Architectural
timing
verification

of CMOS RISC

Processors

by P. Bose
S. Surya

We consider the problem of verification

and testing of architectural timing models
(“timers’’) coded to predict cycles-per-
instruction (CPI) performance of advanced
CMOS superscalar (RISC) processors. Such
timers are used for pre-hardware performance
analysis and prediction. As such, these
software models play a vital role in processor
performance tuning as well as application-
based competitive analysis, years before
actual product availability. One of the key
problems facing a designer, modeler, or
application analyst who uses such a tool is
to understand how accurate the model is,

in terms of the actual design. In contrast to
functional simulators, there is no direct way
of testing timers in the classical sense, since
the “correct” execution time (in cycles) of a
program on the machine model under test

is not directly known or computable from
equations, truth tables, or other formal
specifications. Ultimate validation (or
invalidation) of such models can be achieved
after actual hardware availability, by direct
comparisons against measured performance.
However, deferring validation solely to that
stage would do little to achieve the overall

purpose of accurate pre-hardware analysis,
tuning, and projection. We describe a
multilevel validation method which has been
used successfully to transform evolving timers
into highly accurate pre-hardware models. In
this paper, we focus primarily on the following
aspects of the methodology: a) establishment
of cause—effect relationships in terms of
model defects and the associated fault
signatures; b) derivation of application-based
test loop kernels to verify steady-state
(periodic) behavior of pipeline flow, against
analytically predicted signatures; and ¢)
derivation of synthetic test cases to verify the
“core” parameters characterizing the pipeline-
level machine organization as implemented in
the timer model. The basic tenets of the theory
and its application are described in the context
of an example processor, comparable in
complexity to an advanced member of the
PowerPC™ 6XX processor family.

1. Introduction

The process of architectural simulation and verification
forms a major focus within today’s VLSI processor
design programs. With increasing degrees of execution

©Copyright 1995 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of

this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

0018-8646/95/$3.00 © 1995 IBM

IBM J. RES. DEVELOP. VOL. 39 NO. 12 JANUARY/MARCH 1995

P. BOSE AND S. SURYA

113

114

concurrency and attendant levels of design complexity, the
relative proportion of total effort devoted to pre- and post-
fabrication test pattern generation and simulation-based
verification is constantly on the rise. The ever-increasing
level of integration afforded by custom and semicustom
CMOS processor technology has led to the incorporation
of deeper pipelines (leaner logic levels) and complex
control logic to coordinate instruction and data flow
through multiple (concurrent) functional units. Alternate,
successive implementations of the same instruction-set
architecture (e.g., POWER or PowerPC™ architectures

{1, 2]), with varying levels of complexity (e.g., the
PowerPC 601™, PowerPC 603™, PowerPC 604™, and
PowerPC 620™ processors announced by the Somerset
Design Center in Austin, Texas), help expose the need for
a robust architectural verification methodology in a more
vivid manner. Functional verification refers to validating
an implementation with respect to an ‘“‘expected,” fault-
free register or memory value-transition sequence, which
would result in correct final register and memory states,
for a given set of architectural test programs. In current
industrial practice (e.g., [3]), random architectural test
program generation and simulation methods are commonly
used to ““verify’” the functional correctness of implemented
instructions (applied singly or within a sequence of other
operations). Classical fault-model-based functional test
generation methods (e.g., [4, 5]) are occasionally used in
essence, if not in full, to ““bias” the architectural test
sequence generation toward a few typical failure modes.
Recent advances in formal verification techniques

(e.g., [6-8]) seem to show promise.

With the current growth in superscalar and super-
pipelined processors (RISC or CISC), the need for pre-
hardware architectural timing (or performance) verification
is of growing importance. Thus, for example, it is not
enough to verify that the mapped (equivalent) test case for
the assignment statement 4 = B + C “works’’ correctly
in the functional sense; we must also be able to verify the
correctness of the exact cycle count for its execution. In
initial generations of microprocessor design (especially for
simple RISC processors such as the IBM 801 [9]), such
timing or performance verification requirements were
minimal because of the lack of concurrent (pipelined)
structures; in a classical von Neumann machine, which
uses single-cycle, nonpipelined instruction execution, the
dynamic instruction count is necessarily a close correlator
of the cycle count, irrespective of the nature of the test
program. In modern VLSI processors, because of multiple
dispatch modes and concurrent pipeline execution with
out-of-order execution modes, the ““science’” of deriving
performance-verification programs (PVPs) in addition to
the traditional architectural verification programs (AVPs)
(see [1], Section IV) is becoming increasingly important.
In this paper, we attempt to present the theory and

P. BOSE AND S. SURYA

application of PVP generation as it is used in our current
superscalar timing model validation methodology.

In prior work' [10-12], we briefly described alternate
methods used in current industrial practice, for evaluating
cycles-per-instruction (CPI) performance for superscalar
machine models. A workload- or benchmark-driven timer
is a cycle-by-cycle (timing) simulator of a candidate
processor organization, with a program workload as the
driving input. If this input is a dynamic execution trace,
we refer to the tool as a dynamic timer. On the other
hand, static timers evaluate program execution time by
analyzing a static program listing (high-level, intermediate,
or assembly/machine code). In either case, timers do not
carry out actual functional simulation of the workload;
only the cycle-by-cycle timing behavior of the concurrent
pipeline structures is simulated. A functional simulator, on
the other hand, is a sequential (i.e., one instruction at a
time) simulation of an idealized von Neumann machine
implementing the candidate (instruction set) architecture.
One of the outputs of such a functional simulator is in fact
a dynamic trace, which can be used to drive a dynamic
timer. Clearly, in ““timing’’ such a trace, the dynamic timer
implicitly assumes the existence of a compiler, which
created the original machine program, executed by the
functional simulator. The (optimization) parameters used
in the compilation process are fixed (i.e., unmodifiable),
as far as the dynamic timer is concerned. The parameters
which can be set and changed easily for such a timer are
usually limited to processor organizational parameters,
e.g., queue/buffer lengths, pipeline depths, cache
latency parameters, branch prediction-related controls,
bus/dispatch bandwidths, and various context-sensitive
processing switches (on/off or Boolean flag parameters). In
some recent, truly programmable timers (e.g., the BRAT
timer in [13]), the instruction set architecture itself is made
available to the user as a global parameter; a whole range
of similar or related processor chips can be modeled by
““programming’’ a range of such organizational parameters.
By using such dynamic timers, the effect of alternate
compiler optimization strategies on processor performance
can be studied only by regenerating the trace for
alternatively compiled modules. In the case of a static
timer, on the other hand, the compiler optimization
parameters can (at least in part) be made a subset of the
timer parameters for the chip designer to experiment
with. However, even in infinite cache mode, such static
estimators tend to have less accuracy than trace-driven
dynamic timers, though they are usually much faster’

[10, 11].

Trace-driven dynamic timers can, in principle, be made
as accurate as the underlying pipelined execution model,
with designer-specified execution semantics. In this paper,

1J.-D. Wellman, *Cycles-per-Instruction Estimation Methods,”” IBM internal
project report, September 1992, revised November 1993.

IBM.J. RES. DEVELOP. VOL. 39 NO. 12 JANUARY/MARCH 1995

we restrict ourselves to such dynamic timers only; from
this point onward, we omit the ““dynamic™ qualifier when
referring to timers. In the early or intermediate stages of
processor design, timers are useful for making design
trade-offs and parameter sizing. Later, when the machine
and timer models have stabilized, accurate pre-hardware
projections are made using benchmark-driven timer runs.
A crucial problem in this context is that of testing or
validating the timer model against a ““gold”’ processor
model, i.e., one which is (conceptually) the exact,
designer-specified execution mode! of the processor.
Detailed execution semantics (using a formal hardware
description language, such as the IBM-internal DSL, or
the industry-standard VHDL) are available as part of
the design, for purposes of simulation and synthesis.
Formal timing verification schemes are therefore possible,
in principle; but owing to complexities in global chip
specification and lack of robust theories, we seldom see
such an investment made in real, deadline-oriented
processor development projects. Also, depending on the
language formalism used, detailed, timer-like pipeline
timing information is often not explicitly available through
simulation models based on such formal descriptions.
We have therefore taken the approach of devising robust
performance {timing) validation strategies, applied to
our fast timer models.

The sources of inaccuracies in a timer model are
1) modeling errors due to programming mistakes; 2) errors
due to misinterpretation of informally specified execution
semantics; and 3) data-sensitive execution semantics which
are usually considered to be beyond the range of modeling
capability of timers. An example of the third category of
inaccuracies is a case in which alternate paths within a
staged pipeline data path are followed, depending on the
value range of the operand (register or memory). Such
instances are usually infrequent enough that they may be
ignored in analyzing performance behavior for realistic
program benchmarks. We therefore limit our attention in
this paper to instances 1 and 2. Since dynamic traces can
be millions (and possibly billions) of instructions long,
it is impractical for a designer to go over the entire
cycle-by-cycle listing to identify such defects. A robust
test/verification methodology, based on a tailored test
case suite generated from higher-level application kernels
(loops), is described in this paper. We present this method
in terms of an example RISC superscalar processor,
patterned after the RS/6000 [14], but with an added
organizational feature: the instruction completion (reorder)
buffer mechanism, to control out-of-order finish and in-
order completion [15, 16]. We refer to this machine as
the ERISC (extended RISC) machine. The machine
organization for ERISC was defined specifically for the
purposes of this paper; it is not based on an actual
product. In terms of organizational complexity, ERISC

IBM J. RES. DEVELOP. VOL. 39 NO. 12 JANUARY/MARCH 1995

is similar to an advanced member of the PowerPC 6XX
family, such as the PowerPC 604 or the PowerPC 620
RISC microprocessors,” except that the ERISC has only
one integer unit, which performs all load/store operations
as well, like the original RS/6000 [14]. The trace-driven
timer for ERISC was derived by extending the TRISC
timer® used earlier' [10, 11] to study the accuracy of
static timers. It is the same type of cycle timer used in
the initial “‘research’ superscalar timers {17]. In an earlier
conference paper [18], a preliminary description of the
performance fault models and levels of model validation
used in our approach was provided. In this paper, we build
on that theory and develop the practical application more
fully. We develop a new notion of output behavioral
testing which uses the cause-effect defect characterization
principle in two ways: transient mode testing and steady-
state parametric testing. In the latter part of Section 4,

we illustrate the application of the experimental validation
approach to real processors by presenting results obtained
with the PowerPC 601 processor model and its timer.

2. The ERISC machine and its timer

& ERISC core processor organization

The example RISC machine (ERISC) [18] used for

the purposes of this paper has a typical superscalar
organization (Figure 1), implementing the POWER
architecture [1]. All functional operations (FIX or FLT)
are register-to-register, with two sources and one
destination, explicitly specified. The instruction dispatch
buffer can hold up to d instructions, which is a timer
parameter. Every cycle up to three instructions can be
dispatched, one to each of the functional units: BRN,
FIX, and FLT. Floating-point load and store instructions
are processed by FIX (the fixed-point unit) for address
generation, prior to cache request. The instruction IDs for
such instructions are dispatched to FLT (the floating-point
unit) as well, to aid synchronization. FIX is capable of
doing one agen (address generation) per cycle; this is
matched by a single-port level-1 cache. The cache
maintains a pending store queue (PSQ) to hold processed
stores waiting to write into the data cache array. Actual
synchronization is effected via register renaming. Both FIX
and FLT (source and destination) registers are subject to
dynamic renaming. FIX and FLT each have their own set
of physical (rename) buffers, the sizes of which are timer
parameters. The architected register file is updated during
actual instruction completion. Instruction execution

can be out of order, but instruction dispatch and actual
completion is in order. The in-order dispatch and

2 In this document, the terms ““PowerPC 601 RISC microprocessor’ and ““601°” are
used to denote a microprocessor from the PowerPC Architecture™ family.
Similarly, the terms ““603,” “604,”” “620,” and *‘6XX”’ are used only as
abbreviated notations for the corresponding microprocessor.

3 P. Bose, ‘“The TRISC Machine Architecture and Timer,”” IBM internal document,
Thomas J. Watson Research Center, Yorktown Heights, NY, November 1991.

115

P. BOSE AND S. SURYA

116

Memory
(cache) } s

[

Instruction dispatcher
1 1 2 f-14d
i

g % | |Architectured
=
S % % specific
BRN é% X |E% FLT EE register file
g
wn o
z 2
S 2 | | Fx | LT

II [H 1

ERISC processor organization (timer model).

Source Bin
o] xlfixlc ary
(Lopﬁofi'inwo "~ | compiler > G
i - file
RS/6000
v system
F;R“.}grc > Dynamic | Trace /
Finite data | e Strae).
ile atrace
cache simulator|

‘ CPI, CPF stats,
timeline output

ERISC timer and associated tools and files complex.

completion mechanism [15] is managed using a completion
buffer or queue, maintained and controlled by the branch-
and-condition unit, BRN. This mechanism is similar to the
completion buffer scheme described for the PowerPC 603
machine [16]; the in-order completion mechanism
facilitates implementation of precise interrupts, with out-
of-order execution modes present in the overall processor.

The organization parameters primarily considered in this
paper are as follows:

1. Effective number of (one-cycle) pipeline stages, p, and

P, respectively, in the FIX and FLT units. (The BRN
unit has, effectively, a one-stage pipe.)

P. BOSE AND S. SURYA

2. The sizes of the instruction queues g, _, q;,, and g,
associated with the three functional units; the size of
the completion buffer (instruction sequencing table),
q,,» and the size of the pending store queue,
qstore'

3. The cache access latency, ¢, in machine cycles.
(Infinite cache model is assumed.)

4. The dependent bubble parameters, b, and b,,
respectively, where b, (b,) is the number of pipeline
bubbles in cycles caused by a consecutive dispatch
sequence of two dependent fixed (floating)-point
instructions, where the second instruction is data-
dependent—via register interlocks—on the first one.

5. The number of FIX and FLT rename buffer registers,
R, and R,,.

® ERISC timer

As stated in Section 1, a timer is a cycle-by-cycle
simulator of a candidate machine organization. Its main
purpose is to print out an overall cycles-per-instruction
(CPI) performance figure for a given instruction trace.
As a side benefit, the detailed timer outputs are useful in
identifying compiler deficiencies and organizational
bottlenecks. In pre-hardware evaluations, dynamic
instruction traces are usually generated by a separate
instruction set simulator. Figure 2 shows the software
organization of the tools used to drive the ERISC timer.
Since the instruction set architecture assumed is that of an
RS/6000 [1, 14], we are able to use available compilers
[19] and trace generators® for generating traces using

an existing hardware platform. The actual ERISC

timer program is written in Pascal (with an alternate
implementation in C) and runs on an RS/6000 system.
For the purposes of this study, we have used an infinite
cache timer model, in which memory reference paths are
pipelined, resulting always in cache hits, with a fixed
latency of ¢ cycles.

Example test case input and associated timer output
We present a specific loop test case, the daxpy test case
with timer output, to introduce several concepts and
definitions.

“Daxpy’ is the key loop within the well-known floating-
point benchmark of Linpack. The FORTRAN specification

of daxpy is

doi=1,n
x(i) = x(i) + 5+ y(i)
enddo

where the one-dimensional arrays x, y and the scalar s are
declared to be double-precision floating-point variables.

4 “Atrace,” IBM internal software, 1991; author: R. Nair, IBM Thomas J. Watson
Research Center, Yorktown Heights, NY.

IBM J. RES. DEVELOP. VOL. 39 NO. 1/2 JANUARY/MARCH 1995

The corresponding compiled code, in mnemonic notation,
per iteration, is as follows:

Ifd frl, r6, 08
fma frl, fr0, fr2, frl
Ifdu fr2, r5, 0x8
stfdu frl, r6, 0x8
bc

moQwz

The alphabetical labels A, B, C, - - - are assigned to
successive instructions in the execution trace in
alphabetical order, with Z being succeeded by a, b, c,
.-+, and z wrapping around again to A. Thus, in the
actual trace, F stands again for the first load instruction
(Ifd), G for the fma, etc.

The ERISC cycle-by-cycle timer output for the first 40
cycles is shown in Figure 3. The labeled functional units or
queues, with dashes () representing individual stages, are
explained below (see also the subsection on the ERISC
core processor organization):

PIB: Primary instruction buffer: nominally set to a
size of 12 for this run.
IST: The instruction sequencing table or

completion buffer (queue), nominally set

to 16 for this run.

The load-store instruction queue, for holding

load and store instructions for the fixed-point

unit FIX; the size of this queue is determined
by the g, timer parameter.

FPU_IQ: The floating-point instruction queue for the
floating-point unit, FLT; the size of this
queue is determined by the g, timer
parameter.

CA: The on-chip, level-1 cache access pipe,
nominally set to one stage for this run; this is
equivalent to setting the timer parameter ¢
to 1.

STQ: The pending store queue, which holds stores
waiting for data, prior to writing in cache;
the size of this queue is determined by the

timer parameter.

LSTQ:

q store

In cycle 1 of Figure 3, the first three instructions in the
buffer (A, B, C, representing the 1fd, fma, and Ifdu) are
dispatched, with the corresponding instruction IDs allotted
to the completion buffer slots. A goes to the first stage
(““decode’’) of FIX, while C is queued in LSTQ, and B
goes to the first stage (““decode’”) of FLT. Instruction B
(fma) must wait in ““decode” for four cycles because it has
to wait for one of its operands to be produced by A (Ifd).
It then advances along the FLT execution pipe (set to four
stages for this run). The Ifd A moves from ““decode” to
““address gen”’ to “‘request to cache’ to the actual cache
access stage (CA). Following this, A is “finished,”

IBM J. RES. DEVELOP. VOL. 39 NO. 12 JANUARY/MARCH 1995

LsTQ FIX FPU_IQ FLT CA 81Q

---~ON -BCDEFGHIJKLM--- IKM-
~TSRQP -BCDEFGHIJKLMNO- KMN-
~=~TSR QBCDEFGHIJKLMNOF MNP-
---TSR QBCDEFGHIJKLMNOP NP--

-- --T QRSDEFGHIJKLMNOP PRS- NM--K Q
10 --eeemmem-- T QRSDEFGHIJKLMNOP RS-~ PN--M Q
AWVU QRST--GHIJKLMNOP §--- RP--K Q
~YX QRSTUVW-IJKLMNOP UW-- SR--P V
~=Y QRSTUVWXIJKLMNOP WX-- US-<R V
-dcbaZ QRSTUVWXY--LMNOP X--- WU--§ V
15 memmmeeee dcb QRSTUVWXYZaLMNOP 2--~
--d QRSTUVWXYZabcNOP be-~

)

T E L LR

W w

17 —=mewmeeme-e d QRSTUVWXYZabcNOP ¢---
18 e----ee ihgfe QRSTUVWXYZabed-- ----
19 wemmmm--e- ih g-STUVWXYZabcdef g---

-~ ghSTUVWXYZabcdef h---
1kj ghi--VWXYZabcdef ----
-nm ghijkl-XYZabcdef 1---
--n ghijklmXYZabcdef m---
-srqpo ghijklmn--abcdef ----

25 eemmm—esas sr ghijklmnopq-cdef g---
26 emmomcmaee- s ghijklmnopgredef r---
27 mmmme-e xwvut ghijklmnopqrs=-~f =---
28 mmmmmmmens xw ~hijkimnopqrstuv v---
29 mmememe-oo- x whijklmnopqrstuv w---

~CBAzy wx--klmnopqrstuv =---
-CB wxyzA-mnopqrstuv A---
--C wxyzABmnopqrstuv B---
FED wxyzABC--pqrstuv ----
-HG wxyzABCDEF-rstuv F---
--H wxyzABCDEFGrstuv G---
-MLKJI wxyzABCDEFGH--uv =---
-==-ML wxyzABCDEFGHIJK- K---

38 ---emememe- ¥ wxyzABCDEFGHIJKL L---
39 -RQPON M--zABCDEFGHIJKL ----
40 meweemm-- RQ MNOP--CDEFGHIJKL P---

ERISC timer cycle-by-cycle output for daxpy test case.

followed by ““completion,” which is manifested by its
disappearance from the completion buffer, or instruction
sequencing table (IST), in cycle 5. As mentioned earlier,
all instructions are dispatched in order, as evidenced by
the appearance of instruction IDs in the completion buffer;
also, the instructions are completed in order, as evidenced
by the deletion of IDs from the head of the completion
buffer. By monitoring the last stage of the FLT execution
pipe, we can see that the pipe reaches steady state in
about 20 cycles, beyond which one fma is produced every
three cycles, implying a steady-state performance of

3/2 = 1.5 cycles per flop (floating-point operation), since
an fma counts as two flops.

Statistics for timing analysis and verification
The following metrics are used in our architectural timing
verification and test methodology:

L(n): The length, in number of instructions, of a

loop trace, obtained by executing the source
loop over n iterations.

P. BOSE AND S. SURYA

117

118

Table 1

Daxpy test case measurements: ERISC machine.

Iteration L(n) T(n) CPI(n) CPL(n) CPF(n) CPA(n) CPB(n) CPX(n)
count, n
1 5 10 2.000 10.000 5.000 1.667 10.000 3.333
2 10 13 1.300 6.500 3.250 1.625 6.500 2.167
3 15 17 1.133 5.667 2.833 1.416 5.667 1.889
4 20 20 1.000 5.000 2.500 1.333 5.000 1.667
5 25 23 0.920 4.600 2.300 1.278 4.600 1.533
6 30 26 0.867 4.333 2.167 1.238 4.333 1.444
7 35 29 0.829 4.143 2.071 1.208 4.143 1.381
8 40 32 0.711 4.000 2.000 1.185 4.000 1.333
9 45 35 0.778 3.889 1.944 1.167 3.889 1.296
10 50 38 0.760 3.800 1.900 1.152 3.880 1.267
T(n): The execution time, in cycles, of a given loop CPF_ = lim [T(n)/(n - FPL)],

test kernel, traced for » iterations.

The average number of executed cycles per

instruction, on processing » loop iterations;

thus, CPI(n) = T(n)/L(n). If the cycle time

(or clock frequency) is known, CPI can

easily be translated to the actual MIPS

performance of the machine.

IPC: The inverse of CPI; i.e., IPC = 1/CPI;
sometimes IPC is more convenient to use,
since increase in IPC correlates directly with
increase in processor performance. (See
Figures 5 and 6, shown later, and the related
discussion in Section 5.)

CPL(n): The average number of executed cycles per
loop iteration; i.e., CPL(n) = T(n)/n.

P_: The steady-state period, in cycles, of the
timer pipeline state-transition pattern.
N_: The cycle count which marks the onset of

a steady-state cycle-by-cycle timer output
pattern, for a given test loop trace; such
onset is defined to begin at the end of an
iteration completion.

CPI : The steady-state CPI for a given loop trace,
defined as

CPI_ = lim [T(r)/L(n)).

n—®

CPF: The average number of executed cycles per
floating-point operation; it is obtained by
dividing the total number of cycles by the
total number of floating-point operations
(flops) in the trace. Each compound floating
op [e.g., the fma (floating multiply—add) op]
counts as two flops. CPF is related to the
MFLOPS performance of the processor.
The inverse of CPF; i.e., FPC = 1/CPF.
The steady-state CPF for a given loop trace
(containing floating ops), defined as

FPC:
CPF :

P. BOSE AND S. SURYA

n—x

where FPL is the number of flops per loop
iteration.

CPX: The average number of executed cycles per
fixed-point operation.

CPB: The average number of executed cycles per
encountered branch operation.

CPA: The average number of processor cycles per

memory access (load/store). This metric
measures the processor-memory (cache) traffic
for a given workload.

Steady-state CPL, CPX, CPB, and CPA can be defined
in a manner similar to the other steady-state metrics.

With reference to the daxpy test case example
(Figure 3), we can measure the loop and performance
metrics as shown in Table 1.

Since the number of instructions per loop iteration
IPL =5, clearly, L(n) = IPL - n = 5 - n. Iteration
completion cycles are 10, 13, 17, 20, 23, - - -, i.e., values
of T(n). These are obtained by noting the cycles at which
the loop-ending branch instructions (i.e., E, J, O, T, Y,
-+ -, etc.) complete, i.e., disappear from the IST. From the
T(n) column, it is clear that the onset of the steady-state
period occurs after T(n) = 20, since after that T(n) always
increments uniformly by three cycles. Thus, N = 20
and P = 3. The calculation of the performance metrics
follows from their definitions. Note that the number of
floating-point operations per loop iteration, FPL, is 2
(since an fma counts as two flops); the number of accesses
per loop iteration, APL, is 3 (two loads and one store); the
number of fixed-point operations per loop iteration, XPL,
is also 3 (loads/stores count as FXU operations); the
number of branches per loop iteration, BPL, is 1.

The lemma below follows easily from the previous
definitions and discussion.

Lemma 2.1 The following identities must hold:

IBM J. RES. DEVELOP. VOL. 39 NO. 1/2 JANUARY/MARCH 1995

.P_=CPL_.

. CPI_= CPL_/IPL.

. CPF_=CPL_/FPL.

Tn) =N_+(n—-N_) P forn=N_.

. CPL(n) = CPB(n), assuming simple loop test cases
(i.e., with single loop-terminating branch).

Lh:hb)l\)b—'

Note that this is only a partial (example) list of valid
relations; others may be stated in terms of the other
metrics defined. Also, note that although APL = XPL for
floating-point loop test cases, CPA(n) is always less than
CPX(n), because the load/store cache access process runs
ahead of the actual load/store completion process. For the
daxpy test case example, CPI = 0.6, CPL_ = 3.0, and
CPF_ = 1.5.

3. Model defects and their effects

A formal functional performance fault (defect) model for
the ERISC class of timers was proposed in [18)]. In this
paper, we illustrate the effect of specific model defects on
timer output, pointing the way to the test case application
and validation procedure. We demonstrate the effects in
the context of our running example of the daxpy test case.

® Timeline states and state transition

Each dash in the timeline output (Figure 3) represents
either a pipeline stage or a queue/buffer entry. The FLT
unit pipeline flow, for example, is depicted by the flow of
the fma instructions (B, G, L, Q, - - -, etc.). The IST unit
depicts a circular buffer, with instructions added to the
tail in a circular fashion, with completed instructions
disappearing from the head. The other queues depict FIFO
transitions, with the maximum queue shifts determined by
various dispatch and finish/complete bandwidths. For
example, the maximum number of new instruction
identifiers (IIDs) issued into the instruction sequencing
table (IST) is 3, because the maximum instruction-issue
bandwidth for the shown ERISC run is 3. For a given
cycle n, the pattern of instructions populating each of the
eight units shown defines a unit-level state S, and a global
state S . Under fault-free conditions, the intercycle state
transitions follow a set of deterministic rules, which in
essence define the pipeline flow execution semantics as
stipulated in the processor organization specification
manual. Timer model defects manifest themselves as
deviations from (or violations of) these state-transition
rules. As an example, consider the instruction-issue logic
of the fault-free ERISC machine. The formal specification
[18] can be distilled into the following simple ‘“English”
rules:

1. On a given cycle, the maximum number of instructions
dispatchable from the PIB is DISP = min (nPIB,
bIST, ibw), where nPIB is the number of consecutive

IBM J. RES. DEVELOP. VOL. 39 NO. 12 JANUARY/MARCH 1995

instructions counting from the head of the PIB (position
0, PIB[0)), up to the first dispatchable branch op; bIST
is the number of blanks (i.e., available empty slots) in
the IST, and ibw is the maximum instruction issue
bandwidth.

2. On a given cycle, any unit-specific instruction within
the block of dispatchable instructions is blocked from
dispatch if the corresponding unit instruction queue
(e.g., LSTQ or FPU_IQ in Figure 3) is full.

3. If a given instruction is blocked from dispatch, all
following instructions within the block of dispatchable
instructions are also blocked.

Similarly, rules defining instruction fetch (from cache)
can be defined in terms of fetch bandwidth (fbw), slot
availability in the PIB, and branch resolution time. For
example, from Figure 3, note that instructions for the next
iteration can be fetched into the PIB during the cycle
immediately after the current iteration-ending branch
has been dispatched. Rules for IST transition can be
formulated in terms of completion bandwidth and the
number and type of instructions marked ““finished”” on a
given cycle. Pipeline stage transitions for the function units
(FIX or FLT) are rather straightforward, with pipeline
hazard conditions defining exceptions or disruptions to
simple pipeline flow [20]. The full rule specification of the
ERISC (timer) timeline state transition model is available
in a more detailed technical report [21], which appears
concurrently with the submission of this (revised)
manuscript.

® Rule-based state transition checking

The following is a partial list of example assertions or
rules, to check out the PIB unit-level state transitions
(under infinite cache operation, loop test case input):

1. If [live_PIB(n) = ibw] and (queues_not_full), then
[live_PIB(n + 1) < live_PIB(n)].
2. If (ist_full) and (no_branches_scanned), then
[live_PIB(n + 1) — live_PIB(n)] < fbw.
3. If [PIB(n)[0].typ = brn_typ], then live_PIB(n) = 1.
4, If pib_full and dispatch_block, then state_pib(zx)
= state_pib(n + 1); fetch_block = true.
5. If (fetch_block), then live_PIB(n + 1) < live_PIB(n).
6. If [for n = 1 to hang_limit, state_pib{n)
= state_pib(n + 1)], then timer_hang = true.

In the above notation, live_PIB(n) stands for the number
of live instructions in the PIB at cycle #. The other
predicates are self-explanatory. The first rule, for example,
asserts that the number of live instructions in the PIB must
decrease on state transition if dispatch conditions are enabled.
As part of the overall validation methodology, we have

implemented a robust state-transition checker program [21]. 119

P. BOSE AND S. SURYA

120

FIX. FPU_IQ FLT CA STQ

) -
1 -
2 -
3 A
4 [
5 - D
6 - ~TSRQP ~BCDEFGHIJKLMNO- F
7 - ~~=TSR. QBCDEFGHIJKLMNOP --MK 1
8 ~w~<YXWVUTSR QBCDEFGHIJKLMNOP ---N K
L YXWVUT QRSDEFGHTJKLMNOP ---P N
100 -==--n YXWVUT QRSDEFGHIJKLMNOP ---- P
117 === YXWVUT QRSDEFGHIJKLMNOP R
12 - ~YXW QRSTUVGHIJKILMNOP s
3. - Y QRSTUVWXIJKLMNOP -
14 . - Y -QRSTUVWXIJRKLMNOP -
5 - Y QRSTUVWXIJKLMNOP U
6 - Y QRSTUVWXEIKLMNOP ~--X W
17 esevmmee-—on QRSTUVWXY--LMNOP ---- X
18 es-e--- dcbaZ QRSTUVWXY-~--<NOP. ---- -

--dc QRSTUVWXYZab-NOP -~---
d QRSTUVWXYZabcNOP

2§ meemeiomem ih g~STUVWXYZabcdef ----
25, mbsmeemaeeo i ghSTUVWXYZabcdef ----
---1 ghi--VWXYZabcdef ---~
------ ghi--VWXYZabcdef ---g
28 -- mlkj ghi~---XYZabcdef ~---h
-~nm ghijkl-A¥2abcdef ----
srqpon ghijklmXYZabcdef ~---
~-srgpon ghijkimXYZabcdef ----
32 meemeomen srq ghijklmnopabcdef ---1
33 —mmemmeesen s ghijklmnopgredef ---m
-=s ghijklmnopqredef ----
s ghijklmnopgredef ~««-

39 me-e-m---- xw -hijklmnopqrstuy ----
40 mmeeemmeaeo x whijklmnopgrstuy ---=

L O I I I A I T T R T S T S - S S
TR 00 1= 100U ITNZEL L LEmGt VRO RGERT LA 1

P IR0 0B G L R e 0 TN

ERISC timer output (daxpy) with injected model defect.

An example timer model defect, injected by reducing the
FIX and FLT pipe latencies and also removing a predicate
from the instruction issue logic, causes the daxpy timeline
output to change, as shown in Figure 4. Note that the
steady-state period P changes from 3 to 5 in the new
timeline; also, N is seen to increase significantly.

Thus, an indirect way of inferring a subset of possible
rule violations is to measure metric deviations from
“expected” or “gold” values. This is the subject of the
following subsection.

® Loop-driven behavioral defect analysis

The basic procedure described in this section is to drive
the timer model to steady-state periodic behavior using
simple loop test cases (like daxpy). Model defects are
diagnosed from the behavior of the output, as manifested
by metric measurement and characterization. The test
cases are in the form of simple high-level FORTRAN, C,
or assembler loops specifically designed to test for model
defects (see Section 5). Both synthetic and application-
based instruction test sequences are used. A given loop

P. BOSE AND 8. SURYA

test case is traced over an increasing number of iterations
and is fed to the timer to (progressively) drive it to a
steady-state pattern.

Steady-state period analysis

By monitoring the steady-state pattern and the
corresponding periodicity at the pipeline stages shown on
the timer-generated timeline output, the various (steady-
state) performance metrics (CPI, CPF, CPA, etc.) can be
calculated easily. We explain this procedure with reference
to the example timeline output shown in Figure 3.

It is to be noted that each unit or queue individually
attains a steady-state pattern, with the same fundamental
period of three cycles. Thus, beyond cycle N = 20,
the PIB exhibits a recurring pattern of 5-2-1, i.e., five
instructions, followed by two, followed by one. This
phenomenon of attainment of a uniform steady-state
pattern across the modeled pipelined units when driven by
an iterative loop trace is the characteristic signature of a
level-0 validated timer (see the definition in the following
subsection).

In general, the steady-state pattern of an execution
pipeline, such as the FLT pipeline, may not exhibit a
simple periodic behavior of one fma produced every p
cycles (implying a CPF_ of p/2). For example, depending
on the organizational parameter settings, the following
steady-state pattern may emerge:

(fma finishes) - - - cycle n
— (idle) cercyclen + 1
—— (idle) ceecyclen + 2
— (idle)
—— (idle) .

(fma finishes) .
— (idle)
— (idle)

(fma finishes) - -+ cyclen + 8

The periodicity of the gap (idle) sequence in this case

is 4-2, i.e., four gaps followed by two gaps. The gap
sequence length (GSL) is defined to be the total number
of distinct gap subpatterns within a period. Thus, for the
example above, GSL = 2; (period is composed of two
gap subpatterns: a four-gap subpattern and a two-gap
subpattern). The steady-state CPF for the above case can
be expressed as

CPF_ = (4 + 2+ GSL)/(2GSL) = (4 + 2 + 2)/4 = 2.0.

Generalizing to the case for which the steady-state gap
sequence exhibits the pattern g(1)-g(2)- - - - g(m),
we would have GSL = m, and

CPF,= | g(i) + m|[2m.

IBM J. RES. DEVELOP. VOL. 39 NO. 12 JANUARY/MARCH 1995

The above formulation effectively describes an algorithm
to evaluate or infer a steady-state metric such as CPF_
from a generated timeline output.

Levels of timer model validation
In the timer model evolution cycle, after the initiation of a
CPU development project, the modeler and user typically
go through distinct phases, characterized by increasing
levels of confidence in the accuracy of the model. In the
light of such experience, we have followed a multilevel
model validation methodology. This approach has allowed
us to plan the timer development schedule with meaningful
status checkpoints and has enabled us to decide on the
appropriate point at which the model can be used reliably
for performing crucial design trade-off analysis.

We define three distinct levels of timer model validation,
as follows.

Level 0 In this level of validation, all test loop traces
applied result in a uniform, steady-state timer output
pattern of finite periodicity, P_, attained within a finite
number of cycles, N_. If the observed steady-state period
is infinite (i.e., if the timer output pattern stabilizes to the
exact same overall pipeline state for any cycle count
greater than N_), then clearly the timer is in an illegal,
deadlocked state; in such a case, the model is said to

fail level-0 validation for the particular test loop trace.

The practical implication of attaining level-0 validation,
as above, is as follows: The primary model defects
encountered by the modeler during the initial testing stage
are those which manifest themselves as timer ““hang’
problems. In effect, the cause behind such level-0 defects
is logical errors in implementing the state-transition logic
of pipelined instruction flow through the timer model. In
rare cases, an actual design error in the machine logic
specification is discovered in fixing such a level-0
validation problem.

The timer model is said to be weakly level-0-validated
if it passes level-0 validation in the above-defined sense,
across the test loop trace suite, for the specified design
point characterized by an exact setting of organizational
parameters. The model is said to be strongly level-0-
validated if it passes level-0 validation for all legal (allowed
or defined) combinations of organizational parameters.

Level 1 1n this level of validation, for each test loop
trace, the performance metrics (CPI, etc.) are observed

to vary monotonically as a function of any given
organizational parameter size (within its defined limits).
(Only one parameter is varied at a time.) Also, for

each loop test case, the CPI is expected to decrease
monotonically toward a limiting asymptote, CPI_, as the
number of loop iterations traced is increased; this behavior

IBM J. RES. DEVELOP. VOL. 39 NO. 1/2 JANUARY/MARCH 1995

should be exhibited for every legal combination of
organization parameters.

This phase of timer behavioral testing can be
characterized by two different modes: transient-mode
testing and steady-state parametric mode testing. At the
end of level-0 validation, the modeler is able to project
performance projection numbers for large benchmarks,
such as the SPEC™ 92 suite, without encountering timer
“hang” problems. However, the accuracy of the projected
numbers is unknown. The level-1 validation procedure
stresses the timer model by playing out the entire legal
range of model parameters and observing the output
metrics for behavioral consistency. (See the additional
discussion of modes of Level-1 validation, later in this
section.) Passing level-1 validation tests does not guarantee
cycle-by-cycle or even cycle-count accuracy; however, at
this stage, all or most of the logical errors in the individual
units and inter-unit ““glue’” codes are typically eliminated.
Beyond this stage, it is usually only a matter of validating
the correct settings of the dozens of (often interacting)
model parameters to ensure that the exact processor
design point has been achieved. This is the objective of
the next level of validation.

Level 2 In this level of validation, each test loop trace is
verified to produce steady-state performance metrics (e.g.,
CPI_ or CPF) which are in agreement with deterministic
(infinite-cache) static prediction formulae.

Level-2 validation exercises check for exact cycle-count
accuracy across the test case repository. In essence, by
comparing the measured metrics against analytic, bounds,
and bandwidth-based formulae' [10-12, 22-25], the model
parameters can be tuned to achieve the desired match.

A typical example of a model bug caught in this stage

is as follows: Suppose that the level-2 cache-hit latency
parameter is intended to be seven cycles; hence, the
corresponding parameter has been set to 7. However, in
terms of the model internals, this setting actually causes an
effective latency of (say) eight cycles as far as the actual
designer’s counting convention is concerned. This kind of
error, caused typically by designer~modeler miscommunication,
is detected and fixed during level-2 validation.

We state the following lemma without formal proof. It
follows quite clearly from the definitions of Level-0/1/2
validation, above.

Lemma 3.1 Passing level-1 and level-2 validation for the
generated loop-trace test case suite guarantees strong
level-0 validation with respect to that test suite (but not
vice versa), under the infinite cache execution semantics
assumed for ERISC.

In addition to the above, in our verification
methodology, we define a level-3 validation step, in which

1 J.-D. Wellman, “‘Cycles-per-Instruction Estimation Methods,”” IBM internal
project report, September 1992, revised November 1993.

121

P. BOSE AND S. SURYA

122

Assembler test C/FORTRAN test
case case
Y Y
asm xle/xif
(assembler) compiler

atrace/xtrace | xcof;(l:;.out) 1 xcoff_to_avp
PVPs
] \
Processor DSL/Texsim
timer model
F" ‘
Timer Texsim | o AET
timeline timeline {
Validation

Level-3 validation procedure; PVP generation and use.

the cycle-by-cycle timer outputs are validated against the
full-scale logic simulation (DSL/ Texsim) model of the
processor under design. This level of validation is beyond
the scope of this paper, and is therefore not discussed

in detail here. The logical block diagram (flowchart)
illustrating the level-3 validation procedure is shown in
Figure 5. With minor variations, this basic methodology is
used for timer-Texsim cross-validation by processor design
and simulation groups within other IBM facilities, as well
as for the PowerPC family of processors. A higher-level
test case, usually an iterative loop structure, is coded
either in assembler or in a high-level language (e.g.,
FORTRAN or C). The test case is translated into an xcoff
(a.out) file and then traced via Atrace’ [21] to feed the
processor timer. The Xcoff-to-AVP utility’ is used to
generate an AVP, which, because of the intent of use,

we may call a PVP (performance verification program).
mintemal software, 1991; author: R. Nair, IBM Thomas J. Watson
Research Center, Yorktown Heights, NY.

5 “Xcoff-to-AVP,”” IBM internal software, 1993; author: S. Hoxey, IBM Toronto,
on assignment at Somerset Design Center, Austin, TX.

P. BOSE AND S. SURYA

The PVP is equipped with the requisite setup and
register/memory initialization code, and the proper
instruction/data-card syntax, etc., so that the test program
can be executed on the Texsim simulation model. The
““‘all-events-trace’” (AET) dump file generated by the
Texsim simulation run is visualized in a timer-like timeline
(see Figure 3), using another utility called Arch-I-Tex.°®
The timer-generated and Texsim-generated timeline
outputs are compared for cross-validation. At the simplest
level, cycle counts are compared; at the most complex
level, cycle-by-cycle matching of pipeline states in the
two timelines may be compared. There are intermediate
levels of matching possible within this level-3 validation
procedure. Detailed discussion of level-3 validation is
deferred to a subsequent publication.

® Modes of level-1 validation
The following experimental level-1 validation modes, as
mentioned before, are currently in use.

Transient CPI/CPF mode

In this mode, the cumulative CPI is measured and plotted
against increasing iteration count for a given loop test
case. The iteration count is varied in unit steps until the
CPI/CPF metrics reach steady state. If the metrics do
not approach an asymptotic steady state, a timer fault is
flagged. A permanent timer hang situation, for instance,
will cause CPI and CPF to increase without limit as the
number of iterations is increased. Also, a nonmonotonic
decrease of CPI signals faulty behavior. The following
lemma is stated for use in the transient-mode timer model
testing methodology.

Lemma 3.2 Under transient validation mode (as above),
a necessary condition for deducing fault-free timer model
behavior is that CPI and CPF measurements are observed
to decrease, monotonically and in a nonlinear curve,
toward an asymptote as the number of loop iterations
traced and processed is increased.

Steady-state, parametric mode

In this mode, the steady-state CPI and CPF are
measured for increasing or decreasing values of selected
organizational parameters. Both single and multiple
parametric testing may be performed, where “‘single’’
testing implies varying a single parameter at a time, and
““multiple’” means varying two or more parameters
simultaneously in the same direction. The following
lemmas are stated for use in the parametric-mode

timer model testing methodology.

6 <“Arch-I-Tex,”” IBM internal program utility, 1993; author: R. Wasmuth, IBM
Austin.

IBM J. RES. DEVELOP. VOL. 39 NO. 12 JANUARY/MARCH 1995

Lemma 3.3 Under fault-free conditions, the CPI_ and
CPF__ for a given loop test trace should be monotonically
nonincreasing as a given single queue-size, buffer-size, or
bandwidth parameter is increased.

Lemma 3.4 Under fault-free conditions, the CPI_ and
CPF__ for a given loop test trace should be monotonically
nondecreasing as a given functional latency parameter
(e.g., the number of stages in a pipeline) is increased.

Lemma 3.5 Under fault-free conditions, the period of
onset of steady-state pattern N should be monotonically
nondecreasing (nonincreasing) as a given queue or buffer
size parameter is increased (decreased).

Static loop execution time prediction

On the basis of prior work on static execution time
estimation for loop structures' [10-12, 24, 25], we have
formulated an exact algorithm for predicting the infinite-
cache, steady-state period, and hence CPI_, as well as the
cycle of onset N of the steady-state pattern, in terms of
the organizational parameters stated earlier (Section 2). We
omit the discussion of that methodology in this paper. We
give a simplified example of the kind of end result one

can obtain using the theory. Consider the daxpy test

case example, discussed earlier. The following “‘rules of
thumb”” may be used to roughly summarize the theoretical
bounding methods for daxpy-like fioating-point loops:

1. The loop-ending branch is fully overlapped with
computation and takes “‘zero cycles’ in the steady-state
sense.

2. Let N, be the number of loads needed per iteration.
This is the number of elements newly accessed on a
given loop iteration.

3. Let N be the number of stores needed per iteration.
This is the number of target elements (to the left of an
assignment) newly referenced on this iteration of the
loop.

4. Let N, be the number of functional arithmetic
instructions (other than divides) needed for the
computation.

5. Let N be the number of divides.

It should be remembered [22, 23] that for this RS/6000-like
ERISC machine,

1. A store takes one cycle (pipelined) and cannot be
overlapped with loads or fmas (floating-point
multiply-add instructions).

2. A load takes one cycle (pipelined) but can be
overlapped with fmas.

3. An fma costs one cycle if it is independent of the
previous fma and two cycles if it is dependent.

IBM J. RES. DEVELOP. VOL. 39 NO. 1/2 JANUARY/MARCH 1995

4. A divide is assumed to take D cycles (nonpipelined);
D = 16 to 19 cycles for the RS/6000.

The minimum number of execution cycles per iteration
[22, 23], assuming independent fmas, perfect instruction
overlap, no divides, and a terminating zero-cost branch, is
then

T, = N, + max(N, + N,).

If there are divides in the loop, N, must be replaced by
N; + D - N, in the above equation.

By substituting Ny = 1, N, =2, and N = 1 for the
daxpy loop case, we obtain an analytically predicted
steady-state cycles-per-iteration value of (1 + 2} = 3,
which gives us a CPF of 1.5, identical to the CPF_
obtained from the timer run (Figure 3).

4. Test case selection, generation, and
application

Test cases used in our methodology are of two broad
categories: a) real-application-based test kernels and

b) specially designed synthetic test sequences. The

first category of test cases is useful because of known
techniques for evaluating application kernel performance,
based on bounds and bandwidth analysis. With known
target performance, timer-generated metrics can be
directly checked for accuracy. The synthetic test cases
are designed to validate core parameter settings in

the timer model. Figure 6 shows the classification and
interrelationships of the two classes of test cases, and the
source applications from which the type-a test cases are
derived.

The synthetic test case generation methodology takes
as input the basic organizational parameters of interest
(Section 2) and optional ““bias’ parameters, to focus
attention on a limited aspect of the defined performance
(timing) fault model [18]. Once a complete suite of test
loops is generated to cover all modeled faults across
instruction classes, the level-x validation methodology
{Section 3) is applied (x = 0, 1, 2). A few simple
examples are given below.

® Examples of test case generation

Example 1: Consider the case of testing for correct
behavior of floating-point load/store instructions. The
high-level code segment used for generating compiled
test sequences is clearly one or more instances of
the assignment operation (i.e., 4 = B). To apply this
repeatedly for a large number of consecutive load/store
sequences, in order to force an asymptotic, steady-state
CPI and hence a characteristic (repeating) timeline
signature, the required test loop (in FORTRAN source)
is as follows.

123

P. BOSE AND S. SURYA

124

Overall sets of

P-kernels: P
Synthetic Real-workload-
kernel set: P _ 4 based kernel
o7 | set Py
/ \ . ~ /\
] -~
Timer core | Other Source application Test segments
parameters | specific benchmark from existing
l‘::lrigtlon Egzj extracts: P, timer-compatible
st P set: P, traces: Py
Technical: Commercial/Spec:
SPEC{p92™ suite SPEC92 suite
Basic one-line apps TPC-A/B/C™
Linpack(daxpy) Laddis
Arc3d Kenbus
TPP Sdet
Perfect Club CATIA®
LLNL kernels Netperf

...others as available ...others as available

Performance test kernel selection.

Test kernel for load|store testing: The load/store test case

doi=1,n
a(i) = b(i)
enddo

The corresponding machine loop code sequence generated
by the compiler is

Ifdu 0,5, 0x8
stfdu 0, 4, 0x8
bc

The types of functional timing faults [18] detected by this
test case are a) dispatch decode, execution, or sequence
fault: a decode fault causes the observed CPI_ to be
less than expected value; an execution fault causes the
observed CP]_ to be larger than expected; a sequence
fault is detected via disagreement between total number of
instructions dispatched and the actual trace length L;
b) FIX execution or sequence fault: an execution fault
in the finish-signal dispatch path causes CPI_ to increase
(possibly without limit, causing ievel-0 failure of
validation); a sequence fault also causes a similar effect.
The fault-free CPI_ for this loop trace is clearly seen to
be 2/3 = 0.667 (see discussion on static loop execution
prediction, Section 4).
Example 2: Consider the case of testing the basic
mechanism of decoupled access-execute execution of

P. BOSE AND S. SURYA

superscalar processors such as ERISC. The fixed-point
pipeline processes the floating-point loads and stores for
computation performed by the FLT pipeline. The simplest
test case for this purpose is a repetitive sequence of
floating-point addition operations, generated by the
following loop.

Test kernel for testing overlapped (decoupled)
access—execute: The addition test case

doi=1,n
c(i) = afi) + b(i)
enddo

The corresponding machine code sequence is

Kdu 0,6, 0x8
Ifdu 1,5, 0x8
fa 0,0,1,0,0
stidu 0, 4, 0x8
bc

Floating-point registers 0 and 1 are loaded by successive
instructions prior to their use as operands by the floating-
point add. There is a true dependency, which on first sight
may appear to cause a dependence bubble in the FL.T
pipe. However, in pipelined mode, and because of the
presence of register renaming, the throughput of completed
adds should be determined solely by the three load/store
instructions. Since we are dealing with a single-ported
cache, the number of steady-state cycles per iteration
should be 3; hence, CPF_ should also be 3.0. Unrolling
the loop will not further improve the CPF because of

the limitation imposed by the single cache port.

Example 3: Consider the case of testing for peak
dispatch, execute, and completion rate of three
instructions per cycle, resulting in CP/ = 0.333. We
could construct this case by using a sequence of 1fd, fma,
and bc, and iterating over the loop. The source loop to
generate this would be as follows.

Test kernel for peak performance: The reduction test case

doi=1,n
t=t+b-a(i
enddo

The machine loop code sequence is

Ifdu 1, 4, 0x8
fma 2,0,2,1,0
be

The scalars ¢ and b are loaded once outside the loop,
causing the iteration loop to have the Ifd, fma, bc
sequence. Under adequate settings for rename buffers and
queue sizes, this loop trace is expected to generate a CPI_

IBM J. RES. DEVELOP. VOL. 39 NO. 1/2 JANUARY/MARCH 1995

W

of 0.333 and a CPF_ of 0.5. Deviation upward would
generally point to execution or decode faults; downward
deviation is not possible under modeled failures for this
particular test case.

Example 4: The following loop is the key loop within
the linpack scientific benchmark. Like the test case in
Experiment 2, this is also a load/store-bound loop,
but with two floating-point operations (because of the
multiply-add) per cycle. This kernel is useful for testing
access—execute overlap (such as Example 2). In addition,
the basic limitation imposed by the load/store accesses
(for the single-port cache implementation used in ERISC)
can be tested, by parametric testing, with and without
loop unrolling.

Test kernel for testing store-bound scientific computation:
The daxpy test case

doi=1,n
x(i) = x(@) + 5 - y()
enddo

The corresponding machine code sequence is

1fd 1, 6, 0x8
fma 1,0,2,1
Ifdu 2,5,0x8
stfdu 1, 6, 0x8
be

As mentioned previously, this test case is expected to
generate a CPF_ of 1.5 for the ERISC machine. Deviation
upward to 2.0 suggests a fault in the instruction completion
logic (ICL), where the number of instructions completed
per cycle may be erroneous, due either to a local (BRN)
logic fault or to an execution fault (finish signal dispatch
error) in FIX or FLT. Increases in CPF may also be
caused by faults in the load/store priority logic in accessing
the single-port cache. (This latter logic has not been
specified in our earlier discussion.)

Single-instruction-cycle_count validation test cases
Synthetic-loop test cases, specially set up to measure

and validate individual instruction timings, are easy to
generate. Typically, a sequence of identical opcodes (with
independent as well as dependent operands) is fed to the
timer. The lifetime of each instruction is inferred from the
throughput rate and the N and P_ metrics.

® Experimental results with SPEC92 workload: ERISC
timer

Systematic loop test case generation coupled with level-x
validation/verification enables the designer to detect
modeled timing faults, which are otherwise hard to detect
and diagnose from large benchmark run results alone. The

IBM J. RES. DEVELOP. VOL. 39 NO. 12 JANUARY/MARCH 1995

Table 2 Experimental ERISC timer validation data for
SPECint92 benchmarks.

Benchmark CPI CPI CPI
(level-0 model) (level-1 model) (level-2 model)
compress 0.992 0.892 0.891
eqntott 0.801 0.763 0.773
€Spresso 1.035 1.031 0.998
gee 1.243 1.241 1.141
li 0.989 0.989 1.119
sC 1.133 1.133 1.134

effect of making the model progressively robust through
level-x validation is seen in practice through changes in
experimentally observed SPEC92 benchmark suite CPI
numbers for ERISC, as we progressed from level 0 to level
2. Table 2 shows the observed changes in CPI, over the
course of verifying the machine timings, as embodied in
the ERISC timer. In most cases, level-1 validation alone
did not detect all the problems in the level-0-validated
model. The overall difference in figures between the level-0
numbers and the level-2 numbers is quite significant, and it
underlines the importance of performing systematic
performance model verification/validation tests.

® Transient and parametric mode experiments (level-1
validation): PowerPC 601 timer

In this subsection we consider a timer model for a real
superscalar machine: the PowerPC 601, and present
experimental results illustrating the use of transient and
parametric mode testing (see definitions in Section 3). The
PowerPC 601 RISC microprocessor [26, 27] is the first
implementation of the PowerPC architecture [2]. Pre-
hardware performance modeling for most of the PowerPC
microprocessor family (601, 603, 604, and 620) was
performed using a simulation toolkit centered on a
parameterized, dynamic (i.., trace-driven) timer, called
BRAT (Basic RISC Architecture Timer) [13, 16],
developed and used by the PowerPC performance
modeling team.

Figure 7 shows the transient-mode performance
variations, as a function of the number of loop iterations,
for each of the experimental test cases (Examples 1
through 4) described above. The current 601 timer model,
with all parameters set and checked to match with the
actual design, was used for the study. All of the graphs
meet the condition stipulated by Lemma 3.2. In these
graphs, the inverse of CPI and CPF, namely IPC and
FPC, are plotted. In Figure 7(b), both the IPC and FPC
variations are shown. Figure 8 depicts the parametric
(steady-state) JPC/FPC variations for two example
parameters. In the first graph, the infinite-cache access
latency (in processor cycles) is varied. The glitch in the
IPC and FPC curves between latency 2 and 3 points to 125

P. BOSE AND S. SURYA

126

3

YX 10~ vx10-?
750.00 |-
600.00 - / IPC
740.00 b~
550.00 |-
730.00
I 500.00 -
E 720:00
450.00
2 710.00p
& 400.00 -
g 700,004
é‘ 350.00 p=
2
g 690.00 w00k
p7]
£ 680.00 250.00 |
670.00 - 200.00
660.00 = 150.00 = FPC
~
650.00 [1] 1 L 1 100.00 k=] - 1 1 Ll
0.00 100.00 200.00 300.00 400.00 500.00 0.00 100.00 200.00 300.00 400.00 500.00
Number of loop iterations Number of loop iterations
@ ()
yx 10”3 yx10~?
250.00
222.00
249.50 - 221.00 |-
-~ 249.00 o 220.00
E 218,501 E 219.00 |-
3 28.00F el ZIS-OOE
3] o
Eg 247.50 gg 217.00
2 216.00
£ w00l g
g g 215.001
g 26301 & 214.00[
E 246,00} £
g a 213.00
B 24550 @ 21200
i g 211.00
5 245.00 T .
244.50 - 20001
a0l 209.00 b~
] L L L ¥ 208.00 = 1 L] 1 .
0.00 100.00 200.00 300.00 400.00 500.00 0.00 100.00 200.00 300.00 400.00 500.00
Number of loop iterations Number of loop iterations

© @

Transient-mode loop trace experiments: (a) Experiment 1 —load store test case; (b) Experiment 2 —addition test case; (c) Experiment 3 —
sum reduction test case; (d) Experiment 4 —daxpy test case.

a timer model defect (sce Lemma 3.4). This defect was (8 in the current design) for the daxpy test loop trace.
logged and diagnosed to be real through code investigation. Lemma 3.3 is satisfied, and the data indicate that for sizes
It has since been repaired, causing changes to some of the of the instruction buffer above 3, there is no additional
SPEC92 projections. The graph in Figure 8(b) shows the benefit. This is consistent with static (analytic) estimate
variation of FPC with the size of the instruction buffer equations [11], given the maximum number of instructions

P. BOSE AND S. SURYA IBM J. RES. DEVELOP. VOL. 39 NO. 1/2 JANUARY/MARCH 1995

which can be dispatched per cycle in this processor.
Detailed experimental results and analysis for the 601
model are available in a technical report [28].

5. Conclusion

Architectural timing verification is rapidly becoming a
critical part of the overall simulation and verification effort
in advanced CMOS superscalar (pipelined) processor
development projects. Timer models used in pre-hardware
design trade-offs and performance projections require
validation support to ensure accuracy. Execution cycle
(performance) verification of the hardware description-
language-based full logic simulation model is a closely
related problem. A systematic methodology to address the
above timing verification problems for current- and future-
generation processor chips has been presented. This
methodology is currently being used for testing, debugging,
and validation of advanced superscalar timer models within
the IBM Systems Technology and Architecture Division.
The test loop trace-driven period analysis and related
techniques may also be used to test the timing behavior

of actual implemented hardware, or the full-scale logic
simulation model, prior to final chip specification. In
practice, we have found the described methodology to be
very useful for augmenting the traditional architectural
verification programs (AVPs) with performance verification
programs (PVPs) to form a complete, robust verification
suite. Our current timer validation methodology has helped
us to project very accurate processor performance
numbers, and to make accurate trade-off analyses, well
before hardware implementation.

The goal of quantifying fault coverage in a manner
analogous to hardware testing has not been directly
addressed. In other words, test case generation followed
by the standard validation experiments does not
necessarily give us a measure of the percentage of faults
covered. In ongoing research, we hope to address this
issue in a more comprehensive manner. More theoretical
work is needed to enable accurate prediction of
performance deltas caused by model defects. Currently,
we are building from existing theory on bounds-based
estimation to quantify performance (e.g., CPI) deltas due
to individual parametric variations. Completion of this
theory will enable us to infer model defects from observed
incorrect parametric-mode variations (see the subsection
on loop-driven behavioral defect analysis).

The science (or art?) of timer model validation as
reported here is acknowledged to be still in its infancy.
However, the methods reported here have been used with
success and have resuited in the removal of innumerable
model defects. The goals of this paper were to present a
real-life view of current timer model validation methods, as
used in the current PowerPC 6XX development process;
to publicize the critical need for robust performance

IBM J. RES. DEVELOP. VOL. 39 NO. 1/2 JANUARY/MARCH 1995

yxi0?

520.00

480.00
440.00
400.00
360.00
320.00
280.00
240.00
200.00

160.00

120.00

rirrrrrrrrrrrTr Ty Tt

80.00

2.00 4.00

Infinite cache hit latency

-3 @
FPC X 10

224.00

220.00

216.00

212.00
208.00
204.00
200.00
196.00

192.00

Floating-point operations per cycle (FPC)

188.00

184.00

| AL L L L L L L

180.00 bud 1) 1 1 1 L x
200 300 4.00 5.00 6.00 7.00 8.00

Size of primary instruction buffer (number of instructions)
®)

Parametric, steady-state-mode loop trace experiments: (a) Experi-
ment 3 —sum reduction test case; (b) Experiment 4 —daxpy test
case.

verification strategies; and (we hope) to attract other
performance analysts, modelers, and architects who will
make future contributions in this area.

Some of the ideas on state-transition testing and
validation of timer models mentioned in this paper have

127

P. BOSE AND S. SURYA

extended themselves into another application: design of
self-checking architectural timers. A report on this topic,
describing the methodology and toolset, is being planned
for separate publication.

Acknowledgment

The authors are indebted to Danny Shieh and Lawrence
Hannon for many fruitful discussions on floating-point
loop timing assessment and measurement. They are also
grateful to Mike Peters and Ali Poursepanj of the Somerset
Design Center, Austin, for providing access to the BRAT
601 timer, which was used to try out some of the
validation experiments reported in Section 5. One of the
authors (PB) would like to acknowledge the help received
from his IBM colleagues Hung Le, Charles Barton, and
Robert Wasmuth in the form of many illuminating
discussions. Many of the level-1 validation ideas reported
here have also been applied to test and verify a future
custom timer (primary coder: Charles Barton), which is
currently under use in modeling an advanced, semicustom
CMOS RISC processor timer at IBM Austin; the ERISC
timer, which was used to develop the initial research ideas
behind the validation methodology, is a separate, example
(nonproprietary) model developed by one of the authors
(PB). Finally, the authors would like to thank the referees
for their valuable comments.

PowerPC, PowerPC 601, PowerPC 603, PowerPC 604,
PowerPC 620, and PowerPC Architecture are trademarks of
International Business Machines Corporation.

SPEC, SPEC{p92, and SPECint92 are trademarks of the
Standard Performance Evaluation Corporation.

TPC-A, TPC-B, and TPC-C are trademarks of the Transaction
Processing Performance Council.

CATIA is a registered trademark of Dassault Systemes
Corporation.

References

1. R. R. Ochler and R. D. Groves, “IBM RISC System/6000
Processor Architecture,”” IBM J. Res. Develop. 34, No. 1,
23-36 (January 1990).

. E. Silha, ““PowerPC Architecture: A High-Performance
Architecture with a History,”” PowerPC and POWER2:
Technical Aspects of the New IBM RISC System/6000,
pp. 73-79, Order No. SA23-2737-00; available through
IBM branch offices; E. Silha and G. Paap, ‘‘PowerPC:

A Performance Architecture,”” Proceedings of IEEE
COMPCON, February 1993, pp. 104-108.

. T. Brodnax, M. Schiffli, and F. Watson, ‘““The PowerPC
601 Design Methodology,” Proceedings of the IEEE
International Conference on Computer Design (ICCD),
October 1993, pp. 248-252.

. S. M. Thatte and J. A. Abraham, ‘A Methodology for
Functional Level Testing of Microprocessors,””
Proceedings of the 8th International Conference on Fault-
Tolerant Computing, Toulouse, France, IEEE Computer
Society, June 1978, pp. 90-95.

P. BOSE AND S. SURYA

. D. Brahme and J. A. Abraham, ‘“Functional Testing of
Microprocessors,”” IEEE Trans. Computers C-33, 475-485
(June 1984).

. S. Tahar and R. Kumar, “Towards a Methodology for the
Formal Hierarchical Verification of RISC Processors,”’
Proceedings of the IEEE International Conference on
Computer Design (ICCD), October 1993, pp. 58-62.

. W. Hunt, “The Mechanical Verification of a
Microprocessor Design,”” From HDL Description to
Guaranteed Correct Circuit Designs, D. Borrione, Ed.,
North-Holland Publishing Co., New York, 1987.

. M. Srivas and M. Brickford, ‘“Verification of a Pipelined
Microprocessor Using Clio,”” Hardware Specification,
Verification and Synthesis: Mathematical Aspects,

M. Leeser and G. Brown, Eds., Springer, New York,
1990.

. G. Radin, ““The 801 Minicomputer,’” Proceedings of the
Symposium on Arch Support for Programming Languages
and Operating Systems, March 1982, pp. 39-47.

. P. Bose, ‘“Early Performance Estimation of Super Scalar
Machine Models,”” Proceedings of the IEEE International
Conference on Computer Design (ICCD), October 1991,
pp. 388-392.

. P. Bose and J.-D. Wellman, ‘“MIPS-Driven Design and
Estimation of VLSI CPUs,”” Proceedings of IEEE VLSI
Design 93, Bombay, January 1993.

. P. Bose, “Time Attributed Dependence Graph Scheme for
Prediction of Execution Time for a Block of Assignment
Statements with Looping,” IBM Tech. Disclosure Bull. 36,
No. 09A, 621-622 (September 1993).

. A. Poursepanj, D. Ogden, B. Burgess, S. Gary, C. Dietz,
D. Lee, S. Surya, and M. Peters, ‘“The PowerPC 603
Microprocessor: Performance Analysis and Design Trade-
offs,” Proceedings of IEEE COMPCON, 1994, pp. 316-323.

. G. F. Grohoski, ‘““Machine Organization of the IBM RISC
System/6000 Processor,” IBM J. Res. Develop. 34, No. 1,
37-58 (January 1990).

. J. S. Liptay, ““Design of the IBM Enterprise System/9000
High-End Processor,”” IBM J. Res. Develop. 36, No. 4,
713-731 (July 1992).

. Papers in session on the PowerPC 603 Microprocessor,
Charles Moore, session chair, Proceedings of IEEE
COMPCON, 1994, pp. 300-323.

. P. Bose, ““The Cheetah/ELES Timer Document,”” IBM
internal document (now declassified, available on request),
Thomas J. Watson Research Center, Yorktown Heights,
NY, May 1985.

. P. Bose, ‘“‘Architectural Timing Verification and Test for
Super Scalar Processors,” Proceedings of FTCS-24, June
1994, pp. 256-265.

. AIX Operating System, C Language Reference, March
1991, Order No. SC23-2058-02; AIX XL Fortran
Compiler/6000, Language Reference, ver. 2.3, September
1992, Order No. SC09-1353-02; available through IBM
branch offices.

. P. M. Kogge, The Architecture of Pipelined Computers,
McGraw-Hill Book Co., Inc., New York, 1981.

. P. Bose and S. Surya, ““Architectural Timing Verification
of CMOS RISC Processors,”” Technical Report, IBM
Systems Technology and Architecture Division, Austin,
TX, 1995, to appear.

. IBM, International Technical Support Centers, ‘‘Predicting
Execution Time on the IBM RISC System/6000,”” Order
No. GG24-3711, July 1991; available through IBM branch
offices.

. IBM, International Technical Support Centers, ““IBM
RISC System/6000 NIC Tuning Guide for Fortran and C,”
Order No. GG24-3611-01, July 1991; available through
IBM branch offices.

. W. Mangione-Smith, S. G. Abraham, and E. S. Davidson,
““A Performance Comparison of the IBM RS/6000 and the

IBM J. RES. DEVELOP. VOL. 39 NO. 1/2 JANUARY/MARCH 1995

Astronautics ZS-1,”” IEEE Computer 24, 39-46 (January
1991).

25. W. Mangione-Smith, T.-P. Shieh, S. G. Abraham, and
E. S. Davidson, ‘“‘Approaching a Machine Application-
Bound in Delivered Performance on Scientific Code,”
Proc. IEEE 81, 1166-1178 (August 1993).

26. M. C. Becker, M. S. Allen, C. R. Moore, J. S. Muhich,
and D. P. Tuttle, “The PowerPC 601 Microprocessor,”’
IEEE Micro 13, 54-68 (October 1993).

27. IBM Microelectronics and Motorola, PowerPC 601 RISC
Microprocessor User’s Manual, copyright Motorola, Inc.,
1993.

28. S. Surya, P. Bose, and J. A. Abraham, ‘‘Architectural
Timing Model Validation: PowerPC Processor Family,”’
Technical Report TR 51.084-0, IBM Systems Technology
and Architecture Division, Austin, TX, 1994.

Received May 24, 1994; accepted for publication
October 28, 1994

IBM J. RES. DEVELOP. VOL. 39 NO. 12 JANUARY/MARCH 1995

Pradip Bose IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (BOSE at YKTVMYV). Dr. Bose is a research staff
member at the IBM Thomas J. Watson Research Center;
when the work reported in this paper was done, he was on
assignment at the IBM Systems Technology and Architecture
Division, Austin, Texas, where he led the performance tools
and analysis support effort for an advanced superscalar
processor development project. Dr. Bose received his M.S.
and Ph.D. degrees in electrical and computer engineering from
the University of Illinois, Urbana—Champaign, in 1981 and
1983, respectively. Since then, he has been with the IBM
Corporation, where his initial assignment was in the area

of performance modeling for one of the Research Division
precursors to the IBM RS/6000 processor. His other research
interests have been in the areas of high-performance computer
architectures, parallel processing, compilers, VLSI testing, and
expert systems. Dr. Bose spent a sabbatical year (1989-1990)
at the Indian Statistical Institute, Calcutta, and has also taught
as an Adjunct Professor at the New York University Courant
Institute and at City University of New York (CUNY). He is a
senior member of IEEE.

S. Surya IBM Systems Technology and Architecture
Division, 11400 Burnet Road, Austin, Texas 78758 (SURYA at
AUSVMS6). Mr. Surya is a staff engineer at the IBM Somerset
Design Center, Austin, Texas. He received a B.Tech

degree in electrical engineering from the Indian Institute of
Technology, Bombay, in 1985 and an M.S. in computer
science from North Carolina State University, Raleigh, in
1987. Prior to joining IBM, Mr. Surya worked for Hewlett
Packard and BBN Communications, in the areas of systems
performance and network modeling/performance, respectively.
At Somerset, he has been involved in processor performance
modeling and validation activity for the PowerPC 6XX
microprocessor family. Mr. Surya is also a Ph.D. candidate at
the University of Texas; he is doing research in the area of
architectural timing verification.

P. BOSE AND S. SURYA

129

