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This paper covers four topics: 1) the operation 
and performance of cyclic redundancy checks 
(CRCs);  2) the shortest error patterns of 
various weights that are undetectable by the 
ANSMEEE-standard 32-bit CRC  (CRC32);  3) the 
general interaction of  data scramblers with 
CRCs; and 4) the specific problems that arise 
in ATM communication due to the interaction 
of the scrambler with the degree-10 CRC 
polynomial (CRClO). Elaborating 4), we explore 
the virtues of replacing CRC10 with CRC32 or 
with a  degree-10 polynomial (P2055) that has 
no factors in common with  the scrambler. 
Extensive results are presented concerning the 
capability of CRClO,  P2055, and CRC32 to 
detect various error patterns. 

Introduction and overview 
This paper offers 

A tutorial on the operation and performance of cyclic 
redundancy checks (CRCs). 

New  information  on  the  limitations of the ANSIDEEE- 
standard 32-bit CRC, specifically  on the shortest 
undetectable error patterns of various weights. 
A tutorial on the interaction of data scramblers and 
CRCs. 

and CRC proposed for asynchronous transfer mode 
(ATM) communications. 

The first tutorial begins  by  showing  how the working of 

An extensive analysis of the interaction of the scrambler 

a CRC can be described as a sequence of operations on 
polynomials that have modulo-2  coefficients, and how 
this structure can be extended to cover the problem of 
undetected data-transmission errors. We then offer a set 
of definitions that support our understanding of a CRC's 
capabilities to detect errors, followed by a set of theorems 
or rules for  analyzing its performance. 

Attention then turns to the performance of a specific 
CRC, the 32-bit ANSI/IEEE Standard (CRC32). We apply 
the rules given  in the tutorial to deduce the capability of 
CRC32 to detect transmission errors. Next, we present 
new  and  original results concerning the specific error 
patterns of weights 2-15 that CRC32 fails to detect. 
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Returning to the tutorial role, we discuss the general 
interaction of data scramblers and  CRCs,  showing that the 
capability of the CRC to detect errors is reduced whenever 
its generator polynomial has factors in  common  with the 
scrambler polynomial. 

Finally,  we  look closely at specific problems in ATM 
communication caused by the interaction of the proposed 
scrambler with the proposed degree-10  CRC  (CRC10). 
These problems are traced to the presence of a common 
factor held by both the scrambler and the generator 
polynomials. Consequently, we explore the virtues of 
choosing a different  degree-10  CRC  polynomial  (called here 
P2055) that has no factors in common  with the scrambler; 
we also look into the virtues of choosing a degree-32  CRC 
(CRC32) instead of a degree-10. Extensive results are 
given concerning the capability of  CRC10,  P2055,  and 
CRC32 to detect various error patterns. These results 
suggest that P2055 is a better choice than CRC10-by 
some measures-and, perhaps more importantly, that 
CRC32  would clearly be a better choice than any degree-10 
candidate for links on which multiple-bit errors might  be 
expected. 

Operation of the CRC 
The mathematical foundation of the cyclic redundancy 
check (CRC) is the division  algorithm  for the ring  of 
polynomials  with  coefficients taken from an algebraic field: 
For any two polynomials M ( x )  and G ( X ) ,  there exist 
unique  polynomials Q ( x )  and R ( x )  such that 

M ( x )  = Q ( x ) G ( x )  + R ( x ) ,  wherein 
the degree of R ( x )  is less than the degree of G(x) .  

Polynomial Q ( x )  is called the quotient and R ( x )  is  called 
the remainder; in the communication problem, M ( x )  is 
called the message, and G ( x )  is called the generator. 

The transmitted sequence, called here T(x) ,  is  formed 
by adding the message  and the remainder, thereby making 
the transmitted sequence a multiple of the generator: 

T(x) = M(x)  + R(x)  = Q(x)G(x)  + R(x)  + R(x).  

In the communication  problem, the polynomials’ 
coefficients are normally  drawn  from the field  of integers 
modulo-2,  making the abstract addition equivalent to the 
logical exclusive or. Consequently, 

R(x) + R(x)  = 0; 

hence, 

T(x) = M(x) + R(x)  = Q(x)G(x), 

which shows that the transmitted sequence is a multiple of 
the generator polynomial.  When the transmitted sequence 
arrives at its destination, the receiver checks to see 
whether the sequence is  still a multiple of the generator 652 
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polynomial-if it  is not, the transmitted sequence has been 
corrupted in transit by bit errors. 

The problem of undetected errors 
The pattern of errors impressed on the transmitted 
sequence can be represented as another polynomial,  called 
here E ( x ) ,  which  is added modulo-2 to T(x)  in order to 
represent the effects of the channel. In this representation, 
the transmitted sequence experiences bit errors in the 
positions where E(x)  has unit  coefficients; so, rather than 
the transmitted sequence T(x) ,  the receiver actually sees 
T ( x )  + E ( x ) .  

Suppose that some of the bits of the transmitted 
sequence are corrupted in transit by channel impairments; 
i.e., the error polynomial E ( x )  is nonzero. The remainder 
found  when  dividing T(x)  + E(x)  by the generator G ( x )  
will  be  nonzero-and the presence of transmission errors 
will  be  detected-unless E(x)  is a nonzero multiple of the 
generator G(X). If E(x)  is a nonzero multiple of G(x) ,  the 
remainder computed at the receiver will  be zero, and the 
presence of the transmission errors will  not be detected. 
In other words, error patterns that are multiples of the 
generator polynomial cannot be detected, but all other 
error patterns can. 

Performance of a CRC 
Whether a CRC generated by a certain polynomial  is 
capable of detecting a particular error pattern depends 
on the factoring relationship of the generator and the 
errors, as described above. Consequently, a study of the 
performance capabilities of CRCs  can be based on a study 
of the algebraic characteristics of generator polynomials 
and their multiples. That is the approach taken here. 
The remainder of this section defines terms that pertain 
to the study of such polynomials,  and gives some relevant 
theorems and their practical consequences; mathematical 
proofs of the theorems are not  included [l]. 

Definitions 

The weight of  an error pattern E(x)  is the number of 
terms in E(x)  that have nonzero coefficients: i.e., the 
number of ones in its bit-sequence representation, 
or the number of bit errors that it represents. 
The length of an errorpattern is the number of bits 
between the first bit in error and the last  bit in error, 
plus two (i.e., the count includes the first  and the last 
bits in error, as well as the number of places between 
them). 
A polynomial P(x) of degree k is primitive if n = 2k - 1 
is the smallest value of n for which P ( x )  is a factor of 
the polynomial x n  + 1. Peterson [2] gives a table of 
primitive  polynomials  through degree 34. 
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The  number  2k - 1 is the natural  length of a  degree-k 
primitive  polynomial. 
The Hamming weight of a  degree-k  primitive  polynomial 
is the minimum weight in the  set of error  patterns  that 
are  undetectable  by this generator in messages having 
length less  than  2k - 1 bits. In other  words,  the 
Hamming  weight is the  weight of the ''lightest'' 
undetectable  error  pattern  for  messages of less  than a 
specified  length, or  the minimum number of errors  that 
can  go  undetected.  Thus, a CRC  that is based  on a 
primitive generator  with  Hamming weight h detects 
any  pattern having  fewer than h bits in error,  but fails 
to  detect  at least one  error  pattern having exactly h 
bits in error.  Note  that  the Hamming  weight of the 
generator  may  change  as  the length of the message 
changes. 

k generator; Le., this set of error  patterns  has 2k" 
members,  one of which  is the  generator,  which 
corresponds  to an undetectable  error  pattern. 
Of the  set of error  patterns having  length greater  than 
k + 1, the fraction 1/2k is undetectable  by a CRC  with 
a  degree-k generator. If all error  patterns  are equally 
probable,  the fraction represents  the probability of 
undetected  error.  Note  that this qualification is more 
than  pedantic,  as bit errors in the  presence of most 
scramblers  and  some modulation techniques [3] cannot 
be  treated  as  independent  events,  thereby making some 
error  patterns  more likely than  others. 
Any  error  pattern  with an  odd  weight will be  detected 
by a CRC  based  on a generator  that  has x + 1 as a 
factor; a generator  with this factor,  however,  cannot  be 
primitive (it is not irreducible). 

An irreducible polynomial has  no nontrivial factors. 
All primitive  polynomials are irreducible, but  not all 
irreducible  polynomials are primitive. 
A  polynomial P ( x )  belongs to exponent e if e is the  least 
positive  integer such  that P ( x )  is a factor of (x' + 1); 
the maximum  possible value of e is 2k - 1, where k is 
the  degree of P ( x ) ;  the polynomial P ( x )  is  primitive if 
and  only if e = 2k - 1. 

Theorems 

1. Any one-bit error is detected  by a CRC  whose 

2. Any one-bit error  or two-bit error  pattern of length not 
generator  has  more  than  one term. 

3. 

4. 

5. 

6. 

7. 

exceeding e will be  detected  by a CRC  whose  generator 
belongs to exponent e. 
If degree-k  polynomial P ( x )  is a factor of xe + 1 for 
e < 2k - 1, then e is  a factor of 2k - 1;  furthermore, 
if P ( x )  belongs to  exponent e < 2k - 1, then e is  a 
factor of 2k - 1. 
Any two-bit error pattern of length not exceeding 2k - 1 
will be detected by a  CRC having a primitive degree-k 
generator. For this reason, a degree-k primitive 
polynomial generates  a  CRC  that  is said to provide 
maximalprotection against two-bit errors. 
The two-bit error  pattern E ( x )  = + 1 is 
undetected  by  any  CRC with  a  degree-k generator. 
This follows  from  a deeper  theorem which states  that 
x + 1 is a multiple of any degree-k generator 
polynomial G ( x ) .  In  other  words, if G ( x )  has degree 
k ,  a  polynomial Q ( x )  always  exists  such  that 
xZx" + 1 = Q(x)G(x) .  
Any  error  pattern having a  length k or  less will be 
detected  by a CRC with  a  degree-k generator,  because a 
multiple of the degree-k generator  cannot  have length k 
or  less. 
Of the  set of error  patterns having  length k + 1, the 
fraction 1/2k" is undetectable  by a CRC with  a  degree- 

Z k - 1  

Properties of the ANWIEEE-standard 32-bit CRC 
The  ANSI/IEEE-standard 32-bit CRC [4] is generated  by 
the degree-32  primitive  polynomial  listed by  Peterson 
[2, p. 2701 as  octal 40460216667: 

G,,(x) = x32 + xZ6 + xZ3 + xZ2 + xI6 + + x" + x" 
+ x 8  + x 7   + x 5  +x4 + X 2  + x  + 1. 

A CRC  with  generator G,,(x) will detect 

Any  one-  or two-bit error in a  message whose length 
does  not  exceed 2,' - 1 bits, because G,, (x)  is 
primitive. 
Any  error  pattern having  length less  than 33  bits. 
All but the fraction l/2,' of possible error  patterns having 
a  length of 33 bits (Le., only  one 33-bit pattern will be 
undetected-the error  pattern  corresponding  exactly  to 

All but  the fraction  l/z3' of possible error  patterns having 
CRC,,). 

a  length greater  than 33 bits. 

Table 1 gives the  shortest  undetectable  error  patterns of 
weights between  two  and fifteen.* In this table,  an error 
pattern is represented  by  the  exponents of its  terms  that 
have nonzero coefficients; for example, the weight-4 error 
patternx3006 + + x2215 + 1 is listed as (3006,  2866, 
2215, 0). Jain [5] has  proposed a subset of our  Table 1 for 
weights three through  thirteen. The additional  information 
we  present in Table 1 for  weights thirteen  through fifteen 
completes  the picture; moreover, this new information 
shows  that  the  patterns  for weights thirteen  and  fourteen 
are not  unique, whereas  the  patterns  for  the lower  weights 
might be. 

25, 1985; the author of that work  agrees with our  corrections. 
'This list corrects  errors in an earlier work:  contribution IEEE 802.85*1.198, June 



Table 1 Shortest undetectable error  patterns for ANSI/IEEE-standard 32-bit CRC. 

Weight Shortest undetectable 
error pattern 

Unique? 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
13 
14 
14 
14 
15 

4294967295, 0 
91639, 41678, 0 
3006, 2866, 2215, 0 
300, 155, 117, 89, 0 
203, 186, 123, 85,  79, 0 
123, 120, 80,  74,  53,  45, 0 
89,  88,  41,  36, 16, 13,  5, 0 
66,  57, 37, 32, 19, 18, 3, 2, 0 
53, 38, 36, 33, 30, 27,  25,  7,  3, 0 
44,  43,  41,  37, 35, 32,  31, 16, 7,  3, 0 
42, 30, 26,  24,  21,  18, 13, 8,  7,  5,  3, 0 
42,  40, 37, 35, 33, 29,  23,  20,  18, 15, 6, 1, 0 
42,  41,  40,  34, 32, 29, 19, 17, 12, 10, 8,  4, 0 
42,  39,  29,  27,  26,  21, 19, 15, 14, 8,  6,  2,  1, 0 
42,  40,  37,  34,  28,  27,  26,  20, 19, 17, 13, 6,  3, 0 
42,  36, 34, 28,  27,  25,  21,  20, 16, 15, 11, 10, 2, 0 
32,  26,  23,  22, 16, 12, 11, 10, 8,  7, 5, 4,  2,  1, 0 

Yes 
Yes 
Yes 
not  known 
not  known 
not known 
not known 
Yes 
Yes 
Yes 
Yes 
1 o f 2  
1 o f 2  
1 O f 3  
1 O f 3  
1  of  3 
yes* 

*This is the generator CRC32 itself. 

Interaction of a scrambler  and  a CRC 
To allow the receiver to derive its clock in the presence 
of long runs of binary ones or zeros, some modulation 
techniques require that transmitted data be passed through 
a scrambler. A scrambler works-in abstraction-much 
like a CRC;  i.e., the working of the scrambler can be 
described by a sequence of operations on  finite-field 
polynomials. 

Let the character of the scrambler be  defined by the 
polynomial S ( x ) .  In the presence of transmission errors 
processed by the scrambler, the receiver sees the bit 
sequence 

[T(x) + E(x)]S(x) = T(x)S(x) + E(x)S(x). 

The remainder found by computing the CRC  of the term 
T(x)S(x)  is always zero, because G ( x )  is a factor of 
T(x) ,  and therefore a factor of the product T(x)S(x) .  
Consequently, the effects of the channel impairment are 
described by the other term, called  here F(x) :  

F(x) = E(x)S(x). 

The  designation F was chosen for its mnemonic value in 
suggesting false errors, which are those generated by the 
actions of the scrambler over and above those errors 
represented by E(x) ,  which are called line errors. Some 
false errors may occur within the bounds of T ( x ) .  Others 
may  fall outside the bounds of T(x);  it  is convenient and 
descriptive to say that such errors spill  out of the message. 
The presence of errors that spill out of the message  should 
be expected, because the degree of F(x)  can exceed the 
degree of T(x)  by as much as the degree of the scrambler 

654 polynomial. 

Beyond the effects of false errors introduced by the 
scrambler, the presence of the scrambler may weaken the 
intrinsic performance of the CRC.  If S ( x )  is a multiple of 
the generator polynomial G ( x ) ,  the false-error term F(x)  
will have G ( x )  as a factor, leading to an always-zero 
remainder when the CRC  of F(x)  is computed at the 
receiver, thereby nullifying the capability of the CRC to 
detect errors. In a less catastrophic way, the power of the 
CRC is weakened whenever G ( x )  and S ( x )  have common 
factors. 

Errors that spill  out can simply be ignored if the 
scrambler is restarted with each new message. In this 
situation, the full capability of the CRC should be 
maintained  when the scrambler and the generator have no 
common factors; for example, an irreducible polynomial 
could be chosen as the scrambler. If the scrambler is 
allowed to run continuously, however, the effects of spilled 
errors must  be considered in any analysis of the CRC’s 
performance. Moreover, no  simple rules can be given  for 
understanding the scrambler’s impact  on the capability of 
the CRC-each case must be examined on its own. 

ATM  communication  and its scrambler 
ATM (asynchronous transfer mode) communication is 
based on the segmentation of a data frame into a plurality 
of 53-byte cells, where these cells each carry a 48-byte 
payload (384 bits) and have a five-byte header. The 
payload  CRC proposed for ATM Adaptation Layer 
type 3/4  (AAL-3/4) provides a 10-bit  CRC generated 
by a polynomial  called  CRC10, 

CRClO = x10 + x 9  + x 5  + x4 + x + 1, 
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as described more  fully by Dravida  and  Damodaram [6]; 
Simmons and Gallager [7] discuss the specifics of the ATM 
error-control problem in more detail. 

The ATM bit stream is scrambled according to the 
polynomial S ( x )  = x43 + 1; during the transmission of the 
five-byte headers, however, the scrambler is turned off, 
but not reset. Moreover, a number of sources may be 
multiplexed, meaning that cells that are adjacent in the 
ATM stream may  not  belong to the same source- 
destination pair. 

To accommodate the effects of the scrambler and 
multiplexer, the ATM error-control mechanism  must be 
capable of detecting several kinds of errors: 

Errors within the received sequence that are caused by 
impairments to the transmission channel. 
Errors spilling into the received sequence as the result of 
the scrambler’s operations on transmission errors that 
occurred in the last 43 bits of the previous cell. 
Errors spilling into the received sequence as the result of 
the scrambler’s operations on transmission errors that 
occurred in the first 341 bits of the cell  itself. 

Accordingly, the performance of  CRClO is to be  judged 
against the following three criteria: 

1. Al l  error patterns resulting from one- or two-bit  line 
errors must be detected in the case wherein no  false 
errors spill into the cell’s  384-bit  payload. 

2. All error patterns must be detected in the case wherein 
the cell experiences a one-bit line error in the last 43 
bits of the payload  (meaning that the scrambler’s image 
of this error spills into the next cell) and a one-bit false 
error spills into the cell as the result of the scrambler’s 
actions in the previous cell. 

3. All error patterns must  be detected in the case wherein 
1) a single  line error occurs, 2) the scrambler’s image  of 
that error spills into the same cell, and  3) a one-bit false 
error spills into the cell as the result of the scrambler’s 
actions in the previous cell. 

The capability of CRClO with the ATM scrambler 
The generator polynomial  CRClO can be factored into the 
product of two primitives: 

CRClO =x1’ + x 9   + x 5  + x 4  + X  + 1 

= (x  + 1)(x9 + x4 + 1). 

By the theorems given earlier, the primitive term ( x  + 1) 
should detect all error patterns with  odd  weight  (i.e., an 
odd  number of bit errors) as seen by the CRC decoder; 
furthermore, the primitive  term (x’ + x4 + 1) should 
detect all two-bit error patterns as seen by the CRC 
decoder, provided that the message  length does not exceed 

511 bits, which  is  always the case in the ATM  problem. 
The caveat as seen by the CRC decoder is a reminder that 
the error pattern seen by the CRC decoder differs  from the 
line-error pattern, thanks to effects of the scrambler. 

irreducible terms: 
The scrambler polynomial can be factored into four 

where 

S,(x) = (x14 + Xl3 + XI1 + x 7  + x 3  + x + l), 
S3(x) = (XI4 + XI2 + X1O + x7 + x4 + x 2  + l), 
S4(x) = (x14 + XI1 + XI0 + x’ + x 8  + x 7  + x6 + x 5  

+ x4 + x 3  + 1). 

Because the term (x + 1) is common to the generator and 
the scrambler, the error-detecting capabilities of this term 
are nullified, thereby annulling CRClO’s claim to detecting 
all error patterns with  an  odd  weight. Thus, in the 
presence of the scrambler, the capability of  CRClO 
is reduced to the capability of the remaining factor 
(x’ + x4 + 1). The question naturally arises: “Can we 
find a degree-10 generator polynomial that works better 
than CRClO with the (x43 + 1) scrambler?” 

Other IO-bit candidates for generating the  ATM CRC 
In the search for a new  CRC generator, we can eliminate 
the set of reducible polynomials  from further consideration 
by the following  argument: The theorems given earlier 
show that the generator needs a degree-9 (or higher) factor 
to ensure the detection of  all two-bit errors in a 384-bit 
message. Furthermore, we  disallow x as a factor of the 
generator to ensure the detection of  all single-bit errors. 
This leaves ( x  + 1) as the only other factor suitable for 
multiplying a degree-9 factor to construct a degree-10 
generator. Since ( x  + 1) is a factor of the scrambler, we 
disallow it as a factor of the new generator; indeed, the 
desire to avoid this factor motivates the search for a new 
generator. Consequently, a suitable generator that is a 
reducible polynomial cannot be found. 

can be  divided into two categories: polynomials that are 
primitive,  and  polynomials that are not  primitive.  By the 
following argument, we  can  eliminate the nonprimitives 
from further consideration: The largest factor of 21° - 1 
is 341. Consequently, the largest exponent to which a 
degree-10  nonprimitive  can  belong  is  341.  Consequently, the 
detection of  two-bit errors by a degree-10  (nonprimitive) 
polynomial  is  ensured  only  for  messages  whose  lengths 

The  remaining  polynomials-those that are irreducible- 



do not  exceed  341  bits.  In this problem,  however,  the 
message  length is 384 bits. We therefore  eliminate 
degree-10  polynomials  that are not  primitive as candidates 
to replace CRC10,  leaving only  the set of degree-10 
primitive  polynomials  for  consideration. 

Sixty degree-10  primitive  polynomials are identified 
by Peterson [2].  We have examined several of these 
exhaustively, recreating all possible error patterns by 
computer simulation and checking for undetectable errors, 
thereby verifying that the several polynomials  indeed  meet 
the three points of the judgement criteria in the particular 
circumstances of this problem. In  more general 
circumstances, however, there is no guarantee that 
a degree-10  primitive can detect all three-bit error patterns, 
which is a limitation that (inappropriately) suggests that 
a degree-10  primitive  could not meet point 3 of the 
judgement criteria. 

established for this problem, one would  seem a priori 
about as good as another. We therefore arbitrarily select 
the polynomial P2055 = x10 + x5 + x3 + x* + 1 for 
further study. In octal notation, this is the polynomial 
2055. 

Among the degree-10  polynomials that meet the criteria 

Comparing CRClO, P2055, and  CRC32 
Table 2 shows the error-detecting capability of three 
generators-CRC10,  P2055,  and CRC32”under various 
permutations of the numbers of line errors, errors that spill 
into a cell,  and errors that spill out; these permutations are 
called cases as a matter of convenience. The results shown 
in Table 2 were found  by  appealing to the theorems given 
earlier, or, for cases beyond the reach of the theorems, by 
examining the remainders R ( x )  associated with  all possible 
error patterns with the help of a computer, checking for 
undetectable errors. This exhaustive examination exploited 
the linearity of the CRC: The remainder associated with a 
particular error pattern was found by summing (modulo-2) 
the remainders of the error pattern’s individual terms. For 
example, the remainder associated with the error pattern 
x3 + x’ + 1 was found  by  summing the remainder 
associated with x3, the remainder associated with x 2 ,  and 
the remainder associated withx’ or 1. In this context, the 
remainders are often called “syndromes.” 

In Table 2, the cases are numbered 1 through 45  in the 
first  column; the nature of each case is  given in columns 
two through  five; the performance of  CRC10,  P2055, and 
CRC32  is  given  in columns six, seven, and  eight, 
respectively. The entries in columns six through  eight 
are counts of the numbers of different error patterns 
undetected by the CRCs  identified by the columns’ 
headers. A count is listed simply as “F” wherever at least 
one undetected error pattern was found, but where the 
precise number of undetected patterns could  not be 
determined. 656 
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Discussion of Table 2 
Earlier, we listed the criteria for judging the performance 
of a CRC  in the context of this problem; these criteria are 
repeated here for the sake of convenience. In the problem 
at hand, the performance of  CRClO is to be  judged  against 
the following three points: 

1. All error patterns resulting from one- or two-bit  line 
errors must be detected in the case wherein no false 
errors spill into the cell’s  384-bit  payload. 

2. All error patterns must be detected in the case wherein 
the cell experiences a one-bit line error in the last 43 
bits of the payload  (meaning that the scrambler’s image 
of this error spills into the next cell) and a one-bit false 
error spills into the cell as the result of the scrambler’s 
actions in the previous cell. 

3. All error patterns must  be detected in the case wherein 
1) a single  line error occurs, 2) the scrambler’s image  of 
that error spills into the same cell, and 3) a one-bit false 
error spills into the cell as the result of the scrambler’s 
actions in the previous cell. 

All three of the generators examined here meet the points 
of the criteria. Within Table 2, entries (2)  through (6) show 
that point 1 is met; entry (13) shows that point 2 is  met; 
entry (12) shows that point 3 is met. 

Further, according to the entries of Table 2, at least 
three line errors must  occur-sometimes spread over two 
adjacent cells given the presence of the scrambler-in 
order to produce an error pattern that is undetected by 
CRClO or P2055. The appearance of an asterisk (*) in 
Table 2 denotes the relevant entries. Because three 
line errors are required to generate these patterns, the 
probability of occurrence of the associated undetected- 
error pattern is proportional top3,  wherep is the bit- 
error ratio of the underlying transmission medium, here 
assuming that line errors can  be  modeled as independently 
occurring events. Accounting for the occurrence of higher- 
order error patterns in the same way suggests that the 
probability of any undetected error is given by the sum of 
a finite sequence of terms in p N ,  where N 2 3. For small 
values ofp ,  this sum  is dominated by thep3 term. 

Without the scrambler and the resulting loss of (x + 1) 
as a factor of  CRC10, however, all three-bit error patterns 
would be detected by  CRC10, and the sequence for the 
probability of any undetected error would be dominated by 
thep4 term. Thus, the effect of the scrambler on CRClO is 
to weaken the performance in allowing undetected errors 
by (approximately) the factorp. 

Other entries in Table 2 suggest that P2055 is superior to 
CRClO  in detecting even numbers of errors, while  CRClO 
is superior to P2055  in detecting odd numbers. Entries (41) 
through  (45), however, suggest that neither CRClO nor 
P2055 is very good at protecting against  multiple  errors- 
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CRC32  is quite superior to either of the degree-10 choices, 
as would  be expected. Note from Table 2 that five or 
more bit errors must occur before the possibility of errors 
undetected by CRC32  is opened. According to the same 
kind of argument constructed above, the probability of 
undetected errors with CRC32 and the scrambler is 
dominated at worst by the p 5  term of the summed 
sequence. Thus, replacing  CRClO  with  CRC32  when the 
scrambler is present would restore (and surpass) the 
performance offered by CRClO absent the scrambler. 

Further observations 
The following behavior was observed for CRClO and 
P2055  in the presence of the (x43 + 1) scrambler: 

The length of the shortest undetected three-bit line 
error is . CRC10-ten bits, exponents (0, 4, Y), occurring 332 

. P2055”enty bits, exponents (332,  341,  351), 
times in  384 bits. 

occurring nine times in 384 bits. 
The length of the most frequently occurring three-bit 
undetected error pattern is . CRC10-ten bits, exponents (0, 4, Y), occurring 332 

. P2055-56 bits, exponents (0, 28, 55), occurring 286 
times in  384 bits. 

times in  384 bits. 

Finally, a consecutive run of error patterns undetected 
by CRClO was unexpectedly found. These patterns are 
created by three errors spilling into the 384-bit  cell  in 
positions (0, 16, 36), accompanied by two line errors falling 
into positions (0 + N ,  370 + N ) ,  where 0 5 N 5 13. 

Concluding  remarks 
We have given a  set of theorems useful in characterizing 
the error-detecting capabilities of  CRC polynomials, a 
tutorial on the interaction between data scramblers and 
CRCs,  and extensive results on the characteristics and 
performance capabilities of a number of different 
polynomials. Throughout, the implicit metric of goodness 
has been the capability to detect errors. Clearly, this 
metric would  be  but one of many in any real-world system- 
design  problem. Other considerations not mentioned here 
would inevitably include transmission overhead, error- 
correction capability, implementation complexity, and 
so forth. 
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