Verity—

A formal
verification
program

for custom
CMOS circuits

by A. Kuehimann
A. Srinivasan
D. P. LaPotin

In an effort to fully exploit CMOS performance,
custom design techniques are used
extensively in commercial microprocessor
design. However, given the complexity of
current-generation processors and the
necessity for manual designer intervention
throughout the design process, proving design
correctness is a major concern. In this paper
we discuss Verity, a formal verification
program for symbolically proving the
equivalence between a high-level design
specification and a MOS transistor-level
implementation. Verity applies efficient logic
comparison techniques which implicitly
exercise the behavior for all possible input
patterns. For a given register-transfer level
(RTL) system model, which is commonly used
in present-day methodologies, Verity validates
the transistor implementation with respect to
functional simulation and verification
performed at the RTL level.

Introduction ’

The design of complex digital systems requires verifying

the correctness of the implementation with respect to the

intended function. For example, large computer designs |
integrating many individual circuit components must be
checked for numerous characteristics including static
function, timing, testability, and manufacturability. A
complete verification strategy is not only important for
lower development cost and shorter design duration,

it is a prerequisite for successful system design.

A verification technique proves a set of user-defined
design properties in terms of specific modeling criteria.
The accuracy of the model and the complexity of the
algorithms determine the practical limitations of a given
technique. Typically, the trade-off between accurate results
and efficient usage leads to a range of different verification
methods applied at different levels of abstraction.
Techniques for verifying detailed models of smaller circuit
pieces are complemented by more abstract methods
working on a larger scale. This hierarchical approach is
especially important for practical usage of verification

©Copyright 1995 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of

this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

149

0018-8646/95/$3.00 © 1995 IBM

IBM J. RES. DEVELOP. VOL. 39 NO. 1/2 JANUARY/MARCH 1995

A. KUEHLMANN, A. SRINIVASAN, AND D. P. LaPOTIN

algorithms with exponential computing time or memory
complexity.

To validate the functional behavior of large system
designs, the complete system is usually modeled at an
abstract level and exposed to the intended environment
by simulation. For microprocessors, simulation typically
includes executing a kernel subset of the designated
operating system, running selected software applications,
or testing random sequences of processor instructions.
Much effort has been spent in improving the coverage of
the validation process by accelerating existing algorithms
for software simulation [1], applying hardware simulation
techniques [2], or using prototype implementations based
on programmable logic devices. Recent research in the
verification area is focused on applying formal techniques
for testing higher-level system properties [3]. However,
except for limited results, no breakthrough for general
applications has yet been made.

After validation through simulation, the abstract model
becomes the definition of the intended system function.
Therefore, this model is often referred to as the golden
specification. Starting with this high-level model, a detailed
implementation can be derived automatically, manually, or
(as is often the case) by a combination of both methods. A
design technique based on automatic synthesis significantly
limits the possible implementation styles and therefore
compromises the area and timing performance of the
results. However, assuming that the applied algorithms
are correct, synthesis preserves the functionality of the
abstract specification. Besides reducing the design time,
this is a major advantage of automated implementation
techniques. Optionally, functional verification of the final
design is applied to confirm the correctness of the
synthesis algorithms.

To maximize the performance of CMOS processors,
custom design exploits elaborate manual circuit and layout
techniques. Since the circuit design is done independently of
the golden specification, a separate functional verification
step for the final implementation is necessary. There are
two approaches to custom circuit verification:

1. The system-level simulation is repeated on the switch-
level model of the CMOS circuit. The smaller granularity
of this model causes a significant increase in simulation
complexity. This drastically reduces the number of
simulation patterns which can be applied in a given
time, resulting in a corresponding decrease in overall
verification coverage. This problem has been addressed
by abstracting a gate-level model from the transistor

. The functional behavior of the transistor-level

implementation and the high-level specification are
exhaustively compared. Formal verification techniques
can be used to symbolically prove the equivalence
between the input/output behavior of two circuit
representations for all possible input sequences. The
comparison indirectly validates the transistor-level
implementation with respect to all results obtained
from the functional simulation of the specification.

In this paper we present Verity, a formal verification

tool which follows the second approach. It is applicable for
gate-level designs as well as for transistor-level circuits
with a wide variety of implementation styles including
static and dynamic techniques. Verity is part of the design
methodology for several microprocessors developed within
IBM, including PowerPC™ implementations. It is being
used for the following verification tasks:

Verity compares the CMOS circuit implementation of the
system hierarchically with the high-level specification.
Although the specification is declared as golden, in
practical design scenarios miscompares typically uncover
errors in both representations. Therefore, besides
checking the implementation, formal comparison also
provides additional confidence in the correctness of the
golden model.

Verity performs a variety of consistency checks on the
transistor circuits. These tests verify that a specific
design style is obeyed. For example, floating net
conditions can be detected in which the logical state

of a net is undefined.

Verity can use and test functional boundary conditions
provided as logical assertions by the designers. For
example, an orthogonality assertion might be imposed on
the input signals of a circuit for which exactly one signal
is active at a given time. Verity uses these assertions to
constrain the verification process. Further, the circuit
generating these input signals is tested for orthogonality
to check whether the assumption is correct.

The paper is structured as follows: In the next section,

the verification problem is characterized, and previous
approaches in this area are summarized. In subsequent
sections the general verification methodology for applying
Verity is outlined and specific extraction algorithms

are discussed. Finally, results and conclusions are
presented.

representation [4-8] and by using hardware accelerators
for switch-level simulation [9, 10]. However, even with
these improvements, the repeated functional simulation
on the circuit level is highly CPU-time-intensive and
150 impractical in an interactive debugging environment.

Verification problem

The verification of transistor-level circuits can be divided
into two subproblems. The first problem is to extract a
Boolean interpretation of the transistor-level network.
The second problem is the verification of the Boolean

A. KUEHLMANN, A, SRINIVASAN, AND D. P. LaPOTIN

IBM 1. RES. DEVELOP. VOL. 39 NO. /2 JANUARY/MARCH 1995

representation by some formal method. In this section we
characterize both subproblems and introduce preliminary
concepts needed for their solution.

® [ogic verification of Boolean networks
We refer to formal verification as a technique which
exhaustively proves certain functional design properties.

For example, formal verification might be used to show the

equivalence of two circuit representations. We limit our
discussion to static functional behavior, neglecting any
delay of circuit elements. Initially, we also assume that the
circuit representations are based on a synchronous single-
clock, finite-state machine (FSM) model. Extensions of
the basic model to more elaborate design styles such
as multiphase dynamic circuits are discussed in the
subsection on time-sliced extraction for dynamic circuits.

Assume that two FSMs, A and B, are to be compared.
Intuitively, A and B are functionally equivalent if they
have an identical interface and if, from a given pair of
equivalent initial states, they produce the same sequence
of output values for any valid sequence of input values.
Figure 1 illustrates the equivalence check for two
synchronous FSMs. Let C* and C® denote the
combinatorial part and §* and S? denote the set of state
registers of machines A and B, respectively. Further, let
x ={x,,*++,x,} be the set of inputs, y = {y, ", y,}
be the set of outputs, z = {z,, - - -, z,} be the set of
present-state variables, and z' = {z], * -, z,} be the set
of next-state variables. Superscripts A and B distinguish
between the two machines. X[¢], Y[¢], Z[t], and Z'[¢] are
used to denote the vectors of values at clock cycle ¢ for
the inputs, outputs, present-state variables, and next-state
variables, respectively.

For the sake of functional comparison, a product
machine A X B is built. Inputs x* and x® are

interconnected and driven by a common set of independent

variables x. All corresponding outputs are compared
pairwise by XOR functions whose results are combined

to form signal c. The two machines are said to be
functionally equivalent if and only if, after $* and §* are
initialized to their corresponding initial states Z*[0] and
Z%[0], respectively, any input sequence (X[0], « -+, X[¢])
produces a constant value of 0 at c.

If FSMs A and B do not have state registers, each
circuit implements a combinatorial function where the
output values Y{¢] do not depend on past input values
X[t —i],1 =i < t. In this case, successful comparison
of the two circuits for a single clock cycle proves their
equivalence for any input sequence. This case is classified
as combinatorial logic verification. The more general case,
where A4 and B contain arbitrary state registers, is referred
to as sequential logic verification.

IBM J. RES. DEVELOP. VOL. 39 NO. 1/2 JANUARY/MARCH 1995

FSM A
A
J'L P
- oA -
zA z 1A
L] o |t
Clk Reset
X
—e <
FSM B
B
22)
> 8
B 1B
< SB ol
Clk Reset

§ General configuration to prove the equivalence between two
3 FSMs.

Combinatorial logic verification
Most published work in the area of combinatorial
verification can be classified into two basic approaches:

1. In the first approach, the Boolean function of all
outputs of C* and C”® is converted into some unique
(canonical) form [11-13]. A structural comparison of
this unique representation is used to draw conclusions
about their functional equivalence. Since the worst-case
size of canonical representations of Boolean functions
grows exponentially with the number of inputs,
excessive memory requirements limit their applicability
to general Boolean functions.

2. The second approach is adopted from test pattern
generation. An input pattern is determined which causes
conflicting output values for the two circuits [14-16]. If
a pattern does not exist, the circuits are functionally
equivalent. The search for a counter-example is
performed on the circuit structure. In the worst case,
this technique may require an exhaustive enumeration

A. KUEHLMANN, A. SRINIVASAN, AND D. P. LaPOTIN

151

of all possible input patterns, thus causing run-time
problems for general network structures.

One of the first practical programs used in industry for
verifying large logic designs was SAS (Static Analysis
System) [17]. SAS is based on the DBA (Differential
Boolean Analyzer) and ESP (Equivalent Sets of Partials)
algorithms, which are similar to unordered BDD (Binary
Decision Diagrams) [11] in their unreduced and reduced
forms, respectively. Although SAS had significant
restrictions on the applicable design size, it was
successfully applied to complex computer designs
within IBM [18].

The Reduced Ordered Binary Decision Diagram
(ROBDD) developed by Bryant [19] is one of the most
popular canonical structures for representing Boolean
functions. The reasons for the success of ROBDDs are
their compact structure, which can be manipulated
efficiently, and their wide applicability for many practical
problems. Ordered BDDs employ a global ordering of the
input variables. Depending on the function, the ordering
sequence greatly affects the total size of the overall data
structure. Therefore, heuristics based on the circuit
structure are often used to determine a good ordering
before BDD construction starts [20]. Other approaches
incorporate ordering algorithms into the BDD software by
dynamically reordering the variables during construction
of the BDD [21]. Various modifications of the basic BDD
structure attempt to enlarge the set of Boolean functions
for which BDDs can be efficiently built [22].

Another fundamental approach for comparing
combinatorial functions uses probabilistic methods by
hashing Boolean functions to integer values [13, 23]. Since
this is a one-to-many mapping, unequal functions might be
recognized as equal. The probability of false positives can
be greatly reduced by repeating this process with different
hashing functions. One problem with probabilistic
approaches is the calculation of the hash value. It can be
done with polynomial time complexity only if the network
representation of the Boolean function complies with
certain constraints. However, obtaining this specific
structure might be as complex as building an equivalent
BDD representation.

Sequential logic verification

There are a variety of approaches for functional
verification of general machines. A comprehensive
overview can be found in [24, 25]. The different techniques
fall into two categories:

1. Techniques adapted from theorem proving based on
higher-order logic models take a top-down view of the
hardware verification problem [26, 27]. They iteratively

152 modify the hypothetical theorem by applying axioms

A. KUEHLMANN, A. SRINIVASAN, AND D. P. LaPOTIN

or other previously proven theorems until it becomes
tautologic. Because of their generality, these methods
can model almost any behavioral system property.
However, these approaches also require a great deal of
user knowledge and guidance in order to successfully
verify practical designs.

2. State exploration techniques follow a bottom-up
approach by explicitly or implicitly visiting all reachable
states of the product machine A X B [3, 28, 29]. For all
outgoing transitions from these states, they check that
output c is logically constant zero, thus proving the
functional equivalence of A and B with respect to the
pair of initial states. The introduction of BDDs for
representing sets of states combined with a symbolic
depth-first or breadth-first traversal of the FSM graph
made this approach applicable for designs with a large
number of states [29, 30]. In contrast to theorem
proving, state exploration techniques can be automated.
This makes them easier to incorporate into practical
design methodologies. On the other hand, the size of
BDDs for representing sets of states for practical
circuits often grows exponentially, which limits their
general application. This is a major problem since, other
than dynamic variable ordering, no practical variable
preordering technique for this application is known.

If the two FSMs to be compared use the same state
encoding, with a known one-to-one correspondence
between the state bits (z/', -+, z}') = (2], **+, 2}),
the sequential verification task becomes far more tractable.
In this case, the following three steps inductively prove the
equivalence of the two machines:

z*{0]
v X[t} ZY1]
v X[ZYA

= Z[0],
= 711> Y[= Y1),
=2 => 2 + 1] = 27t + 1].

This effectively reduces the sequential verification problem
to the comparison of the combinatorial functions
implemented by C* and C®. In other words, if the
machines start from the same initial state, a sufficient
condition for the equivalence of A and B is the equivalence
of their next-state and output functions:

')
1
N
=
il
tad
Na¥
1

']
i
IN
=
It
=
=
fl
1<
o
—_
I\
1
i~
=
1
=
=

® Functional circuit extraction

In order to perform a Boolean equivalence check against a
transistor-level implementation, a functional extraction
step is necessary. This can be approached in two different
ways:

IBM J. RES. DEVELOP. VOL. 39 NO. 122 JANUARY/MARCH 1995

1. Using graph isomorphism algorithms, known
substructures of the original circuit are identified and
replaced with an equivalent Boolean network [31].

2. The Boolean behavior of the MOS circuit is completely
calculated on the basis of a switch-level model [6].

For a practical application of the first approach, a
complete set of known circuits must be maintained.
Unidentified structures remaining in the circuit would
require manual translation into a Boolean model.

This technique is applicable for library-based design
methodologies. However, it is not adequate for custom
design styles where each circuit piece is specifically
designed for the intended function and exotic circuit
structures are often used.

The switch-level model for MOS circuits has become
quite popular in simulation applications because of its
practical trade-off between accuracy and efficiency. The
model is based on an undirected graph, where the nodes
and the branches model the nets and the MOS transistors,
respectively. The nodes and branches are weighted by
strength values which reflect the net capacities and the
driving conductance of transistors. The steady-state
response of the MOS circuit for a particular input
stimulation is expressed by digital values (usually
€ {0, 1, X}, where X is unknown) assigned to the
nodes and branches. The subsequent calculation of these
values for a sequence of input patterns models the digital
behavior of the actual circuit.

An elegant definition of a switch-level model was
introduced by Bryant and used in the simulator MOSSIM II
[32]. It restricts the possible strengths of nodes and
branches to a bounded set of integer values and applies
simplified operations for calculating the combined strengths
of interconnected branches. For parallel connections, the
maximum-strength value is taken. Similarly, for serial
connections the minimum-strength value is applied. The
application of that model and a clever grouping scheme
for the strengths of nodes and branches results in a
highly efficient simulation algorithm.

Several techniques based on switch-level simulation
algorithms have been adopted for deriving a functionally
equivalent Boolean network from a transistor-level
representation. These approaches extend the applicability
of gate-level simulation techniques to the switch-level
domain [, 7).

A straightforward approach for switch-level extraction
can be formulated by introducing independent Boolean
variables for each circuit net. The circuit branches
establish relations among these variables which can be
modeled by a system of Boolean equations. The solution
of that system encodes the complete static behavior of the
circuit. However, because of the resulting large number of
variables and the inability of handling node and branch

IBM J. RES. DEVELOP. VOL. 39 NO. 12 JANUARY/MARCH 1995

strengths, this approach has limited applicability to
practical design verification.

Path-based extraction techniques [4, 6, 7] use the
concept of driven and controlling nets in transistor circuits.
Driven nets include primary inputs or internal nets which
hold charge. The set of controlling nets consists of all
primary outputs and nets which directly drive the gate
of some transistor. Path-based extraction explicitly or
implicitly enumerates all transistor paths from driven nets
to controlling nets. ANAMOS [6] employs a path-based
extraction scheme which is fully consistent with Bryant’s
switch-level model developed for MOSSIM II [32]. Based
on implicit path traversal, it generates a gate-level circuit
representation which models the entire switch-level
behavior. ANAMOS is applied primarily for gate-level
simulation of transistor circuits [33, 34].

A direct approach for functional verification of transistor
circuits, described in [35], is based on ANAMOS for
switch-level extraction. A state register is assigned to each
functional circuit net, resulting in an FSM which models
the entire sequential circuit behavior. After computing the
steady-state response for a given set of input values, state
enumeration techniques are applied for the verification
step. However, the generality of this approach
compromises the applicable circuit size.

Verification approach of Verity

® Overview

Verity was designed for the functional verification of large
CMOS designs such as complete microprocessor systems.
It uses ROBDDs to represent the Boolean function of the
networks being compared. Various ordering algorithms
working on the circuit structure, in conjunction with
dynamic variable ordering, are applied to manage the
storage requirements of the BDDs.

Verity does not address the general sequential
verification problem. It is based on a verification model in
which corresponding state registers are to be identified.
Although this generally limits the applicability of the
program, the restriction to combinatorial equivalence
enables the verification of more complex circuits. Further,
because of the maturity of combinatorial verification, it
significantly improves the ability to predict whether a given
circuit block can be handled by the verification tool, thus
simplifying the overall design partitioning process.

Verity employs a general data representation for mixed
circuit designs at the gate level or switch level. A general
path-based functional extraction algorithm can handle any
combination of these models. The extraction step is tightly
coupled with the actual verification step. This makes it
possible to efficiently handle special circuit structures such
as pass-transistor logic, false CMOS paths, or circuits
which contain combinatorial loops. Further, circuit 153

A. KUEHLMANN, A. SRINIVASAN, AND D. P. LaPOTIN

154

Hierarchy verification
(supermacros)

< e W77~ Golden verification line

* Leaf-macro verification

® Hierarchy nodes for which Verity is applied
Q Hierarchy nodes which are flattened
@ Hierarchy nodes which are black-boxed

Hierarchy example: (a) verification skeleton; (b)—(d) set of result-
ing verification tasks.

structures which potentially violate the combinatorial
verification model, such as dynamic circuit nets or
structural network loops, are modeled and handled in

a general way. The approach can immediately identify
whether a given circuit causes undesired sequential circuit
behavior.

The verification method for a particular circuit design
style is fully customizable by a user-defined set of
extraction rules. For example, rules are used to specify
the detailed clocking scheme used in dynamic circuit
implementations. The rule set also includes tests for
unwanted circuit situations, such as nets which might
have floating or undefined states. Because of this flexible
verification approach, Verity can be adapted to the specific
requirements of various projects.

® Verification methodology

The ultimate goal of functional verification is to achieve
exhaustive coverage across the entire design. However,
because of their computational complexity, verification
algorithms cannot be applied directly on the entire

A. KUEHLMANN, A. SRINIVASAN, AND D. P. LaPOTIN

chip. Using design partitioning, a two-part verification
methodology for the use of Verity has been developed:

1. The individual pieces of the design (referred to as
macros) are verified independently. Specific logical
boundary conditions associated with macro input and
output signals are asserted by the designers. These
assertions describe the set of signal patterns which can
occur at the inputs of a particular macro. Often valid
input patterns are also referred to as the care-set. Input
assertions are used as verification constraints, whereas
output assertions are validated.

2. The composition of macros to form the complete design
is verified for both correctness and consistency. This
essentially checks the integrity of macro interconnection,
including the correct wiring and the consistency of
the assertions between the individual macros.

The following two sections elaborate on these two
verification steps.

Hierarchical design verification

Because of the complexity associated with Boolean
function representation, Verity cannot handle large
systems as one piece. Therefore, the verification of
complex circuits requires an identical partitioning

of the two design representations being compared.

From a verification point of view, the granularity of the
partitioning must guarantee that each piece successfully
passes Verity. This process can be referred to as design
for verification. The two representations are usually
developed independently. Changes made to the high-level
model typically invalidate the resuits of the functional
system validation. Also, any circuit modification at a late
stage might cause significant effort to update the results of
timing verification or layout implementation. Therefore, an
early confirmation of the applicability of Verity to all
pieces of the design partitioning is advantageous.

Verity is usually applied at an early stage to confirm that
the circuit partitioning can be handled. Applicability to a
set of commonly used macros, including 64-bit data-path
units such as adders, shifters, and rotators, is predictable.
Depending on the function, macros containing up to 25000
transistors can be handled by Verity. The sequential
verification problem was explicitly excluded to avoid
additional uncertainty. Further, Verity can be applied
to test the BDD construction for a single design
representation. For example, an early version of
the macro specification is usually available before the
implementation. Successful BDD construction for the
specification practically implies that a comparison with
any correct implementation is feasible.

Figure 2(a) shows a simple example of a hierarchical
design description. A golden verification line divides the

IBM J. RES. DEVELOP. VOL. 39 NO. 1/2 JANUARY/MARCH 1995

set of macros into two groups: 1) The set of leaf macros is
defined as the set of all hierarchy nodes for which the
corresponding subcircuit can be verified as one piece
(macros F, G, H). For the sake of functional verification,
these subcircuits are completely flattened. This grants
complete freedom for their hierarchical description.

2) All remaining macros (4, B, C, D, E) form the set of
supermacros which compose the complete design in terms
of the set of leaf macros. Functional verification is applied
to confirm the correctness of this composition and to
check the consistency between all macro assertions.
Besides calls to other macros, supermacros might also
contain actual logic.

The basic idea of hierarchical verification is to reduce
the circuit complexity by excluding instances of submacros
from the verification of the calling supermacro. The
circuits of the excluded submacros are removed from the
hierarchical design description and replaced by black
boxes. For example, when supermacro C of the circuit in
Figure 2(c) is being verified, leaf macros F, G, and H are
black-boxed.

The hierarchical verification is controlled by a
verification skeleton, which defines all macros for which
Verity is actually used. Clearly, the complete comparison
of two design representations requires the same
verification skeleton on both sides. Depending on the
overall design methodology, Verity can be applied on each
skeleton macro in a top-down or bottom-up manner. As
shown in Figure 2(a), the verification skeleton consists
of two supermacros (4, C) and the three leaf macros
(F, G, H). The resulting five verification tasks for Verity
are illustrated in Figures 2(b)-2(d).

When verifying a supermacro by black-boxing
submacros, the following verification steps are performed
to ensure completeness:

« All inputs of submacros are considered as verification
outputs which are, in addition to all primary outputs,
functionally compared between the two representations.

» Submacro outputs are considered as verification inputs
which are driven by independent variables, common for
the two design representations.

& Verification constraints asserted at submacro inputs are
tested on the supermacro level. Since the submacros are
verified only with respect to those constraints, their test
on the higher level effectively validates this assumption.

~ Assertions at submacro outputs are used to constrain the
input space for supermacro verification. The correctness
of these assertions is confirmed during submacro
verification.

The verification view of a particular supermacro M1,

which calls two instances, I1 and 12, of submacro M2, is
given in Figure 3. Figure 3(b) shows the corresponding

IBM J. RES. DEVELOP. VOL. 39 NO. 172 JANUARY/MARCH 1995

control files for M1 and M2 describing the verification
tasks to be performed by Verity. Each control file contains
the port definition which is common to all representations
of a particular macro, and other details specific to the
representation. For M1, these details include the black-
boxing directive for both instances of macro M2, a
constraint for the possible input values, and a test on the
outputs. The input constraint describes the care-set for
verification, which in this specific example includes all
input patterns with at least one input having a logical value
of 1. Output tests are checked for tautology. The control
file for M2 is used in a similar way.

The hierarchical verification of the supermacro consists
of two tasks: First, the verification of submacro M2 proves
the equivalence of the various implementations of that
macro with respect to the input constraint A2. This
includes the test for functional equivalence of outputs
O and R, and the validation of test 72. In a second
step, macro M1 is verified with the two instances of M2
black-boxed. The black-boxing imposes four additional
equivalence tests for submacro inputs 1.0, I1.P and
12.0, I2.P of instances I1 and 12, respectively. Further,
the submacro outputs /1.0, I1.R and I2.Q, I2.R are
treated as independent verification inputs, constrained
by the test expressions /1.72 and 12.72.

Leaf-macro verification

As defined previously, the set of leaf macros consists of
all of the subtrees of the design hierarchy which can

be verified as one unit. Except for sequential circuit
pieces, such as latches or registers, these leaf macros are
completely flattened. Thus, no restrictions are imposed
on their hierarchical description. After flattening, Verity
extracts the Boolean function of the outputs for the two
design representations and compares them with respect to
the input constraints. The details of the circuit extraction
algorithm are described in the following section.

Sequential circuit elements or other design pieces which
cannot be modeled by Boolean logic, such as analog or
semi-analog circuits, must be excluded from the macro
verification process. These subcircuits are black-
boxed, and corresponding instances of the two design
representations are identified. The black-boxing scheme
is identical to that used for hierarchical verification.

A customized design style necessitates hand-crafted
implementations of most of the chip, including storage
elements. To optimize performance for each individual
instance, the designer usually makes modifications to these
circuits which might affect the corresponding interface or
the functionality of the circuit implementation. However,
once the validation of the golden specification is finished,
it is frozen, and interface modifications at a late stage are
unacceptable. Thus, for practical design projects a general
mechanism for matching differences between interfaces is

1?5

A. KUEHLMANN, A. SRINIVASAN, AND D. P. LaPOTIN

156

Ml
Submacro inputs become —_| n Submacro outputs become
verification outputs verification inputs
o Q
A Submacro b
P R
Supermacro Supermacro
inputs outputs
B ‘-— o Q E
Submacro
‘ P R '
C Combinatorial logic F
(@)
MODULE Mt; MODULE M2;
INPUT A,B,C; INPUT O,P;
OUTPUTD,E, F; OUTPUT Q, R;
IMPLEMENTATION Impl M1; IMPLEMENTATION Impl M2;
DIRECTIVES DIRECTIVES

BLACKBOX M2(I1, I2);
ASSERT Al:=AIBIC;
TEST TI1:=DIEIF;

END;
MODEL M1 (FILE = “m]1.spice”");

END;

ASSERT A2:=0I *P;
TEST T2:=Q& "RI("Q&R);

END;
MODEL M2 (FILE = “m?2.spice™);

>

END;

®

Verification of supermacro M1 where two instances of submacros M2 are black-boxed: (a) hierarchy structure; (b) corresponding control
files.

needed. To meet this practical requirement, Verity allows
the user to specify any combinatorial relation between
the interfaces of different implementations.

A possible matching of two representations for a simple
latch example is shown in Figure 4. They differ in two
aspects: First, the specification (Spec) includes the gating
of the global clock signal Sys_clk by a separate select
signal Select. In the implementation (Impl), the clock
gating is handled externally, which virtually moves the
circuit interface into the latch. Second, the implementation
generates two polarities for the output signal Out, whereas
the specification produces only one.

To match the different interfaces between
representations, a generic method of black-boxing is used
in Verity. The idea is to map the actual interfaces of the
various implementations to a common generic interface by
applying user-defined combinatorial glue logic. For each

A. KUEHLMANN, A. SRINIVASAN, AND D. P. LaPOTIN

macro this combinatorial glue logic must be specified by
the designer. During verification, the glue logic block
replaces the actual black box producing the generic
interface common to all implementations. Figure 4(b)
shows the Verity control file, which contains the user-
specified glue logic in the INTERFACE section.

® Functional extractor

Verity uses a unified data structure for storing both gate-
level and switch-level circuits. The circuit representations
being compared, the given input constraints, and any
additional output tests are converted into that common
data representation. This allows the extraction algorithm to
work on the unified representation without distinguishing
between the actual verification tasks to be performed.
Moreover, this general extraction approach can be applied
to mixed representations where gate-level designs include

IBM J. RES. DEVELOP. VOL. 39 NO. 1/2 JANUARY/MARCH 1995

Actual latch interface

Spec

Data

Sys_clk

Select

Impl

Data
Out

Out_bar
Clk

Generic latch interface

MODULE Latch;
INPUT D,C;
OUTPUT Q;
IMPLEMENTATION Spec Latch;
INPUT Data, Sys-clk, Select;
OUTPUT Out;
INTERFACE
D:= Data;
C: = Sys_clk & Select;
Out:= Q;

END;
MODEL LatchSpec (FILE = "bla.vhd1");
ND;

END;

(a)

MODULE Latch;
INPUT D,C;
OUTPUT Q,
IMPLEMENTATION Impl Latch;
INPUT Data, Clk;
QUTPUT Out, Out_bar;
INTERFACE
D := Data;
C:= Clk;
Out:= Q;
Out.bar:= "Q;

END;
MODEL Latchlmpl (FILE = "bla.spice'");
ND.

s

END;

®)

Application of glue logic to match two different latch interfaces: (a) glue logic structure for two latch representations; (b) corre-

sponding control files.

transistor-level circuits, and vice versa. This feature is
useful for incremental verification of incomplete design
implementations. In other words, given a complete
specification, Verity can be applied to partial circuit
implementations where the missing design parts are
replaced by the specification. Details of the extraction
technique are described in the following sections.

Path-based extraction scheme

A channel-connected component is defined to be the
maximal set of transistors and nets such that every net
in the component is reachable from every other net by
traversing source-drain connections of transistors within
this component.

Verity uses an explicit path enumeration for extracting
the Boolean function of a channel-connected component.
For verification, the function of all channel-connected
components must be computed with respect to the primary
inputs. This is done in a recursive manner, starting from
the outputs. The advantage of this approach is that false
paths are eliminated during traversal because the functions

IBM J. RES. DEVELOP. VOL. 39 NO. 172 JANUARY/MARCH 1995

at controlling transistor gates along that path are known
with respect to inputs.

In contrast, the implicit enumeration approach of
ANAMOS is applied to a single channel-connected
component. It can be used to extract the function even if
the number of paths grows exponentially. In contrast,
fewer and less complex Boolean function operations
are required to obtain the final function using explicit
enumeration. For all practical cases in which Verity has
been applied, the potential problem of an exponential
number of true paths has not been encountered.

In the extraction model, MOS transistors are
represented by switches which have two switched
terminals and a control terminal corresponding to the MOS
drain, source, and gate connection, respectively. Let
N(G, §, W) denote a circuit with a set of logical gates
G ={G,, -, G}, aset of switches § = {S,+, 8}
and a set of nets W = {W, - -+, W } interconnecting the
logical gates and switches. Further, let / o CW be the set
of input nets and O; € W be the single output net of
logical gate G,. Similarly, C s € W and Ds,~ C W denote

A. KUEHLMANN, A. SRINIVASAN, AND D. P. LaPOTIN

157

158

b DG3 b
b
G
>—V 5
I G>i d- ‘_——E—_-
SG

o 1S ‘
1 D%GND
CW ={a, b,c d,f h

/UK, aln

NEG = {5, 5, Sg}

DW = {V,,, GND, a, b, c, d. £, g} POS ={S,, S,, 5}

Example of a mixed gate and switch-level circuit.

Table 1 Computation of the driving functions for various

gate types.

Gate type F° F!
Constant-0 (GND) 1 0
Constant-1 (V) 0 1
Primary input variable variable
AND 0 1

Vo fu N fw

v inpur:W,. A\ inpuerl.
OR 0 1
VAN i V' fu

v inpufsz. A\ inputsW'.

NOT f o o

the control net and the two switched nets of switch S,
respectively. For consistency, we assume that each net
connected to a primary circuit input or constant voltage
source is driven by a specific logical gate with no inputs.
Similarly, let each primary circuit output drive a logical
gate without an output.

On the basis of this circuit definition, two specific
groups of nets can be identified. First, the controlling nets
include the inputs of logical gates and the controlling nets
of all switches. Second, the outputs of logical gates form
the set of driven nets. More formally, the set of controlling
nets is defined as CW = {W, | (3G;: W, € I) Vv (3S;:

A. KUEHLMANN, A. SRINIVASAN, AND D. P. LaPOTIN

W, =C S/)}' Similarly, the set of driven nets is defined

as DW = {W, | 3G;: W, = OG]}. The set of switches is
partitioned into two groups: The set POS C § contains all
switches which close when a 1 is applied at their control
input. Similarly, the set of switches that close when a 0

is applied at the control input is included in NEG C S.
Physically, these two sets correspond to n-MOS and
p-MOS transistors, respectively.

An example of a mixed gate and switch-level circuit is
given in Figure 5. As shown, CW = {a, b, ¢, d, f, h}
includes all nets connected to transistor gates (a, b, f)
or to inputs of logical gates (b, c, d, h). The
outputs of logical gates form the set of driven nets
DW = {V,,, GND, a, b, c, d, f, g}.

The extraction of a Boolean function from a mixed
circuit representation is based on the concept of paths. A
path Ppl,pn = {Wpo, Sm, Wm, cee, Sp", an} is defined
to be a subset of the switches § and nets W such that
Dy, = W, » W5 1 <i=<n.Inother words, a path
P, ,, from source net W _ to sink net W, is defined to be
a loop-free interconnected sequence of switches between
these two nets. For example, nets e and /4 of the circuit in
Figure 5 are connected by two paths: P), = {e, S, h}
and Pih = {e, S,, h}. Note that this definition includes
paths containing a single net without switches, e.g.,

P, , = {a}. Such single-net paths define a self-connection.

For the sake of functional extraction, two Boolean
functions f :,’,i and f ;,i are assigned to each controlling net
W, € CW. These functions describe the conditions for
which the net is driven by 0 and 1, respectively. The four
possible value combinations (f°, ') = {(0, 0), (0, 1),
(1, 0), (1, 1)} correspond to net status: high impedance
(floating), logical-1, logical-0, and collision. Similarly, two
driving functions F f‘,,_ and F pl,,,_ are assigned to each driven
net W, € DW. They are computed by the driving gate
on the basis of the functions of the gate inputs. The
computation rules for a representative set of basic gate
types are provided in Table 1. For example, functions
F’ and F' of the Vo driver G, are set to 0 and 1,
respectively. An independent variable and its complement
are assigned to F' and F° of the primary inputs,
respectively (e.g., F al =a,F : = d). Further, internal
logical gates compute the gate function for F' and the
dual-gate function for F°. As an example, the driving
functions of net g in Figure 5 are F; =flvfi=¢vd
and F) = f, ANf; =cAd.

In the following, we assume that floating conditions
at controlling nets do not occur in a correct circuit
implementation. A generalization of the extraction scheme
which includes dynamic circuit techniques is discussed in
the subsection on time-sliced extraction for dynamic
circuits. According to the assumption that floating
controlling nets violate the chosen circuit technique, the

IBM J. RES. DEVELOP. VOL. 39 NO. 1/2 JANUARY/MARCH 1995

logical values at any controlling net W, are completely
determined by the set of paths which connect W, to
driven nets. Moreover, the functions f ,2,,_ and f ,1‘,, can
be calculated as follows:

fu=V (]%J/\FO%) (1)
VP

and

fu=V (i AFy), 2)
vP 7’

y
where fPi,j encodes the conditions for which path P, ,
conducts.

Using the formulas for calculating the functions
(f°, f') and (F°, F') of controlling nets and driven
nets, respectively, a recursive extraction algorithm can be
formulated. Starting from the output and test points, the
procedures shown in Figure 6 calculate the functions for
the entire input fan-in cone of these nets.

The calculation of the path functions fPij is based
on the controlling nets of the switches forming this path.
Depending on the switch type, f° or f ' is taken for p-MOS
or n-MOS transistors, respectively. The path function of
single-net paths without switches is defined as constant 1.

False-path elimination

In general, switch-level structures can contain an
exponential number of paths. Typical problematic
structures are arithmetic shift or rotate operations
implemented by flow trees of pass transistors. Since the
extraction algorithm is based on an explicit enumeration of
all paths, these circuits would result in an exponential run-
time complexity. As an example, consider the four-bit
barrel shifter [36] shown in Figure 7. The structure, formed
by 16 pass-transistors, contains 1313 paths from the data
outputs to the data inputs.

In a proper implementation of such circuits, the majority
of paths are false. That is, for all valid input patterns, most
of the paths are nonconducting. According to Equations
(1) and (2), false paths do not contribute to the logical
function of controlling nets. Therefore, they can be
eliminated from the enumeration process without affecting
the extracted net functions. Consider the example in
Figure 7. In normal operation, select inputs Shift0, Shiftl,
Shift2, and Shift3 are mutually exclusive. Any path
involving transistors controlled by different select inputs
(e.g., {5, S,}) is false.

For elimination of false paths, a pruning scheme is
included in the extraction algorithm. Starting from the
controlling net W,, the set of driving paths is generated by
recursively tracing connected switches to any driven net.
The path function is built during the traversal process. If at
any time during the traversal a given path becomes false,
further recursion is terminated. In the given example, the

IBM J. RES. DEVELOP. VOL. 39 NO. 12 JANUARY/MARCH 1995

Algorithm Compute_Function (W)

FOR all paths P, ; from a driven net W, to W, DO
Compute_Path_Function (P,);
Compute_Drive_Function (W));

END;

Calculate f::,i and f:,,i according to Equations (1) and (2);

END;

Algorithm Compute_Path_Function (Pi,j)
FOR all switches S, € P, ; DO
Compute_Function (Cy,);
END;

N\ fes

VS, €PN NEG

A AN A

Sk
VS EP,;NPOS

END;

Algorithm Compute_Drive_Function (W)
FOR all inputs W, of logical gate G, feeding W, DO
Compute_Function (W));
END;

Combine input functions according to Table 1;

END;

Extraction algorithm for the Boolean function.

path enumeration can backtrack after encountering §,
and S, from output Out3, since in normal operation
both transistors can never be active at the same time

(Shift0 A Shift3 = 0).

Extraction of combinatorial loops

A digital circuit containing structural loops is characterized
by some logical feedback from a gate output to its input.
Such loops do not necessarily cause sequential behavior. It
has been shown that certain combinatorial functions can be
implemented efficiently by circuits containing loops [37].
However, for gate-level designs, combinatorial circuits
with loops are usually not desired. For this description

A. KUEHLMANN, A. SRINIVASAN, AND D. P. LaPOTIN

159

160

Inp3 [ow

Shif3
Inp2 g

Shift2
Inp g > Ourl

% > Our0

Shiftl
Inp0 E

et

Shift0 >

Barrel shifter circuit which contains an exponential number of
paths.

CW = {a, b, c, d}
DW = {V,,, GND, a, b}

ASSERTA:= (a& "b) I ("a & b);

Example of a cyclic circuit structure.

level, circular structures cause numerous problems for
several design tasks, such as logic synthesis or automatic
test pattern generation.

In contrast, because of their performance advantage, for
customized transistor-level combinatorial circuits, circular
structures are very popular. A customized implementation

A. KUEHLMANN, A, SRINIVASAN, AND D. P. LaPOTIN

of a pulse-to-static converter circuit is shown in Figure 8.
For the two valid input patterns a, b = {0, 1], [1, 0], the
output values of the cross-coupled NANDs are uniquely
determined and do not depend on past circuit states.
However, because of the circular network structure, the
recursive circuit traversal described above is not
applicable.

The general configuration of circuits containing
structural loops is given in Figure 9(a). The behavior of
structural loops can be classified into two types: 1) False
loops (also referred to as combinatorial loops) are not
history-dependent, and they do not cause sequential
behavior. 2) True loops (sequential loops) can store
internal states and lead to sequential behavior.

Verity applies a loop examination technique related to
that presented by Malik in [38]. The recursive network
traversal identifies a structural loop by encountering a net
which is marked as currently visited. The loop is then
broken by inserting two new independent variables v° and
v' [see Figure 9(b)]. After the backtracking reaches the
broken net again, the extracted functions f vl and f vo are
tested for the loop type according to the following
conditions:

afe 3!

3% /\m= 0 = false loop

and
al’fO aZfl
pwrw =0 VW;tO#trueloop,

where of/av = f| @ f]|; -

As mentioned previously, Verity does not include
sequential logic verification. True loops cause sequential
circuit behavior and are flagged as violations of the
extraction model. If a false loop is encountered, the loop
must be revisited. For the extracted functions f,, of all
loop nets W, the variables v" and v are replaced by the
corresponding functions f 3 and f ul, respectively. This
guarantees that the artificial variables v° and v' are
propetly eliminated for all other fan-outs from loop nets.

As an example, consider the extraction of the function
of output d for the circuit shown in Figure 8. The path
traversal starts to enumerate all paths driving net d,
beginning with P, = {V, S, d}. This calls
recursively the extractor for net ¢, which is controlling
switch §;. Assuming that path P, = {V, S,, c} is
traversed first, the extractor is called once more for net d,
which was marked during the previous visit. Here, two
variables v° and v' are created. After backtracking, the
resulting net functions for d are f§ = (v° VV @) A b and
! dl = (v' A a) V b. After including the input constraint
(@ Ab)V (b A @), they simplify tofg =4q andf; =gq
Since these functions do not depend on v° and v', the
structure is classified as a false loop.

IBM J. RES. DEVELOP. VOL. 39 NO. 1/2 JANUARY/MARCH 1995

Time-sliced extraction for dynamic circuits

So far, high-impedance net conditions have been excluded
from consideration in the previously described extraction
techniques. Most standard static CMOS techniques do not
allow such undefined net conditions for proper circuit
designs. However, dynamic CMOS techniques typically
utilize precharging in order to achieve fast and compact
circuit implementations. In dynamic circuits, controlling
nets are not necessarily driven at all times during the
clocking cycle. . D) E —» — Output

As an example, consider the dynamic CMOS circuit in o f
Figure 10. Net c is precharged to V, while reset is active.) S
During the evaluation phase, reset is deactivated, and ¢
might be discharged by a connection to GND, depending
on the values of nets a and b. For the conditiona A\ b = 0,
net ¢ holds its precharged value 1; otherwise, it evaluates
to 0.

Verity applies a time-slicing approach to handle dynamic
circuit techniques in a general way. The basic idea is to
split the clock cycle into multiple slices and to extract an
independent function for each slice. The slice functions
for the nets are then combined to form the final net
function.

Let us assume that the given circuit technique uses an
n-phase clocking scheme. The driving functions (F 3,_[1],

Combinatorial
logic

Combinatorial
logic

Output

(a)

“a

General structure of cyclic circuits: (a) circuit loop; (b) broken
loop.

Fy[1]), *++, (FS[n], F,[n]) for the primary inputs and F L F o =o. &]}m

the clock inputs are specified according to a user-defined g, F 21 =04

clocking scheme. For example, clock signal reset in the 0.1 S reser

two-phase dynamic circuit of Figure 10 is activated during 10 D'T_q

the precharge phase and deactivated during evaluation.

The corresponding driving functions for precharge and 0.q g |,

evaluation are F, _[1] = 1, F. [1] = 0 and F)_[2] = 0, 1a D'_'l

Fr’mt[2] = 1, respectively. In this particular case it is G,

assumed that the primary data inputs are inactive during ?:g D_L..‘

precharge and driven by independent variables during

evaluation. CW = {reset, a, b, c, d}
In the general case, a set of n functions (£ [1], ——-I '

vaV,-[ID’ e (f&i[”]’ f‘lvi[n]) is computed for each 0,0 Gs DW = {Vop, GND, reset, a, b}

controlling net W, by independently applying the extraction L1 D%GND

algorithm for each slice. To form the final combinatorial

function, the individual slice functions are combined by the
following scheme:

f'= fo[”] V (F'[n] /\fo[n - 1] Example of aynic CMS circuit. o

VAREERVE AN] /\f°[1])

2=<i=n

and This scheme effectively represents the electrical function
_ of dynamic circuits, where for each clock phase the
fr=fTnv (AL Tn - 1) previous value is either kept or overwritten by an active
path to a driven net. As an example, consider net ¢ in
v v A Il AfF . Figure 10. The extracted functions are calculated as
2sisn follows:

IBM J. RES. DEVELOP. VOL. 39 NO. 12 JANUARY/MARCH 1995 A. KUEHLMANN, A. SRINIVASAN, AND D. P. LaPOTIN

161

162

.Table 2 Verification statistics for three ongoing microprocessor projects.

Project No. of No. of Percent of Average
macros Verity runs macros that number of
passed first runs per
attempt macro
P1 933 6240 54.1 6.69
P2 704 4051 42.9 5.75
P3 262 1405 49.6 5.36
f 2 [11=0, all valid input patterns which exercise the undesired
fiiy=1 behavior. For example, for the given verification
; configuration of Figure 1, output value ¢ = 1 detects the
f21=aANb, cases in which FSMs 4 and B are functionally unequal.
fl[z] = 0. Since ¢ is calculated on the basis of primary inputs x and
[4

The final functions are

fi=FIaV AL,
FL=F2VERIAFIIL
fg =a b,
fl=avb.

In Verity, the verification scheme for time-sliced
extraction is customizable in a technology-dependent
control file. This description includes the declaration of net
types, their driving functions, the clocking scheme, the
extraction method for each time slice, and the Boolean
relations between the extracted slice functions. The
control file also includes specific consistency checks to
be performed for the net types at each time slice. For
example, in the absence of strength-dependent logic, the
expression f° A f' = 0 tests whether there exists a valid
input pattern for which the net is pulled to 1 and 0 at the
same time, resulting in a collision. In the same manner,
£V f! =1 tests for floating conditions. The tests
essentially validate the extraction model and alert the
designer to specific undesirable circuit conditions.

® Error diagnosis
Functional verification, which includes user-specified
tests, proves the correctness of two different circuit
representations. In the case of a miscompare or failing
test, the verification program must provide a detailed
error report for finding and correcting the problem. For a
productive application of formal verification in practical
design projects, an effective debugging aid is as important
as the actual comparison algorithm.

For each verification problem (i.e., miscomparing
outputs, failing output tests, or failing consistency checks)
Verity calculates a counter-example function representing

A. KUEHLMANN, A. SRINIVASAN, AND D. P. LaPOTIN

present state variables z, each minterm of ¢ represents a
counter-example pattern for the inputs and state register
that would exercise a functional miscompare between

y* and y®.

) Verity—uses an arbitrary set of minterms from ¢ as a
basis for the counter-example calculation. Let m be a
minterm of the error function c. For each net W, € W
of the erroneous implementation, a counter-example
value lW,~ € {0, 1, F, C} is calculated as follows:

if fl,0m) =1Afm) =0,
it flm) =0 Afm) =1,
it fym) =0Af,m)=0,
it flm) = 1Afm) =1,

N m o~ o

where 0, 1, F, and C express logical zero, logical one,
floating condition, and collision at the net, respectively.

In addition to the calculation of counter-example
patterns, Verity applies an efficient error-diagnosis
algorithm which classifies the nets according to their
probability of causing the error. Given a maximum
number of assumed errors, this algorithm determines a
circuit region which includes at least one erroncous
net. Details of the diagnosis approach can be found in
Reference [39].

Practical application and results

Verity was developed in close collaboration with three
microprocessor projects; it was intended to perform
complete chip verification over a wide range of practical
circuit sizes and topologies. The program is in daily use at
five IBM sites and to date has verified more than 2000
logic macros ranging in size from 100 to 25000 MOS
transistors. Although chip-level verification has not been
completed for any of these ongoing projects, large parts of
the designs containing significant portions of the final chips
have passed hierarchical verification.

IBM J. RES. DEVELOP. VOL. 39 NO. 1/2 JANUARY/MARCH 1995

Table 3 Verity performance for a set of randomly selected design examples.

No. of
transistors/
No. of nets
(excluding
black boxes)

Macro No. of inputs/

No. of outputs

No. of CPU
black time
boxes (s)

1487/499
70/65
849/875
224/302
66/65
262/265
194/64
172/20
794/943

7911/4068
956/1129
22944/8833
7876/4702
802/341
1585/1373
800/474
1212/823
8775/4943

435.2
40.3
2526.5
266.3
3.6
40.9
3.9
202.4
64376.7

Table 2 gives global usage statistics for the three design
projects. The second and third columns provide the
number of macros that have been verified and the total
number of Verity runs for each project, respectively. As
reported in the fourth column, about half of the macros
passed functional verification on the first attempt. For the
remaining macros, logical errors caused by an incorrect
circuit implementation or an erroneous high-level
specification were discovered. It is interesting to note that
this ratio was consistently observed over the duration of
these projects. The reported average number of Verity
applications per macro does not necessarily reflect the
total number of attempts to get the circuit functionally
correct. Often, after small changes in the specification or
implementation, verification for a particular macro is
repeated to check that no errors were introduced.

Table 3 shows the performance of Verity for a set of
randomly selected macros from a particular project. As a
measure of the circuit complexity, the number of macro
primary inputs and outputs, the number of MOS
transistors and internal nets (excluding the black-boxed
circuit parts), and the number of black-boxed submacros
are given. The reported CPU times and memory
requirements are taken from a RISC System/6000® Model
580 processor. For many circuits Verity can be used
interactively, producing a verification report within
minutes. For larger macros, Verity runs are typically
submitted to a pool of powerful workstations with more
computing resources.

Designer feedback from the three projects indicates that
the effort required to use Verity effectively for complete
chip verification depends strongly on the overall
methodology. Many designers who incorporated
verification early in the development process have found
Verity invaluable. Often, because of the short turnaround
time, the actual circuit designs are done in a trial-and-error
fashion, switching between verification and correction. For
such design styles, Verity provides incremental verification

IBM J. RES. DEVELOP. VOL. 39 NO. 1/2 JANUARY/MARCH 1995

in which the user can verify an incomplete schematic.
Missing circuit implementations are replaced by their
corresponding high-level specification. This capability has
proved to be a powerful design verification framework
that is particularly suited to manual circuit entry.

On the other hand, the later the verification tool is
introduced in the macro design process, the more effort is
necessary to make the circuit pass. Adjustments to the
macro interface, the latch, and the register structure, and
repartitioning of either design representation could be
required. When introduced at a late stage, these changes
are expensive and typically have an impact on the design
schedule.

Conclusions

In an effort to optimize the performance of digital systems,
designers of high-performance circuits are moving from
correct-by-construction synthesized methodologics to
hand-crafted custom design. This fundamental shift has
necessitated more complete methods for verifying correct
system behavior. Verity addresses the problem of formally
proving the correctness of a system implementation with
respect to the specification.

Verity applies symbolic comparison techniques which
implicitly prove the functional equivalence between a
CMOS circuit implementation and an RTL specification for
all possible input patterns. Since the underlying extraction
algorithms are based on a switch-level model of the MOS
circuit, Verity effectively removes the need for expensive
circuit and switch-level simulation for the purpose of
determining correct Boolean behavior. Moreover, formal
techniques provide an exhaustive comparison, which
makes the generation of simulation patterns unnecessary.

The algorithms applied in Verity permit the verification
of entire microprocessor systems. The success of formal
methods on such a large scale requires a strict design-for-
verification methodology. This significantly affects the
overall design partitioning, the hierarchical circuit

A. KUEHLMANN, A. SRINIVASAN, AND D. P. LaPOTIN

structure, the chosen register methodology, and the
assertions of logical boundary conditions. Successful
use of Verity requires an early consideration of such
issues in the design cycle.

Future research on Verity will address two
areas—extending the applicable macro size and
incorporating sequential verification capabilities. An
exploration of alternative representations of Boolean
functions could result in a significant increase in the
verifiable circuit size. This includes extensions to existing
BDD algorithms, test-pattern approaches, probabilistic
methods, and various combinations. The incorporation of
sequential verification algorithms into Verity will permit
checking of the actual registers during hierarchical
verification. Further, in conjunction with algorithms to
determine automatically the register/latch correspondencies
between the two design representations, such techniques
will help to relax the strict requirements on a design-for-
verification methodology.

Acknowledgments

The authors would like to thank Florian Krohm at the IBM
Thomas J. Watson Research Center, Geert Janssen and
Arjen Mets of the Technical University Eindhoven, and
David Cheng of the University of California at Santa
Barbara for their significant contributions in the
development of Verity. They also wish to thank Victor
Rodriguez of IBM Austin, David Appenzeller of IBM
Burlington, and Terry Chappell, Barbara Chappell, and
Kenneth Shepard at the IBM Thomas J. Watson Research
Center for their invaluable input.

PowerPC is a trademark, and RISC System/6000 is a registered
trademark, of International Business Machines Corporation.

References

1. D. K. Beece, R. Damiano, G. Papp, and R. Schoen,
*“The EVE Companion Simulator,”” Proceedings of the
European Conference on Design Automation, Glasgow,
Scotland, IEEE, March 1990, pp. 290-295.

2. M. M. Denneau, ‘“The Yorktown Simulation Engine,”’
Proceedings of the 19th ACM/IEEE Design Automation
Conference, Las Vegas, June 1982, pp. 55-59.

3. I. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan,
and D. L. Dill, ‘“‘Symbolic Model Checking for Sequential
Circuit Verification,”’ IEEE Trans. Computer-Aided
Design 13, 401-424 (April 1994).

4. G. Ditlow, W. Donath, and A. Ruehli, ‘‘Logic Equations
for MOSFET Circuits,”’ Proceedings of the IEEE
International Symposium on Circuits and Systems,
Newport Beach, CA, May 1983, pp. 752-755.

5. Z. Barzilai, L. M. Huisman, G. M. Silberman, D. T. Tang,
and L. S. Woo, *‘Simulating Pass Transistor Circuits
Using Logic Simulation Machines,’’ Proceedings of the
20th ACM/IEEE Design Automation Conference, June
1983, pp. 157-163.

6. R. E. Bryant, ‘‘Boolean Analysis of MOS Circuits,”” IEEE
Trans. Computer-Aided Design CAD-6, 634-649 (July

164 1987).

A. KUEHLMANN, A. SRINIVASAN, AND D. P. LaPOTIN

10.

11.

12.

14.
15.

16.

17.

18.

19.

20.

21.

22,

23.

24,

25.

. D. T. Blaauw, D. G. Saab, P. Banerjee, and J. A.

Abraham, ‘‘Functional Abstraction of Logic Gates for
Switch-Level Simulation,’” Proceedings of the European
Conference on Design Automation, Amsterdam, The
Netherlands, IEEE, February 1991, pp. 329-333.

. R. E. Bryant, ‘‘Extraction of Gate Level Models from

Transistor Circuits by Four-Valued Symbolic Analysis,”
Digest of Technical Papers of the IEEE International
Conference on Computer-Aided Design, Santa Clara, CA,
pp. 350-353 (November 1991).

. W.J. Dally and R. E. Bryant, ‘‘A Hardware Architecture

for Switch-Level Simulation,”” IEEE Trans. Computer-
Aided Design CAD-4, 239-249 (July 1985).

E. H. Frank, ‘‘Switch-Level Simulation of VLSI Using
Special-Purpose, Data-Driven Computer,”” Proceedings of
the 22nd ACM/IEEE Design Automation Conference, June
1985, pp. 735-738.

S. B. Akers, “‘Binary Decision Diagrams,”” IEEE Trans.
Computers C-217, 509-516 (June 1978).

J.-C. Madre and J.-P. Billon, ‘‘Proving Circuit Correctness
Using Formal Comparison Between Expected and
Extracted Behaviour,”” Proceedings of the 25th
ACMI/IEEE Design Automation Conference, June 1988,
pp. 205-210.

. J. Jain, J. Bitner, D. S. Fussel, and J. A. Abraham,

‘‘Probabilistic Design Verification,”’ Digest of Technical
Papers of the IEEE International Conference on
Computer-Aided Design, Santa Clara, CA, pp. 468-471
(November 1991).

J. P. Roth, ‘““Hardware Verification,”” IEEE Trans.
Computers C-26, 1292-1294 (December 1977).

D. Brand, ‘‘Verification of Large Synthesized Designs,”
Digest of Technical Papers of the IEEE International
Conference on Computer-Aided Design, Santa Clara, CA,
pp- 534-537 (November 1993).

W. Kunz, “HANNIBAL: An Efficient Tool for Logic
Verification Based on Recursive Learning,”’ Digest of
Technical Papers of the IEEE International Conference on
Computer-Aided Design, Santa Clara, CA, pp. 538-543
(November 1993).

G. L. Smith, R. J. Bahnsen, and H. Halliwell, ‘‘Boolean
Comparison of Hardware and Flowcharts,”” IBM J. Res.
Develop. 26, 106-116 (January 1982).

M. Monachino, ‘‘Design Verification System for Large-
Scale LSI Designs,”” IBM J. Res. Develop. 26, 89-99
(January 1982).

R. E. Bryant, ‘“‘Graph-Based Algorithms for Boolean
Function Manipulation,”’ IEEE Trans. Computers C-35,
677-691 (August 1986).

M. Fujita, H. Fujisawa, and Y. Matsunaga, ‘‘Variable
Ordering Algorithms for Ordered Binary Decision
Diagrams and Their Evaluation,’’ IEEE Trans. Computer-
Aided Design 12, 6-12 (January 1993).

R. Rudell, ‘‘Dynamic Variable Ordering for Ordered
Binary Decision Diagrams,”’ Digest of Technical Papers of
the IEEE International Conference on Computer-Aided
Design, Santa Clara, CA, pp. 42-47 (November 1993).
A. Shen, S. Devadas, and A. Ghosh, ‘‘Probabilistic
Construction and Manipulation of Free Boolean
Diagrams,’’ Digest of Technical Papers of the IEEE
International Conference on Computer-Aided Design,
Santa Clara, CA, pp. 544-549 (November 1993).

M. Blum, A. K. Chandra, and M. N. Wegman,
‘“Equivalence of Free Boolean Graphs Can Be Decided
Probabilistically in Polynomial Time,’’ Info. Proc. Lett.
10, 80-82 (March 1980).

M. C. McFarland, ‘‘Formal Verification of Sequential
Hardware: A Tutorial,”’ IEEE Trans. Computer-Aided
Design 12, 633-653 (May 1993).

A. Gupta, ‘‘Formal Hardware Verification Methods: A
Survey,”” Formal Meth. in Syst. Design 1, 5-92 (1992).

IBM J. RES. DEVELOP. VOL. 39 NO. 1/2 JANUARY/MARCH 1995

26. F. K. Hanna and N. Daeche, ‘‘Specification and
Verification Using Higher-Order Logic,’” Proceedings of
the 7th Symposium on Computer Hardware Description
Languages, IFIP WG 10.2, 1985.

27. A. Camilleri, M. Gordon, and T. Melham, ‘‘Hardware
Verification Using High-Order Logic,”” From HDL
Descriptions to Guaranteed Correct Circuit Designs, D.
Borrione, Ed., North-Holland Publishing Co., Amsterdam,
1987, pp. 43-67.

28. S. Devadas, H.-K. T. Ma, and A. R. Newton, ‘‘On the
Verification of Sequential Machines at Different Levels of
Abstraction,”” Proceedings of the 24th ACM/IEEE Design
Automation Conference, 1987, pp. 271-276.

29. O. Coudert, C. Berthet, and J. C. Madre, ‘‘Verification of
Sequential Machines Using Boolean Functional Vectors,”
Proceedings of the IMEC-IFIP International Workshop on
Applied Formal Methods for Correct VLSI Design,
November 1989, pp. 111-128.

30. K. L. McMillan, Symbolic Model Checking, Kluwer
Academic Publishers, Boston, MA, 1993,

31. C. Ebeling, ““Geminill: A Second Generation Layout
Validation Program,’’ Digest of Technical Papers of the
IEEE International Conference on Computer-Aided
Design, Santa Clara, CA, pp. 322-325 (November 1988).

32. R. E. Bryant, ‘A Switch-Level Model and Simulator for
MOS Digital Systems,’’ IEEE Trans. Computers C-33,
160-177 (February 1984).

33. R. E. Bryant, D. Beatty, and K. Brace, ““COSMOS: A
Compiled Simulator for MOS Circuits,”” Proceedings of
the 24th ACMIIEEE Design Automation Conference,
1987, pp. 9~16.

34. A. Jain and R. E. Bryant, ‘‘Mapping Switch-Level
Simulation onto Gate-Level Hardware Accelerators,”
Proceedings of the 28th ACM/IEEE Design Automation
Conference, June 1991, pp. 219-222.

35. T. Kam and P. A. Subrahmanyam, ‘‘Comparing Layouts
with HDL Models: A Formal Verification Technique,”’
Proceedings of the IEEE International Conference on
Computer Design, Boston, MA, October 1992, pp.
588-591.

36. C. Mead and L. Conway, Introduction to VLSI Systems,
Addison-Wesley Publishing Co., Reading, MA, 1980.

37. W. H. Kauz, ‘“The Necessity of Closed Loops in Minimal
Combinational Circuits,”” IEEE Trans. Computers C-19,
162-164 (February 1970).

38. S. Malik, ‘‘Analysis of Cyclic Combinatorial Circuits,”
Digest of Technical Papers of the IEEE International
Conference on Computer-Aided Design, Santa Clara, CA,
pp. 618—625 (November 1993).

39. A, Kuehlmann, D. I. Cheng, A. Srinivasan, and D. P.
LaPotin, ‘‘Error Diagnosis for Transistor-Level
Verification,”” Proceedings of the 31st ACMI/IEEE Design
Automation Conference, San Diego, CA, June 1994, pp.
218-224.

Received May 27, 1994; accepted for publication
September 26, 1994

IBM J. RES. DEVELOP. VOL. 39 NO. 12 JANUARY/MARCH 1995

Andreas Kuehlmann IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights,
New York 10598 (kuehl@watson.ibm.com). Dr. Kuehimann
received the Dipl.-Ing. degree and the Dr. sc, techn. degree in
electrical engineering from the Technical University Ilmenau,
Germany, in 1986 and 1990, respectively. From 1990 to 1991
he worked at the Fraunhofer Institute of Microelectronic
Circuits and Systems, Duisburg, Germany, where he was
engaged in the development of a design system for embedded
microcontrollers. In 1991 Dr. Kuehlmann joined the IBM
Thomas J. Watson Research Center in Yorktown Heights,
New York. After working on various problems in high-level
and logic synthesis, he concentrated primarily on verification
techniques for large custom CMOS designs. Dr. Kuehlmann’s
primary research interests are in the design and verification of
digital VLSI circuits, particularly in system design, high-level
and logic synthesis, design verification, and layout generation.

Arvind Srinivasan IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights,
New York 10598 (maxrep@watson.ibm.com). Dr. Srinivasan
received his B.Tech. degree in electrical engineering from the
Indian Institute of Technology, New Delhi, in 1988 and his
Ph.D. in electrical engineering and computer science from the
University of California at Berkeley in 1991. He is currently a
research staff member in the Design Verification and Analysis
group at the IBM Thomas J. Watson Research Center.

His work includes developing verification techniques for
microprocessors being designed within the IBM Corporation.
Dr. Srinivasan previously worked in IBM’s Large-Scale
Computing Division, where he developed design analysis
algorithms that were used in large-system design and provided
technical leadership in determining architectural trade-offs for
new computer organizations. His research interests include
formal verification for CMOS designs, asynchronous hardware
design and verification, and computer architecture.

David P. LaPotin IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights,
New York 10598 (dpl@watson.ibm.com). Dr. LaPotin received
the M.S. degree from Worcester Polytechnic Institute,
Worcester, Massachusetts, in 1981 and the Ph.D. degree in
electrical engineering from Carnegie-Mellon University,
Pittsburgh, in 1985. From 1978 to 1981 he was a member of
the technical staff at GTE Laboratories in Waltham,
Massachusetts, working in the area of custom chip design for
communication applications. Since 1985, he has been a
research staff member at the IBM Thomas J. Watson Research
Center, and is currently manager of the Design Verification
and Analysis Department. In 1993 he served as technical
program chair, and in 1994 conference chair, of the IEEE
Multi-Chip Module Conference. Dr. LaPotin’s s research
interests include CAD tools for VLSI, early system design
and analysis, and formal hardware verification.

A. KUEHLMANN, A. SRINIVASAN, AND D. P. LaPOTIN

165

