
Automated 
forms- 
processmg 
software 
and services 

by S. Gopisetty 
R. Lorie 
J. Mao 
M.  Mohiuddin 
A. Sorin 
E. Yair 

While  document-image  systems  for the 
management  of  collections of documents, 
such as forms,  offer  significant  productivity 
improvements, the entry  of  information from 
documents  remains a labor-intensive  and 
costly task for  most  organizations. In this 
paper, we describe  a software system  for the 
machine  reading of forms data from their 
scanned  images.  We  describe  its  major 
components: form recognition  and  “dropout,” 
intelligent character recognition (ICR), and 
contextual  checking.  Finally, we describe 
applications  for  which our automated forms 
reader has been successfully  used. 

Introduction 
Forms processing is an  essential operation in business 
and  government organizations. Forms  are  structured 
documents  that  can  be filled in, distributed,  approved  or 
rejected,  stored,  retrieved,  and  handled in other ways. 
While  forms may be  paper-based  or  on-line,  the  large 
majority of the  forms  that  are in common  use today are 
paper  documents.  Because of the many advantages they 
provide, there is an increasing trend toward  image systems 
in which paper  forms  are  scanned  and  converted  to images 
and processed  like on-line  forms.  One of the  central 
problems in this process is the  cost of capturing 

information  from  the  scanned images. The technology 
and software to  automate  data  entry  from  forms is the 
topic of this  paper. 

spent annually,  worldwide, on keying information  from 
paper documents’-and this is for keying only 1% of the 
available documents. Most of this  cost is in human  labor. 
When  the  process of data  entry is automated, significant 
cost savings can  be  realized; in addition,  the  percentage of 
data  that is brought on line  can also be  increased.  For 
example, the US.  Internal  Revenue Service  processed 
200 million tax returns in 1993, of which 6% were filed 
electronically [l]. Only about 40% of the  data on tax 
returns was keyed in, and  the typical processing time on 
tax returns was four  to six weeks. It is estimated  that by 
the year 2001, 312 million returns will be filed, of which 
30% will be filed electronically. As a  result of an 
ambitious tax-system-modernization  effort based on 
imaging, the  IRS  hopes  to  capture 100% of the  data  from 
tax returns  and  at  the  same  time  reduce  the processing 
time  to two to  three weeks. Figures also indicate  that 
although  the  percentage of electronic filings is increasing, 
paper  returns will continue  to be a dominant  factor  for 
the  foreseeable  future. 

In this paper, we describe an image-based  forms- 
processing  system that significantly reduces  the  human 

It  has  been  estimated  that approximately $250 billion is 

I IBM  Charlotte internal study report on data entry costs, 1993 
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A,  etc.  This is done in the “form-recognition’’ stage. All 
distinct form types that  are used  in an  enterprise  are 
defined to  the system in  a “forms-training”  phase  (not 
shown  in the figure). In  the  form-recognition  stage,  the 
input  image is recognized  as  belonging to  one of the 
previously defined form types. Once  the  form type is 
identified, the  locations of the fields of interest  and  the 
contextual  relationships within and between  fields are 
available to  the system from  the  information provided 
in forms  training. If the  form type cannot  be identified 
automatically, the  data must be keyed  in  manually. 
Therefore,  reliable  form-type  recognition is a key 
requirement in an image-based  forms-processing system. 

The next task is to extract  images of fields that  are  to 
be recognized. The  input image is carefully registered 
(Le., aligned) with its matching  blank  form  (the template 
image), which is stored in the system during  the forms- 

Black and training  phase.  The  template image is then  subtracted 
white image from  the  registered  input image,  leaving only the filled- 

in data.  This is done in the “form-dropout’’  stage. This 
process helps  in  compressing the image significantly, since 

Data entry and Contextual the  dropped-out image  has far fewer  black pixels than  the 

original filled-in image. The  dropped-out image is stored 
in an image database  for display and archival purposes. 
Notice  that  an  equivalent of the original  image  can be 
displayed by overlaying the  dropped-out image  with the 
template image. 

correction  processing 

Images of fields of interest  are  then  extracted  from  the - 
dropped-out image, and intelligent character recognition 
(ICR) is applied  to  them.  Contextual  information, such 

System organization. as whether a field is numeric-only or  alphanumeric, is 
utilized  in ICR  whenever such information is available. 
If no information is available on  the  case  (upper  or 

labor involved in capturing  information  from  paper  forms. 
After  presenting  an overview of the system  in the next 
section, we describe its individual components in the 
succeeding sections.  In  addition  to  the  components 
described in  this paper,  an image-based  forms-processing 
system also  requires a workflow manager  to  route  forms 
that  are  being  processed, a database  manager  to  store  and 
retrieve  forms,  and a folder  manager  to  organize  and 
present  related  forms. However, we do  not describe these 
components,  because they are  outside  the main scope of 
the  paper. 

System overview 
In this  section, we present  an overview of the image-based 
forms-processing  system. Figure 1 shows the system 
organization. A paper  form is scanned  to  produce a  black- 
and-white  image. The next  task is to identify the  form 
type-for example,  in  a tax application,  to  determine 

21 2 whether  the image corresponds  to  Form 1040 or  Schedule 

lower) and type  (e.g., numerical) of the field, a  two-stage 
recognition is performed, in which the first stage identifies 
the case and type, and  the  second  stage establishes 
individual character  identities. Since ICR is not  error-free, 
multiple hypotheses  (three  for  each  character, in our 
implementation)  are  generated  and passed to  the 
contextual-checking  stage. Our  contextual  processor 
checks the syntactic and  semantic  correctness of the 
ICR  results, using previously defined constraints.  If 
the  contextual  processor can  resolve the field identity 
unambiguously, the  result  for  that field is accepted as 
final; otherwise,  the results are passed to  the verification 
stage.  For  rapid verification, we employ  a technique called 
“carpet” verification, which is explained  in the  section  on 
verification and  correction.  Those  characters whose ICR 
identities  are verified as  correct by the  operator  are 
accepted  as final.  Given these confirmed character 
identities,  the  contextual  processor  tries again to resolve 
those fields that it  could not identify before.  The  output 
of the verification and  correction  process should be 
close to 100% correct. 
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Tests on customers’  forms  show that  our system can 
achieve  a data  entry  rate of about 20000 characters  per 
hour  per  operator,  even with unskilled operators. In 
contrast, a professional key entry  operator  can  enter 
about  10000  characters  per  hour  from forms. Therefore, 
the  use of our system  provides  a significant increase in 
productivity  in the key entry process, while at  the  same 
time  not  requiring  the use of professional key entry 
operators. 

Form recognition and dropout 
A fundamental  problem  that must be solved for many 
form-processing applications is that of efficient  image 
compression.  With  standard compression algorithms  for 
black-and-white  images,  such  as the  CCITT  Group 4 
MMR algorithm [ 2 ] ,  a  compression factor  between 5 and 
20 can  be achieved for most  types of forms. A typical 
filled-in form of letter size (8.5 X 11 in.) compressed via 
the  MMR algorithm may require approximately 20-80  KB 
(kilobytes) of memory.  However, there is still  a substantial 
amount of redundancy in these forms,  since only the 
filled-in information is  of importance, while the  constant 
information  (the  printed  matter on the  blank  form) may 
be  stored  once  and  later used for all of the filled-in  forms 
of the  same type. 

For  numerous applications,  it is essential to  increase  the 
compression ratio  quite significantly in order  to  reduce  the 
required  amount of both  short-  and  long-term  storage. 
Fortunately, in many of these applications,  the  number of 
different  form types is relatively small, while for  each  form 
type (and its template)  there  are  an  enormous  number 
of filled-in forms  that differ only in their filled-in 
information.  This fact gives rise to a more  sophisticated 
compression scheme, which relies on the removal of the 
common  information  (the  template  image)  shared by all 
forms of the  same type. After removal of the  common 
data,  one is left with an image  consisting of the filled-in 
information only, which requires an order of magnitude 
less storage  than  the original  image  when compressed 
(via standard  G4  MMR  compression). 

As mentioned above, the  procedure  that removes the 
common  data  from  the  form  and leaves only the filled- 
in data is called form dropout (FDO). When the  FDO 
algorithm is applied  to a filled-in form  and  the  resultant 
filled-in data  are  then  compressed by a standard  MMR 
algorithm, a typical filled-in letter-sized  form may be 
represented by approximately 2-12 KB, yielding an 
additional compression factor of nearly 10 with respect 
to  MMR  carried  out  on  the original  image. A further 
compression  factor of 2 can be achieved by a clever 
subsampling algorithm  (described below) that may follow 
the  FDO.  The  remainder of this section describes these 
compression techniques  and  associated  procedures. 
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A prerequisite  for  FDO is the knowledge of the  form 
type associated with the given filled-in form. In most 
applications,  multiple (from a few to several hundred) 
different  form types are used; thus,  the  FDO  procedure 
should typically be  preceded by a form-recognition 
procedure  that automatically  identifies the type of the 
input filled-in form  from a prestored  template library. 

forms with a  special  color of ink (dropout  ink)  that is 
invisible to  conventional  scanners. In such  a  case, the 
template  data would be invisible to  the  scanner,  and 
only the filled-in data would enter  the  computer.  For 
most systems, however, subsequent image  processing is 
required, such as  form  recognition, image registration  and 
alignment, de-skew,  indexing, and  ICR. Using dropout ink 
makes it almost  impossible to carry out many of these 
tasks.  Also, if the  application allows usage of photocopies, 
the  technique of using dropout ink for  the originals will 
not apply to  the  photocopies. In addition,  the necessity 
of form  redesign  and  the use of special  ink  might be 
cumbersome  and costly to  some users. For tasks  such as 
form  recognition  and image registration, it is best  to have 
“rich” forms with as many “identifiers” as possible  (such 
as  lines, boxes, and special marks).  Hence,  the  optimal 
strategy is to find an  appropriate trade-off between  adding 
identifiers to  the  forms  to  help with  image  processing, 
and eliminating them  to  help with FDO. Accordingly,  a 
general-purpose, software-based FDO  procedure is of 
significant  value for most  image  applications. 

The basic idea of FDO is quite simple. First, in the 
forms-training process, each  different blank form is scanned 
and  stored in the system. The fields of interest on which 
ICR is to  be  applied  are also  specified. At  the  end of the 
forms-training process,  a  library of blank forms (called the 
template library) is made available. Then, for each filled-in 
form  to  be  compressed,  the  appropriate  template  form 
must be recognized,  aligned with the filled-in forms 
(image registration), and  subtracted  from  the filled-in 
form, leaving only the filled-in data, which can  then  be 
compressed.  The image reconstruction can be  carried 
out by decompressing the  “subtracted”  form  and 
superimposing  the  appropriate  template  data on it. 

In Figure 2, we show a filled-in version of a tax form 
(the filled-in data  are  hypothetical),  and in Figure 3, the 
image after  the  dropout  process  has  been  applied. Notice 
that all of the  template  data have been removed.  Notice 
also the significant reduction in required  storage  that we 
are  able  to achieve (following compression,  from 104.9 KB 
of storage  for  the  complete image to 10.9 KB after  FDO). 

One possible alternative  to  FDO is to  print  the blank 

Form recognition 
For  applications with multiple forms,  automatic 
recognition of the type of the filled-in forms is a 
prerequisite  for  FDO.  This  process is based on matching 21 3 
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form,  leading  to  ambiguous  recognition. In these cases, 
user-defined fields (UDFs) may be specified, in which some 
other  matching  function (such  as ICR, bar-code  reading, 
or histogram  matching) may be used. These  UDFs  are 
defined by an  operator  during  the  forms-training process, 
when the system indicates  that  an  input  form is too similar 
to a previously stored form. Then,  the  form-recognition 
procedure  uses  these  UDFs  to  discriminate  between 
similar forms.  The type of matching function defined  in 
each UDF  depends  on  the  application.  For example, if 
there  are two similar tax forms,  one  for 1994 and  the 
other  for 1995, that  differ only in the field where  the  year 
is specified in some known font, a UDF should  be defined 
for  this field, and  an ICR function  tailored  to this font 
should  be used to identify the  form by recognizing the 
year  printed in  this UDF. 

It  should  be  noted  that  forms of the  same type that 
come  from  different  printing  sources  differ slightly in their 
final layout,  and  forms  that have  even slightly different 
images are  inadequate  for  the  subsequent  FDO.  Hence, 
each  different layout and version of the  same type of form 
is defined  as  a different  form type for  the  automated 
system. A  special feature of the  form-recognition  software 
is the ability to  detect  forms  scanned  upside down 
(Le., rotated by 180”) by rotating  the image and  then 
recognizing the  form type. 

A u.S. tax form with imaginary  data filled in. It requires 104.9 The  form-recognition  module  described  here has been 
kilobytes of storage. successfully used  in  census,  banking, and tax-processing 

applications,  where  tens  to  hundreds  of  different  forms 
were  used. 

.. . 

the  input filled-in form with a  library of prescanned  blank 
forms  to find the best match  (described  later).  Another 
task carried  out by the  form-recognition  module  during 
the  matching process is to find the  proper  transformation 
between the  input filled-in form  and its matching  template 
form.  This  transformation includes translation,  rotation, 
and scaling. Form  recognition is also supplemented by a 
forms-training process, by which new forms  are defined to 
the system. 

In most  cases,  it is sufficient to identify  a form by its 
“signature,” which includes the  locations  and  lengths of its 
horizontal  and/or vertical  lines. The  match  between  the 
signature of a filled-in form  and a template  form  from  the 
template library is then  carried  out by comparing  these 
two sets of signatures by means of an  elastic  matching 
procedure [3]. 

Occasionally,  however, this  signature is not sufficient to 
’ carry out  the  form  recognition,  because  either  the  form 

has  too few lines, or  different  forms in the library  have 
similar  signatures. Hence,  the  elastic  matching  procedure 

21 4 may match two or  more  templates with the  same  input 

Registration 
The first problem  that must be  addressed  after recognizing 
the  form type is image registration, i.e., the process of 
aligning an incoming filled-in form with  a  matching 
template.  The  geometric  relationship  between  an 
instance of a form  and its template  can  be defined by a 
transformation  that is composed of translation,  rotation, 
scaling, and  shear. In general, a transformation  that  can 
define the image of a form in terms of the  template is 
nonlinear  and  requires  the  evaluation of a  large number 
of parameters.  The  solution  to  the  registration  problem 
was thus divided into two phases: 

1. Coarse registration Computes  and  performs a linear 
transformation  containing  translation,  rotation,  and 
scaling. 

2.  Fine registration Fixes local nonlinear  distortions by 
using  a  piecewise-linear pattern  matching of rectangular 
blocks in the images. 

Coarse registration 
The task of coarse  registration is to  perform global 
rotation, scaling, and  translation,  according  to five 
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parameters defining the  geometric  difference  between  an 
incoming form  and its template. Since these  operations 
are  computationally intensive  (especially the  rotation of 
an  image), they are  performed only if necessary, Le., if 
the  distortion is larger  than  some  tolerance  threshold. 
The  transformation  parameters  are provided by the 
form-recognition process. 

i X 

Fine registration 
When  coarse  registration is complete, we are  left 
with an  image that is different  from  the  template by 
slight rotation, scaling, and localized distortion.  The 
transformation  parameters describing the  relation of the 
image to  the  template  are also  available. The next step is 
to  perform a fine registration  to  deal with the localized 
nonlinear  distortions,  rotation,  and scaling (because of 
nonlinear  distortions  in  the  scanning  operation).  There  are 
two possible  mechanisms to overcome  these  problems: 

f 
d e  

0 

Block registration If this mechanism is chosen,  the 
image is partitioned  into a number of relatively  small, 
overlapping segments. For each  segment,  the system 
computes  an  independent  transformation, which consists 
of translation only.  Since the  entire image  is composed 
of a combination of shifted segments, registration of 
slightly rotated  and scaled  images is possible. Moreover, 
since each  segment may move independently of its 
neighbors  to  some limited extent,  the local nonlinear 
distortions  are  addressed as well. In practice,  the 
location of each  segment is computed  independently 
of its  neighbors;  therefore,  irregularities in segment 
placing may arise. Such irregularities may produce 
very annoying results in some cases; for this reason, a 
heuristic  control mechanism is applied  to  make  sure  that 
neighboring  segments  do  not  differ in movement by 
more  than a  specified number of pixels, thus  reducing 
such irregularities  to a  minimum. Once  the  optimal 
translation  parameters  are  established,  each  segment is 
placed at  the  appropriate  location of the  output image. 

annoying irregularities in the FDO result, especially 
when  a scanner with an  irregular  form-feed drive (which 
is the primary cause of nonlinear  distortions) is used. 
In such  cases,  it may be  better  to apply  a more complex 
registration  mechanism, which leads  to  better quality, at 
the expense of speed of execution. Our  dropout  software 
provides an elastic registration mechanism for such 
cases, which tries  to match each pixel in the  input image 
to  the respective pixel in the  template image, stretching 
and  shrinking  the  input  image  as  it progresses. 

Elastic registration Block registration may cause 

Subtraction 
After  registration,  the exact location of the  template 
data in the  form is known. Actually, the  output of the 
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Output image from the form-dropout process for the form of  Figure 
2. It  requires  only 10.9 kilobytes  of storage. Note  that  gap-filling 
corrections are effective in many  places but occasionally do no( 
work ideally (e.g.,  the  two  circled spots). 

registration  phase  can  be  described as an image composed 
of a  “noisy”  version of the  template,  and  the filled-in 
information.  Once  the  location of the  template  data is 
known,  it  would seem logical to  remove  the  data  for FDO; 
however, it is imperative  to  take  into  account  the  fact  that 
even  for  the  same  form  sheet, two separate scans will 
provide significantly different  output.  Hence,  even 
after  registration,  there will be  differences  between  the 
template  data as  they appear  on  the  template image and 
the filled-in form image. Therefore, a  simple pixel-by-pixel 
subtraction would be ineffective,  since we would be  left 
with noise concentrated  around  the  template-data 
locations. 

This  problem can be resolved by a  decision  process 
which in effect classifies each pixel in the  form as being 
part of the  template  data or the filled-in data  on  the basis 
of the  nature of the pixel’s immediate  neighborhood [4]. 
More specifically, if a pixel in the  transformed image is 
white, the  output value for  the pixel is also  white.  When 
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both  the pixel and  the  corresponding pixel in the  template 
image are black, the  output is white. In  the  case  where a 
pixel is  black and  the  template pixel in  this location is 
white, the pixel’s immediate  neighborhood is examined, 
and  the decision made  about  the  output value  in 
accordance with the  nature of the pixel’s neighborhood. 

This  implementation  does  not  perform well in two 
cases, for which the following enhancements  are available: 

1. A major  assumption of the system is that filled-in 
information is additive in nature; i.e., information is 
added on a blank form. Therefore,  the system detects 
and filters out only information  that has been  written 
upon  the  form. However,  in some  instances,  data of the 
blank form may be  deleted  from  the filled-in form by 
means of a  sticker or a label,  or by using some  sort of 
white-out  material.  In  those  parts  where  data of the 
blank  form  are  erased  from  the filled-in form,  there 
will be  no  data  to  drop  out.  Hence, when the  form is 
reconstructed by superimposing  the  template  on  the 
subtracted  form,  the  erased  material shows up again on 
the  reconstructed  form, which might be  an  undesirable 
result.  To  overcome  this  problem,  the  FDO  program 
contains  white-out-detection-and-correction capabilities 
that  locate such areas on the filled-in form.  White-out 
support provides the ability to correctly treat  template 
data  that  are removed from  the  input  form,  and  results 
in  a perfect  reconstruction.  This  feature is optional  and 
requires  additional processing  time. 

nonwhite  background  textures. If data  are  written 
on such areas, it is possible that  FDO may fail to 
reconstruct  these  data correctly; in extreme cases, the 
data will be lost. To  overcome this problem,  form 
dropout  can  activate dense-area processing, which is able 
to  detect filled-in data  located in such areas  and filter 
them correctly. This  feature is also optional  and 
requires  additional processing time when  activated. 

A related  problem with FDO is that it introduces 
gaps in the filled-in data  that cross the  template  data. 
When  the  template pixels are  subtracted  from  the 
image, they  are  also removed from filled-in data 
marked on them, resulting  in  gaps in the filled-in 
data.  For  form-reconstruction  purposes, this  is not 
a problem, since the  template  data fill these gaps, 
resulting in an image with no distinguishable 
differences;  however,  it can cause trouble  for ICR, 
which is applied on the  data  after  FDO is performed. 

Therefore,  FDO  includes gap-filling support, which is 
applied  to  the  dropout  result in locations  where filled- 
in data  are  expected,  according  to entry-field-definition 
information.  This  feature is also optional  and  requires 
additional processing time.  The gap-filling procedure is 
implemented by matching  black runs  (series of black 

2. FDO  does  not  perform well in areas with dense 
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pixels with no intervening white pixels) in the  dropout 
image that  are close enough  to  the  template lines. A 
connect  or  no-connect decision is made  for  neighboring 
black runs, including runs  that lie on opposite  sides of 
the  template  line  and  those  that lie on  the  same  side of 
the  template line. The decision is based on geometrical 
parameters such  as the distance between  runs,  the 
slant of the  corresponding  strokes,  and connectivity 
information in the vicinity of the  runs.  These 
considerations  are carefully  weighted to yield a 
satisfactory  system response. 

Lossy compression 
The  result of the  subtraction  phase is an image containing 
only the filled-in information of the original form.  For 
many  applications,  it suffices to have  legible  text, which is 
indistinguishable from  the original by the viewer. In  these 
cases,  a lossy compression may be  applied  to  further 
increase  the  compression  ratio by approximately  a factor 
of 2. A trivial approach  to this  would be  to  reduce  the 
resolution of the scanning. Indeed,  some  scanner  and 
facsimile devices do allow this  option. However, while this 
solution might be valid for  some images (such as  scans of 
handwritten text with large  characters), it  would cause 
unacceptable  distortion  for  other images (such as  scans of 
small, printed  characters).  Moreover,  even  for  medium- 
sized text, simple reduction of resolution would cause 
image  quality deterioration  that might be  quite annoying 
to  the observer. 

A lossy compression  technique is proposed by which the 
compression ratio is increased  to  about twice that of the 
subtracted  form, yet  with  high  image  quality. In  general, 
this technique is based  on a  special  subsampling of the 
subtracted image,  with  a  goal of reducing  the  resolution by 
a factor of 2 in both  horizontal  and  vertical directions. 
The  image is partitioned  into 2 X 2 blocks of pixels, 
and a single pixel is used  to  represent  each such block. 
For blocks containing  zero  or  one black pixel, the 
representative pixel is white. For blocks containing 
three  or  four black pixels, its  value is black. For blocks 
containing two black pixels, the  color of the  representative 
pixel depends  on  the  immediate  neighborhood of the 
block, according  to connectivity criteria designed so that 
narrow  lines  do  not  disappear  and disjoint  lines do  not 
merge [4]. When  the  subsampled  image is compressed, 
an additional  compression  ratio of approximately 2 is 
achieved. 

Form reconstruction 
The  output of FDO is a compressed-image file containing 
the filled-in data of a form,  the  name of the  template 
form,  and flags related  to  the  FDO process. Upon 
retrieval of a form  from  the archive,  it is necessary to 
invoke the  reconstruction task, which is responsible  for 
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generating  an image of the  form  that looks exactly like 
the original scanned  paper.  Reconstruction uses the 
information in the compressed-image file to  determine 
what template  has  to  be  retrieved;  the  template  data  are 
then  superimposed  on  the  decompressed  subtracted image 
(bitwise-OR operation). If the  form was processed with 
the lossy compression option,  the  reconstruction process 
also  approximately  reverses the subsampling operation 
in  order  to  match  the image resolution  to  that of the 
template image. The  reconstruction is fast, since the 
subtracted image and its template  are already  aligned. 

Intelligent  character  recognition 
ICR2 is the  process by which bitmaps within fields of 
a form  are  converted  to  character  codes  (ASCII  or 
EBCDIC).  For a review of ICR  research,  see [5].  Before 
ICR  can  be  applied  to  data of a field, we must perform 
the following preprocessing: 

1. 

2. 

3. 

4. 
5 .  

Correct skew. Although  the global skew of the  input 
form is usually corrected in the  FDO process,  local 
skew (due  to peculiarities  in  handwriting or  printing) 
of the field data may still exist. 
Locate  the field data.  This is done using the field 
coordinates defined at  the  forms-training  stage. A 
certain  degree of vertical and  horizontal extension of 
the field may sometimes  be necessary to  handle writing 
that  goes beyond the field boundaries. 
Detect  the  baseline  (the imaginary line over which the 
characters  are  written or printed).  The  character image 
reading  order  and size normalization  are  based  on  the 
baseline. 
Detect spaces  between  words. 
Identify connected  components (i.e., character 
fragments, individual characters, or touching 
characters),  and  merge neighboring connected 
components  that satisfy certain  geometrical  constraints. 

The  input  to  ICR is a bitmap  corresponding  to a string 
of characters; this string may contain touching characters, 
which are usually difficult to  segment  and  hence recognize. 
Our ICR employs  a recognition-based segmentation 
scheme, described below, for  separating touching 
characters. Using  a set of heuristics,  it first searches  for 
possible split points. Then, it  selects the best sequence 
of splits on  the basis of the recognition  results on the 
individual sequences.  For  each  connected  component,  ICR 
returns  up  to  three  sequences of splits from  the  graph 
solver  in the recognition-based segmentation algorithm. 
Each split in these  sequences is again  associated with 

ICR  is  also  known  as  optical  character  recognition  (OCR);  however,  because of 

invut  they can handle,  such as handwritten  data  and  omnifont  machine-mint.  the 
the  increased  sophistication of today's  recognition  algorithms  and  the  range of 
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1 The recognition component  for  intelligent  character recognition. 
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three  character  candidates.  Moreover, a  confidence 
measure  and a distance  measure  are associated with each 
character  candidate.  These  alternative splits and  character 
candidates,  together with their confidence and  distance 
measures, provide our  contextual processor  with  useful 
information to resolve the ambiguity and to make corrections. 

ICR  treats  machine-printed  and  hand-printed text 
differently.  Because the  characteristics of machine-printed 
text and  hand-printed text are  rather  different,  ICR 
employs different classification schemes. In the following 
presentation, we discuss primarily the  ICR system for 
hand-printed text;  however, the  variations used for 
recognizing machine-printed text are  pointed  out wherever 
necessary. We first  describe the  recognition  component 
in ICR  and  then  present  the  recognition-based 
segmentation  scheme. 

Recognition of isolated  characters 
Figure 4 is a diagram of the recognition component in 
ICR.  It consists of a feature  extractor  (described below) 
from  the  input  bitmap  and a hybrid classifier, which 
employs  a  two-stage  multinetwork (TSMN) classifier [a 
classifier consisting of two stages, each of which contains 
several neural networks (see Figure 5)] and a template 
matcher (TM) (which matches  the  input  patterns against 
a  subset of stored  templates).  For  machine-printed ICR, 
the  TSMN classifier is replaced by a  single feed-forward 
network with 78 output  categories (10 digits, 26 uppercase 
characters, 26 lowercase characters,  and 16 special 
symbols). This is because  machine-printed-character 
recognition is a relatively easy problem  compared  to 
hand-printed-character  recognition. 

Features 
The goal of feature  extraction is to extract the most 
relevant measurements  (features)  from  the  character 
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bitmaps, so as to minimize the within-category  variability 
while increasing the between-category  variability. Two 
different types of features [6] are used in our system: 
contour-direction  features  and  bending-point  features. 

Prior  to  feature  extraction,  character  images  are 
normalized to 24 (pixels  in height) X 16  (pixels  in width) 
in order  to  reduce  the  character-size  variation.  One  can 
efficiently extract  contour-direction  features by scanning 
the normalized 24 X 16  image by a  2 X 2 mask to  detect 
primitive patterns. A primitive pattern is detected if the 
number of black pixels in the mask is from  one  to  three 
(neither all  white nor all black). Each primitive pattern is 
classified into  one of four types. The 24 X 16 image is 
sliced in four directions: horizontal, vertical, diagonal 
(45"), and off-diagonal (135"). Each slice has a  width 
of four pixels; therefore,  the vertical direction  has  four 
slices, and  the  others have six slices (22 slices  in total). 
A contour-direction  feature is defined  as the  number of 
primitive patterns of the  same type in each slice. This 
results  in an 88-dimensional (22 slices X 4  types) feature 
vector. 

Bending-point features  include  some topological 
characteristics of a character, such as  high-curvature 
points, terminal  points,  and  fork  points, which are 

21 8 detected in the  character image by tracing  the  contours 

of strokes. A special geometrical  mapping  from  bending 
points  and  their  attributes (e.g., acuteness, position, 
orientation,  and convexity or concavity) to a  fixed-length 
(96-element)  feature  vector has been designed [6]. The 
normalized  image is evenly divided into  12 regions (6 X 6 
or 6 X 5 pixels). The  bending  points in  a  normalized 
image are  coded according to  the regions  in which they 
occur and according to  their  curvature  orientations, which 
are divided into eight  cases (four  orientations,  each of 
which is either convex or concave). The value of acuteness 
of a bending  point is used as the  magnitude  for  the 
corresponding  component in the  feature vector. 

For  hand-printed-character  recognition, all of the 88 
contour-direction  and 96 bending-point  features  are  used, 
while for  machine-printed-character recognition, only the 
88 contour-direction  features  are used.  However, the 
normalized character  height, width, and position (distance 
between  the  center of the  character  and  the  baseline)  are 
used  as three  additional  features  for recognizing machine- 
printed  characters.  These  latter  features provide  useful 
information  for distinguishing some lowercase and 
uppercase  characters  that  are  otherwise difficult to 
differentiate (e.g., c/C, k/K, o/O). We  do  not utilize these 
three  features  for  hand-printed  characters, because they 
are  not  reliable  for distinguishing  such characters. 

Two-stage multinetwork classiJier 
The  concept of a TSMN classifier is based on the 
following observations. For  some fields on a form,  the 
target  character  set  to  be recognized can  be  determined 
a priori (e.g., for zip code  and social  security number 
fields, the  target  character  set is limited to  the 10 digits); 
therefore, a  specialized  network can  be designed for this 
task. It is well known that  the  smaller  the  character  set  for 
which a  network is trained,  the  better  the  performance  the 
network  can achieve for  the specific task (in  accuracy, 
speed,  and confidence measure, which is used for a 
rejection  operation  and postprocessing). Unfortunately, 
for many other fields (e.g., street  address  and  account 
number), it is not so easy to  constrain  the  target  character 
set a priori. In such  cases, two methods  are often  used. 
One is to invoke  all of the necessary  specialized  networks 
(networks  that  are  trained  to recognize subsets of the 
characters)  and select the winning character(s)  among 
all of the  characters  chosen by the invoked  networks. 
Obviously, this is not a reliable  method, because  all of the 
specialized  networks are  trained  separately, without any 
competition  among  them. It has  been observed that 
feed-forward networks with sigmoid functions [7] often 
generate high output values for  characters  from  categories 
that  are  not  present in the  training  data.  This  undesirable 
property  causes this method  to  behave very poorly  in 
recognition accuracy and confidence measure.  The  method 
also suffers  from low recognition  speed, since multiple 
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networks  must be invoked. An alternative  method is to 
design  a single large feed-forward network with a 
sufficient number of “output  units”  to cover  all of the 
possible target  categories  (each  output unit represents a 
target  character  category).  This  method works  reasonably 
well in the  situations  where no case information is 
available,  but not as well as the specialized  networks in 
known-case situations.  Moreover, a  large  single  network 
makes the  training process difficult. 

Thus,  neither  method achieves  a  satisfactory balance 
among  recognition accuracy,  confidence, speed,  and 
flexibility. To solve this  problem, we propose  the  TSMN 
classifier shown in Figure 5. It consists of a bank of 
specialized  networks, each of which is designed to 
recognize  a subset of the  entire  character  set. A 
preclassifier and a  network selector  are employed for 
selectively invoking the necessary  specialized  networks. 
The network selector makes  decisions  based on both 
the  case  information  obtained  from  the field definition 
and  the  outputs of the preclassifier. Compared with a 
system that uses either a single network  or  one-stage 
multiple  networks, the TSMN system offers  advantages 
in  recognition  accuracy,  confidence measure,  speed, 
and flexibility [8]. 

Partition of target character set A natural  partition of the 
target  character  set  (output  categories)  into  uppercase, 
lowercase,  digit, and special-symbol subsets is used.  This 
partition is appropriate  for many  applications,  such  as 
forms  processing. The special-symbol subset  contains 16 
punctuation symbols that  are sufficient for our application 
(! # $ % * ( ) + < > ” : ; / = ?). The  comma  and  period 
are  handled  separately in our system. 

Preclassijier The preclassifier has  four  output units 
(each of which corresponds  to  one of the  four  character 
subsets), 40 hidden  units,  and 184 input  nodes.  The 
standard sigmoid function is used. 

Specialized networks The  uppercase network and 
lowercase  network  have the  same  architecture, with 50 
hidden  units  and 26 output  units.  The digit network  has 
40 hidden units and 10 output  units.  The special-symbol 
network  has 40 hidden units and 16 output units. These 
network architectures were selected  after  numerous trials. 
The  standard sigmoid function is used in all of the 
specialized  networks. 

Network selector Since we are  interested in only  a few 
most likely candidates  for  the classification purpose, it is 
not necessary to invoke the specialized  networks for which 
the  output values from  the preclassifier are low. This  does 
not affect the recognition  accuracy, because  categories 
from  these specialized  networks are unlikely to  be  among 

the  top  candidates; however,  this selection  operation 
significantly reduces  the  computational  requirement. 

The decision logic for network  selection  utilizes both 
the  prior-case  information (when  available) and  the  output 
values of the preclassifier. The decision logic for network 
selection uses the following set of rules: 

1. If the prior-case information  can uniquely determine 
which specialized network  to invoke, the preclassifier is 
bypassed. 

and only if the  ith  output value of the preclassifier 
(normalized by the maximum output) is greater  than 
a  prespecified threshold which controls  the  number 
of specialized  networks that  are invoked. 

preclassifier and identified on  the basis of prior-case 
information  are invoked. If no specialized  network is 
selected,  the  input  character is rejected.  (This might 
occur, e.g., if a number were written in an  alphabetic 
field.) 

2.  The  ith  network is selected by the preclassifier if 

3. The specialized  networks that  are  selected by the 

Scaling the specialized networks The  outputs of the 
specialized  network are multiplied by the  corresponding 
output values of the preclassifier. 

Candidate selector The  three  categories  corresponding 
to  the  three largest  scaled output values are  selected as 
candidate  characters.  The scaled output values are 
associated with the  candidates  as confidence  values. 

Template-matching (TM) classijier 
The  template-matching  (TM)  or  nearest-neighbor classifier 
[6, 91 is well known and is commonly  used  in statistical 
pattern recognition. It is a nonparametric classifier that 
makes no assumption  about  the underlying pattern 
distributions. The  TM decision rule  compares  an  input 
pattern with a  collection of stored  patterns  (templates) 
and assigns the  input  pattern  to  the category associated 
with the  nearest  neighbor  among  the  stored  patterns. 

A severe drawback of the  TM classifier is that it 
requires a large  amount of computation  and  storage when 
a large  number of training  patterns  are involved. Because 
of this  computational  burden,  the  TM classifier is not very 
popular when real-time  requirements must be  met.  In 
the  domain of character recognition,  a large  number of 
training  patterns  are  often available; therefore, applying 
the basic TM classifier is not  attractive.  In [lo], a 
technique was developed  for  grouping similar training 
patterns  from  the  same  category (such as  “a”)  into 
clusters, based  on a  similarity measure  that is the city- 
block distance  (between a pattern  and a cluster  center 
in the  feature  space) divided by the  radius  (standard 21 9 
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Splitting touching hand-printed characters: (a) Letters "S" and  "A," with black pixels marked as "1"s and candidate split points marked as 
"c"s; (b) enlargement of area marked in (a); (c) enlargement of marked area, with split points marked with "x"s. 

deviation with respect  to  the  cluster  center) of the cluster. 
More  than  one  cluster may be  created  for  each category. 

We first apply a k-means type of clustering algorithm 
[ll], with the city-block distance  metric,  to all patterns 
within  a  category, independent of other  categories  (for 
example, to all training  patterns of "a," independent of 
patterns of other lowercase letters).  The initial clusters 
are randomly generated. If the distance between a pattern 
and its nearest  cluster  center is within  a predetermined 
threshold,  the  input  pattern is added  to  that  cluster. 
If not, a new cluster is created.  Clusters with variance 
(with respect  to  the  cluster  center)  larger  than a  specified 
threshold  are split into smaller clusters  until  the  variance 
constraint is satisfied. The  mean vector of a cluster is 
chosen  as the  prototype  for  that cluster. At  the  end of this 
process, we have one or more  clusters  for  each  category 
and a  library of prototypes,  one  for  each  cluster.  We  then 
eliminate  clusters  that have too few patterns.  The radii 
of clusters, which are initialized to  the  same value, are 
fine-tuned as follows. We first classify all of the  training 
patterns against the  prototype library,  using the  nearest- 
prototype  criterion. If all of the  patterns in  a cluster  are 
correctly classified, no change is made  to  the  radius of 
the cluster. Otherwise,  the  radius is shrunk by a  small 
amount  for  the next iteration. As the radii are  tuned,  the 
classification results improve. This  process is continued 
until  there is no more  improvement  to  the classification 
accuracy. 

The  clustering  algorithm  produces a set of prototypes. 
The  TM classifier assigns an  input  pattern  to  the category 

220 associated with the best matching  prototype.  The best 
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matching distance is also obtained  and associated with 
the classification. 

Hybrid classijier 
It  has  been  found by many researchers  that  combinations 
of different  feature  sets  (a  set of measurements  that 
represent  certain  characteristics of a character)  and 
different classifiers can  compensate  for  each  other's 
weakness, thus improving the classification performance 
[12, 131. The hybrid classifier that we have developed is 
based  on  the following observations: 1) In  general,  the 
probability that  the  correct answer is among  the  top  three 
candidates (coverage rate) is higher (by 2% to 8%) than 
the probability that  the first choice is correct; 2 )  the 
TSMN classifier outperforms  the  TM classifier by 2% to 
4% [14]; and  3) it is inefficient for  the  TM classifier to 
search  for  the best matches among  all of the  categories. 
Since the coverage rate of the  top  three  candidates is very 
high (98%) for  the  TSMN classifier, focusing on  the  top 
candidates  proposed by the TSMN classifier is more 
efficient. These  observations  led us to  pursue a method of 
reordering  the  top  three choices produced by the  TSMN 
classifier, using the  TM classifier when the  TSMN 
classifier has low confidence. 

The hybrid classifier works as follows. First, the  TSMN 
classifier identifies the  top  three  candidates. Next, the  TM 
is invoked to  match  the  input  pattern with only those 
templates in the  three  categories  selected by the  TSMN 
classifier. The best template-matching  distance in each 
category is determined. If the  difference between the 
confidence  values of the  top two candidates calculated by 
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the TSMN classifier is less than  a prespecified threshold, 
they are  reordered according to  the best template- 
matching distances  calculated by the  TM.  The  same  rule 
is then  applied to the second and  third choices. Thus, 
template-matching distances are used to  reorder choices 
only if the  TSMN is not  “sure”  about its decision. Note 
that  the  TM is invoked in any case, in order  to  obtain 
the  template-matching distance for  each of the  three 
candidates, which is used as a  length in the  graph solver in 
the  segmentation  algorithm.  This hybrid classifier has  little 
extra  computational  overhead with respect to the  TSMN 
classifier, since only the  top  three  categories  are  matched 
for  the best template distances. 

Recognition-bused segmentution 
Segmentation of touching characters  has long  been known 
as a critical problem in ICR. A number of approaches 
have been  proposed in the  literature.  An excellent survey 
of strategies in character  segmentation was provided  in 
[15]. Our ICR system employs a  recognition-based 
segmentation  scheme [16]. This  scheme consists of the 
following phases: 1) Identifying potential split  points; 
2) constructing  a  graph;  and 3) finding the  shortest  path 
in the  graph  from  the leftmost node  to  the rightmost 
node. We now discuss these three  phases in detail. 

Identihing potentiul split points 
Touching  characters in machine-printed text occur  because 
of thick  printing, insufficient scanner  resolution,  or  poor 
binarization.  For  hand-printed text, contact  between 
adjacent  characters may be due  to  the style of writing as 
well as to crowding of symbols. In  some cases, a  stroke 
belonging to one  character may traverse  a  stroke 
belonging to another. While  relatively  simple means 
can  be devised to  separate  touching  machine-printed 
characters, we have developed one  method  for  separating 
touching characters  that works for both machine-printed 
and  hand-printed text. We now describe  this method 
for identifying potential split  points. 

Typically, a “clue” is available to  detect  the  point of 
penetration.  The clue may be  described as a concavity at 
the  point of contact.  This suggests that when  merged 
characters  are  suspected,  the  segmenter should seek such 
concavities in the most likely parts of the image. Our 
algorithm, using a contour-following  process to provide 
edge-direction  data  for  estimating local curvature, 
examines the  middle section of the  pattern  for such 
occurrences. 

Figure 6(a) shows touching hand-printed  letters “S” 
and “A,” The “1”s represent black pixels. The  “c”s  mark 
points  located at  portions of the  outer  contour  that  are 
locally concave and have nonvertical direction.  The 
marked section of Figure  6(a)  enlarged in Figure 6(b) 
contains all of the  “c”s  (candidate split points).  These 
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Segmentation graph for an image with three potential split points 
f (a ,  b, and c), showing all possible edges (subimages). The heavy 
1 path represents the segmentation consisting of the following three 1 subimages: (1) from  the  left side of the  image  to  split  point a, 
* (2) from a to c, and (3) from c to the right side of the image. 
4 

points  are  subjected  to  additional tests in order to choose 
likely split  points. The  points  are  searched in order of an 
estimate of local curvature,  and  a split point is defined if 
it is within a specified distance  from  a  point of concavity 
on  the  opposite side of the  same  contour.  The original 
pattern is broken along a  line between these two points. 
If a  resultant  subpattern would be too “small,” we ignore 
the  particular split  points. In Figure 6(c), the  proper 
separation between “S” and “A” is indicated by “x”s, 
according to this method.  Other  points of concavity are 
filled in with “1”s. 

Constructing a segmentation graph 
The  potential split points  are  ordered  according  to  their 
horizontal  locations.  Each neighboring pair of split points 
defines  an elementary  segment of the image.  Neighboring 
triples  define larger segments, and so on. A directed  graph 
(segmentation  graph) is constructed, as  shown in Figure 7. 
The  interior  nodes of the  graph  represent  the split  points, 
while the first and last nodes  represent  the left and right 
sides of the image,  respectively. All of the  edges in the 
graph  are  directed  from left to right. Each  edge  represents 
the subimage (segment) defined by the two split points 
that  the  edge connects. A segmentation of the image 
can  be  described by a  path  from  the leftmost node to the 
rightmost node, with the  nodes  on  the  path  being  the final 
split  points. The  number of characters is the  number of 
interior  nodes on the  path plus one. 

If  we assign a length to each  edge in the  graph,  the 
length of a  path is taken  to be the sum of the  lengths of 
the  edges  along  the  path.  The  optimal  path  can  then  be 
defined as the  shortest  path. An edge  corresponding 
to  a  segment wider than  some specified amount can be 
assigned  an  infinite length, which allows the  edge  to  be 
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Table 1 Results of ICR and contextual processor on the tax form of Figure 2. 

Field name  ICR results Contextual processor results 

YEARBEGINNING JULY JULY 
YEAR-ENDING JUIY JULY 
YEAR 88 88 
TAX-PAYER-NAME BRwnerd A. & Erskine W. mrtcheN BERNERD A. ERSKINE W. MITCHEM 
SS-NUMBER A l l  88 1304 A l l  88 1304 
STREET-ADDRESS 99225 uC StreeT 99225 LEE STREET 
SPOUSESS-NUM As9 a2 19y8 A59  22 1948 
CITY RusseU RUSSELL 
STATE NJ NJ 
ZIP-CODE 61920 61920 
EXEMPTIONS 1 1 
DEPENDENT-1 BadLoi mgrLan Barlow Marlan 
DEPENDENT-1-SSN 1918203764 A18 20 3764 

. . .  . . .  . . .  

removed from  the  graph  (provided  that  continuity is 
maintained  from  the  leftmost  node  to  the  rightmost  node). 

Since our classifier provides  a  confidence and a distance 
measure  for  the hypothesis of identity of the  input 
segment,  these values can  be used for assigning lengths 
to  the  edges in the  graph.  Let ctj  ( 0  I cij < 100) and 
d, (0 5 dl, < 256),  where  the values  100 and 256 are 
arbitrary maxima, be  the confidence and  distance values 
returned by the classifier for  the  subimage between  split 
points i and j .  We assign a length of (100 - ci j )d ,  to  the 
edge  that  connects  nodes i and j .  Note  that  the  larger  the 
confidence  values and  the  smaller  the  distance value, the 
shorter this length will be. A perfect  character  subimage 
will have zero  distance  from  the  template  matcher  and 
confidence  value 99 (the maximum confidence value)  from 
the  TSMN classifier, resulting in a zero  length  for  the 
corresponding edge. 

Finding the shortest path 
A dynamic programming  technique is used for finding the 
shortest  path  from  the  leftmost  to  the  rightmost  node.  The 
algorithm is modified to  generate  the  three  shortest  paths, 
so that  our  contextual  processor  can  take  advantage of 
these  alternative  paths. 

Recognition performance of the ICR component 
The  performance of ICR varies  with  the quality of the 
image data  and writing style. For  isolated,  machine- 
printed,  multifont  characters  with  moderate  noise, 
the  recognition  rates of ICR on numeric,  uppercase, 
lowercase, and special symbols exceed 99%.  For 
constrained,  hand-printed characters-e.g., the  NIST 
(National  Institute of Standards  and Technology)  Special 
Databases 3 and 7 [17]"ICR achieves  a recognition 
accuracy of 98%  for numerics, 96%  for  uppercase,  and 
95% for lowercase (databases 3 and 7 were mixed, and 

222 then redivided into a training  set  and a test  set).  In May 

S. GOPISETTY ET AL 

1992, NIST held  a conference in which 44 different  hand- 
print OCR systems were  considered.  This  conference 
tested  the ability of these systems to recognize 
presegmented,  hand-printed  characters.  The  performance 
of our ICR system was among  the  top  three [17]. The 
overall  conclusion from  the  NIST study was that  the  state 
of the  art of machine  recognition of discrete  hand-printed 
characters is as  good  as or  better  than  human  readers; 
however, for  nonsegmented cursive fields (with some 
hand-printed fields), the recognition rate  at  the  character 
level without contextual processing drops appreciably. In 
Table 1, we show the  results  from  our ICR system when  it 
is applied  to  the  form shown  in Figure 2. The  table gives 
the strings corresponding  to  the highest  confidences 
generated by ICR. ICR actually returns  the  top  three 
alternative  sequences of segments  and  the associated 
character hypotheses and confidences for  each  connected 
component.  Notice  that  at  this  stage,  where no contextual 
information  has  been  exploited, a number of errors  are 
made by ICR. Many of the  errors  are  corrected by 
our contextual  processor, making use of higher-level 
constraints as well as  multiple  character hypotheses; 
these  results  can also be  seen  in  Table 1. 

Exploitation of context 
Basic ICR software, such  as that  described above, 
recognizes  digits and  letters with reasonable accuracy;  still, 
the  recognition of hand-printed words or  phrases  remains 
a  challenge. In the  best  case  (isolated,  unbroken, well- 
formed digits), the individual  recognition rate may be 
around  98%; however, for a 10-digit telephone  number, 
such performance yields only an 82% correctness  for  the 
entire field (assuming independence  among  characters). 
For  more difficult cases,  such as  unconstrained, mixed- 
case characters,  the individual character recognition rate 
is closer to 70%. This would mean  that practically  every 
word  would contain  an  error! Obviously, something 
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more is needed  to  make  the technology  viable. First,  the 
exploitation of a priori contextual knowledge can  increase 
the  recognition accuracy. Second,  the recognition system 
must include a  user-friendly manual verification and 
correction subsystem to  complement  the  automatic 
process. 

In this section, we describe our  technique  to exploit 
context,  particularly for recognizing data  from forms. In a 
following section, we briefly discuss some ongoing  work on 
verification and  correction.  What  makes  automated  form- 
data  entry feasible is the fact that tight constraints exist 
for most fields on a form.  For example, the  sequences 
(city, state, zip) for a location  or  (mm,  dd, yy) for a 
date have strong  constraints associated with them,  both 
syntactic  (zip has five or  nine digits, mm one  or two, 
etc.)  and  semantic  (there exist dictionaries of acceptable 
combinations).  The  input of free-format text, on the  other 
hand, is a different  problem,  requiring  sophisticated 
natural-language processing  facilities that  are beyond 
the  scope of the system addressed in this paper. 

In many of today’s systems, the  exploitation of context 
is left  to  the  application  program.  This  represents  quite a 
burden  for  the  application  developer, since  it may involve 
sophisticated fuzzy-dictionary look-ups,  tree searching, 
backtracking, etc. Also, the  code  can  and should be  reused 
from  application  to  application.  Thus,  the right approach 
is to  remove  exploitation of context from the  application, 
and move it to the recognition system. 

First, we describe a system architecture  for a general- 
purpose, highly customizable context analyzer that allows 
the  application  program  to specify constraints  that  the 
recognized information must satisfy, both syntactic and 
semantic. Some of these  constraints may be  quite  general, 
but most are  application-dependent. To make  the 
specification of these  constraints  easier,  our system 
provides  a language called Document Specification 
Language (DSL) [ H I .  A “program”  written in DSL 
specifies the syntax of the  information  to  be recognized, 
together with routines used to  ensure  semantic validity. 
DSL is specialized,  concise, and  nonprocedural.  Once  the 
specification is written in DSL,  it can be compiled into  an 
internal  representation  (the context structure). 

Figure 8 shows the  general  architecture of the context 
analyzer. The  process is driven by an  application  program, 
which first invokes the  character  recognition  program,  the 
results of which are placed in a buffer.  Then, it  invokes 
the context  analyzer, which uses the context structure  and 
the  character  results  and  produces  the best  possible  results 
for  the field. These  are also stored in the buffer.  When 
the process is complete,  the  application  program  retrieves 
the final  values from  the  buffer. 

At execution time,  the  context analyzer  behaves like a 
parser: The  recognition  program  produces  tokens, which 
the  context analyzer tries  to  match with the  context 
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structure while making sure  that  semantic  constraints  are 
not violated.  Since there may be several  choices for a 
character,  the parsing  generally involves backtracking. 

Document Specification Language (DSL) 
A DSL specification (also called DSL file) provides, for 
each field of a form,  the field name  and  the field type. 
In  addition, it  includes the definitions of these types. 
Essentially, the definition of a type includes the 
constraints  that apply to a field of that type.  A type 
can  be elementary or composite. For example, 

ELEM-TYPE zip. . . 
COMP-TYPE  phone-nbr . . . 
FIELD zip-code, zip 
FIELD home-phone,  phone-nbr 
FIELD work-phone, phone-nbr 

Before showing how types are defined, we need  to 
introduce alphabets: 

Basic alphabets: numeric,  uppercase, lowercase,  special 

Defined alphabets: An  alphabet  can also be defined  in 
symbols, and a few others. 

DSL by the inclusion  in the  DSL file of a record 
containing  the  arphabet  name  and  the  alphabet 
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definition (union of previously defined alphabets 
and/or specified characters). 

Here  are two examples: 

ALPHABET digits ["0123456789"] 
ALPHABET hexa [digits, "ABCDEF'] 

Elementaryfield types There is only one way to write 
a five-digit zip  code such  as 95120 or the digits of a 
telephone  area  code such as 408. But there  are several 
ways to write  a telephone  number;  for example, 
(408) 927-3999 and 408 9273999 may both  be valid. 
The strings 95120, 408, 927, and 3999 are  instances of 
certain elementary field types, while the  phone  number 
is an example of a composite field type. 

An  elementary type is defined in an ELEM-TYPE 
record in the  DSL file. Such a record  contains  the type 
name,  the keyword PHRASE  or  WORD  (indicating 
whether or not  spaces  are  acceptable),  an  alphabet  name 
(to specify the  alphabet  to which characters  in  this field 
must belong), a LENGTH condition (such as LENGTH = 5, 
or 6 < = LENGTH < 9), and (optionally) the  name of 
a  dictionary or routine  (this is discussed  below). 

elementary field types: 
The following are examples of records defining 

ELEM-TYPE  zip WORD, digits, LENGTH = 5 
ELEM-TYPE  area  WORD, digits, LENGTH = 3 
ELEM-TYPE prefix WORD, digits, LENGTH = 3 
ELEM-TYPE ext WORD, digits, LENGTH = 4 

Composite types Each  composite type is defined by a 
record in the  DSL file with the  name of the type, a list 
of pairs describing the  elements involved in the definition 
of this composite type (each  pair  comprises  the  element 
name  and its  type),  a list of acceptable  representation(s), 
as  illustrated below, and  the  representation  to  be used for 
the  result string. 

combining the  elements.  It is expressed  as  a sequence of 
element  names  and/or  string  constants.  For example, the 
definition of a phone  number as  a composite field type 
with three  elements might  look  like  this ("-" represents 
a space): 

Each  representation describes one valid way  of 

TYPE  phone  a(area), p(prefix), e(ext) 
REP !!( Va!!)-MpR-If e e.g., (408) 927-3999 
REP a"-''p e e.g., 408 9273999 
OUTPUT "("a")-"p"-" e e.g., (408) 927-3999 

The  representations (we show  only  two) are  ordered 
by decreasing likelihood of occurrence.  The  output 
representation is the  one used for  the  output string, 
independently of how the  information was  initially written. 

This  ensures  that  the  information is always converted  to 
a  specified format, ready to  be  stored  in a database or 
otherwise processed. 

Routines and dictionaries 
DSL may specify, for  an  elementary field or a composite 
field, a routine or dictionary that  can  be used to improve 
recognition. In general,  routines  and  dictionaries  are 
application-dependent  and  are  supplied by the  user. 

Routines Any routine must conform  to a  simple  calling 
interface. Essentially, arguments specify the type of the 
elements involved in  the  constraint. For example, 

ROUTINE check-area (area). 

A routine  returns a true or false value but may also 
update  the values of some  elements in the buffer. If 
the  routine is associated  with an  elementary type, the 
corresponding ELEM-TYPE statement  contains  the 
name of the  routine, as  in the following: 

ELEM-TYPE area  WORD, digits, LENGTH = 3, 
ROUTINE (check-area). 

The  routine check-area may test,  for example, whether 
the  second digit of the  area  code is 1 or 0, and  return 
true if the  constraint is satisfied, or false  otherwise. 

a  clause is added  to  the definition of the type. For 
example, the  addition of the following clause  in the 
definition of type phone could force  the  routine 
check-prejk to check the validity of the  prefixp for 
a particular  area  code a:  

CHECK check-prefix (a,  p). 

Dictionaries Dictionaries must be defined  in DSL by 
means of a DICTIONARY  statement.  For example, 

DICTIONARY  fname  IN "my-fname" 

defines  a  dictionary of first names. The ELEM-TYPE 
statement  for first names would refer  to  that dictionary 
in the following way: 

ELEM-TYPE firstname  WORD,. , . , DICT  (fname). 

As in the  case of routines,  dictionaries  can also be  applied 
to  composite field types. In  fact, in the  general  form,  the 
dictionary and  routine mechanisms of our  contextual 
processor allow constraint checking to involve several 
elements, even if these  elements  come  from  different 
fields. For example, suppose  there exists a  dictionary 

If the  routine is associated with a composite field type, 
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called “map,”  containing  the valid pairs (zip, area);  the 
CHECK  statement 

CHECK  map (zip-code, home-phone.area) 

then specifies that a  check be  made on the  pair (zip-code, 
home-phone.area),  where zip-code is the  name of the zip 
field and home-phone.area is the fully qualified name of 
the  element  area in the field home-phone. 

The context analyzer 
As  mentioned  earlier,  the analyzer  must interpret  the 
tokens  returned by the recognition program according 
to  the  constraints  imposed by the  DSL  “program.”  The 
overall  task may be  couched in terms of an  optimization 
problem.  Interpreting  the  complete  document consists of 
deciding upon  the  appropriate  characters  among  the 
choices returned by the recognition program,  and/or 
the  appropriate  alternatives in the  DSL specification. 
Any character choice  comes with a certain confidence; 
therefore, a solution itself has a  confidence obtained by 
combining the  elementary confidences of the choices. 
Since the recognizer may produce several  choices for 
segmenting a connected  component  into  characters  and 
several alternatives  for  each  character,  the  potential  for 
combinatorial explosion is high. Fortunately,  the explosion 
can be  controlled  quite efficiently by use of the following 
techniques: 

1. If a field (or  an  element in a  field) is not subject to a 

2. 

DSL  constraint,  the  combination based on all of the 
most likely choices made by the recognizer is the best 
answer. Suppose we want to recognize  a string of digits 
for which there is no constraint.  The recognizer may 
return  the following choices  when trying to recognize 
“95320”: 

O(8) 1(4)  5(3)  3(5)  2(3)  O(6S) 

9(4)  5(3)  3(5) 2(31 0(6,5)  

(Each line represents a different  segmentation.  Each 
group of symbols in a  line gives the most likely choice 
made by the recognizer,  followed, in parentheses, by 
other choices.) This illustrates  what might happen if the 
9 were segmented  into a loop  (recognized as 0, with 
8 as  second choice)  and a  vertical stroke (recognized 
as 1, with 4 as second choice). The  alternative 9(4) 
corresponds  to  another  segmentation  and is also 
returned,  but with a  lesser  confidence.  Since there 
is no  constraint, “015320” is the most likely answer. 
Suppose we want  to recognize  a country  name such 
as “CANADA,” with the  semantic  condition  that it 
belong  to a  dictionary D. The recognizer may return 
segmentation  and  recognition choices  such  as 

C(G)  R(A)  M(N)  A(R) O(P) A(B,R) 

W(M) W N )  A@) O(P) 

A brute-force  approach  that would systematically 
backtrack  to try all choices and look up  each  obtained 
word in D would have to  do it (4 + 2) X 2 X 2 X 2 X 3 
= 144 times. It would not even find the  correct 
answer,  since “CANADA” is not in the  set of 144 
hypotheses. Instead, we can use  an efficient method 
that  performs a “fuzzy” search on the dictionary, given 
an  approximate string-in particular,  the  one  obtained 
by taking all of the most probable choices. In the 
example, the  argument  to  the fuzzy search would be 
“CRMAOA.” Fuzzy-search algorithms  select  the 
dictionary entry  at  the minimal distance  from  the 
search  argument. Our contextual  processor uses the 
method  proposed in [19], extended  for handling 
alternate choices. The original method, as well as 
the extension,  uses  dynamic  programming. 

3. Suppose we attempt  to recognize  a telephone  number 
such  as “9291720.” We can express  in DSL  the syntax 
of a valid US. phone  number as  a  string of seven 
digits. If there is no  semantic  constraint on the  phone 
number, only the  segmentation choices need  be 
considered  to  ensure  that  the  number of characters 
is 7. Suppose  the following results  from  the  recognition 
program: 

9(8)  2(3) O(1)  1(4)  1(7)  7(4)  2(3)  6(0,5) 

9(8) 2(3)  9(4)  1(7)  2(3)  2(3) 6(0,5) 

During  the backtracking  process, the first hypothesis 
will be  the  string “92011726,” which violates the seven- 
digit syntax. The next hypothesis will be “9291726,” 
which satisfies the syntactic constraint.  Note  that we did 
not have to look at all  choices for individual characters. 
Actually, the last digit choice is 0, but, since there 
is no semantic  constraint,  there is no reason  for  the 
contextual  processor  to  consider 0 rather  than  the 
more  probable 6. If there were  a list of valid telephone 
numbers,  the  contextual  processor would  examine the 
different possible combinations of likely characters  and 
would probably find the right  answer. 

Our  contextual analyzer implements a context analyzer 
based  on  DSL  and exploits the  ideas  presented above. 
Most of the system is operational,  and we are  gathering 
statistics to  evaluate  the power of the  approach.  Table 1 
shows the  results of recognition before  and  after 
contextual checking was applied  to  the tax form of 
Figure 2. Notice the many recognition  errors  that have 
been  corrected by exploiting both syntactic and  semantic 
constraints. In particular: JUIY was changed into  JULY 
by use of a  dictionary on  months,  BRwnerd  and  Mrtchen 225 
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were changed  to BERNERD and  MITCHEM, which is 
incorrect  but gives a reasonable confidence (as  do 
BERNARD and  MITCHELL).  The (city, state, zip) triple 
is corrected;  once  the zip code is known,  a  dictionary of 
local street  names  can  be used to  transform  uC  into  Lee 
(the fuzzy search  routine knows about  alternative choices). 

Performance evaluation 
The  results above are purely qualitative. To give a better 
understanding of the power of our  contextual  processor, 
we provide  in  this  section some  quantitative results for 
two applications.  The first application  deals with  forms 
of poor quality, the  second  one with forms of very good 
quality. 

Application I: Credit card application forms 
The goal of this system is to recognize data  from  credit 
card  application forms that  are filled in by hand. A form 
comprises a  variety of fields in small, adjacent boxes; 
inside  a box, the writing is free-style, often careless, 
sometimes  interfering  with  printed text and lines. As a 
result,  the  character-recognition  rates  are relatively low. 
Still, the use of our  contextual  processor exhibits the 
following significant improvements  (evaluated on a sample 
of 100 forms): 

For U.S. telephone  numbers, syntactic  checking alone 
increases the  recognition  rate of the field from 28% to 
44%. 
For last names, a fuzzy search of a  dictionary of last 
names (10000 entries)  increases  the field recognition 
level from  9%  to 27%. (Note  that  the dictionary does 
not provide 100% coverage.) 

dictionary (about 45000 entries) increases the field 
recognition  rates  from  8%  to  60%  for city, 18% to 64% 
for  state,  and 28% to 50% for zip. 

dictionary of triples  ((name,  campus, zip))  increases the 
field recognition  rate  from 4% to  90%.  This  tremendous 
jump is understandable:  Without context, the probability 
of recognizing all letters  correctly is very small for a 
long  string (about 40 letters); with our  contextual 
processor, only  a  small number of letters have to be 
recognized in order  to identify the  correct value. 

For (city, state, zip), a fuzzy search of a complete 

For college names, a fuzzy search of a  small, complete 

Application 2: Shipping form 
The  form identifies the  sender by company name,  address, 
postal  code, city, and  state.  The receiver is identified by 
company name,  customer  number,  and  postal  code. A full 
database  contains all of this  information  for all companies 
involved. The  form is carefully filled in by hand, generally 
with attention paid to  the individual letter boxes. There 

226 are  three  lines  for  the  address; all elements of the  address 

are  not always used,  and  the  grouping of the  elements in 
three  lines is not always done consistently. This  means 
that  not only must  the  words  be recognized, but  the 
elements must be labeled by their  semantic  role:  number, 
street, city, etc.  However, the  redundancy  and  the 
availability of a complete  database  facilitate  the task 
greatly. 

of 65 forms) follows: 

The identification of the receiver or  sender is correct 

A brief summary of the  results  (evaluated on a sample 

in more  than 90% of the cases. 
The  recognition of yeslno marks is, as  expected, 

The  recognition  rate of individual handwritten  integers 
excellent  (99.8%). 

is over  95%  (many of the  errors were due  to  the 
ligatures in 00 or 000). 

These  numbers  are  quite promising. Also, the  results of 
both  applications  underscore  the  importance of the  form 
design, which is something  that  should  be  kept in mind for 
all applications. 

However, the most  striking  result of our  experiment  has 
been  the  ease with which our  contextual  processor  can  be 
adapted  to new applications. The use of DSL and  the 
system behind it  drastically reduces  the  development 
time of new applications  and  makes readily  available an 
excellent way  of exploiting contextual knowledge. 

Verijication and correction system 
Whatever  the quality of the recognizer and  the ability of 
the  context analyzer to improve the  results,  the  percentage 
of fields correctly recognized is still short of what is 
needed  for a data  entry  application.  For  the whole 
process, the client wants 100% correctness,  or  something 
close to  that limit. 

It is clear  that  human  intervention is needed.  We 
are  currently  adding  to  the system described above an 
interactive  phase  for verification and  correction.  For 
each field, the user will be  able  to  choose a sequence 
of operations invoked  in  a  specified order. If the first 
operation is sufficient to assign a  value to a character  or a 
field, and  do it with enough confidence, the  sequence is 
interrupted.  Otherwise,  the second operation is executed. 
If it does  not yield a sure  result,  the next operation is 
executed, etc. 

confidence,  a numerical field in which the last character 
is a  check code  computed  from  the  other digits (e.g., the 
sum of all digits, modulo 7). A meaningful sequence of 
operations may be as follows: an automatic  step in which 
a result  (that satisfies the check-code constraint) is 
accepted if the confidence is higher  than a threshold 
specified by the  user,  an  interactive session in which 

Suppose we need  to recognize, with very high 
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characters  are shown and certified or simply entered by 
the  operator, a new invocation of our  contextual processor 
that  uses  the newly acquired  information  to  determine 
the values of more fields, and finally another interactive 
session in which the  operator  sees  the fields that have not 
yet been resolved and  enters  their values. Typically, the 
first contextual-processor execution may yield a result in 
80% of the cases; for  the 20% remaining,  the  second 
execution may yield a  result in 80% of the  cases  not 
resolved in the first  execution (Le., 16% of all cases). 
Only 4% of the  cases have to  be shown to  the  operator 
for  manual  acceptance  or entry. 

For  each  operation,  the system must facilitate  operator 
interaction as  much  as possible. Some special techniques 
can be used for  that  purpose.  In  particular,  the verification 
of isolated  characters relies on a technique called 
“carpeting.”  It consists in showing an  array of 100 (or 
some  appropriate  number)  character images that have 
been recognized as “1,” for example. If the  operator  sees 
an image that is not a “1,” the  operator  can click on the 
image, thereby invalidating the  recognition result. The 
same is done  for all “ 2 3 ,  “3”s, etc. This method is 
efficient only for  characters  that have been recognized 
with high  confidence,  i.e., an  error  rate of only 2-3%. If 
this is not  the case,  it may be more efficient to show the 
complete field result. 

Applications/services of image-based  forms 
processing 
The  components  described in  this paper have been 
implemented in a  software  package that  runs  under  both 
AIX@ and O S / 2 @  operating systems. In this section we 
describe briefly several of the  more significant projects  for 
customers in which our software  has been successfully 
deployed. To protect  the anonymity of our  customers, 
we do  not divulge their names. 

Automated  processing of state  census  forms 
The first application involved the  national  census of a 
European country. There  were  different  language versions 
of the  same  form (since  several official languages were 
used). Each  form consisted of four pages, and every  page 
had a preprinted ID number of nine  numerals, all printed 
in the  same  font.  This ID number  contained  information 
about  the  form type and  the language used.  The field 
containing  the  ID  number was processed by our machine- 
print  ICR  software.  The  ICR result was used to identify 
the language of the  form  and  the page number,  and also 
to carry out  the  form recognition. The  “signature”  portion 
of the  form  recognition was not used here, since forms 
printed in different languages had  the  same  signatures of 
lines. Hence,  the  ICR of the ID field (specified  as  a UDF 
of the  form) was used for  form  recognition.  Once  the 
form  language was known, the  corresponding  form 

template was used for  form  dropout  and  subsequent 
field extraction and  ICR. 

About 32 million  pages  have been processed by this 
application. 

Tax  return  imaging  system 
This  application  handles  tax-return forms by scanning 
the forms,  recognizing them,  and compressing them 
for  subsequent archiving and  ICR.  This  application is 
characterized by many forms  that  are very similar to  one 
another.  For example, the  same type of form is created by 
different  printers;  each  variation of the  form is a different 
template  for  the  purpose of form recognition. Another 
example is tax forms  that  are  almost  identical except for 
the year number, which generally appears  at  the  top of 
the  form. Also, many  taxpayers  submit their  returns  on 
photocopies, which makes form recognition  difficult. 
Nevertheless, the  form-recognition algorithm is able  to 
cope with most of the cases,  generally by applying its 
second phase-i.e., by utilizing UDFs with appropriate 
matching. The filled-in data  are largely  in unconstrained 
hand-printing.  The  use of recognition-based  segmentation 
is helpful in separating touching characters.  In  one of the 
projects, the  number of people working on data  entry was 
reduced by 75%. This was partly  because of the  automated 
data  entry  and partly because of the productivity 
improvement  from  an image  system  employing automated 
routing  and  distribution of documents. 

9 Postal-address  readers 
Reading  postal  addresses,  sorting mail, and delivering  mail 
are labor-intensive  tasks for post offices throughout  the 
world.  Automation is increasingly  employed in this  task by 
scanning the  envelopes,  locating  the  destination-address 
block, reading  the  address using ICR,  interpreting  the 
address,  and  imprinting a bar  code  (corresponding  to 
nine-  or eleven-digit  zip codes in the U S ) ,  which 
eliminates  the  need  for any manual  operation until the 
point of delivery. The five-digit zip  code  can  be  obtained 
from  the zip code field in the  address. If the  remaining 
four  or six digits are  not  present, they have to  be  inferred 
from  the  street  address field; this is  why the  entire  address 
has  to  be  read  and  interpreted. Postal applications  are 
characterized by extremely high throughput rates-for 
example, 90000 addresses  per  hour  for a  system. Those 
addresses  for which the  machine  does  not have enough 
confidence  must be verified and  corrected by human 
operators. In the  particular  project with which we were 
associated,  our  ICR is used for  reading  hand-printed  or 
machine-printed  addresses. 

Sorting  bank-check  images 
This system is intended  for automatically adding check 
images into a database  according  to  account  number.  The 
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system was installed at  the  central  branch of a large  bank. 
Every  check was scanned  and processed by the FDO 
module. All of the checks had  the  same  template,  and all 
of the fields were  printed on every  check with the  same 
font.  After FDO, the fields containing  the  account  ID,  the 
check number,  and  the  telephone  number of the  account 
owner were processed by ICR.  There was also a CMC-7 
code line (CMC-7 is a font  that  can  be  read by humans as 
well as by magnetic  and  optical  means)  printed  at  the 
bottom of each check, which contained  the  account ID, 
the check number,  and  the  amount  to pay. The  CMC-7 
line was optically read by a  special ICR  program. 

Usually  a  check  passes through many hands on its way 
from  the  account owner to  the  scanning  station,  and  the 
signature  often falls on the position occupied by the 
CMC-7  code line. Therefore,  the image data  to  be 
recognized by ICR were of poor quality, and logic was 
used to  match all of the  results  produced by the  ICR  for 
the  different fields of the  same check  in order  to increase 
recognition  accuracy.  Check  digits  were  also  used to  detect 
and  sometimes  to  correct possible  recognition errors. 

Indexing and archiving bank forms 
Banks maintain  customer files, including  various  kinds of 
forms such as signature samples, mortgage applications, 
and  account-opening applications. To  facilitate  forms 
handling,  banks are looking into image-archiving  solutions. 
Our  solution  includes systems that scan the  forms, index 
them via form  recognition,  and compress them via FDO. 
This  application generally involves a large  number of form 
types. Our systems can process existing forms  and  add new 
forms  interactively. 

Imaging payment receipts in an insurance company 
The  car-insurance  department of a  large  company 
manages a database of clients.  A new client or a  client 
who intends  to  renew  an  insurance  contract receives  a 
statement  from  the company  in order  to pay the  premium 
to a  bank. The  statement consists of two similar  pages, 
insurer’s receipt  and client’s receipt,  and  contains 
information  printed  out  from  the  database: client’s ID  and 
details of car,  insurance  term, policy ID, and  the  amount 
of the payment. The  receipts  are  printed in hundreds of 
the company’s agencies with different  printers  and  fonts. 
Dot-matrix  printing is used in many cases. 

received by the company central office. Then  the 
corresponding  records of the client database  are  marked 
as “paid,”  and  the  receipts  are  stored in the office site. 

All paid  insurer’s  receipts, stamped by banks, are 

described  above are  read by ICR.  The  ICR uses an 
omnifont recognition  database with a very wide repertoire 
of fonts. 

Next, the  corresponding  records  are automatically found 
in the client database.  The  search essentially  uses the 
redundancy of the  information  obtained in the multiple 
fields. The system shows very high recognition 
performance. Typically, the system fails to find the 
corresponding  record only if the  receipt was printed 
with strong misalignment  relative to  the  form  template. 

Imaging credit  card slips and giro slips in bank branches 
This  application is to  automate  the  data-entry system 
for  the  information  contained  on  credit  card  and  giro 
(payment  voucher) slips. The  program  runs in hundreds 
of branches of two banks. The  documents  are  scanned by 
small desktop  scanners, resulting  in the  production of 
gray-scale  images with 16 shades  and a resolution of 
100 pixels per inch  in both  directions. 

Credit  card slips The  role of ICR is to  read  impressed 
credit card numbers  and  preprinted slip numbers.  The 
slips are  those filled out by hand.  The  card  and slip 
numbers  are  copied  from  the  card  to  the slip via carbon 
paper.  The main problems  are  the  presence of dark 
copy-ink spots  and extremely  variable contrast levels. 

Giro slips These  payment vouchers  include text lines 
containing about 50 digits and special symbols, printed in 
a  special font called OCR-B.  The lines are composed of 
parts  printed by different  sources,  leading  to misalignment 
of different  parts of the line. Another  factor making 
recognition difficult is the low level of contrast  on  the 
input  documents. 

The  ICR subsystem can  work only on black-and-white 
input images. Since a considerable  fraction of the 
documents processed by this system cannot be recognized, 
even by human  readers, when scanned in black-and-white 
mode,  binarization of the images (converting gray-scale 
images to black-and-white ones by setting a pixel white 
when  its  gray-scale  value  exceeds  a given threshold,  and 
black otherwise) is performed by the software, with 
feedback  from  ICR. If the recognition  confidence for 
a character is sufficiently high (and if the  number of 
black pixels in the  area of the  character exceeds  a fixed 
threshold),  the  character is accepted;  otherwise,  the 
binarization  threshold is modified, and recognition is 
attempted again. We call  this technique  “ICR-driven 
binarization.” 

The  receipts processing was formerly carried  out manually. The system has  been  tested on a benchmark with 1000 
Our  solution is as follows. All of the  receipts  are images from  authentic  giro  and  credit  card slips. No 

scanned,  and all of the images  pass form  recognition  and contextual  correction was made, in order  to  test  the  net 
FDO. (At  present,  there  are two types of receipt  form.)  ICR  performance. A document was considered  to be 

228 Then all of the fields containing  the  insurance  information  erroneous if at least  one  character was recognized 
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erroneously. Each credit  card  slip  contained 20 characters 
on average;  each  giro  slip  contained 50 characters on 
average.  The  testing  has  shown  the  following: 

Credit  card slips: error rate = 0.7%, reject  rate = 3.6%. 
Giro slips: error rate = 0.4%, reject  rate = 0.9%. 

The  giro  slip  data  contain  less  noise  than  the  credit  card 
data,  which is reflected  in  the testing results. 

mode  for  about  two  years. 

Conclusion 
In this paper, we  have  described a system  for  the  machine 
reading of forms  data  from  scanned  images.  Given  the 
state of the  art of recognition  technology,  it is impossible 
to  completely  eliminate  operators from the  data  entry 
process. However,  our field tests  show  that we are able  to 
provide  a  twofold  improvement in productivity  in  the  data 
entry  process,  even  with  unskilled  operators,  compared  to 
key  entry by professional  operators.  Various  modules of 
the  system  described  in  this  paper  have  been  used  in 
customer projects worldwide. The verification  and 
correction  subsystem,  which  is a crucial  component of the 
system, is still  in  development. We expect to see further 
improvements  in  productivity  when  this  subsystem  attains 
maturity. We expect  our  system,  after  further  development 
and tuning, to go a long way in reducing  data  entry costs 
for many applications. 

The  system  has  been in use by the  bank  in  a  production 

AIX  and OSi2 are registered trademarks of International 
Business  Machines Corporation. 
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