
M emery versus by 

randomization 
in on-line 
algorithms 

On-line  algorithms  service  sequences  of 
requests,  one  at  a  time,  without  knowing  future 
requests.  We  compare  their  performance  with 
the  performance of algorithms  that  generate 
the sequences  and  service  them  as  well.  In 
many  settings,  on-line  algorithms  perform 
almost  as  well  as  optimal  off-line  algorithms, 
by  using  statistics  about  previous  requests 
in the sequences.  Since  remembering  such 
information  may  be  expensive,  we  consider  the 
use of randomization to eliminate  memory.  In 
the  process, we devise  and  study  performance 
measures  for  randomized  on-line  algorithms. 
We  develop  and  analyze  memoryless 
randomized  on-line  algorithms  for  the 
cacheing  problem  and  its  generalizations. 

Those  who do not remember the past are condemned to 
relive it . . . 

Santayana 

. . . unless they act randomly. 

1. Introduction 
An algorithm is said to be on-line if it decides how to 
satisfy each request of a sequence of requests on the basis 
of knowledge of the past requests in the sequence but  with 
no knowledge of future requests. On-lineproblems, i.e., 
those using on-line algorithms for their solution, arise 
frequently in operations research and computer science 

[l-31. On-line algorithms have been analyzed with 
probabilistic models for the distribution of requests. More 
recently, competitive analysis has been used to dispense 
with such probabilistic assumptions [3]. In it, one 
compares, for each sequence of requests, the performance 
of the on-line  algorithm to the performance of an  optima1 
off-line  algorithm (one with  full  knowledge of future 
requests) on that same sequence. Bounds derived in this 
manner hold for any probability distribution on the inputs 
(and even hold when past requests do not predict future 
requests in any way). Sleator and Tarjan [3] apply this 
approach to the analysis of the move-to-front (MTF) 
heuristic for maintaining a linear search list  and to the 
analysis of the least-recently-used (LRU) policy for cache 
management.  Karlin et al. [4] adopt this approach to the 
analysis of snoopy cacheing protocols. 

on-line algorithms that perform well in the competitive 
sense, several authors have suggested extending these 
special cases (MTF for lists and LRU for paging) to obtain 
general frameworks for the study of on-line  algorithms. 
Manasse et al. [SI introduced the k-serverproblem, and 
Borodin et al. [6] introduced the more general metrical 
task systems. An intriguing conjecture of Manasse et al. [SI 
has recently generated much work on particular cases of 
the server problem [7-91. 

Competitive analysis ignores the computational 
resources of the on-line  algorithm. Indeed, the lower 
bounds that are typically proved for the performance of 
on-line algorithms hold for algorithms that are limited only 

To gain some insight into general principles for designing 
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by their lack of knowledge of the future-in fact, the 
bounds even apply to algorithms that consume arbitrary 
amounts of time or space to service each request. 

From a practical standpoint, an important requirement 
of an on-line algorithm  is that it maintain very little state 
information (memory) from the past and that its response 
to each request be easy to compute. For example, the 
LRU cacheing algorithm,  defined  below,  must  maintain 
the order of the last access to each page  in memory. 
Such state memory is expensive and slow to update in 
hardware, as pointed out by So and Rechtschaffen [lo]. 
For LRUpaging, one would have to maintain the order of 
the last access to each main-memory frame (since main 
memory is fully associative), which  is not feasible. 
Previous theoretical studies have not touched on the issue 
of the memory resources required by an on-line cacheing 
algorithm. Randomization is an alternative to using  large 
state memory. We refer here to algorithms that make 
probabilistic choices during execution, and we study their 
performance under worst-case inputs. 

In competitive analysis, a deterministic on-line cacheing 
algorithm  is analyzed by comparing its performance with 
the performance of an  off-line  algorithm  on a “worst-case” 
sequence of requests that can be assumed to be generated 
by an adversary. While there is such a single, natural 
definition of performance for deterministic on-line 
algorithms, a number of natural definitions arise for the 
performance of randomized  on-line cacheing algorithms, 
depending on the power the adversary is assumed to have. 
These are examined in Section 2. We explore the relations 
between the various definitions, expanding on results first 
derived by Ben-David et al. [ll]. (These definitions  and 
results are easily extended to the more general server 
problem or to metrical task systems; these general 
problems are defined  below.) Some of our results are 
derived with the use of theorems on infinite games and 
are presented in Appendix A. 

In Section 3, we analyze a very simple randomized 
cacheing algorithm,  namely random replacement, and show 
that by one measure, it is as good as LRU. This algorithm, 
using no information from the past, is memoryless; it uses 
up to log m random bits, where m is the cache size, on 
each request. We show that there is a direct trade-off 
between the number of memory bits and the number of 
random bits used by optimal on-line cache-replacement 
algorithms, and that no memoryless algorithm performs 
better than random replacement. 

In Section 4, we extend the random replacement 
algorithm to give a solution to the weighted-cache 
problem, a problem of practical interest, for which 
no provably good  algorithm was known before. A 
deterministic on-line algorithm has subsequently been 
found by Chrobak et al. [8] for one case of this problem. 684 
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On-line  algorithms typically use memory to maintain 
statistics on past events. This is replaced in randomized, 
memoryless algorithms by probabilistic processes whose 
probability distributions implicitly  reflect these statistics. 
In Section 5, we present two instances of this technique: 
Deterministic graph-traversal algorithms are replaced by 
probabilistic, memoryless random walks, and counters are 
replaced by “probabilistic counters.” This approach is 
used to derive simple memoryless algorithms  for two types 
of on-line problems. We derive a simple  algorithm,  which 
is memoryless and randomized, for the k-server problem 
in a metric space with n points. We  give a bound on the 
performance of this algorithm for the cases k = 2 and 
k = n - 1 and present a tantalizing conjecture that, if 
true, would  yield a bound on our algorithm’s performance 
for arbitrary k. We also derive memoryless algorithms 
for metncal task systems. 

2. Cacheing  algorithms 

Definitions 
We study cacheing algorithms by using a simple two-level 
store, consisting of a main memory  and a cache, as the 
model.  Our  model  is essentially that of Sleator and Tarjan, 
with added provisions for studying randomized algorithms 
and the amount of state information required by on-line 
algorithms. The main memory consists of a (potentially 
infinite)  number of locations, each of which always 
contains one copy of a distinct item. The cache consists of 
m locations, each capable of storing one such item. The 
cacheing algorithm is given a sequence v l ,  v 2 ,  * , un of 
references to items. The cache is  initially “empty,” i.e., 
containing none of the items. A hit is said to occur on the 
ith reference if vi is one of the items in the cache after 
reference i - 1; otherwise, a miss is said to occur. 
When a miss occurs on the reference to v l ,  the cacheing 
algorithm selects a cache location, specified by an integer 
in [I, - , m ] .  The item at that location is evicted, and 
item vi is loaded in its place. The algorithm  is on-line if the 
selection of an  item for eviction at step i depends only on 
v l ,  , v i ;  otherwise it  is  of-line. 

Let X denote the space of  all the items that can be 
requested in a reference. The set of items residing in the 
cache is thus a point in X “ .  (Assume that the “null item” 
is in X, to allow for empty cache locations.) We  now 
define a cache-management algorithm that consists of an 
automaton with a finite set S of states. The response of 
this automaton to a reference is  specified by a function F 
that depends on the current state of the automaton, the m 
items in the cache, and the item  newly requested from X, 
it specifies, in general, a new state for the automaton, 
together with the new set of items in the cache: 

F : S x X ” x X + S x X ” .  (1) 
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We impose the following condition on F: The  set of items 
in the  cache  after  the  request  is  serviced  must include the 
item just referenced: 

where s, S I  E S ;  xj, y j ,  y E X for j = 1, * , m .  
The definition above  permits  very general  cacheing 

algorithms. For example,  it  allows for  more  than  one item 
to  be  evicted  on a miss, or  for  the  cache  contents  to  be 
changed on a hit. However,  we  may  assume without loss 
of generality that { y l ,  , y , }  C {xl, * , xm,  y } ;  that 
is, no load occurs  on a hit, and a unique  load (of the 
missing  item) occurs on a miss. The  reason  we  may 
assume this is as follows [4]. For  any algorithm that  does 
not  satisfy  this rule, we  can  derive a new algorithm that 
satisfies  this  rule and  that  makes a number of misses on 
any  sequence which is no larger than  the  number of misses 
of the original algorithm. As a result, only  one  copy of any 
item ever  resides in the  cache. 

Since  the  cost of evictinglmissing  is the  same  for all 
items, we  may  assume  that F does  not  depend on the 
identities of the items; that is, for  any  permutation cr on X ,  

m, XI’ * 9 x,, Y )  = F[s, 4x1), * * ,  dx,), 4 Y ) l .  

Given the  above restrictions, we  may  represent on-line 
cacheing algorithms in the following form. The algorithm is 
defined by the functions Hit and Miss: 

H i t : [ l ; * . , m ]  X S-zS,  (2) 

Miss:S -+ [l; * * ,  m] X S. (3) 

If a hit occurs  at location j (i.e., y = xj) when  the 
automaton is in state s, the  state is updated  to Hit(j, s). 
If a miss  occurs in state s, the item  at locationj is evicted 
(and the missing item is loaded  instead); also, the  state is 
updated  to s‘, where Miss(s) = ( j ,  s’). (Note  thatj  and s’ 
are  independent of y because  the  items  are  assumed  to  be 
indistinguishable.) We adopt a natural  measure of the  state 
information  maintained by  the algorithm: its memory, 
defined to  be log, ISI. An algorithm whose  memory is 0 
is called memoryless. 

form given by ( 1 )  to  the  special formulation given by (2) 
and (3) does  not affect performance (i.e., the  number of 
misses); however, it  may affect the  size of the  state 
memory (this was pointed out  to us by  Marek Chrobak). 
Since  the  latter form  is closer  to  the  way  cacheing 
algorithms are  actually implemented  (decisions do  not 
depend on the  actual  addresses in the  sequence of 
requests),  we  use it for  the  analysis of cacheing. 

In a randomized  algorithm, the  state  transitions  may 
be probabilistic. Thus, Hit(j, s) may  be a probability 
distribution on S, and Miss(s) a probability  distribution on 

The restriction of cacheing  algorithms from  the general 

[l, * * , m J X S. We can  also  describe  such a randomized 
cacheing  algorithm by  means of two functions: 

H i t : [ l ; . - , m ]  X S X R + S  (4) 

and 

Miss:S X R - z S  X [ l ; * - , r n ] ,  (5) 

where R is a probability space.  At  each  step i ,  the 
algorithm makes a random  choice of a point o, E Q, and 
the  corresponding  deterministic transition is executed. All 
choices  are independent. We  measure  the randomness of 
the algorithm by  the entropy of the probability space a. 
If R is discrete  and o, occurs  with  probabilitypi,  the 
randomness  equals 

t= l  

For a cacheing algorithmtl,  we denote by Ci(u,, * * , un) 
the number of misses on the  sequence of accesses 
u l ,  * , v n  when algorithm A is  used on a cache of size 
m. If the algorithm is randomized,  this number  is a random 
variable. 

Example algorithms 

LRU (least recent& used) Whenever a miss  occurs,  the 
least recently  referenced item  in the  cache is evicted. The 
state  encodes  the  order of the  most  recent  reference  to  the 
items in the  cache, and is updated  appropriately  at  each 
reference. The algorithm is deterministic and uses (SI = m! 
states [thus, @(m log m )  memory]’  for a cache with m 
locations. 

Random Whenever a miss occurs, a cache location 
is chosen  at  random  and  the item in it is  evicted. The 
algorithm is memoryless but uses log rn bits of randomness 
per miss. 

FIFO Cfirst-in, first-out) Whenever a miss  occurs,  the 
item that  has  been in the  cache for the longest  period  is 
evicted. The  scheme  can  be implemented  using a mod m 
counter  to point to the item to  be evicted at  the next miss; 
the  counter is incremented following the eviction. This is a 
deterministic  algorithm that  uses m states, i.e., log m bits 
of memory. 

FWF push when full 141) Initially, all cache locations 
are marked as “available.” Whenever a miss occurs,  an 
arbitrary available  item  is  evicted, and  the newly  loaded 
item is marked  as “unavailable”; if there  are  no available 
entries, all entries  are marked  available  before the eviction 

1 Henceforth, “logx” is used to denote logz x .  



occurs. Note that FIFO is a particular case of FWF, in 
which one always evicts the first available entry. The 
FWF algorithm uses m bits of memory and has no 
randomization. 

RFWF (random push when f i l l  1121) This is  like FWF, 
with the following two modifications: First, a random 
available item  is selected for eviction, and second, an  item 
is marked unavailable whenever it is accessed on a hit. 
The algorithm uses m memory bits and has up to log m 
random bits of randomness per miss. 

Peflonnance measures 
We compare the performance of an on-line cacheing 
algorithm with the performance of a cache managed by an 
adversary that also generates the sequence of references. 
Following [3], we find  it instructive to compare an on-line 
algorithm  having a cache containing M locations with  an 
adversary having a cache containing m locations, m 5 M .  
The measure of performance we use is known as 
competitiveness. 

according to the assumptions made about the information 
available to the adversary when it generates the sequence 
of references and when it manages its cache. An oblivious 
adversary fixes the entire sequence of references 

Several definitions of competitiveness are possible, 

vl, v 2 ,  - * in advance; an adaptive adversary sees the 
state of the on-line algorithm after i references, and 
chooses vi+l accordingly. An oblivious adversary 
corresponds to the situation in which the sequence of 
references cannot be affected by the decisions made by 
the on-line cache-management algorithm. An adaptive 
adversary corresponds to the situation in  which such an 
effect  is possible, e.g.,  in a reactive, real-time system, in 
which the cache behavior may  affect the computation 
performed. Another example stems from operating 
systems, in which page tables and associated information 
are some of the items being referenced. 

An on-line adversary manages its own cache on line; if a 
miss occurs in the adversary cache at  step i ,  the choice of 
an  item  for eviction depends only on the first i references. 
An of-line adversary has no such restriction on its cache- 
management  algorithm. We can assume that an  off-line 
adversary always uses an optimal cacheing algorithm. One 
such algorithm, known as Min, whenever a miss occurs, 
evicts the item  in the cache whose next reference is 
furthest into the future. The Min algorithm produces the 
smallest number of misses on every sequence of references 
[13]. An off-line adversary provides a suitable yardstick 
when a specific,  finite computation task is to be performed 
and it is feasible to program the cache for that specific 
task. In general, an on-line adversary provides a more 
suitable yardstick for a system that handles a potentially 
infinite sequence of references. We thus have four types of 686 
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adversaries: oblivious on-line, oblivious  off-line, adaptive 
on-line, and adaptive off-line. There is no difference, 
however, between oblivious on-line and off-line 
adversaries: Whatever cacheing algorithm is used by the 
adversary can be executed equally well by an on-line 
adversary as by an  off-line adversary. Thus, in reality, 
we have three distinct types of adversaries, listed here 
in order of increasing power:’ 

Oblivious (0) The adversary generates a fixed sequence 
of references v l ,  v 2 ,  - ; for the first n references, it 
incurs a cost equal to  the smallest possible number of 
misses on such a sequence of references (for a cache of 
size m )  . 

reference vi and updates its cache in response to vi as a 
function of the responses of the on-line  algorithm to the 
first i - 1 requests. 

reference vi as a function of the responses of the on-line 
algorithm to the first i - 1 requests. For the first n 
references, it incurs a cost equal to  the smallest possible 
number of misses on such a sequence of references (for 
a cache of size m ) .  

Adaptive, on-line (an) The adversary generates 

Adaptive, off-line (af )  The adversary generates 

A cacheing algorithm A is said to be c-competitive against 
an adversary B if there exists a constant C such that 

lim  sup[CG(v,, - e ,  v,,) - c - Cz(v,, - - - , v,)] < m, a s .  (6) 
n-m 

(as.  = almost surely-i.e., with probability one), where 
vl, v 2 ,  - is the sequence of references generated by the 
adversary, Ci(vl ,  - * , v, )  is the number of misses 
incurred by A for this sequence (on a cache of size M ) ,  
and C:(v,, * , v,)  is the number of misses incurred by 
the adversary €or this sequence (on a cache of size m).  
Specifically,  we have the following  definition. 

Definition 1 
A cacheing  algorithm A is said to be c (M,  m)-competitive 
against an adversaly B if 

lim  sup[CG(v,, - - * , v,) - c(M,  m) * Cf(v,, * , v,)] < 03, a s .  
n-rn 

(7) 
This  definition  allows  us to compare the on-line and off- 

line  algorithms in a general setting in which the on-line 
algorithm potentially has a larger cache than the off-line 
algorithm.  Similarly, we say that an  algorithm A is 
c(M,  m)-competitive against adaptive on-line (or adaptive 
off-line, or oblivious) adversaries if it is c(M,   m)-  

2 A preliminaty version of this paper, appearing in the Proceedings oflcALP 89 

reported there are either ambiguous or incorrect as stated. 
[14], distinguishes only two situations. As a consequence, several of the theorems 
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competitive against any adversary of the corresponding 
type. 

competitiveness coefficient of algorithm A ,  to be the 
least upper bound on c(M,  m) such that A is c(M,  m)- 
competitive against adaptive off-line adversaries. The 
adaptive on-line competitiveness coefficient, %t(M,  m), 
and the oblivious competitiveness coefficient, %,"(M, m), 
are similarly  defined. We have 

%t(M,  m) s %fn(M, m) I %3M, m). 

We show later that each of these inequalities can be strict. 

CF(ul ,  * * - , u n )  denote the optimal cost of servicing 
( v l ,  * , un) .  When  algorithm A is deterministic, the 
adversary can predict its moves, and there is  no difference 
between oblivious and adaptive adversaries. Thus, for 
deterministic algorithms, all three definitions of 
competitiveness coalesce and are equivalent to the 
following  definition: If algorithm A is deterministic, 
it is c(M, m)-competitive if and only if 

lim sup[Ci(v,, - e ,  v,) - c(M, m) - Cr(v, ,  * * - , v,)] < m 

We define %:(M, m), the adaptive off-line 

Given  a sequence of requests vl, * - , v n ,  let 

n-m 

(8) 

for any sequence v l ,  v 2 ,  * - of references. We denote by 
%,"(M, m) the least upper bound on c(M,  m) such that a 
deterministic algorithm A is c(M, m)-competitive. 

cacheing for adaptive off-line adversaries, to be the least 
upper bound on c(M, m) such that there is a cacheing 
algorithm A that is c(M, m)-competitive against adaptive 
off-line adversaries. Thus, 

We  define  (eaf(" m), the competitiveness coefficient of 

%JM, m) = inf%:(M,  m), 

where the infimum  is taken over all on-line cacheing 
algorithms. The competitiveness coefficient of cacheing 
for adaptive on-line adversaries, (ean(M7 m), the 
competitiveness coefficient of cacheing for oblivious 
adversaries, T0(M, m), and the competitiveness 
coefficient of cacheing for deterministic algorithms, 
%d(M, m), are similarly  defined.  A cacheing algorithm 
A is optimal against  adaptive off-line adversaries if 
%:(M, m) = (eaf(M7 m). A  similar  definition  is  used 
for adaptive on-line and oblivious adversaries, and for 
deterministic algorithms. 

We have 

m) 5 %anCM, m) 5 m) 5 'de,cM9 m). 

The following two theorems give more information on the 
relationships among these coefficients. 

Theorem 2.1 
Let A be a randomized cacheing algorithm that is 
c(M, m)-competitive against  adaptive off-line adversaries. 
Then there is a deterministic algorithm A that is c(M,  m)- 
competitive. 

The theorem is proved in Appendix A. The  proof uses a 
formulation of the cacheing problem as an  infinite  game, 
and standard results on  infinite  games. The theorem was 
first proved by Ben-David et al. [ll] using the alternative 
definition of competitiveness presented in the section of 
Appendix A on alternative definitions  (Definition 3), which 
permits a  simpler  proof. 

The theorem implies that randomization does not yield 
more competitive algorithms against adaptive off-line 
adversaries. The proof is not constructive. Moreover, the 
resulting deterministic algorithm uses an  infinite control 
(has an infinite  number of states), even if the original 
randomized strategy has a  finite control. Thus, 
randomization may  still result in  more practical algorithms. 
This last result does not extend to oblivious or adaptive 
on-line adversaries. 

The following theorem is a generalization of one due to 
Ben-David et al. [ll] and, in fact, uses the more stringent 
definition of competitiveness given in Appendix A 
(Definition 3). 

Theorem 2.2 
Let A be a cacheing algorithm with %:(M, n )  = a, and 
let Q be a cacheing algorithm with (e,"@, m) = b, where 
m s n I M.  Then %:(M, m) s ab. 

Proof Let D be an adaptive off-line adversary, with  a 
cache of size m.  Let D' be the adaptive on-line adversary 
defined as follows: D' generates references as D does; D' 
manages its own cache on-line,  using  algorithm Q .  Thus, 
the cache management of adversary D' at step i depends 
on the sequence of references up to step i but does not 
depend on the previous actions of A .  Let a be the 
sequence of random choices of algorithm A ,  and let p be 
the sequence of random choices of algorithm Q .  These two 
random sequences are independent. We denote by Pr ,p  the 
joint distribution induced  by these sequences and denote 
the marginal distributions by Pre and Pro. Since A is 
a-competitive against adaptive on-line adversaries, 
we have 

Pre,o{lim s u p [ ~ a v , ,  * - , vk) - a * C" ( v l , .  - * , vk)l < m} = 1. 

Since Q is b-competitive against oblivious adversaries, 
we have 

Pro{lim sup[Cf(vl, - , uk) - b - CF(vl ,  * ,  v,)] < m} = 1, 

for any fixed sequence of references u l ,  v 2 ,  * . Thus, 

D' 

k-m 

k-m 

687 

IBM J. RES. DEVELOP. VOL. 38 NO. 6 NOVEMBER 1994 P. RAGHAVAN AND M. SNIR 



Prp{Iim sup[~?'(v,, - , vk)  
k-m 

- b CT(v,, - * ,  v,)] < mIa}  = 1, 

and 

Pr,,p(lim sup[~;(v,, * a ,  vk) 
k-m 

- b * C?(v,, * a ,  v,)] < m} = 1. 

It follows that 

Pra,p{lim sup[c"Q,(v,, * , vk)  
k-m 

- ab * C?(vl, a ,  v,)] < m} = 1. 0 

Theorems 2.1 and 2.2 imply the following: 

m) 5 %,,(M, m)  5 '&,,Of, m) = %de,CM, m) 

I %,,(m, m )  %,&K m).  

Fiat  et al. [12] have  shown  that  the  RFWF algorithm 
has  an oblivious competitiveness coefficient of 2Hm 
when m = M .  ( H ,  is the  mth  harmonic  number: 
H, 1 + 1/1 + 1/2 + * + l/m; In m I H, I In rn t 1.) 
They  also  showed  that  no  cacheing algorithm has an 
oblivious competitiveness coefficient smaller than H,.  
More recently,  McGeoch and  Sleator [15] have  shown  that 

have  shown  that  the  LRU algorithm  is M / ( M  - m + 1)- 
competitive  and  that  no  deterministic algorithm has a 
lower  competitiveness coefficient. Manasse  et al. [5] have 
extended  the lower-bound proof to  the  more general server 
problems  considered in Section 5. Their argument actually 
holds  for randomized algorithms and  adaptive on-line 
adversaries  (see  Theorem 5.6). We  thus  have 

%JM, rn) = %JM, m) = %&M, m)  = M/(M - m + 1) 

and 

%@, m )  = H, . 

m) = H,. On  the  other hand, Sleator  and  Tarjan [3] 

The  value of %o(M, m ) ,  for m f M ,  is  not known. 
Also, for any randomized cacheing algorithm A ,  we  have 

and 

We  show in Theorems 3.2,  3.3, and 3.4 that  both 
inequalities can  be tight for particular  algorithms. 

The following lemma proves  to  be of use in our  analyses 
of randomized cacheing algorithms in subsequent  sections. 

Lemma 2.3 
Let X,, X z ,  be a sequence of random variables such 
that E[X,] I p < 0, a.s., and 

E[XIX,;.-,Y-,] I p < 0, a.s. i > 1 

var(X.) I y < m, Vi, 

where var(Y) denotes the variance of random variable Y. 
Then 

m 

2 X = -00, a.s. 
i=l 

Proof We  have 

var(4)  
< m. 

i=l 

This implies that 

" 
+ 2 (X  - E [qlx,, a ,  q - ~ )  = 0, a.s. 

i = 2  I 
(see [16],  32.1.E). Thus, 

1 "  

lim sup 2 X p,  a.s. 
n+m n i=l 

This implies that 

m 

2 X, = -m, a.s. 
,=1 

0 

3. Performance of the  Random  algorithm 
In  this  section,  we  study  the  competitiveness of the 
Random  algorithm  for  cacheing,  against each of the 
adversaries  we  have defined. 

It is known [3, 41 that  the  LRU,  FIFO,  and  FWF 
algorithms are M / ( M  - rn + 1)-competitive,  and  that  no 
deterministic  algorithm has a lower competitiveness 
coefficient. M / ( M  - m + 1) is also  the  best 
competitiveness coefficient for  randomized algorithms 
against adaptive on-line adversaries;  this follows from  the 
lower bound of Theorem 5.6, for the  more general server 
problem, to  be defined in Section 5. RFWF  has  the  same 
performance  as  FWF against adaptive on-line or off-line 
adversaries.  The  RFWF algorithm has a competitiveness 
coefficient %t(m,  rn) = 2Hm against  oblivious adversaries, 
and no  algorithm has a competitiveness coefficient that is 
smaller than H ,  [12, 151. Thus,  RFWF is optimal  against 
any  type of adversary. 

algorithm,  which  is  memoryless. We  show  that Random 
We  now  analyze  the  performance of the simple Random 



has a competitiveness coefficient of M/(M - rn + 1) and, 
consequently, optimal performance against adaptive on-line 
adversaries. Random is not optimal, however, against 
oblivious adversaries or  against adaptive off-line 
adversaries: We show that Random has a competitiveness 
coefficient M/(M - rn + 1) against  oblivious adversaries, 
whereas the RFWF algorithm achieves O(log r n )  when 
rn = M .  We also show that Random has a competitiveness 
coefficient that is greater than or equal to rn In rn against 

FIFO, and FWF achieve rn in this case. 
1 adaptive off-line adversaries when rn = M ,  while LRU, 

Theorem 3.1 
Random is c(M,  rn)-competitive against adaptive On-line 
adversaries, where c(M,  r n )  5 M/(M - rn + 1). 

Proof We use a potential function to analyze the 
performance of Random amortized over a long sequence 
of references. This  is seen to correspond to a random 
walk  with negative drift on a line.  (Random  is a “lazy 
algorithm,” which does not change state on hits. Thus, 
by Lemma A.l (see Appendix A), we can restrict our 
attention to “cruel” adversaries, which cause Random to 
miss at each reference.) Let mi be the random choice of 
item to evict made by Random  at step i ,  should a miss 
occur. Let SR be the set of items that Random has in the 
cache (of size M )  after the ith reference; let S,E be the set 
of items kept in the cache (of size r n )  by the adversary B 
after the ith reference. Let tR be an indicator variable that 
is 1 if Random  misses at reference i and 0 otherwise; let t: 
be similarly  defined  for the adversary. Let 

1 

ai = IS: n , 
1 and  let A@t = Qi - @g-l.  For any c > M/(M - rn + l), 

consider the sequence of random variables 

X .  t: - c e t :  - c * A@, . 
Then 

n 

CX 
i=l  

= c;(vl, * * , v,) - c c:(u,, * * , v,) - c + c . 

1 
But Q0 5 rn and @” 5 rn. Thus, Random  is c-competitive 
if lim x8 < m, a.s. We complete the proof by 
showing that this is  indeed so. We consider two mutually 
exclusive cases at step i :  

A i :  ut 4 v i  E SIT1 (Random  misses  and adversary 
B hits). 
Then t,” = 1 and t,” = 0. With probability @i-l/M, 
Random evicts an  item  in S,Tl n SIBl, resulting in 
Aai = 1. Thus, 

l A 3 :  vi 4 SIRl, vi $! Slt1 (both Random  and adversary 
B miss). 
Here tR = t: = 1. With probability - l)/M, 
Random evicts one of the @i-l - 1 items in SL1 n 
that is not evicted by the adversary, in which case 
AQi = 1; otherwise, Ami = 0. It is easy to verify that 

It follows that 

EIXIXl, - e ,  X-J.5 1 - c(M - rn + 1)/M. 

It is also easy to verify that 

so that the variance of the random variable Xi is 
uniformly bounded. 

Let j? = min[-c, 1 - c(M - rn + l ) / M .  By our 
choice of c ,  we have j? < 0. The sequence of random 
variables X,, X , ,  - fulfills the conditions of Lemma 2.3, 
so 

m 

X = -m, a.s. 
i=l  

The proof  of the previous theorem also implies that 

0 

for any adaptive on-line adversary B and any 
c > M / ( M  - rn + 1). Thus, Random also satisfies 
the criteria for competitiveness of Definition 3 of Appendix 
A, with competitiveness coefficient M / ( M  - rn + 1). 

A crucial observation here is that the kind of one-step 
martingale analysis used in the above proof does not apply 
to adaptive off-line adversaries (this was brought to our 
attention by Anna Karlin). Here, the quantity Xi at the ith 
reference ut depends on the adversary’s response to v i ,  
which  is a function of future references (and thus the 
algorithm’s future random choices). Thus, the behavior of 
X, is not determined by alone. Indeed, the following 
theorem, proved by A. Karlin, shows that a statement 
such as that of Theorem 3.1 does not  hold for adaptive 
off-line adversaries. 689 
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Theorem 3.2 
The competitiveness coeficient of  Random against 
adaptive  off-line  adversaries for M = m  is 
c(m,  m) L m In m. 

Proof Consider a sequence of references generated from 
a set of m + 1 distinct items a,,, * , am; repeatedly, a 
reference is generated to the unique item not in the cache 
(as would be done by a cruel adversary). Divide the 
sequence of references into segments S,, S,, - * according 
to this rule: Si is the shortest sequence of references 
following Si-1 in which each of the items a,, * , am 
occurs  at least once. Let bi be the last item referenced in 
segment Si. Then bi is referenced exactly once in segment 
Si. An off-line cacheing algorithm  (using  a cache of size m )  
can satisfy the sequence of references with exactly one 
miss in each segment:  When the reference to bi-l occurs 
at the end of Si-l, the algorithm evicts bi and loads b i - l .  
Thus, when segment Si starts, the cache contains all items 
referenced in this segment, with the exception of the last 
reference to bi .  The Random  algorithm,  on the other hand, 
has one miss at each step. Let L be the expected length of 
a segment Si. Then L is the expected number of steps 
before Random evicts each of the m + 1 items at least 
once. This can be formulated as a  slight variation of the 
coupon  collector problem: There are m + 1 coupons to 
collect, and at each step one is equally likely to collect one 
of the m coupons that were not collected at the previous 
step. The expected waiting  time  until  all coupons have 
been collected is mHm + 1 [16]. 0 

Lemma 3.3 
Let W be  the  waiting  time for success in a sequence  of 
Bernoulli  trials,  with probability of success p ,  and  let W, 
be  the  truncated  variable  defined by 

W i f W s k ,  

K =  [k i f W > k ,  

where k is an integer and W a positive real  number.  Then 

1 

P 
E[%] = - [l - (1 - p ) & ]  . 

Proof We have 

E[W,] = E[W] - E[W - klW > k] Pr[W > k] 

= E[W] (1 - Pr[W > k]) 

1 

P 
= - [ I -  (1 - PIk] . 0 

Theorem 3.4 
The  oblivious competitiveness coefficient of Random is 
M/(M - m + 1). 

Proof Consider the following sequence of references that 
suffice to prove the lower bound: 

ala2, - e ,  a,(b,a,, - , am)2(b2a2, - * ,  am)3, * * ,  

(bja2, * * , am)’, * * , 

where the ai and the bj are all distinct items. Here, ( s ) ~  
denotes k repetitions of the pattern s. The adversary 
(with  a cache of size m) misses once on each segment 
(bia,, - * , am),. At the beginning of any such segment, 
the cache (of size MI maintained by Random contains at 
most m - 1 of the items appearing in that segment. Let us 
define  a near  miss to be a  miss that occurs when Random 
has exactly m - 1 of these items in its cache. Random 
succeeds on a near miss if it does not evict any of these 
m - 1 items.  Random has at least one miss on each 
repetition of the pattern bja,, - * * , am, until it 
succeeds on a near miss. The probability of a 
success on a near miss is (M - m + 1)” Hence, by 
Lemma 3.3, the expected number of near misses is at 
least [M/(M - m + 1)]{1 - [(m - l ) / w k } .  The claim 
follows. 0 

Theorem 3.4 can be strengthened to hold even if there 
are only M + 1 distinct items. Also, no memoryless 
algorithm achieves a better oblivious (or adaptive on-line) 
competitiveness coefficient. Intuition suggests that when 
there is  no  information on which to base the choice of the 
evicted item, random, equiprobable choice of an item to 
evict is at least as good as any other rule. We formally 
prove the claim  below, for the case M = m. We defer 
the proof  of the following theorem to Appendix A. 

Theorem 3.5 
Any memoryless  on-line  cacheing  algorithm  has an 
oblivious  competitiveness  coefficient  that is greater than 
or equal to m when m = M. 

This theorem does not  hold true for algorithms with 
memory: Fiat et al. [12] have shown that RFWF has an 
oblivious competitiveness coefficient of  O(1og m) when 
m = M .  

4. The  weighted  cache problem 
We  now consider a generalization of the problem studied 
in the previous section. As before, we consider a  two-level 
store with  a cache capable of holding m items at a  time. In 
the weighted  cache problem, an  item x has a positive real 
weight w(x ) ,  representing the cost of loading the item 
into the cache. In measuring the competitiveness of an 
algorithm,  we compare the cost it incurs over a sequence 
of references (rather than the number of misses) with the 
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cost incurred by the optimal  off-line  algorithm. We denote 
the cost of an  algorithm A working with a cache containing 
M locations on the reference sequence v , ,  v 2 ,  , vfl by 
Ci(v , ,  v 2 ,  , v f l ) .  The competitiveness coefficients of 
an  algorithm A are defined  accordingly. Thus, the previous 
section dealt with the special unit cost case, in which 

The weighted cache problem has applications to 
w(x)  = 1, vx. 

cacheing fonts in printers. The number of fonts that can be 
cached at a time in the printer is subject to a maximum, 
but fonts requiring larger files take longer to bring into the 
printer's memory. 

There are two noteworthy aspects of the weighted cache 
problem that distinguish  it  from the simple cache problem 
considered in the previous section. First, finding the 
optimal off-line schedule is nontrivial-indeed, the only 
technique we know for this is the general reduction to the 
assignment problem, due to Chrobak et al. [8]. Second, 
there were no simple, good deterministic algorithms for 
this problem before this work. A deterministic algorithm 
for the weighted cache problem that is m-competitive for 
the special case M = m has been obtained by Chrobak 
et al.  [8]. 

We present in this section a simple generalization of 
the Random  algorithm for this problem, which we  call 
the Reciprocal algorithm. It is memoryless and has a 
competitiveness coefficient I M / ( M  - m + 1) against 
adaptive on-line adversaries. The lower bound of Theorem 
5.6 for the server problem (presented in Section 5) implies 
that no algorithm can do better than Reciprocal against 
adaptive on-line adversaries. No deterministic 
M/(M - m + 1)-competitive  algorithm for the case m f M 
is known. Also, no deterministic memoryless algorithm is 
competitive against adaptive on-line adversaries, even if 
the more lenient definition of memory deduced from the 
formulation implicit  in  (1) is used3. 

The behavior of the Reciprocal algorithm depends only 
on the weights of the items in the cache. Let x , ,  * - , xm 
be the items in cache when a miss occurs. The Reciprocal 
algorithm uses the following  simple probabilistic eviction 
rule: Evict xj with probability pi, where 

l/w(x;) 

Theorem 4.1 
The adaptive on-line competitiveness coefficient 
of the Reciprocal algorithm is less than or equal to 
M/(M - m + 1). 

Proof As in the proof of Theorem 3.1, we use a potential 

3 Marek Chrobak (University of California, Riverside),  personal  communication, 
1990. 

1994 

function to create a random walk  with a negative drift on 
the real line. Let SI? be the set of items kept in the cache 
by Reciprocal after the ith reference, and Sf be the set of 
items kept by the adversary. Let 

and AQi 5 Qi - ai-,. Letting tt? denote the cost incurred 
by the Reciprocal algorithm  in servicing the ith reference 
and tB the corresponding cost of the adversary, we define 

H CYM 
M - m + l  

x, = ti - - ta - pAQi, 

where CY > p > 1. We  now proceed along the lines of the 
proof of Theorem 3.1, breaking the analysis into two parts, 
or actions, Y and Z. 

Y: 

Z: 

The adversary evicts an item. We can assume that the 
adversary loads a new  item only immediately before 
a reference to that item. Also, without affecting the 
analysis, we can assume that the adversary incurs the 
cost of the item it evicts rather than for the item  it 
loads; thus, tB = w(xi) if the adversary evicts xi on 
reference i. 
The Reciprocal algorithm evicts an  item  on a miss and 
incurs a cost equal to the weight of the item  it loads. 

We  examine the effect of the two kinds of action on the 
random walk c,!!, Xj. In particular, we examine the effect 
of either action on E[Xi IX,, * - , Xi-,]. 

Y: The adversary evicts x' and loads x .  Then tB = w(x ' ) ,  
and -AQi I w(x')M/(M - tn + 1). (The equality is 
realized whenx' E {SI!, n St?,} andx SI!,). Thus, 
the contribution of the adversary's action to 
EIXiJXl, , Xi-,] is <O. 

Z: The Reciprocal algorithm misses on a reference to item 
X, SO t: = w ( x ) .  Then ISl!, n 5 m - 1, and 
ISi-, H - S,"_l 2 1. Thus, 

EIAQiIZ, w,, * * - , wi-ll 

1 ~ : ~  n $',I m - 1 IS,"_, - $-,I 

YES!!, YES;, 

= w(x) - + 
l/w(y) M - m + 1 M Y )  

> w(x). 

(mi is the random choice made by Reciprocal at  step  i.) 
Thus, the contribution of the Reciprocal algorithm's 
action to E [Xi IX,, * , Xi-,] is also less than zero. 
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Note that /Xi - Xi-,\ is bounded by a constant times the 
largest weight of any of the items. Applying Lemma 2.3 to 
the sequence of random variables Xi, we conclude that 

so that 

< m, a s .  

This yields the result. 0 

so that the theorem also holds if  Definition 3 of Appendix 
A is used. The theorem is valid even if there are infinitely 
many distinct weights; all that is required is that all 
weights be in a bounded range 0 < a < weight < b < 00, 
where a and b are arbitrary constants. 

Coppersmith et al. [17] have derived a general approach 
to the server problem described in Section 5 that yields the 
above algorithm  and analysis as special cases. 

Note that Random  is exactly the Reciprocal algorithm 
restricted to the special case w(x)  = 1, Vx. Thus, by 
Theorem 3.4, the oblivious competitiveness coefficient 
of the Reciprocal algorithm  is greater than or equal to 
MI(M - m + 1). In fact, when M = m ,  this lower bound 
holds true for any set of at least M + 1 distinct items. 

We require the following  lemma  from probability theory. 

We also have, in this theorem, limn+m E[Izfl=, X ; ]  = -m, 

Lemma 4.2 
Let X, ,.X,, - be a sequence of positive random 
variables with uniformly bounded expectations. Let r be 
a stopping time for the sequence. Suppose further that 
E [X,] = Pr[ r = 11 and for i > 1, 

Proof It is  known that r ranges over the natural 
numbers, the events [T = i ]  depend only on X,, * , X;, 
and T is a s .  finite. We have E [X, IX,, - * * , X,-,] = 
Pr[r = i l X l ,  , Xi-,], so that 

Let 

y , =  

" 
1 + EX i f r  e n ,  

,=1 

7 ex otherwise. 
,=1 

Then the Y,, are nonnegative random variables, Yl = 1, 
and 

EIY,IXl, * * * , Xn-J = EIYn-l + X,, - Z17=,1(Xl, * * Xn-ll 

= X-]. 
Here Z,7=nl is an indicator variable that is 1 when T = n, 
and 0 otherwise. Also, 

lim Y, = X ,  a s .  
n-tm i= l  

The  martingale convergence theorem [16] implies that 

n-m 

Theorem 4.3 
Let M = m. The oblivious competitiveness coeficient 
of the Reciprocal algorithm C ( M ,  M )  is greater than or 
equal to M, for any set of M + 1 items (independent of 
the weights). 

0 

Proof Let a,, * - - , aM be any M + 1 items. Let 
w, = w(al). Consider a sequence  that consists of successive 
rounds of references  each of the form a,, * * * , 
assume  that the Reciprocal  algorithm starts with aM in 
the  cache  and a, out of the cache. Let t be the number  of 
misses  on the sequence. Let Z(j) be the index of the jth item 
evicted,  where Z(0) I m. Once am is  evicted,  no  further 
misses occur; therefore, Z(t) = M .  

Without loss of generality, the Reciprocal algorithm 
incurs the costs of the items it evicts. The cost of 
Reciprocal on this sequence is 

f 

C w1(,) * 
,= I  

When the jth eviction occurs, the cache contains all items 
except a,( j - , ) .  Therefore, for j 5 t ,  

if r f Z(j - l), 
Pr[Z(j) = rlZ(j - I)] = c 

otherwise. 
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B 

B 

D 

B 

c 

Accordingly, 

M 

k # l ( j - 1 )  

and 

k # l ( j - 1 )  

Thus, 

E[w[(j)lZ(j - 111 = M * w, * Pr[t = j lz ( j  

It follows, by the previous lemma, that 

wM . 

Consider now a sequence of references consisting 
of rounds i = 0, 1, * . Round i is of the form 
[St mod (,+,)Ini, where So = (a,,  * * , a,,,), and 
S, = (au7 * - , a,-,, a,,,, . - , a,) for 0 < j < M ,  
and S, = (a,,, , Let c < 1 be a positive 
constant. Let A ,  be the event “ai  mod (,+,) is  in the cache 
at the end of the ith round.” Let C,! be the cost of 
Reciprocal for the ith round.  By  taking the sequence 
no, n,, * to grow  sufficiently fast, we can establish that 
almost surelyAi occurs only a bounded number of times, 
and almost surely the cost of Reciprocal at the ith round is 
larger than CMW, mod (M+,), with a bounded number of 
exceptions. Thus, 

[ ’  

” 
lim sup 2 CY - CM 2 w, mod 2 0, a s .  

n- i=O r=O 1 
On the other hand, the cost of the adversary on the ith 
round is wi mod 

5. Random walks and  probabilistic  counters 
In this section, we study the interplay between random 
walks and the competitive analysis of on-line algorithms. 

The idea underlying the randomized algorithms of the 
previous sections is that a deterministic process that 
explicitly remembers statistics from the past can be 
replaced by a probabilistic process whose distribution 
implicitly remembers such statistics. For example, FIFO 
ensures that once an  item is brought into the cache, it  is 
not evicted before m further misses occur. Random does 
the same in a probabilistic sense: An item once brought 
into the cache remains there for a number of misses whose 
expectation is m. The deterministic counter of FIFO is 
replaced by a “probabilistic counter” in Random. We 
provide a second example  below in the setting of on-line 

graph traversal, an abstract problem  defined  in the 
following subsection. This abstraction proves useful when 
we subsequently analyze algorithms for sewer systems 
(an abstraction due to Manasse et al. [5], which includes 
cacheing as a special case), and for the metrical task 
systems of Borodin et al. [6]. 

Traversals and random w a l h  
Consider a complete graph G with n nodes (1, , n} .  
A finite cost or distance d(i, j )  > 0 is associated with 
each edge (i, j ) .  We assume that the distance matrix, D, 
is metrical (i.e.,  is symmetric and satisfies the triangle 
inequality). An instance of the traversalproblem is  defined 
by a specified sequence i,, i,, * , ir of nodes in G. An 
algorithm A starts at some initial node i, and moves  along 
the edges of the graph, not  knowing the identity of the 
next node in the specified sequence, until it eventually 
reaches i,; then it  moves  until it reaches i,, and so on. 
The next  move of the algorithm  may depend on its 
current state and location, but not  on the next node in 
the specified sequence. 

We denote by CA(il, - , i,) the cost of the path 
traversed by algorithm A when visiting nodes i,, * , ir. 
We compare this cost to the length C(i,, * , i,) = 
E:=, d(is_,, is) of the optimal path (i,, i,),  (i,,  iJ, , 
(ir-,,  ir). [Edge (i, j )  is the optimal path between nodes 
i and j because of the triangle inequality.] A deterministic 
algorithm A is c-competitive on  graph G if for any  infinite 
sequence of nodes i,, i,, - , 
lim sup[CA(i,, , - c C(i,, , 111 < m. 

The other definitions of Section 2 are extended in a similar 
manner: An oblivious adversary chooses the sequence 
i,, i,, * . . in advance; an adaptive  on-line adversary chooses 
iktl when on-line algorithmA reaches i,; and an adaptive 
off-line adversary chooses ik+l  only when on-line algorithm 
A reaches ik+,. 

Formally, a traversal algorithm  with a set of states S is a 
function 

F:S X [ l ; . * , n ] + S  X [l;.*,n]. 

As before, we  define  an  algorithm to be  memoryless if 
log IS[ is zero. The next move of a memoryless algorithm 
does  not  depend  on the past in any way-it does not  depend 
on previously visited nodes or on the number of times it 
has previously been at the current node. 

We  now define a deterministic traversal algorithm with 
memory  called the cyclic traversal algorithm. Let io, 
i,, * , i,-, , i, be a cycle in which each node of G occurs 
at least once (the cycle is  not necessarily Hamiltonian). 
A cyclic traversal algorithm visits the nodes of G in the 
order defined by the cycle. The state s of the algorithm 
is  an  index that ranges from 0 to r, where r 2 n .  If the 

r - m  
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algorithm is in state s (and at node is) ,  it next moves to 
state (s + 1 )  mod r (and node i(s+l) mod J. Cyclic traversal 
algorithms are not memoryless, because they remember 
the index s. The following result is proved in [6]. 

Theorem 5.1 
For  any  graph on n nodes  and  any  distance  matrix,  there 
is a deterministic  cyclic  traversal  algorithm  that  is 
4(n - 1)-competitive. 0 

A probabilistic  traversal  algorithm is obtained by 
executing a random  walk on the graph. We associate a 
transition  probability p( i ,  j )  with each edge (i ,  j ) ;  p( i ,  j )  is 
the probability that the algorithm, when at node i ,  moves 
to node j .  Thus, Zi p(i ,  j )  = 1. The algorithm executes a 
random  walk on the graph according to these transition 
probabilities. Notice that a probabilistic traversal algorithm 
is memoryless. Let h(i, j )  be the expected cost, or 
distance, of a random walk that starts at node i and ends 
when node j is first reached. Define the edge  expansion of 
the random walk to be maxi,j [h(i,  j)/d(i, j ) ] .  

Lemma 5.2 follows immediately from the definition of 
competitiveness for a traversal algorithm. 

Lemma 5.2 
A probabilistic  traversal  algorithm  based on a random 
walk  with edge  expansion  c is c-competitive  against 
adaptive  on-line  adversaries. 0 

a particular outgoing  edge  from a node is inversely 
proportional to its cost: 

In the Harmonic  random walk, the probability of using 

k f i  

(We do not  permit transitions from a node to itself.) This 
process has been studied in [18], where the following result 
is proved about a Harmonic walk on any graph (not 
necessarily complete) with E edges. 

Theorem 5.3 
The Harmonic  random  walk  has  an  edge  expansion  that is 
less  than  or  equal to 2E. 0 

The last result is tight;  i.e., equality is achieved for 
certain graphs. 

The Harmonic random  walk does not yield, in general, 
the smallest possible edge expansion. In fact, the following 
weaker expansion condition is sufficient, for our purposes. 
For any pathp = i,, i,, * , i, in the graph, define 

d(p) = d(i,, i,) + d(i,,  i,) + * - + d(i,-l, i,) 

and 

h(p) = h(i,, i,) + h(i2, i,) + - + h(i,-l, i,) . 

We define the cycle  expansion of a random walk to be 
max[h(p)/d(p)],  where the maximum  is taken over all 
simple cycles (closed paths)p = i,, i,, - - , i,, i, in the 
graph. 

Assume a random  walk  with cycle expansion 17 for a 
graph G .  Let dmax be the maximum length of an  edge of G .  
I f p  is a simple path from node i to node j ,  

h(p) 5 h(p)  + h(j,  i) 5 17 [d(p) + d ( j ,  9 1  
5 17 * M P )  + dm,] . 

Ifp is  an arbitrary path, it can be decomposed into the 
union  of disjoint simple cycles and one simple path. Thus, 
for any pathp in the graph (not necessarily simple), 

h(P) 5 17 MP)  + dm,] f 

Consequently, we have the following. 

Lemma 5.4 
A probabilistic  traversal  algorithm  based on a random 
walk  with cycle  expansion  c is c-competitive  against 
adaptive  on-line  adversaries. 0 

Coppersmith et al. [17] have recently proved the 
following general result. 

Theorem 5.5 
For  any n-node  graph  and  any  distance  matrix,  there is a 
random walk with  cycle  expansion n - 1. This is the  best 
possible  expansion. 0 

Thus, the competitiveness coefficient of the traversal 
problem on n-node graphs is less than or equal to n - 1, 
for adaptive on-line adversaries. 

Server systems 
The server problem is a generalization [5] of the cacheing 
problem. The problem is specified by a complete graph on 
n nodes, and a metrical distance matrix D. There are M 
mobile sewers that occupy M of the nodes of the graph at 
any time. A request specifies a node; in response, a sewer 
must be moved to that node if no server is currently at 
that node. An algorithm chooses which server to move  in 
order to satisfy successive requests in a sequence; an on- 
line  algorithm has to decide on a move  (when necessary) 
after each request, not knowing about future requests. 

The cache problem corresponds to a server problem 
with a unit distance matrix. The nodes of the graph are the 
memory items, and the servers  are the cache locations. 
The weighted cache problem corresponds to a server 
problem  with a distance matrix of the form d(i, j )  = wj. 
Such a distance matrix is not metrical; however, one can 
obtain an equivalent problem by using the distance matrix 
d(i, j )  = (wi + wj)/2. This matrix represents a weighted 
cache problem  in  which the cacheing algorithm incurs half 



of the cost of an item when the item  is loaded, and half 
when the item is evicted. 

Formally, an on-line algorithm for the server problem  is 
defined by a function 

F : S  x [1;.-,nlMx [ I ; * * , ~ I + S  x [l;..,n]". (9) 

This transition function specifies the next state and the 
set of nodes occupied by the M servers after the request 
has been serviced, given the current state, the current 
locations of the M servers, and the request node. The 
request node must be occupied after the transition. The 
memory of the algorithm is log 1st. All of the definitions 
and results of Section 2 hold. 

Equation (9) is a generalization of the formulation for 
the cacheing problem  given by (1). Thus, the measure of 
memory we use here is more lenient than the one we 
used to analyze cacheing algorithms, where we used the 
formulation given by (2) and (3). 

In [5] it  is shown that the competitiveness coefficient 
of any deterministic on-line server algorithm  is at least 
M/(M - m + 1) (one compares an on-line algorithm  with 
M servers to an  off-line  algorithm  with m servers). The 
argument actually implies the same bound for randomized 
algorithms with adaptive on-line adversaries. 

Theorem 5.6 [5] 
Let A be a bossibly randomized)  on-line  server  algorithm 
for M servers on a graph  with M + 1 nodes. Let B be  an 
adaptive  on-line  adversary  defined  as  follows. B starts  with 
its  m servers at m randomly  chosen  locations. At step  i, B 
generates a request at  the  unique  node vi not  occupied  by 
one of A 's servers (B is a cruel  adversary). If B has no 
server at node v i ,  it  moves  the  server  currently  at  node 
vi- ,  to vi. Then, for any  sequence  of  random  choices  of A 
and  any i > 1, the expected  cost  of  step i for adversary B 
is (M - m + 1)/M times  the  cost of step  i for algorithm 
A. 

For the rest of this section, we consider the case 
M = m only. 

Random walk  algorithms for the server  problem 
We now present a simple and natural memoryless on-line 
algorithm for the server problem. Let P be a matrix of 
transition probabilities defined on the graph. Suppose we 
have a request at a node r, and the on-line algorithm 
currently has no server at r. Let i,, - - , i, be the current 
positions of the algorithm's servers. We choose one of the 
servers at random to service the request at r, according to 
the probability distribution induced by P: Server ii is 
chosen with probability 
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Theorem 5.7 
Let M = n - 1. Assume  that  the random  walk  defined by 
the transition  probabilities p( i ,  j )  has  cycle  expansion c. 
Then the adaptive  on-line  competitiveness  coefficient  of  the 
corresponding  server  algorithm C(M, M) is less  than  or 
equal to c. 

Proof When M = n - 1, at all times there is exactly 
one node of the graph that contains none of the on-line 
algorithm's servers. We call this node a(t)  at time t .  The 
algorithm incurs a cost only when the request at time t is 
at a(t). We can assume, without loss of generality, that the 
adversary is cruel, so that the request at time t is,  in fact, 
at node a(t) .  Similarly, there is exactly one node not 
occupied by any of the servers of the adversary generating 
the requests; we denote this by b(t). If a(t)  = b(t) ,  the 
adversary must make a move  and incur a cost in order 
to serve the tth request. The adversary moves a server 
from node b(t + 1) to node b(t)  and incurs a cost of 
d[b(t + l ) ,  b(t)]  = d[b(t),  b(t + l)] (D is symmetric). 

ofphases. A phase starts when the adversary must make 
a move because the request is at its unoccupied node. 
Assume that a phase starts  at  step to, when the adversary 
moves its server from b(t, + 1) to b(t,). At this time, we 
have a(t,) = b(t,). It is easy to see that a(t)  executes a 
random walk on the graph, choosing at each step an  edge 
(i ,  j )  with probabilityp(i, j). The walk at the current 
phase starts at b(t,). The phase terminates when the walk 
reaches b(t, + 1). The expected length of the walk  from 
b(t,) to b(t ,  + 1) is h[b(t,),  b(t,) + 11, the expected cost 
the on-line algorithm incurs in this phase. Summing over 
all phases of the sequence yields the result. 0 

We consider the behavior of our algorithm  in a sequence 

Corollary 5.8 
1. The adaptive  on-line  competitiveness  coeficient of the 

server  algorithm  induced by the Harmonic  random  walk 
is C(M, M) I M(M + l), for M = n - 1. 

server  algorithm  induced by the random  walk  described 
in  the  proof  of  Theorem 5.5 is C(M, M) I M, where 
M = n - 1 .  

2. The adaptive  on-line  competitiveness  coefficient  of  the 

neorem 5.9 
For  every M 2 2, there  exists a distance  matrix on M + 1 
points for which the  competitiveness of the Harmonic 
algorithm is greater  than  or  equal to M(M + 1)/2 against 
an  oblivious  adversary. 

Proof Let the nodes be numbered 1, 2, - , M + 1. 
Let d(  1, 2 )  = 1, and let all other distances be B % M. 
The request sequence is an  infinite repetition of 

large integer L .  Call the above subsequences [each of the 
(I, 3, 4, , M + I ) ~ ,  ( 2 ,  3, 4, , M + I ) ~ ,  for a 
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form (1, 3,  4, - .  , M + l)L  or (2, 3,  4, , M + l )L ]  
rounds. The adversary places one server at each of the 
nodes 3, - * , M + 1, and never moves these M - 1 
servers. It uses its last server to alternate between nodes 
1 and 2 upon demand, to service requests at those nodes. 
Thus, it pays a cost of 2 per round. 

How well does the Harmonic algorithm perform? Note 
that there is always exactly one node of the graph that is 
not occupied by one of Harmonic’s servers; let us call this 
node the “hole” a ( t ) .  The  hole executes a random  walk  in 
the graph, always going from a node to a neighbor that is 
chosen in inverse proportion to its distance. We therefore 
ask the question, What  is the expected cost incurred by 
the hole in this random  walk in a “round trip” from node 
1 to node 2 and back to node l ?  (Such a round trip is a 
random  walk  from node 1 that terminates on first reaching 
node 1 after having visited node 2 at least once.) The 
ratio of this quantity to the cost of the adversary 
per pair of rounds (which is 2) is a lower bound on the 
competitiveness for Harmonic on this graph. 

The answer comes from  an electrical analogy studied 
by Chandra et al. [18], who show that the expected cost 
of this round trip equals M(M + 1) times the effective 
resistance that would exist between nodes 1 and 2 if each 
edge in the graph were replaced by an electrical resistor 
whose value equaled the cost, or the distance, of that 
edge. A simple calculation shows that in our case, this 
effective resistance is 2B/(2B + M - 1); by our choice 
B % M ,  this is arbitrarily close to 1. 0 

to analyzing the algorithm for any value of M (regardless 
of its relation to n). For the remainder of this section, we 
study the server problem in a slightly more general setting: 
The requests are points in an arbitrary metric space (rather 
than the nodes of a finite graph with a distance matrix). 
We  begin with M points in the space, each of which 
is occupied by one adversary server and one of the 
algorithm’s servers. Thus, the adversary first makes a 
move and issues a request for which the algorithm incurs a 
cost. 

The proofs of Theorems 5.7 and 5.9 suggest an approach 

Conjecture 5.10 (Lazy Adversary Conjecture) 
The following (adaptive) adversary strategy results in the 
poorest petformance for memotyless algorithms: 

Whenever there is a point in the space at which the 
adversary has a server but the algorithm none, the 
adversary issues the next request at that point (instead 
of  making  a move and  incurring  a cost). 

The conjecture suggests that the ratio of the expected 
cost of the algorithm to that of the adversary is  maximized 
under this adversary policy. (The conjecture is not true for 
every algorithm;  we  suggest only that it is true for a class 
of algorithms that includes memoryless algorithms). If this 696 
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conjecture were proved, we  could reduce the analysis of 
the algorithm to a phase analysis and  random  walk  similar 
to that in Theorem 5.7. The result would be an upper 
bound of c on the adaptive competitiveness coefficient 
of the algorithm, where c is the expansion factor for a 
random  walk  on a graph  with M + 1 nodes; c = M for 
the random  walk described in the proof  of Theorem 5.5. 

Even without the Lazy Adversary Conjecture, we can 
bound the performance of the Harmonic algorithm in an 
arbitrary metric space for the case M = 2. 

Theorem 5.11 
The adaptive on-line competitiveness coeficient of the 
Harmonic  algorithm for the two-server problem is in the 
interval /7, 181. 

Proof The lower bound  follows  from Theorem 5.9. The 
proof  of the upper bound  again uses a potential-based 
argument. Here we  define the potential we use to prove 
the result; the actual methodology of the proof is similar 
to that in Theorems 3.1 and 4.1. 

At every step, the two servers managed by Harmonic 
and the two managed by the adversary occupy (up to) four 
points in the metric space. Let m ,  and m2 be the costs 
of the two perfect matchings between the two points 
occupied by Harmonic’s servers and the two occupied 
by the adversary’s. The potential of this configuration  is 
defined to be m,rn,/(m, + m,)  (thus, it  is zero when the 
points occupied by Harmonic’s servers are exactly those 
occupied by the adversary). 

After a request has been served, there is at least one 
point in the metric space where both Harmonic and the 
adversary have a server. We  now consider what happens 
on the next request: We assume that the adversary first 
moves one of its servers (possibly by a distance zero) and 
then requests the point to which it has just moved.  In 
response, Harmonic moves a server and incurs a cost 
(which  is a random variable) and changes the potential 
(by an amount that is also a random variable). A detailed 
calculation considering three possible cases yields the 
result. Details are given in Appendix C. 0 

Manasse et al. [5] give a 2-competitive, deterministic 
algorithm for this problem. Their algorithm has a better 
competitiveness coefficient; ours is randomized but 
simpler, memoryless, and computationally efficient. 
Subsequent to our work, Berman et al. [7] have proved 
that our Harmonic algorithm achieves a bounded 
competitiveness for M = 3 in any metric space. Later, 
Grove [19] proved that Harmonic achieves a competitive 
ratio that is O(M2M) in any metric space and for all M .  
By Theorem 2.2, it  follows that there is a deterministic 
algorithm  achieving a competitiveness 2°(M). 
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Metrical task systems 
A metrical task system (MTS) consists of a graph G with 
n nodes (1, * , n }  and a metrical cost matrix D. An 
algorithm occupies one node of G at any given  time. A 
task T is a vector of length n whose ith component is the 
cost of processing T while occupying node i ;  we assume 
that these costs  are uniformly bounded. Given a sequence 
of tasks TI,   T2 ,  , Tk, an  algorithm  must choose a 
schedule i , ,  i,, * , i, of nodes, where i, is the node 
occupied by the algorithm at  step j ,  while processing T,. 
An on-line  algorithm  must choose i, knowing only 
T I ,  * * , T,. The cost of a schedule is the sum of  all task- 
processing costs and  all transition costs incurred. Metrical 
task systems can be viewed as a generalization of server 
systems. [A node in the metrical task system encodes 
the locations of the M servers of the server problem;  an 
"server problem on a graph with n nodes is represented 
by a metrical task system with (i) nodes.] We refer the 
reader to Borodin et al. [6] for details. 

An algorithm (controlled by an automaton) is  now 
defined  by a function with the following  form: 

Algorithm:[l;..,n] X S X T - + [ l ; . . , n ]  X S. 

As in the previous sections, we can define  memory  and 
the competitiveness of deterministic and  randomized 
algorithms. 

task systems, which  can be generalized as follows. Let A 
be a traversal algorithm  for the graph of the task system. 
An MTS algorithm A is derived from A ,  as follows. Let i 
be the node currently occupied by A, and let j be the next 
node visited by the traversal algorithm. A moves to j when 
the cumulative processing cost since entering i equals or 
exceeds the transition cost d( i ,  j ) .  [This introduces a 
technicality: The total cost since entering i could jump 
substantially above d( i ,  j )  in the course of processing a 
single task, thus necessitating several state changes before 
processing the next task. The solution given by Borodin 
et al. views the process as occurring in continuous time. 
Details omitted here may  be  found  in  [6]. Thus, the cost 
incurred by  algorithm A approaches twice the total cost of 
all its moves. If A is probabilistic, A moves out of node i 
when the processing cost since entering i reaches the 
expected cost of the move out of i .  If the traversal 
algorithm  is c-competitive, the derived MTS  algorithm 
is 2c-competitive. 

One technical problem  must be addressed in order for 
the random-walk approach to work. The adversary has the 
choice of remaining at node v ,  not incurring any transition 
cost. The cost the adversary incurs between two returns of 
the on-line algorithm A to node u is the cost of the first 
move of the traversal algorithm A out of v (this is the cost 
of the tasks before the on-line algorithm leaves v ) .  The 
cost the on-line algorithm incurs is at most twice the cost 

Borodin et al.  give a deterministic algorithm  for metrical 

of the path  up to the first return to v .  We need to make 
sure that the ratio between these two costs is bounded. 
This motivates the following  definition. 

A traversal algorithm has loop ratio e if, for any node v 
and any visit of the traversal algorithm to v ,  the expected 
cost of the loop  from v back to v is at most e times the 
expected cost of the first  move out of v .  

Theorem 5.12 
Let A be a traversal algorithm that is c-competitive 
against adaptive on-line adversaries and that has loop 
ratio e. Consider the  MTS algorithm A derived from the 
traversal algorithm, as follows. Let i be the node currently 
occupied by A, and let 2 be the expected cost of the 
next move by A. Then a moves to the next node in the 
traversal A when  the processing  cost since entering i 
reaches ( t /c )Z .  Algorithm A is ( c  + [)-competitive 
against adaptive on-line adversaries. 

algorithm: Their algorithm does not necessarily have a 
bounded  loop ratio. Theorem 5.12 should thus be  viewed 
as a sufficient, rather than necessary, condition for A to be 
(c + [)-competitive. 

Borodin et al. use a weaker condition in their traversal 

Proof We assume, for simplicity, that the on-line 
algorithm incurs a cost exactly equal to (e /c )a  before 
leaving node i .  We can arrange this by using the 
continuous-time method of Borodin et al. We can also 
assume, without loss of generality, that the adversary 
moves from node i only if the on-line algorithm A reaches 
node i .  The adversary can then decide either to move 
to a new node j or to remain at node i until the on-line 
algorithm reaches node i again. Suppose the adversary 
decides to stay at node i .  Let a(i) be the expected cost of 
the first  move out of i for the on-line algorithm,  and  let 
h(i,  i )  be the expected cost of the return trip to i. Then 
h(i,  i )  I ea(i) .  The on-line algorithm incurs an expected 
cost of ca I (1 + t'/c)h(i, i )  I (1 + e/c)eJ(i) ,  whereas 
the adversary incurs a cost of cb = (e /c )8( i ) .  Thus, 

ed(i) - (e + c )  - d(i) = 0. 
e -  
C 

Suppose that the adversary moves to node j f i. Then 
the adversary incurs a cost of cb = d ( i ,   j ) ,  whereas 
the on-line algorithm incurs an expected cost of 
ca = (1 + C/c)h(i, j ) ,  where h(i,  j )  is the expected 
cost of the traversal from i to j .  Thus, 

c, - (e + c)cb I 1 + - h(i, j )  - (e  + c)d(i, j )  ( I) 
= (1 + p)[h( i , j )  - c * d(i, j ) ]  . 
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Lemma 5.13 
The Harmonic  random  walk  has a loop ratio of n. 

Proof Sincep(i, j )  = [ l / d ( i ,  j)J/[& l /d ( i ,   k ) ]  > 0 for 
all i f j ,  the Markov chain defined by the transition 
probabilities P is aperiodic, and there is a unique, 
stationary probability distribution CD on the nodes, defined 
by the equations 

i 

2 f#li = 1 .  
I 

One can check, by substitution, that 

i 
4, = 

l/d(r, s) ' 
r, s 

where r and s range over  all nodes. The expected cost of a 
move out of node i is 

di = c p(i ,   j)d(i ,  j )  = 
n - 1  

i l/d(i, j )  * 
i 

Thus, a, the average cost of a move  in the random walk,  is 
equal to 

r, s 

(the harmonic mean  of the distances), and 

n(n - 1) 

2 l/d(i, j )  ' 
h(i, i )  = = 0 

j 

Thus, we obtain from the Harmonic random  walk 
an algorithm that is n(n + 1)/2-competitive. The random 
walk traversal of Coppersmith et al. [17] (Theorem 5.5) has 
a loop ratio of 2(n - 1 ) .  Using it, they obtain an  algorithm 
for metrical task systems that is 3(n - 1)-competitive. 
By a further refinement of this construction, a (2n - 1)- 
competitive algorithm is derived in  [17]. 

We have yet to show that such random  walk  algorithms 
are memoryless, as one must  maintain a counter that 
accumulates the total processing cost at the current node. 
One can, however, replace this counter with a probabilistic 
counter. 

Assume that the algorithm occupies node i ,  and  let A be 
the threshold for the next  move (the algorithm moves to 
the next node when the processing costs since entering 
i exceed A). For an  algorithm based on our previous 
construction (which translates a traversal algorithm 

A to an algorithm a for metrical task systems), 
A = (c  + e )  p ( i ,   j ) d ( i ,  j ) .  For a task T ,  let T(i) 
be the cost of processing T at node i .  Assume T(i) 5 A; 
to justify this, we use the continuous-time ideas of Borodin 
et al. The main  idea  is to view the processing of tasks as 
occurring in continuous time. By this device, if T ( i )  
exceeds A for the present node i ,  we  move  on to its 
successor node  in the traversal. Let the new node have 
a threshold of A'; we compare T(i) - A with A' now, 
moving on to the successor again if T(i) - A > A', and 
so on. A formal description of the process is  given  in  [6]. 

Independent of previous tasks and processing costs, 
Gambler does the following:  Given T,  flip a coin  with 
Pr[heads] = T ( i ) / A ;  if the coin comes up heads, Gambler 
moves to the next node in the traversal (this next node 
may be chosen probabilistically); otherwise, it remains 
at the current node. Note that Gambler is memoryless. 
Lemma 4.2 can now  be  invoked to show that the expected 
processing cost incurred by the Gambler  algorithm at node 
i is A. This yields the following theorem. 

We  now describe our algorithm, which we call Gambler. 

Theorem 5.14 
Let A be a c-competitive MTS algorithm of the form given 
in  Theorem 5.12. The memolyless traversal algorithm 
Gambler derived from it is also c-competitive against 
adaptive on-line adversaries. 

6. Further work 
This paper leaves many open problems. We do not 
completely understand the relation between the two 
definitions of competitiveness, one using a limit at infinity, 
and the second using  finite sequences. In particular, we 
have not shown that the two definitions  yield the same 
competitiveness coefficient for cacheing against  oblivious 
adversaries. Also, we conjecture that both definitions are 
equivalent for randomized  algorithms  with  finite control. 

powerful than adaptive on-line adversaries against specific 
algorithms, they yield the same competitiveness coefficient 
for cacheing and for the more general server problem. 
It would  be interesting to have a direct proof  of the 
equivalence of these two adversaries. 

It would be most interesting to find generalizations of 
the RFWF algorithm  for the weighted cacheing problem 
and the general server problem, thus showing that one can 
do better against  an oblivious adversary than against  an 
adaptive one for these generalizations. 

Finally, it has been conjectured by Manasse et al. [5]  
that the competitiveness coefficient of the m-server 
problem  is m. Following an upper bound of 2"" logm) due 
to Fiat et al.  [20], Grove [19] has obtained an upper bound 
of 2°(m) based on the Harmonic algorithm. Recently, 
Koutsoupias and  Papadimitriou [21] have given an upper 

While adaptive off-line adversaries may  be  more 



bound of 2m - 1. Much work has been directed recently 
at proving particular cases of this conjecture [8, 91; it 
would be interesting to extend these results to the case 
M f m .  The existence of a memoryless m-competitive 
algorithm  against adaptive on-line adversaries for a large 
class of graphs has recently been proved [17]. The proof 
expands on the use of random walks outlined in this paper. 

Appendix  A: Cacheing  and games 

Lazy algorithms and  cruel adversaries 
In this appendix, we prove some simplifying results on 
cacheing algorithms. We restrict ourselves heie to adaptive 
adversaries (either on-line or off-line). We show that one 
can assume, without loss of generality, that on-line 
cacheing algorithms are lazy (changing state only when a 
miss occurs). This allows us to restrict our attention to 
cruel adversaries, which force a miss at each step (the 
name “cruel” is taken from [6]). We also show that one 
can assume, without loss of generality, that there are 
exactly M + 1 distinct items. 

Lemma A. 1 
Let A be a lazy cacheing  algorithm. Then A is c (M,  m)- 
competitive against adaptive off-line (on-line) adversaries 
if and  only if it is c(M, m)-competitive against cruel 
adaptive off-line (on-line) adversaries. 

Proof Let B be an adaptive off-line adversary. A cruel 
adversary B simulates B as follows.  At the end of step j ,  
the simulating adversary B assumes the state of B at the 
end of step i j ,  when the jth miss of A occurred. Since A 
does not change states at hits, B can simulate the next 
i .  - ij  steps of the computation, untilA next misses, and 
compute the state of B after step i j t l .  B then issues the 
next reference v j t l ,  which  is the reference B would issue 
at  step i j t l .  

issues the references v l ,  v 2 ,  - , and A misses at steps 
c 1 7  1 2 ,  * - - , then B will issue the references v i l ,  v , ~ ,  * * , 
and A will  miss at each step. The number of misses of A 
on the subsequence of references vi, ,  vi2, , v .  equals 
its number of misses on the sequence of references v l ,  
v 2 ,  - , vi,; whereas the number of misses of the optimal 
algorithm  on the subsequence is clearly less than or equal 
to its number of misses on the sequence. Thus A is 
c(M,  m)-competitive against B only if it is c(M,  m)-  
competitive against A. This concludes the argument for 
adaptive off-line adversaries. 

Suppose now that B is an adaptive on-line adversary. 
Then B can also simulate the on-line cacheing management 
of B as follows:  Assume that B misses at step j .  If E also 
misses at step iJ and has in its cache the item evicted by 
B at  step i j ,  then B evicts that item. Otherwise, evicts 

J t 1  

Consider a k e d  sequence of random choices by A .  If B 

. .  

‘i 
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an  item that is not in the cache of B at step i j .  It is easy to 
check that the number of misses of B on the subsequence 
of references v i l ,  v , ~ ,  * is less than or equal to the 
number of misses of B on the sequence of references 
V I ’  V 2 ’  * * * . 0 

Corolla y A. 2 
Let A be a cacheing algorithm that is c (M,  m)-  
competitive against adaptive off-line (on-line) adversaries. 
Let A be the algorithm obtained from A by preserving the 
Miss function and modibing the Hit function to be the 
identity @ does not  change states on hits and behaves as 
A on misses). Then A is c (M,  m)-competitive against 
adaptive off-line (on-line) adversaries. 

Proof By the previous lemma, it is sufficient to consider 
cruel adversaries; however, A and A behave identically 
against cruel adversaries. 0 

This corollary implies, for example, that the FIFO 
algorithm is as competitive as the LRU algorithm. Indeed, 
if we  modify the LRU algorithm so that it modifies its state 
only on misses, LRU “remembers” only references that 
caused misses, and orders the elements in the cache 
according to the order in which they were loaded. 
This is exactly the behavior of the FIFO algorithm. 
Corollary A.2 does not hold for oblivious adversaries. 
The RFWF algorithm has a competitiveness coefficient 
c(m,  m) = O(log m) against oblivious adversaries [12]. 
A lazy version of this algorithm,  which does not mark 
entries  unavailable  on  hits, has a competitiveness  coefficient 
c(m, m) 2 (m + 1)/2. This  is proved in Appendix B. 

Lemma A. 3 
Let A be a randomized  cacheing  algorithm. The following 
two assertions are equivalent: 

1. A is c (M,  m)-competitive against adaptive off-line 

2. A is c (M,  m)-competitive against adaptive off-line 
(on-line) adversaries. 

(on-line) adversaries that generate references to only 
M + 1 distinct items. 

Proof Clearly, Assertion 1 implies Assertion 2. Let A 
be a cacheing algorithm. L e t  i ( (x ) ,  the index of item x at 
step t ,  be the location in the cache that contains x after t 
references; i , (x) = 0 if x is not in the cache. Index i , (x) 
depends on the adversary and on the first t random choices 
of A .  Let B be an adaptive adversary. We transform B 
into an adversary B that generates references from a set of 
M + 1 items { y l ,  * , yMtl}. Let wl, w2, , o , - ~  be 
the first t - 1 random choices made by A .  If B now 
generates a reference to an  item x at step t ,  then B 
generates at step t a reference to the unique  item y such 
that i , - l ( y )  = i , - , (x) ;  if B evictsx’ at step t ,  then B evicts 
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the unique itemy’ such that if(y’) = if(x’). Make the 
sequence of random choices made  by A fixed. Then A 
misses  on the sequence generated by B at the same steps 
it misses on the sequence generated by B .  The set of 
indices of the items in the cache of adversary B at step t is 
identical to the set of indices of the items in the cache of 
at step t. Thus, the cache management of B is correct (B 
performs an eviction whenever it misses), and B misses at 
the same cycles at which B misses. Furthermore, if B 
manages its cache on-line, then so does h. 0 

Alternative definitions 
We  defined competitiveness in terms of the limit behavior 
of the cacheing algorithm  on  infinite request sequences. 
As shown below, this leads to a very natural game- 
theoretic formulation of competitiveness. It is often 
more convenient or more intuitive, however, to analyze 
cacheing algorithms in terms of their behavior on finite 
sequences of references. This leads to other definitions 
of competitiveness, which, fortunately, are not too 
different  from the ones we use. 

The following  definition is often used for deterministic 
algorithms [4, 51. 

Definition 24 
A deterministic cacheing algorithm A is c(M, m)-  
competitive if there exists a constant g such that, for any 
finite sequence of references ( v l ,  - - * , vn),  

C$v1, * - , v,) - c C,”’(v,, * * * , vn) 5 g. (AI) 

In order to distinguish between the two definitions, 
we say that an  algorithm  is c-competitive in the limit if it 
fulfills (8), and c-competitive on finite sequences if it fulfills 
(Al). The  following results show, however, that the need 
to draw the distinction seldom arises. 

Clearly, (Al) implies (8); an  algorithm that is c- 
competitive on finite sequences is also c-competitive in the 
limit.  One  can easily build a pathological  algorithm that is 
c-competitive in the limit but not c-competitive on  finite 
sequences, so that Definition 2 is strictly stronger. Using 
this stronger definition, however, does not change the 
competitiveness coefficient %@f, m )  of cacheing, and 
does not change the competitiveness coefficient %f(M, m 
of deterministic cacheing algorithms A with finite control. 

Theorem A. 4 
The following two assertions are equivalent: 

1. There exists a deterministic cacheing algorithm that is 

2. There exists a deterministic cacheing algorithm that is 
c(M, m)-competitive in the limit. 

c(M, m)-competitive on finite sequences. 

700 4 Definition 1 is in Section 2. 

Proof Clearly, Assertion 2 implies Assertion 1. To prove 
the reverse, we find it convenient to relax our definitions 
and allow a cacheing algorithm to start with a non-empty 
cache. This may save at most M misses and hence affects 
neither definition of competitiveness. If A is an  on-line 
cacheing algorithm, we denote by A[s, xl, * , x,] the 
cacheing algorithm obtained by starting A in state s, with 
cache contents xl, - * * , x,. 

competitive on finite sequences. Then, for any cacheing 
algorithm A (A may start on a non-empty cache), there is 
a sequence of references [(A) = vl, , vn such that 

c;(vl, - e ,  v,) - C(M, m )  c,“‘(v,, - , v,) > 1 

(the cost of A exceeds the prescribed bound by at least 
one miss). 

inductively an infinite sequence of references u l ,  u 2 ,  * 

as follows. We initially determine [(A) for the initial state 
and cache contents [s, xl, , x”]. After applying this 
@I), we  determine  the  sequence [ for the state that  results, 
and so on. 

We have 

Assume that no cacheing algorithm  is c(M, m)-  

Let A be an on-line cacheing algorithm.  Define 

c;(u1, * * , vn,) - C(M, m )  c?(v,, - I ,  vn,) > i, 

so that A is not c(M, m)-competitive in the limit. Thus, 
the complement of Assertion 2 implies the complement of 
Assertion 1. I7 

The  theorem  implies that the  value of the competitiveness 
coefficient (ed(M, m )  is the same for both definitions of 
competitive cacheing algorithms. We also have the 
following result. 

Theorem  A. 5 
Let A be a cacheing algorithm with finite control. Then the 
following two assertions are equivalent: 

1. A is  c(M, m)-competitive in the limit. 
2. A is c(M, m)-competitive on finite sequences. 

Proof Clearly, Assertion 2 implies Assertion 1. Assume 
that Assertion 2 does not  hold. Then, given any fixed k ,  
there is a sequence of references v l ,  * , vn such that 

Let si be the state ofA after references v 1 7  * , v i .  Let 

We have c,, = 0, cn > k .  Then, if k is  sufficiently  large 
with respect to [SI, the number of states, and  with respect 
to the product m - c(M, m),  there are two indices i, j ,  
where i < j ,  such that si = sj and cj - ci 2 m * c(M, m )  
+ 1. Let cA be  the number of misses of algorithm A from 
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cycles i t 1 to j ,  and  let cop‘ be the number of misses of 
the adversary for these cycles. Consider now the sequence 
of references u l ,  , u,, v i+ , ,  , u j ,  vi+,, - 
(u , ,  , vi followed  by  an  indefinite repetition of 
vi+,, * , u j ) .  Let 2, be  defined as above for the new 
sequence of references. Algorithm A goes  through the 
same sequence of states on each repetition of the sequence 
of references v i + , ,  * * , uj and has cA misses on each such 
segment. The optimal  algorithm has at  most cop‘ + m 
misses on each such segment. It follows that 

2. , + ( q + l ) ( , - i )  - ?j+q(j-i)  2 cj - c; - c(M, m) - m 2 1, 

for any positive integer q ,  so that 

lim sup 2,, = 00. 
fl-m 

0 

This theorem implies that if A is a deterministic 
cacheing algorithm  with  finite control, the value of the 
competitiveness coefficient %f(M,  m) is the same for both 
definitions of competitive cacheing algorithms. Al l  of the 
algorithms considered in this paper have finite control. 

We wish to extend the previous definitions  and results 
to randomized cacheing algorithms.  What is the “correct” 
definition of a competitive randomized cacheing algorithm 
on  finite sequences? One  might  be tempted to use a 
condition similar to that used for infinite sequences, 
defining A to be c(M,  m)-competitive if there exists a 
constant d such that, for any n and  an adversary B of the 
suitable  type, C&I~, * , un) - c(M, m) C;(u,, - , v,,) 
< d ,  a s .  This, however, is too strong a condition: 
It would  rule out all  randomized cacheing algorithms 
considered in this paper. Rather than forbidding  bad 
worst-case behavior that occurs with  small probability, 
we require good average behavior (where the average 
is over the random choices of the algorithm). 

Definition 3 
A randomized  cacheing  algorithm A k c(M,  m)- 
competitive on  finite sequences against adaptive off-line 
adversaries ifthere exists a constant d such that 

E[CG(u,, * a ,  u,) - c(M,  m) * CF(ul,  * 9 e ,  v,,)] < d 

for any finite sequence of references u l ,  u 2 ,  * , un 
generated adaptive& by an adversary. 

A randomized  cacheing  algorithm A is c (M,  m)- 
competitive on  finite sequences against adaptive on-line 
adversaries if there exists a constant d such that 

E[CG(v,, * e ,  un) - c(M, m) C:(ul, * e ,  u,)] < d 

for any  finite sequence of references u1  , u 2 ,  * - , vn 
generated adaptive& by an adversary and any on-line 
cacheing algorithm B (the moves of B depend on previous 
random choices of A).  

competitive on  finite sequences against oblivious 
A randomized  cacheing  algorithm A is c (M,  m)- 
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adversaries if there exists a constant d such 
that 

E[CG(u,, * e ,  u,) - c(M, m) CF(ul,  * * e ,  u,,)] < d 

for any finite sequence of references u ,  , u 2 ,  - , u,,. 
All three definitions coincide when  algorithm A is 

deterministic, coinciding then with (Al). 
The definition for oblivious adversaries has been used by 

Fiat et al. [12] and  Ben-David et al. [l l] .  The latter paper 
also defines competitiveness against adaptive adversaries, 
using  seemingly  more  powerful adversaries. Rather than 
stopping after n references (n ked) ,  their adversaries can 
adaptively decide when to halt. A cacheing algorithm A 
is c(M,  m)-competitive against such an adaptive off-line 
adversary if 

E[CG(u,, e ,  us) - c(M, m) - CF(vl,  * * ,  us)] < d 

for  any adaptively generated sequence of references 
v l ,  u 2 ,  * - and any adaptive “stopping time” s. A similar 
definition is used for adaptive on-line adversaries. The 
-ability to stop adaptively, however, does not  add  power to 
the adversary. The reason is as follows. If  an adversary 
always stops after finitely  many references (s is  always 
finite), there is a fixed  bound n such that the adversary 
stops after at most n references (s I n ) .  Rather than 
stopping after s steps, the adversary can continue 
repeating the last reference, up to step n .  This causes no 
further misses to either the algorithm or the adversary. 

While the new  definitions of competitiveness may 
change the competitiveness coefficients of specific 
algorithms, they do not change the competitiveness 
coefficients of cacheing for adaptive adversaries. 

Theorem A. 6 
The competitiveness coefficient %JM, m) of cacheing 
for adaptive off-line [%,,(M, m) for adaptive on-line] 
algorithms does not  change if competitiveness on finite 
sequences is  used, rather than competitiveness in the  limit. 

Proof The  claim for adaptive off-line adversaries follows 
from the fact that the two definitions are equivalent for 
deterministic algorithms (Corollary A.4), and the fact that 
for each definition, %&(M, m) = %&M, m) (Theorem 2.1, 
and the similar theorem for competitiveness on  finite 
sequences proved by Ben-David et al. [ll].  (The claim  can 
also be proved with the argument  given  below for adaptive 
on-line algorithms.) 

Now consider adaptive on-line adversaries. By Corollary 
A.2, we can restrict ourselves to cruel adversaries, which 
cause a miss at each step. (It is easily seen that this 
corollary applies to either definition of competitiveness.) 

Let A > 0 be a positive  real  number  and n > 0 be a 
positive integer. We consider two mutually exclusive 
(and exhaustive) cases: 701 
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Case 1: There exists an on-line cacheing algorithm A 
such that, for any cruel adversary B against A ,  the 
expected number of misses of B on the first n references 
is >An.  

Let A be a cacheing algorithm that simulates A for n 
steps, then reinitializes to the initial state of A and starts 
again. Then, for any cruel adversary B against A, any 
non-negative integer k ,  and any sequence of 
random choices of A in the first kn steps, B has an 
expected number of misses of at least An - m at 
steps kn + 1, kn + 2, - * * , ( k  + 1)n. Let X k  be the 
random variable defined  by 

x, = c&,, - * , Vk)  - c - c;(vl ,  * * , Uk), 

and let 

'k = Xkn - X ( k - l ) n  * 

Then 

(1 - c)n 5 Yk I n ,  

and 

E[Y,I Y l ,  * e ,  yi-k] 5 n - c(An - m).  

Thus, if c > n/(An - m) ,  so that n - c(An 
then 

limE 2 Yk = -00, 
w x  [ k l l  ] 
and, by Lemma 2.3, 

m 

2 Y, = -00, a.s. 
k= I 

d is c-competitive against B according to both definitions. 
It follows that 

according to both definitions. 
Case 2: For any on-line cacheing algorithm A ,  there 

exists a cruel adversary B against A that has an expected 
number of misses less than An on the first n references. 

Let A be an on-line cacheing algorithm. There exists a 
cruel adversary B against A such that, for any sequence 
of random choices of A in the first kn steps, B has an 
expected number of misses less than An at steps 
kn + 1,  kn + 2, * * , ( k  + 1)n.  Define X ,  and Y ,  
as before. Then 

(1 - c)n I Yk 5 n ,  

and 702 
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E[Y,I Yk- l ,  * ,  Y l ]  > n - cAn. 

Thus, if c < llA, A is not c-competitive against B 
according to either definition. It follows that 

%,(M, m) 2 1 /A,  ('43) 

according to both definitions. Since either (A2) or (A3) 
holds for any n and A, it  follows that both definitions  yield 
the same value for (ean(M, m). 0 

This  proof also shows that 

( e a n ( ~ ,  m) = inf(eA(M, m), 

where the infimum  is taken over all cacheing algorithms 
A withJinite control. In fact, it  is  sufficient to consider 
algorithms that restart from the initial state after n cycles, 
for some  fixed n .  The same result holds for adaptive off- 
line adversaries. The infimum  is actually achieved by 
finite-control cacheing algorithms, both for adaptive on-line 
and adaptive off-line adversaries. 

We conjecture that a result similar to Theorem A S  can 
be shown for randomized algorithms with  finite control: 
Namely, such an algorithm  is c ( M ,  m)-competitive in the 
limit against adaptive on-line  (off-line) adversaries if and 
only if it  is c(M,  m)-competitive on finite sequences 
against such adversaries. All  of the algorithms considered 
in this paper have finite control, and the two definitions of 
competitiveness coincide for all of them. However, we do 
not have a general proof of the conjecture. 

The cacheing  game 
The competitiveness of deterministic cacheing algorithms 
can be analyzed in terms of an infinite cacheing  game 
played between the cache manager (player a )  and the 
adversary (player b) .  This game-theoretic approach 
yields some interesting relations between the various 
competitiveness coefficients discussed above. 

'3: ( X ,  s, f, X p ,  X , ,  Sa, S,, X,  X,, Xb).  X is the infinite 
set of positions in the game. The game positions form 
a tree: s E X is the root of the tree, which  is the initial 
game  position;f:X - {s} + X is the predecessor function; 
f - l ( x )  is the set of successors to position x .  We assume 
that the game never terminates; i.e., f - l ( x )  # @, for any 
x E X .  (Each position x E X ,  except for s, has a single 
predecessor and a nonempty set of successors.) The set of 
positions X is partitioned into two subsets, X a  and X ,  
( X ,  n X ,  = 0,  X a  U X ,  = X ) .  X ,  is the set of positions 
to which player a can move, and X ,  is the set of positions 
to which player b can move. (Every x E X a  is the 
predecessor of one or more positions y E X , ,  and  vice 
versa. No x E X ,  has a predecessor in X a ;  the same holds 
for positions in X , . )  A play is  an  infinite path in the game 
tree, starting at the root,  i.e., a sequence x o ,   x l ,  * 

of positions, alternately in X a  and X , ,  such that x .  = s 

Formally, such a game  is described by a tuple 
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and xi = f ( x i + l ) ,  for any i .  X is the set of  all plays 
associated with  game %; it is partitioned into two subsets, 
%, and 3 (X = U %, %, n % = $3). X, is the set 
of winning plays  for  player  a, and 3 is the set of winning 
plays  for  player b .  A pure  strategy  A for player a is a 
function that associates with each position x E X .  a move 
to a successor position: A : X ,  + X , ,  and A ( x )  E f " ( x ) ,  
for any x E X ,  (f o A = id). Similarly, a pure strategy 
B for player b is a function B : X h  += X .  such that 
f 0 B = id. Sa is the set of pure  strategies that player a 
can use in the game, and S, is the set of pure strategies 
available to player b .  The  game  is a game  with  perfect 
information if sa (s,) contains all pure strategies of 
player a (b); otherwise, it  is a game  with  partial  information. 

Each pair of pure strategies A and B defines a play 
[denoted play(A, B)] x o ,   x i ,  , in  which x. = s and, 
for each i ,  x i+ i  = A ( x i )  if xi E X = ,  or x i+ i  = B ( x i )  
if xi E X , .  A is a winning strategy  for  player  a if for each 
strategy B E S,, play(A, B )  E X,. A winning strategy for 
player b is  similarly  defined. 

We consider games  in  which costs are associated with 
positions by a real-valued function Val:  X -+ R. The set of 
winning plays for player a is defined as 

X, = {(xo,  x, ,  - e )  E X: lim sup Val(xn) < a}. ('44) 
m m  

Thus, A is a winning strategy for player a if, for any 
strategy B E S,, 

lim sup Val(xn) < m, 
m m  

where ( x o ,   x i ,  * ) = play(A, B ) .  
In the cacheing game, the two players are the cache 

manager and the adversary. Players alternate moves: 
The adversary selects the next reference; then the cache 
manager updates the cache contents, if necessary. A 
position is defined by the sequence of references leading 
to that position and the sequence of moves  made  by the 
cache manager. The value of a position x reached by a 
sequence of references v i  , v2, * - , v n  is equal to 

VaI(x) = CL(vi, * , v,) - c * Cr(vi ,  * - , v), 

where C;(v,, - , v n )  is the cost paid  by the cache 
manager, and C?'(v, ,  * , vn)  is the (optimal) cost paid 
by the adversary for the sequence of references. The value 
c is a parameter of the game. This is a game of perfect 
information. Note that we impose no restriction on the 
computing power or memory of the cache manager: It has 
perfect recall of the past. Clearly, a c ( M ,  m)-competitive 
algorithm for cache management  defines a winning strategy 
for player a in the cacheing game, with parameter 
c = c ( M ,  m), and vice versa. 

A game  is strictly  determinate if either player a or 
player b has a winning strategy. While finite-tree games 
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with perfect information are always strictly determinate, 
infinite  games need not be so, in general. However, 
various conditions on the topology of the set of winning 
plays are known to imply strict determinateness (see 
[22-251). 

Let T = ( X ,  f )  be an infinite tree, and let %be the  set 
of (infinite) paths of T that have one end point at the root. 
Given a position x of T ,  we define % ( x )  C X to be the set 
of paths that traverse position x .  A topology is induced on 
X (the  Hausdorff  topology)  by taking the family of sets 
% ( x i ) ,  i = 0, 1, - to be a basis for the neighborhoods 
of a path 6 = ( x o ,   x l ,  - ). A set is Borel if it  belongs to 
the a-algebra generated by the open sets. Martin [25] has 
shown that an infinite  game  with perfect information is 
strictly determinate if the  set of winning plays is Borel. 

costs associated with positions is Fu (countable union of 
closed sets) and,  thus, is Borel. Indeed, 

X,, = u u n { ( x o ,   x i ,  * e ) :  Val (xk)  I i }  . 

The set of  winning plays defined  by (A4) for a game  with 

i j  k z j  

It follows from the result of Martin [25] that games with 
costs are strictly determinate. (The strict determinacy for 
Fu is proved by  Wolfe [24], using weaker set theoretical 
assumptions than needed for the more general result of 
Martin [25].) In particular, the cacheing game  is strictly 
determinate. 

Mixed  strategies 
We  now define  mixed strategies, which correspond to 
probabilistic cacheing algorithms in the cacheing game. Let 
% = ( X ,  s, f ,  X o ,   X , ,  sa, S,, X a ,  3) be an infinite tree 
game. A mixed strategy for player a is a probability 
distribution on the  set So of pure strategies for that player. 
The distribution is defined over the a-field generated by 
the family  of sets { { A :   A ( x )  = y } ,  x E X , ,  y E f - ' ( x ) }  
(we assume that Sa is measurable). A mixed strategy for 
player b is  defined  in a similar manner. Given a pair of 
mixed strategies A ,  B for both players, one obtains a 
probability distribution on the set % of plays, induced 
by the mapping ( A ,  B )  += play(A,  B ) :  the probability 
of the set %(x)  is the probability that play(A,  B )  reaches 
position x .  

The mixed strategy A is a winning strategy  for  player a 
if Pr[ play(A, B )  E Xa] = 1 (player a wins a.s.) for any 
(mixed) strategy B E 5,. It is  sufficient to consider, in the 
definitions above, only pure adversary strategies: A mixed 
strategy A wins almost surely against any mixed strategy 
B if and  only if it  wins almost surely against any pure 
strategy B .  In a game  with costs, a mixed strategy A for 
player a is a winning strategy if for any (mixed) strategy 
B E ' h ,  
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Pr[lim sup Val(xJ < m] = 1 ,  (A51 

where ( x o ,  x , ,  - ) = play(A, B ) .  
A randomized cacheing algorithm corresponds to a 

mixed strategy for the cache manager in the cacheing 
game. An adaptive off-line adversary corresponds to a 
strategy for the adversary in this game.  By  (AS) and (7), a 
randomized algorithm A is c ( M ,  m)-competitive against  an 
adaptive off-line adversary if and only if the corresponding 
strategy is a winning strategy in the cacheing game  with 
parameter c = c ( M ,   m ) .  

The same game-theoretical model also applies to the 
other types of adversaries. However, these are not games 
with perfect information. In the case of an  oblivious 
adversary, the adversary has no  knowledge of the moves 
of the cache manager; the strategy choice of the adversary 
at a position x is restricted to depend on  only its own 
previous moves. In the case of an adaptive on-line 
algorithm, a position represents the sequence of references 
leading to that position and the sequence of moves  on both 
caches (of both the on-line algorithm  and the adversary). 
The cache manager, however, has no  knowledge of the 
contents of the adversary cache; its strategy choices are 
restricted to depend on only the previous references and 
its own previous moves. The results on strict determinacy 
of games do not apply to games with partial information. 

The  following theorem shows that mixed strategies do 
not outperform pure strategies. 

Theorem  A.7 
Let A be  a  mixed winning strategy  for  player a in a  strictly 
determinate  game.  Then, there  is  a pure winning strategy 
A for  player a in this game. 

Proof Assume, by contradiction, that there is  no such 
pure strategy. Then, since the game  is strictly determinate, 
player b has a pure winning strategy B .  For each pure 
strategy A' of the first player, play(A',  B )  E %. But this 
implies that, for each mixed strategy A" of player a ,  
Pr[ play(A",  B)] E = 1 ,  and A is  not a winning 
strategy. 0 

Theorem 2 .1 .  We turn now to the proof of Theorem 3.5. 

Proof of Theorem 3.5 (Any  memoryless on-line  cacheing 
algorithm  has an oblivious competitiveness  coeficient 
greater than  or  equal to m  when  m = M . )  A memoryless 
cacheing algorithm is a probability distribution 
{ p , ,  * , p , } ,  where p i  is the probability that the 
item at location i is evicted  on a miss.  Consider a randomly 
chosen  sequence of references  consisting of a sequence 
of rounds. The kth round  is of the form (a , ,  - , am)k; 

704 the set of m items  referred to at round k is  obtained  by 

n + e  

This theorem, when applied to cacheing games, implies 
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choosing  an  item  from  round k - 1 uniformly at random 
and  replacing  it  with any new  item. 

During each round following the first, the adversary has 
one miss. Let a , ,  , am be the items accessed at round 
k - 1 ,  and let a,, , a i - , ,  hi, a,+,, , am be the 
items  accessed at round k. With probability going to 1 
as k -+ m, the on-line  algorithm starts round k with 
a , ,  * , am in the cache. Assume,  without  loss of 
generality, that item a, occupies  location i in the cache. 
The  algorithm  misses  during  round k until it evicts the 
item  in  location i; the  expected  number of misses  is 
( l /pJ[l  - ( 1  - ~ $ 1 .  The expected  number of misses 
for i chosen  uniformly at random (given that a , ,  , am 
are in the cache at the start of the round)  is at least 
(Vm) Xi:, ( l / pJ [  1 - ( 1  - ~ $ 1 .  This  is  minimized at 
m{l - [(m - l)/mIk} (when all the pis are equal). Thus, 
the ratio  between the expected on-line cost and  off-line 
cost for such a randomly chosen sequence of references 
has a limit greater than or equal to m. 0 

Appendix B: Lazy random flush when full 
Let lazy  random  flush when full (LRFWF) be the algorithm 
that behaves like RFWF, except that it does not change 
state on hits. When a miss occurs, both algorithms select 
an available entry for eviction; if there are no available 
entries, all entries are marked available before the 
eviction. Then, the missing  item  is loaded and marked 
unavailable. 

Theorem B.1 
The competitiveness  coeficient of LRFWF  against 
oblivious adversaries is c ( m ,   m )  2 ( m  + 1)/2.  

(Recall that the competitiveness coefficient of RFWF 
against oblivious adversaries is 2Hm.)  

Proof Assume that the on-line algorithm and the 
adversary both contain in their caches items 1, 2 ,  - , m ,  
and that all entries in the cache of LRFWF are 
unavailable. Consider a sequence of references of the form 
2 ,  3 ,  * - , m ,  m + 1 ,  repeated indefinitely. The  off-line 
algorithm incurs one miss on such a sequence. Algorithm 
LRFWF misses at least once on each repetition of 
( 2 ,  3 ,  - * , m ) ,  until  item 1 is evicted. 

Assume that k of the entries (k > 0) in the cache of 
LRFWF are available and that the entry containing item 1 
is unavailable. Thus, LRFWF will have k misses, until all 
available entries are made unavailable. Then all entries are 
marked available. Finally, at each miss, algorithm LRFWF 
draws one random sample from the set of available entries, 
in a process of sampling without replacement. The process 
terminates when  item 1 is found. The expected number of 
samples drawn is ( m  + 1 ) / 2 ,  and the maximum  number 
of samples drawn is m .  Consequently, LRFWF incurs an 

IBM J. RES. DEVELOP. VOL. 38 NO. 6 NOVEMBER 1994 



P 

average of ( r n  + 1)/2 misses  and a maximum  of rn extra 
misses. 

Consider now  an  infinite sequence of references of the 
form (1, 2, * - * , r n ) 2 m ,  (2, , rn + 1)2m, repeated 
indefinitely. The adversary has one miss  on each segment. 
LRFWF evicts item 1 from the cache when satisfying 
the sequence of references (2, , rn + l ) z m .  Thus, a 
miss occurs on  item 1 during the sequence of references 
(1,  2, * , r n ) z m ,  and  item 1 is  in the cache and  marked 
unavailable at the end of the sequence. Similarly,  item 
rn + 1 is in the cache and marked unavailable when the 
sequence (2, - , rn + l ) z m  ends. It follows that the 
expected number of misses of LRFWF on each segment 
is at least (rn + 1)/2. 0 

Appendix C: Harmonic algorithm for two 
servers 
In this appendix, we  give the details of the proof  of 
Theorem 5.11. 

Let us denote the points of the metric space occupied by 
the Harmonic algorithm’s servers  by s1 and s2, and the 
points occupied by the two servers of the adaptive on-line 
adversary by a ,  and a,. The following observations 
facilitate the proof: 

The adversary can defer moving a server to a new  point 
until the adversary is about to place a request on that 
point. 
After Harmonic services a request, there is at least one 
point occupied by both a server of Harmonic and a 

server of the adversary. Without loss of generality, we 
assume that this point is currently occupied by a , and s1 . 

Let d ( a i ,  s,) be the distance between adversary server 
ai and Harmonic server s j ,  where i and j assume the 
values 1 or 2. The potential function we use in the 
analysis is 

MlM, @ = -  
M, + M, ’ 

where M ,  = d(a , ,  s,) + d(a,,  s2) and 
M ,  = d ( a , ,  s,) + d(a , ,  s,) are the costs of the 
two perfect matchings between Harmonic’s servers 
and those of the adversary. We show that on each request 
the expectation of 

(Harmonic’s cost) - 6 (adversary’s cost) + 4 A@ (Cl) 

is less than or equal to zero. 

or a, a distance D to a new  position (if it moves neither 
server, the following analysis holds  with D set to zero). 
We consider two cases, depending on whether a ,  or a, is 
moved by the adversary. We  now analyze what happens 
during the next request. The following fact is  useful: 
For positive reals x, y ,  2, 

Before  each request, the adversary first moves either a ,  

Case 1: The adversary moves a , to point p and places 
the next request onp .  This case is illustrated in Figure 1. 705 
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The adversary pays a cost D on this move.  With 
probability e / (D  + e ) ,  the Harmonic algorithm uses server 
s1 to service this request (paying a cost D in the process), 
and with probability D/(D + e ) ,  it uses s, (paying a cost e 
in the process). The expected cost incurred by Harmonic 
is thus 2De/(D + e ) .  At the end of the previous 
request, MI = c and M2 = g + b,  so that @ is 
c(g + b)/(c + g + b).  If Harmonic were to use s1 to 
serve the request, @ would  become (e + f)c/(e + f + c). 
If  it were to use s2, the new value of @ would be 
(D + f)b/(D + f + b).  Thus, the expectation of A@ is 

D  (D + f ) b  e (e + f ) c  c(g + b )  
D + e   D + f + b  D + e  e + f + c  c + g + b ’  
-. +-*  - 

(C3) 

Using the triangle inequality in the denominators of the 
three terms of (C3) (respectively usingf I c + e ,  
f I b + D ,  and g I D + e )  together with  (C2) 
results in 

bD + ce - gc 

b + c + D + e  706 
E[A@] 5 

Finally, using the triangle inequality e I g + D verifies 
that (Cl) holds. 

Case 2: The adversary moves a,  to  pointp and places 
the next request onp .  This case is illustrated in Figure 2. 

This  time the expected cost incurred by Harmonic is 
hi/@ + i). Once  again, we can  veri@ (Cl), using the triangle 
inequality  together  with  (C2).  This  completes the proof. 0 
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