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This paper covers four topics: 1) the operation
and performance of cyclic redundancy checks
(CRCs); 2) the shortest error patterns of
various weights that are undetectable by the
ANSI/IEEE-standard 32-bit CRC (CRC32); 3) the
general interaction of data scramblers with
CRCs; and 4) the specific problems that arise
in ATM communication due to the interaction
of the scrambler with the degree-10 CRC
polynomial (CRC10). Elaborating 4), we explore
the virtues of replacing CRC10 with CRC32 or
with a degree-10 polynomial (P2055) that has
no factors in common with the scrambler.
Extensive results are presented concerning the
capability of CRC10, P2055, and CRC32 to
detect various error patterns.

Introduction and overview
This paper offers

e A tutorial on the operation and performance of cyclic
redundancy checks (CRCs).

¢ New information on the limitations of the ANSI/IEEE-
standard 32-bit CRC, specifically on the shortest
undetectable error patterns of various weights.

¢ A tutorial on the interaction of data scramblers and
CRCs.

e An extensive analysis of the interaction of the scrambler
and CRC proposed for asynchronous transfer mode
(ATM) communications.

The first tutorial begins by showing how the working of
a CRC can be described as a sequence of operations on
polynomials that have modulo-2 coefficients, and how
this structure can be extended to cover the problem of
undetected data-transmission errors. We then offer a set
of definitions that support our understanding of a CRC’s
capabilities to detect errors, followed by a set of theorems
or rules for analyzing its performance.

Attention then turns to the performance of a specific
CRC, the 32-bit ANSI/IEEE Standard (CRC32). We apply
the rules given in the tutorial to deduce the capability of
CRC32 to detect transmission errors. Next, we present
new and original results concerning the specific error
patterns of weights 2-15 that CRC32 fails to detect.
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Returning to the tutorial role, we discuss the general
interaction of data scramblers and CRCs, showing that the
capability of the CRC to detect errors is reduced whenever
its generator polynomial has factors in common with the
scrambler polynomial.

Finally, we look closely at specific problems in ATM
communication caused by the interaction of the proposed
scrambler with the proposed degree-10 CRC (CRC10).
These problems are traced to the presence of a common
factor held by both the scrambler and the generator
polynomials. Consequently, we explore the virtues of
choosing a different degree-10 CRC polynomial (called here
P2055) that has no factors in common with the scrambler;
we also look into the virtues of choosing a degree-32 CRC
(CRC32) instead of a degree-10. Extensive results are
given concerning the capability of CRC10, P2055, and
CRC32 to detect various error patterns. These results
suggest that P2055 is a better choice than CRC10—by
some measures—and, perhaps more importantly, that
CRC32 would clearly be a better choice than any degree-10
candidate for links on which multiple-bit errors might be
expected.

Operation of the CRC

The mathematical foundation of the cyclic redundancy
check (CRC) is the division algorithm for the ring of
polynomials with coefficients taken from an algebraic field:
For any two polynomials M(x) and G(X), there exist
unique polynomials Q(x) and R(x) such that

* M(x) = Q(x)G(x) + R(x), wherein
e the degree of R(x) is less than the degree of G(x).

Polynomial Q(x) is called the quotient and R(x) is called
the remainder; in the communication problem, M(x) is
called the message, and G(x) is called the generator.

The transmitted sequence, called here T(x), is formed
by adding the message and the remainder, thereby making
the transmitted sequence a multiple of the generator:

T(x) = M(x) + R(x) = Q(x)G(x) + R(x) + R(x).

In the communication problem, the polynomials’
coefficients are normally drawn from the field of integers
modulo-2, making the abstract addition equivalent to the
logical exclusive or. Consequently,

R(x) + R(x) = 0;
hence,
T(x) = M(x) + R(x) = Q(x)G(x),

which shows that the transmitted sequence is a multiple of
the generator polynomial. When the transmitted sequence
arrives at its destination, the receiver checks to see
whether the sequence is still a multiple of the generator
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polynomial—if it is not, the transmitted sequence has been
corrupted in transit by bit errors.

® The problem of undetected errors

The pattern of errors impressed on the transmitted
sequence can be represented as another polynomial, called
here E(x), which is added modulo-2 to T(x) in order to
represent the effects of the channel. In this representation,
the transmitted sequence experiences bit errors in the
positions where E(x) has unit coefficients; so, rather than
the transmitted sequence T(x), the receiver actually sees
T(x) + E(x).

Suppose that some of the bits of the transmitted
sequence are corrupted in transit by channel impairments;
i.e., the error polynomial E(x) is nonzero. The remainder
found when dividing T(x) + E(x) by the generator G(x)
will be nonzero—and the presence of transmission errors
will be detected—unless E(x) is a nonzero multiple of the
generator G(x). If E(x) is a nonzero multiple of G(x), the
remainder computed at the receiver will be zero, and the
presence of the transmission errors will not be detected.
In other words, error patterns that are multiples of the
generator polynomial cannot be detected, but all other
error patterns can.

Performance of a CRC

Whether a CRC generated by a certain polynomial is
capable of detecting a particular error pattern depends

on the factoring relationship of the generator and the
errors, as described above. Consequently, a study of the
performance capabilities of CRCs can be based on a study
of the algebraic characteristics of generator polynomials
and their multiples. That is the approach taken here.

The remainder of this section defines terms that pertain
to the study of such polynomials, and gives some relevant
theorems and their practical consequences; mathematical
proofs of the theorems are not included [1].

® Definitions

e The weight of an error pattern E(x) is the number of
terms in E(x) that have nonzero coefficients: i.e., the
number of ones in its bit-sequence representation,
or the number of bit errors that it represents.

o The length of an error pattern is the number of bits

between the first bit in error and the last bit in error,

plus two (i.e., the count includes the first and the last
bits in error, as well as the number of places between
them).

A polynomial P(x) of degree k is primitive if n = 2* — 1

is the smallest value of n for which P(x) is a factor of

the polynomial x” + 1. Peterson [2] gives a table of

primitive polynomials through degree 34.
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o The number 2* — 1 is the natural length of a degree-k
primitive polynomial.

» The Hamming weight of a degree-k primitive polynomial
is the minimum weight in the set of error patterns that
are undetectable by this generator in messages having
length less than 2° — 1 bits. In other words, the
Hamming weight is the weight of the ““lightest™
undetectable error pattern for messages of less than a
specified length, or the minimum number of errors that
can go undetected. Thus, a CRC that is based on a
primitive generator with Hamming weight & detects
any pattern having fewer than A bits in error, but fails
to detect at least one error pattern having exactly 4
bits in error. Note that the Hamming weight of the
generator may change as the length of the message
changes.

& An irreducible polynomial has no nontrivial factors.
All primitive polynomials are irreducible, but not all
irreducible polynomials are primitive.

& A polynomial P(x) belongs to exponent e if e is the least
positive integer such that P(x) is a factor of (x° + 1);
the maximum possible value of e is 2* — 1, where & is
the degree of P(x); the polynomial P(x) is primitive if
and only if e = 2* - 1.

& Theorems

1. Any one-bit error is detected by a CRC whose
genecrator has more than one term.

2. Any one-bit error or two-bit error pattern of length not
exceeding e will be detected by a CRC whose generator
belongs to exponent e.

3. If degree-k polynomial P(x) is a factor of x° + 1 for
e < 2* — 1, then e is a factor of 2k — 1; furthermore,
if P(x) belongs to exponent e < 2° — 1, then e is a
factor of 2 — 1.

4. Any two-bit error pattern of length not exceeding 2* ~ 1
will be detected by a CRC having a primitive degree-k
generator. For this reason, a degree-k primitive
polynomial generates a CRC that is said to provide
maximal protection against two-bit etrors.

5. The two-bit error pattern E(x) = x4 Lis
undetected by any CRC with a degree-k generator.
This follows from a deeper theorem which states that
4 lisa multiple of any degree-k generator
polynomial G(x). In other words, if G(x) has degree
k, a polynomial Q(x) always exists such that
741 = Q(x)G(x).

6. Any error pattern having a length & or less will be
detected by a CRC with a degree-k generator, because a
multiple of the degree-k generator cannot have length k&
or less.

7. Of the set of error patterns having length k£ + 1, the
fraction 1/2*”" is undetectable by a CRC with a degree-
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k generator; i.c., this set of error patterns has 2¢”'
members, one of which is the generator, which
corresponds to an undetectable error pattern.

8. Of the set of error patterns having length greater than
k + 1, the fraction 1/2* is undetectable by a CRC with
a degree-k generator. If all error patterns are equally
probable, the fraction represents the probability of
undetected error. Note that this qualification is more
than pedantic, as bit errors in the presence of most
scramblers and some modulation techniques [3] cannot
be treated as independent events, thereby making some
error patterns more likely than others.

9. Any error pattern with an odd weight will be detected
by a CRC based on a generator that hasx + 1 as a
factor; a generator with this factor, however, cannot be
primitive (it is not irreducible).

Properties of the ANSI/IEEE-standard 32-bit CRC
The ANSI/IEEE-standard 32-bit CRC [4] is generated by
the degree-32 primitive polynomial listed by Peterson

[2, p- 270] as octal 40460216667:

G,(x) = P R T G T S P R

+x3+ x4+ o+ L

A CRC with generator G,,(x) will detect

& Any one- or two-bit error in a message whose length
does not exceed 2” — 1 bits, because G,(x)is
primitive.

& Any error pattern having length less than 33 bits.

« All but the fraction 1/2" of possible error patterns having
a length of 33 bits (i.e., only one 33-bit pattern will be
undetected—the error pattern corresponding exactly to
CRC,).

« All but the fraction 1/2% of possible error patterns having
a length greater than 33 bits.

Table 1 gives the shortest undetectable error patterns of
weights between two and fifteen.* In this table, an error
pattern is represented by the exponents of its terms that
have nonzero coefficients; for example, the weight-4 error
pattern x> + x*° + x* + 1 is listed as (3006, 2866,
2215, 0). Jain [5] has proposed a subset of our Table 1 for
weights three through thirteen. The additional information
we present in Table 1 for weights thirteen through fifteen
completes the picture; moreover, this new information
shows that the patterns for weights thirteen and fourteen
are not unique, whereas the patterns for the lower weights
might be.

*This list corrects errors in an earlier work: contribution IEEE 802.85%1.198, June
25, 1985; the author of that work agrees with our corrections.
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Table 1 Shortest undetectable error patterns for ANSI/IEEE-standard 32-bit CRC.

Weight Shortest undetectable Unique?
error pattern

2 4294967295, 0 yes
3 91639, 41678, 0 yes
4 3006, 2866, 2215, 0 yes
5 300, 155, 117, 89, 0 not known
6 203, 186, 123, 85, 79, 0 not known
7 123, 120, 80, 74, 53, 45, 0 not known
8 89, 88, 41, 36, 16, 13, 5, 0 not known
9 66, 57, 37,32, 19, 18, 3, 2,0 yes

10 53, 38, 36, 33, 30, 27, 25, 7, 3,0 yes

1 44,43, 41, 37, 35, 32,31, 16, 7,3, 0 yes

12 42, 30, 26, 24, 21, 18, 13,8, 7, 5,3, 0 yes

13 42, 40, 37, 35, 33, 29, 23, 20, 18, 15,6, 1, 0 1of2

13 42, 41, 40, 34, 32,29, 19, 17, 12, 10, 8, 4, 0 1of2

14 42, 39, 29, 27, 26, 21, 19, 15, 14, 8, 6,2, 1, 0 1of3

14 42, 40, 37, 34, 28, 27, 26, 20, 19, 17, 13, 6, 3, 0 lof3

14 42, 36, 34, 28, 27, 25, 21, 20, 16, 15, 11, 10, 2, 0 1of3

15 32, 26, 23, 22, 16, 12, 11, 10, 8, 7,5, 4, 2,1, 0 yes*

*This is the generator CRC32 itself.

Interaction of a scrambler and a CRC

To allow the receiver to derive its clock in the presence
of long runs of binary ones or zeros, some modulation
techniques require that transmitted data be passed through
a scrambler. A scrambler works—in abstraction—much
like a CRC; i.e., the working of the scrambler can be
described by a sequence of operations on finite-field
polynomials.

Let the character of the scrambler be defined by the
polynomial S(x). In the presence of transmission errors
processed by the scrambler, the receiver sees the bit
sequence

[T(x) + E(x)]S(x) = T(x)S(x) + E(x)S(x).

The remainder found by computing the CRC of the term
T(x)S(x) is always zero, because G(x) is a factor of
T(x), and therefore a factor of the product T(x)S(x).
Consequently, the effects of the channel impairment are
described by the other term, called here F(x):

F(x) = E(x)S(x).

The designation F was chosen for its mnemonic value in
suggesting false errors, which are those generated by the
actions of the scrambler over and above those errors
represented by E(x), which are called line errors. Some
false errors may occur within the bounds of 7(x). Others
may fall outside the bounds of T(x); it is convenient and
descriptive to say that such errors spill out of the message.
The presence of errors that spill out of the message should
be expected, because the degree of F(x) can exceed the
degree of T(x) by as much as the degree of the scrambler
polynomial.
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Beyond the effects of false errors introduced by the
scrambler, the presence of the scrambler may weaken the
intrinsic performance of the CRC. If S(x) is a multiple of
the generator polynomial G(x), the false-error term F(x)
will have G(x) as a factor, leading to an always-zero
remainder when the CRC of F(x) is computed at the
receiver, thereby nullifying the capability of the CRC to
detect errors. In a less catastrophic way, the power of the
CRC is weakened whenever G(x) and S(x) have common
factors.

Errors that spill out can simply be ignored if the
scrambler is restarted with each new message. In this
situation, the full capability of the CRC should be
maintained when the scrambler and the generator have no
common factors; for example, an irreducible polynomial
could be chosen as the scrambler. If the scrambler is
allowed to run continuously, however, the effects of spilled
errors must be considered in any analysis of the CRC’s
performance. Moreover, no simple rules can be given for
understanding the scrambler’s impact on the capability of
the CRC—each case must be examined on its own.

ATM communication and its scrambler

ATM (asynchronous transfer mode) communication is
based on the segmentation of a data frame into a plurality
of 53-byte cells, where these cells each carry a 48-byte
payload (384 bits) and have a five-byte header. The
payload CRC proposed for ATM Adaptation Layer

type 3/4 (AAL-3/4) provides a 10-bit CRC generated

by a polynomial called CRC10,

CRCIO=x"+x"+x°+x* +x + 1,
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as described more fully by Dravida and Damodaram [6];
Simmons and Gallager [7] discuss the specifics of the ATM
error-control problem in more detail.

The ATM bit stream is scrambled according to the
polynomial S(x) = x* + 1; during the transmission of the
five-byte headers, however, the scrambler is turned off,
but not reset. Moreover, a number of sources may be
multiplexed, meaning that cells that are adjacent in the
ATM stream may not belong to the same source-
destination pair.

To accommodate the effects of the scrambler and
multiplexer, the ATM error-control mechanism must be
capable of detecting several kinds of errors:

¢ Errors within the received sequence that are caused by
impairments to the transmission channel.

¢ Errors spilling into the received sequence as the result of
the scrambler’s operations on transmission errors that
occurred in the last 43 bits of the previous cell.

o Errors spilling into the received sequence as the result of
the scrambler’s operations on transmission errors that
occurred in the first 341 bits of the cell itself.

Accordingly, the performance of CRCI10 is to be judged
against the following three criteria:

1. All error patterns resulting from one- or two-bit line
errors must be detected in the case wherein no false
errors spill into the cell’s 384-bit payload.

2. All error patterns must be detected in the case wherein
the cell experiences a one-bit line error in the last 43
bits of the payload (meaning that the scrambler’s image
of this error spills into the next cell) and a one-bit false
error spills into the cell as the result of the scrambler’s
actions in the previous cell.

3. All error patterns must be detected in the case wherein
1) a single line error occurs, 2) the scrambler’s image of
that error spills into the same cell, and 3) a one-bit false
error spills into the cell as the result of the scrambler’s
actions in the previous cell.

® The capability of CRCI10 with the ATM scrambler
The generator polynomial CRC10 can be factored into the
product of two primitives:

CRCIO=x"+x"+x"+x"+x+1
=(x+ D’ +x*+1).

By the theorems given earlier, the primitive term (x + 1)
should detect all error patterns with odd weight (i.e., an
odd number of bit errors) as seen by the CRC decoder;
furthermore, the primitive term (x* + x* + 1) should
detect all two-bit error patterns as seen by the CRC
decoder, provided that the message length does not exceed
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511 bits, which is always the case in the ATM problem.
The caveat as seen by the CRC decoder is a reminder that
the error pattern seen by the CRC decoder differs from the
line-error pattern, thanks to effects of the scrambler.

The scrambler polynomial can be factored into four
irreducible terms:

Sx)=(x®+ 1) =[] S,
i=1

where

Sx)=(x+1)

S,(x) = ="+ et X+ A x+ 1),

S0) = (x"+x?+x" +x" +x+ 27+ 1),

S,(x) = S A T B P 2 T A
+x+x+ 1).

Because the term (x + 1) is common to the generator and
the scrambler, the error-detecting capabilities of this term
are nullified, thereby annulling CRC10’s claim to detecting
all error patterns with an odd weight. Thus, in the
presence of the scrambler, the capability of CRC10

is reduced to the capability of the remaining factor

(x° + x* + 1). The question naturally arises: “Can we
find a degree-10 generator polynomial that works better
than CRC10 with the (x* + 1) scrambler?”’

® QOther 10-bit candidates for generating the ATM CRC
In the search for a new CRC generator, we can climinate
the set of reducible polynomials from further consideration
by the following argument: The theorems given earlier
show that the generator needs a degree-9 (or higher) factor
to ensure the detection of all two-bit errors in a 384-bit
message. Furthermore, we disallow x as a factor of the
generator to ensure the detection of all single-bit errors.
This leaves (x + 1) as the only other factor suitable for
multiplying a degree-9 factor to construct a degree-10
generator. Since (x + 1) is a factor of the scrambler, we
disallow it as a factor of the new generator; indeed, the
desire to avoid this factor motivates the search for a new
generator. Consequently, a suitable generator that is a
reducible polynomial cannot be found.

The remaining polynomials—those that are irreducible—
can be divided into two categories: polynomials that are
primitive, and polynomials that are not primitive. By the
following argument, we can eliminate the nonprimitives
from further consideration: The largest factor of 2'° — 1
is 341. Consequently, the largest exponent to which a
degree-10 nonprimitive can belong is 341. Consequently, the
detection of two-bit errors by a degree-10 (nonprimitive)

polynomial is ensured only for messages whose lengths 655
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do not exceed 341 bits. In this problem, however, the
message length is 384 bits. We therefore eliminate
degree-10 polynomials that are not primitive as candidates
to replace CRC10, leaving only the set of degree-10
primitive polynomials for consideration.

Sixty degree-10 primitive polynomials are identified
by Peterson [2]. We have examined several of these
exhaustively, recreating all possible error patterns by
computer simulation and checking for undetectable errors,
thereby verifying that the several polynomials indeed meet
the three points of the judgement criteria in the particular
circumstances of this problem. In more general
circumstances, however, there is no guarantee that
a degree-10 primitive can detect all three-bit error patterns,
which is a limitation that (inappropriately) suggests that
a degree-10 primitive could not meet point 3 of the
judgement criteria.

Among the degree-10 polynomials that meet the criteria
established for this problem, one would seem a priori
about as good as another. We therefore arbitrarily select
the polynomial P2055 = x™* + x* + x* + x* + 1 for
further study. In octal notation, this is the polynomial
2055.

® Comparing CRC10, P2055, and CRC32

Table 2 shows the error-detecting capability of three
generators—CRC10, P2055, and CRC32—under various
permutations of the numbers of line errors, errors that spill
into a cell, and errors that spill out; these permutations are
called cases as a matter of convenience. The results shown
in Table 2 were found by appealing to the theorems given
earlier, or, for cases beyond the reach of the theorems, by
examining the remainders R(x) associated with all possible
error patterns with the help of a computer, checking for
undetectable errors. This exhaustive examination exploited
the linearity of the CRC: The remainder associated with a
particular error pattern was found by summing (modulo-2)
the remainders of the error pattern’s individual terms. For
example, the remainder associated with the error pattern
x> + x> + 1 was found by summing the remainder
associated with x”, the remainder associated with x*, and
the remainder associated with x° or 1. In this context, the
remainders are often called ‘““syndromes.”

In Table 2, the cases are numbered 1 through 45 in the
first column; the nature of each case is given in columns
two through five; the performance of CRC10, P2055, and
CRC32 is given in columns six, seven, and eight,
respectively. The entries in columns six through eight
are counts of the numbers of different error patterns
undetected by the CRCs identified by the columns’
headers. A count is listed simply as ““F”” wherever at least
one undetected error pattern was found, but where the
precise number of undetected patterns could not be
determined.
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® Discussion of Table 2

Earlier, we listed the criteria for judging the performance
of a CRC in the context of this problem; these criteria are
repeated here for the sake of convenience. In the problem
at hand, the performance of CRC10 is to be judged against
the following three points:

1. All error patterns resulting from one- or two-bit line
errors must be detected in the case wherein no false
errors spill into the cell’s 384-bit payload.

2. All error patterns must be detected in the case wherein
the cell experiences a one-bit line error in the last 43
bits of the payload (meaning that the scrambler’s image
of this error spills into the next cell) and a one-bit false
error spills into the cell as the result of the scrambler’s
actions in the previous cell.

3. All error patterns must be detected in the case wherein
1) a single line error occurs, 2) the scrambler’s image of
that error spills into the same cell, and 3) a one-bit false
error spills into the cell as the result of the scrambler’s
actions in the previous cell.

All three of the generators examined here meet the points
of the criteria. Within Table 2, entries (2) through (6) show
that point 1 is met; entry (13) shows that point 2 is met;
entry (12) shows that point 3 is met.

Further, according to the entries of Table 2, at least
three line errors must occur—sometimes spread over two
adjacent cells given the presence of the scrambler—in
order to produce an error pattern that is undetected by
CRC10 or P2055. The appearance of an asterisk (*) in
Table 2 denotes the relevant entries. Because three
line errors are required to generate these patterns, the
probability of occurrence of the associated undetected-
error pattern is proportional to p°, where p is the bit-
error ratio of the underlying transmission medium, here
assuming that line errors can be modeled as independently
occurring events. Accounting for the occurrence of higher-
order error patterns in the same way suggests that the
probability of any undetected error is given by the sum of
a finite sequence of terms in p", where N = 3. For small
values of p, this sum is dominated by the p* term.

Without the scrambler and the resulting loss of (x + 1)
as a factor of CRC10, however, all three-bit error patterns
would be detected by CRC10, and the sequence for the
probability of any undetected error would be dominated by
the p* term. Thus, the effect of the scrambler on CRC10 is
to weaken the performance in allowing undetected errors
by (approximately) the factor p.

Other entries in Table 2 suggest that P2055 is superior to
CRCI10 in detecting even numbers of errors, while CRC10
is superior to P2055 in detecting odd numbers. Entries (41)
through (45), however, suggest that neither CRC10 nor
P2055 is very good at protecting against multiple errors—
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CRC(32 is quite superior to either of the degree-10 choices, ~ Table 2 Performance comparison of CRC10, P2055,
as would be expected. Note from Table 2 that five or and CRC32.

more bit errors must occur before the possibility of errors
undetected by CRC32 is opened. According to the same
kind of argument constructed above, the probability of Spilled Line  Total CRC10  P2055 CRC32
undetected errors with CRC32 and the scrambler is i om &Tor seen

dominated at worst by the p* term of the summed in cell by CRC

Case Number of errors Generator

sequence. Thus, replacing CRC10 with CRC32 when the m o 0 0 0 0 0 0
scrambler is present would restore (and surpass) the EZ; 8 0 1 2 0 8 8
3 1 1 1 0

performance offered by CRC10 absent the scrambler. @ o0 o ’ 4 0 o 0
Gy 0 1 2 3 0 0 0
® Further observations (6)* 0 2 2 2 0 0 0
The following behavior was observed for CRC10 and g&;* 8 (1) g g 12,73 g g’ggg 8
P2055 in the presence of the (x* + 1) scrambler: @* 0 2 3 4 578 37 0
1o o0 3 3 3 0 0 0
T ay 1 0 0 1 0 0 0
e The le.ngth of the shortest undetected three-bit line 12 1 0 1 3 0 o 0
error is 3 1 1 1 2 0 0 0
« CRC10—ten bits, exponents (0, 4, 9), occurring 332 51‘513: i 0 2 5 . 290 2,633 g

: ; ; 1 1 2 4 ,296 55
times in 384 bltS.. ae* 1 2 5 5 0 0 0
« P2055—twenty bits, exponents (332, 341, 351), Qa7 1 0 3 7 0 276,030 O
occurring nine times in 384 bits. }18; 11 3 g 209,610 105,302 0
: b 19 1 2 3 0 13,01 0
¢ The length of the most fr.equently occurring three-bit 2) 1 3 3 1 83 542 0
undetected error pattern is @y 2 o0 0 2 0 0 0
« CRC10——ten bits, exponents (0, 4, 9), occurring 332 (22)* % 0 1 4 676 228 0
L . (23)* 1 1 3 0 0
times in 384 bits. , 24 2 0 2 6 101,957 50,319 0
« P2055—56 bits, exponents (0, 28, 55), occurring 286 25 2 1 2 5 0 13242 0
times in 384 bits. gg; % 2 2 g 1,4912 67}£ (3
0 3 ?
_ . (28 2 1 3 7 0 F
Finally, a consecutive run of error patterns undetected (29) 2 2 3 6 F F 9
by CRCI10 was unexpectedly found. These patterns are 3y 2 3 3 5 0 F ?
created by three errors spilling into the 384-bit cell in gg g 8 (1) :; g 4 232 8
positions (0, 16, 36), accompanied by two line errors falling (333 3 1 1 4 1,123 sl 0
into positions (0 + N, 370 + N), where 0 = N < 13. B34 3 0 2 7 5 610 6?]8,839 ?
3 3 1 2 6 352,612 177,401  ?
. 36) 3 2 2 5 0 10,908 ?
Concluding remarks G 3 0 3 9 0 F 2
We have given a set of theorems useful in characterizing 38 3 1 3 8 F F ?
the error-detecting capabilities of CRC polynomials, a (39 3 2 3 7 0 Fo?
. . . 40 3 3 3 6 F F ?
tutorial on the interaction between data scramblers and (41) 0 0 4 8 1,087,011 541,829 0
CRGCs, and extensive results on the characteristics and (42; 8 1 4 7 0.0 0 274,910 0
it ; (43 2 4 6 102,099 51,206 0
performa.nce capabilities of a n.umb.ef of dlf.ferent @) 0 3 4 5 0 4132 0
polynomials. Throughout, the implicit metric of goodness 45, 0 4 4 4 323 00 0

has been the capability to detect errors. Clearly, this

. . *is a marker for reference later in the text.
metric would be but one of many in any real-world system-

Table entries under columns two through five identify the nature of the cases;

design prob]em. Other considerations not mentioned here entries under columns six through eight give the counts of the unidentified error

) . . L patterns. “‘F”” means that one or more undetected error patterns were observed,
would inevitably include transmission overhead, error- but the count of such patterns could not be determined; *“?” means that no
correction capability, implementation complexity, and information is available.

so forth.

for Satellite Communication Channels,” IBM J. Res.
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