A walk along
the branches
of the extended
Farey tree

by J. C. Lagarias
C. P. Tresser

The rational numbers can be presented as the
set of vertices of a degree-three tree. If p/q
and p’/q’ are two rational numbers written in
lowest terms, the difference pq’ — p’q depends
only on the shape of the path joining p/q to
p’/q’ on this tree.

1. Introduction
Back in elementary school, many of us thought that life
would be much simpler if adding fractions required simply
adding the numerators to get the numerator of the sum,
and adding the denominators to get the denominator of the
sum. In fact, the pairing
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is useful in number theory, in topology, and in dynamical
systems theory under the name Farey sum of p/q and
p'/q’'. More precisely, this is so when p/q and p'/q’ are
both in the unit interval, are in lowest terms, and are
Farey neighbors, i.e., are not separated, on the real line,
by any fraction with denominator smaller than max(q, q’).
[For example, we would associate 10/13 with the pair (3/4,
7/9) because no other rational number with denominator
smaller than 9 can be found in the interval (3/4, 7/9);
however, we would not associate 2/7 with the pair

(1/5, 1/2) because both 1/4 and 1/3 are found in the interval
(1/5, 1/2).] The Farey sum operation allows one to present
the set of all rational numbers in (0, 1) as the set of vertices
of an infinite rooted tree known as the Farey tree. The use

(M

of formula (1) can be generalized to allow the construction
of a free tree of degree three, which we call the extended
Farey tree or Q-tree, having the set Q of rational numbers
as its set of vertices, as we show in Section 2.

The Q-tree embeds in the plane in such a way that its
set of ends, naturally labeled by real numbers (in general,
not rational), forms a nondecreasing sequence when read
from left to right. Using the embedded tree, we give a
topological interpretation of the numerator pq' — p'q
of the difference of two fractions p/q and p'/q’, before
reduction to lowest terms, and an equivalent interpretation
of the same quantity in terms of symbols associated
with the abstract tree. This extends the following
reinterpretation of n — m, the difference of two integers:
Consider the real line marked by the lattice Z of integer
points. When going from n to m along the line, initialize
a counter to zero; add 1 for each lattice point reached
if walking toward —» (to the left); subtract 1 if walking
toward + (to the right). The final number on the counter
isn—m.

Keeping in mind that » and m can be rewritten as n/1
and m/1 (as rational numbers written in lowest terms), we
wish to rewrite n — masn - 1 — m - 1. The aim of this
paper is to use the Q-tree to interpret topologically, as we
did for n — m, the quantity pg’ — p'q associated with the
pair (p/q, p'/q') of rational numbers reduced to lowest
terms. In other words, we give a pictorial perspective to
the solutions of the Diophantine equations pq’ — p'q = k,
where the case £ = 1 is solved by consecutive terms of
Farey series.
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Illustration of the main results: The difference pg’ — p’q depends
only on the shape of the oriented path from p/q to p'/q' on the
Q-tree.

In Section 2, we construct the Q-tree and formulate
what we call the Q-tree theorem. Proofs and
complementary results are provided in Section 3; the
proofs given there also furnish algorithms to compute
pq’ — p’q along the Q-tree paths emanating from the
vertex p/q. Sections 4 and 5 give less algorithmic but more
structural and natural proofs of the result in Section 2.
More precisely, Section 4 is an elementary proof, which
depends on a nice homogeneity property of the Q-tree.
Section S relates the @-tree theorem to the action of
PSL(2, Z) on trees, which is related to a well-developed
theory (e.g., [1, 2]). In Section 5, the Q-tree is labeled
by the tiles of a tessellation of the hyperbolic plane,
introduced by H. J. S. Smith [3] and studied at length by
G. Humbert [4-6]. For another discussion of the relations
between the Farey tree and PSL(2, Z), see [7]. See also
(8] for related material.

2. Definitions and the Q-tree theorem

We first describe an extension of the elementary concepts
in the theory of Farey sequences from Q N [0, 1] to Q.
For the classical theory, see, e.g., [9], pp. 23-26, or

(101, pp. 7-11. Then, the Q-tree theorem is stated in two
different forms, once the required language is in place.
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Since the formal language makes comprehension of our
elementary result artificially difficult, we have tried to
capture this result in Figure 1, which displays the
embedded Q-tree. Vertices are labeled with rational
numbers. Five paths are marked. The three red paths
[from (—5)/3 to 1/1, from (—3)/4 to (—1)/4, and from
(—10)/7 to (—6)/5] have the same shape and the same value
of pg —p'g: (=51 -1-3=(=-3)-4-(-1)-4=
(—=10) -+ 5 — (—=6) - 7 = —8. Similarly, the two blue paths
have the same value of pg’ — p'q:2-1-2-3 =
7:-3-5:5= -4,

In the sequel, all rational numbers are written in lowest
terms (with nonnegative denominators), except when
otherwise stated, and with the proviso that both n and
n/1 are considered as being written in lowest terms.

We write [ x] for the integer part of x, and {x} for its
fractional part, so {x} = x — [x]. For rational number
x = plq, we define

N(x)=p, D(x)=gq,
and if x' = p'/q’ is rational, we define
(x,x') =pq' - p'q.

For any integer n, and for x € [n, n + 1], we write

B {{x}
{x}, = 1

Then, for x and x’ both in [n, n + 1], it is easy to verify
that

(x, x') = {{x}, {x}). @

As a consequence, all classical results concerning Farey
sequences extend readily to fractions in Q.

fn=x<n+1,

fx=n+1.

Remark It is convenient to extend the set of rational
numbers to contain the ideal number 1/0. Since this
convention allows us to shorten many discussions, we
set@=QuU {1/0}. The usefulness of adjoining 1/0 to Q
in the context of Farey theory was recognized, e.g., by
P. Bachmann {11], E. Lucas [12}], and A. Denjoy [13]".

Extended Farey sequences The extended Farey
sequence of order i is the ordered set %, of fractions x in
@, written in lowest terms, whose denominators do not
exceed i. Hence,

=%, =%, =%, =D,

¥, =

3

(=R

I As a matter of fact, we could have chosen to adjoin (—1)/0, instead of 1/0, to @
for much of the discussion: A geometrical meaning of the ambiguity appears in
Section 5. However, a reason to choose 1/0 as we did, and not (—1)/0, that is
meaningful to our main purpose of exploring the Q-tree, appears in Section 4.
See also [13].
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This extension of the definition of Farey sequence to all of
Qis preferred here to the more usual one (see Section 6),
because our main object is the extended Farey tree,
constructed below. With our definition, %, and %, (but
not ¥,) appear at the first stages of the construction of

this tree.

Farey neighbors We say that two fractions p/q and
p'lq’ are Farey neighbors if they are consecutive in some
extended Farey sequence, or equivalently, as is easy to

verify, if
<p p'>
qa’ q
o Farey sum

1t is clear that if p/q and p'/q' are Farey neighbors, there
exists some integer n such that both numbers belong to
[, n + 1]. Given Farey neighbors p/q and p'/q’ in

{n, n + 1], we define their Farey sum as

lpa’ —p'ql = =1

i

ptp
q9tgq

p _p
— @ _’E
q

q

Equivaiently, we have

el
q q q

n n

Qs

where, for Farey neighbors p,/q, and p,/q, in [0, 1], we
define

g, Dalll
q, q 4q,%q

Formula (3) is the key to an immediate generalization of
Farey theory from [0, 1] to Q.

The well-known uniqueness of the Farey sum
decomposition for numbers in @ N [0, 1] (the combination
of Theorems 28-30 in [9]; see also [14]) combined with (2)
and (3) gives Theorem 1.
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& Theorem 1

Any noninteger rational number admits a unique Farey
sum decomposition. Specifically, given p/q in (n, n + 1),
there exists a unique pair of Farey neighbors

(py/ay p,/q,) in Q* such that

Furthermore, the pair (p,lq,, p,/q,) belongs to [n, n + 1%
The numbers p /g, and p,/q, are called the Farey

parents of p/q. In the sequel, each time we use the symbol

plq, we associate it with the ordered pair (p,/q,, p,/q,)

of its Farey parents, so that

P p D,

—_—= — @ -,

q ¢4 q,

with p,/q, < p,/q,. To represent n/1, we use the
convention

n n-—1 1

i1 %%

Young and old parents  For any rational number, one of

its two Farey parents, called the young Farey parent, has

a bigger denominator than the other, called the old Farey |
parent. For instance, the young parent of (n + 1)/1 is n/i, |
and its old parent is 1/0. This terminology will make more :
sense after we use it in the description of the Q-tree. To

avoid inflating our list of definitions even more, we freely

use genealogical relations that are coherent with the ones

precisely defined so far.

& Q-tree

The extended Farey tree or Q-tree, J, is defined as the
free tree of degree three with vertices labeled by rational
numbers in such a way that p/q and p'/q’ are consecutive
(or bound an edge) on the tree if and only if one of them is
the young Farey parent of the other.

Once the ordered set of integers has been used to
consecutively label all vertices along an infinite path of
the tree 7, the remaining vertices of 7 can be labeled
inductively. In the induction process, for any p/q, the
young parent of p/q is used to label a vertex one or more
steps after the old parent has been used to label a vertex.’

The restriction of J to the set @ N (0, 1) is often called
the Farey tree {(see Section 6).

Walking on the Q-tree  'We say that a path on the Q-tree
goes down an edge if it goes from the parent to the child;
otherwise it goes up. The path goes left along an edge if
the label of the end point of this edge is smaller than the

2 The label 1/0 appears morally first, but at infinity,

sts
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§ Initialization of the construction of the Q-tree: (a) Q is augmented
. by 1/0; (b) Q is augmented by (— 1)/0.

label at its starting point; otherwise, we say it goes right.
Thus, an edge can be labeled unequivocally by one of the
following elementary symbols:

D,D,U,U.

r

J. C. LAGARIAS AND C. P. TRESSER

We say that D or U is the principal part of an elementary
symbol, and / or r its index.

For any pair (p/q, p'/q’) € Q?, the path from p/q to
p'lq’ is completely described by its symbol,
.o D

[

. =U--UD,:-
(E’p_, a am b1
q 49

where both a; and b, are in {I, r},andm =0and n = 0.

® Q-tree theorem (symbolic version)

For (x, x') € Q°, the quantity (x, x') depends only on
the symbol Z(M,)f

® Fifteen examples

According to the Q-tree theorem, we can unambiguously
assign the number (x, x') to the symbol %, ¢ We call the
number (x, x) the value of the symbol X, ... The list of
values v(3) corresponding to the 15 shortest symbols is as
follows:

v(@) =0, (4a)
o(U) = vD) = 1, (4b)
u(U) = uD) = —1, (4c)
W(UU) =vD,D) =1, (4d)
w(UU) = v(D,D) = -1, (4e)
o(UU) = v(D,D) =2, f)
WUU) =vD,D) = -2, (4g)
wWU,D) =3, (4h)
wWU,D) = -3, (4i)

where (4b) and (4c) are simply consequences of the
definition of generalized Farey neighbors.

® Embedding the Q-tree in R’

To limit the amount of formalism, we use figures to
indicate how to inductively construct a topological
embedding of the Q-tree in the real plane R*: Figure 2
shows the starting configuration (integer vertices) together
with the next generation®, while Figure 3 explains by
examples how to grow the tree. The upper path in the
figure is used to label the vertex (already labeled)

(a + e)/(b + f). The young Farey parent of that vertex is
the one labeled e/f. The path is used to find the old Farey
parent. Because the path from e/f to the vertex to be
labeled goes to the right, the path used to find the old
Farey parent starts to the right of vertex e/f and moves
upward to the right of edges until it is forced to turn down,
The old Farey parent, a/b, is the label of the vertex at

3 That is, {x, x') does not depend on the values x and x'—only on the symbol %, ..
4 Figure 2(b) shows how the diagram must be changed if Q is augmented by (~1)/0
instead of 1/0; see footnote 1.
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b

Examples of how to grow the Q-tree.

which the downturn occurs. The Farey sum of a/b and
e/f is used as the new label. Similarly, the lower path in
Figure 3 is used to label the vertex (already labeled)

(¢ + ¢)/(d + h). Because the path from g/h to the vertex
to be labeled goes to the left, the path used to find the old
parent starts to the left of vertex g/h and moves upward to
the left of edges until it is forced to turn down. The old
Farey parent is c¢/d in this case.

There are, of course, infinitely many geometrical

realizations of this topological embedding. Some examples,
based on hyperbolic geometry, are discussed in Section 5,
but in these cases the edges do not go left and right or up
and down as desired. As we have already mentioned, our
Q-tree theorem is illustrated in Figure 1, which suggests
a different geometrical realization, using Euclidean
geometry: All edges at generation n have length 1/2".
The contents of Figure 1 can be formulated as follows,
with the word ‘‘shape’’ referring to the way in which a
sequence of directed edges, say oriented line segments,
goes up and down, and left and right, with no distances
involved.

® Q-tree theorem (graphical version)
For (x, x') € @%, (x, x') depends only on the shape of
the path going from x to x' on the embedded Q-tree.

3. Evaluation of the paths

We prove the Q-tree theorem by giving two equivalent
algorithms for computing the value associated with a
symbol.

IBM J. RES. DEVELOP. VOL. 39 NO. 3 MAY 1995

All five possible initializations for Algorithm 2 of Section 3.

Implementation of Algorithm 2 of Section 3.
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In the first algorithm, knowing the value of a symbol £
of length n, and the value of its truncation of length n — 1,
we compute the value of all symbols of length n + 1
beginning with . In the second (equivalent) algorithm, we
construct a directed, weighted tree with marked vertex x,
so that in order to determine the value of the symbol
2, «» We sum the weights along the path from x to x'.
To avoid formal writing, Algorithm 2 is illustrated in
Figures 4 and 5. Checking that the steps of these
algorithms are correct amounts to elementary algebra,
and is essentially left to the reader, except for one case
(chosen at random) of the first algorithm.

o Algorithm 1
Given two symbols,

\)

n—1"n

2" = Slsz"'s
and

5., =55,SS

n+1 n“ntl?
with

S,€{D, D, U, U},

we say that 3 | is obtained from 3 by either

o following (X , = FZ )if § and S, have the same
principal part and the same index;

* changing (X, = CZX)if§ and §
principal part and different indices; or

* turning (%, ,, = TZ)if S and S, have different
principal parts.

have the same

We denote the truncation of 2 by 3 = §
We can then calculate the column vector

AR

2

S

1 n-1°

[0(2,,.)]
L v(Z) |
from the column vector
- o) :
(%))

by multiplying the latter by the one of the following
matrices that corresponds to the preceding list of
directions:
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T .
1 0

For example, if S, and S, ., have the same principal part
and the same index, then

v(Z,,,) (Z) 2 =1 vE)
=F = .
u(Z,) v(Z, ) 1o ]xZ, )
Thus, it is a straightforward process to calculate X, ,,
beginning with the values of 3 and 2, from Equations (4).

We now justify the formula F, the proofs for the other
two formulas being similar. From Equation (5), we have

I:v(znﬂ)j‘ [21}(2") - v(zn—l)
uz) | u(3,)

Thus, it is only necessary to verify that

vZ, ) =2vE,) - vZ, ;). We assume that

both X and 2 _| terminate with U ; all other cases
would be treated similarly. Then, choose any u /v, so
that the symbols % and 2 ,, can be followed when starting
from u/v,. Let

n+l

* u,/v, be the vertex reached by following the symbol
Z,_,» starting from u /v,;

* u,/v, be the vertex reached by following the symbol 2,
starting from u,/v;

* u,/v, be the vertex reached by following the symbol
2., starting from u fv,.

n+1?

Thus, we have

Uy U,
-, =2
Y% Y

and

<ﬂ>, 5> N
v, kY

Q 1

u(2,)

On the other hand, from the 15 examples, we have

u U

1 3
<_ , _> =-2

U U

and

u, u

) U
<_9 —> = _13
Y Y

which allows us to solve for #; and v, in terms of u, v,
u,, and v,. It is then easy to verify that

2,2 = 2u(s) - o, )
T, V.

0 3
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o Algorithm 2

All of the possibilities used in the initialization for the
construction of a directed weighted tree with marked
vertex x are given in Figure 4, and the way to compute the
remaining weights inductively is indicated in Figure 5;
weights are integers associated with directed edges. To
compute {x, x'), we sum the weights along the path from x
to x'. Like the first one, this second algorithm has a matrix
representation, the relevant transformations, as seen in
Figure 5, being

L)
L

Figure 6 displays an example.

4. Copies of the Farey tree in the Q-tree
For any rational number, Theorem | asserts the existence
of a unique decomposition

P p P
— = — @ -
q9 49 4

of p/q, as a Farey sum of its two parents p /q, < p,/q,-
Let us denote p,/q, by (0, 1) and p,/q, by (1, 0). Then
P4, /4, p/q, and all of the descendants of p/q can
be written uniquely as (mp, + np )/(mq, + nq,) and
represented by the pair of integers (n, m). Figure 7 shows
how the pairs can be organized on a tree. If the symbol
(n, m) is replaced by n/m, one obtains the piece of T
generated from the pair 0/1 < 1/0, which thus reappears
everywhere in J, justifying the choice we made of

1/0 to extend Q (see footnote 1). On the basis of this
observation, the proof of the Q-tree theorem is now
straightforward: Just notice that if p/q is the youngest
common ancestor of x and x’, setting

_ap, + bp,

- aq, + bq,’

, P + dp,
o cq, + dq,’
we have

(x, x'y = (ap, + bp)(cq, + dq,) — (aq, + bq)(cp, + dp)
= (bc — ad)(p,g, — Pa,)
=bc — ad

independently of x, x’, but depending on the path that
joins them on 7.

IBM J. RES. DEVELOP. VOL. 39 NO. 3 MAY 1995
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Example illustrating Algorithm 2 of Section 3. The sum of the
weights in the path from vertex (—5)/8 to vertex 1/2 is —18 =

(—5)*2 — 1+8.

Illustration of the construction in Section 4.
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Tesselations M and T.

5. PSL(2, 7) and the Q-tree

® The tiling of H. J. S. Smith

As usual, let SL(2, R) stand for the set of 2 X 2 matrices
of real numbers with determinant equal to 1. It is well
known that the group PSL(2, R) = SL(2, R)/+1, which
acts on C by the Mébius transforms as

a b
Cd.Z|—>

is in fact the set of the orientation-preserving isometries of
Poincaré’s model of the hyperbolic plane, i.e., the upper
half of the complex plane H = {x + iy € C: y > 0},
equipped with the metric
de’ + dy’
ds* = ———.
y

az + b
cz+d’

For this metric, geodesics are pieces of circles orthogonal
to the real axis, or pieces of vertical lines. For a discrete
subgroup I' of PSL(2, R), a fundamental region R is
defined by the following properties:

e Its interior does not contain any pair (x, g(x)), g € T.
e Its closure contains at least a point of each orbit.

The set of images of any fundamental region R by the

elements of " provides a tessellation of H, called the tiling
by T', with fundamental region R.

J. C. LAGARIAS AND C. P. TRESSER

Figure 8 represents two tilings of H together:

o The tiling M, corresponding to the coloring, is a tiling
by the modular group PSL(2, Z) = SL(2, Z)/ =1, with
fundamental region

R={z10=Re(z)< 1,|zl=1,|z-1] =1}

¢ The tiling T, corresponding to the solid lines, we call the
Q-tiling. Each of its tiles is made of three tiles of M.
[Figure 9 is an embedding of J, invariant by PSL(2, Z).
The dotted lines are the same as in Figure 8, but more
easily seen.]

The Q-tiling, obtained by joining all pairs of Farey
neighbors by a geodesic in H, is not a tiling by a subgroup
of PSL(2, R); in fact, it corresponds to an order-two
extension (by z > —Z) of the congruence subgroup I'(2) of
PSL(2, Z) [see, e.g., [15], p. 82, for a fundamental domain of
Q).

Remark The relevance of T in the study of continued
fractions was recognized by H. J. S. Smith [3] in 1877 and
studied in detail by A. Hurwitz [16] and G. Humbert
[4-6).

Marked tiles  Each tile of T is an ideal triangle, i.e.,

a triangle with all vertices at infinity (the real axis is at
infinity for H). The middle vertex of the ideal triangle can

IBM J. RES. DEVELOP. VOL. 3% NO. 3 MAY 1995



be chosen to label the tile, but there is an ambiguity for
the upper tiles with vertical sides, regarding how to label
the upper ideal vertex. This is the geometrical ambiguity in
the choice among 1/0 and (—1)/0 we mentioned in footnote
1. We choose 1/0 as ». With each tile, let us associate the
collection of its vertices, ordered so that one goes around
the tile counterclockwise. A threefold ambiguity then
remains, corresponding to the original vertex of the triplet.
Hence, for any p/q, we have three marked tiles,

with r, [, m standing respectively for right, left, and
middle.
In the following computations from [6], we set

a*0+b b
c0+d d’

and NOT

a-0+56 ae + b
cord Mmoo

which matters (only) when d = 0. A simple computation
yields

from which it is then easy to prove the following result
of G. Humbert (cf. [6], pp. 105-110).

8 Theorem 2

For any s, s' inr, I, m, and any x, x' in Q, there is a
single matrix M € PSL(2, Z) such that M - T! = T°..
More precisely, M = M;j = M;:,' . (Mj)_'.

PSL(2, Z) and degree-three trees. The pieces of the
boundary of M that do not belong to the boundary of T
(i.e., the dotted lines in Figure 8 and Figure 9) forma -
(geometrical) degree-three tree F , on which PSL(2, Z)
acts with fundamental domain PQ (see [1], p. 35 and
[2], pp. 21-24). Notice that each vertex of I P belongs to
the interior of a single tile of T, and that each tile of T

IBM J. RES. DEVELOP. VOL. 39 NO. 3 MAY 1995

mental domain for the action of PSL(2, Z) on this tree.

Another embedding of 5 in H.

contains a vertex of E’Tg (see the black dots in Figures 8
and 9). Hence, from the previous discussion about the tiles
of T, the vertices of T , are in one-to-one correspondence
with the rational numbers, and we can easily verify that
the labeling so defined is such that J is a geometrical
realization of J.

Remark The boundary of T also contains an embedding
of J, shown in Figure 10.

PSL(Q2, Z) action and the Q-tree Theorem 2 yields an
action of PSL(2, Z) on J x Z/3Z, defined by matrix
multiplication, once the three matrices M;/q, M;,q, M ;,q
are used to label the vertex p/q of J. In general,
M;‘i',(M j:) = Mj:, with no simple general rule for s”
and x", because the order relation of numbers with
their young Farey parents can be found in either way.

However, it is easy to verify the following result.

8 Lemma 1

Consider any s inr, I, m, and any x, x' in Q. Assume that
x is the young Farey parent of y and z, withy < x < z,
and that x" is the young Farey parent of y' and 7, with

y' <x’' <z’ Then

M0L) =
ML) = M

.. 1. C. LAGARIAS AND C. P. TRESSER
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and
ML) = M

Now let I stand for the rooted sub-tree of J labeled by
x and all its descendants, each vertex p/q being labeled by
le,q. Iterating Lemma 1, we obtain the following equality.

® Theorem 3

M) =T

® PSL(2, Z) and the Q-tree theorem
The Q-tree theorem can be deduced from Theorem 3,
specialized to the case s = r. More precisely, let

a b
M’,r , = .
¥ c d

Then, for u, v among the descendants of x, and u', v’ the
corresponding points among the descendants of x’, we
have

au + b ,
cu+d=u
and

av + b ,
co+d O

Now, for any rational numbers p/q and p'/q’, we have

’

p p
a-+b a—+5b
q q

D p
c—+d c—+d
q q

= (ap + bg)(cp’ + dq') — (cp + dg)(ap’ + dq’)

= (ad — bc)(pq' — p'q)

=(pq ~p'q),
so that
', v'y = (u, v).

6. Historical notes

® Farey sequences

The Farey sequence of order i is usually defined as the
ordered set F, of fractions in x in Q N [0, 1] whose
denominators D(x) do not exceed i. This is usually
extended to Q as the ordered set % of fractions x in @,
with max (|(N(x)|, D(x)) < i (see, e.g., [11, 17, 18]).

In 1816, J. Farey (a geologist), studying the privately
circulated early version of the table of ‘‘complete decimal

quotients’” by Henry Goodwyn, Esq., of Blackheath,

). C. LAGARIAS AND C. P. TRESSER

noticed in [19] that if all “‘vulgar fractions’’ with
denominator smaller than » are written in order, with

alb < a'lb' < a"lb",thena’ =a+ a"and b’ =b + b
(Theorem 29 in [9]). A wrong claim of proof was made by
an anonymous person with the signature ‘“S.A.”” in the
following volume of the same journal [20]. Farey also
presented his remark anonymously in [21]. His remark

was shortly afterward proved by A. Cauchy [22], who
mentioned only the French version [21] but was possibly
familiar with [19], since he associated the name of Farey
with the subject, followed in that regard by most
mathematicians since. Cauchy in fact proved that with

the previous notations, a’b — ab’ = 1, from which he
deduced the property noticed by Farey.’ Cauchy did

not limit himself to [0, 1] but considered, without giving
them a name, what we call extended Farey sequences; it
occurred to us that the name ‘‘Cauchy sequences’ would
not necessarily be well accepted in this context. In 1879,

J. W. L. Glaisher [23] (see, in particular, the historical
comment, pp. 329-336) examined the history of the subject
and concluded that at least part of the credit should go to
H. Goodwyn. He seems to have ignored the following fact:
Most of the Farey-Cauchy theory was presented in 1802
by le Citoyen Haros® in [24] (see in particular the bottom
of p. 367 and the top of p. 368 of [24]). We refer the reader
to L. E. Dickson’s book ([25], pp. 155-158, 162) for the
early history of Farey sequences up to 1919. Important
applications were made by A. Hurwitz to Diophantine
approximation [26] and the reduction of binary quadratic
forms [16], and a relation to the Riemann hypothesis

was found by J. Franel [27] (see also [28, 29]). The
Hardy-Littlewood circle method (see, e.g., [30]) makes
essential use of a Farey series dissection of [0, 1]; it led, in
particular, to the celebrated result of I. M. Vinogradov [31]
that every sufficiently large odd number is expressible as
the sum of three prime numbers. For more concrete
applications, see, e.g., [32].

® Farey tree
The first occurrences we could find of this tree are in
[33-35], where the Farey tree is presented as a way to
analyze applications of Diophantine approximation to
dynamics, and in [36], where the tree is implicit but
parenthood is mentioned explicitly to describe a dynamical
result. For recent constructions, uses of the Farey tree in
dynamics, and lists of applications of Farey theory to
dynamical systems theory, see for instance [7, 8, 14, 37].
The Farey tree is strongly reminiscent of what were
called Brocot sequences in treatises on number theory in

5 Theorem 28 in [9]. See p. 24 of [9] for the proof of the equivalence of the two
properties, and pp. 24-26 for proofs of both results.

6 Citoyen is the French word for citizen: The paper was published in Messidor,
year X of the Republican calendar; Dickson refers to ‘*C. Haros,”” as well as most
authors after him, but we could not find any evidence that C stands for the initial of
Haros’s first name.
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France around the turn of the century, after the clock
maker who described them in 1862 [38] (see also [12]
and [39]). The Brocot sequence of order i is the ordered
set B, of fractions x in @ N [0, 1] (or in Q") such that
B, = {01, ¥1} (or B, = {0/1, 1/1, 1/0}), and B, | is
obtained from @, by including the Farey sum of all pairs
of successive elements in %,. Thus, in Q*,

In [13], Denjoy generalizes this definition, and in
particular extends it to @’. Brocot sequences and their
generalizations are a primary object of study in the theory
of the [?] function of Minkowski [40] (see also [7, 13, 41]),
which is defined as follows: If the path on the Farey tree
from 112 to x € [0, 1] is labeled a|, a,, a,, "+ -, then
[?[(x) = 0.a,a,a, + - in base 2. We also notice that the
ordered set of denominators of the fractions appearing
at depth n of the Farey tree form the Stein diatomic

sequences [42] (see also [43-45]).

® Farey tiling
The tiling T is often called the Farey tiling in the recent
literature, e.g., [17, 18], although G. Humbert (cited in [17]
and [18]) did his best to associate T with the name Smith.
It is well known that some of the relations established
between the Q-tiling and the theory of continued fractions
can be reformulated in terms of the Q-tree (see, e.g.,
[14, 33, 34], as well as [46-48] for related results).

There are, of course, many aspects of Farey theory and
its applications not discussed here (see, e.g., [49-36]).

Conclusion

As J. Farey said at the end of his first paper on the
subject: ‘I am not acquainted, whether this curious
property of vulgar fractions has been before pointed out?”’
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