
A high-
performance
matrix-
multiplication
algorithm on a
distributed-
memory
parallel computer,
using overlapped
communication

In this paper, we propose a scheme for
matrix-matrix multiplication on a distributed-
memory parallel computer . The scheme hides
almost all of the communication cost with the
computation and uses the standard, optimized
Level-3 BLAS operation on each node . As a
result, the overall performance of the scheme
is nearly equal to the performance of the
Level-3 optimized BLAS operation times the
number of nodes in the computer, which is
the peak performance obtainable for parallel
BLAS. Another feature of our algorithm is
that it can give peak performance for larger

®Copyright 1994 by International Business Machines Corporation . Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page . The title and abstract, but no other portions, of
this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems . Permission to republish any other

portion of this paper must be obtained from the Editor .

	

673

IBM J . RES . DEVELOP . VOL. 38 NO . 6 NOVEMBER 1994

by R . C. Agarwal
F. G . Gustavson
M . Zubair

matrices, even if the underlying communication
network of the computer is slow .

Introduction
One means of obtaining very good performance on a
distributed-memory parallel computer is by keeping
communication cost as small as possible . Furthermore, it
is equally important that the single-processor computation
performance be good, since any improvement in the
computation performance of a single processor will have

The contribution of M . Zubair was made when he was visiting the IBM Thomas J .
Watson Research Center from Old Dominion University during the summer of 1992 .

R . C . AGARWAL, F . G . GUSTAVSON, AND M. ZUBAIR

t 15
10 I I I I I I
0 100 200 Mo 400 500

Matrix size

I Performance of DGEMM on RS/6000 Model 530 as a function of 1 matrix size (peak performance, 50 MFLOPS).

a multiplicative effect on the overall performance. For
Level-3 Basic Linear Algebra Operations (BLAS) [l],
which is a subroutine library, it has been established that a
key for achieving good performance on a single processor
with a memory hierarchy is the effective utilization of that
hierarchy [2, 31. For a given memory hierarchy, there is
a minimum problem size above which nearly maximal
performance can be obtained on a single processor, but
below which performance drops off sharply as the problem
size decreases [4]. As a consequence, when a problem is
partitioned for execution on a parallel processor, it does
not pay to subdivide the original problem into pieces below
this minimum size. The minimum size implies a maximum
number of processors that can be usefully applied; more
processors do not increase performance proportionally and
are therefore wasteful of resources. The main result of
this paper is to combine good uniprocessor performance
(BLAS) and overlapped computation and communication
to produce a very high-performance algorithm for parallel
matrix multiplication.

Our algorithm for matrix-matrix multiplication on a
distributed-memory parallel computer has the following
two properties: 1) it hides almost all of the communication
cost with the computation, and 2) it uses the standard,
optimized Level-3 BLAS matrix-multiply operation on
each processor. Thus, when the problem size is large
enough and the number of processors does not exceed the
limit for efficient performance, the overall performance of 674

R. C. AGARWAL, F. G. GUSTAVSON, AND M. ZUBAIR

the algorithm is nearly equal to the performance of the
Level-3 optimized BLAS operation on a single processor
times the number of processors used, which can be the
peak performance obtainable for a parallel BLAS solution.
Another feature of our algorithm is that it can yield peak
performance, even if the underlying communication
network of the computer is slow. This is because, for
matrix multiplication, the interprocessor communication
cost grows an order of magnitude more slowly than the
computation cost. It follows from this that for any parallel
computer, there is a break-even matrix size for which the
computation cost balances the communication cost.
Consequently, it is possible to choose a sufficiently large
matrix size for which computation completely overlaps
communication. (This assumes, of course, that the
individual processors contain sufficient storage, which
is almost always true, in practice.)

Several researchers have previously addressed the
problem of parallelizing matrix-matrix multiplication,
for example, [5-111. A good survey of these efforts can
be found in [12, 131. More recently, an effort to develop
a general-purpose matrix-multiplication algorithm for
distributed-memory computers that uses optimized, single-
processor BLAS has been described [14, 151. We are
not aware, however, of any algorithm that overlaps
communication with computation.

The two main concepts presented here have very broad
applicability. The first concept, embodied in our algorithm,
is to anticipate the next computational step and prepare for
it by communicating the data needed for it in advance
(during the current computational step). The second main
concept is to use very powerful processors and to compute
on them nearly at their peak rate. This usually implies that
one uses medium-grain to coarse-grain parallelism. Two
other areas where these concepts, in combination, will
work are dense linear algebra and signal processing (fast
Fourier transform).

on an outer-product formulation that consists of k' basic
steps, in each of which all processors participate in
computing an update to the C matrix and in simultaneously
transmitting and receiving data for the next update of C.
Normally, interprocessor communication is required
between steps; however, we overlap communication with
computation by initiating the necessary interprocessor
communication a step in advance. That is, at the ith step,
when we are calculating the ith update to the C matrix, we
are also distributing data that are required for forming the
(i + 1)th update to the C matrix. During any step, two
pairs of buffers are used on a processor-one pair for
receiving data from other processors and the other pair for
local computing. In the next step, the functionality of the
two buffer pairs is interchanged; i.e., the pair used for

Our algorithm for computing a product matrix C is based

IBM J. RES. DEVELOP. VOL. 38 NO. 6 NOVEMBER 1994

receiving data in step i is used for local computing in step
i + 1, and vice versa.

We tested the proposed algorithm, using the SGEMM
(a matrix-matrix multiplication BLAS) supplied by the
manufacturer, on two distributed-memory computers, the
Intel iPSC@ System 860 and the Intel Touchstone Delta.
All submatrices were the same size. We implemented
broadcast communication of the data as a sequence of
individual “sends” from processor to processor along the
rows and columns of the processor mesh. We obtained a
peak performance of 4.36 GFLOPS on a 128-processor
Intel iPSC System 860 computer (approximately 34.0
MFLOPS per processor) for a 5440 X 5440 matrix. For
this computation, we were able to overlap 93% of the
computation with broadcast communication. The single-
processor SGEMM rate for this size of matrix was
measured at 36.7 MFLOPS. We obtained a peak
performance of 19.0 GFLOPS on the Delta with 512
processors for a 14 720 X 14 720 matrix. For this
Computation, we were able to overlap 96% of the
computation with broadcast communication. The single-
processor SGEMM rate for this size of matrix was
measured at 38.6 MFLOPS.

Single-node performance
The peak processing rate of a massively parallel system
can be obtained when all of its nodes run simultaneously at
their peak rate. One way to accomplish this is to divide the
problem into pieces, at least one for each processor, that
the processors can run, independently, at their peak
performance. The execution times for the pieces should be
identical. It is not a trivial exercise to write a program for
which the pieces run at peak performance for all piece
sizes. We have been able, however, to design and
implement SGEMMDGEMM programs [4] for
uniprocessors that run near peak performance for a wide
range of problem sizes. For example, in Figure 1 we plot
the performance (in MFLOPS) of DGEMM for square
matrices of order 30 to 500 on the IBM RISC
System/6000@ (RS/6000) Model 530 computer, which
has a peak rate of 50 MFLOPS. As can be seen, the
performance rapidly approaches a peak rate of 45
MFLOPS, attaining a rate of 43 MFLOPS at matrix order
100. (Although we show this graph for square matrices
only, DGEMM on the RS/6000 also gives uniformly good
performance near its peak rate for rectangular matrices.)

On the other hand, some vendor-supplied software
may not run near peak performance for a wide range of
problem sizes. For example, in Figure 2 we plot SGEMM
performance on a node of the Intel iPSC System 860
computer, which has a peak rate of 80 MFLOPS for single-
precision calculations, for square matrices of order 50 to
500. Clearly, with such an SGEMM performance curve,

IBM 1. RES. DEVELOP. VOL. 38 NO. 6 NOVEMBER 1994

45 t

0 200 300

Matrix size

k function of matrix size (peak performance, 80 MFLOPS).
I

one must select the size of the pieces carefully in order
to optimize performance of a parallel system.

In summary, the uniformly good performance of our
matrix multiplication code depends crucially upon having
uniprocessor code performance that is uniformly near
peak for as wide a range of piece size as possible.

Multiplying matrices in parallel
We consider the matrix-matrix multiplication computation
C = AB, where C, A, and B are M x N , M X K, and
K X N matrices, respectively, on a computer with P =
m’ X n’ processors. (We use primed symbols to denote
quantities related to the array of physical processors on
which the algorithm will run, and unprimed symbols to
represent the sizes of various matrices on a given
processor.) This computation is the Level-3 BLAS
SGEMM computation (B U S also incorporates scale
factors a and p and matrix transposes).

m‘ X n’ array of processors. The processor at position
(i’, j ’) is denotedp(i’, j ’) , where 0 5 i’ < m’ and
0 5 j ’ < n‘.

We view a parallel computer as a logical two-dimensional

Basic algorithm (without overlap)
The basic algorithm, in its simplest form, is as follows:

1. Partition the three matrices into submatrices, designated
Aitj,, Biaj,, and Cirj..

R. C. AGARWAL, F. G. GUSTAVSON, AND M. ZUBAIR

675

2. Store submatrices Ai,j. and B,,, in the local storage of

3. In processor p (i ' , j ') , calculate
processorp(i', j ') .

k"1

Ccf = 2 Ai,u,Bu,,p ,
u'=O

where AiIU,Bdj, denotes a matrix multiplication, and
u' and k' are as described below. All processors make
these computations simultaneously. Since only A,,,,
and Bi7, are stored inp(i ' , j ') , it is necessary that
submatrices Ai,, and Buy, be transmitted top(i ' , j ')
from the processors where they are stored
[p(i', u') andp(u', j ') , respectively].

Matrix A is partitioned into m' X k' submatrices Ai,u. of
order m by k each, where m = Mlm' and k X k' = K .
[In the simplest case, the processor array is square
(m' = n ') , and we set k' = n ' .] The submatrix Ai,u.
is defined as follows:

A,,u, = A(i'm :[i' + l]m - 1, u ' k : [u ' + l] k - l) ,

0 I i' < m', 0 I u' < k' .

[X(a : b, c : d) denotes the submatrix of matrix X with row
index ranging from a through b and column index ranging
from c through d .] That is, the rows of A are divided
among the rows of the processor array in blocks of m ,
and the columns of A are divided among the columns of
the processor array in blocks of k . Similarly, matrix B is
partitioned into k' X n' submatrices B,,, of order k by n
each, where n = Nln':

Bu,i, = B(u'k:[u' + l] k - 1, j 'n : [j ' + l] n - l),

0 I u' < k', 0 I j ' < n'.

That is, the columns of B are divided among the columns
of the processor array in blocks of n , and the rows of B
are divided among the rows of the processor array in
blocks of k . Finally, C is partitioned into m' X n'
submatrices Ct7, of order m by n each:

Ci,, = C(i'm:[i' + l] m - 1, j 'n :[j ' + l] n - l) ,

0 I i' < m', 0 I j ' < n'.

That is, the rows of C are divided among the rows of the
processor array in blocks of m , and the columns of C
are divided among the columns of the processor array in
blocks of n .

For example, we might wish to multiply a lo00 X 4000
matrix A by a 4000 X 6400 matrix B (M = 1000, K =
4000, N = 6400) on a 20 x 20 array of 400 processors
(m' = n' = 20). Then, m = 50 and n = 320. If we
choose k' = 50 and k = 80, each processor stores one

676 50 X 80 submatrix of A and an 80 X 320 submatrix of B,

R. C. AGARWAL, F. G. GUSTAVSON, AND M. ZUBAIR

and calculates a 50 X 320 submatrix of C. As indicated
above, submatrices Ais,, B,,,, and Ci,, are stored in
processorp(i', j ') .
As stated earlier, our algorithm is based on an outer-

product formulation and consists of k' basic steps, one
for each of the k' columns of submatrices into which A
is partitioned (and rows of submatrices into which B is
partitioned). In a basic step, each processorp(i', j ') may
transmit to other processors the data they need for making
their computations, may receive such data from other
processors, and computes Cis, = C,,,, + Ai, ,Bdj, , which
is a matrix multiplication and accumulation. In addition to
the local memory in a processor to store the submatrices
of A, B, and C, two temporary buffers are used: RO and
SO, of size mk and kn, respectively.

To calculate Ci,j, onp(i ' , j ') , array Ci,, is initially set
to 0. Then, for u' = 0 to k' - 1, the following sequence
(basic step) is repeated

1. All processors in the u'th column send a copy of their
A submatrices to all the other processors in the same
row; i.e.,p(A', u') broadcasts to all otherp(A', j ')s ,
for all j ' f u'. For example, in step O,p(O, 0)
broadcasts A, top(0, l),p(O, 2), * * ,p(O, n' - 1) .
The receiving processors receive such submatrices
of A into buffer RO.

2. Next, all processors in the u'th row send a copy of
their B submatrices to all the other processors in the
same column. The receiving processors receive such
submatrices of B into buffer SO.

3. Finally, processorp(i', j ') computes the following:

Ci,, = Ci,, + A,,Bi,,, if i' = j ' = u',

Cc,, = Cir + ROBi),, if if = u', j ' f u',

Ci,, = C,,, + A,ySO, if i' f u', j' = u',

Ci,, = Ci,, + ROSO, if if f u', j ' f u'.

(RO and SO are the matrices in buffers RO and SO,
respectively.)

Figure 3 illustrates step 0 on an array of 4 X 4
processors. Phase 3 of each step requires a matrix
multiplication and accumulation. After k' such basic steps,
p(i', j ') contains the product submatrix Cis,. Of course, if
it is desired to calculate C = C + AB, submatrices Ci,j,
should not be set to 0 initially.

General case (without overlap)
In the more general case, the processor array need not be
square, and we need not set k' = n ' . We still assume that
M is an integral multiple of m' (m = Mlm') , that N is
an integral multiple of n' (n = Nln') , and that k and k'
are integers (k X k' = K) . Then, k' may be chosen to be

IBM J. RES. DEVELOP. VOL. 38 NO. 6 NOVEMBER 1994

0 w 0 ($,/’ ,...’

f 0 0 0
0
,....:...’ Sending processor

Receiving processor

Phase 2 -Broadcasting submatrices of B

00
00
00

0 Sending processor

0 Receiving processor

0
0
0

a Cw= C,+ &Boo

0 CC/. + Ci,j, + ROSO : RO = Ai., So = Bo,,

Phase 3 “calculating Ct,j,

IBM J. RES. DEVELOP. VOL. 38 NO. 6 NOVEMBER 1994 R. C. AGARWAL, F. G . GUSTAVSON, AND M. ZUBAIR

677

larger than n' and m', and more than one submatrix of A
and B may be mapped to processorp(i', j ') , according to
the following:

Submatrix Ai,g, is assigned to processorp(i', d mod n').
That is, the columns of A are divided among the
columns of the processor array in blocks of k, in
wraparound fashion; the rows of A are divided among
the rows of the processor array, just as in the basic case.
B,, is assigned to processorp(u' mod m' , j ') .
Ci,j. is assigned to processorp(i', j ') , as before.

Note that each processor stores only one submatrix
of C. On the other hand, there may be more than one
submatrix of A and B assigned to a processor. The
exact number of submatrices mapped to a processor is
determined by i f and j ' and on the relationship of k' to m'
and n'.

For example, consider multiplying the matrices A and B
described in the previous subsection (A is 1000 X 4000,
and B is 4000 X 6400) on a 20 X 25 processor array of size
500. Then, m' = 20, m = 50, n' = 25, n = 256. If we
choose k' = 80 (thus, k = 50), some of the processors
will be assigned three submatrices of A, and some will be
assigned four. All processors will be assigned four
submatrices of B.

The k' steps of the algorithm are as before, each
processor broadcasting its appropriate A and B
submatrices during each step, receiving broadcast
submatrices, and calculating Ci7,.

Finally, we may remove the restriction that M is an
integral multiple of m' , and the other similar constraints
given above. The basic principle is the same. The details
for handling the irregularities involved with matrices of
arbitrary size are described in [16].

Memory requirements
In order to describe how much memory is required in
each processor, we introduce notation for quotients and
remainders:

k' = q,m ' + r, ,

k' = q,n' + rn .
Here q,, rm, q , , and rn are nonnegative integers (r, < m'
and rn < n') . Then, the memory requirement, in number
of words, for accommodating submatrices of A and B at
processorp(i', j ') is given by

(mk)(q,, + 1) + (kn)(qm + 1) 0 I i' < r, , 0 5 j ' < r,,,

Wk" + (W(qrn + 1) 0 I i' < rm , r,, I j ' < n',

(mk)(q, + 1) + (hkm r, I i' < m', 0 5 j ' < r,,,

678 (mkkn + (kkm rm I i' < m', r,, 5 j ' < n'.

Algorithm with overlap
In order to adapt our algorithm to overlap communication
and computation, we use two additional buffers at each
processor, R1 of size mk and S1 of size kn. This
algorithm is similar to the one without overlap, except that
during a basic step, a processor receives data in the buffer
pair RO and SO (or in the pair R1 and S1) and performs
computation using R1 and S1 (or RO and SO). This is to
ensure that the computation and communication can be
done concurrently. If a processor uses RO and SO for
receiving data in one step, it uses the matrices in these
buffers for computing in the next step. The u'th step is
similar to the one outlined for the nonoverlap case, with
the exception that for odd steps a processor uses RO and
SO for receiving data and R1 and S1 for computation. The
converse is true for the even steps.

Note that in all steps but one, we are able to overlap
communication with computation.

We now discuss guidelines for selecting m, n, and k
(consequently, m', n', and k ') , the submatrix dimensions:

1. m' X n' should equal the number of processors
available.

2. m, n, and k should be large enough that the
uniprocessors executing DGEMM are computing in
their range of nearly peak performance.

3. k should be as small as possible in order to minimize
the communication cost. As k decreases, k' increases,
resulting in the communication overhead of the first
step (of k') being a smaller fraction of the total
execution time.

In general, it is possible to satisfy all of these constraints
when the problem size (M, N , K) is large enough.
Otherwise, fewer processors than the number available
may be used [see guideline 1 above].

Experimental results
We tested our implementation on a 128-processor Intel
iPSC System 860 computer and a 512-processor Intel
Touchstone Delta computer. Both computers use the
same processor. The Intel iPSC System 860 is a
distributed-memory parallel computer with a hypercube
interconnection network. For our experiments, we chose
a two-dimensional mesh; however, our algorithm is not
restricted to a mesh or even a hypercube connectivity. The
standard SGEMM BLAS supplied by the vendor was used
on each processor. All experiments were done on square
matrices, i.e., for M = N = K, with k' = n' (the basic
algorithm, with overlap).

the algorithm would require the same amount of time to
execute each iteration step, some factors (e.g., system
programs running concurrently) affect this synchronism.

Although one might expect that all processors executing

R. C. AGARWAL, F. G. GUSTAVSON, AND M. ZUBAIR IBM J. RES. DEVELOP. VOL. 38 NO. 6 NOVEMBER 1994

Table 1 Performance results of matrix multiplication (single precision) executed on Intel iPSC 860 parallel computer.

Processor Matrix rn n k Algorithm Overlap MFLOPS MFLOPS
configuration order MFLOPS fraction per processor per processor

with overhead without overhead

1 x 2 700 700 350 350 73 0.96 36.5 38.0
2 x 2 1000 500 500 500 157 0.94 39.3 41.8
2 x 4 1400 700 350 350 295 0.94 36.9 39.3
4 x 4 2000 500 500 500 607 0.95 37.9 39.9
4 x 8 2800 700 350 350 1132 0.94 35.4 37.7
8 x 8 4000 500 500 500 2382 0.94 37.2 39.6
8 X 16 5440 680 340 340 4356 0.93 34.0 36.7

As a result, we carried out experiments to determine
whether the processors remained in synchronism during
the execution of the algorithm. (The experiment involved
terminating the program with a global synchronization
step at the end of the last step of the computation.) We
observed a very minor variation (< 1%) in the timings,
thereby verifying that our algorithm does indeed have
the property that all the processors finish execution at
approximately the same time. The implementation of our
algorithm on these two platforms showed 1) uniform
computation and communication load and 2) nearly
perfect synchronization between any two steps of the
computation. We first give our results on the Intel iPSC
System 860.

Intel iPSC System 860 computer results
We measured a performance of 4.36 GFLOPS, which
is approximately 34.0 MFLOPS per processor for
5440 X 5440 matrices multiplied on an 8 X 16-processor
array of size 128. The performance of SGEMM on a single
processor was 36.7 MFLOPS. We were able to overlap
93% of the communication with computation (other
overheads were negligible).

Table 1 illustrates the dependency of SGEMM
performance on the number of processors and matrix size.
The first column lists the processor configuration used. In
the next four columns, we list the order of the matrix and
the three submatrix dimensions. The column labeled
Algorithm MFLOPS gives the computation rate (in
MFLOPS) of the parallel algorithm as calculated by
dividing the total number of FLOPS of the computation
(2N3) by the elapsed wall-clock time. In the last two
columns, we list MFLOPS per processor with
communication overhead (i.e., the column labeled
Algorithm MFLOPS divided by the number of processors,
which gives the actual MFLOPS measured) and MFLOPS
per processor without communication overhead (the
computation for the specified submatrix sizes executed
on a single processor), respectively. The column labeled
Overlap fraction (calculated by dividing the next-to-last
column by the last column) represents the fraction of

overhead, primarily communication, that was able to be
overlapped by computation. The value is relatively
constant (=0.95), and the variations should not be
considered significant. Table 1 shows, as expected, that
as we increase the number of processors in the computer
and the matrix size, the performance and overlap remain
relatively constant.

The data for the last column of Tables 1 and 2 are taken
from Figure 2, which also includes some additional points.
Note that the experiment in Table 1 with the largest
number of processors corresponds to a value of n = 340.
Had we decreased the value of n to 270, Figure 2 indicates
that the performance would have been approximately 43
MFLOPS. This would lead us to expect a result of 5.1
GFLOPS for a matrix of order 4320 (m = 540, n = 270,
k = 270).

Intel Delta computer results
We obtained a peak performance of 19.0 GFLOPS (37.1
MFLOPS per processor) on the Delta computer with
512 processors, for a 14 720 X 14 720 matrix. For this
computation, we were able to overlap 96% of the
computation with broadcast communication. All
submatrices processed by SGEMM were of the same size.
The single-processor SGEMM rate for 14 720 X 14 720
matrices was measured at 38.6 MFLOPS. We also
measured the peak performance obtainable on the Delta
computer using different processor configurations. These
results are summarized in Table 2, which is similar to
Table 1.

Note that the experiment in Table 2 with the largest
number of processors corresponds to a value of n = 460.
Had we decreased the value of n to 450, Figure 2 indicates
that the performance would have been approximately 43
MFLOPS. This leads us to expect a result of 21.1 GFLOPS
for a matrix of order 14400 (m = 900, n = 450,
k = 450).

Conclusion
In this paper we have proposed an algorithm for
multiplying two matrices on a distributed-memory parallel 679

IBM J. RES. DEVELOP. VOL. 38 NO. 6 NOVEMBER 1994 R. C. AGARWAL, F. G. GUSTAVSON, AND M. ZUBAIR

Table 2 Performance results of matrix multiplication (single precision) executed on Intel Touchstone Delta parallel computer.

Processor Matrix m n k Algorithm Overlap MFLOPS MFLOPS
configuration order MFLOPS fraction perprocessor per processor

~~~~~~ ~~ ~ ~ ~ ~~ 

with overhead without overhead 

1 x 2  
2 x 2  
2 x 4  
4 x 4  
4 x 8  
8 x 8  
8 x 16 

16 X 16 
16 x 32 

850 
1300 
1700 
2600 
3400 
5000 
6800 

10400 
14720 

850 425 425 
650 650 650 
850 425 425 
650 650 650 
850 425 425 
625 625 625 
850 425 425 
650 650 650 
920 460 460 

76 
159 
306 
624 

1193 
2444 
4644 
9673 

18977 

0.99 
0.99 
0.99 
0.98 
0.97 
0.97 
0.96 
0.96 
0.96 

38.0 
39.9 
38.3 
39.0 
37.3 
38.2 
36.3 
37.8 
37.1 

38.5 
40.3 
38.7 
39.8 
38.5 
39.4 
37.8 
39.4 
38.6 

computer. We have shown that the performance of the 
proposed algorithm  is nearly equal to the performance of 
the optimized SGEMM BLAS times the number of the 
processors in the computer. Our  algorithm consists of k‘ 
basic steps in  which the communication and computation 
are overlapped, except during the first step. The impact 
of the nonoverlap of the first step can be reduced by 
increasing the number of steps k ‘ .  One has to be cautious 
in increasing k ’ ,  however, so as not to decrease k 
(= K/k’ )  below the critical value at which  DGEMM 
performance drops off sharply. A value of k lower 
than a critical value results in a lower DGEMM BLAS 
performance. This performance loss is  significant  and  can 
offset the gain due to the increase in k ’ .  We performed 
experiments on the Intel iPSC System 860 and Intel 
Touchstone Delta computers to see the effect of varying k .  
As expected, we observed a performance improvement for 
larger values of k .  

Acknowledgment 
We are grateful to the NASA  Ames Research Center for 
providing access to the 128-processor Intel iPSC System 
860 computer. The work of  M. Zubair was supported by 
the Institute for Computer Applications in Science and 
Engineering (ICASE), NASA Langley Research Center, 
Hampton, VA, when he was in residence there. 

RISC System/6000 is a registered trademark of International 
Business Machines Corporation. 

iPSC is a registered trademark of Intel Corporation. 

References 
1. J. J. Dongarra, J. DuCroz, I. S. Duff,  and S. Hammarling, 

“Algorithms 679: A  Set of Level 3 Basic Linear Algebra 
Subprograms,” ACM Trans. Math. Soft. 16, No. 1, 18-28 
(1990). 

2. R.  C. Aganval and F. G. Gustavson, “A Parallel 
Implementation of Matrix Multiplication  and LU 
Factorization on the IBM 3090,” Proceedings of the ZFZP 680 

R. C. AGARWAL, F. G. GUSTAVSON, AND M. ZUBAIR 

WG 2.5  Working  Conference on Aspects of Computation 
on Asynchronous Parallel Processors, Palo Alto, CA, 
ElseviedNorth-Holland, 1989, pp. 217-221. 

3. K. Gallivan, W. Jalby, U. Meier,  and  A. Sameh, “Impact 
of Hierarchical Memory Systems on Linear Algebra 
Algorithms Design,” Intl. J. Supercomputer Appl. 2, 
12-48  (1988). 

and Reference, Order No. SC23-0526,  1992; available 
through IBM branch offices. 

5. E. Dekel, D. Nassimi, and S. Sahni, “Parallel Matrix and 
Graph Algorithms,” SZAMJ. Comput. 10, No. 4, 657-673 
(1981). 

6. G. Fox, S. Otto, and  A. Hey, “Matrix Algorithms on a 
Hypercube I: Matrix Multiplication,” Parallel Computing, 
ElseviedNorth-Holland, Amsterdam, 1987, pp. 17-31. 

7. L. Johnsson and C. T. Ho, “Matrix Multiplication on 
Boolean Cubes Using Generic Communication 
Primitives,” Parallel Processing and Medium Scale 
Multiprocessors, Society for Industrial and  Applied 
Mathematics, 1989, pp. 108-156. 

8. C. T. Ho, S. L. Johnsson, and  A. Edelman, ‘‘Matrix 
Multiplication on Hypercubes Using Full Bandwidth and 
Constant Storage,” Sixth Distributed Memory Computing 
Conference Proceedings, IEEE Computer Society Press, 
New York, 1991, pp. 447-451. 

9. L. Johnsson and C. T. Ho, “Algorithms for Multiplying 
Matrices of Arbitrary Shapes Using Shared-Memory 
Primitives on Boolean Cubes,” Technical Report 
YALEUIDCSITR-569, Department of Computer Science, 
Yale University, New Haven, CT, 1987. 

10. C.  Lin  and L. Snyder, “A Matrix Product Algorithm  and 
Its Comparative Performance on Hypercubes,” 
Proceedings of Scalable High-Pe@omance Computer 
Conference (SHPCC-92), IEEE, Williamsburg,  VA, 1992, 
pp. 190-194. 

11. J. Choi, J. J. Dongarra, and  D. W. Walker, “PUMMA: 
Parallel Universal Matrix Multiplication Algorithms on 
Distributed Memory Concurrent Computers,” 
Concurrency: Pract. Q Exper. 6, No. 7,  543-570  (1994); 
also in Technical Reports of Oak  Ridge National 
Laboratory, Mathematical Sciences Section, TM-12252, 
August 1993. 

12. J. W. Demmel, M. T. Heath, and  H. A. Vorst, “Parallel 
Numerical Linear Algebra,” LAPACK Working Note 60, 
University of Tennessee, Knoxville, TN, CS-93-192,  1993. 

13. K. A. Gallivan, R. J. Plemmons,  and A. H. Sameh, 
“Parallel Algorithms for Dense Linear Algebra 
Computations,” SIAM Rev. 32, No. 1, 54-135  (1990). 

14. S. Huss-Lederman, E. Jacobson, and  A. Tsao, 
“Comparison of Scalable Parallel Matrix Multiplication 

4. ZBM Engineering  and  Scientific  Subroutine Library, Guide 

IBM J. RES. DEVELOP. VOL. 38 NO. 6 NOVEMBER 1994 



Libraries,” Proceedings of the Scalable Parallel Libraries 
Conference, Starksville,  MI, October 1993, pp. 142-149. 

15. S. Huss-Lederman, E. Jacobson, A. Tsao,  and G. Zhang, 
“Matrix Multiplication on the  Intel  Touchstone  DELTA,” 
Technical Report SRC-TR-93-101, Supercomputing 
Research  Center, Bowie, MD, February 1994. 

16. F. G. Gustavson  and M. Zubair, “A High Performance 
Multiplication  Algorithm on a  Distributed-Memory  Parallel 

Report RC-18694 (81769), IBM  Thomas J. Watson 
Machine Using Overlapped  Communication,” Research 

Research  Center, Yorktown  Heights, N Y ,  1993. 

Received August 2, 1993; accepted for publication 
March 18,  1994 

Ramesh c. Agarwal IBM Research Division,  Thomas J. 
Watson Research Center, P.O. Box  218, Yorktown Heights, 
New York 10598 (AGARWAL at YKTVMK agarwal@watson. 
ibm.com). Dr. Agarwal  received  a B.Tech. (Hons.) degree 
from the  Indian Institute of Technology (IIT), Bombay. He 
was the  recipient of The President of India  Gold  Medal 
while there.  He received M S .  and Ph.D. degrees from  Rice 
University  and  was awarded the Sigma Xi Award  for  best 
Ph.D. thesis in electrical engineering. He has  been a  member 
of the Mathematical Sciences  Department  at  the IBM Thomas 
J. Watson  Research  Center  since 1983. Dr.  Agarwal has 
done  research in many  areas of engineering, science,  and 
mathematics  and  has published over 60 papers in various 
journals. Currently, his  primary research  interest  is in the  area 
of algorithms and  architecture for  high-performance  computing 
on  workstations  and scalable  parallel  machines. In 1974, Dr. 
Agarwal  received  the Senior Award  from the IEEE Acoustics, 
Speech,  and Signal Processing  (ASSP)  group,  for best  papers. 
He  has received several Outstanding  Achievement Awards and 

IEEE and  a member of the IBM Academy of Technology. 
a Corporate Award from IBM. Dr.  Agarwal is a  Fellow of the 

Fred  G.  Gustavson IBM Research Division,  Thomas J. 
Watson Research Center, P. 0. Bau  218, Yorktown Heights, 
New York 10598 (GUSTAVat Y K W ,  gustav@watson. 
ibm.com). Dr. Gustavson  is manager of Algorithms  and 
Architectures in the  Mathematical Sciences  Department  at  the 
IBM Thomas  J.  Watson  Research  Center.  He received  his 
B.S. in physics, and his M S .  and Ph.D. degrees in applied 
mathematics, all from Rensselaer  Polytechnic Institute. He 
joined IBM Research in 1963. One of his  primary interests  has 
been in developing theory  and programming techniques for 
exploiting the  sparseness  inherent in large systems of linear 
equations. Dr. Gustavson  has  worked in the  areas of nonlinear 
differential equations,  linear  algebra,  symbolic  computation, 
computer-aided  design of networks, design and analysis of 
algorithms, and programming  applications. He  and his group 
are  currently engaged in activities that  are aimed at exploiting 
the novel features of the IBM family of RISC  processors. 
These include hardware design  for  divide and  square  root, new 
algorithms  for  POWER2TM for  the Engineering and Scientific 
Subroutine  Library  (ESSL)  and  for  other math  kernels, and 
parallel  algorithms  for  distributed  memory processors. Dr. 
Gustavson  has received an IBM  Outstanding  Contribution 
Award,  an  IBM  Outstanding  Innovation Award,  an IBM 
Outstanding Invention Award, two IBM Outstanding  Technical 
Achievement Awards,  two IBM Corporate Technical 
Recognition Awards,  and a Research Division Technical 
Group Award. 

Mohammad  Zubair IBM Research Division, Thomas J. 
Watson Research Center, P. 0. Box  218, Yorktown Heights, 
New York 10598 (ZUBAIR at Y m ,  zubair@watson.ibm. 
com). Dr. Zubair  received  his Ph.D. degree in 1987 from the 
Indian Institute of Technology  (IIT), New Delhi. From 
1981 to 1987, he  was  at  the  Center for  Applied Research in 
Electronics,  IIT Delhi. In 1987, he  became  an  Assistant 
Professor at Old Dominion University, Norfolk, VA, and 
in 1993 he  became an  Associate  Professor. He  joined IBM 
Research in 1994. Dr.  Zubair’s  primary research  interest  is in 
the algorithm and  architecture  aspects of large-scale scientific 
computing. He  has published more than 30 papers in various 
journals  and  conference proceedings. 

POWER2 is a  trademark of International Business Machines Corporation. 


	ibmrd3806D673.pdf
	page 1




