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In an effort to fully exploit CMOS performance, 
custom  design  techniques  are  used 
extensively in commercial  microprocessor 
design.  However, given  the  complexity  of 
current-generation  processors  and the 
necessity for manual  designer  intervention 
throughout  the  design  process, proving design 
correctness is a  major  concern. In this paper 
we discuss  Verity,  a  formal  verification 
program for symbolically  provtng the 
equivalence  between  a  high-level  design 
specification  and a MOS transistor-level 
implementation.  Verity  applies  efficient logic 
comparison  techniques  which implicitly 
exercise the behavior for all possible  input 
patterns.  For  a  given  register-transfer  level 
(RTL) system  model, which is commonly  used 
in present-day  methodologies,  Verity  validates 
the  transistor  implementation with respect to 
functional  simulation  and verification 
performed  at  the RTL level. 

Introduction 
The  design of complex digital systems requires verifying 
the correctness of the implementation with respect to the 
intended function. For example, large computer designs 
integrating many individual circuit components must be 
checked for numerous characteristics including static 
function, timing, testability, and manufacturability. A 
complete verification strategy is  not only important for 
lower development cost and shorter design duration, 
it  is a prerequisite for successful system design. 

A verification technique proves a set of user-defined 
design properties in terms of specific modeling criteria. 
The accuracy of the model  and the complexity of the 
algorithms determine the practical limitations of a given 
technique. Typically, the trade-off between accurate results 
and  efficient  usage leads to a range of different  verification 
methods applied at different levels of abstraction. 
Techniques for verifying detailed models of smaller circuit 
pieces are complemented by more abstract methods 
working  on a larger scale. This hierarchical approach is 
especially important for practical usage of verification 
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algorithms  with exponential computing time  or  memory 
complexity. 

To validate the functional behavior of large system 
designs, the complete system is  usually  modeled at an 
abstract level  and exposed to the intended environment 
by  simulation. For microprocessors, simulation typically 
includes executing a kernel subset of the designated 
operating system, running selected software applications, 
or testing random sequences of processor instructions. 
Much  effort has been spent in improving the coverage of 
the validation process by accelerating existing algorithms 
for software simulation [l], applying hardware simulation 
techniques [2], or using prototype implementations based 
on  programmable  logic devices. Recent research in the 
verification area is focused on  applying  formal techniques 
for testing higher-level system properties [3]. However, 
except for limited results, no breakthrough for general 
applications has yet been made. 

becomes the definition of the intended system function. 
Therefore, this model is often referred to as the golden 
specification. Starting with  this  high-level  model, a detailed 
implementation can be derived automatically, manually, or 
(as  is often the case) by a combination of both methods. A 
design technique based on automatic synthesis significantly 
limits the possible implementation styles and therefore 
compromises the area and  timing performance of the 
results. However, assuming that the applied  algorithms 
are correct, synthesis preserves the functionality of the 
abstract specification. Besides reducing the design  time, 
this is a major advantage of automated implementation 
techniques. Optionally, functional verification of the final 
design is applied to confirm the correctness of the 
synthesis algorithms. 

To maximize the performance of  CMOS processors, 
custom design exploits elaborate manual circuit and layout 
techniques.  Since  the  circuit  design is done  independently of 
the golden specification, a separate functional verification 
step for the final  implementation  is necessary. There are 
two approaches to custom circuit verification: 

After validation through simulation, the abstract model 

1. The system-level simulation is repeated on the switch- 
level  model of the CMOS circuit.  The  smaller  granularity 
of this model causes a significant increase in simulation 
complexity. This drastically reduces the number of 
simulation patterns which  can be applied  in a given 
time, resulting in a corresponding decrease in overall 
verification coverage. This problem has been addressed 
by abstracting a gate-level model  from the transistor 
representation [4-81 and by using hardware accelerators 
for switch-level simulation [9, lo]. However, even with 
these improvements, the repeated functional simulation 
on the circuit level  is  highly CPU-time-intensive and 
impractical in  an interactive debugging environment. 

2. The functional behavior of the transistor-level 
implementation  and the high-level  specification are 
exhaustively compared. Formal verification techniques 
can be used to symbolically prove the equivalence 
between the input/output behavior of two circuit 
representations for all possible input sequences. The 
comparison indirectly validates the transistor-level 
implementation  with respect to all results obtained 
from the functional simulation of the specification. 

In this paper we present Verity, a formal  verification 
tool which follows the second approach. It is  applicable for 
gate-level designs as well as for transistor-level circuits 
with a wide variety of implementation styles including 
static and dynamic techniques. Verity is part of the design 
methodology for several microprocessors developed within 
IBM,  including PowerPC” implementations. It is  being 
used for the following  verification tasks: 

Verity compares the CMOS circuit implementation of the 
system hierarchically with the high-level specification. 
Although the specification  is declared as golden, in 
practical design scenarios miscompares typically uncover 
errors in both representations. Therefore, besides 
checking the implementation, formal comparison also 
provides additional confidence in the correctness of the 
golden  model. 
Verity performs a variety of consistency checks on the 
transistor circuits. These tests verify that a specific 
design style is obeyed. For example,  floating  net 
conditions can be detected in which the logical state 
of a net  is  undefined. 
Verity can use and test functional boundary conditions 
provided as logical assertions by the designers. For 
example, an orthogonality assertion might be imposed on 
the input  signals of a circuit for which exactly one signal 
is active at a given  time. Verity uses these assertions to 
constrain the verification process. Further, the circuit 
generating these input  signals  is tested for orthogonality 
to check whether the assumption is correct. 

The paper is structured as follows:  In the next section, 
the verification problem is characterized, and previous 
approaches in this area are summarized. In subsequent 
sections the general verification  methodology for applying 
Verity is outlined and specific extraction algorithms 
are discussed. Finally, results and conclusions are 
presented. 

Verification  problem 
The  verification of transistor-level circuits can be  divided 
into two subproblems. The first  problem is to extract a 
Boolean interpretation of the transistor-level network. 
The second problem  is the verification of the Boolean 



representation by some formal method. In this section we 
characterize both subproblems and introduce preliminary 
concepts needed for their solution. 

Logic verification of Boolean networks 
We refer 'to formal verification as  a technique which 
exhaustively proves certain functional design properties. 
For example, formal verification might be used to show the 
equivalence of two circuit representations. We  limit our 
discussion to static functional behavior, neglecting any 
delay of circuit elements. Initially, we also assume that the 
circuit representations are based on a synchronous single- 
clock, finite-state machine (FSM) model. Extensions of 
the basic model to more elaborate design styles such 
as multiphase dynamic circuits are discussed in the 
subsection on  time-sliced extraction for dynamic circuits. 

Assume that two FSMs, A and B,  are to be compared. 
Intuitively, A and B are functionally equivalent if they 
have an identical interface and  if,  from a given  pair of 
equivalent initial states, they produce the same sequence 
of output values for any  valid sequence of input values. 
Figure 1 illustrates the equivalence check for two 
synchronous FSMs. Let CA and C B  denote the 
combinatorial part and SA and S B  denote the set of state 
registers of machines A and B,  respectively. Further, let 
x = {xl, ,x,} be the set of inputs, y - = { y l ,  , y,} 
be the set of outputs, z = {zl, , zk} be the set of 
present-state variables, and z' = { z i ,  * , 2;) be the set 
of next-state variables. Superscripts A and B distinguish 
between the two machines. X [ t ] ,   Y [ t ] ,   Z [ t ] ,  and Z ' [ t ]  are 
used to denote the vectors of values at clock cycle t for 
the inputs, outputs, present-state variables, and next-state 
variables, respectively. 

machineA X B is  built. Inputs zA and xB are 
interconnected and driven by a common set of independent 
variables x. All corresponding outputs are compared 
painvise by XOR functions whose results are combined 
to form  signal c. The two machines are said to be 
functionally equivalent if and only if, after S A  and SB are 
initialized to their corresponding initial states ZAIO] and 
z ~ [ o ] ,  respectively, any input sequence ( ~ 1 0 1 ,  - - * , ~ [ t l )  
produces a constant value of 0 at c .  

For the sake of functional comparison, a product 

If FSMsA and B do  not have state registers, each 
circuit implements a combinatorial function where the 
output values Y [ t ]  do not depend on past input values 
X [ t  - i ] ,  1 5 i 5 t .  In this case, successful comparison 
of the two circuits for a single  clock cycle proves their 
equivalence for any input sequence. This case is  classified 
as combinatorial log'c verification. The  more  general case, 
whereA and B contain arbitrary state registers, is referred 
to as sequential logic verification. 
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4 FSMs. 
General  configuration  to  prove  the  equivalence  between  two 

Combinatorial logic verification 
Most  published work in the area of combinatorial 
verification can be  classified into two basic approaches: 

1 .  In the first approach, the Boolean function of  all 
outputs of CA and CB is converted into some unique 
(canonical) form [ll-131. A structural comparison of 
this unique representation is  used to draw conclusions 
about their functional equivalence. Since the worst-case 
size of canonical representations of Boolean functions 
grows exponentially with the number of inputs, 
excessive memory requirements limit their applicability 
to general Boolean functions. 

generation. An input pattern is determined which causes 
conflicting output values for the two circuits [14-161. If 
a pattern does not exist, the circuits are functionally 
equivalent. The search for a counter-example is 
performed on the circuit structure. In the worst case, 
this technique may require an exhaustive enumeration 

2.  The second approach is adopted from test pattern 
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of all  possible input  patterns,  thus causing  run-time 
problems  for  general  network  structures. 

One of the first  practical programs  used in industry  for 
verifying  large logic designs  was  SAS (Static  Analysis 
System) [17]. SAS is based  on  the DBA (Differential 
Boolean Analyzer) and  ESP  (Equivalent  Sets of Partials) 
algorithms,  which are similar to  unordered  BDD (Binary 
Decision  Diagrams) [ 111 in their  unreduced  and  reduced 
forms,  respectively. Although SAS had significant 
restrictions  on  the applicable  design size, it was 
successfully  applied to complex computer designs 
within IBM [18]. 

The  Reduced  Ordered Binary  Decision  Diagram 
(ROBDD) developed  by  Bryant [19] is one of the most 
popular  canonical  structures  for  representing Boolean 
functions.  The  reasons  for  the  success of ROBDDs are 
their compact  structure, which can  be manipulated 
efficiently, and  their wide  applicability for many  practical 
problems.  Ordered BDDs  employ  a  global  ordering of the 
input  variables.  Depending on  the  function,  the ordering 
sequence greatly  affects the  total size of the overall data 
structure.  Therefore, heuristics based  on  the circuit 
structure  are  often  used  to  determine a good  ordering 
before BDD construction  starts [20]. Other  approaches 
incorporate ordering  algorithms into  the  BDD  software by 
dynamically reordering  the variables  during construction 
of the  BDD [21]. Various modifications of the basic  BDD 
structure  attempt  to enlarge the  set of Boolean functions 
for which BDDs  can  be efficiently built [22]. 

combinatorial  functions  uses probabilistic methods by 
hashing  Boolean functions  to integer  values [13, 231. Since 
this  is a one-to-many  mapping, unequal  functions might be 
recognized as  equal.  The probability of false  positives can 
be  greatly  reduced by repeating  this process with different 
hashing functions.  One problem  with  probabilistic 
approaches is the calculation of the  hash  value.  It  can be 
done with  polynomial  time  complexity  only if the network 
representation of the Boolean function complies with 
certain  constraints.  However, obtaining  this specific 
structure might be  as  complex  as building an equivalent 
BDD  representation. 

Another  fundamental  approach  for comparing 

Sequential  logic verz$cation 
There  are a variety of approaches  for functional 
verification of general  machines. A comprehensive 
overview  can  be found in [24, 251. The different techniques 
fall into  two categories: 

1. Techniques  adapted  from  theorem proving based  on 
higher-order logic models take a top-down view of the 
hardware verification  problem [26, 271. They iteratively 

152 modify the  hypothetical  theorem by applying  axioms 
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or  other previously proven  theorems until  it becomes 
tautologic. Because of their generality,  these  methods 
can model almost  any  behavioral  system  property. 
However,  these  approaches  also  require a great  deal of 
user knowledge and guidance  in order  to successfully 
verify practical designs. 

approach  by explicitly or implicitly visiting all reachable 
states of the  product machine A X B [3, 28, 291. For all 
outgoing transitions  from  these  states,  they  check  that 
output c is logically constant  zero,  thus proving the 
functional equivalence of A and B with respect  to  the 
pair of initial states.  The  introduction of BDDs  for 
representing sets of states combined with a symbolic 
depth-first or breadth-first traversal of the  FSM  graph 
made  this approach applicable for  designs  with a large 
number of states [29, 301. In  contrast  to  theorem 
proving, state  exploration  techniques  can  be  automated. 
This  makes  them  easier  to  incorporate  into  practical 
design  methodologies. On  the  other  hand,  the  size of 
BDDs for  representing  sets of states  for  practical 
circuits  often grows  exponentially, which  limits their 
general  application. This is  a  major  problem since,  other 
than  dynamic variable ordering,  no  practical variable 
preordering technique  for  this application  is known. 

2. State  exploration  techniques follow a bottom-up 

If the  two  FSMs  to  be  compared  use  the  same  state 
encoding, with a known one-to-one correspondence 
between  the  state  bits ( z r ,  a * * ,  z,") + ( z : ,  - * .  , z : ) ,  
the sequential  verification task  becomes  far  more  tractable. 
In this case,  the following three  steps inductively prove  the 
equivalence of the  two machines: 

ZAIO] = Z'[O], 

v X [ t ] :  zA[r] = Z"t] j YA[t] = YE[& 

v X[t]: zA[r] = Z"[t] j Z"[t + 11 = z"t + 11. 

This effectively reduces  the  sequential verification  problem 
to  the  comparison of the  combinatorial  functions 
implemented by C A  and C'. In  other  words, if the 
machines start  from  the  same initial state, a sufficient 
condition for  the  equivalence of A and B is the  equivalence 
of their next-state  and  output  functions: 

Functional  circuit extraction 
In order  to perform  a Boolean  equivalence  check against a 
transistor-level implementation, a functional  extraction 
step is necessary.  This  can  be  approached in two different 
ways: 
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1. Using graph isomorphism algorithms, known 
substructures of the original circuit are identified  and 
replaced with an equivalent Boolean network [31]. 

2. The  Boolean behavior of the MOS circuit is completely 
calculated on the basis of a switch-level model [6]. 

For a practical application of the first approach, a 
complete set of known circuits must be maintained. 
Unidentified structures remaining in the circuit would 
require manual translation into a Boolean  model. 
This technique is  applicable for library-based design 
methodologies. However, it is not adequate for custom 
design styles where each circuit piece  is  specifically 
designed for the intended function and exotic circuit 
structures are often used. 

quite popular in simulation applications because of its 
practical trade-off between accuracy and  efficiency. The 
model  is based on an undirected graph, where the nodes 
and the branches model the nets and the MOS transistors, 
respectively. The nodes and branches are weighted by 
strength values which reflect the net capacities and the 
driving conductance of transistors. The steady-state 
response of the MOS circuit for a particular input 
stimulation is expressed by digital values (usually 
E (0, 1, X } ,  where X is unknown) assigned to the 
nodes and branches. The subsequent calculation of these 
values for a sequence of input patterns models the digital 
behavior of the actual circuit. 

The switch-level model for MOS circuits has become 

An elegant  definition of a switch-level model was 
introduced by Bryant  and  used in the  simulator MOSSIM  I1 
[32]. It restricts the possible strengths of nodes  and 
branches to a bounded set of integer values and  applies 
simplified operations  for  calculating  the  combined  strengths 
of interconnected  branches. For parallel  connections,  the 
maximum-strength  value  is  taken.  Similarly,  for  serial 
connections the minimum-strength  value  is  applied.  The 
application  of that  model  and a clever  grouping  scheme 
for the strengths of nodes  and  branches  results in a 
highly  efficient  simulation  algorithm. 

Several techniques based on switch-level simulation 
algorithms have been adopted for  deriving a functionally 
equivalent Boolean network from a transistor-level 
representation. These approaches extend the applicability 
of gate-level simulation techniques to the switch-level 
domain [S, 71. 

can be formulated by introducing independent Boolean 
variables for each circuit net. The circuit branches 
establish relations among these variables which can be 
modeled by a system of Boolean equations. The solution 
of that system encodes the complete static behavior of the 
circuit. However, because of the resulting  large  number of 
variables and the inability of handling node and branch 

A straightforward approach for switch-level extraction 
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strengths, this approach has limited applicability to 
practical design  verification. 

Path-based extraction techniques [4, 6, 71 use the 
concept of driven and controlling nets in transistor circuits. 
Driven nets include primary inputs or internal nets which 
hold charge. The set of controlling nets consists of  all 
primary outputs and nets which directly drive the gate 
of some transistor. Path-based extraction explicitly or 
implicitly enumerates all transistor paths from driven nets 
to controlling nets. ANAMOS [6] employs a path-based 
extraction scheme which is fully consistent with Bryant’s 
switch-level model developed for MOSSIM  I1 [32]. Based 
on implicit path traversal, it generates a gate-level circuit 
representation which models the entire switch-level 
behavior. ANAMOS  is  applied  primarily for gate-level 
simulation of transistor circuits [33, 341. 

A direct approach for functional verification of transistor 
circuits, described in [35], is based on  ANAMOS for 
switch-level extraction. A state register is  assigned to each 
functional circuit net, resulting in an  FSM  which models 
the entire sequential circuit behavior. After computing the 
steady-state response for a given set of input values, state 
enumeration techniques are applied for the verification 
step. However, the generality of this approach 
compromises the applicable circuit size. 

Verification  approach of Verity 

Overview 
Verity was designed for the functional verification of large 
CMOS designs such as complete microprocessor systems. 
It uses ROBDDs to represent the Boolean  function of the 
networks being compared. Various ordering algorithms 
working  on the circuit structure, in conjunction with 
dynamic variable ordering, are applied to manage the 
storage requirements of the BDDs. 

verification  problem. It is based on a verification  model in 
which corresponding state registers are to be identified. 
Although this generally limits the applicability of the 
program, the restriction to combinatorial equivalence 
enables the verification of more  complex circuits. Further, 
because of the maturity of combinatorial verification, it 
significantly improves the ability to predict whether a given 
circuit block can be  handled  by the verification tool, thus 
simplifying the overall design partitioning process. 

Verity employs a general data representation for  mixed 
circuit designs at the gate level or switch  level. A general 
path-based functional extraction algorithm  can  handle any 
combination of these models.  The extraction step is  tightly 
coupled with the actual verification step. This  makes it 
possible to efficiently  handle special circuit structures such 
as pass-transistor logic, false CMOS paths, or circuits 
which contain combinatorial loops. Further, circuit 

Verity does not address the general sequential 
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t Hierarchy  verification 
(supermacros) 

“Golden verification  line 

C 

F G H 

Hierarchy  nodes for which Verity is applied 
0 Hierarchy  nodes  which are flattened 

Hierarchy  nodes  which are black-boxed 

Hierarchy  example: (a) verification  skeleton; (b)-(d) set of result- 
ing verification  tasks. 

structures which potentially violate the combinatorial 
verification model, such as dynamic circuit nets or 
structural network loops, are modeled and handled in 
a general way. The approach can immediately identify 
whether a given circuit causes undesired sequential circuit 
behavior. 

The verification  method for a particular circuit design 
style is  fully customizable by a user-defined set of 
extraction rules. For example, rules are used to specify 
the detailed  clocking scheme used  in dynamic circuit 
implementations. The rule set also includes tests for 
unwanted circuit situations, such as nets which  might 
have floating or undefined states. Because of this flexible 
verification approach, Verity can be adapted to the specific 
requirements of various projects. 

Verification methodology 
The  ultimate  goal of functional verification is to achieve 
exhaustive coverage across the entire design. However, 
because of their computational complexity, verification 
algorithms cannot be applied directly on the entire 

chip. Using  design partitioning, a two-part verification 
methodology  for the use of Verity has been developed: 

1. The  individual pieces of the design (referred to as 
mucros) are verified independently. Specific  logical 
boundary conditions associated with macro input  and 
output signals are asserted by the designers. These 
assertions describe the set of signal patterns which can 
occur at the inputs of a particular macro. Often valid 
input patterns are also referred to as the care-set. Input 
assertions are used as verification constraints, whereas 
output assertions are validated. 

2. The composition of macros to form the complete design 
is  verified for both correctness and consistency. This 
essentially  checks the integrity of macro  interconnection, 
including the correct wiring  and the consistency of 
the assertions between the individual macros. 

The following two sections elaborate on these two 
verification steps. 

Hierarchical design verification 
Because of the complexity associated with  Boolean 
function representation, Verity cannot handle  large 
systems as one piece. Therefore, the verification of 
complex circuits requires an identical partitioning 
of the two design representations being compared. 
From a verification point of view, the granularity of the 
partitioning must guarantee that each piece successfully 
passes Verity. This process can be referred to as design 
for veriBcation. The two representations are usually 
developed independently. Changes  made to the high-level 
model typically invalidate the results of the functional 
system validation. Also, any circuit modification at a late 
stage might cause significant  effort to update the results of 
timing verification or layout implementation. Therefore, an 
early confirmation of the applicability of Verity to all 
pieces of the design partitioning is advantageous. 

the circuit partitioning can be handled. Applicability to a 
set of commonly used macros, including  64-bit data-path 
units such as adders, shifters, and rotators, is predictable. 
Depending on the function, macros containing up to 25 000 
transistors can be handled by Verity. The sequential 
verification problem was explicitly excluded to avoid 
additional uncertainty. Further, Verity can be applied 
to test the BDD construction for a single  design 
representation. For example,  an early version of 
the macro specification  is  usually  available before the 
implementation. Successful BDD construction for the 
specification practically implies that a comparison with 
any correct implementation is feasible. 

Figure 2(a) shows a simple example of a hierarchical 
design description. A golden verification line divides the 

Verity is usually  applied at an early stage to confirm that 



set of macros into two groups: 1) The set of  leaf macros is 
defined as the set of all hierarchy nodes for which the 
corresponding subcircuit can be verified as one piece 
(macros F,  G, H ) .  For the sake of functional verification, 
these subcircuits are completely flattened. This grants 
complete freedom for their hierarchical description. 
2) All remaining macros ( A ,  B ,  C ,  D, E )  form the set of 
supermacros which compose the complete design in terms 
of the set of  leaf macros. Functional verification is applied 
to confirm the correctness of this composition  and to 
check the consistency between all macro assertions. 
Besides calls to other macros, supermacros might also 
contain actual logic. 

The basic idea of hierarchical verification is to reduce 
the circuit complexity by excluding instances of submacros 
from  the verification of the calling supermacro. The 
circuits of the excluded submacros are removed from the 
hierarchical design description and replaced by black 
boxes. For example, when supermacro C of the circuit in 
Figure 2(c) is being  verified,  leaf macros F ,  G, and H are 
black-boxed. 

The hierarchical verification is controlled by a 
verification skeleton, which  defines all macros for which 
Verity is actually used. Clearly, the complete comparison 
of two design representations requires the same 
verification skeleton on both sides. Depending on the 
overall design  methodology, Verity can be applied on each 
skeleton macro in a top-down or bottom-up manner. As 
shown in Figure 2(a), the  verification skeleton consists 
of two supermacros ( A ,  C )  and the three leaf macros 
( F ,  G, H ) .  The resulting five verification tasks for Verity 
are illustrated in Figures 2(b)-2(d). 

submacros, the following verification steps are performed 
to ensure completeness: 

When  verifying a supermacro by black-boxing 

All inputs of submacros are considered as verification 
outputs which are, in addition to all primary outputs, 
functionally compared between the two representations. 
Submacro outputs are considered as verification inputs 
which are driven by independent variables, common  for 
the two  design representations. 
Verification constraints asserted at submacro inputs are 
tested on the supermacro level. Since the submacros are 
verified  only  with respect to those constraints, their test 
on the higher  level  effectively validates this assumption. 
Assertions at submacro outputs are used to constrain the 
input space for supermacro verification.  The correctness 
of these assertions is confirmed  during submacro 
verification. 

The  verification  view of a particular supermacro M1, 
which calls two instances, I1 and 12, of submacro M2, is 
given  in Figure 3. Figure 3(b) shows the corresponding 

control files for M1 and M2 describing the verification 
tasks to be performed by Verity. Each control file contains 
the port definition  which  is  common to all representations 
of a particular macro, and other details specific to the 
representation. For M1, these details include the black- 
boxing directive for both instances of macro M2, a 
constraint for the possible input values, and a test on the 
outputs. The input constraint describes the care-set for 
verification, which in this specific  example includes all 
input patterns with at least one input having a logical value 
of 1. Output tests are checked for tautology. The control 
file for M 2  is  used in a similar way. 

The hierarchical verification of the supermacro consists 
of two tasks: First, the verification of submacro M2 proves 
the equivalence of the various implementations of that 
macro with respect to the input constraint A 2 .  This 
includes the test for functional equivalence of outputs 
Q and R ,  and the validation of test T 2 .  In a second 
step, macro M1 is verified  with the two instances of M2 
black-boxed. The  black-boxing imposes four additional 
equivalence tests for submacro inputs I1 .O, I1 .P and 
1 2 . 0 ,   1 2 2  of instances I1 and 12, respectively. Further, 
the submacro outputs I l . Q ,  I1.R and 12.Q, 12.R are 
treated as independent verification inputs, constrained 
by the test expressions 11, T2 and 12.  T2. 

Leaf-macro verification 
As defined previously, the set of leaf macros consists of 
all  of the subtrees of the design hierarchy which can 
be  verified as one unit. Except for sequential circuit 
pieces, such as latches or registers, these leaf macros are 
completely flattened. Thus, no restrictions are imposed 
on their hierarchical description. After flattening, Verity 
extracts the Boolean function of the outputs for the two 
design representations and compares them  with respect to 
the input constraints. The details of the circuit extraction 
algorithm are described in the following section. 

cannot be  modeled by Boolean  logic, such as analog or 
semi-analog circuits, must  be excluded from the macro 
verification process. These subcircuits are black- 
boxed, and corresponding instances of the two design 
representations are identified. The black-boxing scheme 
is identical to that used  for hierarchical verification. 

A customized design style necessitates hand-crafted 
implementations of most of the chip, including storage 
elements. To  optimize performance for each individual 
instance, the designer usually  makes  modifications to these 
circuits which  might  affect the corresponding interface or 
the functionality of the circuit implementation. However, 
once the validation of the golden  specification is finished, 
it is frozen, and interface modifications at a late stage are 
unacceptable. Thus, for practical design projects a general 
mechanism for matching  differences between interfaces is 

Sequential circuit elements or other design pieces which 



M1 
Submacro  inputs  become 
verification  outputs 

supermacn, 
inputs 

Submacro  outputs  become 
verification  inputs 

Submacro 

Supermacro 
outputs 

MODULE M1; 
INPUT A,B,C; 
OUTPUT D, E, F; 
IMPLEMENTATION  Impl  M1; 

DlREcTlvES 
BLACKBOX  M2(11, I2); 
ASSERT AI: = AIBIC; 
TEST Tl:=DIEIF 

END, 
MODELMl (FILE= “ml.spice”); 

END; 
END, 

MODULE M2; 
m 0,e 
OUTPUT Q, R 
IMPLEMENTATION  Impl  M2; 

ASSERT A 2  =01 ”P, 
TEST n: =(Q & “)I( “Q & R); 

DIRECTNES 

END, 
MODELM2 (FILE =“m2.spice”); 

EM>. 

Verification of supermacro M1 where  two  instances of submacros M2 are black-boxed: (a) hierarchy  structure; (b) corresponding control 

needed. To meet this practical requirement, Verity allows 
the user to specify any combinatorial relation between 
the interfaces of different implementations. 

A possible matching of two representations for a simple 
latch example  is shown in Figure 4. They differ  in two 
aspects: First, the specification (Spec) includes the gating 
of the global clock signal Sys-clk by a separate select 
signal Select. In  the  implementation (Impl), the clock 
gating is handled externally, which virtually moves the 
circuit interface into the latch. Second, the implementation 
generates two polarities for the output signal Out, whereas 
the specification produces only one. 

representations, a generic method of black-boxing  is  used 
in Verity. The  idea  is to map  the actual interfaces of the 
various implementations to a common generic interface by 

156 applying  user-defined combinatorial glue logic. For each 

To match the different interfaces between 

macro this combinatorial glue  logic  must be specified by 
the designer. During verification, the glue  logic block 
replaces the actual black box producing the generic 
interface common to all implementations. Figure 4(b) 
shows the Verity control file, which contains the user- 
specified  glue  logic in the INTERFACE section. 

Functional extractor 
Verity uses a unified data structure for storing both gate- 
level  and switch-level circuits. The circuit representations 
being compared, the given  input constraints, and any 
additional output tests are converted into that common 
data representation. This allows the extraction algorithm to 
work on the unified representation without distinguishing 
between the actual verification tasks to be performed. 
Moreover, this general extraction approach can be applied 
to mixed representations where gate-level designs include 
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Actual latch interface 

out 

OutJar 

Generic latch  interface 

(a) 

MODULE Latch;  MODULE Latch; 
INPUT D. C: INPUT D.C: 
OUTPUTQ; 
IMPLEMENTATION Spec Latch; 

INPUT Data, Sysrlk,  Select; 
OUTPUT out; 
INTERFACE 

D : = Data; 
C : = Sysclk & Select; 

. .  
OUTPUTQ; 
IMPLEMENTATION  Imp1  Latch; 

. .  

OUTPUT Out, Outbar; 
INPUT Data, Clk 

INTERFACE 
D : = Data: 
c := Clk; 

Out : = Q; Out : = Q; 
END; 
MODEL Latchspec (FILE = “bla.vhd1”); 

Outbar : = “Q; 
END; 
MODEL  LatchImpl (FILE = “bla.spice“); END; 

END; END; 
EMD; 

Application  of  glue  logic  to  match  two  different  latch  interfaces:  (a)  glue  logic  structure  for  two  latch  representations; (b) corre- 
sponding control files. 

transistor-level circuits,  and vice versa.  This  feature is 
useful for  incremental verification of incomplete design 
implementations. In  other  words, given  a  complete 
specification,  Verity can  be applied to partial  circuit 
implementations where  the missing design parts  are 
replaced by  the specification.  Details of the  extraction 
technique are  described in the following sections. 

Path-based  extraction  scheme 
A channel-connected  component is  defined to  be  the 
maximal set of transistors  and  nets  such  that  every net 
in the  component is  reachable from  every  other  net by 
traversing source-drain connections of transistors within 
this  component. 

Verity uses  an explicit path  enumeration  for  extracting 
the Boolean function of a channel-connected  component. 
For verification, the  function of all channel-connected 
components must be  computed with respect  to  the primary 
inputs.  This is done in a recursive  manner, starting  from 
the  outputs.  The  advantage of this  approach  is  that false 
paths  are eliminated  during traversal  because  the  functions 
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at controlling transistor  gates along that  path  are  known 
with respect  to  inputs. 

In  contrast,  the implicit enumeration  approach of 
ANAMOS is  applied to a single channel-connected 
component.  It  can  be used to  extract  the  function  even if 
the number of paths  grows exponentially. In contrast, 
fewer  and  less complex  Boolean function  operations 
are required to  obtain  the final function using  explicit 
enumeration. For all practical cases in which  Verity has 
been applied,  the potential  problem of an  exponential 
number of true  paths  has  not been encountered. 

In the  extraction  model, MOS transistors  are 
represented by switches which have  two  switched 
terminals and a control terminal corresponding  to  the MOS 
drain,  source,  and  gate  connection,  respectively.  Let 
N ( G ,  S, W) denote a  circuit  with a set of logical gates 
G = {G,, * , Gg} ,  a set of switches S = {S,, - * * , Ss}, 
and a set of nets W = { W , ,  * , W w }  interconnecting  the 
logical gates  and  switches.  Further,  let ZG, C W be the  set 
of input nets  and OG, E W be  the single output  net of 
logical gate Gi.  Similarly, C5, E W and Ds, W denote 157 
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F' = 1 

Fo = 0 

a 
a 
- 

b 
5 

* CW = {a. b, c, d,J  h] NEG = IS,,  S,, Sd 
DW = [Vm, GND, a, b, c, d , J  gl POS = IS2, S,, S,l 

Example of a mixed gate and switch-level circuit. 

Table 1 Computation of the driving  functions for various 
gate  types. 

Gate type F0 F' 

Constant-0 (GND) 1 0 

Constant-1 (V,,) 0 1 
Primary  input variable variable 
AND 

OR 

NOT f kj f p, 

the control net and the two switched nets of switch Si, 
respectively. For consistency, we assume that each net 
connected to a primary circuit input or constant voltage 
source is driven by a specific  logical gate with  no inputs. 
Similarly, let each primary circuit output drive a logical 
gate without an output. 

On the basis of this circuit definition, two specific 
groups of nets can be  identified. First, the controlling nets 
include the inputs of logical gates and the controlling nets 
of  all switches. Second, the outputs of logical gates form 
the set of driven nets. More  formally, the set of controlling 

158 nets is  defined as CW = {Wi 1 ( 3 G j :  W, E ZG,) V ( 3 S j :  

Wt = Cs,)}. Similarly, the set of driven nets is  defined 
as DW = { W, I 3G, : W, = 0.j. The set of switches is 
partitioned into two groups: The set POS L S contains all 
switches which close when a 1 is applied at their control 
input. Similarly, the set of switches that close when a 0 
is applied at the control input  is  included in NEG C S. 
Physically, these two sets correspond to n-MOS  and 
p-MOS transistors, respectively. 

given in Figure 5. As shown, CW = {a, b ,  c, d ,  f, h} 
includes all nets connected to transistor gates (a, b ,  f )  
or to inputs of logical gates (b ,  c, d ,  h). The 
outputs of  logical gates form the set of driven nets 
DW = {VDD, GND, a ,  b,  c,  d, f, g}. 

circuit representation is based on the concept of paths. A 

to be a subset of the switches S and nets W such that 
Dsp, = {WPj_,,  Wpi}, 1 5 i 5 n .  In other words, a path 
PPn,,. from source net Wpn to sink  net Wpn is defined to be 
a loop-free interconnected sequence of switches between 
these two nets. For example, nets e and h of the circuit in 
Figure 5 are connected by two paths: P,',, = {e, S,, h} 
and P;,, = {e ,  S,, h}. Note that this definition includes 
paths containing a single  net without switches, e.g., 
Pa,, = {a}. Such single-net paths define a self-connection. 

For the sake of functional extraction, two Boolean 
functions f i, and f h, are assigned  to each controlling net 
Wi E CW. These functions describe the conditions for 
which the net  is driven by 0 and 1, respectively. The four 
possible value combinations (f', f ') = ((0, 0 ) ,  (0, l), 
(1, 0), (1, 1)) correspond to net status: high impedance 
(floating), logical-I, logical-0, and collision. Similarly,  two 
driving functions Fkz and F;, are assigned to each driven 
net Wi E DW. They are computed by the driving gate 
on the basis of the functions of the gate inputs. The 
computation rules for a representative set of basic gate 
types are provided in Table 1. For example, functions 
Fo and P' of the V,, driver G ,  are set to 0 and 1, 
respectively. An independent variable and its complement 
are assigned to F' and Fo of the primary inputs, 
respectively (e.g., Fb = a ,  F: = a). Further, internal 
logical gates compute the gate function for F' and the 
dual-gate function for Fo.  As an example, the driving 
functions of net g in Figure 5 are F," = f V f ," = E V 2 
a n d F ~ = f ~ A f ~ = c A d .  

at controlling nets do  not occur in a correct circuit 
implementation. A generalization of the extraction scheme 
which includes dynamic circuit techniques is discussed in 
the subsection on time-sliced extraction for  dynamic 
circuits. According to the assumption that floating 
controlling nets violate the chosen circuit technique, the 

An example of a mixed gate and switch-level circuit is 

The extraction of a Boolean function from a mixed 

path = {Wpo, spl, Wpl,  * , Spn,  Wpn> is defined 

In the following,  we assume that floating conditions 
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logical values at any controlling  net Wi are completely 
determined by the set of paths which connect Wi to 
driven nets. Moreover, the functions f iL and f kt can 
be calculated as follows: 

f; = v C f , , A P q )  (1) 
"Pi, ,  

1.1 

and 

f; = v Cfp A F& (2) 
v P. . ',I 

1. I  

where fpi,j encodes the conditions for which path P . , j  

conducts. 
Using the formulas for calculating the functions 

( f a ,  f I )  and (Fa, F') of controlling nets and driven 
nets, respectively, a recursive extraction algorithm  can be 
formulated. Starting from the output and test points, the 
procedures shown in Figure 6 calculate the functions for 
the entire input  fan-in cone of these nets. 

on the controlling nets of the switches forming this path. 
Depending  on the switch type, f or f is taken for p-MOS 
or n-MOS transistors, respectively. The path function of 
single-net paths without switches is defined as constant 1 .  

False-path elimination 
In general, switch-level structures can contain an 
exponential number of paths. Typical problematic 
structures are arithmetic shift or rotate operations 
implemented by flow trees of pass transistors. Since the 
extraction algorithm  is based on an  explicit enumeration of 
all paths, these circuits would result in an exponential run- 
time complexity. As an example, consider the four-bit 
barrel shifter [36] shown in Figure 7. The structure, formed 
by 16 pass-transistors, contains 1313 paths from the data 
outputs to the data inputs. 

In a proper implementation of such circuits, the majority 
of paths are false. That is, for all valid  input patterns, most 
of the paths are nonconducting. According to Equations 
( 1 )  and (2), false paths do not contribute to the logical 
function of controlling nets. Therefore, they can be 
eliminated  from the enumeration process without affecting 
the extracted net functions. Consider the example in 
Figure 7. In  normal operation, select inputs ShiftO, Shiftl, 
Shift2, and Shift3 are mutually exclusive. Any path 
involving transistors controlled by different select inputs 
(e.g., {SI, S,}) is false. 

For elimination of false paths, a pruning scheme is 
included in the extraction algorithm. Starting from the 
controlling net Wi, the set of driving paths is generated by 
recursively tracing connected switches to any driven net. 
The path function is  built  during the traversal process. If at 
any time  during the traversal a given path becomes false, 
further recursion is terminated. In the given example, the 

The calculation of the path functions fp i , j  is based 
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Algorithm  Compute-Function ( Wi)  

FOR all paths Pi,j from a driven  net Wj to Wi DO 

Compute-Path-Function (Pi , j ) ;  

Compute-Drive-Function ( Wj); 

END; 

Calculate fi and fit; according to  Equations (1) and (2); 

END; 

Algorithm  Compute-Path-Function (Pi , j )  

FOR  all  switches S, E Pi,j DO 

Compute-Function (Cs,); 

END; 

fPi,- = 
v s, E P,,] n POS v s, E P,,] n NEG 

END; 

Algorithm  Compute-Drive-Function ( W,) 

FOR  all  inputs Wj of logical  gate G,  feeding Wi DO 

Compute-Function (Wj);  

END; 

Combine  input  functions  according  to  Table 1; 

END: 

Extraction algorithm for the Boolean function. 

path enumeration can backtrack after encountering S, 
and S, from output Out3, since in normal operation 
both transistors can never be active at the same time 
(Shift0 A Shift3 = 0). 

Extraction of combinatorial loops 
A digital circuit containing structural loops is characterized 
by some logical feedback from a gate output to its input. 
Such loops do not necessarily cause sequential behavior. It 
has been shown that certain combinatorial functions can  be 
implemented  efficiently  by circuits containing loops [37]. 
However, for gate-level designs, combinatorial circuits 
with loops are usually not desired. For this description 
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Shft3 
Inp2 Our2 

Inpl 
Shifr2 

Our1 

Shifrl 
InpO Out0 

Barrel  shifter  circuit  which  contains an exponential  number of 
paths. 

F'= 1 
Fa= 0 

a 
a 

0 
1 

- 

CW = (a. b, c, dl ASSERTA:= ( a &   " b ) l (   " a & b ) ;  

DW = (V,,, GND, a, b] 

Example of a  cyclic circuit structure. 

level, circular structures cause numerous problems for 
several design tasks, such as logic synthesis or automatic 
test pattern generation. 

In contrast, because of their performance advantage, for 
customized transistor-level combinatorial circuits, circular 

160 structures are very popular. A customized implementation 
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of a pulse-to-static converter circuit is shown in Figure 8. 
For the two valid  input patterns u ,  b = [0, 11, [ 1, 01, the 
output values of the cross-coupled NANDs are uniquely 
determined and do not depend on past circuit states. 
However, because of the circular network structure, the 
recursive circuit traversal described above is not 
applicable. 

The general configuration of circuits containing 
structural loops is  given  in Figure 9(a). The behavior of 
structural loops can be classified into two types: 1) False 
loops (also referred to as combinatorial loops) are not 
history-dependent, and they do not cause sequential 
behavior. 2) True loops (sequential loops) can store 
internal states and  lead to sequential behavior. 

Verity applies a loop examination technique related to 
that presented by  Malik  in [38]. The recursive network 
traversal identifies a structural loop by encountering a net 
which is marked as currently visited. The loop is then 
broken by inserting two new independent variables uo and 
u1 [see Figure 9(b)]. After the backtracking reaches the 
broken net  again, the extracted functions f j and f 3 are 
tested for the loop type according to the following 
conditions: 

azfl  ara 
" 

avoav' - au av 

and 

auoavl 
- f 0 V 7 f 0 3 true loop, 

au au 

where aflav = f I v  e3 f 1; . 

sequential logic verification. True loops cause sequential 
circuit behavior and are flagged as violations of the 
extraction model. If a false loop is encountered, the loop 
must  be revisited. For the extracted functions fwi of all 
loop nets Wi, the variables uo and u1 are replaced by the 
corresponding functions f 3 and f 5, respectively. This 
guarantees that the artificial variables uo and u1 are 
properly eliminated for all other fan-outs from loop nets. 

As an example, consider the extraction of the function 
of output d for the circuit shown in Figure 8. The path 
traversal starts to enumerate all paths driving net d ,  
beginning  with PvDo,d = {VDD, S,, d } .  This calls 
recursively the extractor for net c, which is controlling 
switch S,. Assuming that path PVDD,6 = {VDD, S,, c} is 
traversed first, the extractor is  called once more for net d ,  
which was marked during the previous visit. Here, two 
variables v o  and v 1  are created. After backtracking, the 
resulting  net functions for d are f ," = (uo  V d )  A b and 
f,' = (u' A a)  V 6. After including the input constraint 
(a A 6) V (b  A d) ,  they simplify to f ," = d and f 1 = a. 
Since these functions do not depend on uo and V I ,  the 
structure is  classified as a false loop. 

0 A = 0 3 false loop 

0: ara 

As mentioned previously, Verity does not include 
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Time-sliced extraction  for  dynamic circuits 
So far, high-impedance net conditions  have  been  excluded 
from  consideration in the previously described  extraction 
techniques.  Most  standard  static CMOS techniques  do  not 
allow such undefined net conditions for  proper circuit 
designs. However, dynamic CMOS  techniques typically 
utilize  precharging  in order  to  achieve  fast  and  compact 
circuit implementations. In dynamic circuits, controlling 
nets  are  not  necessarily  driven  at all times  during the 
clocking  cycle. 

As an  example,  consider  the dynamic  CMOS  circuit  in 
Figure 10. Net c is  precharged to V,, while reset is active. 
During the  evaluation  phase, reset is deactivated,  and c 
might be discharged by a connection  to G N D ,  depending 
on the values of nets a and b. For  the condition a A b = 0, 
net c holds its precharged  value 1;  otherwise, it evaluates 
to 0. 

circuit techniques in a general  way. The basic  idea  is to 
split the clock cycle  into multiple  slices and  to  extract  an 
independent  function  for  each slice. The slice functions 
for  the  nets  are  then combined to  form  the final net 
function. 

Let  us  assume  that  the given  circuit technique  uses  an 
n-phase clocking scheme.  The driving functions (FiJl], 
Fkj[l]), * , ( F i i [ n ] ,  Fkj[n]) for  the primary inputs  and 
the clock inputs are specified according to a user-defined 
clocking scheme.  For  example, clock signal reset in the 
two-phase  dynamic circuit of Figure 10 is activated during 
the  precharge  phase  and  deactivated during  evaluation. 
The  corresponding driving functions  for  precharge  and 
evaluation  are Fa,,,[ 11 = 1 ,  Fr!J 11 = 0 and F,0,,,[2] = 0, 
Flfese,[2] = 1 ,  respectively.  In  this particular case it is 
assumed  that  the primary data  inputs are inactive  during 
precharge  and  driven  by  independent variables  during 
evaluation. 

In  the  general  case, a set of n functions (f ij[ 1 1 ,  
fki[ll), * - , ( f i Jn1 ,  f bi[nl) is computed  for  each 

Verity  applies a time-slicing approach  to handle  dynamic 

controlling net W i  by independently  applying the  extraction 
algorithm for  each slice. To  form  the final combinatorial 
function,  the individual  slice functions  are combined by the 
following scheme: 

and 

I "" . . . 

General structure of cyclic circuits: (a) circuit loop; (b) broken 
loop. 

F' [l], F 1  [2] = 0,l 

FO [l], P [2] = 0.1 vVm I 

Example of a dynamic CMOS circuit. 

This scheme effectively represents  the electrical function 
of dynamic circuits,  where  for  each  clock  phase  the 
previous  value is either  kept  or  overwritten  by  an  active 
path  to a driven  net. As an  example,  consider  net c in 
Figure 10. The  extracted  functions  are  calculated  as 
follows: 



.Table 2 Verification statistics for three  ongoing  microprocessor projects. 

Project No. of No. of Percent of Average 

passed first runs per 
attempt macro 

macros Verity runs macros that number of 

P1 933 6240  54.1  6.69 
P2 704 4051 42.9  5.75 
P3 262 1405 49.6  5.36 

f 3 1  = 0, 

f $1 = 1, 

fE[2] = 0. 

f,"[23 = a A b, 

The  final functions are 

- 
fp = f 3 1  V f E P I  M311, 

f: = f 3 2 1   V f , O P l  Af:[1I3 

f i  = d v6. 

- 

f: = a A b ,  

In Verity, the verification scheme for  time-sliced 
extraction is customizable in a technology-dependent 
control file.  This description includes the declaration of net 
types, their driving functions, the clocking scheme, the 
extraction method  for  each  time slice, and the Boolean 
relations between the extracted slice functions. The 
control file also includes specific consistency checks to 
be performed  for the net types at each time slice. For 
example, in the absence of strength-dependent logic, the 
expression f A f = 0 tests whether there exists a valid 
input pattern for which the net  is  pulled to 1 and 0 at the 
same time,  resulting in a collision. In the same manner, 
f ' V f = 1 tests for  floating conditions. The tests 
essentially validate the extraction model and alert the 
designer to specific undesirable circuit conditions. 

Error diagnosis 
Functional verification, which includes user-specified 
tests, proves the correctness of two  different circuit 
representations. In the case of a miscompare or failing 
test, the verification  program  must provide a detailed 
error report for  finding  and correcting the problem. For a 
productive application of formal  verification in practical 
design projects, an effective  debugging  aid  is as important 
as the actual comparison algorithm. 

outputs, failing output tests, or failing consistency checks) 
162 Verity calculates a counter-example function representing 

For each  verification  problem (i.e., miscomparing 
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all valid  input patterns which exercise the undesired 
behavior. For example, for the given  verification 
configuration of Figure 1, output value c = 1 detects the 
cases in which FSMs A and B are functionally unequal. 
Since c is calculated on the basis of primary inputs x and 
present state variables I, each minterm of c represents a 
counter-example pattern for the inputs and state register 
that would exercise a functional miscompare between 
y A  and y B  . 

Verity uses an arbitraly set of minterms from c as a 
basis for the counter-example calculation. Let rn be a 
minterm of the error function c .  For each net Wt E W 
of the erroneous implementation, a counter-example 
value I, E (0, 1, F ,  C} is calculated as follows: 

where 0, 1, F ,  and C express logical zero, logical one, 
floating condition, and  collision  at the net, respectively. 

In addition to the calculation of counter-example 
patterns, Verity applies an  efficient error-diagnosis 
algorithm  which  classifies the nets according to their 
probability of causing the error. Given a maximum 
number of assumed errors, this algorithm determines a 
circuit region which includes at least one erroneous 
net. Details of the diagnosis approach can be found in 
Reference [39]. 

Practical  application  and  results 
Verity was developed in close collaboration with three 
microprocessor projects; it was intended to perform 
complete chip verification over a wide range of practical 
circuit sizes and  topologies.  The  program  is in daily use at 
five IBM sites and to date has verified  more than 2000 
logic macros ranging  in size from 100 to 25000 MOS 
transistors. Although chip-level verification has not been 
completed for any of these ongoing projects, large parts of 
the designs containing significant portions of the final chips 
have passed hierarchical verification. 
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Table 3 Verity  performance for a set of randomly selected design examples. 

Macro No. of inputs1 No. of No. of CPU Memory 
No. of outputs transistors1 black time (MB) 

No. of nets boxes (s)  
(excluding 

black boxes) 

M1  1487  1499 791 1 I4068 83 435.2 37.3 
M2 70165 95611129 128 40.3 4.6 
M3 8491875 2294418833 996 2526.5 644.8 
M4 224 I302 787614702 232 266.3 16.6 
M5 66165 8021341 0 3.6 4.8 
M6 2621265 15851  1373 64 40.9 5.1 
M7  194164 8001474 0 3.9  3.7 
M8  172120 12121823 48 202.4 10.4 
M9 7941943 877514943 9 64376.7 154.6 

Table 2 gives global  usage statistics for the three design 
projects. The second and third columns provide the 
number of macros that have been verified and the total 
number of Verity runs for each project, respectively. As 
reported in the fourth column, about half  of the macros 
passed functional verification on the first attempt. For the 
remaining macros, logical errors caused by an incorrect 
circuit implementation or an erroneous high-level 
specification were discovered. It is interesting to note that 
this ratio was consistently observed over the duration of 
these projects. The reported average number of Verity 
applications per macro does not necessarily reflect the 
total number of attempts to get the circuit functionally 
correct. Often, after small changes in the specification or 
implementation, verification for a particular macro is 
repeated to check that no errors were introduced. 

Table 3 shows the performance of Verity for a set of 
randomly selected macros from a particular project. As a 
measure of the circuit complexity, the number of macro 
primary inputs and outputs, the number of MOS 
transistors and internal nets (excluding the black-boxed 
circuit parts), and the number of black-boxed submacros 
are given. The reported CPU times and  memory 
requirements are taken from a RISC  System/6000@  Model 
580 processor. For many circuits Verity can be used 
interactively, producing a verification report within 
minutes. For larger macros, Verity runs are typically 
submitted to a pool of powerful workstations with  more 
computing resources. 

the effort required to use Verity effectively  for complete 
chip verification depends strongly on the overall 
methodology.  Many designers who incorporated 
verification early in the development process have found 
Verity invaluable. Often, because of the short turnaround 
time, the actual circuit designs are done in a trial-and-error 
fashion, switching between verification and correction. For 
such design styles, Verity provides incremental verification 

Designer feedback from the three projects indicates that 
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in which the user can verify an incomplete schematic. 
Missing circuit implementations are replaced by their 
corresponding high-level specification. This capability has 
proved to be a powerful  design  verification framework 
that is particularly suited to manual circuit entry. 

On the other hand, the later the verification  tool  is 
introduced in the macro design process, the more  effort  is 
necessary to make the circuit pass. Adjustments to the 
macro interface, the latch, and the register structure, and 
repartitioning of either design representation could be 
required. When introduced at a late stage, these changes 
are expensive and typically have an impact on the design 
schedule. 

Conclusions 
In an effort to optimize the performance of digital systems, 
designers of high-performance circuits are moving  from 
correct-by-construction synthesized methodologies to 
hand-crafted custom design. This fundamental shift has 
necessitated more complete methods for  verifying correct 
system behavior. Verity addresses the problem of formally 
proving the correctness of a system implementation with 
respect to the specification. 

Verity applies symbolic comparison techniques which 
implicitly prove the functional equivalence between a 
CMOS circuit implementation  and  an RTL specification for 
all possible  input patterns. Since the underlying extraction 
algorithms are based on a switch-level model of the MOS 
circuit, Verity effectively removes the need for expensive 
circuit and switch-level simulation for the purpose of 
determining correct Boolean behavior. Moreover, formal 
techniques provide an exhaustive comparison, which 
makes the generation of simulation patterns unnecessary. 

The algorithms applied in Verity permit the verification 
of entire microprocessor systems. The success of formal 
methods on such a large scale requires a strict design-for- 
verification methodology. This significantly  affects the 
overall design partitioning, the hierarchical circuit 
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structure,  the  chosen  register methodologv. and  the 7.  D. T. Blaauw.  D. G. Saab. P. Baneriee. and J. A. - 
assertions of logical boundary conditions. Successful 
use of Verity requires  an  early  consideration of such 

“ . 
Abraham, “Functional Abstraction of Logic Gates for 
Switch-Level Simulation,” Proceedings of the European 
Conference on Desim Automation. Amsterdam. The 

issues in the design  cycle. Netherlands, IEEE,-February 1991, pp. 329-333. 
Future research on Verity will address two 8. R. E. Bryant, “Extraction of Gate Level Models from 

areas-extending the applicable macro size and 
incorporating  sequential verification  capabilities. An Conference on Computer-Aided  Design, Santa Clara, CA, 
exploration of alternative  representations of Boolean pp. 350-353 (November 1991). 
functions could result in a significant increase in the 9.  W. J. Dally and R. E. Bryant, “A Hardware Architecture 

verifiable circuit  size. This  includes  extensions to existing 
for Switch-Level Simulation,” IEEE Trans.  Computer- 
Aided  Design CAD-4, 239-249 (July 1985). 

Transistor Circuits by Four-Valued Symbolic Analysis,” 
Digest of Technical  Papers of the IEEE International 

BDD algorithms, test-pattern  approaches, probabilistic 
methods,  and  various combinations. The  incorporation of 
sequential verification  algorithms into Verity will permit 
checking of the  actual  registers  during hierarchical 
verification. Further, in conjunction with algorithms to 
determine automatically the  registerhatch  correspondencies 
between the two design representations,  such  techniques 
will help to relax the  strict  requirements on a design-for- 
verification  methodology. 

Acknowledgments 
The  authors would like to thank  Florian  Krohm at the IBM 
Thomas J .  Watson  Research  Center,  Geert  Janssen  and 
Aljen Mets of the Technical  University  Eindhoven,  and 
David Cheng of the  University of California at  Santa 
Barbara for their significant contributions in the 
development of Verity.  They  also wish to  thank Victor 
Rodriguez of IBM  Austin, David  Appenzeller of IBM 
Burlington, and  Terry Chappell, Barbara Chappell, and 
Kenneth  Shepard at the  IBM  Thomas J. Watson  Research 
Center  for  their invaluable input. 

PowerPC is a trademark, and RISC Systeml6000 is a registered 
trademark, of International Business Machines Corporation. 

References 
1. D. K. Beece, R. Damiano, G. Papp, and R. Schoen, 

“The  EVE Companion Simulator,” Proceedings of the 
European  Conference on Design  Automation, Glasgow, 
Scotland, IEEE, March 1990, pp. 290-295. 

Proceedings of the 19th ACMIIEEE Design  Automation 
Conference, Las Vegas, June 1982, pp. 55-59. 

3. J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan, 
and D. L. Dill, “Symbolic Model Checking for Sequential 
Circuit Verification,” IEEE Trans.  Computer-Aided 
Design 13, 401-424 (April  1994). 

for MOSFET Circuits,” Proceedings of the IEEE 
International  Symposium on Circuits  and  Systems, 
Newport Beach, CA, May  1983, pp. 752-755. 

5 .  Z. Barzilai, L. M. Huisman, G. M. Silberman, D. T. Tang, 
and L. S .  Woo, “Simulating Pass Transistor Circuits 
Using  Logic Simulation Machines,” Proceedings of the 
20th ACMIIEEE Design  Automation  Conference, June 

6. R. E. Bryant, “Boolean Analysis of  MOS Circuits,” ZEEE 

2. M. M. Denneau, “The Yorktown Simulation Engine,” 

4. G. Ditlow, W. Donath, and A. Ruehli, “Logic Equations 

1983, pp. 157-163. 

164 
Trans.  Computer-Aided  Design CAD-6, 634-649 (July 
1987). 

10. E. H. Frank, “Switch-Level Simulation of VLSI Using 
Special-Purpose, Data-Driven Computer,” Proceedings of 
the 22nd ACMIIEEE Design  Automation  Conference, June 
1985, pp. 735-738. 

11. S .  B. Akers, “Binary Decision Diagrams,” IEEE Trans. 

12. J.-C. Madre and J.-P. Billon, “Proving Circuit Correctness 
Computers C-27, 509-516 (June 1978). 

Using Formal Comparison Between Expected and 
Extracted Behaviour,” Proceedings of the 25th 
ACMIIEEE Design  Automation  Conference, June 1988, 
pp. 205-210. 

13. J. Jain, J. Bitner, D. S .  Fussel, and J. A. Abraham, 
“Probabilistic Design Verification,’’ Digest of Technical 
Papers of the IEEE International  Conference on 
Computer-Aided  Design, Santa Clara, CA, pp. 468-471 
(November 1991). 

14. J. P. Roth, “Hardware Verification,’’ IEEE Trans. 
Computers C-26, 1292-1294 (December 1977). 

15. D. Brand, “Verification of Large Synthesized Designs,” 
Digest of Technical  Papers of the IEEE International 
Conference on Computer-Aided  Design, Santa Clara, CA, 
pp. 534-537 (November 1993). 

16.  W. Kunz, “HANNIBAL: An Efficient Tool for Logic 
Verification Based on Recursive Learning,” Digest of 
Technical Papers of the IEEE International  Conference on 
Computer-Aided  Design, Santa Clara, CA, pp. 538-543 
(November 1993). 

17. G. L. Smith, R. J. Bahnsen, and  H. Halliwell, “Boolean 
Comparison of Hardware and Flowcharts,” IBM J .  Res. 
Develop. 26, 106-1  16 (January 1982). 

18. M. Monachino, “Design Verification System for Large- 
Scale LSI Designs,” IBM J .  Res.  Develop. 26, 89-99 
(January 1982). 

19.  R. E. Bryant, “Graph-Based Algorithms for Boolean 
Function Manipulation,” IEEE Trans.  Computers C-35, 
677-691 (August 1986). 

20. M. Fujita, H. Fujisawa, and Y. Matsunaga, “Variable 
Ordering Algorithms for Ordered Binary Decision 
Diagrams  and Their Evaluation,” IEEE Trans.  Computer- 
Aided  Design 12, 6-12 (January 1993). 

Binary Decision Diagrams,” Digest of Technical  Papers of 
the IEEE International  Conference on Computer-Aided 
Design, Santa Clara, CA, pp. 42-47 (November 1993). 

22.  A. Shen, S .  Devadas, and A. Ghosh, “Probabilistic 
Construction and Manipulation of Free Boolean 
Diagrams,” Digest of Technical  Papers of the IEEE 
International  Conference on Computer-Aided  Design, 
Santa Clara, CA, pp. 544-549 (November 1993). 

“Equivalence of Free Boolean Graphs Can Be Decided 
Probabilistically in Polynomial Time,” Info.  Proc.  Lett. 

21.  R. Rudell, “Dynamic Variable Ordering for Ordered 

23.  M. Blum,  A. K. Chandra, and M. N. Wegman, 

10, 80-82 (March 1980). 
24.  M. C. McFarland, “Formal Verification  of Sequential 

Hardware: A Tutorial,” IEEE Trans.  Computer-Aided 
Design 12, 633-653 (May  1993). 

25.  A. Gupta, “Formal Hardware Verification Methods: A 
Survey,” Formal  Meth. in Syst.  Design 1, 5-92  (1992). 

A. KUEHLMANN, A. SRINIVASAN, AND D. P. LaPOTIN IBM J. RES. DEVELOP. VOL. 39 NO. 112 JANUARYIMARCH 1995 



26. 

27. 

28. 

29. 

30. 

31. 

32. 

33 * 

34. 

35. 

36. 

37. 

38. 

39. 

F. K. Hanna and N. Daeche, “Specification and 
Verification  Using Higher-Order Logic,” Proceedings of 
the  7th  Symposium on Computer  Hardware  Description 
Languages, IFIP WG 10.2, 1985. 
A. Camilleri, M. Gordon, and T. Melham, “Hardware 
Verification  Using High-Order Logic,” From HDL 
Descriptions to Guaranteed  Correct  Circuit  Designs, D. 
Borrione, Ed., North-Holland Publishing Co., Amsterdam, 

S .  Devadas, H.-K. T. Ma, and A.  R. Newton, “On the 
Verification of Sequential Machines at Different Levels of 
Abstraction,” Proceedings of the 24th ACMIIEEE Design 
Automation  Conference, 1987, pp. 271-276. 
0. Coudert, C. Berthet, and J. C. Madre, “Verification of 
Sequential Machines Using  Boolean Functional Vectors,” 
Proceedings of the ZMEC-IFIP International  Workshop on 
Applied  Formal  Methods for Correct  VLSI  Design, 
November 1989, pp. 111-128. 
K. L. McMillan, Symbolic  Model  Checking, Kluwer 
Academic Publishers, Boston, MA, 1993. 
C. Ebeling, “GeminiII: A Second Generation Layout 
Validation Program,” Digest of Technical Papers of the 
IEEE International  Conference on Computer-Aided 
Design, Santa Clara, CA, pp. 322-325 (November 1988). 
R. E. Bryant, “A Switch-Level Model and Simulator for 
MOS  Digital Systems,” IEEE Trans.  Computers (2-33, 
160-177 (February 1984). 
R. E. Bryant, D. Beatty, and K. Brace, “COSMOS: A 
Compiled Simulator for MOS Circuits,” Proceedings of 
the 24th ACMIZEEE Design  Automation  Conference, 

A. Jain and R. E. Bryant, “Mapping Switch-Level 
Simulation onto Gate-Level Hardware Accelerators,” 
Proceedings of the 28th ACMIIEEE Design  Automation 
Conference, June 1 9 9 1 ,  pp. 219-222. 
T. Kam and P.  A. Subrahmanyam, “Comparing Layouts 
with HDL Models: A Formal Verification Technique,” 
Proceedings of the ZEEE International  Conference on 
Computer  Design, Boston, MA, October 1992, pp. 

C. Mead and L. Conway, Introduction to  VLSI  Systems, 
Addison-Wesley  Publishing Co., Reading, MA, 1980. 
W. H. Kauz,  “The Necessity of Closed Loops in  Minimal 
Combinational Circuits,” IEEE Trans.  Computers C-19, 
162-164 (February 1970). 
S .  Malik, “Analysis of Cyclic Combinatorial Circuits,” 
Digest of Technical  Papers of the IEEE International 
Conference on Computer-Aided  Design, Santa Clara, CA, 
pp. 618-625 (November 1993). 
A. Kuehlmann, D. I. Cheng, A. Srinivasan, and D. P. 
LaPotin, “Error Diagnosis for Transistor-Level 
Verification,” Proceedings of the 3lst  ACMIIEEE Design 
Automation  Conference, San Diego, CA, June 1994, pp. 

1987, pp. 43-67. 

1987, pp. 9-16. 

588-591. 

218-224. 

Received  May 27, 1994; accepted  for publication 
September 26, 1994 

Andreas  Kuehlmann IBM Research  Division,  Thomas J .  
Watson  Research  Center,  P.O. Box 218,  Yorktown  Heights, 
New York 10598 (kuehl@watson.ibm.com). Dr. Kuehlmann 
received the Dip].-Ing. degree and the Dr. sc. techn. degree in 
electrical engineering from the Technical University Ilmenau, 
Germany, in 1986 and 1990, respectively. From 1990 to 1991 
he worked at  the Fraunhofer Institute of Microelectronic 
Circuits and Systems, Duisburg, Germany, where he was 
engaged  in the development of a design system for embedded 
microcontrollers. In 1991 Dr. Kuehlmann joined the IBM 
Thomas J. Watson Research Center in Yorktown Heights, 
New York. After working on various problems in  high-level 
and logic synthesis, he concentrated primarily on verification 
techniques for large custom CMOS designs. Dr. Kuehlmann’s 
primary research interests are in the design and verification of 
digital VLSI circuits, particularly in system design, high-level 
and logic synthesis, design verification, and layout generation. 

Arvind  SriniVaSan IBM Research  Division,  Thomas J .  
Watson  Research  Center, P.O. Box 218,  Yorktown  Heights, 
New York 10598 (maxrep@watson.ibm.com). Dr. Srinivasan 
received his B.Tech. degree in electrical engineering from the 
Indian Institute of Technology, New Delhi, in 1988 and his 
Ph.D. in electrical engineering and computer science from the 
University of California at Berkeley in 1991. He is currently a 
research staff  member  in the Design Verification and Analysis 
group at the IBM Thomas J. Watson Research Center. 
His work includes developing verification techniques for 
microprocessors being designed within the IBM Corporation. 
Dr. Srinivasan previously worked in  IBM’s Large-Scale 
Computing Division, where he developed design analysis 
algorithms that were used in large-system design and provided 
technical leadership in determining architectural trade-offs for 
new computer organizations. His research interests include 
formal verification for CMOS designs, asynchronous hardware 
design and verification, and computer architecture. 

David  P.  LaPotin ZBM Research  Division,  Thomas J .  
Watson  Research  Center,  P.O. Box 218,  Yorktown  Heights, 
New York 10598 (dpl@watson.ibm.com). Dr. LaPotin received 
the M.S. degree from Worcester Polytechnic Institute, 
Worcester, Massachusetts, in 1981 and the Ph.D. degree in 
electrical engineering from Carnegie-Mellon University, 
Pittsburgh, in 1985. From 1978 to 1981 he was a member of 
the technical staff at GTE Laboratories in Waltham, 
Massachusetts, working in the area of custom chip design for 
communication applications. Since 1985, he has been a 
research staff member at the IBM Thomas J. Watson Research 
Center, and is currently manager of the Design  Verification 
and Analysis Department. In 1993 he served as technical 
program chair, and in 1994 conference chair, of the IEEE 
Multi-Chip Module Conference. Dr. LaPotin’s s research 
interests include CAD tools for VLSI, early system design 
and analysis, and formal hardware verification. 


