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While document-image systems for the
management of collections of documents,
such as forms, offer significant productivity
improvements, the entry of information from
documents remains a labor-intensive and
costly task for most organizations. In this
paper, we describe a software system for the
machine reading of forms data from their
scanned images. We describe its major
components: form recognition and “dropout,”
intelligent character recognition {(ICR}), and
contextual checking. Finally, we describe
applications for which our automated forms
reader has been successfully used.

introduction

Forms processing is an essential operation in business

and government organizations. Forms are structured
documents that can be filled in, distributed, approved or
rejected, stored, retrieved, and handled in other ways.
While forms may be paper-based or on-line, the large
majority of the forms that are in common use today are
paper documents. Because of the many advantages they
provide, there is an increasing trend toward image systems
in which paper forms are scanned and converted to images
and processed like on-line forms. One of the central
problems in this process is the cost of capturing

information from the scanned images. The technology
and software to automate data entry from forms is the
topic of this paper.

It has been estimated that approximately $250 billion is
spent annually, worldwide, on keying information from
paper documents'—and this is for keying only 1% of the
available documents. Most of this cost is in human labor.
When the process of data entry is automated, significant
cost savings can be realized; in addition, the percentage of
data that is brought on line can also be increased. For
example, the U.S. Internal Revenue Service processed
200 million tax returns in 1993, of which 6% were filed
electronicaily [1]. Only about 40% of the data on tax
returns was keyed in, and the typical processing time on
tax returns was four to six weeks. It is estimated that by
the year 2001, 312 million returns will be filed, of which
30% will be filed electronically. As a result of an
ambitious tax-system-modernization effort based on
imaging, the IRS hopes to capture 100% of the data from
tax returns and at the same time reduce the processing
time to two to three weeks. Figures also indicate that
although the percentage of electronic filings is increasing,
paper returns will continue to be a dominant factor for
the foreseeable future.

In this paper, we describe an image-based forms-
processing system that significantly reduces the human

I IBM Charlotte internal study report on data entry costs, 1993.
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labor involved in capturing information from paper forms.
After presenting an overview of the system in the next
section, we describe its individual components in the
succeeding sections. In addition to the components
described in this paper, an image-based forms-processing
system also requires a workflow manager to route forms
that are being processed, a database manager to store and
retrieve forms, and a folder manager to organize and
present related forms. However, we do not describe these
components, because they are outside the main scope of
the paper.

System overview

In this section, we present an overview of the image-based
forms-processing system. Figure 1 shows the system
organization. A paper form is scanned to produce a black-
and-white image. The next task is to identify the form
type—for example, in a tax application, to determine
whether the image corresponds to Form 1040 or Schedule
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A, etc. This is done in the “form-recognition” stage. All
distinct form types that are used in an enterprise are
defined to the system in a “forms-training” phase (not
shown in the figure). In the form-recognition stage, the
input image is recognized as belonging to one of the
previously defined form types. Once the form type is
identified, the locations of the fields of interest and the
contextual relationships within and between fields are
available to the system from the information provided
in forms training. If the form type cannot be identified
automatically, the data must be keyed in manually.
Therefore, reliable form-type recognition is a key
requirement in an image-based forms-processing system.

The next task is to extract images of fields that are to
be recognized. The input image is carefully registered
(i.e., aligned) with its matching blank form (the template
image), which is stored in the system during the forms-
training phase. The template image is then subtracted
from the registered input image, leaving only the filled-
in data. This is done in the “form-dropout” stage. This
process helps in compressing the image significantly, since
the dropped-out image has far fewer black pixels than the
original filled-in image. The dropped-out image is stored
in an image database for display and archival purposes.
Notice that an equivalent of the original image can be
displayed by overlaying the dropped-out image with the
template image.

Images of fields of interest are then extracted from the
dropped-out image, and intelligent character recognition
(ICR) is applied to them. Contextual information, such
as whether a field is numeric-only or alphanumeric, is
utilized in ICR whenever such information is available.
If no information is available on the case (upper or
lower) and type (e.g., numerical) of the field, a two-stage
recognition is performed, in which the first stage identifies
the case and type, and the second stage establishes
individual character identities. Since ICR is not error-free,
multiple hypotheses (three for each character, in our
implementation) are generated and passed to the
contextual-checking stage. Our contextual processor
checks the syntactic and semantic correctness of the
ICR results, using previously defined constraints. If
the contextual processor can resolve the field identity
unambiguously, the result for that field is accepted as
final; otherwise, the results are passed to the verification
stage. For rapid verification, we employ a technique called
“carpet” verification, which is explained in the section on
verification and correction. Those characters whose ICR
identities are verified as correct by the operator are
accepted as final. Given these confirmed character
identities, the contextual processor tries again to resolve
those fields that it could not identify before. The output
of the verification and correction process should be
close to 100% correct.
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Tests on customers’ forms show that our system can
achieve a data entry rate of about 20000 characters per
hour per operator, even with unskilled operators. In
contrast, a professional key entry operator can enter
about 10000 characters per hour from forms. Therefore,
the use of our system provides a significant increase in
productivity in the key entry process, while at the same
time not requiring the use of professional key entry
operators.

Form recognition and dropout

A fundamental problem that must be solved for many
form-processing applications is that of efficient image
compression. With standard compression algorithms for
black-and-white images, such as the CCITT Group 4
MMR algorithm [2], a compression factor between 5 and
20 can be achieved for most types of forms. A typical
filled-in form of letter size (8.5 X 11 in.) compressed via
the MMR algorithm may require approximately 20-80 KB
(kilobytes) of memory. However, there is still a substantial
amount of redundancy in these forms, since only the
filled-in information is of importance, while the constant
information (the printed matter on the blank form) may
be stored once and later used for all of the filled-in forms
of the same type.

For numerous applications, it is essential to increase the
compression ratio quite significantly in order to reduce the
required amount of both short- and long-term storage.
Fortunately, in many of these applications, the number of
different form types is relatively small, while for each form
type (and its template) there are an enormous number
of filled-in forms that differ only in their filled-in
information. This fact gives rise to a more sophisticated
compression scheme, which relies on the removal of the
common information (the template image) shared by all
forms of the same type. After removal of the common
data, one is left with an image consisting of the filled-in
information only, which requires an order of magnitude
less storage than the original image when compressed
(via standard G4 MMR compression).

As mentioned above, the procedure that removes the
common data from the form and leaves only the filled-
in data is called form dropout (FDO). When the FDO
algorithm is applied to a filled-in form and the resultant
filled-in data are then compressed by a standard MMR
algorithm, a typical filled-in letter-sized form may be
represented by approximately 2-12 KB, yielding an
additional compression factor of nearly 10 with respect
to MMR carried out on the original image. A further
compression factor of 2 can be achieved by a clever
subsampling algorithm (described below) that may follow
the FDO. The remainder of this section describes these
compression techniques and associated procedures.
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A prerequisite for FDO is the knowledge of the form
type associated with the given filled-in form. In most
applications, multiple (from a few to several hundred)
different form types are used; thus, the FDO procedure
should typically be preceded by a form-recognition
procedure that automatically identifies the type of the
input filled-in form from a prestored template library.

One possible alternative to FDO is to print the blank
forms with a special color of ink (dropout ink) that is
invisible to conventional scanners. In such a case, the
template data would be invisible to the scanner, and
only the filled-in data would enter the computer. For
most systems, however, subsequent image processing is
required, such as form recognition, image registration and
alignment, de-skew, indexing, and ICR. Using dropout ink
makes it almost impossible to carry out many of these
tasks. Also, if the application allows usage of photocopies,
the technique of using dropout ink for the originals will
not apply to the photocopies. In addition, the necessity
of form redesign and the use of special ink might be
cumbersome and costly to some users. For tasks such as
form recognition and image registration, it is best to have
“rich” forms with as many “identifiers” as possible (such
as lines, boxes, and special marks). Hence, the optimal
strategy is to find an appropriate trade-off between adding
identifiers to the forms to help with image processing,
and eliminating them to help with FDO. Accordingly, a
general-purpose, software-based FDO procedure is of
significant value for most image applications.

The basic idea of FDO is quite simple. First, in the
forms-training process, each different blank form is scanned
and stored in the system. The fields of interest on which
ICR is to be applied are also specified. At the end of the
forms-training process, a library of blank forms (called the
template library) is made available. Then, for each filled-in
form to be compressed, the appropriate template form
must be recognized, aligned with the filled-in forms
(image registration), and subtracted from the filled-in
form, leaving only the filled-in data, which can then be
compressed. The image reconstruction can be carried
out by decompressing the “subtracted” form and
superimposing the appropriate template data on it.

In Figure 2, we show a filled-in version of a tax form
(the filled-in data are hypothetical), and in Figure 3, the
image after the dropout process has been applied. Notice
that all of the template data have been removed. Notice
also the significant reduction in required storage that we
are able to achieve (following compression, from 104.9 KB
of storage for the complete image to 10.9 KB after FDO).

& Form recognition
For applications with multiple forms, automatic
recognition of the type of the filled-in forms is a

prerequisite for FDO. This process is based on matching 213
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A U.S. tax form with imaginary data filled in. It requires 104.9
kilobytes of storage.

!

the input filled-in form with a library of prescanned blank
forms to find the best match (described later). Another
task carried out by the form-recognition module during
the matching process is to find the proper transformation
between the input filled-in form and its matching template
form. This transformation includes translation, rotation,
and scaling. Form recognition is also supplemented by a
forms-training process, by which new forms are defined to
the system.

In most cases, it is sufficient to identify a form by its
“signature,” which includes the locations and lengths of its
horizontal and/or vertical lines. The match between the
signature of a filled-in form and a template form from the
template library is then carried out by comparing these
two sets of signatures by means of an elastic matching
procedure [3].

Occasionally, however, this signature is not sufficient to
carry out the form recognition, because either the form
has too few lines, or different forms in the library have
similar signatures. Hence, the elastic matching procedure
may match two or more templates with the same input
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form, leading to ambiguous recognition. In these cases,
user-defined fields (UDFs) may be specified, in which some
other matching function (such as ICR, bar-code reading,
or histogram matching) may be used. These UDFs are
defined by an operator during the forms-training process,
when the system indicates that an input form is too similar
to a previously stored form. Then, the form-recognition
procedure uses these UDFs to discriminate between
similar forms. The type of matching function defined in
each UDF depends on the application. For example, if
there are two similar tax forms, one for 1994 and the
other for 1995, that differ only in the field where the year
is specified in some known font, a UDF should be defined
for this field, and an ICR function tailored to this font
should be used to identify the form by recognizing the
year printed in this UDF.

It should be noted that forms of the same type that
come from different printing sources differ slightly in their
final layout, and forms that have even slightly different
images are inadequate for the subsequent FDO. Hence,
each different layout and version of the same type of form
is defined as a different form type for the automated
system. A special feature of the form-recognition software
is the ability to detect forms scanned upside down
(i.e., rotated by 180°) by rotating the image and then
recognizing the form type.

The form-recognition module described here has been
successfully used in census, banking, and tax-processing
applications, where tens to hundreds of different forms
were used.

® Registration

The first problem that must be addressed after recognizing
the form type is image registration, i.e., the process of
aligning an incoming filled-in form with a matching
template. The geometric relationship between an
instance of a form and its template can be defined by a
transformation that is composed of translation, rotation,
scaling, and shear. In general, a transformation that can
define the image of a form in terms of the template is
nonlinear and requires the evaluation of a large number
of parameters. The solution to the registration problem
was thus divided into two phases:

1. Coarse registration ~Computes and performs a linear
transformation containing translation, rotation, and
scaling.

2. Fine registration  Fixes local nonlinear distortions by
using a piecewise-linear pattern matching of rectangular
blocks in the images.

Coarse registration
The task of coarse registration is to perform global
rotation, scaling, and translation, according to five
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parameters defining the geometric difference between an
incoming form and its template. Since these operations
are computationally intensive (especially the rotation of
an image), they are performed only if necessary, i.e., if
the distortion is larger than some tolerance threshold.
The transformation parameters are provided by the
form-recognition process.

Fine registration

When coarse registration is complete, we are left

with an image that is different from the template by

slight rotation, scaling, and localized distortion. The
transformation parameters describing the relation of the
image to the template are also available. The next step is
to perform a fine registration to deal with the localized
nonlinear distortions, rotation, and scaling (because of
nonlinear distortions in the scanning operation). There are
two possible mechanisms to overcome these problems:

® Block registration  If this mechanism is chosen, the
image is partitioned into a number of relatively small,
overlapping segments. For each segment, the system
computes an independent transformation, which consists
of translation only. Since the entire image is composed
of a combination of shifted segments, registration of
slightly rotated and scaled images is possible. Moreover,
since each segment may move independently of its
neighbors to some limited extent, the local nonlinear
distortions are addressed as well. In practice, the
location of each segment is computed independently
of its neighbors; therefore, irregularities in segment
placing may arise. Such irregularities may produce
very annoying results in some cases; for this reason, a
heuristic control mechanism is applied to make sure that
neighboring segments do not differ in movement by
more than a specified number of pixels, thus reducing
such irregularities to a minimum. Once the optimal
translation parameters are established, each segment is
placed at the appropriate location of the output image.

o Elastic registration  Block registration may cause
annoying irregularities in the FDO result, especially
when a scanner with an irregular form-feed drive (which
is the primary cause of nonlinear distortions) is used.
In such cases, it may be better to apply a more complex
registration mechanism, which leads to better quality, at
the expense of speed of execution. Our dropout software
provides an elastic registration mechanism for such
cases, which tries to match each pixel in the input image
to the respective pixel in the template image, stretching
and shrinking the input image as it progresses.

® Subtraction
After registration, the exact location of the template
data in the form is known. Actually, the output of the
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Output image from the form-dropout process for the form of Figure
2. It requires only 10.9 kilobytes of storage. Note that gap-filling
. corrections are effective in many places but occasionally do not
. work ideally (e.g., the two circled spots).

registration phase can be described as an image composed
of a “noisy” version of the template, and the filled-in
information. Once the location of the template data is
known, it would seem logical to remove the data for FDO;
however, it is imperative to take into account the fact that
even for the same form sheet, two separate scans will
provide significantly different output. Hence, even

after registration, there will be differences between the
template data as they appear on the template image and
the filled-in form image. Therefore, a simple pixel-by-pixel
subtraction would be ineffective, since we would be left
with noise concentrated around the template-data
locations.

This problem can be resolved by a decision process
which in effect classifies each pixel in the form as being
part of the template data or the filled-in data on the basis
of the nature of the pixel’s immediate neighborhood [4].
More specifically, if a pixel in the transformed image is
white, the output value for the pixel is also white. When
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both the pixel and the corresponding pixel in the template
image are black, the output is white. In the case where a
pixel is black and the template pixel in this location is
white, the pixel’s immediate neighborhood is examined,
and the decision made about the output value in
accordance with the nature of the pixel’s neighborhood.
This implementation does not perform well in two
cases, for which the following enhancements are available:

1. A major assumption of the system is that filled-in
information is additive in nature; i.e., information is
added on a blank form. Therefore, the system detects
and filters out only information that has been written
upon the form. However, in some instances, data of the
blank form may be deleted from the filled-in form by
means of a sticker or a label, or by using some sort of
white-out material. In those parts where data of the
blank form are erased from the filled-in form, there
will be no data to drop out. Hence, when the form is
reconstructed by superimposing the template on the
subtracted form, the erased material shows up again on
the reconstructed form, which might be an undesirable
result. To overcome this problem, the FDO program
contains white-out-detection-and-correction capabilities
that locate such areas on the filled-in form. White-out
support provides the ability to correctly treat template
data that are removed from the input form, and results
in a perfect reconstruction. This feature is optional and
requires additional processing time.

2. FDO does not perform well in areas with dense
nonwhite background textures. If data are written
on such areas, it is possible that FDO may fail to
reconstruct these data correctly; in extreme cases, the
data will be lost. To overcome this problem, form
dropout can activate dense-area processing, which is able
to detect filled-in data located in such areas and filter
them correctly. This feature is also optional and
requires additional processing time when activated.

A related problem with FDO is that it introduces
gaps in the filled-in data that cross the template data.
When the template pixels are subtracted from the
image, they are also removed from filled-in data
marked on them, resulting in gaps in the filled-in
data. For form-reconstruction purposes, this is not
a problem, since the template data fill these gaps,
resulting in an image with no distinguishable
differences; however, it can cause trouble for ICR,
which is applied on the data after FDO is performed.

Therefore, FDO includes gap-filling support, which is
applied to the dropout result in locations where filled-
in data are expected, according to entry-field-definition
information. This feature is also optional and requires
additional processing time. The gap-filling procedure is
implemented by matching black runs (series of black
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pixels with no intervening white pixels) in the dropout
image that are close enough to the template lines. A
connect or no-connect decision is made for neighboring
black runs, including runs that lie on opposite sides of
the template line and those that lie on the same side of
the template line. The decision is based on geometrical
parameters such as the distance between runs, the

slant of the corresponding strokes, and connectivity
information in the vicinity of the runs. These
considerations are carefully weighted to yield a
satisfactory system response.

® Lossy compression

The result of the subtraction phase is an image containing
only the filled-in information of the original form. For
many applications, it suffices to have legible text, which is
indistinguishable from the original by the viewer. In these
cases, a lossy compression may be applied to further
increase the compression ratio by approximately a factor
of 2. A trivial approach to this would be to reduce the
resolution of the scanning. Indeed, some scanner and
facsimile devices do allow this option. However, while this
solution might be valid for some images (such as scans of
handwritten text with large characters), it would cause
unacceptable distortion for other images (such as scans of
small, printed characters). Moreover, even for medium-
sized text, simple reduction of resolution would cause
image quality deterioration that might be quite annoying
to the observer.

A lossy compression technique is proposed by which the
compression ratio is increased to about twice that of the
subtracted form, yet with high image quality. In general,
this technique is based on a special subsampling of the
subtracted image, with a goal of reducing the resolution by
a factor of 2 in both horizontal and vertical directions.
The image is partitioned into 2 X 2 blocks of pixels,
and a single pixel is used to represent each such block.
For blocks containing zero or one black pixel, the
representative pixel is white. For blocks containing
three or four black pixels, its value is black. For blocks
containing two black pixels, the color of the representative
pixel depends on the immediate neighborhood of the
block, according to connectivity criteria designed so that
narrow lines do not disappear and disjoint lines do not
merge [4]. When the subsampled image is compressed,
an additional compression ratio of approximately 2 is
achieved.

® Form reconstruction

The output of FDO is a compressed-image flle containing
the filled-in data of a form, the name of the template
form, and flags related to the FDO process. Upon
retrieval of a form from the archive, it is necessary to
invoke the reconstruction task, which is responsible for
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generating an image of the form that looks exactly like
the original scanned paper. Reconstruction uses the
information in the compressed-image file to determine
what template has to be retrieved; the template data are
then superimposed on the decompressed subtracted image
(bitwise-OR operation). If the form was processed with
the lossy compression option, the reconstruction process
also approximately reverses the subsampling operation
in order to match the image resolution to that of the
template image. The reconstruction is fast, since the
subtracted image and its template are already aligned.

Intelligent character recognition

ICR’ is the process by which bitmaps within fields of

a form are converted to character codes (ASCII or
EBCDIC). For a review of ICR research, see [5]. Before
ICR can be applied to data of a field, we must perform
the following preprocessing:

1. Correct skew. Although the global skew of the input
form is usually corrected in the FDO process, local
skew (due to peculiarities in handwriting or printing)
of the ficld data may still exist.

2. Locate the field data. This is done using the field
coordinates defined at the forms-training stage. A
certain degree of vertical and horizontal extension of
the field may sometimes be necessary to handle writing
that goes beyond the field boundaries.

3. Detect the baseline (the imaginary line over which the
characters are written or printed). The character image
reading order and size normalization are based on the
baseline.

4. Detect spaces between words.

5. Identify connected components (i.c., character
fragments, individual characters, or touching
characters), and merge neighboring connected
components that satisfy certain geometrical constraints.

The input to ICR is a bitmap corresponding to a string
of characters; this string may contain touching characters,

which are usually difficult to segment and hence recognize.

Our ICR employs a recognition-based segmentation
scheme, described below, for separating touching
characters. Using a set of heuristics, it first searches for
possible split points. Then, it selects the best sequence

of splits on the basis of the recognition results on the
individual sequences. For each connected component, ICR
returns up to three sequences of splits from the graph
solver in the recognition-based segmentation algorithm.
Each split in these sequences is again associated with

2 ICR is also known as optical character recognition (OCR); however, because of
the increased sophistication of today’s recognition algorithms and the range of
input they can handle, such as handwritten data and omnifont machine-print, the
industry trend is to use the term ICR.
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three character candidates. Moreover, a confidence
measure and a distance measure are associated with each
character candidate. These alternative splits and character
candidates, together with their confidence and distance
measures, provide our contextual processor with useful
information to resolve the ambiguity and to make corrections.
ICR treats machine-printed and hand-printed text
differently. Because the characteristics of machine-printed
text and hand-printed text are rather different, ICR
employs different classification schemes. In the following
presentation, we discuss primarily the ICR system for
hand-printed text; however, the variations used for
recognizing machine-printed text are pointed out wherever
necessary. We first describe the recognition component
in ICR and then present the recognition-based
segmentation scheme.

® Recognition of isolated characters

Figure 4 is a diagram of the recognition component in
ICR. It consists of a feature extractor (described below)
from the input bitmap and a hybrid classifier, which
employs a two-stage multinetwork (TSMN) classifier [a
classifier consisting of two stages, each of which contains
several neural networks (see Figure 5)] and a template
matcher (TM) (which matches the input patterns against
a subset of stored templates). For machine-printed ICR,
the TSMN classifier is replaced by a single feed-forward
network with 78 output categories (10 digits, 26 uppercase
characters, 26 lowercase characters, and 16 special
symbols). This is because machine-printed-character
recognition is a relatively easy problem compared to
hand-printed-character recognition.

Features
The goal of feature extraction is to extract the most

relevant measurements (features) from the character 217
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bitmaps, so as to minimize the within-category variability
while increasing the between-category variability. Two
different types of features [6] are used in our system:
contour-direction features and bending-point features.

Prior to feature extraction, character images are
normalized to 24 (pixels in height) X 16 (pixels in width)
in order to reduce the character-size variation. One can
efficiently extract contour-direction features by scanning
the normalized 24 X 16 image by a 2 X 2 mask to detect
primitive patterns. A primitive pattern is detected if the
number of black pixels in the mask is from one to three
(neither all white nor all black). Each primitive pattern is
classified into one of four types. The 24 X 16 image is
sliced in four directions: horizontal, vertical, diagonal
(45°), and off-diagonal (135°). Each slice has a width
of four pixels; therefore, the vertical direction has four
slices, and the others have six slices (22 slices in total).
A contour-direction feature is defined as the number of
primitive patterns of the same type in each slice. This
results in an 88-dimensional (22 slices X 4 types) feature
vector.

Bending-point features include some topological
characteristics of a character, such as high-curvature
points, terminal points, and fork points, which are
detected in the character image by tracing the contours
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of strokes. A special geometrical mapping from bending
points and their attributes (e.g., acuteness, position,
orientation, and convexity or concavity) to a fixed-length
(96-element) feature vector has been designed [6]. The
normalized image is evenly divided into 12 regions (6 X 6
or 6 X 5 pixels). The bending points in a normalized
image are coded according to the regions in which they
occur and according to their curvature orientations, which
are divided into eight cases (four orientations, each of
which is either convex or concave). The value of acuteness
of a bending point is used as the magnitude for the
corresponding component in the feature vector.

For hand-printed-character recognition, all of the 88
contour-direction and 96 bending-point features are used,
while for machine-printed-character recognition, only the
88 contour-direction features are used. However, the
normalized character height, width, and position (distance
between the center of the character and the baseline) are
used as three additional features for recognizing machine-
printed characters. These latter features provide useful
information for distinguishing some lowercase and
uppercase characters that are otherwise difficult to
differentiate (e.g., ¢/C, k/K, 0/O). We do not utilize these
three features for hand-printed characters, because they
are not reliable for distinguishing such characters.

Two-stage multinetwork classifier

The concept of a TSMN classifier is based on the
following observations. For some fields on a form, the
target character set to be recognized can be determined

a priori (e.g., for zip code and social security number
fields, the target character set is limited to the 10 digits);
therefore, a specialized network can be designed for this
task. It is well known that the smaller the character set for
which a network is trained, the better the performance the
network can achieve for the specific task (in accuracy,
speed, and confidence measure, which is used for a
rejection operation and postprocessing). Unfortunately,
for many other fields (e.g., street address and account
number), it is not so easy to constrain the target character
set @ priori. In such cases, two methods are often used.
One is to invoke all of the necessary specialized networks
(networks that are trained to recognize subsets of the
characters) and select the winning character(s) among

all of the characters chosen by the invoked networks.
Obviously, this is not a reliable method, because all of the
specialized networks are trained separately, without any
competition among them. It has been observed that
feed-forward networks with sigmoid functions [7] often
generate high output values for characters from categories
that are not present in the training data. This undesirable
property causes this method to behave very poorly in
recognition accuracy and confidence measure. The method
also suffers from low recognition speed, since multiple
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networks must be invoked. An alternative method is to
design a single large feed-forward network with a
sufficient number of “output units” to cover all of the
possible target categories (each output unit represents a
target character category). This method works reasonably
well in the situations where no case information is
available, but not as well as the specialized networks in
known-case situations. Moreover, a large single network
makes the training process difficult.

Thus, neither method achieves a satisfactory balance
among recognition accuracy, confidence, speed, and
flexibility. To solve this problem, we propose the TSMN
classifier shown in Figure 5. It consists of a bank of
specialized networks, each of which is designed to
recognize a subset of the entire character set. A
preclassifier and a network selector are employed for
selectively invoking the necessary specialized networks.
The network selector makes decisions based on both
the case information obtained from the field definition
and the outputs of the preclassifier. Compared with a
system that uses either a single network or one-stage
multiple networks, the TSMN system offers advantages
in recognition accuracy, confidence measure, speed,
and flexibility [8].

Partition of target character set A natural partition of the
target character set (output categories) into uppercase,
lowercase, digit, and special-symbol subsets is used. This
partition is appropriate for many applications, such as
forms processing. The special-symbol subset contains 16
punctuation symbols that are sufficient for our application
(#$%*()+<>":;/=17). The comma and period
are handled separately in our system.

Preclassifier  The preclassifier has four output units
(each of which corresponds to one of the four character
subsets), 40 hidden units, and 184 input nodes. The
standard sigmoid function is used.

Specialized networks  The uppercase network and
lowercase network have the same architecture, with 50
hidden units and 26 output units. The digit network has
40 hidden units and 10 output units. The special-symbol
network has 40 hidden units and 16 output units. These
network architectures were selected after numerous trials.
The standard sigmoid function is used in all of the
specialized networks.

Network selector ~ Since we are interested in only a few
most likely candidates for the classification purpose, it is
not necessary to invoke the specialized networks for which
the output values from the preclassifier are low. This does
not affect the recognition accuracy, because categories
from these specialized networks are unlikely to be among
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the top candidates; however, this selection operation
significantly reduces the computational requirement.

The decision logic for network selection utilizes both
the prior-case information (when available) and the output
values of the preclassifier. The decision logic for network
selection uses the following set of rules:

1. If the prior-case information can uniquely determine
which specialized network to invoke, the preclassifier is
bypassed.

2. The ith network is selected by the preclassifier if
and only if the ith output value of the preclassifier
(normalized by the maximum output) is greater than
a prespecified threshold which controls the number
of specialized networks that are invoked.

3. The specialized networks that are selected by the
preclassifier and identified on the basis of prior-case
information are invoked. If no specialized network is
selected, the input character is rejected. (This might
occut, e.g., if a number were written in an alphabetic
field.)

Scaling the specialized networks ~ The outputs of the
specialized network are multiplied by the corresponding
output values of the preclassifier.

Candidate selector  The three categories corresponding
to the three largest scaled output values are selected as
candidate characters. The scaled output values are
associated with the candidates as confidence values.

Template-matching (TM) classifier

The template-matching (TM) or nearest-neighbor classifier
[6, 9] is well known and is commonly used in statistical
pattern recognition. It is a nonparametric classifier that
makes no assumption about the underlying pattern
distributions. The TM decision rule compares an input
pattern with a collection of stored patterns (templates)
and assigns the input pattern to the category associated
with the nearest neighbor among the stored patterns.

A severe drawback of the TM classifier is that it
requires a large amount of computation and storage when
a large number of training patterns are involved. Because
of this computational burden, the TM classifier is not very
popular when real-time requirements must be met. In
the domain of character recognition, a large number of
training patterns are often available; therefore, applying
the basic TM classifier is not attractive. In [10], a
technique was developed for grouping similar training
patterns from the same category (such as “a”) into
clusters, based on a similarity measure that is the city-
block distance (between a pattern and a cluster center

in the feature space) divided by the radius (standard 219
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Splitting touching hand-printed characters: (a) Letters "S" and "A," with black pixels marked as "1"s and candidate split points marked as

c"s; (b) enlargement of area marked in (a); (c) enlargement of marked area, with split points marked with "x"s.

deviation with respect to the cluster center) of the cluster.
More than one cluster may be created for each category.

We first apply a k-means type of clustering algorithm
[11], with the city-block distance metric, to all patterns
within a category, independent of other categories (for
example, to all training patterns of “a,” independent of
patterns of other lowercase letters). The initial clusters
are randomly generated. If the distance between a pattern
and its nearest cluster center is within a predetermined
threshold, the input pattern is added to that cluster.
If not, a new cluster is created. Clusters with variance
(with respect to the cluster center) larger than a specified
threshold are split into smaller clusters until the variance
constraint is satisfied. The mean vector of a cluster is
chosen as the prototype for that cluster. At the end of this
process, we have one or more clusters for each category
and a library of prototypes, one for each cluster. We then
eliminate clusters that have too few patterns. The radii
of clusters, which are initialized to the same value, are
fine-tuned as follows. We first classify all of the training
patterns against the prototype library, using the nearest-
prototype criterion. If all of the patterns in a cluster are
correctly classified, no change is made to the radius of
the cluster. Otherwise, the radius is shrunk by a small
amount for the next iteration. As the radii are tuned, the
classification results improve. This process is continued
until there is no more improvement to the classification
accuracy.

The clustering algorithm produces a set of prototypes.
The TM classifier assigns an input pattern to the category
associated with the best matching prototype. The best
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matching distance is also obtained and associated with
the classification.

Hybrid classifier

It has been found by many researchers that combinations
of different feature sets (a set of measurements that
represent certain characteristics of a character) and
different classifiers can compensate for each other’s
weakness, thus improving the classification performance
[12, 13]. The hybrid classifier that we have developed is
based on the following observations: 1) In general, the
probability that the correct answer is among the top three
candidates (coverage rate) is higher (by 2% to 8%) than
the probability that the first choice is correct; 2) the
TSMN classifier outperforms the TM classifier by 2% to
4% [14]; and 3) it is inefficient for the TM classifier to
search for the best matches among all of the categories.
Since the coverage rate of the top three candidates is very
high (98%) for the TSMN classifier, focusing on the top
candidates proposed by the TSMN classifier is more
efficient. These observations led us to pursue a method of
reordering the top three choices produced by the TSMN
classifier, using the TM classifier when the TSMN
classifier has low confidence.

The hybrid classifier works as follows. First, the TSMN
classifier identifies the top three candidates. Next, the TM
is invoked to match the input pattern with only those
templates in the three categories selected by the TSMN
classifier. The best template-matching distance in each
category is determined. If the difference between the
confidence values of the top two candidates calculated by
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the TSMN classifier is less than a prespecified threshold,
they are reordered according to the best template-
matching distances calculated by the TM. The same rule
is then applied to the second and third choices. Thus,
template-matching distances are used to reorder choices
only if the TSMN is not “sure” about its decision. Note
that the TM is invoked in any case, in order to obtain

the template-matching distance for each of the three
candidates, which is used as a length in the graph solver in
the segmentation algorithm. This hybrid classifier has little
extra computational overhead with respect to the TSMN
classifier, since only the top three categories are matched
for the best template distances.

Segmentation graph for an image with three potential split points
(a, b, and c), showing all possible edges (subimages). The heavy
path represents the segmentation consisting of the following three
subimages: (1) from the left side of the image to split point q,
(2) from a to ¢, and (3) from c to the right side of the image.

® Recognition-based segmentation

Segmentation of touching characters has long been known
as a critical problem in ICR. A number of approaches
have been proposed in the literature. An excellent survey
of strategies in character segmentation was provided in
[15]. Our ICR system employs a recognition-based
segmentation scheme [16]. This scheme consists of the
following phases: 1) Identifying potential split points;

points are subjected to additional tests in order to choose
likely split points. The points are searched in order of an
estimate of local curvature, and a split point is defined if

2) constructing a graph; and 3) finding the shortest path it is within a specified distance from a point of concavity

in the graph from the leftmost node to the rightmost on the opposite side of the same contour. The original

node. We now discuss these three phases in detail. pattern is broken along a line between these two points.
If a resultant subpattern would be too “small,” we ignore

Identifying potential split points the particular split points. In Figure 6(c), the proper

Touching characters in machine-printed text occur because  separation between “S” and “A” is indicated by “x”’s,

of thick printing, insufficient scanner resolution, or poor according to this method. Other points of concavity are

binarization. For hand-printed text, contact between filled in with “1”’s.

adjacent characters may be due to the style of writing as

well as to crowding of symbols. In some cases, a stroke Constructing a segmentation graph

belonging to one character may traverse a stroke The potential split points are ordered according to their

belonging to another. While relatively simple means horizontal locations. Each neighboring pair of split points

can be devised to separate touching machine-printed defines an elementary segment of the image. Neighboring

characters, we have developed one method for separating
touching characters that works for both machine-printed
and hand-printed text. We now describe this method

for identifying potential split points.

Typically, a “clue” is available to detect the point of
penetration. The clue may be described as a concavity at
the point of contact. This suggests that when merged
characters are suspected, the segmenter should seek such
concavities in the most likely parts of the image. Our
algorithm, using a contour-following process to provide
edge-direction data for estimating local curvature,
examines the middle section of the pattern for such

triples define larger segments, and so on. A directed graph
(segmentation graph) is constructed, as shown in Figure 7.
The interior nodes of the graph represent the split points,
while the first and last nodes represent the left and right
sides of the image, respectively. All of the edges in the
graph are directed from left to right. Each edge represents
the subimage (segment) defined by the two split points
that the edge connects. A segmentation of the image

can be described by a path from the leftmost node to the
rightmost node, with the nodes on the path being the final
split points. The number of characters is the number of
interior nodes on the path plus one.

occurrences.

Figure 6(a) shows touching hand-printed letters “S” If we assign a length to each edge in the graph, the
and “A.” The “1”’s represent black pixels. The “c”’s mark length of a path is taken to be the sum of the lengths of
points located at portions of the outer contour that are the edges along the path. The optimal path can then be
locally concave and have nonvertical direction. The defined as the shortest path. An edge corresponding
marked section of Figure 6(a) enlarged in Figure 6(b) to a segment wider than some specified amount can be
contains all of the “c”s (candidate split points). These assigned an infinite length, which allows the edge to be
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Table 1

Results of ICR and contextual processor on the tax form of Figure 2.

Field name ICR results Contextual processor results
YEAR_BEGINNING JULY JULY
YEAR_ENDING JUutY JULY
YEAR 88 88
TAX_PAYER_NAME BRwnerd A. & Erskine W. mrtcheN BERNERD A. ERSKINE W. MITCHEM
SS_NUMBER All 88 1304 All 88 1304
STREET_ADDRESS 99225 uC StreeT 99225 LEE STREET
SPOUSE_SS_NUM As9 a2 19y8 AS9 22 1948
CITY RusseU RUSSELL
STATE NJ NJ
Z1P_CODE 61920 61920
EXEMPTIONS 1 1
DEPENDENT_1 BadLoi mgrLan Barlow Marlan

DEPENDENT_1_SSN 1918203764

A18 20 3764

removed from the graph (provided that continuity is
maintained from the leftmost node to the rightmost node).
Since our classifier provides a confidence and a distance
measure for the hypothesis of identity of the input
segment, these values can be used for assigning lengths
to the edges in the graph. Let ¢, (0 = ¢; < 100) and
d; (0 = d,; < 256), where the values 100 and 256 are
arbitrary maxima, be the confidence and distance values
returned by the classifier for the subimage between split
points i and j. We assign a length of (100 — ¢, )d, to the
edge that connects nodes i and j. Note that the larger the
confidence values and the smaller the distance value, the
shorter this length will be. A perfect character subimage
will have zero distance from the template matcher and
confidence value 99 (the maximum confidence value) from
the TSMN classifier, resulting in a zero length for the
corresponding edge.

Finding the shortest path

A dynamic programming technique is used for finding the
shortest path from the leftmost to the rightmost node. The
algorithm is modified to generate the three shortest paths,
so that our contextual processor can take advantage of
these alternative paths.

® Recognition performance of the ICR component

The performance of ICR varies with the quality of the
image data and writing style. For isolated, machine-
printed, multifont characters with moderate noise,

the recognition rates of ICR on numeric, uppercase,
lowercase, and special symbols exceed 99%. For
constrained, hand-printed characters—e.g., the NIST
(National Institute of Standards and Technology) Special
Databases 3 and 7 [17]—ICR achieves a recognition
accuracy of 98% for numerics, 96% for uppercase, and
95% for lowercase (databases 3 and 7 were mixed, and
then redivided into a training set and a test set). In May
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1992, NIST held a conference in which 44 different hand-
print OCR systems were considered. This conference
tested the ability of these systems to recognize
presegmented, hand-printed characters. The performance
of our ICR system was among the top three [17]. The
overall conclusion from the NIST study was that the state
of the art of machine recognition of discrete hand-printed
characters is as good as or better than human readers;
however, for nonsegmented cursive fields (with some
hand-printed fields), the recognition rate at the character
level without contextual processing drops appreciably. In
Table 1, we show the results from our ICR system when it
is applied to the form shown in Figure 2. The table gives
the strings corresponding to the highest confidences
generated by ICR. ICR actually returns the top three
alternative sequences of segments and the associated
character hypotheses and confidences for each connected
component. Notice that at this stage, where no contextual
information has been exploited, a number of errors are
made by ICR. Many of the errors are corrected by

our contextual processor, making use of higher-level
constraints as well as multiple character hypotheses;
these results can also be seen in Table 1.

Exploitation of context

Basic ICR software, such as that described above,
recognizes digits and letters with reasonable accuracy; still,
the recognition of hand-printed words or phrases remains
a challenge. In the best case (isolated, unbroken, well-
formed digits), the individual recognition rate may be
around 98%; however, for a 10-digit telephone number,
such performance yields only an 82% correctness for the
entire field (assuming independence among characters).
For more difficult cases, such as unconstrained, mixed-
case characters, the individual character recognition rate
is closer to 70%. This would mean that practically every
word would contain an error! Obviously, something
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more is needed to make the technology viable. First, the
exploitation of a priori contextual knowledge can increase
the recognition accuracy. Second, the recognition system
must include a user-friendly manual verification and
correction subsystem to complement the automatic
process.

In this section, we describe our technique to exploit
context, particularly for recognizing data from forms. In a
following section, we briefly discuss some ongoing work on
verification and correction. What makes automated form-
data entry feasible is the fact that tight constraints exist
for most fields on a form. For example, the sequences
(city, state, zip) for a location or {mm, dd, yy) for a
date have strong constraints associated with them, both
syntactic (zip has five or nine digits, mm one or two,
etc.) and semantic (there exist dictionaries of acceptable
combinations). The input of free-format text, on the other
hand, is a different problem, requiring sophisticated
natural-language processing facilities that are beyond
the scope of the system addressed in this paper.

In many of today’s systems, the exploitation of context
is left to the application program. This represents quite a
burden for the application developer, since it may involve
sophisticated fuzzy-dictionary look-ups, tree searching,
backtracking, etc. Also, the code can and should be reused
from application to application. Thus, the right approach
is to remove exploitation of context from the application,
and move it fo the recognition system.

First, we describe a system architecture for a general-
purpose, highly customizable context analyzer that allows
the application program to specify constraints that the
recognized information must satisfy, both syntactic and
semantic. Some of these constraints may be quite general,
but most are application-dependent. To make the
specification of these constraints easier, our system
provides a language called Document Specification
Language (DSL) [18]. A “program” written in DSL
specifies the syntax of the information to be recognized,
together with routines used to ensure semantic validity.
DSL is specialized, concise, and nonprocedural. Once the
specification is written in DSL, it can be compiled into an
internal representation (the context structure).

Figure 8 shows the general architecture of the context
analyzer. The process is driven by an application program,
which first invokes the character recognition program, the
results of which are placed in a buffer. Then, it invokes
the context analyzer, which uses the context structure and
the character results and produces the best possible results
for the field. These are also stored in the buffer. When
the process is complete, the application program retrieves
the final values from the buffer.

At execution time, the context analyzer behaves like a
parser: The recognition program produces tokens, which
the context analyzer tries to match with the context
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System architecture for contextual processor.

structure while making sure that semantic constraints are
not violated. Since there may be several choices for a
character, the parsing generally involves backtracking.

® Document Specification Language (DSL)

A DSL specification (also called DSL file) provides, for
each field of a form, the field name and the field type.
In addition, it includes the definitions of these types.
Essentially, the definition of a type includes the
constraints that apply to a field of that type. A type
can be elementary or composite. For example,

ELEM_TYPE zip ...

COMP_TYPE phone_nbr . ..
FIELD zip_code, zip

FIELD home_phone, phone_nbr
FIELD work_phone, phone_nbr

Before showing how types are defined, we need to
introduce alphabets:

* Basic alphabets: numeric, uppercase, lowercase, special
symbols, and a few others.

e Defined alphabets: An alphabet can also be defined in
DSL by the inclusion in the DSL file of a record
containing the alphabet name and the alphabet

S. GOPISETTY ET AL.

223




224

definition (union of previously defined alphabets
and/or specified characters).
Here are two examples:

ALPHABET digits ['0123456789"]
ALPHABET hexa [digits, "ABCDEF’]

Elementary field types  There is only one way to write
a five-digit zip code such as 95120 or the digits of a
telephone area code such as 408. But there are several
ways to write a telephone number; for example,

(408) 927-3999 and 408 9273999 may both be valid.
The strings 95120, 408, 927, and 3999 are instances of
certain elementary field types, while the phone number
is an example of a composite field type.

An elementary type is defined in an ELEM_TYPE
record in the DSL file. Such a record contains the type
name, the keyword PHRASE or WORD (indicating
whether or not spaces are acceptable), an alphabet name
(to specify the alphabet to which characters in this field
must belong), a LENGTH condition (such as LENGTH = 5,
or 6 < = LENGTH < 9), and (optionally) the name of
a dictionary or routine (this is discussed below).

The following are examples of records defining
elementary field types:

ELEM_TYPE zip WORD, digits, LENGTH = 5
ELEM_TYPE area WORD, digits, LENGTH = 3
ELEM_TYPE prefix WORD, digits, LENGTH = 3
ELEM_TYPE ext WORD, digits, LENGTH = 4

Composite types  Each composite type is defined by a
record in the DSL file with the name of the type, a list
of pairs describing the elements involved in the definition
of this composite type (each pair comprises the element
name and its type), a list of acceptable representation(s),
as illustrated below, and the representation to be used for
the result string.

Each representation describes one valid way of
combining the elements. It is expressed as a sequence of
element names and/or string constants. For example, the
definition of a phone number as a composite field type
with three elements might look like this ("_" represents
a space):

TYPE phone a(area), p(prefix), e(ext)
REP "("a")_"p""e  e.g., (408) 927-3999
REP a”_pe e.g., 408 9273999
OUTPUT "("a")_"p"-" ¢ e.g., (408) 927-3999

The representations (we show only two) are ordered

by decreasing likelihood of occurrence. The output
representation is the one used for the output string,
independently of how the information was initially written.
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This ensures that the information is always converted to
a specified format, ready to be stored in a database or
otherwise processed.

Routines and dictionaries

DSIL. may specify, for an elementary field or a composite
field, a routine or dictionary that can be used to improve
recognition. In general, routines and dictionaries are
application-dependent and are supplied by the user.

Routines  Any routine must conform to a simple calling
interface. Essentially, arguments specify the type of the
elements involved in the constraint. For example,

ROUTINE check_area (area).

A routine returns a true or false value but may also
update the values of some elements in the buffer. If
the routine is associated with an elementary type, the
corresponding ELEM_TYPE statement contains the
name of the routine, as in the following:

ELEM_TYPE area WORD, digits, LENGTH = 3,
ROUTINE (check_area).

The routine check_area may test, for example, whether
the second digit of the area code is 1 or 0, and return
true if the constraint is satisfied, or false otherwise.

If the routine is associated with a composite field type,
a clause is added to the definition of the type. For
example, the addition of the following clause in the
definition of type phone could force the routine
check_prefix to check the validity of the prefix p for
a particular area code a:

CHECK check_prefix (a, p).

Dictionaries  Dictionaries must be defined in DSL by
means of a DICTIONARY statement. For example,

DICTIONARY fname IN “my_fname”

defines a dictionary of first names. The ELEM_TYPE
statement for first names would refer to that dictionary
in the following way:

ELEM_TYPE first_name WORD, ..., DICT (fname).

As in the case of routines, dictionaries can also be applied
to composite field types. In fact, in the general form, the
dictionary and routine mechanisms of our contextual
processor allow constraint checking to involve several
elements, even if these elements come from different
fields. For example, suppose there exists a dictionary
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called “map,” containing the valid pairs (zip, area); the
CHECK statement

CHECK map (zip_code, home_phone.area)

then specifies that a check be made on the pair (zip_code,
home_phone.area), where zip_code is the name of the zip
field and home_phone.area is the fully qualified name of
the element area in the field home_phone.

& The context analyzer

As mentioned earlier, the analyzer must interpret the
tokens returned by the recognition program according

to the constraints imposed by the DSL “program.” The
overall task may be couched in terms of an optimization
problem. Interpreting the complete document consists of
deciding upon the appropriate characters among the
choices returned by the recognition program, and/or

the appropriate alternatives in the DSL specification.
Any character choice comes with a certain confidence;
therefore, a solution itself has a confidence obtained by
combining the elementary confidences of the choices.
Since the recognizer may produce several choices for
segmenting a connected component into characters and
several alternatives for each character, the potential for
combinatorial explosion is high. Fortunately, the explosion
can be controlled quite efficiently by use of the following
techniques:

1. If a field {or an element in a field) is not subject to a
DSL constraint, the combination based on all of the
most likely choices made by the recognizer is the best
answer. Suppose we want to recognize a string of digits
for which there is no constraint. The recognizer may
return the following choices when trying to recognize
“95320”:

0(8) 1(4) 5(3) 3(5) 2(3) 06,5
9(4) 5(3) 3(5) 2(3) 0(6,5)

(Each line represents a different segmentation. Each
group of symbols in a line gives the most likely choice
made by the recognizer, followed, in parentheses, by
other choices.) This illustrates what might happen if the
9 were segmented into a loop (recognized as 0, with
8 as second choice) and a vertical stroke (recognized
as 1, with 4 as second choice). The alternative 9(4)
corresponds to another segmentation and is also
returned, but with a lesser confidence. Since there
is no constraint, “015320” is the most likely answer.
2. Suppose we want to recognize a country name such
as “CANADA,” with the semantic condition that it
belong to a dictionary D. The recognizer may return
segmentation and recognition choices such as
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C(G) R(A) M(N) A(R) O(P) A(BR)
W(M) M(N) A(R) O(P) A(B,R)

A brute-force approach that would systematically
backtrack to try all choices and look up each obtained
word in D would have to doit (4 + 2) X 2 X2 X2X3
= 144 times. It would not even find the correct
answer, since “CANADA” is not in the set of 144
hypotheses. Instead, we can use an efficient method
that performs a “fuzzy” search on the dictionary, given
an approximate string—in particular, the one obtained
by taking all of the most probable choices. In the
example, the argument to the fuzzy search would be
“CRMAOA.” Fuzzy-search algorithms select the
dictionary entry at the minimal distance from the
search argument. Our contextual processor uses the
method proposed in [19], extended for handling
alternate choices. The original method, as well as

the extension, uses dynamic programming.

3. Suppose we attempt to recognize a telephone number
such as “9291720.” We can express in DSL the syntax
of a valid U.S. phone number as a string of seven
digits. If there is no semantic constraint on the phone
number, only the segmentation choices need be
considered to ensure that the number of characters
is 7. Suppose the following results from the recognition

program:
98) 2(3) o) 14 (7)) 74) 2(3) 6(0,9)
9(8) 2(3) 94) 17y 2(3) 2(3) 6(0,5)

During the backtracking process, the first hypothesis
will be the string “92011726,” which violates the seven-
digit syntax. The next hypothesis will be “9291726,”
which satisfies the syntactic constraint. Note that we did
not have to look at all choices for individual characters.
Actually, the last digit choice is 0, but, since there

is no semantic constraint, there is no reason for the
contextual processor to consider 0 rather than the
more probable 6. If there were a list of valid telephone
numbers, the contextual processor would examine the
different possible combinations of likely characters and
would probably find the right answer.

Our contextual analyzer implements a context analyzer
based on DSL and exploits the ideas presented above.
Most of the system is operational, and we are gathering
statistics to evaluate the power of the approach. Table 1
shows the results of recognition before and after
contextual checking was applied to the tax form of
Figure 2. Notice the many recognition errors that have
been corrected by exploiting both syntactic and semantic
constraints. In particular: JUIY was changed into JULY
by use of a dictionary on months, BRwnerd and Mrtchen 225
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were changed to BERNERD and MITCHEM, which is
incorrect but gives a reasonable confidence (as do
BERNARD and MITCHELL). The (city, state, zip) triple
is corrected; once the zip code is known, a dictionary of
local street names can be used to transform uC into Lee
(the fuzzy search routine knows about alternative choices).

® Performance evaluation

The results above are purely qualitative. To give a better
understanding of the power of our contextual processor,
we provide in this section some quantitative results for
two applications. The first application deals with forms
of poor quality, the second one with forms of very good
quality.

Application 1: Credit card application forms

The goal of this system is to recognize data from credit
card application forms that are filled in by hand. A form
comprises a variety of fields in small, adjacent boxes;
inside a box, the writing is free-style, often careless,
sometimes interfering with printed text and lines. As a
result, the character-recognition rates are relatively low.
Still, the use of our contextual processor exhibits the
following significant improvements (evaluated on a sample
of 100 forms):

e For U.S. telephone numbers, syntactic checking alone
increases the recognition rate of the field from 28% to
44%.

e For last names, a fuzzy search of a dictionary of last

names (10000 entries) increases the field recognition

level from 9% to 27%. (Note that the dictionary does
not provide 100% coverage.)

For {city, state, zip), a fuzzy search of a complete

dictionary (about 45000 entries) increases the field

recognition rates from 8% to 60% for city, 18% to 64%

for state, and 28% to 50% for zip.

e For college names, a fuzzy search of a small, complete
dictionary of triples ({name, campus, zip)) increases the
field recognition rate from 4% to 90%. This tremendous
jump is understandable: Without context, the probability
of recognizing all letters correctly is very small for a
long string (about 40 letters); with our contextual
processor, only a small number of letters have to be
recognized in order to identify the correct value.

Application 2: Shipping form

The form identifies the sender by company name, address,
postal code, city, and state. The receiver is identified by
company name, customer number, and postal code. A full
database contains all of this information for all companies
involved. The form is carefully filled in by hand, generally
with attention paid to the individual letter boxes. There
are three lines for the address; all elements of the address
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are not always used, and the grouping of the elements in
three lines is not always done consistently. This means
that not only must the words be recognized, but the
elements must be labeled by their semantic role: number,
street, city, etc. However, the redundancy and the
availability of a complete database facilitate the task
greatly.

A brief summary of the results (evaluated on a sample
of 65 forms) follows:

e The identification of the receiver or sender is correct
in more than 90% of the cases.

e The recognition of yes/no marks is, as expected,
excellent (99.8%).

¢ The recognition rate of individual handwritten integers
is over 95% (many of the errors were due to the
ligatures in 00 or 000).

These numbers are quite promising. Also, the results of
both applications underscore the importance of the form
design, which is something that should be kept in mind for
all applications.

However, the most striking result of our experiment has
been the ease with which our contextual processor can be
adapted to new applications. The use of DSL and the
system behind it drastically reduces the development
time of new applications and makes readily available an
excellent way of exploiting contextual knowledge.

® Verification and correction system

Whatever the quality of the recognizer and the ability of
the context analyzer to improve the results, the percentage
of fields correctly recognized is still short of what is
needed for a data entry application. For the whole
process, the client wants 100% correctness, or something
close to that limit.

It is clear that human intervention is needed. We
are currently adding to the system described above an
interactive phase for verification and correction. For
each field, the user will be able to choose a sequence
of operations invoked in a specified order. If the first
operation is sufficient to assign a value to a character or a
field, and do it with enough confidence, the sequence is
interrupted. Otherwise, the second operation is executed.
If it does not yield a sure result, the next operation is
executed, etc.

Suppose we need to recognize, with very high
confidence, a numerical field in which the last character
is a check code computed from the other digits (e.g., the
sum of all digits, modulo 7). A meaningful sequence of
operations may be as follows: an automatic step in which
a result (that satisfies the check-code constraint) is
accepted if the confidence is higher than a threshold
specified by the user, an interactive session in which
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characters are shown and certified or simply entered by
the operator, a new invocation of our contextual processor
that uses the newly acquired information to determine
the values of more fields, and finally another interactive
session in which the operator sees the fields that have not
yet been resolved and enters their values. Typically, the
first contextual-processor execution may yield a result in
80% of the cases; for the 20% remaining, the second
execution may yield a result in 80% of the cases not
resolved in the first execution (i.e., 16% of all cases).
Only 4% of the cases have to be shown to the operator
for manual acceptance or entry.

For each operation, the system must facilitate operator
interaction as much as possible. Some special techniques
can be used for that purpose. In particular, the verification
of isolated characters relies on a technique called
“carpeting.” It consists in showing an array of 100 (or
some appropriate number) character images that have
been recognized as “1,” for example. If the operator sees
an image that is not a “1,” the operator can click on the
image, thereby invalidating the recognition result. The
same is done for all “2”s, “3”s, etc. This method is
efficient only for characters that have been recognized
with high confidence, i.e., an error rate of only 2-3%. If
this is not the case, it may be more efficient to show the
complete field result.

Applications/services of image-based forms
processing

The components described in this paper have been
implemented in a software package that runs under both
AIX® and 0S/2® operating systems. In this section we
describe briefly several of the more significant projects for
customers in which our software has been successfully
deployed. To protect the anonymity of our customers,

we do not divulge their names.

® Automated processing of state census forms

The first application involved the national census of a
European country. There were different language versions
of the same form (since several official languages were
used). Each form consisted of four pages, and every page
had a preprinted ID number of nine numerals, all printed
in the same font. This ID number contained information
about the form type and the language used. The field
containing the ID number was processed by our machine-
print ICR software. The ICR result was used to identify
the language of the form and the page number, and also
to carry out the form recognition. The “signature” portion
of the form recognition was not used here, since forms
printed in different languages had the same signatures of
lines. Hence, the ICR of the ID field (specified as a UDF
of the form) was used for form recognition. Once the
form language was known, the corresponding form
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template was used for form dropout and subsequent
field extraction and ICR.

About 32 million pages have been processed by this
application.

® Tax return imaging system

This application handles tax-return forms by scanning

the forms, recognizing them, and compressing them

for subsequent archiving and ICR. This application is
characterized by many forms that are very similar to one
another. For example, the same type of form is created by
different printers; each variation of the form is a different
template for the purpose of form recognition. Another
example is tax forms that are almost identical except for
the year number, which generally appears at the top of
the form. Also, many taxpayers submit their returns on
photocopies, which makes form recognition difficult.
Nevertheless, the form-recognition algorithm is able to
cope with most of the cases, generally by applying its
second phase—i.e., by utilizing UDFs with appropriate
matching. The filled-in data are largely in unconstrained
hand-printing. The use of recognition-based segmentation
is helpful in separating touching characters. In one of the
projects, the number of people working on data entry was
reduced by 75%. This was partly because of the automated
data entry and partly because of the productivity
improvement from an image system employing automated
routing and distribution of documents.

® Postal-address readers

Reading postal addresses, sorting mail, and delivering mail
are labor-intensive tasks for post offices throughout the
world. Automation is increasingly employed in this task by
scanning the envelopes, locating the destination-address
biock, reading the address using ICR, interpreting the
address, and imprinting a bar code (corresponding to
nine- or eleven-digit zip codes in the U.S.), which
eliminates the need for any manual operation until the
point of delivery. The five-digit zip code can be obtained
from the zip code field in the address. If the remaining
four or six digits are not present, they have to be inferred
from the street address field; this is why the entire address
has to be read and interpreted. Postal applications are
characterized by extremely high throughput rates—for
example, 90000 addresses per hour for a system. Those
addresses for which the machine does not have enough
confidence must be verified and corrected by human
operators. In the particular project with which we were
associated, our ICR is used for reading hand-printed or
machine-printed addresses.

® Sorting bank-check images
This system is intended for automatically adding check
images into a database according to account number. The
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system was installed at the central branch of a large bank.
Every check was scanned and processed by the FDO
module. All of the checks had the same template, and all
of the fields were printed on every check with the same
font. After FDO, the fields containing the account ID, the
check number, and the telephone number of the account
owner were processed by ICR. There was also a CMC-7
code line (CMC-7 is a font that can be read by humans as
well as by magnetic and optical means) printed at the
bottom of each check, which contained the account 1D,
the check number, and the amount to pay. The CMC-7
line was optically read by a special ICR program.

Usually a check passes through many hands on its way
from the account owner to the scanning station, and the
signature often falls on the position occupied by the
CMC-7 code line. Therefore, the image data to be
recognized by ICR were of poor quality, and logic was
used to match all of the results produced by the ICR for
the different fields of the same check in order to increase
recognition accuracy. Check digits were also used to detect
and sometimes to correct possible recognition errors.

® [ndexing and archiving bank forms

Banks maintain customer files, including various kinds of
forms such as signature samples, mortgage applications,
and account-opening applications. To facilitate forms
handling, banks are looking into image-archiving solutions.
Our solution includes systems that scan the forms, index
them via form recognition, and compress them via FDO.
This application generally involves a large number of form
types. Our systems can process existing forms and add new
forms interactively.

® [maging payment receipts in an insurance company

The car-insurance department of a large company
manages a database of clients. A new client or a client
who intends to renew an insurance contract receives a
statement from the company in order to pay the premium
to a bank. The statement consists of two similar pages,
insurer’s receipt and client’s receipt, and contains
information printed out from the database: client’s ID and
details of car, insurance term, policy ID, and the amount
of the payment. The receipts are printed in hundreds of
the company’s agencies with different printers and fonts.
Dot-matrix printing is used in many cases.

All paid insurer’s receipts, stamped by banks, are
received by the company central office. Then the
corresponding records of the client database are marked
as “paid,” and the receipts are stored in the office site.
The receipts processing was formerly carried out manually.

Our solution is as follows. All of the receipts are
scanned, and all of the images pass form recognition and
FDO. (At present, there are two types of receipt form.)
Then all of the fields containing the insurance information
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described above are read by ICR. The ICR uses an
omnifont recognition database with a very wide repertoire
of fonts.

Next, the corresponding records are automatically found
in the client database. The search essentially uses the
redundancy of the information obtained in the multiple
fields. The system shows very high recognition
performance. Typically, the system fails to find the
corresponding record only if the receipt was printed
with strong misalignment relative to the form template.

® [maging credit card slips and giro slips in bank branches
This application is to automate the data-entry system

for the information contained on credit card and giro
(payment voucher) slips. The program runs in hundreds
of branches of two banks. The documents are scanned by
small desktop scanners, resulting in the production of
gray-scale images with 16 shades and a resolution of

100 pixels per inch in both directions.

Credit card slips  The role of ICR is to read impressed
credit card numbers and preprinted slip numbers. The
slips are those filled out by hand. The card and slip
numbers are copied from the card to the slip via carbon
paper. The main problems are the presence of dark
copy-ink spots and extremely variable contrast levels.

Giro slips These payment vouchers include text lines
containing about 50 digits and special symbols, printed in
a special font called OCR-B. The lines are composed of
parts printed by different sources, leading to misalignment
of different parts of the line. Another factor making
recognition difficult is the low level of contrast on the
input documents.

The ICR subsystem can work only on black-and-white
input images. Since a considerable fraction of the
documents processed by this system cannot be recognized,
even by human readers, when scanned in black-and-white
mode, binarization of the images (converting gray-scale
images to black-and-white ones by setting a pixel white
when its gray-scale value exceeds a given threshold, and
black otherwise) is performed by the software, with
feedback from ICR. If the recognition confidence for
a character is sufficiently high (and if the number of
black pixels in the area of the character exceeds a fixed
threshold), the character is accepted; otherwise, the
binarization threshold is modified, and recognition is
attempted again. We call this technique “ICR-driven
binarization.”

The system has been tested on a benchmark with 1000
images from authentic giro and credit card slips. No
contextual correction was made, in order to test the net
ICR performance. A document was considered to be
erroneous if at least one character was recognized
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erroneously. Each credit card slip contained 20 characters
on average; each giro slip contained 50 characters on
average. The testing has shown the following:

¢ Credit card slips: error rate = 0.7%, reject rate = 3.6%.
¢ Giro slips: error rate = 0.4%, reject rate = 0.9%.

The giro slip data contain less noise than the credit card
data, which is reflected in the testing results.

The system has been in use by the bank in a production
mode for about two years.

Conclusion

In this paper, we have described a system for the machine
reading of forms data from scanned images. Given the
state of the art of recognition technology, it is impossible
to completely eliminate operators from the data entry
process. However, our field tests show that we are able to
provide a twofold improvement in productivity in the data
entry process, even with unskilled operators, compared to
key entry by professional operators. Various modules of
the system described in this paper have been used in
customer projects worldwide. The verification and
correction subsystem, which is a crucial component of the
system, is still in development. We expect to see further
improvements in productivity when this subsystem attains
maturity. We expect our system, after further development
and tuning, to go a long way in reducing data entry costs
for many applications.

AIX and OS/2 are registered trademarks of International
Business Machines Corporation.
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