
Flexible
oblivious router

by J. Park
S. Vassiliadis
J. G. Delgado-Frias

architecture

In this paper we present a router architecture
that accommodates a family of oblivious
routing algorithms. The architecture is suitable
for current technologies, and it is intended
for multiprocessor and massively parallel
systems. Via the proposed architecture, we
suggest that general-purpose routers can
be designed to accommodate a variety of
multiprocessor interconnection networks. In
particular, the routing algorithms of those
interconnection structures that can be
classified as trees, cubes, meshes, and
multistage interconnection networks can
be accommodated with a flexible, easily
implemented architecture. Our investigation
strongly suggests that a common design can
satisfy at least forty network topologies with
the introduction of a few instructions that
are very simple to implement. The overall
conclusion is that general-purpose cost-
effective routers can potentially be designed
that perform equally as well as customized
routing logic, suggesting the possibility of a
common router for multiple interconnection
networks. Furthermore, the proposed
architecture provides programming capabilities
that allow other oblivious routing algorithms
not considered in our investigation to be
accommodated.

1. Introduction
Interconnection networks have an important role in the
design of parallel systems; they influence the performance

of such systems. A key component of an interconnection
network is the router, which is responsible for handling
different switching technologies, flow controls, and routing
algorithms [l]. The router can be categorized into two
types, depending on the network topology supported.
The first type of router relates to the networks with a
fixed topology. In this case, the router performs only one
routing algorithm, which depends primarily on the chosen
topology. Examples within this category include routers
such as the Torus routing chip [2], the router supported
in the iPSC/2 [3], and the Cosmic Cube router [4]. The
second type of router relates to networks with physically
reconfigurable topologies. In such systems, the router is
able to execute multiple routing algorithms or an algorithm
that can handle multiple topologies. The IntelVCMU’s
iWARP [5] and the INMOS transputer [6] are examples
of this type of router. In this scheme, there are two
approaches in routing: source routing and lookup-table
routing [7]. In source routing, the source node determines
the routing paths on the underlying network topology. The
packet used to communicate between processors must
carry the complete routing information in the header. In
lookup-table routing, the router has an entry in a table that
indicates which output channel must be used to reach each
destination node.

If the first approach is used, different routers must be
developed for different network topologies. The implication
here is that because the router has no flexibility, it cannot
be used as an “off-the-shelf” component for the design of
parallel systems. The second type of router resolves the
previously mentioned problem, since it can be used as
an off-the-shelf component to satisfy various network
requirements; however, it introduces some new problems.
In particular, in the source routing scheme, network

OCopyright 1995 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of
this paper may be copied or distributed royalty free without further permission by computer-based and other information-senice systems. Permission to republish any other

portion of this paper must be obtained from the Editor.

001&8846195/$3.00 0 1995 IBM

I

31 5

IBM J. RES. DEVELOP. VOL. 39 NO. 3 MAY 1995 J. PARK, S . VASSILIADIS, AND J. G. DELGADO-FRIAS

I Logical structure of a router

bandwidth can be wasted when the complete routing
information is included in the header packet. The lookup
table can be viewed as a flexible scheme. However, the
size of the lookup table may grow in proportion to the
size of the network, and it may be possible that, for a
large network, the size of the lookup table may become
prohibitively large, especially when the destination address
spaces are not easily partitioned into contiguous ranges.

network topologies representing five families of networks,
we propose a flexible router architecture that can support
fixed andlor reconfigurable network topologies. Our
proposal can be viewed as a RISC-like general-purpose
router architecture which has a small set of instructions to
perform various routing algorithms. Our work represents
the first attempt at proposing a RISC-like general-purpose
router architecture, and our goal is to build an off-the-shelf
general-purpose router that can be used in a wide range of
network topologies. In this paper, the term architecture
denotes the attributes of a system as seen by the
programmer (i.e., conceptual structure and functional
behavior); it is distinct from the organization of the
dataflow and the physical implementation of the machine.

The paper is organized as follows. In Section 2, the
background and the direction of our investigation are
briefly explained. In Sections 3 and 4, the flexible router

31 6 architecture and its general operation are introduced.

In this paper, based on the investigation of forty

Examples of routing programs using the proposed router
architecture are given in Section 5. Section 6 reports
various program characteristics, and Section 7 contains
concluding remarks.

2. Routing algorithms
In our investigation, we have considered oblivious routing
algorithms for the determination of a general-purpose
router architecture. An oblivious routing scheme always
produces the same communication path, given the same
source and destination address. The architecture is
developed around topologies that have been used
extensively in the design of parallel systems. The routing
algorithms we have considered have been divided into five
families: tree, cube, mesh, multistage interconnection
networks, and others (i.e., networks that do not fall into
any of the preceding four types of network topologies). We
considered for direct implementation the functions required
by the routing algorithms of twelve interconnection
networks classified as trees, six classified as cube
networks, five as mesh, ten as multistage interconnection
networks, and eight that were not classified with the other
network families. The major objective of the investigation
was to make instructions simple to implement and keep
the number of instruction sets as small as practicable.
Furthermore, we were interested in providing an
architecture that allows parallelism in its implementation.
For the forty interconnection networks we considered,
we used optimal routing algorithms when possible.
Consequently, our first criterion was to define a set
of instructions that would perform the algorithmic
requirements. Since the entire study is rather lengthy to
report here, the interested reader is referred to [8] for a
detailed discussion.

Identifylng algorithmic requirements, however, is only a
part of the operations of an architecture. An architecture
must also support the routines necessary for “handshaking”
with other units, and must provide flexibility of operations.
We support these capabilities with additional functions and
protocols described in detail later.

3. Flexible router architecture
Generally speaking, the router consists of three major
parts: n input controllers, an n-input, n-output switching
mechanism, and n output controllers. The input controller
receives packets from the paired output controller of a
neighboring router, performs a routing algorithm based
on the routing information in the packet, and determines
the output controller through which packets are to be
forwarded to another neighboring router. The n-input,
n-output switch connects n input controllers and n output
controllers. The output controller sends packets to the
paired input controller of the next router. Figure 1 shows
the logical structure of a router.

J. PARK, S. VASSILIADIS, AND J. G. DELGADO-FRIAS IBM J. RES. DEVELOP. VOL. 39 NO. 3 MAY 1995

The functions of the n X n switch and the output
controllers are the same for all routing algorithms, so the
flexibility of the router depends entirely on how many
different algorithms the input controller can process.

The logical functions of the input controller can be
broken into three major blocks: input port, routing
algorithm handler, and packet flow controller, as shown in
the block diagram of Figure 2. The input port (incorporated
in the port controller) is responsible for carrying out the
communication protocol for the reception of packets from
a neighboring router. The input port extracts the header
portion of the packet and transfers it to the routing
algorithm handler, while forwarding data bytes from the
packet to the packet flow controller. The routing algorithm
handler executes the routing program on the header
information and sends the result (output controller number)
to the arbiter of the n X n switch and also to the packet
flow controller. The packet flow controller stores the data
bytes sent from the input port in its buffer and waits until
the routing algorithm handler sends the address of the
output controller to which the data bytes should be routed.
Depending on the method of assigning buffers in the packet
flow controller to the data bytes, there are three well-
known flow control schemes: store-and-forward, virtual
cut-through [9, 101 and wormhole [7]. Once the packet
flow controller is notified of the output controller through
which the data bytes should be forwarded, it waits
for the connection to the switch. Once it receives the
acknowledgment from the arbiter of the n X n switch,
it transmits the data bytes to the output controller.

A flexible router must have a routing algorithm handler
that can handle multiple routing algorithms. In this section,
we propose a novel routing algorithm handler architecture
that provides support for all of the required instructions
and manipulations of data to manage multiple routing
algorithms. The architecture of the port/packet flow
controller is reported elsewhere [ll, 121. When necessary,
the functions and protocols of the port controller are
discussed to some extent.

Routing algorithm handler architecture
To support the algorithms directly, we have identified
twelve general-purpose, easily implementable instructions
(Table 1) that satisfy the requirements. The particular
instructions required by the routing algorithm families of
the interconnection network are presented in Table 2;
OUT, CMP, and BC instructions are not listed in this
table because they are used in all networks. A second
instruction set, the control instruction set, is shown in
Table 3. The four instructions in this set are not needed
for the routine algorithms themselves, but are used by the
communication controller to initialize the algorithm handler
and load the appropriate routing program in cases where
multiple programs are available. A detailed description of

Routing -
handler
- algorithm

0:
I t controller

Local - Packet
communication

controller controller
- flow -
- To

switch

Logical structure of an input controller.

Table 1 General instruction set.

Format Operations
~ ~ ~

ALU instructions
ADD R1, R2, R3
SUB R1, R2, R3
CMP R1, R2

AND R1, R2, R3
XOR R1, R2, R3
PLO R1, R2

Shift instructions
SHR R1, R2, R3

SHL R1, R2, R3

Data transfer instructions
MOV R1, R2

Control instructions
BC Address
OUT Channel no.

Communication instructions
MSG R1, R2, R3

RR
RR
RR

RR
RR
RR

RR

RR

RR

MI
I/R

RR

R3 = R1 + R2
R3 = R1 - R2
Compare R2 to R1

R3 = R1 AND R2
R3 = R1 XOR R2
R2 = position of

(sets condition code)

leading one bit in R1

R3 = Shift right R1 by

R3 = Shift left R1 by
(R2)

(R2)

R1 = R2

Branch on condition
End of program

Send message to local
processor

R# = a register and its number.
RZ = content of register R2.

all of the algorithms, types of interconnection networks,
and routing programs can be found in [8].

General instruction set
As indicated earlier, the general instruction set is used to
perform routing algorithms. All operands are either stored
in registers or made available within the immediate field
of the instruction. Most of the arithmetic and logical
instructions have three operand fields, to reduce the
demand for registers and help reduce the number of data

IBM J. RES. DEVELOP. VOL. 39 NO. 3 MAY 1995 J. PARK, S . VASSILIADIS, AND J. G. DELGADO-FRIAS

Table 2 Instructions required for interconnection networks.

Network name Instructions required Reference
~~

Binary tree
Fat tree
Flip tree
Binary tree with a full ring
Binary tree with a half ring
Hierarchical mesh
Hypertree
Diamond network
KYKLOS structure
Tree of meshes
Quad tree
Hypercube
Folded hypercube
Banyan hypercube
Spanning multiaccess channel (SMAC)
Base-m n-cube
Cube-connected cycles (CCC)
Mesh array
Torus network
k-ary n-cube
Hexagonal mesh
GNNM hypercube
Omega network
Delta network
Baseline network
Benes network
Shuffle exchange network
Augmented data manipulator net (ADMN)
Generalized cube network
Extra stage network
Rectangular SW banyan network
Gamma network
Ring network
Completely connected network
Pyramid network
Chordal ring network
Crossbar
Cube-connected cycles whirtual channel
k-ary n-cube wkirtual channel
Shuffle exchange net whirtual channel

AND PLO XOR
AND PLO XOR
AND PLO XOR MOV
AND PLO XOR MOV SUB SHIFT ADD
AND PLO XOR SUB SHIFT
AND SUB ADD
AND PLO XOR ADD SHIFT SUB
AND PLO XOR
AND MOV PLO SUB SHIFT XOR
AND XOR PLO SUB
AND XOR PLO ADD SHIFT
AND PLO SHIFT
AND PLO SHIFT ADD
AND XOR PLO
AND
AND SHIFT
PLO

AND SUB
AND SUB
AND SUB
AND SUB
AND SHIFT
AND SHIFT
AND SHIFT
AND SHIFT
AND SHIFT XOR
AND SHIFT
AND SHIFT
AND SHIFT
AND SHIFT
AND SHIFT
AND SUB

AND ADD
SHIFT

AND SHIFT XOR MOV ADD
AND SHIFT XOR MOV ADD
AND SHIFT XOR MOV ADD

Table 3 Control instruction set.

Instructions Format Operation

LPG R1, R2, R3 RR Load program
LSR R1, R2
LR

RR Load status register
R1, R2 RR Load general register

ECP Address I/R End of control program

transfers between registers. All instructions have equal
length, which is assumed to be 32 bits. Each instruction
has one of three formats: register to register (RR);
immediate or register (I/R); or immediate with mask (MI).
In the RR format, all operands are in registers. In the MI
format, I is the absolute address and M is the mask value.
In the I/R format, there are two mode bits, m l and m2.
The m l bit indicates whether R1 or I is to be used for

31 8 the OUT instruction. The m2 bit is used for the control

instruction ECP; it indicates whether it has the I as its
operand, or no operand. Figure 3 shows the three
instruction formats with the assigned bit positions.

Additional information regarding the instructions can be
found in Table 1. The specific definition of the instructions
is reported in [8]. The mnemonics and the functions of
most instructions are self-explanatory, except for the
instruction PLO (find position of leading one bit). The
PLO instruction is used frequently in the routing programs
of the tree and cube networks. As the name implies, it
finds the position of the leading one bit, starting from the
most significant bit position down to the least significant
position, and leaves the result of the positional value in the
target register. An example is the instruction PLO R1, R2;
R1 = 00001000, where R1 is an 8-bit register labeled from
1 to 8, and the result is (R2 = 00000101) because the
leading one bit was the fifth bit in R1.

I. PARK, S. VASSILIADIS, AND I. G. DELGADO-FRIAS IBM J. RES. DEVELOP. VOL. 39 NO. 3 MAY 1995

Addressing All instructions in a program (except BC)
imply sequential execution of the program. The branching
instruction is the only one that may use an address in
memory to determine the instruction to be executed. For
simplicity of the architecture, there is only one type of
addressing, and that is absolute. The absolute address is
the address assigned to a memory location. An absolute
address does not require any transformation of address to
access memory.

Instructions and condition code The condition code is set
only by the CMP (compare) instruction and tested by the
BC (branch on condition) instruction. Overflow conditions
are ignored and are not recorded anywhere. No other flag
bits, such as “result equal to zero,” are set as a result of
arithmeticflogical, shift, or PLO instructions.

Control instruction set
The instruction set we have described in the previous
section can be used to determine the behavior of the
routing algorithm handler. No additional instructions have
to be developed for the design of a router. The router can
be initialized with proper settings of its memory and states
(to be discussed). If some of the functions necessary for
the proper operation of the device are performed before
the router is employed, the control instruction set need not
be implemented. The control instruction set is introduced
primarily to perform functions such as initialization,
cooperative operations with a local processor, potential
operation modes that allow adaptive routing, or execution
of algorithms requiring complex functions, etc., which
increase the flexibility of the router architecture. The
control instruction set comprises four instructions, as
shown in Table 3. The LPG (load program) instruction
interrupts the routing algorithm handler, sets the state of
the handler to privileged, and initiates the transfer of the
routing program from an external source (usually the local
communication controller, described later) to the memory
of the handler. It has three operands. The first, R1,
contains the address where the routing program is stored
in the local communication controller. The second
operand, R2, contains the address where the routing
program should be loaded in the routing algorithm handler.
The content of the third operand (R3) is a counter which
specifies the size of the routing program to be loaded. The
program-loading operation is performed until counter R3 is
equal to zero. The LSR (load status register) instruction
loads the new content into the status register. The LR
(load register) instruction puts the new value into one of
the general registers of the routing algorithm handler. The
ECP (end control program) instruction terminates the
control program and returns the state of the routing
algorithm handler from privileged to normal; it may or may
not set the instruction address depending on the value of

i Three instruction formats.

the m2 field in the instruction. The execution of the control
instructions is described further in the subsection on the
local communication controller.

Status register
The status register in the routing algorithm handler keeps
the information required for the execution of the active
program; its implementation is always required. It includes
the instruction address, the condition code, the interrupt
code, the protects, the execute bit, and the state of the
routing algorithm handler. Figure 4 shows the bits assigned
to each field. The content of the status register is set by
the control instruction LSR.

States The routing algorithm handler has two states:
normal and privileged. Each state has two modes:
operating and idle. The control instructions are executed
in the privileged state and the general instructions in the
normal state. The interrupt is executed only when the
routing algorithm handler is in the idle mode. After the
completion of each routing program, the routing algorithm
handler enters the idle mode. The mode of the routing
algorithm handler changes from the idle mode to the
operating mode when the input port transfers header
information to the registers of the routing algorithm
handler and causes an end-of-header packet interrupt. The
state of the routing algorithm handler changes from normal
to privileged when the local communication controller
causes an execute control program interrupt. The MSG
instruction can also change the state from normal to
privileged.

Condition code The condition code is set as a result of
the CMP (compare) instruction and recorded in the
condition code field in the status register. The meanings
of the bits in the field are as follows:

J. P A R K , S . VASSILIADIS, AND J. I

819

?. DELGADO-FRIAS

320

Condition code
0000 operands are equal;
0001 first operand is low;
0010 first operand is high;
0011 undefined.

Interrupt code There are five types of interrupt in the
routing algorithm handler. The interrupt code field in the
status register records types of interrupt as follows:

0000 hardware failure;
0001 input port;
0010 local communication controller;
0011 program check;
0100 instruction not implemented.

Protect fields As shown in Figure 4, the instruction
format can accommodate up to 256 registers. However,
the number of registers may be limited to fewer than 256
by the hardware technology in which the architecture is
implemented. To avoid unnecessary architecture, once the
number of registers that can be implemented has been
decided, the protectl field is used to indicate that number.
The protectl field cpntains three bits and can represent
numbers ranging from 0 to 7. If a register number in the
instruction is given as the binary number r7r6 * ro7
a value i in the protectl field represents the value j = i
for which all rj , j z i, must be zero-i.e., the maximum
number of registers allowed by the current implementation.
If the register number in the instruction exceeds this limit,
the program check interrupt will occur. The protect2
field is used in a similar way. It determines the actual
addressing space that a program can use and indicates
whether the address exceeds the implemented address
range .

J. PARK, S. VASSILIADIS, AND J. G. DELGADO-FRIAS

Execute bit It indicates whether the execution occurs
from the local memory of the routing algorithm handler or
from an external device.

Instruction address The instruction address field contains
the address of the next instruction for either control
instructions or general instructions. When the state bit in
the status register indicates that the routing algorithm
handler is in the normal state, the instruction address
represents the next instruction address for general
instructions. Otherwise, it represents the next instruction
address for the control program.

Address generation and data format Execution of
instructions by the routing algorithm handler involves
generating the addresses of instructions and operands.
When an instruction is fetched from the location
designated by the current status register, the instruction
address is increased equally after the execution of each
instruction. For the branching instruction, the address
of the next instruction is either the address of the next
instruction in the sequence or the address specified in
the I field in the instruction, depending on the branching
decision made in the branch instruction. All instructions
treat data as only one type, two’s-complement numbers.
In a two’s-complement number, the most significant bit is
used as the sign bit indicator. The logical structure of the
routing algorithm handler is shown in Figure 5.

Storage

Registers There are up to 256 registers in total. For
simplicity in program writing, we consider two types of
registers: general registers, which store values or results of
computations, and constant registers, which hold constant
values used in the routing program.

IBM J. RES. DEVELOP. VOL. 39 NO. 3 MAY 1995

I

Memory The routing program is loaded into memory and
executed from there. The routing algorithm handler does
not allow any operand to be stored in the memory. The
word length of the memory is 32 bits.

Interrupts The interrupt facility allows the routing
algorithm handler to react to hardware failures in the
router, monitor the program execution status, initiate
the routing program stored in the memory, and also
communicate with the local processor through the local
communication controller (described later). We discuss the
following types of interrupts.

Interruptfrom input port When the input port receives a
packet, it stores the header part of the packet into the
predetermined register(s) in the routing algorithm handler.
Then, it causes an interrupt to the routing algorithm
handler so that the routing algorithm handler may begin
executing the routing program on the newly arrived header
information. When the interrupt occurs, the routing
algorithm handler executes the routing program if the
routing algorithm handler is in the normal state. Otherwise,
the interrupt remains pending until the state changes to
normal.

Interrupt from local communication controller The local
communication controller is an interim location for
communication instructions between the local processor
and the input controllers. The local processor sends data,
the routing program, and the control program to the
local communication controller and instructs the local
communication controller to notify the input controller that
the control instructions should be executed. The local
communication controller performs this operation by
causing an interrupt to the input controller. When the
interrupt occurs from the local communication controller,
the input controller changes its state to privileged and
executes the control instructions stored in the local
communication controller.

Interrupt from program A program check interrupt
occurs when the register number exceeds the allowed
number or when an unimplemented instruction is received.
The routing algorithm handler sends the program check
message to the local processor and halts the program.

Interrupt from hardware A bus error or hardware failure
from any component can cause an interrupt. The routing
algorithm handler reports the error to the local processor
and halts the program.

Local communication controller mechanism
In this section, we describe the concept and the conceptual
structure of the local communication controller. The

IBM J. RES. DEVELOP. VOL. 39 NO. 3 MAY 199.5

I
controller
From input

and local
communication

packet flow
controller

controller

! Conceptual structure of routing algorithm handler.

1 =qq status register r l
General Routing
registers program

number
Input controller

Control
program

5 Reserved spaces in local communication controller.

facility need not be implemented if the control instruction
set is not considered for implementation. This facility can
be implemented either in hardware or in software. If the
local communication controller is implemented, it is
responsible for handling the communication between the
local processor and the input controllers. The local
processor sends programs and data to the input controllers
via the local communication controller and vice versa. The
communication between the local processor and the local
communication controller is carried out through messages.
The interrupt mechanism is used for communication
between the local processor and the input controllers. The
local communication controller reserves spaces for the
status register, the general registers, the constant registers,
routing programs, and control programs. Those spaces,
except for the control instruction space, are replicas of
storage in each of the input controllers. Figure 6 shows

J. PARK, S. VASSILIADIS, AND J. G. DELGADO-FRIAS

322

. ". " ..I ". . .I_." . ~.." " . . .

Hypercube routing program. 6

reserved spaces in the local communication controller.
Although the physical structure of the controller may not
be necessary, its implementation may be highly desirable
for performance reasons.

Communication between local processor and local
communication controller
When the processor has to send data or routing programs
to one or all of the input controllers and the structure is
implemented in hardware, it first sends messages that
contain such data to the local communication controller.
The data and instructions are stored in the reserved
spaces. The input controller number and the control
instructions are also transferred to the communication
controller. If it is desired that the routing algorithm handler
execute the routing program from the communication
controller, the status register must reflect this
correspondence. Otherwise, the control program must be
loaded into the routing algorithm handler. The control

program is loaded at the beginning of the address space
reserved for control instructions. The last address of the
control program is used by the local communication
controller to modify the addressing of the routing program,
if necessary, by a constant offset so that no conflict of the
addresses occurs.

Communication between local communication controller
and input controllers
In all cases in which it is used, the local communication
controller causes an interrupt to notify the input controller,
which is supposed to receive data andlor the routing
program, that the datahouting program has arrived. The
interrupted input controller then changes its state to
privileged and executes the control instructions stored
in the local communication controller or the control
instructions in its memory, depending on the status
bit which reflects where the control instructions reside.
As indicated earlier, the starting address of the control
instructions is always the beginning of the address space
for both techniques. By executing control instructions,
the input controller may load data into the status register
and/or general registers, or it may load the routing program
into its memory.

4. Operating environment
Once the type of interconnection is decided for a parallel
system, the routing program for the routing algorithm
handler can be developed in either the host computer
or the local processor. The executable program is
downloaded to the routing algorithm handler in each
input controller.

Routing algorithm handler initialization and downloading
of data
The registers of the routing algorithm handler may hold
information that is used repeatedly in the routing program.
An example of such information is the address of the
source node where the router is attached. This information
is needed frequently in many of the routing programs;
since it is known in advance, it does not have to be
computed in the routing program. The other data that must
be downloaded include the content of the initial status
register for each routing algorithm handler. The value for
the protect fields is assigned appropriately, depending
on the number of registers to be supported. The initial
instruction address for the routing program should be
determined and set accordingly. The control program for
initialization must also be present in the host computer or
the local processor. The control program needed for the
initialization is the sequence of LPG, LR, LSR, and
ECP if it is assumed that the control instruction set is
implemented. Once all the necessary data are ready, the
processor transfers the data to the local communication

I. PARK, S. VASSILIADIS, AND J. G. DELGADO-FRIAS IBM J. RES. DEVELOP. VOL. 39 NO. 3 MAY 1995

R1 has the routing tag

R2 through R4 contains
the address of
memory location
of the local processor

MSG R1, R2, R4 '

channel-3: OUT 3

I

Routing algorithm handler

Builds the
message that

, parameter (Rl),
contains the

and the address of
memory location
(R2-R4) of the
local processor

,

Stores the
status register
value and the c
control program.
Then, causes an
interrupt to the
routing algorithm
handler

Port controller

/

@ The next instruction address in the new status register was channel -2.

controller, assumed for simplicity here to be implemented
in hardware. After sending all the data, the processor
sends another message that indicates the end-of-data.
Upon receiving the end-of-data message, the local
communication controller causes an interrupt to the
routing algorithm handler in the input controller. Then the
routing algorithm handler executes the control program
loaded in the local communication controller and initializes
the status register, the general registers, and its memory.
The last instruction in the control program is the ECP
instruction, which puts the routing algorithm handler into
the normal state and stopped mode, waiting for header
information to begin operating. Multiple input controllers
using this example scheme can be initialized within the
same environment by changing the input controller number
and repeating the process. A parallel initialization is
possible with proper hardware support and parallel loading
of the program to all input controllers.

Execution of the routing program
Once the routing algorithm handler is initialized, it is in
the normal state and stopped mode. The mode changes
from stopped to operating when the input port causes
an interrupt that notifies the end of header information

transfer to the input controller. Then the routing algorithm
handler executes the routing program on the new header
information. The last instruction in the routing program is
the OUT instruction, which sends the result of the routing
program to the n X n switch as well as to the packet
flow controller. Then it changes the operating mode to
stopped.

5. Routing program examples
In this section, we show examples of routing programs
written using the routing algorithm handler instructions. In
particular, in the first example, we describe the operation
of a routing algorithm entirely supported by the router.
In the second example, we demonstrate the flexibility of
the proposed architecture by showing an example which
requires both the processor and the router operating in
synergy. In the third example, we show how to support
reconfigurable topologies using .the Inmos [6] table-lookup
scheme, for the interval labeling method with the proposed
architecture.

Example 1 (routing in hypercube)
Figure 7 shows a hypercube network. For the given pair
of source (S"-~S"-~ * - so) and destination address

T

Executes
the program

I
Builds the
message
that has
the new

of status
content

register
and the
control
program

Local processor

LBM J. RES. DEVELOP. VOL. 39 NO. 3 MAY 1995 J. PARK, S . VASSILIADIS, AND J. G. DELGADO-FRIAS

f The labeling of a 4 X 3 mesh: (a) physical network (b) high-channel network; (c) low-channel network [42].

324

(d,-ld,-z do), the routing tag (rn-lrn-2 * ro) is
computed as

rfl-lr"-2 - * '0 = (s"-1sn-2 - * so XOR d"-ldfl-z * * * do).

Then, using this routing tag, each router performs the
following algorithm:

If (rn-lrn-z * ro = all zeros), then forward the message

Else find the position, i , of the leading one bit in

Set ri = 0;
Send message in the ith direction.

to the local processor;

(r J - 2 * * - ro);

The routing program developed for the routing algorithm
handler that performs this hypercube routing algorithm is
shown in Figure 8. The R1, C1, and C2 are general
registers containing the routing tag R1 and the constant
values C1 and C2. The values of C1 and C2 are set when
the routing algorithm handler is initialized by the local
processor. The value of R1 is loaded by the input port
each time the input port transfers new header information.
The output channels are numbered as follows: output
channel inx direction = 1; output channel in y direction =
2; output channel in z direction = 3; output channel to
local processor = 4.

line 1 compares C1 to the routing tag. At line 2, the BC
The R1 has the routing tag, and the CMP instruction at

instruction tests whether the routing tag contains all zeros.
If true, the program branches to the location labeled
processor and executes the OUT instruction, where
operand 4 indicates that the message should be forwarded
to the local processor. If the test result at line 2 is not
true, the program continues to search for the direction
in which the message should be forwarded. The PLO
instruction at line 3 does this job by finding the position
of the leading one bit in R1 and storing the result in R2.
Thus, the value i of R2 represents the direction of the next
node. The SHL instruction at line 4 shifts register C2(=1)
i bit positions to the left and stores the result in R3.
The value in R3 is used to zero out the ith bit of the
routing tag by XORing the R1 and R3. Finally, the
program sends the result of the routing program by
OUT R2.

Example 2 (synergetic operation)
As mentioned before, the instructions provided for the
routing algorithm handler were selected carefully after
investigating numerous network topologies. Yet, there
are special cases where the routing algorithm should be
executed in the local processor. This case may occur, for
example, if the routing algorithm requires instructions not
provided within the routing algorithm handler, or if the
routing program is too big to be stored in the memory
of the routing algorithm handler. The routing algorithm
handler uses the MSG instruction to delegate some or all

J. PARK, S. VASSILIADIS, AND J. G. DELGADO-FRIAS IBM J. RES. DEVELOP. VOL. 39 NO. 3 MAY 1995

1 Routing program for 4 X 3 mesh with interval labeling. 1

of the routing program to the local processor. The MSG
instruction has three operands, which are all registers. The
first operand indicates the parameters to be sent to the
local processor. One example of such a parameter is the
address of the destination node. The second and the third
operands are pointers to the beginning and end of the
sequence of registers that contain the address of the
memory location in the local processor where the desired
routing program is stored. When the MSG instruction is
executed in the routing algorithm handler, it causes an
interrupt to the port controller. The port controller then
builds a message containing the parameter and the address
of the memory location in the processor, along with the
number of the input controller which has the routing
algorithm handler executing the MSG instruction. After
building the message, the port controller sends it to the
local processor. The local processor executes the desired
program for the routing algorithm handler; it then sends
the result to the port controller. The result includes the
input controller number, the new content of the status
register, and the control program. Included in the status
register is the new instruction address, which the routing
algorithm handler will fetch to execute the next instruction
when control is returned to it. The control program has
two control instructions, LSR (load status register) and
ECP (end control program). At this point, the port
controller causes an interrupt to the routing algorithm
handler which is in the input controller specified in the
message from the processor. The routing algorithm handler

then executes the control program stored in the port
controller and obtains the new content of the status
register. The next instruction address of the routing
algorithm handler is the location specified in the instruction
address. Figure 9 shows the sequence of communication
initiated by the MSG instruction.

Example 3 (routing of 4 X 3 mesh with interval labeling)
The routing algorithm with interval labeling uses the table-
lookup routing scheme. It is an efficient routing algorithm
that reduces the table size [6, 421. The architecture we
propose can also support this scheme. We show a routing
program example for a 4 x 3 mesh interconnection
network reported in [42] using the proposed routing
algorithm handler. As shown in Figure 10, each node of the
4 x 3 mesh 2D is assigned a label 4 (x , y) . In particular,
the example routing program shows how the routing is
done for node (1, 1). Let d be the label of the destination
address in a packet. Each routing table requires only four
entries, one for each outgoing channel. For example,
the routing table at node (1, 1) contains the following
information: For d 2 7, the packet is routed using the
+Y channel. For 5 I d < 7, 1 < d 5 3, and d 5 1,
the packet is routed through channels -X, +X, and -Y,
respectively. Shown in Figure 11 is the routing program
using the routing algorithm handler. It is assumed
that 1, 2, 3, 4, and 5 represent respectively the
channel numbers of -X, +X, -Y, +Y, and the local
processor. 325

IBM J. RES. DEVELOP. VOL. 39 NO. 3 MAY 1995 J. PARK, S. VASSIWADIS, AND J. G. DELGADO-FRIAS

326

sot- I

6. Program characteristics
In this section, we discuss some of the program
characteristics for the various routing programs we
considered. (The programs have been reported elsewhere
[8].) As shown in Figure 12, the CMP and BC instructions
are used in all routing programs because every routing
program must check at least one condition, i.e., whether
or not the packets have reached their final destination

E 45 501

f 8 Routing program length for mesh networks.

node. The OUT instruction is also used in every routing
program, since it sends the result of the routing decision
made to the n x n switch as well as to the packet flow
controller. Many routing algorithms require operations on
the selected field of the given header information. The
AND instruction is used to mask out the unnecessary field
of data. The PLO instruction is used in the routing
program of all tree networks and some cube networks. The

IBM J. RES. DEVELOP. VOL. 39 NO. 3 MAY 1995

shift (SHR and SHL) instructions are used to align the
data for comparisons and are also used in the routing
programs of most multistage interconnection networks.
The ADD and SUB instructions are used to increment or
decrement values. The lengths of the routing programs for
the tree networks, the cube networks, the mesh networks,
the multistage interconnection network, and the networks
not included in the preceding families are shown in Figures
13-17. The actual lengths of routing programs may vary
depending on the size of the network.

7. Summary
In this paper, we have described a RISC-like general-
purpose router architecture that accommodates a family of
oblivious routing algorithms. The architecture is suitable
for current technologies and is intended for multiprocessor
and massively parallel systems. For this investigation,
we studied the routing algorithms of more than forty
interconnection networks. We have identified the common
functions and instruction set that satisfy the requirements
for handling all of the routing algorithms. The architecture
has programming capabilities, and allows other oblivious
routing algorithms not considered in our investigation to be
accommodated as well. Furthermore, the architecture can
handle the various types of header packet formats that are
necessary to support different sizes of the interconnection
networks. In addition, the fact that the architecture is
programmable makes it easy to modify the routing
algorithm if it is found to contain errors or if a better
algorithm is subsequently developed. Because the
architecture supports a wide range of interconnection
networks, it can be mass-produced and has the potential
to become an “off-the-shelf” product.

Intel is a registered trademark of Intel Corporation.

References
1. B. W. O’Krafka, “Design and Evaluation of Directory-

Based Cache Coherence Systems,” Ph.D. Thesis,
University of California, Berkeley, 1992.

J. Distr. Syst. 1, No. 3, 187-196 (1986).

Supercomputer,” Order No. 280115-001, Intel Scientific
Computers, Beaverton, OR 97006, 1988.

4. C. L. Seitz, “The Cosmic Cube,” Commun. ACM,
pp. 22-33 (1985).

5. S. Borkar, R. Cohn, G. Cox, S. Gleason, T. Gross, H. T.
Kung, M. Lam, B. Moor, C. Peterson, J. Pieper, L.
Rankin, P. S. Tseng, J. Sutton, J. Urbanski, and J. Webb,
“iWARP: An Integrated Solution to High-speed Parallel
Computing,” Proceedings of the ZEEE Supercomputing
Conference, November 1988, pp. 330-338.

6. “The 9000 Transputer Products Overview Manual,” Order
Code: DB-TRANSPSTIl, InMOS Ltd., 1000 Aztec West,
Bristol BS12 4SQ England, 1991.

7. L. M. Li and P. K. McKinley, “A Survey of Routing
Techniques in Wormhole Networks,” Technical Report
MSU-CPS-ACS-46, Department of Computer Science,
Michigan State University, East Lansing, October 1991.

2. W. J. Dally and C. L. Seitz, “The Torus Routing Chip,”

3. “A Technical Summary of the iPSC/2 Concurrent

IBM J. RES. DEVELOP. VOL. 39 NO. 3 MAY 1995

2 20

3 5 -

’$ 25 1 30

13 20
O 1 5 -

Average
”

-
% 10-
9 ;- I

8. J. Park, S. Vassiliadis, and J. G. Delgado-Frias, “Flexible
Router Architecture: Instruction Set and Organization,”
Technical Report TR 01. C752, IBM Microelectronics
Division, Endicott, N Y , September 1993.

J. PARK, S. VASSILIADIS, AND J. G. DELGADO-FRIAS

9. P. Kermani and L. Kleinrock, “Virtual Cut Through: A
New Computer Communication Switching Technique,”
Computer Networks 3, 267-286 (1979).

10. W. J. Dally, “Virtual-Channel Flow Control,” ZEEE
Trans. Parallel & Distr. Syst. 3, 194-205 (1992).

11. J. Park, B. W. O’Krafka, S. Vassiliadis, and J. G.
Delgado-Frias, “Design and Evaluation of a DAMQ
Multiprocessor Network with Self-compacting Buffers,”
Proceedings of the ZEEE Supercomputing Conference,
1994, pp. 713-722.

12. J. Park, S. Vassiliadis, and J. G. Delgado-Frias, “Input
and Output Port Controller Architecture and
Organization,” Technical Report TROl. C767, IBM
System/390 Division Development Laboratory, Endicott,
NY, 1994.

Interconnection Network: Applications to Multiprocessor

247-253 (1981).
Systems and VLSI,” IEEE Trans. Computers C-30, No. 4,

Hardware-Efficient Supercomputing,” Proceedings of the
1985 International Conference on Parallel Processing,
IEEE Computer Society Press, Silver Spring, MD, 1985,
pp. 393-402.

Tolerant Graphs with Wide Containers,” ZEEE Trans.
Computers 37, No. 4, 472-478 (1988).

Multiprocessor Interconnection Topology,” ZEEE Trans.
Computers C-30, No. 12, 923-933 (1981).

Hierarchical Mesh Architecture,” Proceedings of the 4th
Annual Parallel Processing Symposium, IEEE Orange
County Computer Society, Fuilerton, CA, 1990, pp. 923-933.

Structure Interconnection Network and Its Message
Traffic,” IEEE Trans. Computers C-34, No. 8, 765-768
(1985).

19. B. L. Menezes and R. Jenevein, “The KYKLOS
Multicomputer Network and Its Message Traffic,” ZEEE
Trans. Computers C-34, No. 8, 765-768 (1985).

20. F. T. Leighton, “New Lower Bound Techniques for
VLSI,” Math. Syst. Theor. 17, No. 1, 47 (1984).

21. P. K. Bansal, K. Singh, and R. C. Joshi, “Quad Tree: A
Cost Effective Fault Tolerant Multistage Interconnection,”
Proceedings of ZEEE ZNFOCOM ’92: Conference on
Computer Communications, Vol. 2, 1992, pp. 860-866.

22. P. Banerjee, “Algorithm-Based Fault Tolerance on a
Hypercube Multiprocessor,” ZEEE Trans. Computers 39,
No. 9, 1132-1144 (1990).

Performance of Folded Hypercubes,” ZEEE Trans.
Parallel & Distr. Syst. 2, No. 1, 31-42 (1991).

24. A. S . Youssef and B. Narahari, “The Banyan-Hypercube
Networks,” ZEEE Trans. Parallel & Distr. Syst. 1, No. 2,
160-169 (1990).

Channel Hypercube Computer Interconnection,” ZEEE
Trans. Computers 37, No. 9, 1137-1142 (1988).

n-cube High Performance Interconnection Networks for
Highly Parallel Computer Prodigy,” Proceedings of the
1991 International Conference on Parallel Processing,
Springer-Verlag, Berlin, 1991, pp. 1509-1516.

Networks of Microcomputers,” ZEEE Trans. Computers

13. E. Horowitz and A. Zorat, “The Binary Tree as

14. C. E. Leiserson, “Fat-Tree: Universal Networks for

15. F. J. Meyer and D. K. Pradhan, “Flip-Tree: Fault-

16. J. R. Goodman and C. H. Sequin, “Hypertree: A

17. W. K. Tsai, Y. C. Kim, and N. Bagherzadeh, “A

18. N. S. Woo and A. Agrawala, “A Symmetric Tree

23. A. El-Amawy and S. Latifi, “Properties of and

25. P. W. Dowd and K. Jabbour, “Spanning Multiaccess

26. N. Tanabe, T. Suzuoka, and S . Nakamura, “Base-m

27. L. D. Wittie, “Communication Structures for Large

C-30, NO. 4, 264-273 (1981).
28. W. J. Dally, “Performance Analysis of k-ary n-cube

Interconnection Networks,” ZEEE Trans. Computers 39,
No. 6, 775-785 (1990).

J. PARK, S . VASSILIADIS, AND J. G. DELGADO-FRIAS

29. M. S. Chen and K. G. Shin, “Addressing, Routing and
Broadcasting in Hexagonal Mesh Multiprocessors,” ZEEE
Trans. Computers 39, No. 1, 10-18 (1990).

Processor Interconnection Strategies,” Proceedings of the
9th Annual Symposium on Computer Architecture, IEEE,
New York, 1982, pp. 90-98.

31. A. DeCegama, Parallel ProcessorArchitectures and VLSZ
Hardware, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1989.

32. C. P. Kruskal and M. Snir, “A Unified Theory of
Interconnection Network Structure,” Ultracomputer Note
No. 106, New York University, New York.

Networks,” Bell Syst. Tech. J. 40, No. 4, Pt. 2, 1641-1656
(1964).

34. W. J. Dally and C. L. Seitz, “Deadlock-Free Message
Routing in Multiprocessor Interconnection Networks,”
ZEEE Trans. Computers C-36, No. 5 , 547-553 (1987).

35. R. J. McMillen and H. J. Siegel, “Routing Schemes for
the Augmented Data Manipulate Network in an MIMD
System,” ZEEE Trans. Computers C-31, No. 12,
1202-1214 (1982).

A Fault-Tolerant Interconnection Network for
Supersystems,” ZEEE Trans. Computers C-31, No. 5,

30. L. N. Bhuyan and D. P. Agarwal, “A General Class of

33. V. Benes, “Optimal Rearrangable Multistage Connection

36. G. B. Adams and H. J. Siegel, “The Extra Stage Cube:

247-255 (1982).
37. V. Cherkassky, E. Opper, and M. Malek, “Reliability

and Fault Diagnosis 6 i Fault Tolerant Multistage
Interconnection Networks,” Proceedings of the 14th
Symposium on Fault Tolerant Computers, IEEE Computer
Society Press, Silver Spring, MD, June 1984, pp. 246-251.

Network,” ZEEE Trans. Computers C-33, No. 4, 367-373
(1984).

Interconnection Networks for Multicomputer Systems,”
ZEEE Trans. Computers 39, No. 6, 786-797 (1990).

40. B. W. Arden and H. Lee, “Analysis of Chordal Ring
Network,” ZEEE Trans. Computers C-30, 291-296 (1981).

41. N. Pippenger, “On Crossbar Switching Networks,” ZEEE
Trans. Commun. COM-23, 646-659 (1975).

42. X. Lin and L. M. Ni, “Deadlock-Free Multicast
Wormhole Routing in Multicomputer Networks,”
Proceedings of the 18th International Symposium on
Computer Architecture, IEEE CS Press, Los Alamitos,
CA, Order No. 2146, 1991, pp. 116-125.

38. D. S. Parker and C. S. Raghavendra, “The Gamma

39. S. P. Dandamudi and D. L. Eager, “Hierarchical

Received November 1, 1993; accepted for publication
May 12, 1995

JOOnhO Park Bell Communications Research (Bellcore),
331 Newman Springs Road, Red Bank, New Jersey 07701
fipark@cc.bellcore.com). Dr. Park received a B.S. degree in
computer science and mathematics from the State University
of New York (SUNY) at Binghamton and an MS. in computer
engineering from the Pennsylvania State University. In 1988 he
joined IBM at the Endicott laboratory, where he worked on
performance evaluation of 1/0 subsystems, visualization
tool development, and LAN network management.
Dr. Park received his Ph.D. in computer engineering from
SUNY-Binghamton in 1994 through the IBM Graduate Work
Study Program. In 1995 he joined Bell Communications
Research as a member of the technical staff to work on
information modeling of communications networks. Dr. Park’s
areas of interest include parallel processing, network
management, and network software development.

IBM J. RES. DEVELOP. VOL. 39 NO. 3 MAY 1995

Stamatis Vassiliadis Delft University of Technology,
Faculty of Electrical Engineering, Mekelweg 4, 2628 CD
Del’, The Netherlands (stamatis@duteca.et. tudel’d).
Dr. Vassiliadis received the Dr. Eng. degree in electronic
engineering from the Politecnico di Milano, Milan, Italy, in
1978. He is currently on the faculty of the Department of
Electrical Engineering at the Delft University of Technology.
He has been a faculty member at both Cornel1 University in
Ithaca, New York, and the State University of New York
(SUNY) at Binghamton. From 1992 to 1993 he was a Visiting
Professor at the School of Electrical Engineering, College of
Engineering, at Cornell. Dr. Vassiliadis worked for ten years
at IBM, at the Advanced Workstations and Systems laboratory
in Austin, Texas, the Mid-Hudson Valley laboratory in
Poughkeepsie, New York, and the Glendale laboratory in
Endicott, New York. His assignments included the
development of new computer organizations and architectures,
high-level design and technical leadership in the
implementation of new computer systems, and advanced
research in a variety of computer-related fields. Among other
projects, he was involved in the design and implementation of
the IBM 9370 Model 60 computer system. While at IBM he
received numerous awards, including 21 levels of the IBM
Publication Achievement Award, 14 levels of the IBM
Invention Achievement Award, and an Outstanding Innovation
Award for Engineering/Scientific Hardware Design in 1989. In
1990 he was awarded the highest number of patents in IBM.
Dr. Vassiliadis is a member of the IEEE Computer Society.
His research interests include computer architecture, hardware
design and functional testing of computer systems, parallel
processors, computer arithmetic, EDFI for hardware
implementations, neural networks, fuzzy logic and systems,
and software engineering.

Jose G. Delgado-Frias State University of New York
at Binghamton, Department of Electrical Engineering,
Binghamton, New York 13901. Dr. Delgado-Frias received a
B.S. from the National Autonomous University of Mexico,
an M.S. from the National Institute for Astrophysics, Optics
and Electronics, Mexico, and a Ph.D. from Texas A & M
University, all in electrical engineering. Since 1989 he has
been with the Electrical Engineering Department at the State
University of New York at Binghamton, where he is an
associate professor. He has held academic positions at the
University of Oxford, England, and the National Autonomous
University of Mexico. His research interests include parallel
computer architectures, VLSI/WSI design, computer hardware
organization, and neural networks. Dr. Delgado-Frias has been
the co-chairman of three international workshops on VLSI for
artificial intelligence and neural networks which were held at
the University of Oxford in 1988, 1990, and 1992. He is a co-
editor of three books, has co-authored more than seventy
technical papers, and holds four U.S. patents. In 1994,
he received the State University of New York System
Chancellor’s Award for Excellence in Teaching. He is a
senior member of the Institute of Electrical and Electronics
Engineers (IEEE).

IBM J. RES. DEVELOP. VOL. 39 NO. 3 MAY 1995 J. PARK, S . VASSILIADIS, AND J. G. DELGADO-FRIAS

