
A high-
performance
matrix-
multiplication
algorithm on a
distributed-
memory
parallel computer,
using overlapped
communication

In this paper, we propose a scheme for
matrix-matrix multiplication on a distributed-
memory parallel computer . The scheme hides
almost all of the communication cost with the
computation and uses the standard, optimized
Level-3 BLAS operation on each node . As a
result, the overall performance of the scheme
is nearly equal to the performance of the
Level-3 optimized BLAS operation times the
number of nodes in the computer, which is
the peak performance obtainable for parallel
BLAS. Another feature of our algorithm is
that it can give peak performance for larger
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matrices, even if the underlying communication
network of the computer is slow .

Introduction
One means of obtaining very good performance on a
distributed-memory parallel computer is by keeping
communication cost as small as possible . Furthermore, it
is equally important that the single-processor computation
performance be good, since any improvement in the
computation performance of a single processor will have
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I Performance of DGEMM  on RS/6000 Model 530 as a function of 1 matrix size (peak performance, 50 MFLOPS). 

a multiplicative  effect  on the overall performance. For 
Level-3 Basic Linear Algebra Operations (BLAS) [l], 
which is a subroutine library, it has been established that a 
key for achieving  good performance on a single processor 
with a memory hierarchy is the effective  utilization of that 
hierarchy [2, 31. For a given memory hierarchy, there is 
a minimum  problem size above which nearly maximal 
performance can be obtained on a single processor, but 
below  which performance drops off sharply as the problem 
size decreases [4]. As a consequence, when a problem is 
partitioned for execution on a parallel processor, it does 
not pay to subdivide the original  problem into pieces below 
this minimum size. The minimum size implies a maximum 
number of processors that can be  usefully applied; more 
processors do not increase performance proportionally and 
are therefore wasteful of resources. The  main result of 
this paper is to combine  good uniprocessor performance 
(BLAS) and overlapped computation and communication 
to produce a very high-performance algorithm for parallel 
matrix multiplication. 

Our algorithm for matrix-matrix  multiplication  on a 
distributed-memory parallel computer has the following 
two properties: 1) it hides almost all  of the communication 
cost with the computation, and 2)  it uses the standard, 
optimized Level-3 BLAS matrix-multiply operation on 
each processor. Thus, when the problem size is  large 
enough and the number of processors does not exceed the 
limit for efficient performance, the overall performance of 674 
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the algorithm  is nearly equal to the performance of the 
Level-3 optimized BLAS operation on a single processor 
times the number of processors used, which  can be the 
peak performance obtainable for a parallel BLAS solution. 
Another feature of our algorithm is that it can yield peak 
performance, even if the underlying communication 
network of the computer is slow. This  is because, for 
matrix multiplication, the interprocessor communication 
cost grows an order of magnitude  more  slowly than the 
computation cost. It follows  from this that for any parallel 
computer, there is a break-even matrix size for  which the 
computation cost balances the communication cost. 
Consequently, it  is possible to choose a sufficiently  large 
matrix size for which computation completely overlaps 
communication. (This assumes, of course, that the 
individual processors contain sufficient storage, which 
is  almost always true, in practice.) 

Several researchers have previously addressed the 
problem of parallelizing  matrix-matrix  multiplication, 
for example, [5-111. A good survey of these efforts can 
be  found  in  [12,  131. More recently, an  effort to develop 
a general-purpose matrix-multiplication  algorithm for 
distributed-memory computers that uses optimized, single- 
processor BLAS has been described [14,  151.  We are 
not aware, however, of any algorithm that overlaps 
communication with computation. 

The two main concepts presented here have very broad 
applicability. The first concept, embodied in our algorithm, 
is to anticipate the next computational step and prepare for 
it by communicating the data needed for it  in advance 
(during the current computational step). The second main 
concept is to use very powerful processors and to compute 
on  them nearly at their peak rate. This usually implies that 
one uses medium-grain to coarse-grain parallelism. Two 
other areas where these concepts, in combination, will 
work are dense linear algebra and  signal processing (fast 
Fourier transform). 

on  an outer-product formulation that consists of k' basic 
steps, in each of which  all processors participate in 
computing an update to the C matrix and  in simultaneously 
transmitting and  receiving data for the next update of C. 
Normally, interprocessor communication is required 
between steps; however, we overlap communication  with 
computation by initiating the necessary interprocessor 
communication a step in advance. That is, at the ith step, 
when  we are calculating the ith update to the C matrix,  we 
are also distributing data that are required for forming the 
(i + 1)th update to the C matrix. During any step, two 
pairs of buffers are used on a processor-one  pair for 
receiving data from other processors and the other pair for 
local  computing. In the next step, the functionality of the 
two  buffer pairs is interchanged; i.e., the pair  used for 

Our  algorithm for computing a product matrix C is based 
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receiving data in step i is used for local computing in step 
i + 1, and vice versa. 

We tested the proposed algorithm,  using the SGEMM 
(a matrix-matrix  multiplication BLAS) supplied by the 
manufacturer, on two distributed-memory computers, the 
Intel iPSC@ System 860 and the Intel Touchstone Delta. 
All submatrices were the same size. We implemented 
broadcast communication of the data as a sequence of 
individual “sends” from processor to processor along the 
rows and columns of the processor mesh.  We obtained a 
peak performance of  4.36 GFLOPS on a 128-processor 
Intel iPSC System 860 computer (approximately 34.0 
MFLOPS per processor) for a 5440 X 5440 matrix. For 
this computation, we were able to overlap 93% of the 
computation with broadcast communication. The single- 
processor SGEMM rate for this size of matrix was 
measured at 36.7  MFLOPS.  We obtained a peak 
performance of  19.0 GFLOPS on the Delta  with 512 
processors for a 14  720 X 14  720 matrix. For this 
Computation, we were able to overlap 96%  of the 
computation with broadcast communication. The  single- 
processor SGEMM rate for this size of matrix was 
measured at 38.6 MFLOPS. 

Single-node  performance 
The peak processing rate of a massively parallel system 
can be obtained when all of its nodes run simultaneously at 
their peak rate. One  way to accomplish this is to divide the 
problem into pieces, at least one for each processor, that 
the processors can run, independently, at their peak 
performance. The execution times for the pieces should be 
identical. It is not a trivial exercise to write a program for 
which the pieces run at peak performance for all piece 
sizes. We have been able, however, to design  and 
implement SGEMMDGEMM programs [4] for 
uniprocessors that run near peak performance for a wide 
range of problem sizes. For example, in Figure 1 we plot 
the performance (in MFLOPS) of  DGEMM for square 
matrices of order 30 to 500 on the IBM RISC 
System/6000@  (RS/6000)  Model  530 computer, which 
has a peak rate of  50 MFLOPS. As can be seen, the 
performance rapidly approaches a peak rate of  45 
MFLOPS, attaining a rate of  43 MFLOPS at matrix order 
100. (Although we show this graph for square matrices 
only, DGEMM on the RS/6000 also gives uniformly  good 
performance near its peak rate for rectangular matrices.) 

On the other hand, some vendor-supplied software 
may  not  run near peak performance for a wide range of 
problem sizes. For example, in Figure 2 we  plot  SGEMM 
performance on a node of the Intel iPSC System 860 
computer, which has a peak rate of  80 MFLOPS for single- 
precision calculations, for square matrices of order 50 to 
500. Clearly, with such an SGEMM performance curve, 
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one must select the size of the pieces carefully in order 
to optimize performance of a parallel system. 

In summary, the uniformly  good performance of our 
matrix multiplication code depends crucially upon  having 
uniprocessor code performance that is  uniformly near 
peak for as wide a range of piece size as possible. 

Multiplying  matrices  in  parallel 
We consider the matrix-matrix  multiplication computation 
C = AB, where C, A, and B are M x N ,  M X K, and 
K X N matrices, respectively, on a computer with P = 
m’ X n’ processors. (We use primed symbols to denote 
quantities related to the array of physical processors on 
which the algorithm  will run, and  unprimed symbols to 
represent the sizes of various matrices on a given 
processor.) This computation is the Level-3 BLAS 
SGEMM computation ( B U S  also incorporates scale 
factors a and p and matrix transposes). 

m‘ X n’ array of processors.  The  processor at position 
(i’, j ’ )  is denotedp(i’, j ’ ) ,  where 0 5 i’ < m’ and 
0 5 j ’  < n‘. 

We view a parallel  computer as a logical  two-dimensional 

Basic algorithm (without overlap) 
The basic algorithm, in its simplest form, is as follows: 

1. Partition the three matrices into submatrices, designated 
Aitj,, Biaj,, and Cirj.. 
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2. Store submatrices Ai,j. and B,,, in the local storage of 

3. In processor p ( i ' ,  j ' ) ,  calculate 
processorp(i', j ' ) .  

k"1 

Ccf = 2 Ai,u,Bu,,p , 
u'=O 

where AiIU,Bdj, denotes a matrix multiplication, and 
u' and k' are as described below. All processors make 
these computations simultaneously. Since only A,,,, 
and Bi7, are stored inp(i ' ,  j ' ) ,  it is necessary that 
submatrices Ai,, and Buy, be transmitted top(i ' ,  j ' )  
from the processors where they are stored 
[p(i', u') andp(u', j ' ) ,  respectively]. 

Matrix A is partitioned into m' X k' submatrices Ai,u. of 
order m by k each, where m = Mlm' and k X k' = K .  
[In the simplest case, the processor array is square 
(m' = n ' ) ,  and we set k' = n ' . ]  The submatrix Ai,u. 
is  defined as follows: 

A,,u, = A(i'm :[i' + l]m - 1, u ' k : [ u '  + l ] k  - l ) ,  

0 I i' < m', 0 I u' < k' .  

[X(a : b,  c : d )  denotes the submatrix of matrix X with  row 
index ranging  from a through b and  column index ranging 
from c through d . ]  That is, the rows of A are divided 
among the rows of the processor array in blocks of m ,  
and the columns of A are divided  among the columns of 
the processor array in blocks of k .  Similarly, matrix B is 
partitioned into k' X n' submatrices B,,, of order k by n 
each, where n = Nln':  

Bu,i, = B(u'k:[u' + l ] k  - 1, j 'n :  [ j '  + l ] n  - l), 

0 I u' < k',  0 I j '  < n'.  

That is, the columns of B are divided  among the columns 
of the processor array in blocks of n ,  and the rows of B 
are divided  among the rows of the processor array in 
blocks of k .  Finally, C is partitioned into m' X n' 
submatrices Ct7, of order m by n each: 

Ci,, = C(i'm:[i' + l ] m  - 1, j 'n :[ j '  + l ] n  - l ) ,  

0 I i' < m', 0 I j '  < n'.  

That is, the rows of C are divided  among the rows of the 
processor array in blocks of m ,  and the columns of C 
are divided  among the columns of the processor array in 
blocks of n .  

For example, we might wish to multiply a lo00 X 4000 
matrix A by a 4000 X 6400 matrix B (M = 1000, K = 
4000, N = 6400) on a 20 x 20 array of 400 processors 
(m' = n' = 20). Then, m = 50 and n = 320. If we 
choose k' = 50 and k = 80, each processor stores one 

676 50 X 80 submatrix of A and an 80 X 320 submatrix of B, 
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and calculates a 50 X 320 submatrix of C.  As indicated 
above, submatrices Ais,,  B,,,, and Ci,, are stored in 
processorp(i', j ' ) .  
As stated earlier, our algorithm is based on an outer- 

product formulation and consists of k' basic steps, one 
for each of the k' columns of submatrices into which A 
is partitioned (and rows of submatrices into which B is 
partitioned). In a basic step, each processorp(i', j ' )  may 
transmit to other processors the data they need for making 
their computations, may receive such data from other 
processors, and computes Cis, = C,,,, + Ai, ,Bdj, ,  which 
is a matrix multiplication and accumulation. In addition to 
the local memory  in a processor to store  the submatrices 
of A, B, and C, two temporary buffers are used: RO and 
SO, of size mk and kn, respectively. 

To calculate Ci,j, onp(i ' ,  j ' ) ,  array Ci,, is initially set 
to 0. Then, for u' = 0 to k' - 1, the following sequence 
(basic step) is repeated 

1. All processors in the u'th column send a copy of their 
A submatrices to all the other processors in the same 
row;  i.e.,p(A', u') broadcasts to all otherp(A', j ' )s ,  
for all j '  f u'. For example, in step O,p(O, 0) 
broadcasts A, top(0, l),p(O, 2), * * ,p(O, n' - 1 ) .  
The  receiving processors receive such submatrices 
of A into  buffer RO. 

2. Next, all processors in the u'th row send a copy of 
their B submatrices to all the other processors in the 
same column. The  receiving processors receive such 
submatrices of B into buffer SO. 

3. Finally, processorp(i', j ' )  computes the following: 

Ci,, = Ci,, + A,,Bi,,, if i' = j '  = u', 

Cc,, = Cir + ROBi),, if if = u', j '  f u', 

Ci,, = C,,, + A,ySO, if i' f u', j' = u', 

Ci,, = Ci,, + ROSO, if if f u', j '  f u'. 

(RO and SO are the matrices in buffers RO and SO, 
respectively.) 

Figure 3 illustrates step 0 on an array of 4 X 4 
processors. Phase 3 of each step requires a matrix 
multiplication and accumulation. After k' such basic steps, 
p(i', j ' )  contains the product submatrix Cis,. Of course, if 
it is desired to calculate C = C + AB, submatrices Ci,j, 
should  not  be set to 0 initially. 

General case (without overlap) 
In the more general case, the processor array need  not be 
square, and  we  need not set k' = n ' .  We  still assume that 
M is an integral  multiple of m'  (m = Mlm') ,  that N is 
an  integral  multiple of n' (n = Nln') ,  and that k and k' 
are integers ( k  X k' = K ) .  Then, k' may be chosen to be 
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larger than n' and m',  and more than one submatrix of A 
and B may be mapped to processorp(i', j ' ) ,  according to 
the following: 

Submatrix Ai,g, is assigned to processorp(i', d mod n'). 
That is, the columns of A are divided  among the 
columns of the processor array in blocks of k, in 
wraparound fashion; the rows of A are divided  among 
the rows of the processor array, just as in the basic case. 
B,, is assigned to  processorp(u' mod m' ,  j ' ) .  
Ci,j. is assigned to  processorp(i', j ' ) ,  as before. 

Note that each processor stores only one submatrix 
of C. On the other hand, there may  be  more than one 
submatrix of A and B assigned to a processor. The 
exact number of submatrices mapped to a processor is 
determined by i f  and j '  and on the relationship of k' to m' 
and n'. 

For example, consider multiplying the matrices A and B 
described in the previous subsection (A is 1000 X 4000, 
and B is 4000 X 6400) on a 20 X 25 processor array of size 
500. Then, m' = 20, m = 50, n' = 25, n = 256. If we 
choose k' = 80 (thus, k = 50), some of the processors 
will  be  assigned three submatrices of A, and some will be 
assigned four. All processors will be assigned four 
submatrices of B. 

The k' steps of the algorithm are as before, each 
processor broadcasting its appropriate A and B 
submatrices during each step, receiving broadcast 
submatrices, and calculating Ci7,. 

Finally,  we  may remove the restriction that M is  an 
integral  multiple of m' ,  and the other similar constraints 
given above. The basic principle is the same. The details 
for handling the irregularities involved  with matrices of 
arbitrary size  are described in [16]. 

Memory  requirements 
In order to describe how  much memory is required in 
each processor, we introduce notation for quotients and 
remainders: 

k' = q,m ' + r, , 

k' = q,n' + rn . 
Here q,, rm, q , ,  and rn are nonnegative integers (r,  < m' 
and rn < n') .  Then, the memory requirement, in number 
of words, for accommodating submatrices of A and B at 
processorp(i', j ' )  is given by 

(mk)(q,, + 1) + (kn)(qm + 1) 0 I i' < r, , 0 5 j '  < r,,, 

Wk" + (W(qrn + 1) 0 I i' < rm , r,, I j '  < n', 

(mk)(q, + 1) + (hkm r, I i' < m', 0 5 j '  < r,,, 

678 (mkkn + (kkm rm I i' < m', r,, 5 j '  < n'. 

Algorithm with overlap 
In order to adapt our algorithm to overlap communication 
and computation, we use two additional  buffers at each 
processor, R1 of size mk and S1 of size kn. This 
algorithm is similar to the one without overlap, except that 
during a basic step, a processor receives data in the buffer 
pair RO and SO (or in the pair R1 and S1) and performs 
computation using R1 and S1 (or RO and SO). This  is to 
ensure that the computation and communication can be 
done concurrently. If a processor uses RO and SO for 
receiving data in one step, it uses the matrices in these 
buffers  for  computing in the next step. The u'th step is 
similar to the one outlined for the nonoverlap case, with 
the exception that for odd steps a processor uses RO and 
SO for receiving data and R1 and S1 for computation. The 
converse is true for the even steps. 

Note that in  all steps but one, we are able to overlap 
communication with computation. 

We  now discuss guidelines for selecting m,  n, and k 
(consequently, m',  n', and k ' ) ,  the submatrix dimensions: 

1. m' X n' should equal the number of processors 
available. 

2. m, n, and k should be large  enough that the 
uniprocessors executing DGEMM are computing in 
their range of nearly peak performance. 

3. k should be as small as possible in order to minimize 
the communication cost. As k decreases, k' increases, 
resulting in the communication overhead of the first 
step (of k' )  being a smaller fraction of the total 
execution time. 

In general, it is possible to satisfy all  of these constraints 
when the problem size (M, N ,  K )  is large  enough. 
Otherwise, fewer processors than the number available 
may be used [see guideline 1 above]. 

Experimental  results 
We tested our implementation  on a 128-processor Intel 
iPSC System 860 computer and a 512-processor Intel 
Touchstone Delta computer. Both computers use the 
same processor. The Intel iPSC System 860 is a 
distributed-memory parallel computer with a hypercube 
interconnection network. For our experiments, we chose 
a two-dimensional mesh; however, our algorithm is not 
restricted to a mesh or even a hypercube connectivity. The 
standard SGEMM BLAS supplied by the vendor was used 
on each processor. All experiments were done on square 
matrices, i.e., for M = N = K, with k' = n' (the basic 
algorithm,  with overlap). 

the algorithm  would require the same amount of time to 
execute each iteration step, some factors (e.g., system 
programs  running concurrently) affect this synchronism. 

Although one might expect that all processors executing 
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Table 1 Performance results of matrix multiplication (single  precision)  executed on Intel  iPSC 860 parallel  computer. 

Processor Matrix rn n k Algorithm Overlap MFLOPS MFLOPS 
configuration order MFLOPS fraction per processor per processor 

with overhead without overhead 

1 x 2  700 700  350 350  73 0.96 36.5 38.0 
2 x 2  1000 500 500 500  157 0.94 39.3 41.8 
2 x 4  1400 700  350 350  295 0.94 36.9 39.3 
4 x 4  2000 500  500 500  607 0.95 37.9 39.9 
4 x 8  2800 700  350 350  1132 0.94 35.4 37.7 
8 x 8  4000 500  500 500  2382 0.94 37.2 39.6 
8 X 16 5440 680  340 340  4356 0.93 34.0 36.7 

As a result, we carried out experiments to determine 
whether the processors remained in synchronism during 
the execution of the algorithm. (The experiment involved 
terminating the program  with a global synchronization 
step at the end of the last step of the computation.) We 
observed a very minor variation (< 1%) in the timings, 
thereby verifying that our algorithm does indeed  have 
the property that all the processors finish execution at 
approximately the same time.  The implementation of our 
algorithm  on these two platforms showed 1) uniform 
computation and communication load  and 2) nearly 
perfect synchronization between any two steps of the 
computation. We first  give our results on the Intel iPSC 
System 860. 

Intel iPSC System 860 computer results 
We measured a performance of  4.36 GFLOPS, which 
is approximately 34.0 MFLOPS per processor for 
5440 X 5440 matrices multiplied  on an 8 X 16-processor 
array of size 128. The performance of SGEMM on a single 
processor was 36.7 MFLOPS. We were able to overlap 
93% of the communication with computation (other 
overheads were negligible). 

Table 1 illustrates the dependency of SGEMM 
performance on the number of processors and matrix size. 
The first  column lists the processor configuration  used.  In 
the next four columns, we  list the order of the matrix and 
the three submatrix dimensions. The column labeled 
Algorithm MFLOPS gives the computation rate (in 
MFLOPS) of the parallel  algorithm as calculated by 
dividing the total number of FLOPS of the computation 
(2N3) by the elapsed wall-clock time.  In the last two 
columns, we list MFLOPS per processor with 
communication overhead (i.e., the column labeled 
Algorithm MFLOPS divided by the number of processors, 
which gives the actual MFLOPS measured) and MFLOPS 
per processor without communication overhead (the 
computation for the specified submatrix sizes executed 
on a single processor), respectively. The  column  labeled 
Overlap fraction (calculated by dividing the next-to-last 
column  by the last column) represents the fraction of 

overhead, primarily communication, that was able to be 
overlapped by computation. The value is relatively 
constant (=0.95),  and the variations should not be 
considered significant. Table 1 shows, as expected, that 
as we increase the number of processors in the computer 
and the matrix size, the performance and overlap remain 
relatively constant. 

The data for the last column of Tables 1 and 2 are taken 
from Figure 2, which also includes some additional points. 
Note that the experiment in Table 1 with the largest 
number of processors corresponds to a value of n = 340. 
Had  we decreased the value of n to 270, Figure 2 indicates 
that the performance would have been approximately 43 
MFLOPS. This would  lead us to expect a result of  5.1 
GFLOPS for a matrix of order 4320 (m = 540, n = 270, 
k = 270). 

Intel Delta computer results 
We obtained a peak performance of 19.0 GFLOPS (37.1 
MFLOPS per processor) on the Delta computer with 
512 processors, for a 14  720 X 14  720 matrix. For this 
computation, we were able to overlap 96%  of the 
computation with broadcast communication. All 
submatrices processed by SGEMM were of the same size. 
The single-processor SGEMM rate for 14  720 X 14  720 
matrices was measured at 38.6 MFLOPS. We also 
measured the peak performance obtainable on the Delta 
computer using  different processor configurations. These 
results are summarized in Table 2, which  is  similar to 
Table 1. 

Note that the experiment in Table 2 with the largest 
number of processors corresponds to a value of n = 460. 
Had we decreased the value of n to 450, Figure 2 indicates 
that the performance would have been approximately 43 
MFLOPS.  This  leads us to expect a result of  21.1 GFLOPS 
for a matrix of order 14400 (m = 900, n = 450, 
k = 450). 

Conclusion 
In this paper we have proposed an algorithm for 
multiplying two matrices on a distributed-memory parallel 679 
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Table 2 Performance results of matrix multiplication (single precision) executed on Intel Touchstone Delta  parallel computer. 

Processor Matrix m n k Algorithm Overlap MFLOPS  MFLOPS 
configuration order MFLOPS fraction perprocessor  per processor 

~~~~~~ ~~ ~ ~ ~ ~~ 

with overhead without overhead 

1 x 2  
2 x 2  
2 x 4  
4 x 4  
4 x 8  
8 x 8  
8 x 16 

16 X 16 
16 x 32 

850 
1300 
1700 
2600 
3400 
5000 
6800 

10400 
14720 

850 425 425 
650 650 650 
850 425 425 
650 650 650 
850 425 425 
625 625 625 
850 425 425 
650 650 650 
920 460 460 

76 
159 
306 
624 

1193 
2444 
4644 
9673 

18977 

0.99 
0.99 
0.99 
0.98 
0.97 
0.97 
0.96 
0.96 
0.96 

38.0 
39.9 
38.3 
39.0 
37.3 
38.2 
36.3 
37.8 
37.1 

38.5 
40.3 
38.7 
39.8 
38.5 
39.4 
37.8 
39.4 
38.6 

computer. We have shown that the performance of the 
proposed algorithm  is nearly equal to the performance of 
the optimized SGEMM BLAS times the number of the 
processors in the computer. Our  algorithm consists of k‘ 
basic steps in  which the communication and computation 
are overlapped, except during the first step. The impact 
of the nonoverlap of the first step can be reduced by 
increasing the number of steps k ‘ .  One has to be cautious 
in increasing k ’ ,  however, so as not to decrease k 
(= K/k’ )  below the critical value at which  DGEMM 
performance drops off sharply. A value of k lower 
than a critical value results in a lower DGEMM BLAS 
performance. This performance loss is  significant  and  can 
offset the gain due to the increase in k ’ .  We performed 
experiments on the Intel iPSC System 860 and Intel 
Touchstone Delta computers to see the effect of varying k .  
As expected, we observed a performance improvement for 
larger values of k .  
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