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In this paper  we  present a  router  architecture 
that  accommodates  a  family  of oblivious 
routing algorithms. The architecture is suitable 
for current  technologies,  and it is intended 
for  multiprocessor and  massively  parallel 
systems.  Via  the  proposed  architecture, we 
suggest  that  general-purpose  routers  can 
be  designed to accommodate  a  variety  of 
multiprocessor  interconnection  networks. In 
particular,  the routing algorithms  of  those 
interconnection  structures  that  can  be 
classified as  trees,  cubes,  meshes,  and 
multistage  interconnection  networks  can 
be  accommodated  with  a  flexible,  easily 
implemented  architecture.  Our  investigation 
strongly suggests  that  a  common  design  can 
satisfy at  least forty network  topologies  with 
the introduction of  a  few instructions that 
are  very  simple to implement.  The overall 
conclusion is that  general-purpose  cost- 
effective  routers  can  potentially  be  designed 
that  perform  equally as well as  customized 
routing logic,  suggesting  the possibility of  a 
common  router for multiple interconnection 
networks.  Furthermore,  the  proposed 
architecture  provides  programming  capabilities 
that  allow  other oblivious routing algorithms 
not considered in our  investigation to be 
accommodated. 

1. Introduction 
Interconnection networks have an important role in the 
design of parallel systems; they influence the performance 

of such systems. A key component of an interconnection 
network is the router, which is responsible for handling 
different switching technologies, flow controls, and routing 
algorithms [l]. The router can be categorized into two 
types, depending on the network topology supported. 
The  first type of router relates to the networks with a 
fixed  topology. In this case, the router performs only one 
routing algorithm,  which depends primarily  on the chosen 
topology. Examples within this category include routers 
such as the Torus routing chip [2], the router supported 
in the iPSC/2 [3], and the Cosmic  Cube router [4]. The 
second type of router relates to networks with physically 
reconfigurable  topologies.  In such systems, the router is 
able to execute multiple routing algorithms or an  algorithm 
that can handle  multiple topologies. The IntelVCMU’s 
iWARP [5] and the INMOS transputer [6] are examples 
of this type of router. In this scheme, there are two 
approaches in routing: source routing and lookup-table 
routing [7]. In source routing, the source node determines 
the routing paths on the underlying network topology. The 
packet used to communicate between processors must 
carry the complete routing information  in the header. In 
lookup-table routing, the router has an entry in a table that 
indicates which output channel must be used to reach each 
destination node. 

If the first approach is used, different routers must be 
developed for different network topologies. The implication 
here is that because the router has no flexibility, it cannot 
be used as an “off-the-shelf” component for the design of 
parallel systems. The second type of router resolves the 
previously mentioned problem, since it can be  used as 
an  off-the-shelf component to satisfy various network 
requirements; however, it introduces some new  problems. 
In particular, in the source routing scheme, network 
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I Logical structure of a router 

bandwidth can be wasted when the complete routing 
information is included in the header packet. The lookup 
table can be viewed as a flexible scheme. However, the 
size of the lookup table may  grow  in proportion to the 
size of the network, and  it  may be possible that, for a 
large network, the size of the lookup table may become 
prohibitively large, especially when the destination address 
spaces are not easily partitioned into contiguous ranges. 

network topologies representing five  families of networks, 
we propose a flexible router architecture that can support 
fixed andlor reconfigurable network topologies. Our 
proposal can be viewed as a RISC-like general-purpose 
router architecture which has a small set of instructions to 
perform various routing algorithms.  Our work represents 
the first attempt at proposing a RISC-like general-purpose 
router architecture, and our goal  is to build  an  off-the-shelf 
general-purpose router that can be used in a wide range of 
network topologies. In this paper, the term architecture 
denotes the attributes of a system as seen by the 
programmer (i.e., conceptual structure and functional 
behavior); it is distinct from the organization of the 
dataflow and the physical implementation of the machine. 

The paper is organized as follows.  In Section 2, the 
background and the direction of our investigation are 
briefly explained. In Sections 3 and 4, the flexible router 

31 6 architecture and its general operation are introduced. 

In this paper, based on the investigation of forty 

Examples of routing programs using the proposed router 
architecture are given  in Section 5. Section 6 reports 
various program characteristics, and Section 7 contains 
concluding remarks. 

2. Routing  algorithms 
In our investigation, we have considered oblivious routing 
algorithms for the determination of a general-purpose 
router architecture. An oblivious routing scheme always 
produces the same communication path, given the same 
source and destination address. The architecture is 
developed around topologies that have been used 
extensively in the design of parallel systems. The routing 
algorithms  we have considered have been divided into five 
families: tree, cube, mesh,  multistage interconnection 
networks, and others (i.e., networks that do not  fall into 
any of the preceding four types of network topologies).  We 
considered for direct implementation the functions required 
by the routing algorithms of twelve interconnection 
networks classified as trees, six classified as cube 
networks, five as mesh, ten as multistage interconnection 
networks, and  eight that were not  classified  with the other 
network families.  The  major objective of the investigation 
was to make instructions simple to implement and keep 
the number of instruction sets  as small as practicable. 
Furthermore, we were interested in providing an 
architecture that allows  parallelism in its implementation. 
For the forty interconnection networks we considered, 
we  used optimal routing algorithms when possible. 
Consequently, our first criterion was to define a set 
of instructions that would  perform the algorithmic 
requirements. Since the entire study is rather lengthy to 
report here, the interested reader is referred to [8] for a 
detailed discussion. 

Identifylng  algorithmic requirements, however, is only a 
part of the operations of an architecture. An architecture 
must also support the routines necessary for “handshaking” 
with other units, and  must provide flexibility of operations. 
We support these capabilities with additional functions and 
protocols described in detail later. 

3. Flexible  router  architecture 
Generally speaking, the router consists of three major 
parts: n input controllers, an n-input, n-output switching 
mechanism,  and n output controllers. The input controller 
receives packets from the paired output controller of a 
neighboring router, performs a routing algorithm based 
on the routing information in the packet, and determines 
the output controller through  which packets are to be 
forwarded to another neighboring router. The n-input, 
n-output switch connects n input controllers and n output 
controllers. The output controller sends packets to the 
paired input controller of the next router. Figure 1 shows 
the logical structure of a router. 
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The functions of the n X n switch and the output 
controllers are the same for  all routing algorithms, so the 
flexibility of the router depends entirely on how many 
different  algorithms the input controller can process. 

The  logical functions of the input controller can be 
broken into three major  blocks: input port, routing 
algorithm handler, and packet flow controller, as shown in 
the block diagram  of Figure 2. The input port (incorporated 
in the port controller) is responsible for carrying out the 
communication protocol for the reception of packets from 
a neighboring router. The input port extracts the header 
portion of the packet and transfers it to the routing 
algorithm handler, while forwarding data bytes from the 
packet to the packet flow controller. The routing algorithm 
handler executes the routing program  on  the header 
information and sends the result (output controller number) 
to the arbiter of the n X n switch and also to the packet 
flow controller. The packet flow controller stores the data 
bytes sent from the input port in its buffer and waits until 
the routing algorithm handler sends the address of the 
output controller to which the data bytes should be routed. 
Depending on the method of assigning  buffers in the packet 
flow controller to the data bytes, there are three well- 
known flow control schemes: store-and-forward, virtual 
cut-through [9, 101 and  wormhole [7]. Once the packet 
flow controller is notified of the output controller through 
which the data bytes should be forwarded, it waits 
for the connection to the switch. Once it receives the 
acknowledgment from the arbiter of the n X n switch, 
it transmits the data bytes to the output controller. 

A flexible router must have a routing algorithm  handler 
that can handle  multiple routing algorithms. In this section, 
we propose a novel routing algorithm handler architecture 
that provides support for all  of the required instructions 
and manipulations of data to manage  multiple routing 
algorithms. The architecture of the port/packet flow 
controller is reported elsewhere [ll, 121. When necessary, 
the functions and protocols of the port controller are 
discussed to some extent. 

Routing  algorithm handler architecture 
To support the algorithms directly, we have identified 
twelve general-purpose, easily implementable instructions 
(Table 1) that satisfy the requirements. The particular 
instructions required by the routing algorithm  families of 
the interconnection network are presented in Table 2; 
OUT, CMP,  and BC instructions are not listed in this 
table because they are used  in  all networks. A second 
instruction set, the control instruction set, is shown in 
Table 3. The four instructions in this set are not needed 
for the routine algorithms themselves, but are used by the 
communication controller to initialize the algorithm handler 
and  load the appropriate routing program in cases where 
multiple programs are available. A detailed description of 

Routing - 
handler 
- algorithm 

0: 
I t controller 

Local - Packet 
communication 

controller controller 
- flow - 
- To 

switch 

Logical structure of an input controller. 

Table 1 General  instruction set. 

Format Operations 
~ ~ ~ 

ALU instructions 
ADD R1, R2, R3 
SUB R1, R2, R3 
CMP R1, R2 

AND R1, R2, R3 
XOR R1, R2, R3 
PLO R1, R2 

Shift  instructions 
SHR R1,  R2, R3 

SHL R1, R2, R3 

Data transfer  instructions 
MOV R1, R2 

Control  instructions 
BC  Address 
OUT Channel  no. 

Communication  instructions 
MSG R1, R2, R3 

RR 
RR 
RR 

RR 
RR 
RR 

RR 

RR 

RR 

MI 
I/R 

RR 

R3 = R1 + R2 
R3 = R1 - R2 
Compare R2 to R1 

R3 = R1 AND R2 
R3 = R1 XOR R2 
R2 = position of 

(sets  condition  code) 

leading  one  bit  in R1 

R3 = Shift  right R1 by 

R3 = Shift left R1 by 
(R2) 

(R2) 

R1 = R2 

Branch on condition 
End of program 

Send  message to local 
processor 

R# = a register and its number. 
RZ = content of register R2. 

all of the algorithms, types of interconnection networks, 
and routing programs can be found in [8]. 

General instruction set 
As indicated earlier, the general instruction set is used to 
perform routing algorithms. All operands are either stored 
in registers or made available within the immediate  field 
of the instruction. Most of the arithmetic and logical 
instructions have three operand fields, to reduce the 
demand for registers and  help reduce the number of data 
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Table 2 Instructions required for interconnection networks. 

Network name Instructions required Reference 
~~ 

Binary tree 
Fat tree 
Flip tree 
Binary tree with a full ring 
Binary tree with a half ring 
Hierarchical mesh 
Hypertree 
Diamond network 
KYKLOS structure 
Tree of meshes 
Quad tree 
Hypercube 
Folded hypercube 
Banyan hypercube 
Spanning multiaccess channel (SMAC) 
Base-m n-cube 
Cube-connected cycles (CCC) 
Mesh array 
Torus network 
k-ary n-cube 
Hexagonal mesh 
GNNM hypercube 
Omega network 
Delta network 
Baseline network 
Benes network 
Shuffle exchange network 
Augmented data manipulator net (ADMN) 
Generalized cube network 
Extra stage network 
Rectangular SW banyan network 
Gamma network 
Ring network 
Completely connected network 
Pyramid network 
Chordal ring network 
Crossbar 
Cube-connected cycles whirtual channel 
k-ary n-cube wkirtual channel 
Shuffle exchange net whirtual channel 

AND PLO XOR 
AND PLO XOR 
AND PLO XOR  MOV 
AND PLO XOR  MOV SUB  SHIFT ADD 
AND PLO XOR SUB  SHIFT 
AND SUB ADD 
AND PLO XOR ADD SHIFT  SUB 
AND PLO XOR 
AND MOV PLO SUB SHIFT XOR 
AND XOR PLO SUB 
AND XOR PLO ADD SHIFT 
AND PLO SHIFT 
AND PLO SHIFT ADD 
AND XOR PLO 
AND 
AND SHIFT 
PLO 

AND SUB 
AND SUB 
AND SUB 
AND SUB 
AND SHIFT 
AND SHIFT 
AND SHIFT 
AND SHIFT 
AND SHIFT XOR 
AND SHIFT 
AND SHIFT 
AND SHIFT 
AND SHIFT 
AND SHIFT 
AND SUB 

AND ADD 
SHIFT 

AND SHIFT XOR  MOV  ADD 
AND SHIFT XOR  MOV  ADD 
AND SHIFT XOR  MOV  ADD 

Table 3 Control instruction set. 

Instructions Format Operation 

LPG R1, R2, R3 RR Load program 
LSR R1,  R2 
LR 

RR Load status register 
R1, R2  RR Load general register 

ECP Address I/R End of control program 

transfers  between registers. All instructions  have  equal 
length, which  is  assumed  to  be 32 bits. Each  instruction 
has one of three formats: register  to  register (RR); 
immediate or  register (I/R); or  immediate  with  mask (MI). 
In  the RR format, all operands  are in  registers. In  the MI 
format, I is the  absolute  address  and M  is the  mask  value. 
In  the I/R format,  there  are  two  mode bits, m l  and m2. 
The m l  bit indicates  whether  R1  or I  is to  be used for 

31 8 the  OUT  instruction.  The m2 bit is  used  for  the  control 

instruction  ECP; it indicates  whether it has  the I as  its 
operand,  or  no  operand. Figure 3 shows  the  three 
instruction  formats  with  the assigned bit positions. 

Additional  information  regarding the  instructions  can  be 
found in Table 1. The specific definition of the  instructions 
is reported in [8]. The  mnemonics  and  the  functions of 
most  instructions  are self-explanatory, except  for  the 
instruction  PLO (find position of leading one bit). The 
PLO  instruction  is  used  frequently in the routing programs 
of the  tree  and  cube  networks.  As  the  name implies, it 
finds the position of the leading one bit, starting from the 
most significant bit  position down  to  the least significant 
position, and  leaves  the  result of the positional value in the 
target  register. An example is the  instruction  PLO R1, R2; 
R1 = 00001000, where R1 is  an 8-bit register labeled from 
1 to 8, and  the result is (R2 = 00000101) because  the 
leading one bit was  the fifth bit  in R1. 
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Addressing All instructions in a program (except BC) 
imply sequential execution of the program. The branching 
instruction is the only one that may use an address in 
memory to determine the instruction to be executed. For 
simplicity of the architecture, there is only one type of 
addressing, and that is absolute. The absolute address is 
the address assigned to a memory location. An absolute 
address does not require any transformation of address to 
access memory. 

Instructions  and  condition code The condition code is set 
only by the CMP (compare) instruction and tested by the 
BC (branch on condition) instruction. Overflow conditions 
are ignored and are not recorded anywhere. No other flag 
bits, such as “result equal to zero,” are set  as a result of 
arithmeticflogical, shift, or PLO instructions. 

Control  instruction set 
The instruction set we have described in the previous 
section can be used to determine the behavior of the 
routing algorithm handler. No additional instructions have 
to be developed for the design of a router. The router can 
be initialized  with proper settings of its memory and states 
(to be discussed). If some of the functions necessary for 
the proper operation of the device are performed before 
the router is employed, the control instruction set need not 
be implemented.  The control instruction set is introduced 
primarily to perform functions such as initialization, 
cooperative operations with a local processor, potential 
operation modes that allow adaptive routing, or execution 
of algorithms requiring complex functions, etc., which 
increase the flexibility of the router architecture. The 
control instruction set comprises four instructions, as 
shown in Table 3. The LPG (load  program) instruction 
interrupts the routing algorithm handler, sets the state of 
the handler to privileged, and initiates the transfer of the 
routing program  from an external source (usually the local 
communication controller, described later) to the memory 
of the handler. It has three operands. The  first, R1, 
contains the address where the routing program is stored 
in the local communication controller. The second 
operand, R2, contains the address where the routing 
program should be loaded in the routing algorithm handler. 
The content of the third operand (R3) is a counter which 
specifies the size of the routing program to be loaded. The 
program-loading operation is performed until counter R3 is 
equal to zero. The LSR (load status register) instruction 
loads the new content into the status register. The LR 
(load register) instruction puts the new value into one of 
the general registers of the routing algorithm handler. The 
ECP (end control program) instruction terminates the 
control program  and returns the state of the routing 
algorithm handler from  privileged to normal; it  may or may 
not set the instruction address depending on the value of 

i Three instruction formats. 

the m2 field  in the instruction. The execution of the control 
instructions is described further in the subsection on the 
local communication controller. 

Status  register 
The status register in the routing algorithm handler keeps 
the information required for the execution of the active 
program; its implementation is always required. It includes 
the instruction address, the condition code, the interrupt 
code, the protects, the execute bit, and the state of the 
routing algorithm handler. Figure 4 shows the bits assigned 
to each field. The content of the status register is set by 
the control instruction LSR. 

States The routing algorithm handler has two states: 
normal and privileged. Each state has two modes: 
operating and  idle. The control instructions are executed 
in the privileged state and the general instructions in the 
normal state. The interrupt is executed only when the 
routing algorithm handler is in the idle  mode.  After the 
completion of each routing program, the routing algorithm 
handler enters the idle  mode. The mode of the routing 
algorithm handler changes from the idle mode to the 
operating mode when the input port transfers header 
information to the registers of the routing algorithm 
handler and causes an end-of-header packet interrupt. The 
state of the routing algorithm handler changes from  normal 
to privileged  when the local  communication controller 
causes an execute control program interrupt. The MSG 
instruction can also change the state from  normal to 
privileged. 

Condition code The condition code is set  as a result of 
the CMP (compare) instruction and recorded in the 
condition code field  in the status register. The meanings 
of the bits in the field are as follows: 
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Condition code 
0000 operands are equal; 
0001 first operand is low; 
0010 first operand is  high; 
0011 undefined. 

Interrupt code There are five types of interrupt in the 
routing algorithm handler. The interrupt code field in the 
status register records types of interrupt as follows: 

0000 hardware failure; 
0001 input port; 
0010 local communication controller; 
0011 program check; 
0100 instruction not implemented. 

Protect fields As shown in Figure 4, the instruction 
format can accommodate up to 256 registers. However, 
the number of registers may  be  limited to fewer than 256 
by the hardware technology in which the architecture is 
implemented. To avoid unnecessary architecture, once the 
number of registers that can be implemented has been 
decided, the protectl field is used to indicate that number. 
The protectl field cpntains three bits and can represent 
numbers ranging  from 0 to 7. If a register number  in the 
instruction is given as the binary number r7r6 * ro7 
a value i in the protectl field represents the value j = i 
for which  all rj ,  j z i, must be zero-i.e., the maximum 
number of registers allowed by  the current implementation. 
If the register number in the instruction exceeds this limit, 
the program check interrupt will occur. The protect2 
field is used in a similar way. It determines the actual 
addressing space that a program can use and indicates 
whether the address exceeds the implemented address 
range . 
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Execute bit It indicates whether the execution occurs 
from the local memory of the routing algorithm handler or 
from an external device. 

Instruction address The instruction address field contains 
the address of the next instruction for either control 
instructions or general instructions. When the state bit in 
the status register indicates that the routing algorithm 
handler is in the normal state, the instruction address 
represents the next instruction address for general 
instructions. Otherwise, it represents the next instruction 
address for the control program. 

Address generation and data format Execution of 
instructions by the routing algorithm handler involves 
generating the addresses of instructions and operands. 
When an instruction is fetched from the location 
designated by the current status register, the instruction 
address is increased equally after the execution of each 
instruction. For the branching instruction, the address 
of the next instruction is either the address of the next 
instruction in the sequence or the address specified in 
the I field  in the instruction, depending on the branching 
decision  made in the branch instruction. All instructions 
treat data as only one type, two’s-complement numbers. 
In a two’s-complement number, the most  significant  bit is 
used as the sign  bit indicator. The logical structure of the 
routing algorithm handler is shown in Figure 5. 

Storage 

Registers There are up to 256 registers in total. For 
simplicity in program  writing,  we consider two types of 
registers: general registers, which store values or results of 
computations, and constant registers, which  hold constant 
values used in the routing program. 
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Memory The routing program is loaded into memory and 
executed from there. The routing algorithm handler does 
not allow any operand to be stored in the memory. The 
word length of the memory  is 32 bits. 

Interrupts The interrupt facility allows the routing 
algorithm handler to react to hardware failures in the 
router, monitor the program execution status, initiate 
the routing program stored in the memory, and also 
communicate with the local processor through the local 
communication controller (described later). We discuss the 
following types of interrupts. 

Interruptfrom input port When the input port receives a 
packet, it stores the header part of the packet into the 
predetermined register(s) in the routing algorithm handler. 
Then, it causes an interrupt to the routing algorithm 
handler so that the routing algorithm handler may begin 
executing the routing program on the newly arrived header 
information. When the interrupt occurs, the routing 
algorithm handler executes the routing program if the 
routing algorithm handler is in the normal state. Otherwise, 
the interrupt remains pending  until the state changes to 
normal. 

Interrupt from local communication controller The local 
communication controller is an  interim location for 
communication instructions between the local processor 
and the input controllers. The local processor sends data, 
the routing program, and the control program to the 
local communication controller and instructs the local 
communication controller to notify the input controller that 
the control instructions should be executed. The local 
communication controller performs this operation by 
causing an interrupt to the input controller. When the 
interrupt occurs from the local communication controller, 
the input controller changes its state to privileged  and 
executes the control instructions stored in the local 
communication controller. 

Interrupt from program A program check interrupt 
occurs when the register number exceeds the allowed 
number or when an  unimplemented instruction is received. 
The routing algorithm handler sends the program check 
message to the local processor and halts the program. 

Interrupt from hardware A bus error or hardware failure 
from any component can cause an interrupt. The routing 
algorithm handler reports the error to the local processor 
and halts the program. 

Local communication controller mechanism 
In this section, we describe the concept and the conceptual 
structure of the local communication controller. The 
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5 Reserved spaces in local communication controller. 

facility need not be implemented if the control instruction 
set is not considered for implementation. This facility can 
be  implemented either in hardware or in software. If the 
local communication controller is implemented, it is 
responsible for handling the communication between the 
local processor and the input controllers. The local 
processor sends programs and data to the input controllers 
via the local communication controller and vice versa. The 
communication between the local processor and the  local 
communication controller is carried out through messages. 
The interrupt mechanism is used for communication 
between the local processor and the input controllers. The 
local communication controller reserves spaces for the 
status register, the general registers, the constant registers, 
routing programs, and control programs. Those spaces, 
except for the control instruction space, are replicas of 
storage in each of the input controllers. Figure 6 shows 
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Hypercube routing program. 6 

reserved spaces in the local communication controller. 
Although the physical structure of the controller may not 
be necessary, its implementation may be highly desirable 
for performance reasons. 

Communication between local processor and local 
communication controller 
When the processor has to send data or routing programs 
to one or all of the input controllers and the structure is 
implemented  in hardware, it  first sends messages that 
contain such data to the local communication controller. 
The data and instructions are stored in the reserved 
spaces. The input controller number  and the control 
instructions are also transferred to the communication 
controller. If it is desired that the routing algorithm handler 
execute the routing program  from the communication 
controller, the status register must  reflect this 
correspondence. Otherwise, the control program must be 
loaded into the routing algorithm handler. The control 

program is loaded at the beginning of the address space 
reserved for control instructions. The last address of the 
control program is used by the local communication 
controller to modify the addressing of the routing program, 
if necessary, by a constant offset so that no conflict of the 
addresses occurs. 

Communication between local  communication controller 
and  input controllers 
In all cases in which it is used, the local communication 
controller causes an interrupt to notify the input controller, 
which is supposed to receive data andlor the routing 
program, that the datahouting program has arrived. The 
interrupted input controller then changes its  state to 
privileged  and executes the control instructions stored 
in the local communication controller or the control 
instructions in its memory,  depending on the status 
bit which reflects where the control instructions reside. 
As indicated earlier, the starting address of the control 
instructions is always the beginning of the address space 
for both techniques. By executing control instructions, 
the input controller may load data into the status register 
and/or general registers, or it  may  load the routing program 
into its memory. 

4. Operating  environment 
Once the type of interconnection is decided for a parallel 
system, the routing program for the routing algorithm 
handler can be developed in either the host computer 
or the local processor. The executable program is 
downloaded to the routing algorithm handler in each 
input controller. 

Routing  algorithm  handler  initialization  and downloading 
of data 
The registers of the routing algorithm handler may  hold 
information that is  used repeatedly in the routing program. 
An example of such information is the address of the 
source node where the router is attached. This information 
is needed frequently in many of the routing programs; 
since it is known  in advance, it does not have to be 
computed in the routing program. The other data that must 
be downloaded include the content of the initial status 
register for each routing algorithm handler. The value for 
the protect fields is assigned appropriately, depending 
on the number of registers to be supported. The initial 
instruction address for the routing program should be 
determined and set accordingly. The control program for 
initialization must also be present in the host computer or 
the local processor. The control program needed for the 
initialization is the sequence of LPG, LR, LSR, and 
ECP if it is assumed that the control instruction set is 
implemented. Once all the necessary data are ready, the 
processor transfers the  data to the local communication 
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R1  has  the  routing  tag 

R2 through R4 contains 
the  address of 
memory location 
of the local processor 

MSG R1, R2, R4 ' 

channel-3: OUT 3 

I 

Routing  algorithm  handler 

Builds the 
message that 

, parameter (Rl), 
contains  the 

and  the  address of 
memory location 
(R2-R4) of the 
local processor 

, 

Stores  the 
status  register 
value  and  the c 
control  program. 
Then, causes an 
interrupt to the 
routing  algorithm 
handler 

Port controller 

/ 

@ The next  instruction  address  in  the new status  register  was  channel -2. 

controller, assumed for simplicity here to be implemented 
in hardware. After sending  all the data, the processor 
sends another message that indicates the end-of-data. 
Upon receiving the end-of-data message, the local 
communication controller causes an interrupt to the 
routing algorithm handler in the input controller. Then the 
routing algorithm handler executes the control program 
loaded in the local communication controller and initializes 
the status register, the general registers, and its memory. 
The last instruction in the control program is the ECP 
instruction, which puts the routing algorithm handler into 
the normal state and stopped mode,  waiting for header 
information to begin operating. Multiple input controllers 
using this example scheme can be initialized within the 
same environment by changing the input controller number 
and repeating the process. A parallel initialization is 
possible with proper hardware support and parallel loading 
of the program to all  input controllers. 

Execution of the routing program 
Once the routing algorithm handler is initialized, it is in 
the normal state and stopped mode. The mode changes 
from stopped to operating when the input port causes 
an interrupt that notifies the end of header information 

transfer to the input controller. Then the routing algorithm 
handler executes the routing program  on the new header 
information. The last instruction in the routing program is 
the OUT instruction, which sends the result of the routing 
program to the n X n switch as well as to the packet 
flow controller. Then it changes the operating mode to 
stopped. 

5. Routing  program  examples 
In this section, we show examples of routing programs 
written using the routing algorithm  handler instructions. In 
particular, in the first example, we describe the operation 
of a routing algorithm entirely supported by the router. 
In the second example, we demonstrate the flexibility of 
the proposed architecture by showing  an  example  which 
requires both the processor and the router operating in 
synergy. In the third example, we show how to support 
reconfigurable topologies using .the Inmos [6] table-lookup 
scheme, for the interval labeling method with the proposed 
architecture. 

Example 1 (routing in hypercube) 
Figure 7 shows a hypercube network. For  the given  pair 
of source (S"-~S"-~ * - so) and destination address 

T 

Executes 
the  program 

I 
Builds the 
message 
that  has 
the new 

of status 
content 

register 
and  the 
control 
program 

Local processor 
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f The labeling of a 4 X 3 mesh: (a)  physical network (b) high-channel  network; (c) low-channel  network [42]. 
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(d,-ld,-z do), the routing tag (rn-lrn-2 * ro) is 
computed as 

rfl-lr"-2 - * '0 = (s"-1sn-2 - * so XOR d"-ldfl-z * * * do). 

Then, using this routing tag, each router performs the 
following  algorithm: 

If (rn-lrn-z * ro = all zeros), then forward the message 

Else find the position, i ,  of the leading one bit in 

Set ri = 0; 
Send message in the ith direction. 

to the local processor; 

( r J - 2  * * - ro); 

The routing program developed for the routing algorithm 
handler that performs this hypercube routing algorithm  is 
shown in Figure 8. The R1,  C1, and C2 are general 
registers containing the routing tag R1 and the constant 
values C1 and C2. The values of C1 and C2 are set when 
the routing algorithm handler is initialized by the local 
processor. The value of R1 is loaded by the input port 
each time the input port transfers new header information. 
The output channels are numbered as follows: output 
channel inx  direction = 1; output channel in y direction = 
2; output channel in z direction = 3; output channel to 
local processor = 4. 

line 1 compares C1 to the routing tag. At line 2, the BC 
The R1 has the routing tag,  and the CMP instruction at 

instruction tests whether the routing tag contains all zeros. 
If true, the program branches to the location labeled 
processor and executes the OUT instruction, where 
operand 4 indicates that the message should be forwarded 
to the local processor. If the  test result at line 2 is not 
true, the program continues to search for the direction 
in which the message should be forwarded. The PLO 
instruction at line 3 does this job by finding the position 
of the leading one bit  in R1 and storing the result in R2. 
Thus, the value i of R2 represents the direction of the next 
node. The SHL instruction at line 4 shifts register C2(=1) 
i bit positions to the left  and stores the result in R3. 
The value in R3 is used to zero out the ith bit of the 
routing tag by XORing the R1 and R3. Finally, the 
program sends the result of the routing program by 
OUT R2. 

Example 2 (synergetic  operation) 
As mentioned before, the instructions provided for the 
routing algorithm handler were selected carefully after 
investigating numerous network topologies. Yet, there 
are special cases where the routing algorithm should be 
executed in the local processor. This case may occur, for 
example, if the routing algorithm requires instructions not 
provided within the routing algorithm handler, or if the 
routing program  is too big to be stored in the memory 
of the routing algorithm handler. The routing algorithm 
handler uses the MSG instruction to delegate some or all 
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1 Routing program for 4 X 3 mesh with interval labeling. 1 

of the routing program to the local processor. The MSG 
instruction has three operands, which are all registers. The 
first operand indicates the parameters to be sent to the 
local processor. One  example of such a parameter is the 
address of the destination node. The second and the third 
operands are pointers to the beginning  and end of the 
sequence of registers that contain the address of the 
memory location in the local processor where the desired 
routing program  is stored. When the MSG instruction is 
executed in the routing algorithm handler, it causes an 
interrupt to the port controller. The port controller then 
builds a message containing the parameter and the address 
of the memory location in the processor, along  with the 
number of the input controller which has the routing 
algorithm handler executing the MSG instruction. After 
building the message, the port controller sends it to the 
local processor. The local processor executes the desired 
program for the routing algorithm handler; it then sends 
the result to the port controller. The result includes the 
input controller number, the new content of the status 
register, and the control program. Included in the status 
register is the new instruction address, which the routing 
algorithm handler will fetch to execute the next instruction 
when control is returned to it. The control program has 
two control instructions, LSR (load status register) and 
ECP (end control program).  At this point, the port 
controller causes an interrupt to the routing algorithm 
handler which is in the input controller specified in the 
message  from the processor. The routing algorithm  handler 

then executes the control program stored in the port 
controller and obtains the new content of the status 
register. The next instruction address of the routing 
algorithm handler is the location specified in the instruction 
address. Figure 9 shows the sequence of communication 
initiated by the MSG instruction. 

Example 3 (routing of 4 X 3 mesh with interval labeling) 
The routing algorithm  with interval labeling uses the table- 
lookup routing scheme. It is an  efficient routing algorithm 
that reduces the table size [6, 421. The architecture we 
propose can also support this scheme. We show a routing 
program example for a 4 x 3 mesh interconnection 
network reported in  [42]  using the proposed routing 
algorithm  handler. As shown in Figure 10, each  node of the 
4 x 3 mesh 2D is assigned a label 4 ( x ,  y ) .  In particular, 
the example routing program shows how the routing is 
done for node (1, 1). Let d be the label of the destination 
address in a packet. Each routing table requires only four 
entries, one for each outgoing channel. For example, 
the routing table at node (1,  1) contains the following 
information: For d 2 7, the packet is routed using the 
+Y channel. For 5 I d < 7, 1 < d 5 3, and d 5 1, 
the packet is routed through channels -X, +X, and -Y, 
respectively. Shown in Figure 11 is the routing program 
using the routing algorithm handler. It is assumed 
that 1, 2, 3, 4, and 5 represent respectively the 
channel numbers of -X, +X,  -Y,  +Y, and the local 
processor. 325 
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6. Program  characteristics 
In this section, we discuss some of the program 
characteristics for the various routing programs we 
considered. (The programs have been reported elsewhere 
[8].) As shown in Figure 12, the CMP  and  BC instructions 
are used in  all routing programs because every routing 
program  must check at least one condition, i.e., whether 
or not the packets have reached their final destination 

E 45 501 

f 8 Routing program length for mesh networks. 

node. The OUT instruction is also used in every routing 
program, since it sends the result of the routing decision 
made to the n x n switch as well as to the packet flow 
controller. Many routing algorithms require operations on 
the selected field  of the given header information.  The 
AND instruction is used to mask out the unnecessary field 
of data. The PLO instruction is used in the routing 
program of all tree networks and some cube networks. The 
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shift (SHR and SHL) instructions  are  used  to align the 
data  for  comparisons  and  are  also  used in the routing 
programs of most multistage interconnection  networks. 
The ADD and  SUB  instructions  are  used  to  increment  or 
decrement  values.  The  lengths of the routing programs  for 
the  tree  networks,  the  cube  networks,  the  mesh  networks, 
the multistage interconnection  network,  and  the  networks 
not included  in the preceding  families are  shown in Figures 
13-17. The  actual lengths of routing programs  may  vary 
depending on  the  size of the  network. 

7. Summary 
In  this paper, we  have  described a RISC-like  general- 
purpose  router  architecture  that  accommodates a family of 
oblivious  routing  algorithms. The  architecture  is  suitable 
for  current technologies and  is  intended  for multiprocessor 
and  massively parallel systems.  For  this investigation, 
we  studied  the  routing algorithms of more  than  forty 
interconnection  networks.  We  have identified the  common 
functions  and  instruction  set  that  satisfy  the  requirements 
for handling  all of the routing  algorithms. The  architecture 
has programming  capabilities, and allows other oblivious 
routing  algorithms not  considered in our investigation to  be 
accommodated  as well. Furthermore,  the  architecture  can 
handle  the  various  types of header  packet  formats  that  are 
necessary  to  support different sizes of the  interconnection 
networks.  In addition, the  fact  that  the  architecture  is 
programmable makes it easy  to modify the routing 
algorithm if it is  found  to  contain  errors  or if a better 
algorithm is  subsequently developed. Because  the 
architecture  supports a wide  range of interconnection 
networks, it can  be  mass-produced  and  has  the potential 
to  become  an “off-the-shelf” product. 

Intel is a registered trademark of Intel Corporation. 
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