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Efficient  management  of  cached  storage 
control resources  has  been important since 
the introduction of  cached controllers in the 
early 1980s, and it continues to grow  more 
important as  technology  advances.  The  need 
for cache  resource  management is due to the 
diversity  of  workloads that may coexist  under 
a  given  controller. Some workloads may 
continually  require  the  staging  of new  data 
into cache  memory, with almost  no  benefit 
in terms  of  performance;  other  workloads 
may  reap  major  performance  benefits  while 
requiring  relatively little data  staging.  The 
sharing  of  resources  among  various  workloads 
must  therefore  be  controlled to ensure  that 
workloads in the former  group  do not interfere 
too much with those in the latter.  Management 
of  cache functions is often  viewed  as the job 
of the  host  system to which the controller 

is attached.  But it is now  also  possible 
for advanced controllers to perform  such 
management  functions in a  stand-alone 
manner.  Caching algorithms  can  change 
adaptively to match  the  workloads  presented. 
This  enables  the  controller to be ported across 
multiple platForms without dependencies  on 
software  support.  This  paper  surveys  the 
variety  of  techniques that have  been  used for 
cache  resource  control,  and  examines  the 
rapid evolution in such  techniques that is now 
occurring. 

Introduction 
Since the first cached DASD controllers were introduced 
in the early 1980s, users of such controllers have observed 
that data with poor locality of reference can interfere with 
the service provided to  the remaining data under the 
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controller,  because of the  added  demand  that such data 
place on cache resources. Each  cache miss typically 
causes  a stage  operation, in which the  requested  track is 
transferred  into  the  cache. If the staging rate  for a subset 
of the  data served by a cache is high, this may cause high 
loads on the disks containing  the  data  and on the staging 
paths. Such loads (especially high loads on the staging 
paths) can,  in turn,  interfere with the service  provided 
to  data  that  otherwise would cache well. 

Contention  can also  occur for cache  memory. In  the 
extreme case, the  cache  can  be “flushed” by a rapid 
succession of misses to  data possessing no locality. In  this 
case, new data  that  do  not benefit from  the  use of cache 
replace  older  data  that may have profited  from  cache 
storage.  Contention  for memory is usually not as extreme 
as  in the example just  described.  It  does, however, tend  to 
limit the effectiveness of the  cache in cases  where  data 
with poor locality are  present, especially if the  cache size 
is small. 

Since contention  for memory and staging path  resources 
can  interfere with the effectiveness of the  cache,  cached 
controllers must manage  these  resources so as to  mitigate 
the effects of contention.  Techniques  for  resource 
management have become increasingly sophisticated. 
Initially, the  focus was on  management via host-initiated 
actions. These included the selective suppression of 
caching for  some volumes, and  the  use of Dynamic Cache 
Management  (DCM)  and Dynamic Cache  Management 
Extended  (DCME)  on MVS systems. More recently, an 
important  trend  has  been  to  incorporate  more  and  more 
of the decision-making into  the  controller itself. This 
paper examines the  range of techniques  that have come 
into use, with a focus on adaptive  strategies  for  use of 
cache memory. 

resource  management  that  are  based  on  control by the 
host.  These  techniques,  and  the  use of storage  control 
cache in general, have typically been  applied in  large- 
system environments. 

small-system environments,  the  need  to  manage  cache 
functions  without  the assistance of host programs  has 
increased.  The ability to  adapt caching algorithms within 
the  storage  controller  enables  the cache to  be  ported 
across multiple  platforms without dependencies  on 
software  support.  The  section on self-controlling caches 
describes  various techniques  that have been used to 
accomplish this in recent  storage  products such  as the 
IBM 9340, the  EMC2 SymmetrixTM, and  the  IBM 
RAMACTM. 

The next section begins by sketching the  techniques  for 

As  cached  controllers have become  more  common in 

Technologies such  as RAID  and  log-structured  arrays 
[ l ]  place  additional  demands  on  the  controller.  These 
demands will further  increase  the complexity of the 
algorithms  required  to effectively manage  the  resources 332 

D. A.  BURTON  AND B. McNUTT 

in  a cached  DASD  controller.  The  section  on  trends  and 
speculations  attempts  to  predict  the  future  impact of such 
technologies  on  cache  resource  management.  The final 
section traces  some of the  common  themes  that  are 
apparent in the diversity of approaches  being surveyed. 

Host-directed resource  management: 1982 to 
the  present 
This section presents a  brief  history of cached  storage 
controls  for  large systems. The  emphasis is on  storage 
controls designed for  use with the MVS, VM,  and VSE 
operating systems, and particularly on  the  use of these 
storage  controls  under MVS. We consider first the  storage 
control  hardware,  then discuss the  management of this 
hardware by the  host. 

Hardware  resources 
Until very recently, cache  hardware  could  be  grouped  into 
two separate families: cache  for  storing  complete  DASD 
tracks, and cache for  storing individual records.  We 
consider  track cache  first,  since (until very recently)  it 
has  been  the  standard  for use in general large-system 
environments. 

Track  caching 
The first IBM  DASD  control unit featuring  track  cache 
was the 3880 Model  13  Direct Access Storage  Control, 
introduced in 1982. This  control  unit provided  a very small 
cache by today’s standards, ranging in size from 4 to 16 
megabytes. When a record  not  already  contained in 
memory was referenced,  the 3880 Model  13  staged this 
record  into  cache,  as well as any other  records  that 
followed  it on the  same  track.  This  method of staging has 
since been  incorporated  into all general-purpose  IBM 
storage controls. 

As has also become  the  standard  practice, 3880 Model 
13  managed its  memory space using a  simple least- 
recently-used (LRU) algorithm. This  algorithm  keeps a list 
of the  data  items  stored in  memory (the  LRU list). The 
list is maintained using pointers, so that  the positions 
of items  on  the list can  be  changed  without  requiring 
movement of the  data.  When a given data item is 
referenced, it is removed from its current position on the 
LRU list, if any, and  placed  at  the  top of the list. Space 
required  for  inserting new data items is allocated  from 
the  bottom of the list, thereby overwriting the  oldest 
(the  “least recently used”)  data.  The effect of the  LRU 
algorithm is to  retain  the most  recently referenced  data, 
up  to  the limit of the available  memory. 

accompanied by the  appearance of cache  “hints” in 
channel  programs.  These  hints tell the  controller how a 
particular access can  best  be  handled. They are  supplied 
to  the  controller as part of the Define Extent  command; 

The  introduction of the 3880 Model  13 was 
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this command, in turn,  precedes  the  commands  that call 
for  actual  transfer of the  data.  The hints supported by the 
3880 Model  13 included inhibit cache load, bypass cache, 
and sequential. 

Inhibit cache load is used for  data  predicted  to exhibit 
poor locality of reference.  The  controller will check the 
cache for  the  presence of the  data,  but if they are  not 
found, will operate directly from  the device and will not 
place the  data  into  cache memory. The bypass cache hint 
is more  special-purpose.  It is typically used by programs 
that  are  performing  media  maintenance  and  require  direct 
access to  the device, or sometimes by applications which 
transfer large amounts of data in  a single channel 
program. 

Sequential is used to indicate that access is expected to 
continue  to  subsequent tracks  in sequential  order  from  the 
current  reference  point.  This  hint  enables  the  control  unit 
to stay ahead of the  program by prestaging  data.  In this 
way, all of the accesses  associated with transferring a file 
(except the first) can  be  handled  as hits.  Also, the  control 
unit can remove data  from  the  cache  after  transfer of 
the  data is complete, so as to save  memory. The exact 
handling of the sequential hint varies with the  control  unit. 
The 3880 Model  13  prefetched a  single track;  subsequent 
control units  have prefetched  larger  amounts of data. 

A variation of the sequential hint, called sequential 
prestage, was added  subsequent  to  the 3880 Model 13. 
This  variation  requests  that  the  controller not remove the 
data  after  completion of the  transfer.  Instead,  the  data 
are allowed to  age  out of cache via the  normal LRU 
mechanism. (By using first the sequential prestage hint, 
followed by sequential, it is also possible to retain  the  data 
in cache only until  the second reference  to  the  data,  then 
allow the  controller  to  remove  the  data following the 
second reference.) 

The  Model  13  lacked  the ability to  “fork”  data.  When 
data were read, they would be  transferred  from  the device 
twice. The first read would satisfy the original request by 
transferring  the  data  to  the  channel; a  second read would 
then  transfer  the  same  data, plus the  remainder of the 
track  from  the  point of reference,  into  cache memory. 
When a  write hit  occurred in the  Model 13, the  data 
would first be  written  to  the device, and would then be 
staged  from  the device into cache  memory. This  scheme 
could  place significant loads on the available  staging paths, 
of which there  were fewer  available than on current 
controllers. 

Specific workloads  could  benefit  a great  deal  from using 
the 3880 Model  13 cache;  however, the device and  path 
activity due  to staging  could  also degrade  performance 
for  some types of data if cache hit ratios  were  not high 
enough  (for  the 3880 Model 13,  hit ratios of 70 percent  or 
higher  were  usually needed  for effective operation).  To 
allow control over which types of data should use cache, 

the  Model 13  provided the capability to  suppress  cache 
functions  at  the  volume level; i.e., cache  could be  “turned 
off”  for any specified  volume or  set of volumes. 

The  IBM 3880 Model 23 Direct Access Storage  Control, 
introduced in 1984, increased  the maximum cache size to 
64 megabytes [2, 31. Also,  this control  unit  introduced  the 
capability to  “fork”  data:  to place data  into  cache memory 
at  the  same  time they are being transferred  to  or  from  the 
device.  While  a read miss operation was being  serviced, 
the  data could now be  staged  into  the  cache while being 
sent  to  the  channel.  Write hit operations  could now 
update  the cache copy of the  data while the  data  were 
being  transferred  from  the  channel  to  the device. 

3880 Model 23 greatly reduced  the  performance  penalty 
associated with misses, compared  to  the  Model 13. This 
broadened  the  range of workloads  for which cache could 
be used effectively, and  reduced  (but did not  eliminate) 
the  need  to selectively suppress cache functions  at  the 
volume level. 

The  forking capability and  added  cache memory of the 

The  IBM 3990 Model 3 Direct Access Storage  Control, 
introduced in 1988, added several new features  important 
to cache management.  These included segmented cache 
memory,  a larger cache  (256-megabyte  maximum), and 
(in 1989) nonvolatile storage  (NVS). 

The  segmented memory management of the 3990 Model 
3 allowed it to  allocate  cache in  units less than a  full track 
slot,  more efficiently using available  cache space.  Prior 
control units had allocated track  space in track slot sizes. 

NVS  allowed the 3990 Model 3 to  store write data in 
memory,  as  a shortcut  to writing them  to disk (the write 
to disk could now occur  later,  after  the  completion of the 
I/O). Such  a shortcut was not possible  in the 3880 Model 
13 or Model 23, since  a  power failure would  have resulted 
in loss of the  data  before a permanent disk copy could be 
made.  The NVS retained a duplicate copy of written  data 
until the  completion of the disk copy operation.  The NVS 
copy was used  only in the event of a  power failure or a 
failure of the volatile cache memory. By drawing upon  an 
emergency battery-based power  supply, the NVS was able 
to  retain  data  for 48 hours in the event of a  power failure. 

Two “hints”  were  introduced  for controlling the  use 
of NVS. The handling of writes,  as just  described, was 
provided by default.  This capability was called “DASD 
fast  write.” The inhibit DASD fast write hint could be used 
to  perform a write  operation directly to disk. The cache 
fast write hint could be used  when the use of volatile 
memory (rather  than NVS) was acceptable  (for example, 
cache fast write is often used for  sort work files, since  such 
files can be  reconstructed if they are lost because of a 
power failure). 

The 3990 Model 3  could  provide  handling at  electronic 
speed, via DASD  fast write, for any write to  data  already 
in the volatile cache. In the  case of a  write to  data which 333 
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could  not  be  found in cache,  the 3990 Model 3  would 
stage  the  track so that  the validity of the write operation 
could  be verified. 

The  introduction of NVS and  DASD  fast write opened 
a new set of cache  management issues revolving around 
the  management of written  data  not yet copied  to  DASD 
(sometimes called  “dirty” data).  The 3990 Model 3 
coordinated a highly granular NVS storage allocation 
scheme with  a destage  mechanism  that could speed  up 
or slow down as  needed.  These allowed the  Model 3 
controller  to  make  the  most  out of a limited,  four- 
megabyte  NVS area. 

introduced in 1993, extended  the design of the 3990 
Model 3 to  larger sizes of cache  and NVS. More 
interestingly from  the  point of view of cache  resource 
management,  the 3990 Model 6 became  the  platform  for 
IBM’s introduction of Record  Cache  for use  in general- 
purpose  environments. 

Record caching 
So far,  our discussion of cache  algorithms  has  focused 
on a track-based  scheme  for staging and memory 
management.  For  random  or nearly random access 
patterns, a more finely grained  management  unit  than  the 
track is often effective. If record caching is used instead 
of track caching, the device busy times  and  path  use  per 
cache miss are  reduced,  as is the  amount of cache memory 
required to store  the  staged  data.  Until very recently,  such 
record  caches have been  provided only in very specialized 
environments.  More specifically, such caches have 
traditionally  been used for paging (the  IBM 3880 Model 
11 Direct Access Storage  Control  and  Model 21 Direct 
Access Storage  Control),  and  for  high-throughput 
transaction processing performed by the  Transaction 
Processing  Facility (TPF)  operating system. 

When  operating in these specialized environments, a 
record  cache is used for known fixed-size records.  The 
controller  operates explicitly in record caching mode 
and  does  not  support  track caching. This usage is not 
appropriate in  a general-purpose  environment,  but 
provides advantages if there is very little  spatial locality 
in the  data. 

record  on a track is not likely to  be followed by requests 
for  other  records  on  the  same track. The  overhead 
of staging the  remainder of the  track,  and  the  space 
requirements  to  store it, are  therefore likely to  be wasted. 
Record caching  avoids these  forms of waste,  while  still 
allowing fast  repeat access to individual records. 

In  March 1994, a record  cache capability for  general 
MVS environments  (Record  Cache  I) was added  to  the 
3990 Model 6. The use of Record  Cache I was controlled 
by “hints,”  as discussed  in the following section.  Less than 

The  IBM 3990 Model 6 Direct Access Storage  Control, 

In cases of very little locality, a request  for a particular 
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a  year later,  the  Record  Cache I1 feature was introduced. 
This permitted  the 3990 Model 6 itself to  control  the  use 
of record  cache. 

As  part of Record  Cache  I,  the capability to  accept 
writes at  electronic  speed, even for  data  not in cache, was 
added  to  the 3990 Model 6. This was done initially via a 
host “hint”  to  indicate  that  there was no  need  to check 
the  format of the  affected  track  before accepting the 
write. The  requirement  for  this  hint  regarding  the  format 
of the  written  data was also eliminated within  a short  time 
after  the initial introduction of Record  Cache I. The 3990 
Model 6 now retains, in cache memory,  a table of those 
tracks that  conform to regular,  stereotyped  formats.  These 
include  the tracks of almost all databases.  The  controller 
accepts writes to such tracks  at  electronic  speed,  whether 
or  not  the  track is in cache. 

Host resource management 
The mechanisms for  management of the  hardware 
resources  just  outlined have been twofold: 

Use by the system programmer  or  others of volume-level 
cache  suppression. 
Use by the  host  software of channel  program  “hints”  to 
indicate  to  the  controller which references  should  be 
staged in the event of a miss. 

We now discuss in more  detail  the  use of hints. 
Ever since the  introduction of the 3880 Model 13, hints 

have been used to  choose  the type of caching appropriate 
for specific, special applications such as  sequential 
processing, sort, utilities, and so on.  More recently, 
however, hints have been  applied  to  the  problem of 
dynamically controlling cache  operation. 

Managed  Storage (SMS) file management,  has  been 
provided by the Dynamic Cache  Management  (DCM) 
function  introduced in 1990, and by the Dynamic Cache 
Management  Extended  (DCME)  function  introduced in 
1993. These  software facilities use  hints  to  indicate  to  the 
controller which references  should  be  staged in the event 
of a miss. If a reference  should  not  be  staged,  the inhibit 
cache load hint is given to  the  cache.  The  selection of data 
sets  that  should  be  supported by staging on a miss is based 
on  the  performance  priority of each  data  set  (as  indicated 
by its  SMS storage class), on the  past effectiveness of the 
cache  in  supporting  the  data  set,  and on current  controller 
load levels. 

If a 3990 Model 6 storage  control is present,  DCME 
may also instruct  the  storage  control, via channel  program 
hints, to  use  record caching for  some  data sets. This is 
done if little locality appears  to  be  present in the access 
pattern of the  data  set.  At high  subsystem loads, 
increasing  use is made of record  cache as  a mechanism 

Dynamic control, in  MVS environments  that  use System 
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for  reducing  the  demands  on  storage  control memory 
and staging paths. 

For its part,  the 3990 Model 6 now keeps  a  history of 
the  patterns of locality  exhibited by each  track. If a given 
track  seldom  receives references  to  more  than  one of its 
records  during a visit to  the  cache,  the 3990 Model 6 
stages  the track in record  mode even if not  instructed 
to  do so by DCME. 

Summary 
Various cache management  techniques have been 
successfully used for over  a decade now. For most of this 
time,  caches  have been  managed via host control.  With 
hints in the Define Extent  command,  the host can collect 
cache statistics,  analyze  cache behavior,  and  control  cache 
resources in real  time. 

Such  real-time host control, however, is offered 
mainly  in MVS environments  running  under SMS file 
management. Dynamic  cache control using  host hints is 
much more limited on  non-MVS  platforms  or in  MVS 
environments which are  not yet taking  advantage of SMS 
file management. 

Self-controlling  caches 
As technology  advances, control  units  are becoming more 
and  more intelligent. The available computing power  in 
control  units  has  increased  to  the  point  that  controllers 
are now capable of doing  more  than  just  reading  and 
writing disks. A desire  to provide cached  controllers  for 
non-MVS  environments has led  to  the  development of a 
variety of approaches  to providing  effective control of 
cache  resources  without host software  support.  This 
section surveys the  approaches  taken in  various I/O 
subsystem  offerings that have come  on  the  market  during 
the  early 1990’s (other  than  the 3990 Model 6, just 
described in the previous section).  Our sampling  includes 
the  IBM 9340 Direct Access Storage Subsystem, the 
EMC’  Symmetrix 4800 and 5500 Integrated  Cached 
Disk  Arrays  [4, 51, and  the  IBM 9394 RAMAC  Array 
Subsystem. 

The 9340 subsystem 
The  IBM 9340 Direct Access Storage Subsystem was 
introduced, in 1992, mainly for use  in  small, non-MVS 
environments,  where  use of storage  control cache was 
not  as  prevalent as  it is for  large systems. Initially the 
controller built into this  subsystem did  not  offer a  caching 
function, but potential  customers of the 9340 quickly made 
it clear  that  cache capability  was now a requirement even 
in small-system environments. Also,  it became  apparent 
that a  cached  version of the 9340 would be useful in 
some large-system environments  (particularly ESCON@ 
environments).  Cache capability was therefore  added  to 
the 9340 subsystem  shortly after its introduction.  The 

9340 cache function, as well as  the  management of cache 
resources, was provided  as  a transparent  function of the 
controller so as to avoid the  need  for host support. 

The 9340 controller provided 64 megabytes of cache 
memory.  A  cache of this size requires good  memory 
management or it can easily be  overcommitted by data 
with poor locality of reference.  Data which can use  cache 
memory effectively must able  to  do so without being 
adversely  affected by “cache-hostile”  data  (data with hit 
ratios so low that  the  resulting cache misses would flood 
the  cache  and clog the staging paths).  The  Adaptive  Cache 
Management facility was incorporated  into  the 9340 
subsystem  as  a way to provide the  required  cache  control 
and the  required  transparency relative to host  software. 

The 9340 adaptive cache algorithm  associated a 
particular caching  behavior  with  a particular  location  on 
DASD.  The  controller  maintained cache performance 
and utilization  statistics, by device, for a series of fixed 
cylinder  bands. This allowed the  controller  to identify 
cylinder ranges  corresponding  to  data  sets with poor 
locality of reference  and  to  disable cache  usage for  those 
cylinder  ranges. 

The  adaptive caching  algorithm  allowed the 9340 to 
operate efficiently in a  wide range of environments, 
removing the  need  for  manual  tuning  or host  hints. 
Despite  the small amount of available cache memory, the 
algorithm  proved  effective  even  in  handling traditionally 
“cache-hostile”  applications such  as DB2@. 

Symmetrix 
Another  approach  to  the  cache  management  problem was 
used by EMC’ Corporation in their Symmetrix series  (the 
Symmetrix 4800 Integrated  Cached Disk Array [4] and 
Symmetrix 5500 Integrated  Cached Disk Array [5]). The 
Symmetrix controllers provide  plug  compatibility with the 
IBM 3880 and 3990 controllers.  The Symmetrix controller 
accepts  count-key-data  (CKD)  channel  commands 
of the type sent  to 3880 and 3990 storage  controls, 
then  “emulates”  these  commands so that they can  be 
performed  on fixed-block architecture  (FBA) devices 
attached  to  the  controller via a  SCSI interface.  To 
accomplish the  emulation  function, all tracks  are  brought 
into  the  cache, even those with cache  hints  that would 
otherwise  suppress staging of such  tracks. 

The Symmetrix philosophy has  been  to allow for  the 
availability of very large cache sizes in the design. The 
Symmetrix series  controllers were the first to offer the 
capability to configure  a  gigabyte or  more of cache 
memory (other  DASD  vendors have  since  followed  this 
example). The capability to install very large  cache sizes 
provides  Symmetrix controllers with the  needed  protection 
from  data with poor locality, since  a very large  cache is 
more difficult to “flush.”  Also, if path  or device loads 
become  too high, there is a good  chance  that they  can be 335 
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reduced  (along with the miss ratio) by taking  advantage 
of the cache  size increases  that  are possible. 

Extensive cache memory is also  deployed  in  Symmetrix 
controllers  to provide auxiliary tables  that assist with CKD 
emulation.  These  tables  incorporate a  full description of 
all track  formats  (not just the  tracks  currently in cache). 
One benefit of such tables is that they allow the  controller 
to  validate  write misses without having to  perform a 
DASD access, thus avoiding the long  service  delays which 
would  otherwise be  required by the  emulation  scheme  to 
perform a CKD write miss on the  FBA  DASD. 

The Symmetrix series of controllers  use battery backup 
to  handle dirty data.  This differs from  traditional NVS in 
that, in the event of a  power failure,  batteries  are used to 
operate  the  entire I/O subsystem,  including both  cache 
memory and the  associated  DASD,  for  long  enough  to 
make  permanent  copies of all  dirty data.  Thus, a battery- 
based  backup  for  the power  supply can  be  provided 
without  requiring a separate  area of memory,  such  as 
NVS, that  can  retain  data  for  the  duration of an  extended 
power outage. 

The Symmetrix controllers  retain a  single copy of dirty 
data in cache.  The  amount of dirty data which is accepted 
in the  controller is adjustable so as to accommodate 
differing  policies for  the  management of the  string in 
the event of a  power failure. 

Two-level cache designs (RAMAC) 
Yet  another  approach  to  cache  resource  management was 
recently introduced with RAMAC.  RAMAC involves the 
packaging of a RAID-5 disk architecture [6] in the  form 
of a DASD drawer. All control  functions  needed  for 
RAID-5  are  incorporated  into  the  drawer.  The  drawer 
uses  FBA disks attached via a  SCSI interface,  but 
performs  the  emulation  functions  needed  to  make  these 
appear to be  CKD devices from  the  point of view of the 
storage  control.  Depending on the  method of RAMAC 
attachment,  the  storage  control may be a 3990 Model 3 
or Model 6 (for  RAMAC  Array  DASD)  or a controller 
packaged in the  same rack  as the disks (for  the  RAMAC 
Array Subsystem). 

Each  RAMAC  drawer  incorporates 64 megabytes of 
cache memory.  Because of the  presence of drawer  cache, 
a miss from  the  point of view of the  storage  control 
may still  actually be a  hit. This  applies  to  both  reads  and 
writes; the  RAMAC  drawer  cache is equipped with battery 
backup  and  can accept “dirty”  data  for  later destaging. 

An  interesting  aspect of the  RAMAC design is that it 
imposes  a  sharply reduced  performance  penalty  for staging 
operations. Sufficient data  transfer capability is provided 
in the  drawer so that all four actuators can simultaneously 
stage  data, with no  mutual  interference.  Therefore,  track- 
level caching can  continue  to  be provided  in the  drawer 
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even for  data  that  are  unsuitable  for  storage  control  track 
caching because of lower path  considerations. 

The  RAMAC  Array Subsystem  (with integrated  DASD 
and  controller) is an extension of the 9340 design,  in 
which the  drawer previously containing two 5.25-inch CKD 
volumes is replaced by a drawer with four 3.5-inch FBA 
devices. In  addition  to  the  cache  storage provided  in each 
drawer, a RAMAC subsystem  rack can hold up  to two 
controllers,  each with up  to two gigabytes of cache 
memory. For  redundancy, dirty data  are  retained in 
both  the  drawer  and  controller caches. 

The  controller cache of the  RAMAC Subsystem uses  an 
adaptive caching algorithm which is very similar to  that of 
the 9340, except that  the algorithm incorporates selective 
record caching.  Subsystem  decisions about  whether  to 
apply track  or  record caching  within  a given cylinder range 
are  guided by statistics  indicating whether  the 1/0  pattern 
typically includes  requests  for distinct records on a given 
track. If such requests  are  rare,  the available cache 
memory can  be used more efficiently by adopting  record 
cache  mode.  Thus,  the  RAMAC subsystem is able  to 
employ record  cache,  not  just in those  situations  where 
it is needed  to limit the  consumption of storage  control 
resources,  but also  in those  situations  where it may result 
in increased hit ratios. 

RAMAC  DASD provides  a  similar drawer  for  use as  a 
RAID  attachment to the 3990 Model 3 or  Model 6 storage 
controls.  The  storage  control  algorithms of the  Model 3 or 
Model 6 are  retained essentially intact. 

Trends  and  speculations 
The overview of recent  products, as just  presented, 
exhibits  a remarkable diversity of cache  management 
strategies.  It is apparent  that,  despite  the declining  cost 
of memory, management of memory and  path  resources 
continues  to  present  an  interesting  challenge  that  requires 
evolving solutions. In  this  section, we attempt  to  organize 
the  current  trends in storage  control  resource  management 
into  an overall pattern, by examining the  problems  that 
the next generation of storage  controls must address  and 
the types of solutions  that  appear  to  be practical. 

continue  to  offer increasing amounts of both disk storage 
and cache  memory.  But the  current  pace of advances  in 
disk technology is so rapid  that  technologies  for  cache 
memory may be  hard  pressed, in the next few years, just 
to  keep  up.  Although  the  amounts of both in  a typical 
I/O subsystem will continue  to  increase, we should not 
necessarily  expect continued growth  in the ratio of cache 
memory  relative to disk storage. 

At  the  same  time,  the  demands  placed  upon cache 
memory and staging paths  continue to increase.  The 
resulting pressure  on memory resources will thus  continue 
to  stimulate new memory management  techniques.  The 

In  the coming  several  years, I/O subsystems will 
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added  need  for memory  comes about  for a  variety of 
reasons. 

CKD  emulation  and  RAID-3  or  RAID-5  storage 
management  both  require  more  cache memory per I/O 
handled  than  do  traditional disk subsystems. For practical 
purposes,  these  architectures  (unlike  traditional 
subsystems) demand  that a  cache be used to hold data 
while the  required  translations, merges, XOR  operations, 
and so forth  are  carried  out. Universal  staging is therefore 
needed; all data must be  brought  into  the  cache,  rather 
than selective data, as  in traditional subsystems. 

In  the new disk management  schemes  just  outlined, 
efficient handling of writes may impose additional memory 
demands.  For maximum data integrity, “dirty”  data must 
be  duplicated  to avoid the possibility of data loss due  to 
cache memory failure. Delays in handling physical disk 
writes, due  to  CKD  emulation  or  RAID-5 disk 
management, will also tend  to  force all writes to  be 
accepted  at  electronic  speed, even if they are  misses. A 
storage  control  that accepts  all  writes in this manner 
must retain extensive information in the  cache  about  the 
formats of all of the  data  stored  on disk (not  just  the 
cached  data), since  a  write cannot  be  accepted without 
verifying that it represents a valid update of the existing 
data  format. 

RAID-3  and  RAID-5 disk subsystems spread  the 1/0 
activity of the  data in a  parity group across all of the disks 
of the parity group.  This  contrasts with conditions in  a 
traditional disk  subsystem, where  an  equivalent  amount 
of load may fall predominantly  on a  single  disk  volume 
because of “skew” [7]. Since RAID-3  and  RAID-5 
subsystems mitigate skew, they  make possible higher 
subsystem loads.  Thus, disk arrays of these types may 
sometimes place higher  demands on cache memory than 
traditional  DASD, because of the  higher loads that can 
be achieved. 

The increasing sophistication of memory and  path 
resource  management  strategies  that is now occurring 
is not driven solely by increasing demands  for memory, 
however. In addition,  the  rules of the  game  are changing. 
As just discussed,  universal  staging  as required  for  some 
new types of subsystems precludes  the  option of not 
staging selected tracks. Traditionally, this option  has  been 
central  to cache management. In addition, subsystem 
packaging is becoming  much more flexible; a cache 
management strategy may have to  account  not  for a single, 
centralized memory, but  for a  memory  hierarchy that 
includes  both  controller  and  drawer caches. The following 
sections  speculate  about  the implications of these  trends 
in more detail. 

Universal  staging 
A storage  control with  universal  staging cannot apply 
the most  powerful technique  that has  traditionally been 

available to  prevent  overload of storage  control resources; 
it cannot  suppress staging of selected  data.  We now 
consider  alternatives  to selective stage  suppression. 
Alternatives must be  found  both  for  the  control of 
staging load  and  for  the  management of memory  use. 

Control of path  load 
In designing  a disk subsystem to provide  universal  staging 
even for workloads with high miss rates  and  extreme 
staging requirements,  one  option is to overwhelm the 
problem with hardware.  We might choose  to build so 
much data  transfer capability into  the staging paths  that 
the  paths  cannot  be  overloaded, even if all requests  are 
misses. This happy state of affairs is actually the case for 
the drawer caches of RAMAC.  But  for a centralized  cache 
that serves the  entire subsystem, manufacturers  do  not yet 
appear  to  be  at  the  point  where this amount of transfer 
capability  can be provided  in  a  cost-effective manner.  For 
the  time being, at least, it is necessary for a well-rounded 
cache  management strategy to  incorporate  some  response 
to miss rates  that  the staging paths  cannot sustain. 

If all requested  data must be  staged,  the  control of 
staging  load  must be accomplished by ensuring  that only 
the  requested  data  are  staged.  Traditional  cache designs 
have either  staged  the  entire  track  on which the  requested 
disk record  appears,  or else the  portion of the  track  from 
the position of this record  through  the  end of the track. 
By contrast, in future cache  designs  it is desirable  to  be 
able  to selectively stage  the individual  disk record  that  has 
been  requested, if this is necessary  because of an  overload 
of path resources. 

It is likely that  the subsystem  served by a given cache 
contains a  mixture of tracks  that exhibit  locality and  can 
benefit from  track caching,  as well as  tracks which have 
little locality and  should  be  staged on  a record basis if 
paths  are  overloaded.  Therefore, we may have to pay a 
price if we need  to switch the  entire  cache  from  track- 
staging mode  to  record-staging  mode in order  to conserve 
path  resources. Such  a switch of staging mode may sharply 
reduce  the hit ratio  because of its  impact on  data with 
track locality. 

make  the most of limited path  resources, and provide 
universal  staging, data which can benefit from  track 
caching  must be staged on a track basis, while other  data 
must be  staged  on a record basis. An example of this  type 
of selective record staging is the  Adaptive  Record  Cache 
algorithm  described  above for  the  RAMAC  Array 
Subsystem. 

To  maintain  performance  for  data with track locality, 

Control of memory 
The capability to selectively implement  record,  rather  than 
track,  staging for individual ranges of data  also provides 
a way to conserve on  the  use of cache memory. This is 337 
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because  an individual  disk record typically requires  an 
order of magnitude less storage  than  does a  full track. 
Even with record caching,  however,  a rapid succession of 
misses to a specific range of data  can still  have the effect 
of “flushing” the  cache. 

To  control  the  use of memory resources when  all data 
must be  staged,  one  alternative is to  partition  the  cache 
memory [8]. This  ensures  that, if one memory area is 
flushed,  the  impact is contained within that specific area. 

Another  approach is to  generalize  the  traditional 
concept of the  cache  LRU list. In such  a generalized  LRU 
(GLRU) list, insertion is allowed at  points  other  than  the 
top. If a specific range of data is currently exhibiting  a 
high miss rate,  but if data  from  this  range must  still be 
staged  because of universal  staging, all staged  data  from 
this range  are  inserted  at a point  near  the  bottom of the 
GLRU list. In  this way, only other  entries  near  the  bottom 
of the list,  whose  probability of future hits is low, will be 
flushed. 

Some  interesting insights into  the  management of a 
GLRU list can  be  gained by applying  a statistical  model of 
cache locality called the hierarchical reuse model [9]. This 
model provides guidance  as  to  the  appropriate  insertion 
points  into  the  GLRU list by examining the  corresponding 
single-reference residency times (the  times  required  for  data 
inserted  at  these  points  to  reach  the  bottom of the  LRU 
list and  be removed from  the  cache). 

model is that  data  references  are  caused by a series of 
hierarchically related processes. For example, repeated 
references  to a specific track may occur  within the  same 
subroutine, within different  routines called by the  same 
transaction,  or  as  part of an overall  task that involves 
several transactions.  For this reason,  the  hierarchical  reuse 
model  predicts  that  the  probability of a repeat  reference 
to a given track in the  immediate  future is directly related 
to  the  length of time since the  last  reference  (the  former 
is assumed to  be inversely proportional  to  the  latter).  This 
conclusion of the  model  validates well against I/O trace 
data.  The  degree of locality for a particular collection of 
data  (the  speed with which the probability of a repeat 
reference  drops off with time) is reflected by the  model 
parameter 0. For  track caching, this  parameter typically 
lies  in the  range 0.2 5 8 5 0.3, with higher values 
reflecting stronger locality. 

By applying the  hierarchical  reuse  model  to a set of 
distinct data  sets  or  data  ranges,  each  associated with  a 
specific value 0, it is possible to  determine  the  best  GLRU 
insertion  point  for  each  data  set  or  data  range. As it turns 

The key assumption of the  hierarchical  reuse 

out,  the  best  insertion  points  are  those  for which the 
respective single-reference residency times of the various 
data  sets  or  data  ranges  are  proportional  to  the values 0. 
Moreover,  the value of 0 associated with  a given data 338 
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set  or  data  range is easy for  the  storage  control  to 
estimate. According to  the hierarchical reuse  model,  the 
complement of 0 is equal  to  the  ratio of the single- 
reference residency time, relative to  the average  residency 
time,  for  the  corresponding  data  set  or  data  range. 

The  advantage of cache memory control via the  GLRU 
list, therefore, is that specific collections of data  are 
retained in the  cache  no  longer  than  they  should  be on 
the basis of their statistical  behavior.  A range of data with 
poor locality cannot flood the  cache, since  individual 
records  or  tracks  from  this  range  are  not  retained  long 
enough  to  accumulate in cache memory. 

New subsystem packaging 
The availability of two cache levels, as  provided by 
RAMAC,  creates a  variety of new options  and decisions 
for  the  storage  control.  The two memory levels have 
distinctly different  performance  attributes.  Controller 
cache  has  the  advantage of a shorter delay  in  placing data 
onto  the  channel, while drawer  cache  has  the  advantage 
of virtually unlimited staging  capability. 

The best way to deploy  memory resources in these 
two caches, for use by specific data  sets  or  data  ranges, 
depends  upon  the access patterns of the  data,  the  amounts 
of memory resource available  in each  cache level, and 
the overall levels of subsystem load  and  path use. For 
example, if path use is light,  it may be  desirable  to  load 
full  tracks into  the  controller  cache  for  data in  a specific 
range, so as to  take  advantage of track locality by 
providing  minimum  service time when  a track  hit occurs. 
Under heavier  loads,  however,  a more  appropriate strategy 
for  the  same  range of data may be  to  stage  records  into 
the  controller  cache, while servicing track  hits  (that 
are  not  also  record hits) out of the  drawer cache. In 
the  future, increasingly sophisticated heuristics will 
undoubtedly evolve for making these types of decisions. 

It is possible,  however, to  sketch a general  strategy of 
operation  that  appears likely to work well for most data, 
especially under  conditions of high controller load. This 
strategy is to  create a division of labor  between  the two 
memory levels, so that  each level attempts  to provide 
different types of hits. The  drawer  cache is used to 
stage  large  quantities (full tracks  or  more) of data,  thus 
providing  hits if the  reference  pattern  refers  to several 
related  records  that  are close to  one  another.  The 
controller  cache, by contrast,  stores primarily  individual 
disk records, which require much  less storage  than  do full 
tracks. In this way, the  controller  cache provides  much 
longer residency times  than  does  the  drawer  cache,  and 
obtains as  many  hits  as  possible because of these  longer 
residency  times. When  operated in  this way, a two-level 
cache hierarchy can virtually eliminate staging load as  a 
performance  bottleneck. 
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Evolving role of the host 
If future  storage  controls  are  able  to  implement memory 
and  path  management  strategies as sophisticated as some 
of those  just  outlined, this  raises the  question of whether 
the host will be  left with  anything  useful that it can  do  to 
promote efficient  memory and  path use. The answer is 
that  “hints”  provided by the  host will continue  to  be 
valuable to  the  storage  control; in the  future, however, 
the  nature of such hints is likely to evolve. 

If we now enter “blue-sky” mode, it is not difficult to 
imagine the types of hints which could  be used effectively 
by a very advanced storage  control.  Strategic,  rather  than 
tactical, information will be  needed.  Such  information 
might include 

Data  set  boundaries, so that  the  “data  ranges” discussed 
above can  correspond  to  data  sets  or  to  other logical 
groupings of data as known by the  application. 
Priority information; e.g., “data set XYZ is performance- 
critical,” or  “the  response  time objective of data  set 
ABC is 12 milliseconds.” 
Information  about  major  events  occurring in the host; 
e.g., “data  set  CICSDB  has  just  been closed”; or 
“sequential  data  set  LIST  has  just  been  opened  for 
reads.” 

Some  or all of these types of “hints,”  or  even  perhaps 
others, may evolve over  the coming  years. 

Summary  and  conclusions 
From  the beginning of the  period covered by our survey, 
the  introduction of the 3880 Model  13  cached  storage 
control in 1982, the  need  to  manage  the  use of staging 
paths  and memory has  continued  to  make itself felt.  This 
requirement  has  not  disappeared in the  years since 1982, 
despite  the  dramatic  improvements in memory  size and 
staging  capability which have been provided in subsequent 
storage controls. Instead,  storage  control  cache  has 
gradually become,  not just cheaper,  but also smarter. 

Initially,  tactics for  resource  management revolved 
around  the  suppression of caching for specific volumes, 
and  the use of host hints  that allowed access methods  to 
control  cache as required  for  the type of access (random, 
sequential,  media  maintenance,  and so forth).  The power 
of host hints  to achieve  dynamic cache  resource  control 
was considerably enhanced when, in 1990, MVS systems 
provided the capability to  manage such hints using SMS. 

The newest generation of storage  controls  are now 
smart  enough  that  they can both  use host hints  and  make 
their own independent decisions. This is particularly 
important  for  storage  controls  that serve smaller systems, 
in which SMS management is not in use. 

We have  surveyed  a  variety of management  strategies 
that have been  adopted by the most recent  generation 

of storage  controls.  The  IBM 9340 acted adaptively to 
suppress staging of selected cylinder ranges,  thus making 
the most out of a  relatively  small  memory; the  EMC2 5500 
relies mainly on  large  memories, without the capability to 
suppress staging activity; the IBM RAMAC Subsystem 
dynamically selects among track  staging, record staging, 
and  stage-suppression in the  storage  control while always 
staging into  the  drawer. 

Despite  the diversity of strategies,  some  ground  rules 
are  evident.  In  the  future, it will increasingly be  the 
job of the  storage  control  to  manage  the use of its own 
resources.  Information  from  the host will tend  to  be used 
for  strategic insights (e.g., priorities),  rather  than directly 
to  control  cache  functions. 

Also,  advanced  subsystem architectures such  as RAID-3, 
RAID-5,  and  log-structured subsystems with compression 
will virtually demand  that  cache  be used for servicing all 
I/Os.  This  means  that innovative methods must be  found 
for  reacting  to  overloads of the staging paths  or memory. 
These may include  record caching, or  the  insertion of 
data  at  intermediate  points in the  LRU list. 

statistical data  gathering  and analysis. Detailed statistics 
must be  maintained  and analyzed, either  at  the level of 
ranges of data  or  for individual  tracks. Future gains in 1/0 
performance will be  made possible, not  just by advances in 
disk,  memory, and  processor technology,  but  also by the 
effective gathering  and  use of such  statistics. 

Finally, storage  controls must  become expert  at 
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