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algorithms
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On-line algorithms service sequences of
requests, one at a time, without knowing future
requests. We compare their performance with
the performance of algorithms that generate
the sequences and service them as well. In
many settings, on-line algorithms perform
almost as well as optimal ofi-line algorithms,
by using statistics about previous requests

in the sequences. Since remembering such
information may be expensive, we consider the
use of randomization to eliminate memory. In
the process, we devise and study performance
measures for randomized on-line algorithms.
We develop and analyze memoryless
randomized on-line algorithms for the
cacheing problem and its generalizations.

Those who do not remember the past are condemned to
relive it . . .

Santayana

.« . unless they act randomly.

1. Introduction
An algorithm is said to be on-line if it decides how to

satisfy each request of a sequence of requests on the basis
of knowledge of the past requests in the sequence but with
no knowledge of future requests. On-line problems, i.c.,
those using on-line algorithms for their solution, arise
frequently in operations research and computer science

[1-3]. On-line algorithms have been analyzed with
probabilistic models for the distribution of requests. More
recently, competitive analysis has been used to dispense
with such probabilistic assumptions [3]. In it, one
compares, for each sequence of requests, the performance
of the on-line algorithm to the performance of an optimal
off-line algorithm (one with full knowledge of future
requests) on that same sequence. Bounds derived in this
manner hold for any probability distribution on the inputs
(and even hold when past requests do not predict future
requests in any way). Sleator and Tarjan [3] apply this
approach to the analysis of the move-to-front (MTF)
heuristic for maintaining a linear search list and to the
analysis of the least-recently-used (LRU) policy for cache
management. Karlin et al. [4] adopt this approach to the
analysis of snoopy cacheing protocols.

To gain some insight into general principles for designing
on-line algorithms that perform well in the competitive
sense, several authors have suggested extending these
special cases (MTF for lists and LRU for paging) to obtain
general frameworks for the study of on-line algorithms.
Manasse et al. [5] introduced the k-server problem, and
Borodin et al. [6] introduced the more general metrical
task systems. An intriguing conjecture of Manasse et al. [5]
has recently generated much work on particular cases of
the server problem [7-9].

Competitive analysis ignores the computational
resources of the on-line algorithm. Indeed, the lower
bounds that are typically proved for the performance of
on-line algorithms hold for algorithms that are limited only
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by their lack of knowledge of the future—in fact, the
bounds even apply to algorithms that consume arbitrary
amounts of time or space to service each request.

From a practical standpoint, an important requirement
of an on-line algorithm is that it maintain very little state
information (memory) from the past and that its response
to each request be easy to compute. For example, the
LRU cacheing algorithm, defined below, must maintain
the order of the last access to each page in memory.

Such state memory is expensive and slow to update in
hardware, as pointed out by So and Rechtschaffen [10].
For LRU paging, one would have to maintain the order of
the last access to each main-memory frame (since main
memory is fully associative), which is not feasible.
Previous theoretical studies have not touched on the issue
of the memory resources required by an on-line cacheing
algorithm. Randomization is an alternative to using large
state memory. We refer here to algorithms that make
probabilistic choices during execution, and we study their
performance under worst-case inputs.

In competitive analysis, a deterministic on-line cacheing
algorithm is analyzed by comparing its performance with
the performance of an off-line algorithm on a ““worst-case”

. sequence of requests that can be assumed to be generated

by an adversary. While there is such a single, natural
definition of performance for deterministic on-line
algorithms, a number of natural definitions arise for the
performance of randomized on-line cacheing algorithms,
depending on the power the adversary is assumed to have.
These are examined in Section 2. We explore the relations
between the various definitions, expanding on results first
derived by Ben-David et al. [11]. (These definitions and
results are easily extended to the more general server
problem or to metrical task systems; these general
problems are defined below.) Some of our results are
derived with the use of theorems on infinite games and
are presented in Appendix A.

In Section 3, we analyze a very simple randomized
cacheing algorithm, namely random replacement, and show
that by one measure, it is as good as LRU. This algorithm,
using no information from the past, is memoryless; it uses
up to log m random bits, where m is the cache size, on
each request. We show that there is a direct trade-off
between the number of memory bits and the number of
random bits used by optimal on-line cache-replacement
algorithms, and that no memoryless algorithm performs
better than random replacement.

In Section 4, we extend the random replacement
algorithm to give a solution to the weighted-cache
problem, a problem of practical interest, for which
no provably good algorithm was known before. A
deterministic on-line algorithm has subsequently been
found by Chrobak et al. [8] for one case of this problem.
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On-line algorithms typically use memory to maintain
statistics on past events. This is replaced in randomized,
memoryless algorithms by probabilistic processes whose
probability distributions implicitly reflect these statistics.
In Section 5, we present two instances of this technique:
Deterministic graph-traversal algorithms are replaced by
probabilistic, memoryless random walks, and counters are
replaced by ““probabilistic counters.”” This approach is
used to derive simple memoryless algorithms for two types
of on-line problems. We derive a simple algorithm, which
is memoryless and randomized, for the k-server problem
in a metric space with n points. We give a bound on the
performance of this algorithm for the cases k = 2 and
k = n — 1 and present a tantalizing conjecture that, if
true, would yield a bound on our algorithm’s performance
for arbitrary k. We also derive memoryless algorithms
for metrical task systems.

2. Cacheing algorithms

& Definitions

We study cacheing algorithms by using a simple two-level
store, consisting of a main memory and a cache, as the
model. Our model is essentially that of Sleator and Tarjan,
with added provisions for studying randomized algorithms
and the amount of state information required by on-line
algorithms. The main memory consists of a (potentially
infinite) number of locations, each of which always
contains one copy of a distinct item. The cache consists of
m locations, each capable of storing one such item. The
cacheing algorithm is given a sequence v, v,, ***, v, of
references to items. The cache is initially “empty,”” i.e.,
containing none of the items. A hit is said to occur on the
ith reference if v, is one of the items in the cache after
reference i — 1; otherwise, a miss is said to occur.

When a miss occurs on the reference to v,, the cacheing
algorithm selects a cache location, specified by an integer
in[1, - -+, m]. The item at that location is evicted, and
item v, is loaded in its place. The algorithm is on-line if the
selection of an item for eviction at step i depends only on
v, "+, v; otherwise it is off-line.

Let X denote the space of all the items that can be
requested in a reference. The set of items residing in the
cache is thus a point in X™. (Assume that the ““null item”
is in X, to allow for empty cache locations.) We now
define a cache-management algorithm that consists of an
automaton with a finite set S of states. The response of
this automaton to a reference is specified by a function F
that depends on the current state of the automaton, the m
items in the cache, and the item newly requested from X
it specifies, in general, a new state for the automaton,
together with the new set of items in the cache:

F:SxX"XX->8xX" 1)
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We impose the following condition on F: The set of items
in the cache after the request is serviced must include the
item just referenced:

Fs,x, %, ) =6,y )Y E{yp ..t

where s, s' € S;x].,yj,y eXforj=1,:,m.

The definition above permits very general cacheing
algorithms. For example, it allows for more than one item
to be evicted on a miss, or for the cache contents to be
changed on a hit. However, we may assume without loss
of generality that {y , -+, y } € {x,, -+, x,, y}; that
is, no load occurs on a hit, and a unique load (of the
missing item) occurs on a miss. The reason we may
assume this is as follows [4]. For any algorithm that does
not satisfy this rule, we can derive a new algorithm that
satisfies this rule and that makes a number of misses on
any sequence which is no larger than the number of misses
of the original algorithm. As a result, only one copy of any
item ever resides in the cache.

Since the cost of evicting/missing is the same for all
items, we may assume that F does not depend on the
identities of the items; that is, for any permutation o on X,

F(s’ xl, te 2 xm’ y) = F[s’ o(xl)’ ot > 0'('x"n)’ U(y)]'

Given the above restrictions, we may represent on-line
cacheing algorithms in the following form. The algorithm is
defined by the functions Hit and Miss:

Hit:[1,---,m] x § =8, )
Miss:S - [1,---,m] x §. 3)

If a hit occurs at location j (i.e., y = x;) when the
automaton is in state s, the state is updated to Hit(j, s).

If a miss occurs in state s, the item at location j is evicted
(and the missing item is loaded instead); also, the state is
updated to s', where Miss(s) = (j, s'). (Note thatj and s’
are independent of y because the items are assumed to be
indistinguishable.) We adopt a natural measure of the state
information maintained by the algorithm: its memory,
defined to be log, |S|. An algorithm whose memory is 0

is called memoryless.

The restriction of cacheing algorithms from the general
form given by (1) to the special formulation given by (2)
and (3) does not affect performance (i.e., the number of
misses); however, it may affect the size of the state
memory (this was pointed out to us by Marek Chrobak).
Since the latter form is closer to the way cacheing
algorithms are actuaily implemented (decisions do not
depend on the actual addresses in the sequence of
requests), we use it for the analysis of cacheing.

In a randomized algorithm, the state transitions may
be probabilistic. Thus, Hit(j, s) may be a probability
distribution on S, and Miss(s) a probability distribution on
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(1, -+, m] x §. We can also describe such a randomized
cacheing algorithm by means of two functions:

Hit:[1,-- ., m]xSxQ—>S§ 4
and
Miss:S x Q— 8 x [1,-++, m], ()

where () is a probability space. At each step i, the
algorithm makes a random choice of a point w, € (), and
the corresponding deterministic transition is executed. All
choices are independent. We measure the randomness of
the algorithm by the entropy of the probability space (2.
If 1 is discrete and w, occurs with probability p;, the
randomness equals

m

- Zpl. log,p, .

i=1

For a cacheing algorithm 4, we denote by C:(vl, e, v)
the number of misses on the sequence of accesses
v, ***, v, When algorithm A is used on a cache of size
m. If the algorithm is randomized, this number is a random
variable.

® Example algorithms

LRU (least recently used) Whenever a miss occurs, the
least recently referenced item in the cache is evicted. The
state encodes the order of the most recent reference to the
items in the cache, and is updated appropriately at each
reference. The algorithm is deterministic and uses |S| = m!
states [thus, ©(m log m) memory]' for a cache with m
locations.

Random  Whenever a miss occurs, a cache location

is chosen at random and the item in it is evicted. The
algorithm is memoryless but uses log m bits of randomness
per miss.

FIFO (first-in, first-out) Whenever a miss occurs, the
item that has been in the cache for the longest period is
evicted. The scheme can be implemented using a mod m
counter to point to the item to be evicted at the next miss;
the counter is incremented following the eviction. This is a
deterministic algorithm that uses m states, i.e., log m bits
of memory.

FWF (flush when full [4]) Initially, all cache locations
are marked as “‘available.”” Whenever a miss occurs, an
arbitrary available item is evicted, and the newly loaded
item is marked as ‘““unavailable”’; if there are no available
entries, all entries are marked available before the eviction

! Henceforth, “log x”” is used to denote log, x.
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occurs. Note that FIFO is a particular case of FWF, in
which one always evicts the first available entry. The
FWF algorithm uses m bits of memory and has no
randomization.

RFWF (random flush when full [12]) This is like FWF,
with the following two modifications: First, a random
available item is selected for eviction, and second, an item
is marked unavailable whenever it is accessed on a hit.
The algorithm uses m memory bits and has up to log m
random bits of randomness per miss.

® Performance measures

We compare the performance of an on-line cacheing
algorithm with the performance of a cache managed by an
adversary that also generates the sequence of references.
Following [3], we find it instructive to compare an on-line
algorithm having a cache containing M locations with an
adversary having a cache containing m locations, m < M.
The measure of performance we use is known as
competitiveness.

Several definitions of competitiveness are possible,
according to the assumptions made about the information
available to the adversary when it generates the sequence
of references and when it manages its cache. An oblivious
adversary fixes the entire sequence of references
U, ¥y, * * * in advance; an adaptive adversary sees the
state of the on-line algorithm after i references, and
chooses v,,, accordingly. An oblivious adversary
corresponds to the situation in which the sequence of
references cannot be affected by the decisions made by
the on-line cache-management algorithm. An adaptive
adversary corresponds to the situation in which such an
effect is possible, e.g., in a reactive, real-time system, in
which the cache behavior may affect the computation
performed. Another example stems from operating
systems, in which page tables and associated information
are some of the items being referenced.

An on-line adversary manages its own cache on line; if a
miss occurs in the adversary cache at step i, the choice of
an item for eviction depends only on the first i references.
An off-line adversary has no such restriction on its cache-
management algorithm. We can assume that an off-line
adversary always uses an optimal cacheing algorithm. One
such algorithm, known as Min, whenever a miss occurs,
evicts the item in the cache whose next reference is
furthest into the future. The Min algorithm produces the
smallest number of misses on every sequence of references
[13]. An off-line adversary provides a suitable yardstick
when a specific, finite computation task is to be performed
and it is feasible to program the cache for that specific
task. In general, an on-line adversary provides a more
suitable yardstick for a system that handles a potentially
infinite sequence of references. We thus have four types of
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adversaries: oblivious on-line, oblivious off-line, adaptive
on-line, and adaptive off-line. There is no difference,
however, between oblivious on-line and off-line
adversaries: Whatever cacheing algorithm is used by the
adversary can be executed equally well by an on-line
adversary as by an off-line adversary. Thus, in reality,
we have three distinct types of adversaries, listed here
in order of increasing power:’

e Oblivious (o) The adversary generates a fixed sequence
of references v,, v,, - -+ ; for the first n references, it
incurs a cost equal to the smallest possible number of
misses on such a sequence of references (for a cache of
size m).

» Adaptive, on-line (an) The adversary generates
reference v, and updates its cache in response to v; as a
function of the responses of the on-line algorithm to the
first i — 1 requests.

® Adaptive, off-line (af) The adversary generates
reference v, as a function of the responses of the on-line
algorithm to the first i — 1 requests. For the first n
references, it incurs a cost equal to the smallest possible
number of misses on such a sequence of references (for
a cache of size m).

A cacheing afgorithmA is said to be c-competitive against
an adversary B if there exists a constant C such that
lim sup[Cj; U,ttt,v)—C C,';(-ul, cer,y)]<» a8 (6)
e
(a.s. = almost surely—i.e., with probability one), where
v, ¥,, * * + is the sequence of references generated by the
adversary, C;(vl, -+ +, v,) is the number of misses
incurred by A for this sequence (on a cache of size M),
and Cﬁ(vl, +++, v ) is the number of misses incurred by
the adversary for this sequence (on a cache of size m).
Specifically, we have the following definition.

Definition 1
A cacheing algorithm A is said to be c(M, m)-competitive
against an adversary B if

lim sup[Cii(v,,**+, v,) — (M, m) - Co(v,, "+ +,

n—>®

v)] < », as.

)

This definition allows us to compare the on-line and off-
line algorithms in a general setting in which the on-line
algorithm potentially has a larger cache than the off-line
algorithm. Similarly, we say that an algorithm A is
c(M, m)-competitive against adaptive on-line (or adaptive
off-line, or oblivious) adversaries if it is c(M, m)-
Wrsiﬁn of this paper, appearing in the Proceedings of ICALP 89

[14], distinguishes only two situations. As a consequence, several of the theorems
reported there are either ambiguous or incorrect as stated.
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competitive against any adversary of the corresponding
type.

We define ‘G:f(M , m), the adaptive off-line
competitiveness coefficient of algorithm A, to be the
least upper bound on ¢(M, m) such that 4 is c(M, m)-
competitive against adaptive off-line adversaries. The
adaptive on-line competitiveness coefficient, %;(M , m),
and the oblivious competitiveness coefficient, ‘G: M, m),
are similarly defined. We have

GAM, m) < €L(M, m) < €M, m).

We show later that each of these inequalities can be strict.
Given a sequence of requests v, * -, v, let

C#(v,, *+ , v,) denote the optimal cost of servicing

(vy> **+,v,). When algorithm A is deterministic, the

adversary can predict its moves, and there is no difference

between oblivious and adaptive adversaries. Thus, for

deterministic algorithms, all three definitions of

competitiveness coalesce and are equivalent to the

following definition: If algorithm A is deterministic,

it is c(M, m)-competitive if and only if

) = M, m) - CP(v, -+, v)] <o

®)

for any sequence v,, v,, * * * of references. We denote by
‘@:(M, m) the least upper bound on ¢(M, m) such that a
deterministic algorithm A4 is c¢(M, m)-competitive.

We define 6(M, m), the competitiveness coefficient of
cacheing for adaptive off-line adversaries, to be the least
upper bound on ¢(M, m) such that there is a cacheing
algorithm A that is ¢(M, m)-competitive against adaptive
off-line adversaries. Thus,

lim sup[Cy(v,,

n—>»

(M, m) = inf €M, m),

where the infimum is taken over all on-line cacheing
algorithms. The competitiveness coefficient of cacheing
for adaptive on-line adversaries, €, (M, m), the
competitiveness coefficient of cacheing for oblivious
adversaries, 6 (M, m), and the competitiveness
coefficient of cacheing for deterministic algorithms,
€,(M, m), are similarly defined. A cacheing algorithm
A is optimal against adaptive off-line adversaries if
6i(M, m) = 6, (M, m). A similar definition is used
for adaptive on-line and oblivious adversaries, and for
deterministic algorithms.

We have

(M, m) < G_(M, m) < G (M, m) < €M, m).

The following two theorems give more information on the
relationships among these coefficients.
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Theorem 2.1

Let A be a randomized cacheing algorithm that is

¢(M, m)-competitive against adaptive off-line adversaries.
Then there is a deterministic algorithm A that is c¢(M, m)-
competitive.

The theorem is proved in Appendix A. The proof uses a
formulation of the cacheing problem as an infinite game,
and standard results on infinite games. The theorem was
first proved by Ben-David et al. [11] using the alternative
definition of competitiveness presented in the section of
Appendix A on alternative definitions (Definition 3), which
permits a simpler proof.

The theorem implies that randomization does not yield
more competitive algorithms against adaptive off-line
adversaries. The proof is not constructive. Moreover, the
resulting deterministic algorithm uses an infinite control
(has an infinite number of states), even if the original
randomized strategy has a finite control. Thus,
randomization may still result in more practical algorithms.
This last result does not extend to oblivious or adaptive
on-line adversaries.

The following theorem is a generalization of one due to
Ben-David et al. [11] and, in fact, uses the more stringent
definition of competitiveness given in Appendix A
(Definition 3).

Theorem 2.2

Let A be a cacheing algorithm with ‘8;: (M, n) = a, and
let Q be a cacheing algorithm with ‘Gf(n, m) = b, where
m<n<M. Then ‘GQ(M, m) < ab.

Proof Let D be an adaptive off-line adversary, with a

cache of size m. Let D' be the adaptive on-line adversary

defined as follows: D’ generates references as D does; D'

manages its own cache on-line, using algorithm Q. Thus,

the cache management of adversary D' at step i depends

on the sequence of references up to step i but does not

depend on the previous actions of A. Let a be the

sequence of random choices of algorithm 4, and let B be

the sequence of random choices of algorithm Q. These two

random sequences are independent. We denote by Pr, , the

joint distribution induced by these sequences and denote

the marginal distributions by Pr_ and Pr,. Since 4 is

a-competitive against adaptive on-line adversaries,

we have

Pra’ﬁ{lim sup[C,';(vl, ) —a Cf'(vl,- L)< =1
k—0

Since Q is b-competitive against oblivious adversaries,

we have

Pr,{lim sup[C2(v,,* -+, 4) — b C¥(v,++, p)] <o} =1,

k—

for any fixed sequence of references v,, v,, **+ . Thus,
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. D
Pr {lim sup[C, (v;,* -+, v)

k—
— b CP(v, -+, 0] < wla} = 1,
and

Pr_ {lim sup[C; (v}, *, 7,)

k—oo
-b- CZPI(_UI,. e, vk)] < oo} =1.
It follows that

Pr,  {lim sup[Cy(v,,* *+, 1)

k>
—ab - C"’np’(vl, ces
Theorems 2.1 and 2.2 imply the following:
€M, m) <6 (M, m)< €M, m)=C€M,m)
< €(m, m) - € (M, m).

Fiat et al. [12] have shown that the RFWF algorithm
has an oblivious competitiveness coefficient of 2H,
when m = M. (H_ is the mth harmonic number:
H=1+1/1+12+-+1mhm=<H <Ihm+1)
They also showed that no cacheing algorithm has an
oblivious competitiveness coefficient smaller than H .
More recently, McGeoch and Sleator [15] have shown that
€,(m, m) = H_. On the other hand, Sleator and Tarjan [3]
have shown that the LRU algorithm is M/(M — m + 1)-
competitive and that no deterministic algorithm has a
lower competitiveness coefficient. Manasse et al. [5] have
extended the lower-bound proof to the more general server
problems considered in Section 5. Their argument actually
holds for randomized algorithms and adaptive on-line
adversaries (see Theorem 5.6). We thus have

€, M, m) =6 M, m)=6M,m)=MM-m+1)
and
€(m,m)=H_.

The value of € (M, m), for m = M, is not known.
Also, for any randomized cacheing algorithm 4, we have
A
€ (M, m)
H

m

< €M, m) < €M, m).

We show in Theorems 3.2, 3.3, and 3.4 that both
inequalities can be tight for particular algorithms.

The following lemma proves to be of use in our analyses
of randomized cacheing algorithms in subsequent sections.

Lemma 2.3
Let X, X,, - - - be a sequence of random variables such
that E[X|] = B <0, a.s., and

E[X (X, -, X ]<B<0as i>1
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s )] <o} =1 O

and
var(X) < y <=, Vi,

where var(Y) denotes the variance of random variable Y.
Then

©
2 X, = —», a.s.
i=1

Proof We have

®

var(X)

PR
l2

i=1

This implies that

1
lim - - {(X1 - E[X))
n

n—®

+ 2 % -EX[X,

i=2

,X_ D =0, as.

(see [16], 32.1.E). Thus,

1 n
lim sup - - EX, < B, a.s.
n

n—e i=1

This implies that
2 X = -, as. O
i=1

3. Performance of the Random algorithm
In this section, we study the competitiveness of the
Random algorithm for cacheing, against each of the
adversaries we have defined.

It is known [3, 4] that the LRU, FIFO, and FWF
algorithms are M/(M — m + 1)-competitive, and that no
deterministic algorithm has a lower competitiveness
coefficient. M/(M — m + 1) is also the best
competitiveness coefficient for randomized algorithms
against adaptive on-line adversaries; this follows from the
lower bound of Theorem 5.6, for the more general server
problem, to be defined in Section 5. RFWF has the same
performance as FWF against adaptive on-line or off-line
adversaries. The RFWF algorithm has a competitiveness
coefficient ‘60" (m, m) = 2H_ against oblivious adversaries,
and no algorithm has a competitiveness coefficient that is
smaller than H_ [12, 15]. Thus, RFWF is optimal against
any type of adversary.

We now analyze the performance of the simple Random
algorithm, which is memoryless. We show that Random
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has a competitiveness coefficient of M/(M — m + 1) and,
consequently, optimal performance against adaptive on-line
adversaries. Random is not optimal, however, against
oblivious adversaries or against adaptive off-line
adversaries: We show that Random has a competitiveness
coefficient M/(M — m + 1) against oblivious adversaries,
whereas the RFWF algorithm achieves O(log m) when

m = M. We also show that Random has a competitiveness
coefficient that is greater than or equal to m In m against
adaptive off-line adversaries when m = M, while LRU,
FIFO, and FWF achieve m in this case.

Theorem 3.1
Random is ¢c(M, m)-competitive against adaptive on-line
adversaries, where c((M, m) < M/{(M — m + 1).

Proof We use a potential function to analyze the
performance of Random amortized over a long sequence
of references. This is seen to correspond to a random
walk with negative drift on a line. (Random is a ““lazy
algorithm,”” which does not change state on hits. Thus,
by Lemma A.1 (see Appendix A), we can restrict our
attention to ‘“cruel’” adversaries, which cause Random to
miss at each reference.) Let w, be the random choice of
item to evict made by Random at step i, should a miss
occur. Let S iR be the set of items that Random has in the
cache (of size M) after the ith reference; let S ,,B be the set
of items kept in the cache (of size m) by the adversary B
after the ith reference. Let ¢ be an indicator variable that
is 1 if Random misses at reference i and 0 otherwise; let tl.B
be similarly defined for the adversary. Let

&= 1500,

and let A®, = @, — &_,. Forany ¢ > M/(M — m + 1),
consider the sequence of random variables

XEtf—c~tf—c~A<l>i.

Then

> X
i=1

R B
=Cyv, ,u)—c-Cly,-,v)—c-® +c .

But ) = m and ®_ < m. Thus, Random is c-competitive
if lim sup, , 3", X, < », a.s. We complete the proof by

showing that this is indeed so. We consider two mutually
exclusive cases at step i:

sA;:v, &St v, €S’ (Random misses and adversary
B hits).
Then ¢f = 1 and ¢? = 0. With probability ®, ,/M,
Random evicts an item in S ,.R_ NS fi \» Tesulting in
A®, = 1. Thus,
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EX|4, 0, ', 0_]=1-cM-2_)M.

Since S,.B_1 ¢ Sﬁl, we have ®_ = IS‘.B_1 N S§I| =m-1,
S0

BIX|A, 0, ", 0_]<1-cM-m+1)M.

s A4 & S}, v, &S’ (both Random and adversary
B miss).
Here ¢t} =t} = 1. With probability (®,_, — 1)/M,
Random evicts one of the ®,_, — 1 items in Slfl ns f: .
that is not evicted by the adversary, in which case
Ad, = 1; otherwise, A®, = 0. It is easy to verify that

E[X| A4, 0, " 0 ]1<1—cM—-m+ M.

It follows that
E[X|X, -, X ]<1-cM-m+1)M.
It is also easy to verify that

IX| < 2,

so that the variance of the random variable X is
uniformty bounded.

Let B = min[—c, 1 — ¢c(M — m + 1)/M]. By our
choice of ¢, we have B < 0. The sequence of random
variables X, X,, - - - fulfills the conditions of Lemma 2.3,
S0

2 X = —=,as. O

i=1
The proof of the previous theorem also implies that

lim E[Ci(v,, - -

n—wo

B
',v")—C'Cm('Ul,"’,'U")]= —0,

for any adaptive on-line adversary B and any

¢ > M/(M — m + 1). Thus, Random also satisfies

the criteria for competitiveness of Definition 3 of Appendix
A, with competitiveness coefficient M/(M — m + 1).

A crucial observation here is that the kind of one-step
martingale analysis used in the above proof does not apply
to adaptive off-line adversaries (this was brought to our
attention by Anna Karlin). Here, the quantity X, at the ith
reference v, depends on the adversary’s response to v;,
which is a function of future references (and thus the
algorithm’s future random choices). Thus, the behavior of
X is not determined by ®, alone. Indeed, the following
theorem, proved by A. Karlin, shows that a statement
such as that of Theorem 3.1 does not hold for adaptive

off-line adversaries. 689
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Theorem 3.2

The competitiveness coefficient of Random against
adaptive off-line adversaries for M = m is

c(m, m) 2 mInm.

Proof Consider a sequence of references generated from
a set of m + 1 distinct items a, * + -, @, ; repeatedly, a
reference is generated to the unique item not in the cache
(as would be done by a cruel adversary). Divide the
sequence of references into segments S, S,, - - * according
to this rule: §, is the shortest sequence of references
following S, , in which each of the items @, -, @,
occurs at least once. Let b, be the last item referenced in
segment §,. Then b, is referenced exactly once in segment
S,. An off-line cacheing algorithm (using a cache of size m)
can satisfy the sequence of references with exactly one
miss in each segment: When the reference to b,_, occurs
at the end of S, ,, the algorithm evicts b, and loads b,_; .
Thus, when segment S, starts, the cache contains all items
referenced in this segment, with the exception of the last
reference to b,. The Random algorithm, on the other hand,
has one miss at each step. Let L be the expected length of
a segment S,. Then L is the expected number of steps
before Random evicts each of the m + 1 items at least
once. This can be formulated as a slight variation of the
coupon collector problem: There are m + 1 coupons to
collect, and at each step one is equally likely to collect one
of the m coupons that were not collected at the previous
step. The expected waiting time until all coupons have
been collected is mH, + 1 [16]. 0

Lemma 3.3 )

Let W be the waiting time for success in a sequence of
Bernoulli trials, with probability of success p, and let W,
be the truncated variable defined by

W W=k,
W, =
k ifwW >k,

where k is an integer and W a positive real number. Then
1 k
E[W.] =;[1 -1 -p)].

Proof We have
E[(W]=E[W] - E[W — kW > k] - Pr[W > k]

=E[W]-( - Pe[W > k])

1
=-[1-(-p.
p[ (1 -p)] |
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Theorem 3.4
The oblivious competitiveness coefficient of Random is
M/M - m + 1).

Proof Consider the following sequence of references that
suffice to prove the lower bound:

2 3
aa, +,a,ba, -, a,) (b,a,-++,a,), ",
Bay,---,a,), ",

where the a; and the b, are all distinct items. Here, (s)"
denotes k repetitions of the pattern s. The adversary
(with a cache of size ) misses once on each segment
ba,, -, am)". At the beginning of any such segment,
the cache (of size M) maintained by Random contains at
most m — 1 of the items appearing in that segment. Let us
define a near miss to be a miss that occurs when Random
has exactly m — 1 of these items in its cache. Random
succeeds on a near miss if it does not evict any of these
m ~ 1 items. Random has at least one miss on each
repetition of the pattern ba,, -+ -, 4, until it
succeeds on a near miss. The probability of.a
success on a near miss is (M — m + 1)/M. Hence, by
Lemma 3.3, the expected number of near misses is at
least [M/(M — m + 1)}{1 = [(m — 1)/M]"}. The claim
follows. C

Theorem 3.4 can be strengthened to hold even if there
are only M + 1 distinct items. Also, no memoryless
algorithm achieves a better oblivious (or adaptive on-line)
competitiveness coefficient. Intuition suggests that when
there is no information on which to base the choice of the
evicted item, random, equiprobable choice of an item to
evict is at least as good as any other rule. We formally
prove the claim below, for the case M = m. We defer
the proof of the following theorem to Appendix A.

Theorem 3.5

Any memoryless on-line cacheing algorithm has an
oblivious competitiveness coefficient that is greater than
or equal to m when m = M.

This theorem does not hold true for algorithms with
memory: Fiat et al. [12] have shown that RFWF has an
oblivious competitiveness coefficient of O(log m) when
m =M.

4. The weighted cache probiem

We now consider a generalization of the problem studied
in the previous section. As before, we consider a two-level
store with a cache capable of holding m items at a time. In
the weighted cache problem, an item x has a positive real
weight w(x), representing the cost of loading the item

into the cache. In measuring the competitiveness of an
algorithm, we compare the cost it incurs over a sequence
of references (rather than the number of misses) with the
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cost incurred by the optimal off-line algorithm. We denote
the cost of an algorithm A4 working with a cache containing
M locations on the reference sequence v,, v,, ***, v, by
Ciy(v,, v,, =+, v,). The competitiveness coefficients of
an algorithm A4 are defined accordingly. Thus, the previous
section dealt with the special unit cost case, in which

w(x) = 1, Vx.

The weighted cache problem has applications to
cacheing fonts in printers. The number of fonts that can be
cached at a time in the printer is subject to a maximum,
but fonts requiring larger files take longer to bring into the
printer’s memory.

There are two noteworthy aspects of the weighted cache
problem that distinguish it from the simple cache problem
considered in the previous section. First, finding the
optimal off-line schedule is nontrivial—indeed, the only
technique we know for this is the general reduction to the
assignment problem, due to Chrobak et al. [8]. Second,
there were no simple, good deterministic algorithms for
this problem before this work. A deterministic algorithm
for the weighted cache problem that is m-competitive for
the special case M = m has been obtained by Chrobak
et al. [8].

We present in this section a simple generalization of
the Random algorithm for this problem, which we call
the Reciprocal algorithm. It is memoryless and has a
competitiveness coefficient <M/(M — m + 1) against
adaptive on-line adversaries. The lower bound of Theorem
5.6 for the server problem (presented in Section 5) implies
that no algorithm can do better than Reciprocal against
adaptive on-line adversaries. No deterministic
MM — m + 1)-competitive algorithm for the case m = M
is known. Also, no deterministic memoryless algorithm is
competitive against adaptive on-line adversaries, even if
the more lenient definition of memory deduced from the
formulation implicit in (1) is used’.

The behavior of the Reciprocal algorithm depends only
on the weights of the items in the cache. Letx, -, x_
be the items in cache when a miss occurs. The Reciprocal
algorithm uses the following simple probabilistic eviction
rule: Evict x,; with probability p;, where

_ Iwx)
p = S Uwlx)

Theorem 4.1

The adaptive on-line competitiveness coefficient

of the Reciprocal algorithm is less than or equal to
M/M - m + 1).

Proof As in the proof of Theorem 3.1, we use a potential

3 Marek Chrobak (University of California, Riverside), personal communication,
1990.
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function to create a random walk with a negative drift on

the real line. Let S be the set of items kept in the cache

by Reciprocal after the ith reference, and Sl.B be the set of
items kept by the adversary. Let

m
o= Y wa)-———— > w),
M-m+1

xe{sfinst) xe{s-sB}

and A®, = @, — @, . Letting ¢ denote the cost incurred
by the Reciprocal algorithm in servicing the ith reference
and th the corresponding cost of the adversary, we define

aM
! ————-tf—ﬂAdDi,

X —
Y M-m+ 1

where a > 8 > 1. We now proceed along the lines of the
proof of Theorem 3.1, breaking the analysis into two parts,
or actions, Y and Z.

Y: The adversary evicts an item. We can assume that the
adversary loads a new item only immediately before
a reference to that item. Also, without affecting the
analysis, we can assumne that the adversary incurs the
cost of the item it evicts rather than for the item it
loads; thus, £ = w(x,) if the adversary evicts x; on
reference i.

Z: The Reciprocal algorithm evicts an item on a miss and
incurs a cost equal to the weight of the item it loads.

We examine the effect of the two kinds of action on the
random walk ZJL ; X;. In particular, we examine the effect
of either action on E[X,|X,, -~ , X,_,].

Y: The adversary evicts x’ and loads x. Then tf = w(x'),
and —A®, < w(x")M/(M — m + 1). (The equality is
realized when x’ € {Sl.'f1 N S,.E_I} andx & Sﬁl). Thus,
the contribution of the adversary’s action to
ElX (X, -+, X,_]is <0.

Z: The Reciprocal algorithm misses on a reference to item
x, 50t = w(x). Then |S7, N S? | <m - 1, and
|S¥, - 87 | = 1. Thus,

E[A®|Z, 0, ", o_,]

1Sff1 n SL' m-1 lsﬁl - Si—1,
= w(x) — + .
Dy M-m+1 > 1mw(y)
yest, Y&,
> w(x).

{w, is the random choice made by Reciprocal at step i.)
Thus, the contribution of the Reciprocal algorithm’s
action to E[X,|X,, -+, X,_/] is also less than zero.
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Note that [ X, — X,_,| is bounded by a constant times the
largest weight of any of the items. Applying Lemma 2.3 to
the sequence of random variables X, we conclude that

n

lim 2 X = —x,as.,

e
so that

aM

lim sup | Ci(v,, -+ +, v,) — M-m+1

n—>x

Clo e, 0,)

< ®, a.s.

This yields the result. ]

We also have, in this theorem, lim __ E[3" X] = -,
so that the theorem also holds if Definition 3 of Appendix
A is used. The theorem is valid even if there are infinitely
many distinct weights; all that is required is that all
weights be in a bounded range 0 < a < weight < b < o,
where a and b are arbitrary constants.

Coppersmith et al. [17] have derived a general approach
to the server problem described in Section 5 that yields the
above algorithm and analysis as special cases.

Note that Random is exactly the Reciprocal algorithm
restricted to the special case w(x) = 1, Vx. Thus, by
Theorem 3.4, the oblivious competitiveness coefficient
of the Reciprocal algorithm is greater than or equal to
M/(M — m + 1). In fact, when M = m, this lower bound
holds true for any set of at least M + 1 distinct items.

We require the following lemma from probability theory.

Lemma 4.2

Let X, X,, + - - be a sequence of positive random
variables with uniformly bounded expectations. Let t be
a stopping time for the sequence. Suppose further that
E[X,] = Pr[r = 1] and fori > 1,

E[X|X, -, X 1=Prlr=i|X, -, X_].

Then,
E[ > X|=1
i=1

Proof 1t is known that 7 ranges over the natural
numbers, the events [ = i] depend onlyon X, - -« , X,
and 7 is a.s. finite. We have E[X |X |, -+, X, _|] =
Pr[r = i|X,, - -, X,_], so that

’ i-1

®

E[X,]+ > E[X|X,---,X_]=1
i=2
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if 7 <n,

otherwise.

2

i=1

Then the Y, are nonnegative random variables, Y, = 1,

and

E[Yn‘Xl’ S Xn—l] = E[l,n—l + Xn - I['r=n]|X1’ Tt Xn—l]
=Y, .

Here I is an indicator variable that is 1 when 7 = n,

[r=n]

and 0 otherwise. Also,

T

limY, = > X, as.

A =
The martingale convergence theorem [16] implies that

7

1=limE[Y,] = E|limY,| = E| > X|. ]

n—we n-s® i=1

Theorem 4.3

Let M = m. The oblivious competitiveness coefficient
of the Reciprocal algorithm C(M, M) is greater than or
equal to M, for any set of M + 1 items (independent of
the weights).

Proof letag, ', a, beany M + 1 items. Let
w, = w(a,). Consider a sequence that consists of successive
rounds of references each of the formag, - +-, a,,_;
assume that the Reciprocal algorithm starts with a,, in
the cache and a;, out of the cache. Let ¢ be the number of
misses on the sequence. Let I(j) be the index of the jth item
evicted, where I{0) = m. Once a, is evicted, no further
misses occur; therefore, I{¢) = M.

Without loss of generality, the Reciprocal algorithm
incurs the costs of the items it evicts. The cost of
Reciprocal on this sequence is

t
E Wi +
=1

When the jth eviction occurs, the cache contains all items
except a,,_, . Therefore, forj < ¢,

1w,

E 1w,

k=I(j-1)
0 otherwise.

ifr=I( - 1),
Pr[I(j) = r|IG - 1)] =
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Accordingly,

) M
E[Wl(j)“(] -1]= W

k=I(-1)
and
Pelt = 1|1 - 1] =~
r[t =jiI(j - 1)] = —TST—————
1w,
k=l(j-1)

Thus,
Ew(D( - D] =M - w,, - Prt =j|Ij - D].

It follows, by the previous lemma, that

t
E EWIU) =M-w,.
j=0

Consider now a sequence of references consisting
of roundsi = 0, 1, -+ - . Round i is of the form
[S: mos )] ™'» Where Sy = (a;, -+, @), and
Sj = (a,, L4, 8, serLa,)for0<j < M,
and S,, = (a,, ***, a,_,). Let c < 1 be a positive
constant. Let 4, be the event ““a, ., isin the cache
at the end of the ith round.” Let Ci” be the cost of
Reciprocal for the ith round. By taking the sequence
o» 175 * * * to grow sufficiently fast, we can establish that
almost surely A4, occurs only a bounded number of times,
and almost surely the cost of Reciprocal at the ith round is
larger than cMw, with a bounded number of

i mod (M+1)?
exceptions. Thus,

n

n n

L H
lim sup 2 C'—-cM 2 Wi mod ey | = 05 .8

noe i=0 i=0

On the other hand, the cost of the adversary on the ith
round iS W, ;o)

5. Random walks and probabilistic counters
In this section, we study the interplay between random
walks and the competitive analysis of on-line algorithms.
The idea underlying the randomized algorithms of the
previous sections is that a deterministic process that
explicitly remembers statistics from the past can be
replaced by a probabilistic process whose distribution
implicitly remembers such statistics. For example, FIFO
ensures that once an item is brought into the cache, it is
not evicted before m further misses occur. Random does
the same in a probabilistic sense: An item once brought
into the cache remains there for a number of misses whose
expectation is m. The deterministic counter of FIFO is
replaced by a ““probabilistic counter”” in Random. We
provide a second example below in the setting of on-line
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graph traversal, an abstract problem defined in the
following subsection. This abstraction proves useful when
we subsequently analyze algorithms for server systems
(an abstraction due to Manasse et al. [5], which includes
cacheing as a special case), and for the metrical task
systems of Borodin et al. [6].

8 Traversals and random walks

Consider a complete graph G with n nodes {1, -+, n}.
A finite cost or distance d(i, j) > 0 is associated with
each edge (i, j). We assume that the distance matrix, D,
is metrical (i.e., is symmetric and satisfies the triangle
inequality). An instance of the traversal problem is defined
by a specified sequence i, i,, ** -, i, of nodes in G. An
algorithm A starts at some initial node i, and moves along
the edges of the graph, not knowing the identity of the
next node in the specified sequence, until it eventually
reaches 7,; then it moves until it reaches i,, and so on.
The next move of the algorithm may depend on its
current state and location, but not on the next node in
the specified sequence.

We denote by CA(il, -+, i) the cost of the path
traversed by algorithm 4 when visiting nodes i , *++, i .
We compare this cost to the length C(i , --«, i) =
i d(i,_, i) of the optimal path (i, i,), (i}, i,), ***,
({,_,» i). [Edge (i, j) is the optimal path between nodes
i and j because of the triangle inequality.] A deterministic
algorithm A4 is c-competitive on graph G if for any infinite
sequence of nodes i, i,, ",

lim sup[C*(i, - -+, i) — ¢+ C(iy,++, )] < .
o
The other definitions of Section 2 are extended in a similar
manner: An oblivious adversary chooses the sequence
iy i}, * - - in advance; an adaptive on-line adversary chooses
when on-line algorithm A reaches i,; and an adaptive
only when on-line algorithm

0o !

lk+1
off-line adversary chooses i

A reaches i .
Formally, a traversal algorithm with a set of states S is a
function

k+1

F:SX[1,-+,n]—> 8 x[1,-++, n].

As before, we define an algorithm to be memoryless if
log |S| is zero. The next move of a memoryless algorithm
does not depend on the past in any way—it does not depend
on previously visited nodes or on the number of times it
has previously been at the current node.

We now define a deterministic traversal algorithm with
memory called the cyclic traversal algorithm. Let i,
i, *,1i_,, 1, beacycle in which each node of G occurs
at least once (the cycle is not necessarily Hamiltonian).
A cyclic traversal algorithm visits the nodes of G in the
order defined by the cycle. The state s of the algorithm

is an index that ranges from 0 to r, where r = n. If the 693
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algorithm is in state s (and at node i ), it next moves to
state (s + 1) mod r (and node i, ..,,)- Cyclic traversal
algorithms are not memoryless, because they remember
the index s. The following result is proved in [6].

Theorem 5.1
For any graph on n nodes and any distance matrix, there
is a deterministic cyclic traversal algorithm that is
4(n — 1)-competitive. 0O

A probabilistic traversal algorithm is obtained by -
executing a random walk on the graph. We associate a
transition probability p(i, j} with each edge (i, j); p(i, j) is
the probability that the algorithm, when at node i, moves
to node j. Thus, 3, p(i, j) = 1. The algorithm executes a
random walk on the graph according to these transition
probabilities. Notice that a probabilistic traversal algorithm
is memoryless. Let (i, j) be the expected cost, or
distance, of a random walk that starts at node i and ends
when node j is first reached. Define the edge expansion of
the random walk to be max,  [2(, j)/d(i, j)].

Lemma 5.2 follows immediately from the definition of
competitiveness for a traversal algorithm.

Lemma 5.2
A probabilistic traversal algorithm based on a random
walk with edge expansion c is c-competitive against
adaptive on-line adversaries. O

In the Harmonic random walk, the probability of using
a particular outgoing edge from a node is inversely
proportional to its cost:

o 1dG,)
p@.j) = m .

k#i

(We do not permit transitions from a node to itself.) This
process has been studied in [18], where the following resuit
is proved about a Harmonic walk on any graph (not
necessarily complete) with E edges.

Theorem 5.3
The Harmonic random walk has an edge expansion that is
less than or equal to 2E. O

The last result is tight; i.e., equality is achieved for
certain graphs.

The Harmonic random walk does not yield, in general,
the smallest possible edge expansion. In fact, the following
weaker expansion condition is sufficient, for our purposes.
For any pathp =i , i,, * - -, i, in the graph, define

d(p)=d(,i) +d(i,i)+---+dG_,1i)
and

h(p) =h, i) +h,, i) + - +h{_,1).
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We define the cycle expansion of a random walk to be
max[h(p)/d(p)], where the maximum is taken over all
simple cycles (closed paths)p =i, i), ***, i, I, in the
graph.

Assume a random walk with cycle expansion 7 for a
graph G. Let d_, be the maximum length of an edge of G.
If p is a simple path from node i to node j,

k(p) < h(p) + h(j, i) = 7 - [d(p) + 4, )]
<n-ldp) +d,].

If p is an arbitrary path, it can be decomposed into the
union of disjoint simple cycles and one simple path. Thus,
for any path p in the graph (not necessarily simple),

h(p) = n -[d(p) +d,,].

Consequently, we have the following.

Lemma 5.4
A probabilistic traversal algorithm based on a random
walk with cycle expansion c is c-competitive against
adaptive on-line adversaries. (|

Coppersmith et al. [17] have recently proved the
following general result.

Theorem 5.5
For any n-node graph and any distance matrix, there is a
random walk with cycle expansion n — 1. This is the best
possible expansion. ]

Thus, the competitiveness coefficient of the traversal
problem on n-node graphs is less than or equal ton — 1,
for adaptive on-line adversaries.

® Server systems
The server problem is a generalization [5] of the cacheing
problem. The problem is specified by a complete graph on
n nodes, and a metrical distance matrix D. There are M
mobile servers that occupy M of the nodes of the graph at
any time. A request specifies a node; in response, a server
must be moved to that node if no server is currently at
that node. An algorithm chooses which server to move in
order to satisfy successive requests in a sequence; an on-
line algorithm has to decide on a move (when necessary)
after each request, not knowing about future requests.
The cache problem corresponds to a server problem
with a unit distance matrix. The nodes of the graph are the
memory items, and the servers are the cache locations.
The weighted cache problem corresponds to a server
problem with a distance matrix of the form d(i, j) = w;.
Such a distance matrix is not metrical; however, one can
obtain an equivalent problem by using the distance matrix
d(i, j) = (w; + w))/2. This matrix represents a weighted
cache problem in which the cacheing algorithm incurs half
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of the cost of an item when the item is loaded, and half
when the item is evicted.

Formally, an on-line algorithm for the server problem is
defined by a function

F:Sx[1,--,n"x[1,---,n]=> S x[1,---,n". (9

This transition function specifies the next state and the
set of nodes occupied by the M servers after the request
has been serviced, given the current state, the current
locations of the M servers, and the request node. The
request node must be occupied after the transition. The
memory of the algorithm is log |S|. All of the definitions
and results of Section 2 hold.

Equation (9) is a generalization of the formulation for
the cacheing problem given by (1). Thus, the measure of
memory we use here is more lenient than the one we
used to analyze cacheing algorithms, where we used the
formulation given by (2) and (3).

In [5] it is shown that the competitiveness coefficient
of any deterministic on-line server algorithm is at least
M/(M — m + 1) (one compares an on-line algorithm with
M servers to an off-line algorithm with m servers). The
argument actually implies the same bound for randomized
algorithms with adaptive on-line adversaries.

Theorem 5.6 [5]
Let A be a (possibly randomized) on-line server algorithm
for M servers on a graph with M + 1 nodes. Let B be an
adaptive on-line adversary defined as follows. B starts with
its m servers at m randomly chosen locations. At step i, B
generates a request at the unique node v, not occupied by
one of A’s servers (B is a cruel adversary). If B has no
server at node v,, it moves the server currently at node
v,_, to v, Then, for any sequence of random choices of A
and any i > 1, the expected cost of step i for adversary B
is (M — m + 1)/M times the cost of step i for algorithm
A.

For the rest of this section, we consider the case
M = m only.

® Random walk algorithms for the server problem

We now present a simple and natural memoryless on-line
algorithm for the server problem. Let P be a matrix of
transition probabilities defined on the graph. Suppose we
have a request at a node r, and the on-line algorithm
currently has no server at . Let i, - - -, i,, be the current
positions of the algorithm’s servers. We choose one of the
servers at random to service the request at r, according to
the probability distribution induced by P: Server i is
chosen with probability

pr, i)

= <js= M.
TP
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Theorem 5.7

Let M = n — 1. Assume that the random walk defined by
the transition probabilities p(i, j) has cycle expansion c.
Then the adaptive on-line competitiveness coefficient of the
corresponding server algorithm C(M, M) is less than or
equal to c.

Proof When M = n — 1, at all times there is exactly
one node of the graph that contains none of the on-line
algorithm’s servers. We call this node a(¢) at time ¢. The
algorithm incurs a cost only when the request at time ¢ is
at a(f). We can assume, without loss of generality, that the
adversary is cruel, so that the request at time ¢ is, in fact,
at node a(t). Similarly, there is exactly one node not
occupied by any of the servers of the adversary generating
the requests; we denote this by b(¢). If a(t) = b(t), the
adversary must make a move and incur a cost in order
to serve the zth request. The adversary moves a server
from node b(¢ + 1) to node b(¢) and incurs a cost of
d[b(t + 1), b(t)] = d[b(z), b(t + 1)] (D is symmetric).
We consider the behavior of our algorithm in a sequence
of phases. A phase starts when the adversary must make
a move because the request is at its unoccupied node.
Assume that a phase starts at step ¢,, when the adversary
moves its server from b(¢, + 1) to b(t,). At this time, we
have a(z;) = b(t,). It is easy to see that a(z) executes a
random walk on the graph, choosing at each step an edge
(i, j) with probability p(i, j). The walk at the current
phase starts at b(¢,). The phase terminates when the walk
reaches b(z, + 1). The expected length of the walk from
b(t,) to b(t, + 1) is h[b(z,), b(t,) + 1], the expected cost
the on-line algorithm incurs in this phase. Summing over
all phases of the sequence yields the result. O

Corollary 5.8

1. The adaptive on-line competitiveness coefficient of the
server algorithm induced by the Harmonic random walk
isCM, M) s MM + 1), forM=n - 1.

2. The adaptive on-line competitiveness coefficient of the
server algorithm induced by the random walk described
in the proof of Theorem 5.5 is C(M, M) < M, where
M=n-1

Theorem 5.9

For every M = 2, there exists a distance matrixon M + 1
points for which the competitiveness of the Harmonic
algorithm is greater than or equal to M(M + 1)/2 against
an oblivious adversary.

Proof Let the nodes be numbered 1, 2, -+, M + 1.
Let d(1, 2) = 1, and let all other distances be B > M.
The request sequence is an infinite repetition of

(1,3, 4, , M+ 1", (2,3, 4,---, M+ 1), fora

large integer L. Call the above subsequences [each of the 695
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form (1, 3,4, -, M+ 1)" or (2, 3, 4, --+, M + 1)]
rounds. The adversary places one server at each of the
nodes 3, ---, M + 1, and never moves these M — 1
servers. It uses its last server to alternate between nodes
1 and 2 upon demand, to service requests at those nodes.
Thus, it pays a cost of 2 per round.

How well does the Harmonic algorithm perform? Note
that there is always exactly one node of the graph that is
not occupied by one of Harmonic’s servers; let us call this
node the “‘hole”” a(t). The hole executes a random walk in
the graph, always going from a node to a neighbor that is
chosen in inverse proportion to its distance. We therefore
ask the question, What is the expected cost incurred by
the hole in this random walk in a ““round trip”” from node
1 to node 2 and back to node 1? (Such a round trip is a
random walk from node 1 that terminates on first reaching
node 1 after having visited node 2 at least once.) The
ratio of this quantity to the cost of the adversary
per pair of rounds (which is 2) is a lower bound on the
competitiveness for Harmonic on this graph.

The answer comes from an electrical analogy studied
by Chandra et al. [18], who show that the expected cost
of this round trip equals M(M + 1) times the effective
resistance that would exist between nodes 1 and 2 if each
edge in the graph were replaced by an electrical resistor
whose value equaled the cost, or the distance, of that
edge. A simple calculation shows that in our case, this
effective resistance is 2B/(2B + M — 1); by our choice
B » M, this is arbitrarily close to 1. O

The proofs of Theorems 5.7 and 5.9 suggest an approach
to analyzing the algorithm for any value of M (regardless
of its relation to n). For the remainder of this section, we
study the server problem in a slightly more general setting:
The requests are points in an arbitrary metric space (rather
than the nodes of a finite graph with a distance matrix).
We begin with M points in the space, each of which
is occupied by one adversary server and one of the
algorithm’s servers. Thus, the adversary first makes a
move and issues a request for which the algorithm incurs a
cost.

Conjecture 5.10 (Lazy Adversary Conjecture)
The following (adaptive) adversary strategy results in the
Ppoorest performance for memoryless algorithms:

Whenever there is a point in the space at which the
adversary has a server but the algorithm none, the
adversary issues the next request at that point (instead
of making a move and incurring a cost).

The conjecture suggests that the ratio of the expected
cost of the algorithm to that of the adversary is maximized
under this adversary policy. (The conjecture is not true for
every algorithm; we suggest only that it is true for a class
of algorithms that includes memoryless algorithms). If this
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conjecture were proved, we could reduce the analysis of
the algorithm to a phase analysis and random walk similar
to that in Theorem 5.7. The result would be an upper
bound of ¢ on the adaptive competitiveness coefficient
of the algorithm, where c is the expansion factor for a
random walk on a graph with M + 1 nodes; ¢ = M for
the random walk described in the proof of Theorem 5.5.
Even without the Lazy Adversary Conjecture, we can
bound the performance of the Harmonic algorithm in an
arbitrary metric space for the case M = 2.

Theorem 5.11

The adaptive on-line competitiveness coefficient of the
Harmonic algorithm for the two-server problem is in the
interval (7, 18].

Proof The lower bound follows from Theorem 5.9. The
proof of the upper bound again uses a potential-based
argument. Here we define the potential we use to prove
the result; the actual methodology of the proof is similar
to that in Theorems 3.1 and 4.1.

At every step, the two servers managed by Harmonic
and the two managed by the adversary occupy (up to) four
points in the metric space. Let m, and m, be the costs
of the two perfect matchings between the two points
occupied by Harmonic’s servers and the two occupied
by the adversary’s. The potential of this configuration is
defined to be m m,/(m, + m,) (thus, it is zero when the
points occupied by Harmonic’s servers are exactly those
occupied by the adversary).

After a request has been served, there is at least one
point in the metric space where both Harmonic and the
adversary have a server. We now consider what happens
on the next request: We assume that the adversary first
moves one of its servers (possibly by a distance zero) and
then requests the point to which it has just moved. In
response, Harmonic moves a server and incurs a cost
(which is a random variable) and changes the potential
(by an amount that is also a random variable). A detailed
calculation considering three possible cases yields the
result. Details are given in Appendix C. O

Manasse et al. [5] give a 2-competitive, deterministic
algorithm for this problem. Their algorithm has a better
competitiveness coefficient; ours is randomized but
simpler, memoryless, and computationally efficient.
Subsequent to our work, Berman et al. [7] have proved
that our Harmonic algorithm achieves a bounded
competitiveness for M = 3 in any metric space. Later,
Grove [19] proved that Harmonic achieves a competitive
ratio that is O(M2") in any metric space and for all M.
By Theorem 2.2, it follows that there is a deterministic
algorithm achieving a competitiveness 2°*,
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® Metrical task systems
A metrical task system (MTS) consists of a graph G with
n nodes {1, - -+, n} and a metrical cost matrix D. An
algorithm occupies one node of G at any given time. A
task T is a vector of length n whose ith component is the
cost of processing T while occupying node i; we assume
that these costs are uniformly bounded. Given a sequence
of tasks T,, T,, * -+, T,, an algorithm must choose a
schedule i, i,, -+ -, i, of nodes, where ij is the node
occupied by the algorithm at step j, while processing T.
An on-line algorithm must choose i; knowing only
T, -, T] The cost of a schedule is the sum of all task-
processing costs and all transition costs incurred. Metrical
task systems can be viewed as a generalization of server
systems. [A node in the metrical task system encodes
the locations of the M servers of the server problem; an
M-server problem on a graph with n nodes is represented
by a metrical task system with (;,) nodes.] We refer the
reader to Borodin et al. [6] for details.

An algorithm (controlled by an automaton) is now
defined by a function with the following form:

Algorithm:[1,---, n} X S X T —[1,---,n] X S.

As in the previous sections, we can define memory and
the competitiveness of deterministic and randomized
algorithms.

Borodin et al. give a deterministic algorithm for metrical
task systems, which can be generalized as follows. Let 4
be a traversal algorithm for the graph of the task system.
An MTS algorithm/l is derived from A, as follows. Let i
be the node currently occupied by A, and let j be the next
node visited by the traversal algorithm. A moves to j when
the cumulative processing cost since entering i equals or
exceeds the transition cost d(i, j). [This introduces a
technicality: The total cost since entering i could jump
substantially above d(i, j) in the course of processing a
single task, thus necessitating several state changes before
processing the next task. The solution given by Borodin
et al. views the process as occurring in continuous time.
Details omitted here may be found in [6]. Thus, the cost
incurred by algorithm A approaches twice the total cost of
all its moves. If 4 is probabilistic, 4 moves out of node
when the processing cost since entering i reaches the
expected cost of the move out of i. If the traversal
algorithm is c-competitive, the derived MTS algorithm
is 2c-competitive.

One technical problem must be addressed in order for
the random-walk approach to work. The adversary has the
choice of remaining at node v, not incurring any transition
cost. The cost the adversary incurs between two returns of
the on-line algorithm A to node v is the cost of the first
move of the traversal algorithm A out of v (this is the cost
of the tasks before the on-line algorithm leaves v). The
cost the on-line algorithm incurs is at most twice the cost
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of the path up to the first return to v. We need to make
sure that the ratio between these two costs is bounded.
This motivates the following definition.

A traversal algorithm has loop ratio € if, for any node v
and any visit of the traversal algorithm to v, the expected
cost of the loop from v back to v is at most € times the
expected cost of the first move out of v.

Theorem 5.12

Let A be a traversal algorithm that is c-competitive
against adaptive on-line adversaries and that has loop
ratio €. Consider the MTS algorithm A derived from the
traversal algorithm, as follows. Let i be the node currently
occupied by A, and let d be the expected cost of the

next move by A. Then A moves to the next node in the
traversal A when the processing cost since entering i
reaches (€/c)d. Algorithm A is (c + €)-competitive
against adaptive on-line adversaries.

Borodin et al. use a weaker condition in their traversal
algorithm: Their algorithm does not necessarily have a
bounded loop ratio. Theorem 5.12 should thus be viewed
as a sufficient, rather than necessary, condition for A to be
(¢ + €)-competitive.

Proof We assume, for simplicity, that the on-line
algorithm incurs a cost exactly equal to (€/c)d before
leaving node i. We can arrange this by using the
continuous-time method of Borodin et al. We can also
assume, without loss of generality, that the adversary
moves from node i only if the on-line algorithm A reaches
node i. The adversary can then decide either to move

to a new node j or to remain at node i until the on-line
algorithm reaches node i again. Suppose the adversary
decides to stay at node i. Let d(i) be the expected cost of
the first move out of i for the on-line algorithm, and let
h(i, i) be the expected cost of the return trip to i. Then
h(i, i) < €d(i). The on-line algorithm incurs an expected
cost of ¢, < (1 + €/c)h(i, i) < (1 + €/c)€d(i), whereas
the adversary incurs a cost of ¢, = (€/c)d(i). Thus,

AN € _
c,-(€+c), < (1 + —)(d(i) - €+ c);d(i) =90.

c
Suppose that the adversary moves to node j # i. Then
the adversary incurs a cost of ¢, = d(i, j), whereas
the on-line algorithm incurs an expected cost of

c, = (1 + €/c)h(i, j), where h(i, j) is the expected
cost of the traversal from i to j. Thus,

€
c,~(€+c), = (1 + Z)h(i’j) - (€ + o), )

¢
= (1 + ;)[h(i, ) —c-di,pl. O 697
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Lemma 5.13
The Harmonic random walk has a loop ratio of n.

Proof Since p(i, j} = [1/d(i, )))/[Z, 1/d(i, k)] > 0 for
all i # j, the Markov chain defined by the transition
probabilities P is aperiodic, and there is a unique,
stationary probability distribution ® on the nodes, defined
by the equations

&= >, &, i)

> 4 =1

One can check, by substitution, that

> VdG, j)
4 i
N vde, s)’
where r and 5 range over all nodes. The expected cost of a
move out of node i is

n-1
d; = @GNde ) =<7
;p Hdé, j T
j
Thus, d, the average cost of a move in the random walk, is
equal to

nn—-1)

4= 2 %= S e, 5)

(the harmonic mean of the distances), and

- n(n — 1)
hi, i) =dlo, = m . O

Thus, we obtain from the Harmonic random walk
an algorithm that is n(n + 1)/2-competitive. The random
walk traversal of Coppersmith et al. [17] (Theorem 5.5) has
a loop ratio of 2(n — 1). Using it, they obtain an algorithm
for metrical task systems that is 3(n — 1)-competitive.

By a further refinement of this construction, a (2n — 1)-
competitive algorithm is derived in [17].

We have yet to show that such random walk algorithms
are memoryless, as one must maintain a counter that
accumulates the total processing cost at the current node.
One can, however, replace this counter with a probabilistic
counter.

Assume that the algorithm occupies node i, and let A be
the threshold for the next move (the algorithm moves to
the next node when the processing costs since entering
i exceed A). For an algorithm based on our previous
construction (which translates a traversal algorithm
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A to an algorithm A for metrical task systems),
A= (c+ €)X, pl jdi,j) Foratask T, let T(;)
be the cost of processing T at node i. Assume T(i) < A;
to justify this, we use the continuous-time ideas of Borodin
et al. The main idea is to view the processing of tasks as
occurring in continuous time. By this device, if (i)
exceeds A for the present node i, we move on to its
successor node in the traversal. Let the new node have
a threshold of A'; we compare T(i} — A with A’ now,
moving on to the successor again if T(i) — A > A’, and
so on. A formal description of the process is given in [6].
We now describe our algorithm, which we call Gambler.
Independent of previous tasks and processing costs,
Gambler does the following: Given T, flip a coin with
Prlheads] = T(i)/A; if the coin comes up heads, Gambler
moves to the next node in the traversal (this next node
may be chosen probabilistically); otherwise, it remains
at the current node. Note that Gambler is memoryless.
Lemma 4.2 can now be invoked to show that the expected
processing cost incurred by the Gambler algorithm at node
i is A. This yields the following theorem.

Theorem 5.14

Let A be a c-competitive MTS algorithm of the form given
in Theorem 5.12. The memoryless traversal algorithm
Gambler derived from it is also c-competitive against
adaptive on-line adversaries.

6. Further work

This paper leaves many open problems. We do not
completely understand the relation between the two
definitions of competitiveness, one using a limit at infinity,
and the second using finite sequences. In particular, we
have not shown that the two definitions yield the same
competitiveness coefficient for cacheing against oblivious
adversaries. Also, we conjecture that both definitions are
equivalent for randomized algorithms with finite control.

While adaptive off-line adversaries may be more
powerful than adaptive on-line adversaries against specific
algorithms, they yield the same competitiveness coefficient
for cacheing and for the more general server problem.

It would be interesting to have a direct proof of the
equivalence of these two adversaries.

It would be most interesting to find generalizations of
the RFWF algorithm for the weighted cacheing problem
and the general server problem, thus showing that one can
do better against an oblivious adversary than against an
adaptive one for these generalizations.

Finally, it has been conjectured by Manasse et al. [5]
that the competitiveness coefficient of the m-server
problem is m. Following an upper bound of 2°™ ™) due
to Fiat et al. {20}, Grove [19] has obtained an upper bound
of 2°™ based on the Harmonic algorithm. Recently,
Koutsoupias and Papadimitriou [21] have given an upper
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bound of 2m — 1. Much work has been directed recently
at proving particular cases of this conjecture [8, 9]; it
would be interesting to extend these results to the case

M = m. The existence of a memoryless m-competitive
algorithm against adaptive on-line adversaries for a large
class of graphs has recently been proved [17]. The proof
expands on the use of random walks outlined in this paper.

Appendix A: Cacheing and games

® Lazy algorithms and cruel adversaries

In this appendix, we prove some simplifying results on
cacheing algorithms. We restrict ourselves here to adaptive
adversaries (either on-line or off-linej. We show that one
can assume, without loss of generality, that on-line
cacheing algorithms are Jazy (changing state only when a
miss occurs). This allows us to restrict our attention to
cruel adversaries, which force a miss at each step (the
name ““cruel” is taken from [6]). We also show that one
can assume, without loss of generality, that there are
exactly M + 1 distinct items.

Lemma A.1

Let A be a lazy cacheing algorithm. Then A is c(M, m)-
competitive against adaptive off-line (on-line) adversaries
if and only if it is c(M, m)-competitive against cruel
adaptive off-line (on-line) adversaries.

Proof Let B be an adaptive off-line adversary. A cruel
adversary B simulates B as follows. At the end of step j,
the simulating adversary B assumes the state of B at the
end of step i when the jth mis§ of A occurred. Since A
does not change states at hits, B can simulate the next

ij = ij steps of the computation, until‘A next misses, and
compute the state of B after step i, ,. B then issues the
next reference v;, |, which is the reference B would issue
atstepi,,,.

Consider a fixed sequence of random choices by 4. If B
issues the references v, v,, * *+, and A misses at steps
i i, -, then B will issue the references Vs Uy s
and A will miss at each step. The number of misses of A
on the subsequence of references Ups Upps 705 Uy, equals
its number of misses on the sequence of references v,

Uy, ***, v, ; Whereas the number of misses of the optimal
algorithm on the subsequence is clearly less than or equal
to its number of misses on the sequence. Thus A4 is

c(M, m)-competitive against B only if it is c(M, m)-
competitive against B. This concludes the argument for
adaptive off-line adversaries.

Suppose now that B is an adaptive on-line adversary.
Then B can also simulate the on-line cacheing management
of B as follows: Assume that B misses at step j. If B also
misses at step i, ar}d B has in its cache the item e:victed by
B at step i, then B evicts that item. Otherwise, B evicts

+12
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an item that is not in the cache of BAat step i;. It is easy to
check that the number of misses of B on the subsequence
of references Vs Vs is less than or equal to the
number of misses of B on the sequence of references

U Uy "0 O

Corollary A.2

Let A be a cacheing algorithm that is ¢(M, m)-
competitive against adaptive off-line (on-line) adversaries.
Let A be the algorithm obtained from A by preserving the
Miss function and modifying the Hit function to be the
identity (A does not change states on hits and behaves as
A on misses). Then A is ¢(M, m)-competitive against
adaptive off-line (on-line) adversaries.

Proof By the previous lemma, it is sufficient to consider
cruel adversaries; however, 4 and A behave identically
against cruel adversaries. O

This corollary implies, for example, that the FIFO
algorithm is as competitive as the LRU algorithm. Indeed,
if we modify the LRU algorithm so that it modifies its state
only on misses, LRU “remembers’’ only references that
caused misses, and orders the elements in the cache
according to the order in which they were loaded.
This is exactly the behavior of the FIFO algorithm.
Corollary A.2 does not hold for oblivious adversaries.
The RFWF algorithm has a competitiveness coefficient
c(m, m) = O(log m) against oblivious adversaries [12].
A lazy version of this algorithm, which does not mark
entries unavailable on hits, has a competitiveness coefficient
c(m, m) = (m + 1)/2. This is proved in Appendix B.

Lemma A.3
Let A be a randomized cacheing algorithm. The following
two assertions are equivalent:

1. A is ¢(M, m)-competitive against adaptive off-line
(on-line) adversaries.

2. A is c(M, m)-competitive against adaptive off-line
(on-line) adversaries that generate references to only
M + 1 distinct items.

Proof Clearly, Assertion 1 implies Assertion 2. Let A

be a cacheing algorithm. Let i (x), the index of item x at
step ¢, be the location in the cache that contains x after ¢
references; i,(x) = 0 if x is not in the cache. Index i (x)
depends on the adversary and on the first # random choices
of A. Let B be an adaptive adversary. We transform B
into an adversary B that generates references from a set of
M+ litems {y, '+, y,..} Letw, »,, **+, 0,_, be
the first # — 1 random choices made by A. If B now
generates a reference to an item x at step ¢, then B
generates at step ¢ a reference to the unique item y such

thati, ,(y) = i,_,(x); if B evicts x' at step ¢, then B evicts 699

P. RAGHAVAN AND M. SNIR




700

the unique item y’ such that i (y') = i (x'). Make the
sequence of random choices made by A4 fixed. Then A
misses on the sequence generated by B at the same steps
it misses on the sequence generated by B. The set of
indices of the items in the cache of adversary B at step ¢ is
identical to the set of indices of the items in the cache of B
at step ¢. Thus, the cache management of B is correct (B
performs an eviction whenever it misses), and B misses at
the same cycles at which B misses. Furthermore, if B
manages its cache on-line, then so does B. O

® Alternative definitions
We defined competitiveness in terms of the limit behavior
of the cacheing algorithm on infinite request sequences.
As shown below, this leads to a very natural game-
theoretic formulation of competitiveness. It is often
more convenient or more intuitive, however, to analyze
cacheing algorithms in terms of their behavior on finite
sequences of references. This leads to other definitions
of competitiveness, which, fortunately, are not too
different from the ones we use.

The following definition is often used for deterministic
algorithms [4, 5).

Definition 2°

A deterministic cacheing algorithm A is c(M, m)-
competitive if there exists a constant g such that, for any
finite sequence of references (v,, *++, v),

Ciw, - u)—c  C¥u, -+, v) <g. (A1)

In order to distinguish between the two definitions,
we say that an algorithm is c-competitive in the limit if it
fulfills (8), and c-competitive on finite sequences if it fulfills
{(Al). The following results show, however, that the need
to draw the distinction seldom arises.

Clearly, (A1) implies (8); an algorithm that is c-
competitive on finite sequences is also c-competitive in the
limit. One can easily build a pathological algorithm that is
c-competitive in the limit but not c-competitive on finite
sequences, so that Definition 2 is strictly stronger. Using
this stronger definition, however, does not change the
competitiveness coefficient 6,(M, m) of cacheing, and
does not change the competitiveness coefficient ‘6: (M, m)
of deterministic cacheing algorithms A4 with finite control.

Theorem A.4
The following two assertions are equivalent:

1. There exists a deterministic cacheing algorithm that is
c(M, m)-competitive in the limit.

2. There exists a deterministic cacheing algorithm that is
c(M, m)-competitive on finite sequences.

4 Definition 1 is in Section 2.
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Proof Clearly, Assertion 2 implies Assertion 1. To prove
the reverse, we find it convenient to relax our definitions
and allow a cacheing algorithm to start with a non-empty
cache. This may save at most M misses and hence affects
neither definition of competitiveness. If A is an on-line
cacheing algorithm, we denote by A[s, x, < - -, x,,] the
cacheing algorithm obtained by starting 4 in state s, with
cache contents x,, -+, X,,.

Assume that no cacheing algorithm is c(M, m)-
competitive on finite sequences. Then, for any cacheing
algorithm 4 (A may start on a non-empty cache), there is
a sequence of references é(A4) = v,, -+ -, v, such that

Civ, -+, u) —cM,m) - CP, -, v)>1

(the cost of 4 exceeds the prescribed bound by at least
one miss).

Let A be an on-line cacheing algorithm. Define
inductively an infinite sequence of references u,, u,, * - -
as follows. We initially determine ¢£(A) for the initial state
and cache contents s, x,, * -+ , x,,]. After applying this
{A), we determine the sequence £ for the state that results,
and so on.

We have

A O .
CM('UI, B v,,,.) - cM,m) - Cmpt(vp Tt 'Un,.) >1,

so that A is not c(M, m)-competitive in the limit. Thus,
the complement of Assertion 2 implies the complement of
Assertion 1. |

The theorem implies that the value of the competitiveness
coefficient 6,(M, m) is the same for both definitions of
competitive cacheing algorithms. We also have the
following result.

Theorem A.5
Let A be a cacheing algorithm with finite control. Then the
following two assertions are equivalent:

1. A is ¢(M, m)-competitive in the limit.
2. A is ¢(M, m)-competitive on finite sequences.

Proof Clearly, Assertion 2 implies Assertion 1. Assume
that Assertion 2 does not hold. Then, given any fixed &,
there is a sequence of references v,, -« +, v, such that

C;:[(vp s v,,) - C(M’ m) : CZpt(vl’ Tt v,,) > k.
Let s, be the state of A after references v, - -+, v,. Let
¢, = Cifv, . v) — c(M, m)» C¥u, -+, v).

We have ¢, = 0, ¢, > k. Then, if & is sufficiently large
with respect to |S|, the number of states, and with respect
to the product m - ¢(M, m), there are two indices i, j,
where i < j, such that s, = s; and¢, — ¢, 2m - (M, m)
+ 1. Let ¢ be the number of misses of algorithm 4 from
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cyclesi + 1 toj, and let ¢ be the number of misses of

the adversary for these cycles. Consider now the sequence
of references v, *++, Ui Vyyps 05 Ups Upyps * 7

(vy> *++, v; followed by an indefinite repetition of

Vs “° % s v].). Let ¢, be defined as above for the new
sequence of references. Algorithm 4 goes through the
same sequence of states on each repetition of the sequence
of references v, ,, *+*, v; and has ¢” misses on each such
segment. The optimal algorithm has at most ¢
misses on each such segment. It follows that

+m

R L - s
Grgrin = Crgyn 26— 6 — My m) - m = 1,

for any positive integer g, so that

lim sup ¢, = . O

n—®

This theorem implies that if 4 is a deterministic
cacheing algorithm with finite control, the value of the
competitiveness coefficient ‘6: (M, m) is the same for both
definitions of competitive cacheing algorithms. All of the
algorithms considered in this paper have finite control.

We wish to extend the previous definitions and results
to randomized cacheing algorithms. What is the “correct™
definition of a competitive randomized cacheing algorithm
on finite sequences? One might be tempted to use a
condition similar to that used for infinite sequences,
defining A to be c¢(M, m)-competitive if there exists a
constant d such that, for any n and an adversary B of the
suitable type, C,’;(vl, cee,0) ~ oM, m). CZ(vl, e, 0,)
< d, a.s. This, however, is too strong a condition:

It would rule out all randomized cacheing algorithms
considered in this paper. Rather than forbidding bad
worst-case behavior that occurs with small probability,
we require good average behavior (where the average
is over the random choices of the algorithm).

Definition 3

A randomized cacheing algorithm A is c(M, m)-
competitive on finite sequences against adaptive off-line
adversaries if there exists a constant d such that

E[Ciw, "+, v) — cM,m) - CP(v,--+,u)] < d

for any finite sequence of references v, v,, *+** , v
generated adaptively by an adversary.

A randomized cacheing algorithm A is c(M, m)-
competitive on finite sequences against adaptive on-line
adversaries if there exists a constant d such that

E[Cj(v, . 1) —c(M, m) - Colv,-++,v)] < d

n

for any finite sequence of references v,, v,, *** , v,
generated adaptively by an adversary and any on-line
cacheing algorithm B (the moves of B depend on previous
random choices of A).

A randomized cacheing algorithm A is c(M, m)-
competitive on finite sequences against oblivious
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adversaries if there exists a constant d such
that

E[CAU,"',v)_C(M’m).copt(v7“'9v)]<d
M\T1 n m 1 n

for any finite sequence of references v,, v,, *** , v,.

All three definitions coincide when algorithm A is
deterministic, coinciding then with (Al).

The definition for oblivious adversaries has been used by
Fiat et al. [12] and Ben-David et al. [11]. The latter paper
also defines competitiveness against adaptive adversaries,
using seemingly more powerful adversaries. Rather than
stopping after n references (n fixed), their adversaries can
adaptively decide when to halt. A cacheing algorithm A4
is ¢(M, m)-competitive against such an adaptive off-line
adversary if

E[Ci{v,**+,v) — cM, m) - CP(u,---,v)] <d
M1 5 m 1 K

for any adaptively generated sequence of references
v, ¥,, - * * and any adaptive “stopping time” 5. A similar
definition is used for adaptive on-line adversaries. The

“ability to stop adaptively, however, does not add power to

the adversary. The reason is as follows. If an adversary
always stops after finitely many references (s is always
finite), there is a fixed bound n such that the adversary
stops after at most n references (s < n). Rather than
stopping after s steps, the adversary can continue
repeating the last reference, up to step n. This causes no
further misses to either the algorithm or the adversary.
While the new definitions of competitiveness may
change the competitiveness coefficients of specific
algorithms, they do not change the competitiveness
coefficients of cacheing for adaptive adversaries.

Theorem A.6

The competitiveness coefficient 6, (M, m) of cacheing

for adaptive off-line [€_(M, m) for adaptive on-line]
algorithms does not change if competitiveness on finite
sequences is used, rather than competitiveness in the limit.

Proof The claim for adaptive off-line adversaries follows
from the fact that the two definitions are equivalent for
deterministic algorithms (Corollary A.4), and the fact that
for each definition, € (M, m) = 6,(M, m) (Theorem 2.1,
and the similar theorem for competitiveness on finite
sequences proved by Ben-David et al. [11]. (The claim can
also be proved with the argument given below for adaptive
on-line algorithms.)

Now consider adaptive on-line adversaries. By Corollary
A.2, we can restrict ourselves to cruel adversaries, which
cause a miss at each step. (It is easily seen that this
corollary applies to either definition of competitiveness.)

Let A > 0 be a positive real number and n > 0 be a
positive integer. We consider two mutually exclusive

(and exhaustive) cases: 701
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Case 1: There exists an on-line cacheing algorithm A
such that, for any cruel adversary B against A, the
expected number of misses of B on the first » references
is =An.

Let A be a cacheing algorithm that simulates A for n
steps, then reinitializes to the initial state of A and starts
again. Then, for any cruel adversary B against A, any
non-negative integer k, and any sequence of
random choices of A in the first kn steps, B has an
expected number of misses of at least An — m at
steps kn + 1, kn + 2, +++, (k + Dn. Let X, be the
random variable defined by

Xk = C:l(‘”l” ° e b vk) - C ° Ci(vl’ et 3 vk)’
and let

Y, =X, - K-ty -

Then

(1-on=Y =n,
and
E[Y,|Y, -, Y J=<n-c(An—m).

Thus, if ¢ > n/(An — m), sothat n — c(An — m) <0,
then

%

imE| > ¥, | = —,
g k=1

and, by Lemma 2.3,

z Y, = —x, as.
k=1

A is c-competitive against B according to both definitions.
It follows that

@ (M, m) < (A2)

A = (m/n)
according to both definitions.

Case 2: For any on-line cacheing algorithm A, there
exists a cruel adversary B against A that has an expected
number of misses less than An on the first n references.

Let A be an on-line cacheing algorithm. There exists a
cruel adversary B against A such that, for any sequence
of random choices of A in the first kn steps, B has an
expected number of misses less than An at steps
kn +1,kn + 2,--+, (k + )n. Define X, and ¥,
as before. Then

(I-cn=Y =n,

and
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E[Y|Y,_, -, Y]>n—cAn.

Thus, if ¢ < 1/A, A is not ¢-competitive against B
according to either definition. It follows that

(M, m) = lUA, , (A3)

according to both definitions. Since either (A2) or (A3)
holds for any » and A, it follows that both definitions yield
the same value for €_(M, m). O

This proof also shows that

€, (M, m) = inf %;(M, m),

where the infimum is taken over all cacheing algorithms

A with finite control. In fact, it is sufficient to consider
algorithms that restart from the initial state after n cycles,
for some fixed n. The same result holds for adaptive off-
line adversaries. The infimum is actually achieved by
finite-control cacheing algorithms, both for adaptive on-line
and adaptive off-line adversaries.

We conjecture that a result similar to Theorem A.5 can
be shown for randomized algorithms with finite control:
Namely, such an algorithm is c¢(M, m)-competitive in the
limit against adaptive on-line (off-line) adversaries if and
only if it is c(M, m)-competitive on finite sequences
against such adversaries. All of the algorithms considered
in this paper have finite control, and the two definitions of
competitiveness coincide for all of them. However, we do
not have a general proof of the conjecture.

® The cacheing game
The competitiveness of deterministic cacheing algorithms
can be analyzed in terms of an infinite cacheing game
played between the cache manager (player a) and the
adversary (player b). This game-theoretic approach
yields some interesting relations between the various
competitiveness coefficients discussed above.

Formally, such a game is described by a tuple
G (X,s,.f,X,,X,,5,85,, % X, %). Xis the infinite
set of positions in the game. The game positions form
a tree: s € X is the root of the tree; which is the initial
game position; f:X — {s} — X is the predecessor function;
F7(x) is the set of successors to position x. We assume
that the game never terminates; i.e., f '(x) # @, for any
x € X. (Each position x € X, except for s, has a single
predecessor and a nonempty set of successors.) The set of
positions X is partitioned into two subsets, X, and X,
X,NX, =0,X UX, =X).X_is the set of positions
to which player a can move, and X, is the set of positions
to which player b can move. (Every x € X is the
predecessor of one or more positions y € X,, and vice
versa. No x € X has a predecessor in X ; the same holds
for positions in X,.) A play is an infinite path in the game
tree, starting at the root, i.e., a sequence x,, X,
of positions, alternately in X_ and X, such that x; = s
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and x, = f(x,,,), for any i. & is the set of all plays
associated with game %; it is partitioned into two subsets,
%, and %, (€ = &, U L, X N X, = @), «, is the set
of winning plays for player a, and %, is the set of winning
plays for player b. A pure strategy A for player a is a
function that associates with each position x € X, a move
to a successor position: 4:X, —> X,, and A(x) € £ (),
for any x € X, (f© A = id). Similarly, a pure strategy
B for player b is a function B: X, — X, such that
foB =id. §_is the set of pure strategies that player a
can use in the game, and §, is the set of pure strategies
available to player b. The game is a game with perfect
information if §, (§,) contains all pure strategies of
player a (b); otherwise, it is a game with partial information.

Each pair of pure strategies A and B defines a play
[denoted play(A, B)] x,, x,, -+, in which x; = s and,
foreachi, x,,, = A(x) ifx, € X, orx,,, = B(x)
if x, € X,. A is a winning strategy for player a if for each
strategy B € §,, play(A, B) € «,. A winning strategy for
player b is similarly defined.

We consider games in which costs are associated with
positions by a real-valued function Val: X — R. The set of
winning plays for player a is defined as

& = {(x,, x,,"**) € L:lim sup Val(x,) < o}, (A4)

>

Thus, A is a winning strategy for player a if, for any
strategy B € §,,

lim sup Val(x) < «,

n—m

where (x,, x,, ) = play(A, B).

In the cacheing game, the two players are the cache
manager and the adversary. Players alternate moves:
The adversary selects the next reference; then the cache
manager updates the cache contents, if necessary. A
position is defined by the sequence of references leading
to that position and the sequence of moves made by the
cache manager. The value of a position x reached by a

sequence of references v, v,, **+ , v, is equal to

Val(x) = Cifv,,*++,v) — ¢+ C¥,+, v),

where CI';(vl , ***, v,) is the cost paid by the cache
manager, and CZ” '(vl, -+, v,) is the (optimal) cost paid
by the adversary for the sequence of references. The value
¢ is a parameter of the game. This is a game of perfect
information. Note that we impose no restriction on the
computing power or memory of the cache manager: It has
perfect recall of the past. Clearly, a ¢(M, m)-competitive
algorithm for cache management defines a winning strategy
for player a in the cacheing game, with parameter
¢ = ¢(M, m), and vice versa.

A game is strictly determinate if either player a or
player b has a winning strategy. While finite-tree games
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with perfect information are always strictly determinate,
infinite games need not be so, in general. However,
various conditions on the topology of the set of winning
plays are known to imply strict determinateness (see
[22-25]).

Let T = (X, f) be an infinite tree, and let 9 be the set
of (infinite) paths of T that have one end point at the root.
Given a position x of T, we define AU(x) C 9 to be the set
of paths that traverse position x. A topology is induced on
¢C (the Hausdorff topology) by taking the family of sets
AU(x,), i =0, 1, -+ - to be a basis for the neighborhoods
of a path £ = (x,, x,, ***). A set is Borel if it belongs to
the o-algebra generated by the open sets. Martin [25] has
shown that an infinite game with perfect information is
strictly determinate if the set of winning plays is Borel.

The set of winning plays defined by (A4) for a game with
costs associated with positions is F_ (countable union of
closed sets) and, thus, is Borel. Indeed,

€=U UN{(x, x,**):Val(x) = i} .

i ok
It follows from the result of Martin [25] that games with
costs are strictly determinate. (The strict determinacy for
F_is proved by Wolfe [24], using weaker set theoretical
assumptions than needed for the more general result of
Martin [25].) In particular, the cacheing game is strictly
determinate.

& Mixed strategies

We now define mixed strategies, which correspond to
probabilistic cacheing algorithms in the cacheing game. Let
$=(X,sfX,X,s,8, X, X,) be an infinite tree
game. A mixed strategy for player a is a probability
distribution on the set § of pure strategies for that player.
The distribution is defined over the o-field generated by
the family of sets {{A: A(x) =y}, x € X,,y € £}
(we assume that §_ is measurable). A mixed strategy for
player b is defined in a similar manner. Given a pair of
mixed strategies A, B for both players, one obtains a
probability distribution on the set % of plays, induced

by the mapping (A, B) — play(A, B): the probability

of the set U(x) is the probability that play(A, B) reaches
position x.

The mixed strategy A is a winning strategy for player a
if Pr[play(A, B) € & ] = 1 (player a wins a.s.) for any
(mixed) strategy B € §,. It is sufficient to consider, in the
definitions above, only pure adversary strategies: A mixed
strategy A wins almost surely against any mixed strategy
B if and only if it wins almost surely against any pure
strategy B. In a game with costs, a mixed strategy A for
player a is a winning strategy if for any (mixed) strategy
BEs,,
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Prllim sup Val(x) < »] =1, (AS)
no
where (x,, x, *+) = play(A, B).

A randomized cacheing algorithm corresponds to a
mixed strategy for the cache manager in the cacheing
game. An adaptive off-line adversary corresponds to a
strategy for the adversary in this game. By (AS) and (7), a
randomized algorithm A is ¢c(M, m)-competitive against an
adaptive off-line adversary if and only if the corresponding
strategy is a winning strategy in the cacheing game with
parameter ¢ = ¢(M, m).

The same game-theoretical model also applies to the
other types of adversaries. However, these are not games
with perfect information. In the case of an oblivious
adversary, the adversary has no knowledge of the moves
of the cache manager; the strategy choice of the adversary
at a position x is restricted to depend on only its own
previous moves. In the case of an adaptive on-line
algorithm, a position represents the sequence of references
leading to that position and the sequence of moves on both
caches (of both the on-line algorithm and the adversary).
The cache manager, however, has no knowledge of the
contents of the adversary cache; its strategy choices are
restricted to depend on only the previous references and
its own previous moves. The results on strict determinacy
of games do not apply to games with partial information.

The following theorem shows that mixed strategies do
not outperform pure strategies.

Theorem A.7

Let A be a mixed winning strategy for player a in a strictly
determinate game. Then, there is a pure winning strategy
A for player a in this game.

Proof Assume, by contradiction, that there is no such
pure strategy. Then, since the game is strictly determinate,
player b has a pure winning strategy B. For each pure
strategy A’ of the first player, play(A’, B) € «,. But this
implies that, for each mixed strategy A” of player a,
Prplay(A", B)] € &, = 1, and A is not a winning
strategy. a

This theorem, when applied to cacheing games, implies
Theorem 2.1. We turn now to the proof of Theorem 3.5.

Proof of Theorem 3.5 (Any memoryless on-line cacheing
algorithm has an oblivious competitiveness coefficient
greater than or equal to m when m = M.) A memoryless
cacheing algorithm is a probability distribution

{p,, "+, p,}, where p, is the probability that the

item at location i is evicted on a miss. Consider a randomly
chosen sequence of references consisting of a sequence

of rounds. The kth round is of the form (a,, ***, am)";

the set of m items referred to at round £ is obtained by
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choosing an item from round & — 1 uniformly at random
and replacing it with any new item.

During each round following the first, the adversary has
one miss. Let a,, +++, a, be the items accessed at round
k-1 andleta, -, a,_,a,a.,," ,a,bethe
items accessed at round k. With probability going to 1
as k— o, the on-line algorithm starts round & with
a,,-**, a, in the cache. Assume, without loss of
generality, that item a, occupies location 7 in the cache.
The algorithm misses during round £ until it evicts the
item in location i; the expected number of misses is
Ip)i1 - - pi)k]. The expected number of misses
for i chosen uniformly at random (given that a, - -+, a
are in the cache at the start of the round) is at least
Umy 2", A1 -1 - pi)k]. This is minimized at
m{l — [(m — 1)/m]*} (when all the p;s are equal). Thus,
the ratio between the expected on-line cost and off-line
cost for such a randomly chosen sequence of references
has a limit greater than or equal to m. O

m

Appendix B: Lazy random flush when full

Let lazy random flush when full LRFWF) be the algorithm
that behaves like RFWF, except that it does not change
state on hits. When a miss occurs, both algorithms select
an available entry for eviction; if there are no available
entries, all entries are marked available before the

eviction. Then, the missing item is loaded and marked
unavailable.

Theorem B.1

The competitiveness coefficient of LRFWF against

oblivious adversaries is c(m, m) = (m + 1)/2.
(Recall that the competitiveness coefficient of RFWF

against oblivious adversaries is 2H .)

Proof Assume that the on-line algorithm and the
adversary both contain in their caches items 1, 2, -+ -, m,
and that all entries in the cache of LRFWF are
unavailable. Consider a sequence of references of the form
2,3,-++,m, m + 1, repeated indefinitely. The off-line
algorithm incurs one miss on such a sequence. Algorithm
LRFWF misses at least once on each repetition of

2, 3, .-+, m), until item 1 is evicted.

Assume that k of the entries (k > 0) in the cache of
LRFWF are available and that the entry containing item 1
is unavailable. Thus, LRFWF will have & misses, until all
available entries are made unavailable. Then all entries are
marked available. Finally, at each miss, algorithm LRFWF
draws one random sample from the set of available entries,
in a process of sampling without replacement. The process
terminates when item 1 is found. The expected number of
samples drawn is (m + 1)/2, and the maximum number
of samples drawn is m. Consequently, LRFWF incurs an
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average of (m + 1)/2 misses and a maximum of m extra
misses.

Consider now an infinite sequence of references of the
form (1, 2, -+, m)*", (2, +++, m + 1)*", repeated
indefinitely. The adversary has one miss on each segment.
LRFWF evicts item 1 from the cache when satisfying
the sequence of references (2, *+ -, m + 1)2”‘. Thus, a
miss occurs on item 1 during the sequence of references
(1,2, +-+,m)*", and item 1 is in the cache and marked
unavailable at the end of the sequence. Similarly, item
m + 1 is in the cache and marked unavailable when the
sequence (2, - -+, m + 1)*" ends. It follows that the
expected number of misses of LRFWF on each segment
is at least (m + 1)/2. O

Appendix C: Harmonic algorithm for two
servers

In this appendix, we give the details of the proof of
Theorem 5.11.

Let us denote the points of the metric space occupied by
the Harmonic algorithm’s servers by s, and s,, and the
points occupied by the two servers of the adaptive on-line
adversary by a, and a,. The following observations
facilitate the proof:

e The adversary can defer moving a server to a new point
until the adversary is about to place a request on that
point.

¢ After Harmonic services a request, there is at least one
point occupied by both a server of Harmonic and a
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server of the adversary. Without loss of generality, we
assume that this point is currently occupied by a, and s,.

Let d(a;, s;) be the distance between adversary server
a; and Harmonic server s,, where i and j assume the
values 1 or 2. The potential function we use in the
analysis is

M 1M2
M + M,
where M, = d(a,, s,) + d(a,, 5,) and
M, =d(a,,s,) + d(a,, s) are the costs of the
two perfect matchings between Harmonic’s servers

and those of the adversary. We show that on each request
the expectation of

(Harmonic’s cost) — 6 - (adversary’s cost) + 4 - A®  (Cl1)

is less than or equal to zero.

Before each request, the adversary first moves either a,
or a, a distance D to a new position (if it moves neither
server, the following analysis holds with D set to zero).
We consider two cases, depending on whether a, or a, is
moved by the adversary. We now analyze what happens
during the next request. The following fact is useful:

For positive reals x, y, z,

xy  x(y+2)
< —.
x+y x+y+z

()

Case 1: The adversary moves a, to point p and places

the next request on p. This case is illustrated in Figure 1. 705
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a, s, g s,

a5, & 5

The adversary pays a cost D on this move. With
probability e/(D + e), the Harmonic algorithm uses server
s, to service this request (paying a cost D in the process),
and with probability D/(D + e), it uses s, (paying a cost e
in the process). The expected cost incurred by Harmonic
is thus 2De/(D + e). At the end of the previous
request, M, = c and M, = g + b, so that ® is
c(g + b)/(c + g + b). If Harmonic were to use s, to
serve the request, ® would become (e + f)c/(e + f + ¢).

If it were to use s,, the new value of @ would be
(D + £)b/(D + f + b). Thus, the expectation of AP is

D D+fw e (e +f) c(g +b)
Dte Dif+b Dte e+ftc c+gtb

(©3)

Using the triangle inequality in the denominators of the
three terms of (C3) (respectively using f < ¢ + e,
f=b+D,andg <= D + e) together with (C2)
results in

bD + ce - gc

E[AP]s —Mm8M .
[ac] b+c+D+e
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Case 2 in proof of Theorem 5.11, before and after the adversary’s move.

Finally, using the triangle inequality e < g + D verifies
that (C1) holds.
Case 2: The adversary moves a, to point p and places
the next request on p. This case is illustrated in Figure 2.
This time the expected cost incurred by Harmonic is
hif(h + ). Once again, we can verify (Cl), using the triangle
inequality together with (C2). This completes the proof. O
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