
Architectural 
timing 
verification 
of CMOS RISC 
processors 

by P. Bose 
S. Suva 

We consider the problem of verification 
and testing of architectural timing models 
(“timers”) coded to predict cycles-per- 
instruction (CPI) performance of advanced 
CMOS superscalar (RISC) processors. Such 
timers are used for pre-hardware  performance 
analysis and prediction. As such, these 
software models play a vital role in processor 
performance tuning as well as application- 
based competitive analysis,  years before 
actual product availability. One  of the key 
problems facing a  designer,  modeler, or 
application analyst who uses such a tool is 
to understand how accurate the model is, 
in terms of the actual design. In contrast to 
functional simulators, there is no direct way 
of testing  timers in the classical sense, since 
the “correct” execution time (in cycles) of a 
program on the machine model under test 
is not directly known or computable from 
equations, truth tables,  or  other formal 
specifications. Ultimate validation (or 
Invalidation) of such models can  be  achieved 
after actual hardware availability, by direct 
comparisons against  measured  performance. 
However, deferring validation solely to that 
stage would  do  little to achieve the overall 

purpose of accurate  pre-hardware  analysis, 
tuning, and projection. We describe a 
multilevel validation method which has  been 
used successfully to transform evolving timers 
into  highly accurate  pre-hardware  models. In 
this paper,  we focus primarily on the following 
aspects of the methodology: a) establishment 
of cause-effect relationships in terms of 
model defects and the associated fault 
signatures;  b) derivation of application-based 
test loop kernels to verify steady-state 
(periodic) behavior of pipeline flow, against 
analytically predicted signatures;  and  c) 
derivation of synthetic test cases to verify the 
“core” parameters characterizing the pipeline- 
level machine organization as  implemented in 
the timer model.  The basic tenets of the theory 
and its application are described in the context 
of an  example processor, comparable in 
complexity to an  advanced  member of the 
PowerPC” 6XX processor family. 

1. Introduction 
The process of architectural  simulation  and  verification 
forms a major focus within  today’s VLSI processor 
design  programs.  With  increasing  degrees  of  execution 
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concurrency and attendant levels of design complexity, the 
relative proportion of total effort devoted to pre- and post- 
fabrication test pattern generation and simulation-based 
verification is constantly on the rise. The ever-increasing 
level of integration afforded  by custom and semicustom 
CMOS processor technology has led to the incorporation 
of deeper pipelines (leaner logic levels) and complex 
control logic to coordinate instruction and data flow 
through  multiple (concurrent) functional units. Alternate, 
successive implementations of the same instruction-set 
architecture (e.g.,  POWER or PowerPCTM architectures 
[ l ,  2]), with varying levels of complexity (e.g., the 
PowerPC 601TM, PowerPC 6031M, PowerPC 604TM, and 
PowerPC 620TM processors announced by the Somerset 
Design Center in Austin, Texas), help expose the need for 
a robust architectural verification methodology in a more 
vivid manner. Functional verification refers to validating 
an implementation with respect to an “expected,” fault- 
free register or memory value-transition sequence, which 
would result in correct final register and memory states, 
for a given set of architectural test programs. In current 
industrial practice (e.g., [3]), random architectural test 
program generation and simulation methods are commonly 
used to “verify” the functional correctness of implemented 
instructions (applied singly or within a sequence of other 
operations). Classical  fault-model-based functional test 
generation methods (e.g., [4, 51) are occasionally used in 
essence, if not in  full, to “bias” the architectural test 
sequence generation toward a few  typical  failure modes. 
Recent advances in formal verification techniques 
(e.g., [6-81) seem to show promise. 

With the current growth in superscalar and super- 
pipelined processors (RISC or CISC), the need for pre- 
hardware architectural timing (orpe$ormance) verification 
is of growing importance. Thus, for example, it  is  not 
enough to verify that the mapped (equivalent) test case for 
the assignment statementA = B + C “works’’ correctly 
in the functional sense; we  must also be able to verify the 
correctness of the exact cycle count for its execution. In 
initial generations of microprocessor design (especially for 
simple  RISC processors such as the IBM 801 [9]) ,  such 
timing or performance verification requirements were 
minimal because of the lack of concurrent (pipelined) 
structures; in a classical von Neumann  machine,  which 
uses single-cycle, nonpipelined instruction execution, the 
dynamic instruction count is necessarily a close correlator 
of the cycle count, irrespective of the nature of the test 
program. In modern VLSI processors, because of multiple 
dispatch modes  and concurrent pipeline execution with 
out-of-order execution modes, the “science” of deriving 
performance-verification programs (PVPs) in  addition to 
the traditional architectural verification programs (AVPs) 
(see [l], Section IV) is  becoming increasingly important. 

114 In this paper, we attempt to present the theory and 
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application of  PVP generation as it  is  used in our current 
superscalar timing  model validation methodology. 

In prior work’ [lo-121, we  briefly described alternate 
methods used in current industrial practice, for evaluating 
cycles-per-instruction (CPI) performance for superscalar 
machine  models. A workload- or benchmark-driven timer 
is a cycle-by-cycle (timing) simulator of a candidate 
processor organization, with a program workload as the 
driving input. If this input is a dynamic execution trace, 
we  refer to the tool as a dynamic timer. On the other 
hand, static timers evaluate program execution time by 
analyzing a static program  listing  (high-level, intermediate, 
or assembly/machine code). In either case, timers do not 
carry out actual functional  simulation of the workload; 
only the cycle-by-cycle timing behavior of the concurrent 
pipeline structures is simulated. A&nctional simulator, on 
the other hand, is a sequential (i.e., one instruction at a 
time) simulation of  an idealized von Neumann  machine 
implementing the candidate (instruction set) architecture. 
One  of the outputs of such a functional simulator is in fact 
a dynamic trace, which can be used to drive a dynamic 
timer. Clearly, in “timing” such a trace, the dynamic timer 
implicitly assumes the existence of a compiler, which 
created the original  machine  program, executed by the 
functional simulator. The (optimization) parameters used 
in the compilation process are fixed  (i.e.,  unmodifiable), 
as far as the dynamic  timer  is concerned. The parameters 
which can be set and  changed easily for such a timer are 
usually  limited to processor organizational parameters, 
e.g., queuebuffer lengths, pipeline depths, cache 
latency parameters, branch prediction-related controls, 
buddispatch bandwidths, and various context-sensitive 
processing switches (on/off or Boolean flag parameters). In 
some recent, truly programmable timers (e.g., the BRAT 
timer in [13]), the instruction set architecture itself  is  made 
available to the user as a global parameter; a whole  range 
of similar or related processor chips can be modeled by 
“programming” a range of such organizational parameters. 
By  using such dynamic timers, the effect of alternate 
compiler optimization strategies on processor performance 
can be studied only by regenerating the trace for 
alternatively compiled  modules. In the case of a static 
timer, on the other hand, the compiler optimization 
parameters can (at least in part) be made a subset of the 
timer parameters for the chip designer to experiment 
with. However, even in infinite cache mode, such static 
estimators tend to have less accuracy than trace-driven 
dynamic timers, though they are usually  much faster’ 
[lo, 111. 

Trace-driven dynamic timers can, in  principle,  be  made 
as accurate as the underlying  pipelined execution model, 
with  designer-specified execution semantics. In this paper, 

1 J:D. Wellman, “Cycles-per-Instruction Estimation Methods,” IBM  internal 
project report, September 1992, revised November 1993. 
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we restrict ourselves to such dynamic timers only; from 
this point onward, we  omit the “dynamic” qualifier  when 
referring to timers. In the early or intermediate stages of 
processor design, timers are useful  for  making  design 
trade-offs  and parameter sizing. Later, when the machine 
and  timer models have stabilized, accurate pre-hardware 
projections are made  using benchmark-driven timer runs. 
A crucial problem in this context is that of testing or 
validating the timer  model against a “gold” processor 
model,  i.e., one which  is (conceptually) the exact, 
designer-specified execution model of the processor. 
Detailed execution semantics (using a formal hardware 
description language, such as the IBM-internal DSL, or 
the industry-standard VHDL) are available as part of 
the design, for purposes of simulation and synthesis. 
Formal timing  verification schemes are therefore possible, 
in principle; but owing to complexities in global chip 
specification  and lack of robust theories, we  seldom see 
such an investment made in real, deadline-oriented 
processor development projects. Also, depending on the 
language  formalism used, detailed, timer-like  pipeline 
timing  information is often  not explicitly available through 
simulation models based on such formal descriptions. 
We have therefore taken the approach of devising robust 
performance (timing) validation strategies, applied to 
our fast timer  models. 

The sources of inaccuracies in a timer  model are 
1) modeling errors due to  programming mistakes; 2) errors 
due to misinterpretation of informally  specified execution 
semantics; and 3) data-sensitive execution semantics which 
are usually considered to be beyond the range of modeling 
capability of timers. An example of the  third category of 
inaccuracies is a case in which alternate paths within a 
staged pipeline data path are followed, depending on the 
value range of the operand (register or memory). Such 
instances are usually infrequent enough that they may  be 
ignored in analyzing performance behavior for realistic 
program benchmarks. We therefore limit our attention in 
this paper to instances 1 and 2. Since dynamic traces can 
be millions (and possibly  billions) of instructions long, 
it is impractical for a designer to go over the entire 
cycle-by-cycle listing to identify such defects. A robust 
test/verification methodology, based on a tailored test 
case suite generated from  higher-level application kernels 
(loops), is described in this paper. We present this method 
in terms of an  example  RISC superscalar processor, 
patterned after the RS/6000 [14], but  with  an added 
organizational feature: the instruction completion (reorder) 
buffer  mechanism, to control out-of-order finish and  in- 
order completion [15, 161. We refer to this machine as 
the ERISC (extended RISC)  machine. The machine 
organization for ERISC was defined  specifically for the 
purposes of this paper; it is  not based on an actual 
product. In terms of organizational  complexity, ERISC 
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is  similar to an advanced member of the PowerPC 6XX 
family, such as the PowerPC 604 or the PowerPC 620 
RISC microprocessors,* except that the ERISC has only 
one integer unit, which performs all loadhtore operations 
as well,  like the original RS/6000 [14]. The trace-driven 
timer for ERISC was derived by extending the TRISC 
timer3 used earlier’ [lo, 111 to study the accuracy of 
static timers. It is the same type of cycle timer  used in 
the initial “research” superscalar timers [17]. In an earlier 
conference paper [HI, a preliminary description of the 
performance fault models and levels of model validation 
used in our approach was provided. In this paper, we  build 
on that theory and develop the practical application more 
fully. We develop a new notion of output behavioral 
testing which uses the cause-effect defect characterization 
principle in two ways: transient mode testing and steady- 
state parametric testing. In the latter part of Section 4, 
we illustrate the application of the experimental validation 
approach to real processors by presenting results obtained 
with the PowerPC 601 processor model  and its timer. 

2. The ERISC machine  and its timer 

ERISC core processor Organization 
The  example RISC machine (ERISC) [18] used  for 
the purposes of this paper has a typical superscalar 
organization (Figure l), implementing the POWER 
architecture [l]. All functional operations (FIX or FLT) 
are register-to-register, with two sources and one 
destination, explicitly specified.  The instruction dispatch 
buffer can hold up to d instructions, which  is a timer 
parameter. Every cycle up to three instructions can be 
dispatched, one to each of the functional  units:  BRN, 
FIX, and FLT. Floating-point load  and store instructions 
are processed by FIX (the  fixed-point  unit) for address 
generation, prior to cache request. The instruction IDS for 
such instructions are dispatched to FLT  (the floating-point 
unit) as well, to aid synchronization. FIX is capable of 
doing one agen (address generation) per cycle; this is 
matched by a single-port level-1 cache. The cache 
maintains a pending store queue (PSQ) to hold processed 
stores waiting to write into the data cache array. Actual 
synchronization is effected via register renaming.  Both FIX 
and FLT (source and destination) registers are subject to 
dynamic renaming. FIX and FLT each have their  own set 
of physical (rename) buffers, the sizes of which are timer 
parameters. The architected register file is updated during 
actual instruction completion. Instruction execution 
can be out of order, but instruction dispatch and actual 
completion is in order. The in-order dispatch and 

2 In this document, the  terms “PowerPC 601 RISC microprocessor” and “601” are 
used to denote a microprocessor from  the PowerPC Architecture” family. 
Similarly, the terms “603,”  “604,” “620,” and “6XX” are used only as 
abbreviated notations for the corresponding microprocessor. 

Thomas J. Watson Research Center, Yorktown Heights, NY, November 1991. 
P.  Bose, “The TRISC Machine Architecture and Timer,” IBM internal document, 
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completion mechanism [15] is managed  using a completion 
buffer or queue, maintained and controlled by the branch- 
and-condition unit, BRN. This mechanism is similar to the 
completion buffer scheme described for the PowerPC 603 
machine [16]; the in-order completion mechanism 
facilitates implementation of precise interrupts, with out- 
of-order execution modes present in the overall processor. 

The organization parameters primarily considered in this 
paper are as follows: 

1. Effective number of (one-cycle) pipeline stages, p 1  and 
p , ,  respectively, in the FIX and FLT units. (The BRN 
unit  has,  effectively, a one-stage pipe.) 116 
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2. The sizes of the instruction queues qbm, qh, and qRt, 
associated with the three functional units; the size of 
the completion  buffer (instruction sequencing table), 
qist, and the size of the pending store queue, 
4,tore. 

3. The cache access latency, c ,  in machine cycles. 
(Infinite cache model  is assumed.) 

4. The dependent bubble parameters, b ,  and b,, 
respectively, where b,  (b,)  is the number of pipeline 
bubbles in cycles caused by a consecutive dispatch 
sequence of two dependent fixed  (floating)-point 
instructions, where the second instruction is data- 
dependent-via register interlocks-on the first one. 

5. The number of FIX and FLT rename  buffer registers, 
R, and RRt. 

ERISC timer 
As stated in Section 1, a timer is a cycle-by-cycle 
simulator of a candidate machine organization. Its main 
purpose is to print out an overall cycles-per-instruction 
(CPI) performance figure for a given instruction trace. 
As a side benefit, the detailed timer outputs are useful in 
identifying  compiler  deficiencies  and organizational 
bottlenecks. In pre-hardware evaluations, dynamic 
instruction traces are usually generated by a separate 
instruction set simulator. Figure 2 shows the software 
organization of the tools used to drive the ERISC timer. 
Since the instruction set architecture assumed is that of  an 
RS/6000 [l, 141, we are able to use available compilers 
[19] and trace generators4 for generating traces using 
an existing hardware platform. The actual ERISC 
timer  program  is written in Pascal (with an alternate 
implementation in C)  and runs on an  RS/6000 system. 
For the purposes of this study, we have used  an infinite 
cache timer  model,  in  which  memory reference paths are 
pipelined, resulting always in cache hits, with a fixed 
latency of c cycles. 

Example test case input  and associated timer output 
We present a specific  loop test case, the daxpy test case 
with  timer output, to introduce several concepts and 
definitions. 

"Daxpy"  is the key loop within the well-known  floating- 
point benchmark of Linpack. The FORTRAN  specification 
of daxpy is 

d o i  = 1, n 

enddo 

where the one-dimensional arrays x ,  y and the scalar s are 
declared to be double-precision floating-point variables. 

x ( i )  = x( i )  + s . y ( i )  

4 "Atrace," IBM  internal software, 1991; author: R. Nair, IBM Thomas J. Watson 
Research Center, Yorktown Heights, NY. 
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The corresponding compiled code, in mnemonic notation, 
per iteration, is as follows: 

A: lfd frl, r6, Ox8 
B: fma frl, fro,  fr2, frl 
C: lfdu fr2, r5, 0x8 
D: stfdu frl, r6, Ox8 
E: bc 

The alphabetical labels A, B, C, 9 - are assigned to 
successive instructions in the execution trace in 
alphabetical order, with Z being succeeded by a, b,  c, - * , and z wrapping around again to A. Thus, in the 
actual trace, F stands again  for the first  load instruction 
(Ifd), G for the fma, etc. 

The ERISC cycle-by-cycle timer output for the first 40 
cycles is shown in Figure 3. The labeled functional units or 
queues, with dashes (-) representing individual stages, are 
explained  below (see also the subsection on the ERISC 
core processor organization): 

PIB:  Primary  instruction buffer: nominally set  to a 

IST: The instruction  sequencing  table or 
size of 12 for this  run. 

completion buffer (queue), nominally set 
to 16 for  this  run. 

LSTQ: The load-store  instruction  queue,  for holding 
load and store  instructions for the fixed-point 
unit FIX;  the  size of this queue  is determined 
by  the qk timer  parameter. 

floating-point unit, FLT; the  size of this 
queue is determined by  the qRr timer 
parameter. 

nominally set  to  one stage  for  this  run;  this is 
equivalent to setting the timer parameter c 
to 1. 

FPU-IQ: The floating-point instruction queue for the 

CA: The on-chip, level-1 cache  access pipe, 

STQ: The pending store  queue, which  holds stores 
waiting  for data, prior to writing in cache; 
the size of this queue is determined by  the 
q,,,, timer  parameter. 

In cycle 1 of Figure 3, the first three instructions in the 
buffer (A, B, C, representing the lfd,  fma,  and  lfdu) are 
dispatched, with the corresponding instruction IDS allotted 
to the completion buffer slots. A goes to the first stage 
("decode") of FIX, while C is  queued in LSTQ, and B 
goes to the first stage ("decode") of FLT. Instruction B 
(fma) must  wait in "decode" for four cycles because it has 
to wait  for one of its operands to be produced by A (Ifd). 
It then advances along the FLT execution pipe (set to four 
stages for this run). The Ifd A moves  from  "decode" to 
"address gen" to "request to cache" to the actual cache 
access stage (CA). Following this, A is  "finished," 

Cycle PIB IST  LSTQ  FIX  FPU-IQ  FLT  CA  STQ 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
21 
28 
29 
30 

32 
31 

33 
34 
35 
36 
37 
38 
39 
40 

ERISC timer cycle-by-cycle output for daxpy test case. 

followed by "completion,"  which  is  manifested by its 
disappearance from the completion buffer, or instruction 
sequencing table (IST), in cycle 5. As mentioned earlier, 
all instructions are dispatched in order, as evidenced by 
the appearance of instruction IDS in the completion  buffer; 
also, the instructions are completed in order, as evidenced 
by the deletion of IDS  from the head  of the completion 
buffer. By monitoring the last stage of the FLT execution 
pipe,  we can see that the pipe reaches steady state in 
about 20 cycles, beyond which one fma  is produced every 
three cycles, implying a steady-state performance of 
312 = 1.5 cycles per flop  (floating-point operation), since 
an  fma counts as two flops. 

Statistics for timing analysis and verification 
The following metrics are used in our architectural timing 
verification  and test methodology: 

L(n) :  The length, in number of instructions, of a 
loop  trace,  obtained by executing the  source 
loop  over n iterations. 117 
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Table 1 Daxpy test case measurements: ERISC machine. 

Iteration L(n)  T ( n )  CPl(n)  CPL(n)  CPF(n)  CPA(n)  CPB(n)  CPX(n) 
count, n 

1 
2 
3 
4 
5 
6 
I 
8 
9 

10 

5 
10 
15 
20 
25 
30 
35 
40 
45 
50 

10 
13 
17 
20 
23 
26 
29 
32 
35 
38 

2.000 
1.300 
1.133 
1.000 
0.920 
0.867 
0.829 
0.711 
0.778 
0.760 

10.000 
6.500 
5.667 
5.000 
4.600 
4.333 
4.143 
4.000 
3.889 
3.800 

5 .000 
3.250 
2.833 
2.500 
2.300 
2.167 
2.071 
2.000 
1.944 
1.900 

1.667 
1.625 
1.416 
1.333 
1.278 
1.238 
1.208 
1.185 
1.167 
1.152 

1o.Ooo 
6.500 
5.667 
5.000 
4.600 
4.333 
4.143 
4.000 
3.889 
3.880 

3.333 
2.167 
1.889 
1.667 
1.533 
1.444 
1.381 
1.333 
1.296 
1.267 

T(n)  : 

CPI(n): 

IPC : 

CPIss: 

CPF: 

FPC : 
CPFss: 

118 

The execution  time, in cycles, of a given loop 
test kernel, traced for n iterations. 
The average  number of executed  cycles  per 
instruction, on processing n loop  iterations; 
thus, CPI(n) = T(n) /L(n) .  If the  cycle time 
(or  clock frequency) is known, CPI can 
easily be translated to  the  actual MIPS 
performance of the machine. 
The  inverse of CPI; i.e., IPC = l /CPI ;  
sometimes IPC is more  convenient to  use, 
since increase in IPC correlates directly  with 
increase in processor performance. (See 
Figures 5 and 6, shown  later,  and  the  related 
discussion in Section 5. )  
The average  number of executed  cycles  per 
loop  iteration; Le., CPL(n)  = T(n) /n .  
The  steady-state period, in cycles, of the 
timer pipeline state-transition  pattern. 
The  cycle  count which marks  the  onset of 
a steady-state cycle-by-cycle  timer output 
pattern, for a given test loop trace;  such 
onset is defined to begin at the  end of an 
iteration completion. 
The  steady-state  CPI  for a given loop trace, 
defined as 

CPIss = lim [T(n)/L(n)]. 

The average  number of executed  cycles  per 
floating-point operation; it  is  obtained  by 
dividing the total  number of cycles  by  the 
total  number of floating-point operations 
(flops) in the  trace.  Each compound floating 
op [e.g., the fma (floating multiply-add) op] 
counts  as  two flops. CPF is related to  the 
MFLOPS performance of the  processor. 
The  inverse of CPF; i.e., FPC = 1JCPF. 
The  steady-state  CPF for a given loop trace 
(containing floating ops), defined as 

n-m 

CPFsss = lim [T(n)/(n  FPL)], 
n- 

where  FPL  is  the number of flops per  loop 
iteration. 

CPX: The average  number of executed  cycles  per 

CPB: The average  number of executed  cycles  per 

CPA: The average number of processor  cycles  per 

fixed-point  operation. 

encountered  branch operation. 

memory  access (load/store). This  metric 
measures  the processor-memory  (cache) traffic 
for a given workload. 

Steady-state CPL,  CPX,  CPB, and CPA can be defined 
in a manner similar to the other steady-state metrics. 

(Figure 3) ,  we  can measure the loop  and performance 
metrics as shown in Table 1. 

Since the number of instructions per loop iteration 
IPL = 5, clearly, L(n)  = IPL * n = 5 n.  Iteration 
completion cycles are 10, 13, 17, 20, 23, * * , i.e., values 
of T ( n ) .  These are obtained by noting the cycles at which 
the loop-ending branch instructions (i.e., E, J,  0, T, Y, - * , etc.) complete, i.e., disappear from the IST. From the 
T ( n )  column, it is clear that the onset of the steady-state 
period occurs after T(n) = 20, since after that T(n) always 
increments uniformly by three cycles. Thus, Nss = 20 
and Pss = 3.  The calculation of the performance metrics 
follows  from their definitions. Note that the number of 
floating-point operations per loop iteration, FPL, is 2 
(since an  fma counts as two flops); the number of accesses 
per  loop iteration, APL,  is 3 (two loads and one store); the 
number of fixed-point operations per loop iteration, XPL, 
is also 3 (loads/stores count as FXU operations); the 
number of branches per loop iteration, BPL, is 1. 

The  lemma  below  follows easily from the previous 
definitions  and discussion. 

Lemma 2.1 The  following identities must  hold: 

With reference to the daxpy test case example 
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c 

t 

I, 

1. Pss = CPLSS . 
2. CPISS = CPLS,IIPL. 
3 .  CPFss = CPLJFPL. 
4. T(n) = Nss + (n - Ns,) P,, for n 2 N s s .  
5. CPL(n) = CPB(n), assuming  simple  loop test cases 

(i.e.,  with  single loop-terminating branch). 

Note that this is only a partial (example) list of valid 
relations; others may  be stated in terms of the other 
metrics defined. Also, note that although APL = XPL for 
floating-point  loop test cases, CPA(n) is always less than 
CPX(n), because the load/store cache access process runs 
ahead of the actual loadistore completion process. For the 
daxpy test case example, CPIss = 0.6, CPLss = 3.0, and 
CPFss = 1.5. 

3. Model  defects and  their  effects 
A formal functional performance fault (defect) model for 
the ERISC class of timers was proposed in  [18]. In this 
paper, we illustrate the effect of specific  model defects on 
timer output, pointing  the way to the test case application 
and validation procedure. We demonstrate the effects in 
the context of our running  example of the daxpy test case. 

Timeline states  and  state transition 
Each dash in the timeline output (Figure 3)  represents 
either a pipeline stage or a queuebuffer entry. The FLT 
unit  pipeline  flow,  for  example,  is depicted by the flow  of 
the fma instructions (B, G, L, Q, - , etc.). The IST unit 
depicts a circular buffer,  with instructions added to the 
tail in a circular fashion, with  completed instructions 
disappearing from the head. The other queues depict FIFO 
transitions, with the maximum queue shifts determined by 
various dispatch and finish/complete bandwidths. For 
example, the maximum  number of  new instruction 
identifiers (IIDs) issued into the instruction sequencing 
table (KT) is 3,  because the maximum instruction-issue 
bandwidth  for the shown ERISC run  is 3 .  For a given 
cycle n, the pattern of instructions populating each of the 
eight  units shown defines a unit-level state S, and a global 
state S,. Under fault-free conditions, the intercycle state 
transitions follow a set of deterministic rules, which in 
essence define the pipeline flow execution semantics as 
stipulated in the processor organization specification 
manual.  Timer  model defects manifest themselves as 
deviations from (or violations of) these state-transition 
rules. As an example, consider the instruction-issue logic 
of the fault-free ERISC machine. The formal  specification 
[18] can be distilled into the following  simple “English” 
rules: 

1. On a given cycle, the maximum  number of instructions 
dispatchable from the PIB is DISP = min (nPIB, 
bIST, ibw), where nPIB is the number of consecutive 
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instructions counting from the head  of the PIB (position 
0, PIB[O]), up to the first dispatchable branch op; bZST 
is the number of blanks (i.e., available empty slots) in 
the IST,  and ibw is the maximum instruction issue 
bandwidth. 

2. On a given cycle, any unit-specific instruction within 
the block of dispatchable instructions is blocked  from 
dispatch if the corresponding unit instruction queue 
(e.g., LSTQ or FPUJQ in Figure 3) is  full. 

following instructions within the block of dispatchable 
instructions are also blocked. 

3 .  If a given instruction is  blocked  from dispatch, all 

Similarly, rules defining instruction fetch (from cache) 
can be  defined  in terms of fetch bandwidth (fbw), slot 
availability in the PIB, and branch resolution time. For 
example,  from  Figure 3, note that instructions for the next 
iteration can be fetched into the PIB during the cycle 
immediate& after the current iteration-ending branch 
has been dispatched. Rules  for IST transition can be 
formulated in terms of completion bandwidth  and the 
number and type of instructions marked “finished” on a 
given  cycle.  Pipeline stage transitions for the function  units 
(FIX or FLT) are rather straightforward, with  pipeline 
hazard conditions defining exceptions or disruptions to 
simple  pipeline flow [20]. The full rule  specification of the 
ERISC (timer) timeline state transition model  is  available 
in a more detailed technical report [21], which appears 
concurrently with the submission of this (revised) 
manuscript. 

Rule-based state transition checking 
The  following  is a partial list of example assertions or 
rules, to check out the PIB unit-level state transitions 
(under infinite cache operation, loop test case input): 

1. If [live-PIB(n) 2 ibw] and (queues-not-full), then 
[live-PIB(n + 1) < live-PIB(n)]. 

2 .  If  (ist-full)  and  (no-branches-scanned),  then 
[live-PIB(n + 1) - live-PIB(n)] 5 fbw.  

3 .  If [PIB(n)[O].typ = brn-typ], then live-PIB(n) = 1. 
4. If  pib-full and  dispatch-block,  then state-pib(n) 

= state-pib(n + 1); fetch-block = true. 
5. If (fetch-block), then live-PIB(n + 1) 5 live-PIB(n). 
6. If  [for n = 1 to hanglimit, state-pib(n) 

= state-pib(n + 1)], then  timer-hang = true. 

In the above notation, live-PIB(n) stands for the number 
of  live instructions in the PIB at cycle n. The other 
predicates are self-explanatory. The first  rule,  for  example, 
asserts that the number of live instructions in the PIB must 
decrease on state transition if dispatch  conditions  are  enabled. 
As part of the overall validation methodology,  we have 
implemented a robust  state-transition  checker  program [21]. 
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An example  timer  model defect, injected by reducing the 
FIX and FLT pipe latencies and also removing a predicate 
from the instruction issue logic, causes the daxpy timeline 
output to change, as shown in Figure 4. Note that the 
steady-state period Pss changes from 3 to 5 in the new 
timeline; also, Nss is seen to increase significantly. 
Thus, an indirect way of inferring a subset of possible 
rule violations is to measure metric deviations from 
"expected" or "gold" values. This is the subject of the 
following subsection. 

Loop-driven behavioral defect analysis 
The basic procedure described in this section is to drive 
the timer  model to steady-state periodic behavior using 
simple loop test cases (like daxpy). Model defects are 
diagnosed  from the behavior of the output, as manifested 
by metric measurement and characterization. The test 
cases are in the form of simple  high-level  FORTRAN, C, 
or assembler loops specifically  designed to test for model 
defects (see Section 5). Both synthetic and application- 
based instruction test sequences are used. A given  loop 
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test case is traced over an increasing number of iterations 
and  is  fed to the timer to (progressively) drive it to a 
steady-state pattern. 

Steady-state period analysis 
By  monitoring the steady-state pattern and the 
corresponding periodicity at the pipeline stages shown on 
the timer-generated timeline output, the various (steady- 
state) performance metrics (CPZ, CPF,  CPA, etc.) can be 
calculated easily. We explain this procedure with reference 
to the example  timeline output shown  in Figure 3. 

It is to be noted that each unit or queue individually 
attains a steady-state pattern, with the same fundamental 
period of three cycles. Thus, beyond cycle Nss = 20, 
the PIB exhibits a recurring pattern of 5-2-1,  i.e., five 
instructions, followed  by  two,  followed by one. This 
phenomenon of attainment of a uniform steady-state 
pattern across the modeled  pipelined units when driven by 
an iterative loop trace is the characteristic signature of a 
level-0 validated timer (see the definition in the following 
subsection). 

In general, the steady-state pattern of an execution 
pipeline, such as the FLT pipeline,  may  not  exhibit a 
simple periodic behavior of one fma produced everyp 
cycles (implying a CPFss of p / 2 ) .  For example, depending 
on the organizational parameter settings, the following 
steady-state pattern may  emerge: 

(fma  finishes) cycle n 
- (idle) cycle n + 1 
- (idle) e . .  cycle n + 2 
- (idle) 
- (idle) 

(fma  finishes) 
- (idle) 
- (idle) 

(fma  finishes) cycle n + 8 

The periodicity of the gap (idle) sequence in this case 
is 4-2, i.e., four gaps  followed by two gaps. The gap 
sequence length (GSL) is  defined to be the total number 
of distinct gap subpatterns within a period. Thus, for the 
example above, GSL = 2; (period is composed of two 
gap subpatterns: a four-gap subpattern and a two-gap 
subpattern). The steady-state CPF for the above case can 
be expressed as 

CPFss = (4 + 2 + GSL)/(2GSL) = (4 + 2 + 2)/4 = 2.0. 

Generalizing to the case for which the steady-state gap 
sequence exhibits the pattern g(1) -g(2) -  - * g(m) ,  
we  would have GSL = m ,  and 
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The above formulation  effectively describes an  algorithm 
to evaluate or infer a steady-state metric such as CPFss 
from a generated timeline output. 

Levels of timer model validation 
In the timer  model  evolution cycle, after the initiation of a 
CPU development project, the modeler  and user typically 
go  through distinct phases, characterized by increasing 
levels of confidence in the accuracy of the model. In the 
light  of such experience, we have  followed a multilevel 
model validation methodology. This approach has allowed 
us to plan the timer development schedule with  meaningful 
status checkpoints and has enabled us to decide on the 
appropriate point at which the model  can be used  reliably 
for  performing crucial design  trade-off analysis. 

as follows. 
We  define three distinct levels of timer  model validation, 

Level 0 In this level of validation, all test loop traces 
applied result in a uniform, steady-state timer output 
pattern of finite periodic@, P,, attained within a finite 
number of cycles, Nss.  If the observed steady-state period 
is  infinite  (Le., if the timer output pattern stabilizes to the 
exact same overall pipeline state for any cycle count 
greater than N,,), then clearly the timer  is in  an  illegal, 
deadlocked state; in such a case, the model  is  said  to 
fair level-0 validation for the particular test loop trace. 

The practical implication of attaining level-0 validation, 
as above, is as follows:  The primary model defects 
encountered by the  modeler  during the initial testing stage 
are those which  manifest themselves as timer “hang” 
problems. In  effect, the cause behind such level-0 defects 
is  logical errors in implementing  the state-transition logic 
of pipelined instruction flow through the timer  model. In 
rare cases, an actual design error in the machine  logic 
specification  is discovered in fixing such a level-0 
validation problem. 

The timer  model  is  said to be  weakly  level-0-validated 
if it passes level-0  validation in the above-defined sense, 
across the test loop trace suite, for the specified  design 
point characterized by an exact setting of organizational 
parameters. The  model  is  said to be strongly level-0- 
validated if it passes level-0 validation for all  legal  (allowed 
or defined) combinations of organizational parameters. 

Level 1 In this level of validation, for each test loop 
trace, the performance metrics (CPI, etc.) are observed 
to vary monotonical& as a function of any given 
organizational parameter size (within its defined limits). 
(Only one parameter is varied at a time.) Also, for 
each loop test case, the CPI is expected to decrease 
monotonically toward a limiting asymptote, CPZ,,, as the 
number of loop iterations traced is increased; this behavior 

should be exhibited for every legal  combination of 
organization parameters. 

This phase of timer behavioral testing can be 
characterized by two different  modes: transient-mode 
testing and steady-state parametric mode  testing. At the 
end of level-0 validation, the modeler is able to project 
performance projection numbers for  large benchmarks, 
such as the SPECTM 92 suite, without encountering timer 
“hang” problems. However, the accuracy of the projected 
numbers is  unknown. The level-1 validation procedure 
stresses the timer  model by playing out the entire legal 
range of model parameters and observing the output 
metrics for behavioral consistency. (See the additional 
discussion of modes of Level-1 validation, later in this 
section.) Passing level-1 validation tests does not guarantee 
cycle-by-cycle or even cycle-count accuracy; however, at 
this stage, all or most of the  logical errors in the individual 
units and inter-unit “glue” codes are typically  eliminated. 
Beyond this stage, it is usually only a matter of validating 
the correct settings of the dozens of (often interacting) 
model parameters to ensure that the exact processor 
design  point has been achieved. This  is the objective of 
the  next  level of validation. 

Level 2 In this level of validation, each test loop trace is 
verified to produce steady-state performance metrics (e.g., 
CPIss or CPFJ which are in agreement with deterministic 
(infinite-cache) static prediction formulae. 

Level-2 validation exercises check for exact cycle-count 
accuracy across the test case repository. In essence, by 
comparing the measured metrics against analytic, bounds, 
and bandwidth-based formulae’ [lo-12, 22-25], the  model 
parameters can be tuned to achieve the desired match. 
A typical  example of a model  bug caught in this stage 
is as follows: Suppose that the level-2 cache-hit latency 
parameter is intended to be seven cycles; hence, the 
corresponding parameter has been set to 7. However, in 
terms of the model internals, this setting actually causes an 
effective latency of (say) eight cycles as far as the actual 
designer’s counting convention is concerned. This kind of 
error, caused  typically  by  designer-modeler  miscommunication, 
is detected  and  fixed  during  level-2  validation. 

We state the following  lemma without formal proof. It 
follows quite clearly from the definitions of  Level-O/1/2 
validation, above. 

Lemma 3.1 Passing level-1 and level-2 validation for the 
generated loop-trace test case suite guarantees strong 
level-0 validation with respect to that test suite (but not 
vice versa), under the infinite cache execution semantics 
assumed for ERISC. 

In addition to the above, in our verification 
methodology,  we  define a level-3 validation step, in which 

1 J.-D. Wellman, “Cycles-per-Instruction Estimation Methods,” IBM  internal 
project report, September 1992, revised November 1993. 
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the cycle-by-cycle timer outputs are validated against the 
full-scale  logic simulation (DSU Texsim) model of the 
processor under design. This level of validation is beyond 
the scope of this paper, and  is therefore not discussed 
in detail here. The logical  block  diagram (flowchart) 
illustrating the level-3 validation procedure is shown in 
Figure 5. With  minor variations, this basic methodology is 
used for timer-Texsim cross-validation by processor design 
and simulation groups within other IBM facilities, as well 
as for the PowerPC family of processors. A higher-level 
test case, usually an iterative loop structure, is coded 
either in assembler or in a high-level  language  (e.g., 
FORTRAN or C). The test case is translated into an xcoff 
(a.out) file and then traced via Atrace4 [21] to feed the 
processor timer. The Xcoff-to-AVP utility5 is used to 
generate an AVP, which, because of the intent of use, 
we  may call a PVP (performance verification program). 

“‘Atrace,” IBM  internal software, 1991; author:  R. Nair, IBM Thomas J. Watson 
Research Center, Yorktown Heights, NY. 

“Xcoff-to-AVP,” IBM  internal software, 1993; author: S. Hoxey, IBM Toronto, 
on assignment at Somerset Design Center, Austin, TX. 122 

The  PVP  is equipped with the requisite setup and 
registerlmemory initialization code, and the proper 
instruction/data-card syntax, etc., so that the test program 
can be executed on the Texsim simulation model. The 
“all-events-trace” (AET) dump file generated by the 
Texsim simulation run is visualized in a timer-like  timeline 
(see Figure 3), using another utility  called Arch-I-Tex.6 
The timer-generated and Texsim-generated timeline 
outputs are compared for cross-validation. At the simplest 
level, cycle counts are compared; at the most complex 
level, cycle-by-cycle matching of pipeline states in the 
two timelines  may be compared. There are intermediate 
levels of matching possible within this level3 validation 
procedure. Detailed discussion of level3 validation is 
deferred to a subsequent publication. 

Modes of level-1 validation 
The  following experimental level-1 validation modes, as 
mentioned before, are currently in use. 

Transient CPIIcpF mode 
In this mode, the cumulative CPI is measured and plotted 
against increasing iteration count for a given  loop test 
case. The iteration count is varied in unit steps until the 
CPZ/CPF metrics reach steady state. If the metrics do 
not approach an asymptotic steady state, a timer fault is 
flagged. A permanent timer  hang situation, for instance, 
will cause CPZ and CPF to increase without limit as the 
number of iterations is increased. Also, a nonmonotonic 
decrease of CPZ signals faulty behavior. The  following 
lemma is stated for use  in the transient-mode timer  model 
testing methodology. 

Lemma 3.2 Under transient validation mode (as above), 
a necessary condition for deducing fault-free timer  model 
behavior is that CPI and CPF measurements are observed 
to decrease, monotonically and in a nonlinear curve, 
toward an asymptote as the number of loop iterations 
traced and processed is increased. 

Steady-state, parametric mode 
In this mode, the steady-state CPZ and CPF are 
measured for increasing or decreasing values of selected 
organizational parameters. Both  single  and  multiple 
parametric testing may be performed, where “single” 
testing implies varying a single parameter at a time,  and 
“multiple” means varying two or more parameters 
simultaneously in the same direction. The following 
lemmas are stated for use in the parametric-mode 
timer  model testing methodology. 

6 “Arch-I-Tex,” IBM  internal  program utility, 1993; author: R. Wasmuth,  IBM 
Austin. 
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Lemma 3.3 Under fault-free conditions, the CPIss and 
CPFss for a given loop test trace should be monotonically 
nonincreasing as a given  single queue-size, buffer-size, or 
bandwidth parameter is increased. 

Lemma 3.4 Under fault-free conditions, the CPIss and 
CPFss for a given loop test trace should be monotonically 
nondecreasing as a given functional latency parameter 
(e.g., the number of stages in a pipeline) is increased. 

Lemma 3.5 Under fault-free conditions, the period of 
onset of steady-state pattern Nss should be monotonically 
nondecreasing (nonincreasing) as a given queue or buffer 
size parameter is increased (decreased). 

Static loop execution time prediction 
On the basis of prior work on static execution time 
estimation for loop structures’ [lo-12, 24, 251, we have 
formulated an exact algorithm for predicting the infinite- 
cache, steady-state period, and hence CPIss, as well as the 
cycle of onset Nss of the steady-state pattern, in terms of 
the organizational parameters stated earlier (Section 2). We 
omit the discussion of that methodology in this paper. We 
give a simplified  example of the kind of end result one 
can obtain using the theory. Consider the daxpy test 
case example, discussed earlier. The  following “rules of 
thumb” may be used to roughly summarize the theoretical 
bounding methods for daxpy-like floating-point  loops: 

1. The loop-ending branch is  fully overlapped with 
computation and takes “zero cycles’’  in the steady-state 
sense. 

2. Let NL be the number of loads needed per iteration. 
This is the number of elements newly accessed on a 
given loop iteration. 

3. Let N,  be the number of stores needed per iteration. 
This  is  the  number of target elements (to the left of an 
assignment) newly referenced on this iteration of the 
loop. 

4. Let NF be the number of functional arithmetic 
instructions (other than divides) needed  for the 
computation. 

5. Let ND be the number of divides. 

It should  be remembered [22, 231 that for this RS/6000-like 
ERISC machine, 

1. A store takes one cycle (pipelined) and cannot be 
overlapped with loads or fmas  (floating-point 
multiply-add instructions). 

2. A load takes one cycle (pipelined) but can be 
overlapped with  fmas. 

3. An fma costs one cycle if it  is independent of the 
previous fma and two cycles if it is dependent. 
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4. A divide is assumed to take D cycles (nonpipelined); 
D = 16 to 19 cycles for the RS/6000. 

The minimum  number of execution cycles per iteration 
[22, 231, assuming independent fmas, perfect instruction 
overlap, no divides, and a terminating zero-cost branch, is 
then 

Tmin = N, + max(NL + N,). 

If there are divides in the loop, NF must be replaced by 
N, + D * ND in the above equation. 

By substituting N, = 1, NL = 2, and N, = 1 for the 
daxpy loop case, we obtain an analytically predicted 
steady-state cycles-per-iteration value of (1 + 2) = 3, 
which gives us a CPF of 1.5, identical to the CPFSs 
obtained from the timer  run (Figure 3). 

4. Test  case  selection,  generation,  and 
application 
Test cases used in our methodology are of two broad 
categories: a) real-application-based test kernels and 
b) specially designed synthetic test sequences. The 
first category of test cases is  useful because of known 
techniques for evaluating application kernel performance, 
based on bounds and  bandwidth analysis. With  known 
target performance, timer-generated metrics can be 
directly checked for accuracy. The synthetic test cases 
are designed to validate core parameter settings in 
the timer  model. Figure 6 shows the classification and 
interrelationships of the two classes of test cases, and the 
source applications from  which the type-a test cases are 
derived. 

The synthetic test case generation methodology takes 
as input the basic organizational parameters of interest 
(Section 2) and optional “bias” parameters, to focus 
attention on a limited aspect of the defined performance 
(timing) fault model [MI. Once a complete suite of test 
loops is generated to cover all  modeled faults across 
instruction classes, the level-x  validation methodology 
(Section 3) is  applied ( x  = 0, 1,  2). A few  simple 
examples are given  below. 

Examples of test case generation 

behavior of floating-point loadhtore instructions. The 
high-level code segment used for generating compiled 
test sequences is clearly one or more instances of 
the assignment operation (i.e., A = B) .  To apply this 
repeatedly for a large number of consecutive loadhtore 
sequences, in order to force an asymptotic, steady-state 
CPI and hence a characteristic (repeating) timeline 
signature, the required test loop (in  FORTRAN source) 
is as follows. 

Example 1: Consider the case of testing for correct 

123 

P. BOSE AND S. SURYA 



Overall  sets of 

Synthetic 
kernel  set: Ps 

Real-workload- 
based  kernel /'>\ 

/ e 0  
rimer con! 

traies: P, set: Po set: Py 
timer-compatible kernel 

extracts: Pa 
kernel 

from  existing benchmark 
biased validation 

Test  segments source application 
specific parameters 
other 

7 

Technical: CommerciaVSps 
SPECfp92"  suite  SPEC92  suite 
Basic  one-line  apps TPC-A/B/C" 
Linpack(daxpy) 
Arc3d 

Laddis 

WP 
Kenbus 
Sdet 

Perfect Club C A m @  
LLNL  kernels . . .others as available . . .others  as  available 

Netperf 

Performance  test kernel selection 

Test  kernel for loadlstore  testing: The loadlstore test case 

doi  = 1, n 
a( i )  = b(i)  

enddo 

The corresponding machine loop code sequence generated 
by the compiler is 

lfdu 0, 5 ,  0x8 
stfdu 0, 4, Ox8 
bc 

The types of functional timing faults [18] detected by this 
test case are a) dispatch decode, execution, or sequence 
fault: a decode fault causes the observed CPZ,, to be 
less than expected value; an execution fault causes the 
observed CPI,, to be larger than expected; a sequence 
fault  is detected via disagreement between total number of 
instructions dispatched and the actual trace length L ;  
b) FIX execution or sequence fault: an execution fault 
in the finish-signal dispatch path causes CPZss to increase 
(possibly without limit, causing level-0 failure of 
validation); a sequence fault also causes a similar  effect. 

be 2/3 = 0.667 (see discussion on static loop execution 
prediction, Section 4). 

Example 2: Consider the case of testing the basic 
124 mechanism of decoupled access-execute execution of 

The fault-free CPZss  for this loop trace is clearly seen to 

superscalar processors such as ERISC. The ked-point 
pipeline processes the floating-point loads and stores for 
computation performed by the FLT pipeline.  The  simplest 
test  case for this purpose is a repetitive sequence of 
floating-point  addition operations, generated by the 
following loop. 

Test  kernel for testing  overlapped (decoupled) 
access-execute: The  addition test case 

d o i  = 1, n 

enddo 

The corresponding machine code sequence is 

lfdu 0, 6, 0x8 
lfdu 1, 5, 0x8 
fa 0,  0, 1, 0, 0 
stfdu 0, 4, 0x8 
bc 

Floating-point registers 0 and 1 are loaded by successive 
instructions prior to their use as operands by the floating- 
point  add. There is a true dependency, which  on  first  sight 
may appear to cause a dependence bubble in the FLT 
pipe. However, in  pipelined  mode,  and because of the 
presence of register renaming, the throughput of completed 
adds should be determined solely by the three loadlstore 
instructions. Since we are dealing  with a single-ported 
cache, the number of steady-state cycles per iteration 
should be 3; hence, CPFss should also be 3.0. Unrolling 
the loop  will  not further improve the CPF because of 
the limitation  imposed by the single cache port. 

Example 3: Consider the  case of testing for peak 
dispatch, execute, and  completion rate of three 
instructions per cycle, resulting in CPI,, = 0.333. We 
could construct this case by using a sequence of  Ifd, fma, 
and  bc,  and iterating over the loop.  The source loop to 
generate this would  be as follows. 

c(i)  = a ( i )  + b(i) 

Test  kernel for peak perjfonnance:  The  reduction test case 

d o i  = 1, n 

enddo 

The  machine loop code sequence is 

lfdu 1, 4, Ox8 
fma 2, 0, 2, 1, 0 
bc 

t = t + b - a(i)  

The scalars t and b are loaded once outside the loop, 
causing the iteration loop to have the Ifd, fma, bc 
sequence. Under adequate settings for rename buffers  and 
queue sizes, this loop trace is expected to generate a CPZ,, 
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of  0.333 and a CPF,, of 0.5. Deviation upward would 
generally point to execution or decode faults; downward 
deviation is not possible under  modeled failures for this 
particular test case. 

the linpack scientific benchmark. Like the test case in 
Experiment 2, this is  also a loadhtore-bound loop, 
but with two floating-point operations (because of the 
multiply-add) per cycle. This kernel is useful for testing 
access-execute overlap (such as Example 2).  In addition, 
the basic limitation  imposed by the load/store accesses 
(for the single-port cache implementation used in ERISC) 
can be tested, by parametric testing, with  and without 
loop  unrolling. 

Example 4: The following  loop  is the key loop  within 

Test kernel for testing store-bound scientiJc computation: 
The daxm test case 

d o i  = 1, n 

enddo 

The corresponding machine code sequence is 

Ifd 1, 6, 0x8 
fma 1, 0, 2, 1 
lfdu 2, 5 ,  Ox8 
stfdu 1, 6, 0x8 
bc 

As mentioned previously, this test case is expected to 
generate a CPF,, of  1.5 for the ERISC machine.  Deviation 
upward to 2.0 suggests a fault in the instruction completion 
logic (ICL), where the number of instructions completed 
per cycle may be erroneous, due either to a local (BRN) 
logic fault or to an execution fault (finish  signal dispatch 
error) in FIX or FLT. Increases in CPF may also be 
caused by faults in the loadhtore priority logic  in accessing 
the single-port cache. (This latter logic has not been 
specified in our earlier discussion.) 

x( i )  = x( i )  -+ s . y ( i )  

Single-instruction-cycle-count validation test cases 
Synthetic-loop test cases, specially set up to measure 
and validate individual instruction timings, are easy to 
generate. Typically, a sequence of identical opcodes (with 
independent as well as dependent operands) is  fed to the 
timer.  The  lifetime of each instruction is inferred from the 
throughput rate and the N,, and Pss metrics. 

Experimental results with SPEC92 workload: E R I K  
timer 
Systematic loop test case generation coupled with  level-x 
vaiidation/verification enables the designer to detect 
modeled  timing faults, which are otherwise hard to detect 
and diagnose from  large benchmark run results alone. The 
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Table 2 Experimental ERISC timer validation data  for 
SPECint92 benchmarks. 

Benchmark CPI CPI CPI 
(level-0  model) (level-1 model)  (level-2  model) 

compress 0.992 0.892 0.891 
eqntott 0.801 0.763 0.173 
espresso 1.035 1.031 0.998 
gcc 1.243 1.241 1.141 
li 0.989 0.989 1.119 
sc 1.133 1.133 1.134 

effect of  making the model progressively robust through 
level-x validation is seen in practice through changes in 
experimentally observed SPEC92 benchmark suite CPI 
numbers for ERISC, as we progressed from  level 0 to level 
2. Table 2 shows the observed changes in CPI, over the 
course of verifymg the machine  timings, as embodied in 
the ERISC timer. In most cases, level-1 validation alone 
did not detect all the problems in the level-0-validated 
model.  The overall difference in figures between the level-0 
numbers and the level-2 numbers is quite significant,  and  it 
underlines the importance of performing systematic 
performance model verificationhalidation tests. 

Transient  and parametric mode experiments (level-I 
validation): PowerPC 601 timer 
In this subsection we consider a timer  model for a real 
superscalar machine: the PowerPC 601, and present 
experimental results illustrating the use of transient and 
parametric mode  testing (see definitions in Section 3). The 
PowerPC 601 RISC microprocessor [26, 271 is the first 
implementation of the PowerPC architecture [2]. Pre- 
hardware performance modeling for most of the PowerPC 
microprocessor family (601, 603,  604, and 620) was 
performed  using a simulation toolkit centered on a 
parameterized, dynamic (Le., trace-driven) timer, called 
BRAT (Basic RISC Architecture Timer) [13,  161, 
developed and used by the PowerPC performance 
modeling team.. 

Figure 7 shows the transient-mode performance 
variations, as a function of the number of loop iterations, 
for each of the experimental test cases (Examples 1 
through 4) described above. The current 601 timer  model, 
with all parameters set and checked to match with the 
actual design, was used for the study. All of the graphs 
meet the condition stipulated by Lemma 3.2. In these 
graphs, the inverse of CPI and CPF, namely IPC and 
FPC, are plotted. In Figure 7(b),  both the IPC and FPC 
variations are shown. Figure 8 depicts the parametric 
(steady-state) ZPCIFPC variations for two example 
parameters. In the first graph, the infinite-cache access 
latency (in processor cycles) is varied. The glitch in the 
IPC and FPC curves between latency 2 and 3 points to 
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a timer model defect (see Lemma 3.4). This defect was (8 in the current design) for the daxpy test loop trace. 
logged  and  diagnosed to be real through code investigation. Lemma 3.3 is  satisfied,  and the data indicate that for sizes 
It has since been repaired, causing changes to some of the of the instruction buffer above 3, there is no additional 
SPEC92 projections. The graph in Figure 8(b) shows the benefit.  This  is consistent with static (analytic) estimate 
variation of FPC with the size of the instruction buffer equations [ll], given the maximum  number of instructions 



which can be dispatched per cycle in this processor. 
Detailed experimental results and analysis for the 601 
model are available in a technical report [28]. 

5. Conclusion 
Architectural timing  verification  is  rapidly  becoming a 
critical part of the overall simulation and verification effort 
in advanced CMOS superscalar (pipelined) processor 
development projects. Timer models used  in pre-hardware 
design  trade-offs  and performance projections require 
validation support to ensure accuracy. Execution cycle 
(performance) verification of the hardware description- 
language-based full logic simulation model  is a closely 
related problem. A systematic methodology to address the 
above timing  verification problems for current- and future- 
generation processor chips has been presented. This 
methodology  is currently being  used  for testing, debugging, 
and validation of advanced superscalar timer models within 
the IBM Systems Technology  and Architecture Division. 
The test loop trace-driven period analysis and related 
techniques may also be  used to test the timing behavior 
of actual implemented hardware, or the full-scale  logic 
simulation  model,  prior to final chip specification. In 
practice, we have found the described methodology to be 
very useful  for  augmenting the traditional architectural 
verification  programs  (AVPs)  with performance verification 
programs (PVPs) to form a complete, robust verification 
suite. Our current timer validation methodology has helped 
us to project very accurate processor performance 
numbers, and to make accurate trade-off analyses, well 
before hardware implementation. 

The goal of quantifying fault coverage in a manner 
analogous to hardware testing has not been directly 
addressed. In other words, test case generation followed 
by the standard validation experiments does not 
necessarily give us a measure of the percentage of faults 
covered. In ongoing research, we hope to address this 
issue in a more comprehensive manner. More theoretical 
work is  needed to enable accurate prediction of 
performance deltas caused by model defects. Currently, 
we are building  from  existing theory on bounds-based 
estimation to quantify performance (e.g., CPZ) deltas due 
to individual parametric variations. Completion of this 
theory will enable us to infer  model defects from observed 
incorrect parametric-mode variations (see the subsection 
on loop-driven behavioral defect analysis). 

The science (or art?) of timer  model validation as 
reported here is acknowledged to be still in its infancy. 
However, the methods reported here  have been used  with 
success and have resulted in the removal of innumerable 
model defects. The goals of this paper were to present a 
real-life  view of current timer  model validation methods, as 
used in the current PowerPC 6XX development process; 
to publicize the critical need for robust performance 
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verification strategies; and (we hope) to attract other 
performance analysts, modelers, and architects who will 
make future contributions in this area. 

validation of timer  models  mentioned  in this paper have 
Some of the ideas on state-transition testing and 
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3. 

4. 

extended  themselves  into  another application:  design of 
self-checking architectural timers. A report on this topic, 
describing the methodology and toolset, is being  planned 
for separate publication. 
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