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The  rational  numbers  can  be  presented  as  the 
set of vertices of a  degree-three  tree. If p/q 
and p'/q'are two  rational  numbers  written  in 
lowest  terms,  the  difference pq' - p'q depends 
only  on  the  shape of the  path  joining p/q to 
p'/q'on this  tree. 

1. Introduction 
Back  in elementary school, many  of us thought that life 
would be much simpler if adding fractions required simply 
adding the numerators to get the numerator of the sum, 
and adding the denominators to get the denominator of the 
sum. In fact,  the pairing 

P f P '  t?$) w. 

is useful in number theory, in topology, and in dynamical 
systems theory under the name Farey  sum of p / q  and 
p ' / q ' .  More precisely, this is so when p / q  and p'lq'  are 
both  in the unit interval, are in lowest terms, and are 
Farey neighbors, i.e., are not separated, on the real line, 
by any fraction with denominator smaller than max(q, 9 ' ) .  
[For example, we  would associate 10113 with the pair (3/4, 
7/9) because no other rational number with denominator 
smaller than 9 can be found in the interval (314, 7/9); 
however, we  would  not associate 2/7 with the pair 
(U5, 1/2) because both 1/4 and 1/3 are found in the interval 
(U5, 1/2).] The Farey sum operation allows one to present 
the set of all rational  numbers  in (0, 1) as the set of vertices 
of an  infinite rooted tree known as the Farey tree. The use 

of formula (1) can be generalized to allow the construction 
of a free tree of degree three, which we call the extended 
Farey tree or Q-tree, having the set Q of rational numbers 
as its set of vertices, as we show in Section 2. 

The Q-tree embeds in the plane in such a way that its 
set of ends, naturally labeled by real numbers (in general, 
not rational), forms a nondecreasing sequence when read 
from left to right. Using the embedded tree, we  give a 
topological interpretation of the numerator pq'  - p ' q  
of the difference of two fractions p / q  and p ' l q ' ,  before 
reduction to lowest terms, and an equivalent interpretation 
of the same quantity in terms of symbols associated 
with the abstract tree. This extends the following 
reinterpretation of n - m ,  the difference of two integers: 
Consider the real line marked by the lattice Z of integer 
points.  When going from n to m along the line, initialize 
a  counter to  zero;  add 1 for  each  lattice  point reached 
if walking toward --m (to the left);  subtract 1 if walking 
toward +-m (to the right). The final number on the counter 
is n - m. 

Keeping  in  mind that n and m can be rewritten as n/ l  
and mll (as rational numbers written in lowest terms), we 
wish to rewrite n - m as n * 1 - m * 1 .  The aim  of this 
paper is to use the Q-tree to interpret topologically, as we 
did for n - m,  the quantity pq'  - p ' q  associated with the 
pair ( p / q ,   p ' l q ' )  of rational numbers reduced to lowest 
terms. In other words, we give a pictorial perspective to 
the solutions of the Diophantine equations pq' - p ' q  = k ,  
where the case k = 1 is solved by consecutive terms of 
Farey series. 
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Illustration of the  main  results:  The  difference pq' - p ' q  depends 
only on the shape of the oriented path from p / q  to p'lq' on the 
Q-tree. 

In Section 2, we construct the Q-tree and formulate 
what we call the Q-tree theorem. Proofs and 
complementary results are provided in Section 3; the 
proofs given there also furnish algorithms to compute 
pq'  - p ' q  along the Q-tree paths emanating from the 
vertex p / q .  Sections 4 and 5 give less algorithmic but more 
structural and natural proofs of the result in Section 2. 
More precisely, Section 4 is an elementary proof, which 
depends on a nice homogeneity property of the Q-tree. 
Section 5 relates the Q-tree theorem to the action of 
PSL(2, Z) on trees, which  is related to a well-developed 
theory (e.g., [ l ,  21). In Section 5, the Q-tree is  labeled 
by the tiles of a tessellation of the hyperbolic plane, 
introduced by H. J. S. Smith [3] and studied at length by 
G. Humbert [4-61. For another discussion of the relations 
between the Farey tree and PSL(2, h), see [7]. See also 
[81 for related material. 

2. Definitions  and  the  Q-tree  theorem 
We first describe an extension of the elementary concepts 
in the theory of Farey sequences from Q n [O,  11 to Q. 
For the classical theory, see, e.g., [9], pp. 23-26, or 
[lo], pp. 7-11. Then, the Q-tree theorem is stated in  two 
different forms, once the required language is in place. 
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Since the formal language makes comprehension of our 
elementary result artificially  difficult,  we have tried to 
capture this result in Figure 1, which displays the 
embedded Q-tree. Vertices are labeled with rational 
numbers. Five paths are marked. The three red paths 
[from (-5)/3 to 1 4 ,  from (-3)/4 to (- 1)/4, and from 
(-10)/7 to (-6)/5] have the same shape and the same value 
o f p q '  - p ' q :  ( - 5 )  ' 1 - 1 3 = (-3) * 4 - (-1) * 4 = 

(- 10) 5 - (- 6 )  7 = -8. Similarly, the two blue paths 
have the same value o f p q '  - p ' q :  2 1 - 2 * 3 = 
7 . 3  - 5 . 5  = -4 .  

terms (with  nonnegative  denominators),  except when 
otherwise  stated, and with the proviso that both n and 
d l  are considered as being written in lowest  terms. 

We write [x] for the integer part of x, and {x} for its 
fractional part, so {x} = x - [x]. For rational number 
x = p l q ,  we  define 

In the sequel, all rational numbers  are  written in lowest 

N ( x )  = p ,  D(x )  3 q ,  

and if x' = p ' /q '  is rational, we define 

(x, x') = pq' - p'q.  

For any integer n ,  and for x E [ n ,  n + 1 1 ,  we write 

({x) i fn  c : x  < n + 1 ,  

Then, for x and x' both  in [n,  n + 11, it is easy to verify 
that 

(x, x') = ({XI,, {Xf>">. (2) 

As a consequence, all classical results concerning Farey 
sequences extend readily to fractions in Q. 

Remark It is convenient to extend the  set of rational 
numbers to contain the ideal number 1/0. Since this 
convention allows us to shorten many discussions, we 
set 6 = Q U {UO}. The usefulness of adjoining 1/0 to Q 
in the context of Farey theory was recognized, e.g., by 
P. Bachmann [ l l l ,  E. Lucas [121, and A. Denjoy [131'. 

Extended Farey sequences The extended  Farey 
sequence of order i is the ordered set Xi of fractions x in 
6, written in lowest terms, whose denominators do not 
exceed i .  Hence, 

... = X   = X  = X  =a, 
-3 -2 - I  

1 
= 6 ,  

1 As a  matter of fact,  we could have chosen  to adjoin (- l)/O, instead of 110. to 0 
for much of the discussion: A geometrical meaning of the ambiguity appears in 
Section 5. However, a reason to choose 110 as  we did, and not (-])/a, that is 
meaningful to our main purpose of exploring the 0-tree, appears in Section 4. 
See  also [131. 
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0 
X , = Z U - ,  

and 

-5  -3  -4 - 1  -2 - 1  - 1  2, = . . . - - - - - - - 
’ 3 ’ 2 ’ 3 ’ 1 ’ 3 ’ 2 ’ 3 ’  

0 1 1 2 1 4 3 5  1 

1 ’ 3 ’ 2 ’ 3 ’ 1 ’ 3 ’ 2 ’ 3 ’  ’ 0 ’  
” ” ” “ . . .  - 

This extension of the definition of Farey sequence to all  of 
6 is preferred here to the more usual one (see Section 6), 
because our main object is the extended Farey tree, 
constructed below. With our definition, X, and X, (but 
not X,) appear at the first stages of the construction of 
this tree. 

Farey  neighbors We say that two fractions p / q  and 
p’lq‘ are Farey  neighbors if they are consecutive in some 
extended Farey sequence, or equivalently, as is easy to 
verify, if 

Ipq’ - p’q1 = -, 7 = 1. It :)I 
Farey  sum 

It is clear that if p / q  and p ’ / q ’  are Farey neighbors, there 
exists some integer n such that both numbers belong to 
[ n ,  n + 11 .  Given Farey neighbors p / q  and p‘ /q ‘  in 
[ n ,  n + 11, we define their Farey  sum as 

P P ’  P + P ’  
- $ -=- 
4 q’ 4 + q ’ .  

Equivalently, we have 

where, for Farey neighbors po /qo  and p , l q ,  in [O, 11, we 
define 

Po PI Po + PI 

40 O 41 qo + 41 
- @  -=- 

Formula (3) is the key to an  immediate generalization of 
Farey theory from [O, 11 to 8. 

decomposition for numbers in Q fl [O, 11 (the combination 
of Theorems 28-30 in [9]; see also [14]) combined with (2) 
and (3) gives Theorem 1. 

The well-known uniqueness of the Farey sum 
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Theorem I 
Any noninteger  rational number  admits  a unique Farey 
sum  decomposition.  SpeciJcally,  given p l q  in ( n ,  n + l ) ,  
there exists  a unique pair of Farey  neighbors 
( p o / q o ,   p l / q l )  in 6* such  that 

p Po  PI 

4 so 41 

Furthermore, the pair   (po/qo,   p l /q , )  belongs to [n ,  n + 11,. 
The numbers po /qo  and p l / q l  are called the Farey 

parents of p l q .  In the sequel, each time we use the symbol 
p l q ,  we associate it with the ordered pair ( p o / q o ,   p , / q , )  
of its Farey parents, so that 

p Po PI 

4 40  41 

with po /qo  < p , / q , .  To represent d l ,  we use the 
convention 

n n - 1  1 

1 1  0 

- = -  $ -. 

” 
” -, 

_=-  - @ - .  

Young and  old  parents For any rational number, one of 
its two Farey parents, called the young  Farey  parent, has 
a bigger denominator than the other, called the old Farey 
parent. For instance, the young parent of (n + 1)/1 is d l ,  
and its old parent is 1/0. This terminology  will  make  more 
sense after we use it  in the description of the Q-tree.  To 
avoid  inflating our list of definitions even more, we freely 
use  genealogical relations that are coherent with the ones 
precisely  defined so far. 

@tree 
The extended  Farey  tree or Q-tree, T, is  defined as the 
free tree of degree three with vertices labeled by rational 
numbers in such a way that p l q  and p ’ / q ’  are consecutive 
(or bound  an edge) on the tree if and only if one of them is 
the young Farey parent of the other. 

Once the ordered set of integers has been used to 
consecutively label all vertices along  an  infinite path of 
the tree T, the remaining vertices of T can be labeled 
inductively. In the induction process, for any p / q ,  the 
young parent of p / q  is used to label a vertex one or more 
steps after the old parent has been used to label a vertex., 

The restriction of 9 to the set Q rl (0, 1) is often called 
the Farey  tree (see Section 6). 

Walking on the Q-tree We say that a path on the Q-tree 
goes down an  edge if it goes from the parent to the child; 
otherwise it goes  up. The path goes left along  an edge if 
the label of the end point of this edge is smaller than the 

* The label 110 appears morally first, but at infinity. 
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Initialization of the  construction of the Q-tree: (a) Q is augmented 
8 by 110; (b) Q is  augmented by (- l)/O. 

label at its starting point; otherwise, we say it goes  right. 
Thus, an edge can be labeled unequivocally by one of the 
following elementary  symbols: 

We say that D or U is the principal  part of an elementary 
symbol, and 1 or r its index. 

For any pair ( p l q ,   p ’ / q ’ )  E Q2, the path from p / q  to 
p’lq’  is completely described by its symbol, 

2 E Ua, - * UamDb, * - Dbn , 

where both ai and bj are in (1, r } ,  and m 2 0 and n 2 0. 
($. $) 

Q-tree  theorem  (symbolic  version) 
For ( x ,  x’) E Q2,  the quantity ( x ,  xf )  depends only on 
the symbol 2.(x,x,).3 

Fifteen  examples 
According to the Q-tree theorem, we can unambiguously 
assign the number (x, x’) to  the symbol 2(r,x,) .  We call the 
number (x, x ’ )  the value of the symbol 2(X,X,). The list of 
values u(2 )  corresponding to the 15 shortest symbols is as 
follows: 

40) = 0, 

u(UJ = u(DJ = 1, 

u(U) = u(D) = -1, 

u(UrU,) = u(D,D) = 1, 

U( UIV) = u(D,D,) = - 1, 

u(U,V,) = u(D,D,) = 2, 

v(UrV) = u(D,D) = -2, 

4UiD,)  = 3, 

u(U,D) = -3, 

where  (4b) and (4c) are simply consequences of the 
definition of generalized Farey neighbors. 

Embedding  the  Q-tree in Rz 
To limit the amount of formalism, we use figures to 
indicate how to inductively construct a topological 
embedding of the Q-tree in the real plane R2: Figure 2 
shows the starting configuration (integer vertices) together 
with the next generation4, while Figure 3 explains by 
examples how to grow the tree. The upper path in the 
figure  is  used to label the vertex (already labeled) 
( a  + e ) / ( b  + f ) .  The  young Farey parent of that vertex is 
the one labeled elf. The path is used to find the old Farey 
parent. Because the path from elf to the vertex to be 
labeled goes to the right, the path used to find the old 
Farey parent starts to the right of vertex elf and moves 
upward to the right of edges until it  is forced to turn down. 
The  old Farey parent, a lb ,  is the label of the vertex at 

3 That is, (x, x‘) does not depend on the values x and  only on the symbol Z ~ x , x ~ ~ .  
Figure 2(b) shows how the diagram  must be changed if Q is augmented by (-l)/O 

instead of 110: see footnote I 
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a 
b 

0 
d +  h 

__""."I~."...~."_~I"__. - . . . . 

1 Examples of how  to  grow  the  Q-tree. 

which the downturn occurs. The Farey sum of alb and 
elf is used as the new label. Similarly, the lower path in 
Figure 3 is used to label the vertex (already labeled) 
(c + g)l(d + h ) .  Because the path from glh to the vertex 
to be labeled goes to the left, the path used to find the old 
parent starts to the left of vertex glh and moves  upward to 
the left of edges until  it is forced to turn down. The old 
Farey parent is cld in  this case. 

realizations of this topological embedding. Some examples, 
based on hyperbolic geometry, are discussed in Section 5 ,  
but in these cases the edges do not  go  left and right or up 
and down as desired. As we have already mentioned, our 
Q-tree theorem is illustrated in Figure 1 ,  which suggests 
a different geometrical realization, using Euclidean 
geometry: All edges at generation n have length 1/2". 
The contents of Figure 1 can be formulated as follows, 
with the word "shape" referring to the way  in  which a 
sequence of directed edges, say oriented line segments, 
goes up and down, and left and right, with  no distances 
involved. 

There are, of course, infinitely  many geometrical 

Q-tree  theorem  (graphical  version) 
For ( x ,   x ' )  E QZ, (x, x ' )  depends only on the  shape  of 
the path going from x to x' on the embedded  Q-tree. 

3. Evaluation of the paths 
We prove the Q-tree theorem by  giving two equivalent 
algorithms for computing the value associated with a 
symbol. 
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I All five possible  initializations for Algorithm 2 of Section 3. 
. .. 

1 Implementation of Algorithm 2 of Section 3.  
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In  the first  algorithm,  knowing the value of a  symbol C 
of length n,  and  the value of its  truncation of length n - 1 ,  
we  compute  the  value of all symbols of length n + 1 
beginning with Z. In  the  second (equivalent)  algorithm, we 
construct a directed, weighted tree with  marked vertex x, 
so that in order  to  determine  the value of the symbol 
C(x,x,), we sum  the weights  along the  path  from x to x'. 
To avoid formal writing,  Algorithm 2 is  illustrated in 
Figures 4 and 5. Checking that  the  steps of these 
algorithms are  correct  amounts  to  elementary algebra, 
and is  essentially left to  the  reader,  except  for  one  case 
(chosen  at  random) of the first algorithm. 

Algorithm 1 
Given two  symbols, 

2" = s,s2 * S,-,S, 

and 

Si E {D,, DI, U,, U ) ,  

we  say  that Xn+, is obtained  from X, by either 

following (Xn+, = FCn) if Sn and S,+, have the  same 

changing (Xnt1  = CC,) if Sn and Sntl have the  same 

turning (Xnt l  = TCn) if S,, and S n + ,  have different 

principal part  and  the  same  index; 

principal part  and different indices;  or 

principal parts. 

We denote the truncation of Zn by X n - ,  = S,S, * Sfl-,. 
We can then  calculate the column vector 

from  the  column  vector 

by multiplying the  latter  by  the  one of the following 
matrices  that  corresponds  to  the preceding  list of 
directions: 

I. C. LAGARIAS AND C. P. TRESSER 

For  example, if Sn and Sn+,  have  the  same principal part 
and the  same  index,  then 

Thus, it is a straightforward process  to  calculate C n + , ,  
beginning with the values of 2, and C, from  Equations (4). 

We now justify  the  formula F, the  proofs  for  the  other 
two  formulas being  similar. From  Equation ( 9 ,  we  have 

Thus,  it  is only necessary  to verify that 
v(Z,,,) = 2v(Cn) - u(Xn-,) .  We  assume  that 
both X, and  terminate with U,;  all other  cases 
would be  treated similarly. Then,  choose  any u,/v, so 
that  the symbols Cn and Cn+l can  be followed when  starting 
from u,/u,. Let 

u , h ,  be  the  vertex  reached  by following the symbol 

u,/v, be  the  vertex  reached  by following the  symbol Xn, 

u 3 h 3  be  the  vertex  reached  by following the symbol 

X,,-, ,  starting from u,Iv,; 

starting from u,/v,; 

X n t l ,  starting  from u,Iu,. 

Thus,  we have 

and 

On the  other  hand,  from  the 15 examples,  we  have 

7J1 7J3 

and 

which allows  us to  solve  for u3 and v3 in terms of u , ,  v ,  , 
u,, and v2 .  It is then  easy  to verify that 
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Algorithm 2 
All of the possibilities  used  in the initialization for  the 
construction of a directed weighted tree with  marked 
vertex x are given in Figure 4, and  the way to  compute  the 
remaining  weights  inductively  is  indicated  in  Figure 5; 
weights are  integers  associated with directed edges. To 
compute (x, x ’ ) ,  we  sum  the weights  along the  path  from x 
to x‘. Like  the first one,  this  second algorithm has a matrix 
representation,  the  relevant  transformations,  as  seen in 
Figure 5, being 

Figure 6 displays an  example. 

4. Copies of the Farey  tree in the  Q-tree 
For  any rational number,  Theorem 1 asserts  the  existence 
of a unique decomposition 

p Po PI _ = -  @ - 
4 40 91 

of p / q ,  as a Farey sum of its  two  parents p o / q o  < p , / q , .  
Let  us  denote polqo by (0, 1) and p l / q l  by (1, 0). Then 
p o / q o ,   p I / q l ,   p / q ,  and all of the  descendants of p l q  can 
be  written uniquely as ( m p ,  + n p , ) / ( m q ,  + n q , )  and 
represented  by  the  pair of integers (n, m). Figure 7 shows 
how  the pairs can  be organized on a tree. If the symbol 
( n ,  m )  is replaced  by d m ,  one  obtains  the piece of Y 
generated  from  the pair 0/1 < 1/0, which thus  reappears 
everywhere in 5, justifying the  choice  we made of 
1/0 to  extend Q (see  footnote 1). On  the basis of this 
observation,  the proof of the  Q-tree  theorem is now 
straightforward: Just  notice  that if p / q  is the youngest 
common  ancestor of x and x’  , setting 

aP, +  PI x=- 
aq, + bql’ 

CPO + dP, 

cqo + dq, ’ 
x’ = ~ 

we  have 

(x, x‘) = (ap, + bp,)(cqo + dq,)  - (aq, + bq,)(cpo + dp,)  

= (bc - ad)(p,q0 - P04J 

= bc - ad 

independently of x, x ) ,  but depending on  the  path  that 
joins  them  on 9. 
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Tesselations M and T. 

5. PSL(2, Z) and the Q-tree 

The  tiling of H .  J .  S. Smith 
As usual, let SL(2, W) stand for the set of 2 X 2 matrices 
of real numbers with determinant equal to 1. It is well 
known that the group PSL(2, W) = SL(2, W ) l k I ,  which 
acts on C by the Mobius transforms as 

az + b [: : I -  GT-2 
is  in fact the set of the orientation-preserving isometries of 
Poincark’s model of the hyperbolic plane, i.e., the upper 
half  of the complex plane H = { x  + i y  E C: y > 0 } ,  
equipped with the metric 

a k 2  + dy2 
ds2 = 

Y2 * 

For this metric, geodesics are pieces of circles orthogonal 
to the real axis, or pieces of vertical lines. For a discrete 
subgroup r of PSL(2, W), a fundamental region R is 
defined by the following properties: 

Its interior does not contain any pair (x, g(x)), g E r. 
Its closure contains at least a point of each orbit. 

The set of images of any fundamental region R by the 
elements of r provides a tessellation of H, called the tiling 
by I’, with fundamental region R .  

Figure 8 represents two tilings of H together: 

The tiling M, corresponding to the coloring, is a tiling 
by the modular  group PSL(2, H) = SL(2,  Z ) l k l ,  with 
fundamental region 

The tiling T, corresponding to the solid lines, we call the 
Q-tiling. Each of its tiles is made of three tiles of M. 
[Figure 9 is an embedding of T, invariant by PSL(2, Z). 
The dotted lines are the same as in Figure 8, but more 
easily seen.] 

The Q-tiling, obtained by joining all pairs of Farey 
neighbors  by a geodesic in H, is not a tiling  by a subgroup 
of PSL(2, R); in fact, it corresponds to an order-two 
extension (by z b -Z) of the  congruence  subgroup r(2) of 
PSL(2, Z) [see, e.g., [15], p. 82, for a fundamental  domain  of 
U2)1* 

Remark The relevance of T in the study of continued 
fractions was  recognized  by H. J. S. Smith [3] in 1877 and 
studied in detail by A. Hurwitz [16] and G. Humbert 
[4-61. 

Marked tiles Each tile of T is an ideal triangle, i.e., 
a triangle  with  all vertices at infinity (the real axis is at 
infinity for H). The middle vertex of the ideal triangle can 
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be chosen to label the tile, but there is  an  ambiguity for 
the upper tiles with vertical sides, regarding  how to label 
the upper ideal vertex. This  is the geometrical ambiguity in 
the choice among 110 and (- 1)/0 we mentioned  in footnote 
1. We choose 110 as m. With each tile, let us associate the 
collection of its vertices, ordered so that one goes around 
the tile counterclockwise. A threefold ambiguity  then 
remains, corresponding to the original vertex of the triplet. 
Hence, for any p l q ,  we have three marked tiles, 

with r ,  I ,  m standing respectively for right, left, and 
middle. 

In the following computations from [6] ,  we set 

a . O +  b b 
c - O + d - d '  

and NOT 

a - O +  b a€ + b 

c - 0  + d C E  + d '  
- lim - 

which matters (only)  when d = 0. A simple computation 
yields 

" 

" 

from which it is then easy to prove the following result 
of G .  Humbert (cf. [6] ,  pp. 105-110). 

Theorem 2 
For any s, S I  in r, I ,  m, and  any x,  x'  in Q, there is a 
single  matrix M E PSL(2, Z) such  that M T: = 4 : .  

More precisely, M = Mi::: = M:: - (MI)". 

PSL(2, Z) and  degree-three  trees The pieces of the 
boundary of M that do not belong to the boundary of T 
(Le., the dotted lines in Figure 8 and Figure 9) form a 
(geometrical) degree-three tree Tg on which PSL(2, 2) 
acts with fundamental domain P Q  (see [ I ] ,  p. 35 and 
[2] ,  pp. 21-24). Notice that each vertex of Tg belongs to 
the interior of a single  tile of T, and that each tile of T 

IBM J. RES. DEVELOP. VOL. 39 NO. 3 MAY 1995 

-4.. .4.. .A. A.. c*: ,*eu *-4 ,*" *.*. ,*.- *.*:-?*.* e-*. .*"a 
-2  -1 0 1 2 3 

1 Embedding of T, invariant  by PSL(2, 25). The arc PQ is a  funda- 1 mental  domain  for  the  action of PSL(2, Z) on  this  tree. 

-2  - 1  0 1 2 3 

1 Another  embedding of 3 in €I. 

contains a vertex of Tg (see the black dots in Figures 8 
and 9). Hence, from the previous discussion about the tiles 
of T, the vertices of Tg are in one-to-one correspondence 
with the rational numbers, and we can easily verify that 
the labeling so defined  is such that Tg is a geometrical 
realization of T. 

Remark The boundary of U also contains an embedding 
of T, shown in Figure 10. 

PSL(2, Z) action  and the Q-tree Theorem 2 yields an 
action of PSL(2, Z) on T X 2/32, defined by matrix 
multiplication, once the three matrices Miiq, Miiq,  MiSlq 
are used to label the vertex p / q  of 9, In general, 
M:;::(Mi) = M:,':, with  no  simple general rule for s"' 
and x"', because the order relation of numbers with 
their young Farey parents can be found in either way. 
However, it is easy to verify the following result. 

Lemma I 
Consider any s in r, I, m, and  any  x, x' in 6. Assume that 
x is the young Farey parent of y  and z, with  y <: x < z, 
and that x' is the young Farey parent of y' and z', with 
y ' < x' < z' . Then 

M::x,(M:) = MZ , 

M::x,(M:) = M;: , 

" .  
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and 

M : ; ~ , ( M ~ )  =  sf. 
Now  let 3; stand for the rooted sub-tree of 3 labeled  by 

x and all its descendants, each vertex p lq  being  labeled by 
MPSiq. Iterating Lemma 1, we obtain the following equality. 

PSL(2, Z) and the  Q-tree  theorem 
The Q-tree theorem can be deduced from Theorem 3, 
specialized to the case s = r .  More precisely, let 

Then, for u ,  v among the descendants of x, and u ‘ ,  u’ the 
corresponding points among the descendants of x ) ,  we 
have 

au + b 

cu + d 

and 

an + b 

cu + d 

Now, for any rational numbers p lq  and p ’ l q ’ ,  we have 

“ - u’ 

” - u’.  

= (ap + bq)(cp’ + dq’) - (cp + dq)(ap’ + dq’) 

= (ad - bc)(pq’ - p’q )  

= (Pq’ - p’q ) ,  

so that 

(u’ ,  u’)  = (u,  u). 

6. Historical notes 

Farey  sequences 
The Farey sequence of order i is usually  defined as the 
ordered set 8, of fractions in x in Q n [O, 11 whose 
denominators D ( x )  do not exceed i. This  is  usually 
extended to 6 as the ordered set 8: of fractions x in 6, 
with max(l(N(x)/, D ( x ) )  5 i (see, e.g., [ l l ,  17, 181). 
In 1816, J. Farey (a geologist), studying the privately 
circulated early version of the table of “complete decimal 
quotients” by Henry Goodwyn, Esq., of Blackheath, 
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noticed in [19] that if all “vulgar fractions” with 
denominator smaller than n are written in order, with 
alb < a‘lb’ < al’lb”, then a’  = a + a” and b’ = b + b” 
(Theorem 29  in  [9]). A wrong  claim of proof  was  made by 
an anonymous person with the signature “S.A.” in the 
following  volume of the same journal [20]. Farey also 
presented his remark anonymously in  [21]. His remark 
was shortly afterward proved by A. Cauchy [22],  who 
mentioned  only the French version [21] but was possibly 
familiar  with  [19],  since  he associated the name of Farey 
with the subject, followed in that regard  by  most 
mathematicians since. Cauchy in fact proved that with 
the previous notations, a ’ b  - ab’  = 1, from which  he 
deduced the property noticed by Farey.’ Cauchy did 
not  limit  himself to [0, 11 but considered, without giving 
them a name, what we call extended Farey sequences; it 
occurred to us that the name “Cauchy sequences” would 
not necessarily be well accepted in this context. In 1879, 
J. W. L. Glaisher [23] (see, in particular, the historical 
comment, pp. 329-336) examined the history of the subject 
and concluded that at least part of the credit should go to 
H. Goodwyn. He seems to have ignored the following fact: 
Most of the Farey-Cauchy theory was presented in  1802 
by le Citoyen Haros6 in  [24] (see in particular the bottom 
of p. 367 and the top of p. 368  of  [24]).  We refer the reader 
to L. E. Dickson’s book  ([25], pp. 155-158,  162) for the 
early history of Farey sequences up to 1919. Important 
applications were  made by A. Hurwitz to Diophantine 
approximation [26]  and the reduction of binary quadratic 
forms  [16], and a relation to the Riemann hypothesis 
was found by J. Franel [27] (see also [28, 291). The 
Hardy-Littlewood circle method (see, e.g., [30]) makes 
essential use of a Farey series dissection of [0, 11; it led, in 
particular, to the celebrated result of I. M.  Vinogradov [31] 
that every sufficiently large odd number is expressible as 
the sum  of three prime numbers. For more concrete 
applications, see, e.g., [32]. 

Farey  tree 
The first occurrences we could find  of this tree  are in 
[33-351, where the Farey tree is presented as a way to 
analyze applications of Diophantine approximation to 
dynamics, and in  [36], where the tree is implicit but 
parenthood is  mentioned explicitly to describe a dynamical 
result. For recent constructions, uses of the Farey tree in 
dynamics, and lists of applications of Farey theory to 
dynamical systems theory, see for instance [7, 8, 14,  371. 

The Farey tree is strongly reminiscent of what were 
called Brocot  sequences in treatises on number theory in 

Theorem 28  in 191. See p. 24 of 191 for the proof of the equivalence of the two 
properties, and pp. 24-26 for proofs of both results. 
6 Citoyen is the French word for citizen: The paper was published in Messidor, 

authors after him, but we could not find any evidence that C stands for the initial of 
year X of the Republican calendar; Dickson refers to “C. Haros,”  as well as most 

Haros’s first name. 
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France  around  the  turn of the  century,  after  the clock 
maker  who  described  them in 1862 [38] (see  also [12] 
and [39]). The Brocot  sequence  of  order  i is the  ordered 
set ai of fractions x in Q f l  [0, 11 (or in bt) such  that 

= { O h ,  1/1} (or a0 = { O h ,  14, 1/0}), and Bj+, is 
obtained  from ai by including the  Farey  sum of all  pairs 
of successive  elements in !?hi. Thus, in bt , 

a =[! 1 ! 2 !) ’ 1 ’ 2 ’  1 ’  1 ’ 0  

and 

In [13], Denjoy generalizes this  definition, and in 
particular  extends it to 6’. Brocot  sequences  and their 
generalizations are a primary object of study in the  theory 
of the [?] function of Minkowski [40] (see also [7, 13, 41]), 
which is defined as follows: If the  path on the  Farey  tree 
f rom 1/2 to x E [0, 1 1  is labeled a , ,  a 2 ,  a 3 ,  - , then 
[?I( x) = O.a,a ,a ,  in base 2. We also  notice  that  the 
ordered  set of denominators of the  fractions appearing 
at  depth n of the  Farey  tree  form  the Stein  diatomic 
sequences [42] (see  also [43-451). 

Farey tiling 
The tiling T is often called the Farey  tiling in the  recent 
literature,  e.g., [17, 181, although G. Humbert (cited in [17] 
and [18]) did  his best  to  associate U with the  name  Smith. 
It is well known that  some of the  relations established 
between  the Q-tiling and  the  theory of continued  fractions 
can  be reformulated  in terms of the Q-tree (see, e.g., 
[14, 33, 341, as well as [46-481 for  related results). 

its  applications  not  discussed  here  (see,  e.g., [49-561). 
There  are, of course,  many  aspects of Farey  theory  and 

Conclusion 
As J .  Farey said at  the  end of his first paper  on  the 
subject: “ I  am not  acquainted,  whether  this  curious 
property  of  vulgar  fractions  has  been  before  pointed  out?” 
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