorporates 64 megabytes of
cache memory. Because of the presence of drawer cache,
a miss from the point of view of the storage control
may still actually be a hit. This applies to both reads and
writes; the RAMAC drawer cache is equipped with battery
backup and can accept “dirty” data for later destaging.

An interesting aspect of the RAMAC design is that it
imposes a sharply reduced performance penalty for staging
operations. Sufficient data transfer capability is provided
in the drawer so that all four actuators can simultaneously
stage data, with no mutual interference. Therefore, track-
level caching can continue to be provided in the drawer
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even for data that are unsuitable for storage control track
caching because of lower path considerations.

The RAMAC Array Subsystem (with integrated DASD
and controller) is an extension of the 9340 design, in
which the drawer previously containing two 5.25-inch CKD
volumes is replaced by a drawer with four 3.5-inch FBA
devices. In addition to the cache storage provided in each
drawer, a RAMAC subsystem rack can hold up to two
controllers, each with up to two gigabytes of cache
memory. For redundancy, dirty data are retained in
both the drawer and controller caches.

The controller cache of the RAMAC Subsystem uses an
adaptive caching algorithm which is very similar to that of
the 9340, except that the algorithm incorporates selective
record caching. Subsystem decisions about whether to
apply track or record caching within a given cylinder range
are guided by statistics indicating whether the I/O pattern
typically includes requests for distinct records on a given
track. If such requests are rare, the available cache
memory can be used more efficiently by adopting record
cache mode. Thus, the RAMAC subsystem is able to
employ record cache, not just in those situations where
it is needed to limit the consumption of storage control
resources, but also in those situations where it may result
in increased hit ratios.

RAMAC DASD provides a similar drawer for use as a
RAID attachment to the 3990 Model 3 or Model 6 storage
controls. The storage control algorithms of the Model 3 or
Model 6 are retained essentially intact.

Trends and speculations

The overview of recent products, as just presented,
exhibits a remarkable diversity of cache management
strategies. It is apparent that, despite the declining cost
of memory, management of memory and path resources
continues to present an interesting challenge that requires
evolving solutions. In this section, we attempt to organize
the current trends in storage control resource management
into an overall pattern, by examining the problems that
the next generation of storage controls must address and
the types of solutions that appear to be practical.

In the coming several years, I/O subsystems will
continue to offer increasing amounts of both disk storage
and cache memory. But the current pace of advances in
disk technology is so rapid that technologies for cache
memory may be hard pressed, in the next few years, just
to keep up. Although the amounts of both in a typical
I/0 subsystem will continue to increase, we should not
necessarily expect continued growth in the ratio of cache
memory relative to disk storage.

At the same time, the demands placed upon cache
memory and staging paths continue to increase. The
resulting pressure on memory resources will thus continue
to stimulate new memory management techniques. The
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added need for memory comes about for a variety of
reasons.

CKD emulation and RAID-3 or RAID-5 storage
management both require more cache memory per I/0
handled than do traditional disk subsystems. For practical
purposes, these architectures (unlike traditional
subsystems) demand that a cache be used to hold data
while the required translations, merges, XOR operations,
and so forth are carried out. Universal staging is therefore
needed; all data must be brought into the cache, rather
than selective data, as in traditional subsystems.

In the new disk management schemes just outlined,
efficient handling of writes may impose additional memory
demands. For maximum data integrity, “dirty” data must
be duplicated to avoid the possibility of data loss due to
cache memory failure. Delays in handling physical disk
writes, due to CKD emulation or RAID-5 disk
management, will also tend to force all writes to be
accepted at electronic speed, even if they are misses. A
storage control that accepts all writes in this manner
must retain extensive information in the cache about the
formats of all of the data stored on disk (not just the
cached data), since a write cannot be accepted without
verifying that it represents a valid update of the existing
data format.

RAID-3 and RAID-5 disk subsystems spread the I/O
activity of the data in a parity group across all of the disks
of the parity group. This contrasts with conditions in a
traditional disk subsystem, where an equivalent amount
of load may fall predominantly on a single disk volume
because of “skew” [7]. Since RAID-3 and RAID-5
subsystems mitigate skew, they make possible higher
subsystem loads. Thus, disk arrays of these types may
sometimes place higher demands on cache memory than
traditional DASD, because of the higher loads that can
be achieved.

The increasing sophistication of memory and path
resource management strategies that is now occurring
is not driven solely by increasing demands for memory,
however. In addition, the rules of the game are changing.
As just discussed, universal staging as required for some
new types of subsystems precludes the option of not
staging selected tracks. Traditionally, this option has been
central to cache management. In addition, subsystem
packaging is becoming much more flexible; a cache
management strategy may have to account not for a single,
centralized memory, but for a memory hierarchy that
includes both controller and drawer caches. The following
sections speculate about the implications of these trends
in more detail.

® Universal staging
A storage control with universal staging cannot apply
the most powerful technique that has traditionally been
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available to prevent overload of storage control resources;
it cannot suppress staging of selected data. We now
consider alternatives to selective stage suppression.
Alternatives must be found both for the control of
staging load and for the management of memory use.

Control of path load

In designing a disk subsystem to provide universal staging
even for workloads with high miss rates and extreme
staging requirements, one option is to overwhelm the
problem with hardware. We might choose to build so
much data transfer capability into the staging paths that
the paths cannot be overloaded, even if all requests are
misses. This happy state of affairs is actually the case for
the drawer caches of RAMAC. But for a centralized cache
that serves the entire subsystem, manufacturers do not yet
appear to be at the point where this amount of transfer
capability can be provided in a cost-effective manner. For
the time being, at least, it is necessary for a well-rounded
cache management strategy to incorporate some response
to miss rates that the staging paths cannot sustain.

If all requested data must be staged, the control of
staging load must be accomplished by ensuring that only
the requested data are staged. Traditional cache designs
have either staged the entire track on which the requested
disk record appears, or else the portion of the track from
the position of this record through the end of the track.
By contrast, in future cache designs it is desirable to be
able to selectively stage the individual disk record that has
been requested, if this is necessary because of an overload
of path resources.

It is likely that the subsystem served by a given cache
contains a mixture of tracks that exhibit locality and can
benefit from track caching, as well as tracks which have
little locality and should be staged on a record basis if
paths are overloaded. Therefore, we may have to pay a
price if we need to switch the entire cache from track-
staging mode to record-staging mode in order to conserve
path resources. Such a switch of staging mode may sharply
reduce the hit ratio because of its impact on data with
track locality.

To maintain performance for data with track locality,
make the most of limited path resources, and provide
universal staging, data which can benefit from track
caching must be staged on a track basis, while other data
must be staged on a record basis. An example of this type
of selective record staging is the Adaptive Record Cache
algorithm described above for the RAMAC Array
Subsystem.

Control of memory
The capability to selectively implement record, rather than
track, staging for individual ranges of data also provides

a way to conserve on the use of cache memory. This is 337
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because an individual disk record typically requires an
order of magnitude less storage than does a full track.
Even with record caching, however, a rapid succession of
misses to a specific range of data can still have the effect
of “flushing” the cache.

To control the use of memory resources when all data
must be staged, one alternative is to partition the cache
memory [8]. This ensures that, if one memory area is
flushed, the impact is contained within that specific area.

Another approach is to generalize the traditional
concept of the cache LRU list. In such a generalized LRU
(GLRU) list, insertion is allowed at points other than the
top. If a specific range of data is currently exhibiting a
high miss rate, but if data from this range must still be
staged because of universal staging, all staged data from
this range are inserted at a point near the bottom of the
GLRU list. In this way, only other entries near the bottom
of the list, whose probability of future hits is low, will be
flushed.

Some interesting insights into the management of a
GLRU list can be gained by applying a statistical model of
cache locality called the hierarchical reuse model [9]. This
model provides guidance as to the appropriate insertion
points into the GLRU list by examining the corresponding
single-reference residency times (the times required for data
inserted at these points to reach the bottom of the LRU
list and be removed from the cache).

The key assumption of the hierarchical reuse
model is that data references are caused by a series of
hierarchically related processes. For example, repeated
references to a specific track may occur within the same
subroutine, within different routines called by the same
transaction, or as part of an overall task that involves
several transactions. For this reason, the hierarchical reuse
model predicts that the probability of a repeat reference
to a given track in the immediate future is directly related
to the length of time since the last reference (the former
is assumed to be inversely proportional to the latter). This
conclusion of the model validates well against I/O trace
data. The degree of locality for a particular collection of
data (the speed with which the probability of a repeat
reference drops off with time) is reflected by the model
parameter 6. For track caching, this parameter typically
lies in the range 0.2 < 6 < 0.3, with higher values
reflecting stronger locality.

By applying the hierarchical reuse model to a set of
distinct data sets or data ranges, each associated with a
specific value 8, it is possible to determine the best GLRU
insertion point for each data set or data range. As it turns
out, the best insertion points are those for which the
respective single-reference residency times of the various
data sets or data ranges are proportional to the values 6.
Moreover, the value of 6 associated with a given data
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set or data range is easy for the storage control to
estimate. According to the hierarchical reuse model, the
complement of # is equal to the ratio of the single-
reference residency time, relative to the average residency
time, for the corresponding data set or data range.

The advantage of cache memory control via the GLRU
list, therefore, is that specific collections of data are
retained in the cache no longer than they should be on
the basis of their statistical behavior. A range of data with
poor locality cannot flood the cache, since individual
records or tracks from this range are not retained long
enough to accumulate in cache memory.

® New subsystem packaging
The availability of two cache levels, as provided by
RAMAC, creates a variety of new options and decisions
for the storage control. The two memory levels have
distinctly different performance attributes. Controller
cache has the advantage of a shorter delay in placing data
onto the channel, while drawer cache has the advantage
of virtually unlimited staging capability.

The best way to deploy memory resources in these
two caches, for use by specific data sets or data ranges,
depends upon the access patterns of the data, the amounts
of memory resource available in each cache level, and
the overall levels of subsystem load and path use. For
example, if path use is light, it may be desirable to load
full tracks into the controller cache for data in a specific
range, so as to take advantage of track locality by
providing minimum service time when a track hit occurs.
Under heavier loads, however, a more appropriate strategy
for the same range of data may be to stage records into
the controller cache, while servicing track hits (that
are not also record hits) out of the drawer cache. In
the future, increasingly sophisticated heuristics will
undoubtedly evolve for making these types of decisions.

It is possible, however, to sketch a general strategy of
operation that appears likely to work well for most data,
especially under conditions of high controller load. This
strategy is to create a division of labor between the two
memory levels, so that each level attempts to provide
different types of hits. The drawer cache is used to
stage large quantities (full tracks or more) of data, thus
providing hits if the reference pattern refers to several
related records that are close to one another. The
controller cache, by contrast, stores primarily individual
disk records, which require much less storage than do full
tracks. In this way, the controller cache provides much
longer residency times than does the drawer cache, and
obtains as many hits as possible because of these longer
residency times. When operated in this way, a two-level
cache hierarchy can virtually eliminate staging load as a
performance bottleneck.

IBM J. RES. DEVELOP. VOL. 40 NO. 3 MAY 199




® Evolving role of the host

If future storage controls are able to implement memory
and path management strategies as sophisticated as some
of those just outlined, this raises the question of whether
the host will be left with anything useful that it can do to
promote efficient memory and path use. The answer is
that “hints” provided by the host will continue to be
valuable to the storage control; in the future, however,
the nature of such hints is likely to evolve.

If we now enter “blue-sky” mode, it is not difficult to
imagine the types of hints which could be used effectively
by a very advanced storage control. Strategic, rather than
tactical, information will be needed. Such information
might include

e Data set boundaries, so that the “data ranges” discussed
above can correspond to data sets or to other logical
groupings of data as known by the application.

e Priority information; e.g., “data set XYZ is performance-
critical,” or “the response time objective of data set
ABC is 12 milliseconds.”

¢ Information about major events occurring in the host;
e.g., “data set CICSDB has just been closed”; or
“sequential data set LIST has just been opened for
reads.”

Some or all of these types of “hints,” or even perhaps
others, may evolve over the coming years.

Summary and conclusions
From the beginning of the period covered by our survey,
the introduction of the 3880 Model 13 cached storage
control in 1982, the need to manage the use of staging
paths and memory has continued to make itself felt. This
requirement has not disappeared in the years since 1982,
despite the dramatic improvements in memory size and
staging capability which have been provided in subsequent
storage controls. Instead, storage control cache has
gradually become, not just cheaper, but also smarter.

Initially, tactics for resource management revolved
around the suppression of caching for specific volumes,
and the use of host hints that allowed access methods to
control cache as required for the type of access (random,
sequential, media maintenance, and so forth). The power
of host hints to achieve dynamic cache resource control
was considerably enhanced when, in 1990, MVS systems
provided the capability to manage such hints using SMS.

The newest generation of storage controls are now
smart enough that they can both use host hints and make
their own independent decisions. This is particularly
important for storage controls that serve smaller systems,
in which SMS management is not in use.

We have surveyed a variety of management strategies
that have been adopted by the most recent generation
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of storage controls. The IBM 9340 acted adaptively to
suppress staging of selected cylinder ranges, thus making
the most out of a relatively small memory; the EMC’ 5500
relies mainly on large memories, without the capability to
suppress staging activity; the IBM RAMAC Subsystem
dynamically selects among track staging, record staging,
and stage-suppression in the storage control while always
staging into the drawer.

Despite the diversity of strategies, some ground rules
are evident. In the future, it will increasingly be the
job of the storage control to manage the use of its own
resources. Information from the host will tend to be used
for strategic insights (e.g., priorities), rather than directly
to control cache functions.

Also, advanced subsystem architectures such as RAID-3,
RAID-5, and log-structured subsystems with compression
will virtually demand that cache be used for servicing all
I/Os. This means that innovative methods must be found
for reacting to overloads of the staging paths or memory.
These may include record caching, or the insertion of
data at intermediate points in the LRU list.

Finally, storage controls must become expert at
statistical data gathering and analysis. Detailed statistics
must be maintained and analyzed, either at the level of
ranges of data or for individual tracks. Future gains in I/O
performance will be made possible, not just by advances in
disk, memory, and processor technology, but also by the
effective gathering and use of such statistics.

Symmetrix is a trademark of EMC? Corporation.

RAMAC is a trademark, and ESCON and DB2 are registered
trademarks, of International Business Machines Corporation.

While the descriptions of IBM products contained in this
paper have been reviewed by IBM for accuracy as of the date
that the manuscript was prepared, such accuracy cannot be
assured beyond that date. Accordingly, the information in this
paper is provided on an “as-is” basis, and is not intended to
convey a guarantee or warranty of the affected IBM products.
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