A high-
performance
matrix-
multiplication
algorithm on a
distributed-
memory

by

R. C. Agarwal
F. G. Gustavson
M. Zubair

parallel computer,
using overlapped

communication

in this paper, we propose a scheme for
matrix—-matrix multiplication on a distributed-
memory parallel computer. The scheme hides
almost all of the communication cost with the
computation and uses the standard, optimized
Level-3 BLAS operation on each node. As a
result, the overall performance of the scheme
is nearly equal to the performance of the
Level-3 optimized BLAS operation times the
number of nodes in the computer, which is
the peak performance obtainable for parallel
BLAS. Another feature of our algorithm is
that it can give peak performance for larger

matrices, even if the underlying communication
network of the computer is slow.

Introduction

One means of obtaining very good performance on a
distributed-memory parallel computer is by keeping
communication cost as small as possible. Furthermore, it
is equally important that the single-processor computation
performance be good, since any improvement in the
computation performance of a single processor will have

The contribution of M. Zubair was made when he was visiting the IBM Thomas J.
Watson Research Center from Old Dominion University during the summer of 1992.

©Copyright 1994 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without aiteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of
this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor. 673

IBM J. RES. DEVELOP. VOL. 38 NO. 6 NOVEMBER 1994

R. C. AGARWAL, F. G. GUSTAVSON, AND M. ZUBAIR

674

s}

35

30

MFLOPS

Pt o

10 i 1 1 1
0 100 200 300 400 500

Matrix size

Performance of DGEMM on RS/6000 Model 530 as a function of
matrix size (peak performance, S0 MFLOPS).

a mulfiplicative effect on the overall performance. For
Level-3 Basic Linear Algebra Operations (BLAS) [1],
which is a subroutine library, it has been established that a
key for achieving good performance on a single processor
with a memory hierarchy is the effective utilization of that
hierarchy (2, 3]. For a given memory hierarchy, there is

a minimum problem size above which nearly maximal
performance can be obtained on a single processor, but
below which performance drops off sharply as the problem
size decreases [4]. As a consequence, when a problem is
partitioned for execution on a parallel processor, it does
not pay to subdivide the original problem into pieces below
this minimum size. The minimum size implies a maximum
number of processors that can be usefully applied; more
processors do not increase performance proportionally and
are therefore wasteful of resources. The main result of

this paper is to combine good uniprocessor performance
(BLAS) and overlapped computation and communication
to produce a very high-performance algorithm for parallel
matrix multiplication.

Our algorithm for matrix-matrix multiplication on a
distributed-memory parallel computer has the following
two properties: 1) it hides almost all of the communication
cost with the computation, and 2) it uses the standard,
optimized Level-3 BLAS matrix-multiply operation on
each processor. Thus, when the problem size is large
enough and the number of processors does not exceed the
limit for efficient performance, the overall performance of

R. C. AGARWAL, F. G. GUSTAVSON, AND M. ZUBAIR

the algorithm is nearly equal to the performance of the
Level-3 optimized BLLAS operation on a single processor
times the number of processors used, which can be the
peak performance obtainable for a parallel BLAS solution.
Another feature of our algorithm is that it can yield peak
performance, even if the underlying communication
network of the computer is slow. This is because, for
matrix multiplication, the interprocessor communication
cost grows an order of magnitude more slowly than the
computation cost. It follows from this that for any parallel
computer, there is a break-even matrix size for which the
computation cost balances the communication cost.
Consequently, it is possible to choose a sufficiently large
matrix size for which computation completely overlaps
communication. (This assumes, of course, that the
individual processors contain sufficient storage, which

is almost always true, in practice.)

Several researchers have previously addressed the
problem of parallelizing matrix-matrix multiplication,
for example, [5-11]. A good survey of these efforts can
be found in [12, 13). More recently, an effort to develop
a general-purpose matrix-multiplication algorithm for
distributed-memory computers that uses optimized, single-
processor BLAS has been described [14, 15]. We are
not aware, however, of any algorithm that overlaps
communication with computation.

The two main concepts presented here have very broad
applicability. The first concept, embodied in our algorithm,
is to anticipate the next computational step and prepare for
it by communicating the data needed for it in advance
{during the current computational step). The second main
concept is to use very powerful processors and to compute
on them nearly at their peak rate. This usually implies that
one uses medium-grain to coarse-grain parallelism. Two
other areas where these concepts, in combination, will
work are dense linear algebra and signal processing (fast
Fourier transform).

Our algorithm for computing a product matrix C is based
on an outer-product formulation that consists of k' basic
steps, in each of which all processors participate in
computing an update to the C matrix and in simultaneously
transmitting and receiving data for the next update of C.
Normally, interprocessor communication is required
between steps; however, we overlap communication with
computation by initiating the necessary interprocessor
communication a step in advance. That is, at the ith step,
when we are calculating the ith update to the C matrix, we
are also distributing data that are required for forming the
(i + 1)th update to the C matrix. During any step, two
pairs of buffers are used on a processor—one pair for
receiving data from other processors and the other pair for
local computing. In the next step, the functionality of the
two buffer pairs is interchanged; i.e., the pair used for

IBM J. RES. DEVELOP. VOL. 38 NO. 6 NOVEMBER 1994

receiving data in step i is used for local computing in step
i + 1, and vice versa.

We tested the proposed algorithm, using the SGEMM
(a matrix-matrix multiplication BLAS) supplied by the
manufacturer, on two distributed-memory computers, the
Intel iPSC® System 860 and the Intel Touchstone Delta.
All submatrices were the same size. We implemented
broadcast communication of the data as a sequence of
individual “‘sends’’ from processor to processor along the
rows and columns of the processor mesh. We obtained a
peak performance of 4.36 GFLOPS on a 128-processor
Inte] iPSC System 860 computer (approximately 34.0
MFLOPS per processor) for a 5440 x 5440 matrix. For
this computation, we were able to overlap 93% of the
computation with broadcast communication. The single-
processor SGEMM rate for this size of matrix was
measured at 36.7 MFLOPS. We obtained a peak
performance of 19.0 GFLOPS on the Delta with 512
processors for a 14 720 x 14 720 matrix. For this
computation, we were able to overlap 96% of the
computation with broadcast communication. The single-
processor SGEMM rate for this size of matrix was
measured at 38.6 MFLOPS.

Single-node performance
The peak processing rate of a massively parallel system
can be obtained when all of its nodes run simultaneously at
- their peak rate. One way to accomplish this is to divide the
problem into pieces, at least one for each processor, that
the processors can run, independently, at their peak
performance. The execution times for the pieces should be
identical. It is not a trivial exercise to write a program for
which the pieces run at peak performance for all piece
sizes. We have been able, however, to design and
impiement SGEMM/DGEMM programs [4] for
uniprocessors that run near peak performance for a wide
range of problem sizes. For example, in Figure 1 we plot
the performance (in MFLOPS) of DGEMM for square
matrices of order 30 to 500 on the IBM RISC
System/6000® (RS/6000) Model 530 computer, which
has a peak rate of 50 MFLOPS. As can be seen, the
performance rapidly approaches a peak rate of 45
MFLOPS, attaining a rate of 43 MFLOPS at matrix order
100. (Although we show this graph for square matrices
only, DGEMM on the RS/6000 also gives uniformly good
performance near its peak rate for rectangular matrices.)
On the other hand, some vendor-supplied software
may not run near peak performance for a wide range of
problem sizes. For example, in Figure 2 we plot SGEMM
performance on a node of the Intel iPSC System 860
computer, which has a peak rate of 80 MFLOPS for single-
precision calculations, for square matrices of order 50 to
500. Clearly, with such an SGEMM performance curve,

IBM J. RES. DEVELOP. VOL. 38 NO. 6 NOVEMBER 1994

50

MFLOPS
>
T

T

251
201 1 1 1 L
0 100 200 300 400 500
Matrix size

i i
Performance of SGEMM on a node of Intel iPSC System 860 as a
function of matrix size (peak performance, 80 MFLOPS).

2
%

one must select the size of the pieces carefully in order
to optimize performance of a parallel system.

In summary, the uniformly good performance of our
matrix multiplication code depends crucially upon having
uniprocessor code performance that is uniformly near
peak for as wide a range of piece size as possible.

Multiplying matrices in parallel

We consider the matrix-matrix multiplication computation
C = AB, where C, A, and Bare M X N, M x K, and
K x N matrices, respectively, on a computer with P =
m' X n' processors. (We use primed symbols to denote
quantities related to the array of physical processors on
which the algorithm will run, and unprimed symbols to
represent the sizes of various matrices on a given
processor.) This computation is the Level-3 BLAS
SGEMM computation (BLAS also incorporates scale
factors a and B and matrix transposes).

We view a parallel computer as a logical two-dimensional
m' X n' array of processors. The processor at position
(i', ') is denoted p(i’, j'), where 0 < i’ < m’ and
0<j <n'.

® Basic algorithm (without overlap)
The basic algorithm, in its simplest form, is as follows:

1. Partition the three matrices into submatrices, designated
A,,B,,and C, .

e By

R. C. AGARWAL, F. G. GUSTAVSON, AND M. ZUBAIR

675

676

2. Store submatrices A, and B, in the local storage of
processor p(i’, j').
3. In processor p(i', j'), calculate

Cyp= 2 AuB,

where A, B, denotes a matrix multiplication, and

o' and k' are as described below. All processors make
these computations simultaneously. Since only A,
and B, are stored in p(i', j'), it is necessary that
submatrices A, , and B, be transmitted to p(i', j')
from the processors where they are stored

[p@', o') and p(d’, j'), respectively].

Matrix A is partitioned into m' X k' submatrices A, . of
order m by k each, where m = M/m' and k x k' = K.
[In the simplest case, the processor array is square
(m' = n'), and we set k' = n'.] The submatrix A, ,
is defined as follows:

A, = A@m:[i' + 1Im - 1, o'k:[o" + 1]k - 1),

O0si'<m',0<s0' <k'.

[X(a:b, c:d) denotes the submatrix of matrix X with row
index ranging from a through b and column index ranging
from c through d.] That is, the rows of A are divided
among the rows of the processor array in blocks of m,
and the columns of A are divided among the columns of
the processor array in blocks of k. Similarly, matrix B is
partitioned into k' X n’ submatrices B ,; Of order k by n
each, where n = N/n':

B, = B(o'k:[o’ + 1}k — 1, jn:[j’ + 1]n — 1),

0o <k',0=<j <n'.

That is, the columns of B are divided among the columns
of the processor array in blocks of #, and the rows of B
are divided among the rows of the processor array in
blocks of k. Finally, C is partitioned intom' X n’
submatrices C,. of order m by n each:

C, =C'm:[i" + 1lm - 1,j'n:[]' + 1]n - 1),
0=i'"<m,0sj <n'.

That is, the rows of C are divided among the rows of the
processor array in blocks of m, and the columns of C
are divided among the columns of the processor array in
blocks of n.

For example, we might wish to multiply a 1000 x 4000
matrix A by a 4000 X 6400 matrix B (M = 1000, K =
4000, N = 6400) on a 20 x 20 array of 400 processors
(m' = n' = 20). Then, m = 50 and n = 320. If we
choose k' = 50 and k = 80, each processor stores one
50 x 80 submatrix of A and an 80 x 320 submatrix of B,

R. C. AGARWAL, F. G. GUSTAVSON, AND M. ZUBAIR

and calculates a 50 x 320 submatrix of C. As indicated
above, submatrices A,.,].,, Bi,j,, and Ci,j, are stored in
processor p(i', j').

As stated earlier, our algorithm is based on an outer-
product formulation and consists of k' basic steps, one
for each of the k' columns of submatrices into which A
is partitioned (and rows of submatrices into which B is
partitioned). In a basic step, each processor p(i', j') may
transmit to other processors the data they need for making
their computations, may receive such data from other
processors, and computes C,, = C,. + A, B,_., which
is a matrix multiplication and accumulation. In addition to
the local memory in a processor to store the submatrices
of A, B, and C, two temporary buffers are used: R0 and
S0, of size mk and kn, respectively.

To calculate C,, on p(i’, j'), array C,,, is initially set
to 0. Then, for o’ = 0to k' —~ 1, the following sequence
(basic step) is repeated:

1. All processors in the o'th column send a copy of their
A submatrices to all the other processors in the same
row; i.e., p(A’, o') broadcasts A,, , to all other p(A’, j')s,
for allj’ # ¢’. For example, in step 0, p(0, 0)
broadcasts A, to p(0, 1), p(0, 2), - - -, p(0, n’ — 1).

The receiving processors receive such submatrices
of A into buffer RO.

2. Next, all processors in the o'th row send a copy of
their B submatrices to all the other processors in the
same column. The receiving processors receive such
submatrices of B into buffer SO0.

3. Finally, processor p(i', j') computes the following:

C,=C, +A,B

e w
i By, =) =0,

C,=C,+ROB,, ifi'=0,j=0d,

i)
C,=C,+AS0, ifi=d,j=0c,
C,=C,+ROSO, ifi'=0',j =o'

(RO and S0 are the matrices in buffers R0 and S0,
~ respectively.)

Figure 3 illustrates step 0 on an array of 4 x 4
processors. Phase 3 of each step requires a matrix
multiplication and accumulation. After £’ such basic steps,
pli’, j') contains the product submatrix C,,. Of course, if
it is desired to calculate C = C + AB, submatrices C,.‘j.
should not be set to 0 initially.

® General case (without overlap)

In the more general case, the processor array need not be
square, and we need not set k' = n’. We still assume that
M is an integral multiple of m' (m = M/m’), that N is

an integral multiple of n' (n = N/n’), and that k and &k’
are integers (k X kK’ = K). Then, k' may be chosen to be

IBM J. RES. DEVELOP. VOL. 38 NO. 6 NOVEMBER 1994

)
./

=0
O »O O Receiving processor

S+0

Phase 1 — Broadcasting submatrices of A

157

Sending processor
O Receiving processor

CCCr
CCC
CC5;

Phase 2 — Broadcasting submatrices of B

‘ Coo= Coo ™ AgoBro

@ Cyy = Cy+ ROBy, ;RO = Ay,

@ Co=Crgt AygSO: SO =By

Cl.,j,+ Ci,j,+ ROSO; RO=A, SO= BOj’

2000
0000
0000

O
O
O

Phase 3 — Calculating C,, 5

677

IBM J. RES. DEVELOP. VOL. 38 NO. 6 NOVEMBER 1994 R. C. AGARWAL, F. G. GUSTAVSON, AND M. ZUBAIR

678

larger than n’ and m’', and more than one submatrix of A
and B may be mapped to processor p(i’, j'), according to
the following:

* Submatrix A, , is assigned to processor p{i’, o/ mod n’).
That is, the columns of A are divided among the
columns of the processor array in blocks of k, in
wraparound fashion; the rows of A are divided among

the rows of the processor array, just as in the basic case.

* B, is assigned to processor p(o’ mod m', j’).
* C,, is assigned to processor p(i', '), as before.

Note that each processor stores only one submatrix
of C. On the other hand, there may be more than one
submatrix of A and B assigned to a processor. The
exact number of submatrices mapped to a processor is
determined by i’ and j’ and on the relationship of £’ to m'
and n'.

For example, consider multiplying the matrices A and B
described in the previous subsection (A is 1000 x 4000,
and B is 4000 x 6400) on a 20 x 25 processor array of size
500. Then, m' = 20, m = 50, n' = 25, n = 256. If we
choose k' = 80 (thus, k£ = 50), some of the processors
will be assigned three submatrices of A, and some will be
assigned four. All processors will be assigned four
submatrices of B.

The k' steps of the algorithm are as before, each
processor broadcasting its appropriate A and B
submatrices during each step, receiving broadcast
submatrices, and calculating Ci,j,.

Finally, we may remove the restriction that M is an
integral multiple of m’, and the other similar constraints
given above. The basic principle is the same. The details
for handling the irregularities involved with matrices of
arbitrary size are described in [16].

® Memory requirements

In order to describe how much memory is required in
each processor, we introduce notation for quotients and
remainders:

k'=gm' +r,,
k'=gqn' +r,.

Here g, , r,, q,, and r, are nonnegative integers (r,, < m'
and r, < n'). Then, the memory requirement, in number
of words, for accommodating submatrices of A and B at
processor p{i’, j') is given by

(mk)g, + 1) + (m)g,+1) 0 <i'<r,, 0sj <r,
(mk)g, + (kn)g,, + 1) 0<i<r, rsj<n,
(mk)(g, + 1) + (kn)qg,, rsi<m, 0sj<r,
(mk)q, + (kn)q, rsit<m, rs<j<n.

R. C. AGARWAL, F. G. GUSTAVSON, AND M. ZUBAIR

® Algorithm with overlap
In order to adapt our algorithm to overlap communication
and computation, we use two additional buffers at each
processor, R1 of size mk and S1 of size kn. This
algorithm is similar to the one without overlap, except that
during a basic step, a processor receives data in the buffer
pair RO and SO (or in the pair R1 and $1) and performs
computation using R1 and S1 (or RO and S0). This is to
ensure that the computation and communication can be
done concurrently. If a processor uses R0 and S0 for
receiving data in one step, it uses the matrices in these
buffers for computing in the next step. The o'th step is
similar to the one outlined for the nonoverlap case, with
the exception that for odd steps a processor uses R0 and
S0 for receiving data and R1 and S1 for computation. The
converse is true for the even steps.

Note that in all steps but one, we are able to overlap
communication with computation.

We now discuss guidelines for selecting m, n, and k
(consequently, m', n’, and k'), the submatrix dimensions:

1. m’ x n’ should equal the number of processors
available.

2. m, n, and k should be large enough that the
uniprocessors executing DGEMM are computing in
their range of nearly peak performance.

3. k should be as small as possible in order to minimize
the communication cost. As k decreases, k' increases,
resulting in the communication overhead of the first
step (of k') being a smaller fraction of the total
execution time.

In general, it is possible to satisfy all of these constraints
when the problem size (M, N, K) is large enough.
Otherwise, fewer processors than the number available
may be used [see guideline 1 above].

Experimental resuits

We tested our implementation on a 128-processeor Intel
iPSC System 860 computer and a 512-processor Intel
Touchstone Delta computer. Both computers use the
same processor. The Intel iPSC System 860 is a
distributed-memory parallel computer with a hypercube
interconnection network. For our experiments, we chose
a two-dimensional mesh; however, our algorithm is not
restricted to a mesh or even a hypercube connectivity. The
standard SGEMM BLAS supplied by the vendor was used
on each processor. All experiments were done on square
matrices, i.e., for M = N = K, with k' = n’ (the basic
algorithm, with overlap).

Although one might expect that all processors executing
the algorithm would require the same amount of time to
execute each iteration step, some factors (e.g., system
programs running concurrently) affect this synchronism.

IBM J. RES. DEVELOP. VOL. 38 NO. 6 NOVEMBER 1994

Table 1 Performance results of matrix multiplication (single precision) executed on Intel iPSC 860 parallel computer.

Processor Matrix m n k Algorithm Overlap MFLOPS MFLOPS
configuration order MFLOPS Jraction per processor per processor
with overhead without overhead
1x2 700 700 350 350 73 0.96 36.5 38.0
2x2 1000 500 500 500 157 0.94 39.3 418
2x4 1400 700 350 350 295 0.94 36.9 39.3
4 x4 2000 500 500 500 607 0.95 37.9 39.9
4%x8 2800 700 350 350 1132 0.94 35.4 37.7
8 x8 4000 500 500 500 2382 0.94 37.2 39.6
8 x 16 5440 680 340 340 4356 0.93 34.0 36.7

As a result, we carried out experiments to determine
whether the processors remained in synchronism during
the execution of the algorithm. (The experiment involved
terminating the program with a global synchronization
step at the end of the last step of the computation.) We
observed a very minor variation (<1%) in the timings,
thereby verifying that our algorithm does indeed have
the property that all the processors finish execution at
approximately the same time. The implementation of our
algorithm on these two platforms showed 1) uniform
computation and communication load and 2) nearly
perfect synchronization between any two steps of the
computation. We first give our results on the Intel iPSC
System 860.

o [ntel iPSC System 860 computer results

We measured a performance of 4.36 GFLOPS, which

is approximately 34.0 MFLOPS per processor for

5440 x 5440 matrices multiplied on an 8 x 16-processor
array of size 128. The performance of SGEMM on a single
processor was 36.7 MFLOPS. We were able to overlap
93% of the communication with computation (other
overheads were negligible).

Table 1 illustrates the dependency of SGEMM
performance on the number of processors and matrix size.
The first column lists the processor configuration used. In
the next four columns, we list the order of the matrix and
the three submatrix dimensions. The column labeled
Algorithm MFLOPS gives the computation rate (in
MFLOPS) of the parallel algorithm as calculated by
dividing the total number of FLOPs of the computation
(2N°) by the elapsed wall-clock time. In the last two
columns, we list MFLOPS per processor with
communication overhead (i.e., the column labeled
Algorithm MFLOPS divided by the number of processors,
which gives the actual MFLOPS measured) and MFLOPS
per processor without communication overhead (the
computation for the specified submatrix sizes executed
on a single processor), respectively. The column labeled
Overlap fraction (calculated by dividing the next-to-last
column by the last column) represents the fraction of

IBM J. RES. DEVELOP. VOL. 38 NO. 6 NOVEMBER 19%4

overhead, primarily communication, that was able to be
overlapped by computation. The value is relatively
constant (=0.95), and the variations should not be
considered significant. Table 1 shows, as expected, that
as we increase the number of processors in the computer
and the matrix size, the performance and overlap remain
relatively constant.

The data for the last column of Tables 1 and 2 are taken
from Figure 2, which also includes some additional points.
Note that the experiment in Table 1 with the largest
number of processors corresponds to a value of n = 340.
Had we decreased the value of n to 270, Figure 2 indicates
that the performance would have been approximately 43
MFLOPS. This would lead us to expect a result of 5.1
GFLOPS for a matrix of order 4320 (m = 540, n = 270,
k = 270).

® [ntel Delta computer results

We obtained a peak performance of 19.0 GFLOPS (37.1
MFLOPS per processor) on the Delta computer with
512 processors, for a 14 720 x 14 720 matrix. For this
computation, we were able to overlap 96% of the
computation with broadcast communication. All
submatrices processed by SGEMM were of the same size.
The single-processor SGEMM rate for 14720 x 14720
matrices was measured at 38.6 MFLOPS. We also
measured the peak performance obtainable on the Delta
computer using different processor configurations. These
results are summarized in Table 2, which is similar to
Table 1.

Note that the experiment in Table 2 with the largest
number of processors corresponds to a value of n = 460.
Had we decreased the value of # to 450, Figure 2 indicates
that the performance would have been approximately 43
MFLOPS. This leads us to expect a result of 21.1 GFLOPS
for a matrix of order 14400 (m = 900, n = 450,

k = 450).

Conclusion

In this paper we have proposed an algorithm for
multiplying two matrices on a distributed-memory parallel

R. C. AGARWAL, F. G. GUSTAVSON, AND M. ZUBAIR

680

Table 2 Performance results of matrix multiplication (single precision) executed on Intel Touchstone Delta parallel computer.

Processor Matrix m n k Algorithm Overlap MFLOPS MFLOPS
configuration order MFLOPS Jfraction per processor per processor
with overhead without overhead
1x2 850 850 425 425 76 0.99 38.0 38.5
2x%x2 1300 650 650 650 159 0.99 39.9 40.3
2x4 1700 850 425 425 306 0.99 38.3 38.7
4x4 2600 650 650 650 624 0.98 39.0 39.8
4x8 3400 850 425 425 1193 0.97 37.3 38.5
8 x 8 5000 625 625 625 2444 0.97 38.2 39.4
8 x 16 6800 850 425 425 4644 0.96 36.3 37.8
16 x 16 10400 650 650 650 9673 0.96 37.8 39.4
16 x 32 14720 920 460 460 18977 0.96 37.1 38.6

computer. We have shown that the performance of the
proposed algorithm is nearly equal to the performance of
the optimized SGEMM BLAS times the number of the
processors in the computer. Our algorithm consists of &’
basic steps in which the communication and computation
are overlapped, except during the first step. The impact

of the nonoverlap of the first step can be reduced by
increasing the number of steps k. One has to be cautious
in increasing k', however, so as not to decrease k

(= K/k') below the critical value at which DGEMM
performance drops off sharply. A value of k lower

than a critical value results in a lower DGEMM BLAS
performance. This performance loss is significant and can
offset the gain due to the increase in k’'. We performed
experiments on the Intel iPSC System 860 and Intel
Touchstone Delta computers to see the effect of varying k.
As expected, we observed a performance improvement for
larger values of k.

Acknowledgment

We are grateful to the NASA Ames Research Center for
providing access to the 128-processor Intel iPSC System
860 computer. The work of M. Zubair was supported by
the Institute for Computer Applications in Science and
Engineering (ICASE), NASA Langley Research Center,
Hampton, VA, when he was in residence there.

RISC System/6000 is a registered trademark of International
Business Machines Corporation.

iPSC is a registered trademark of Intel Corporation.

References

1. 1. J. Dongarra, J. DuCroz, 1. S. Duff, and S. Hammarling,
““Algorithms 679: A Set of Level 3 Basic Linear Algebra
Subprograms,” ACM Trans. Math. Soft. 16, No. 1, 18-28
(1990).

2. R. C. Agarwal and F. G. Gustavson, ‘“A Parallel
Implementation of Matrix Multiplication and LU
Factorization on the IBM 3090, Proceedings of the IFIP

R. C. AGARWAL, F. G. GUSTAVSON, AND M. ZUBAIR

10.

11.

12.

13.

14.

WG 2.5 Working Conference on Aspects of Computation
on Asynchronous Parallel Processors, Palo Alto, CA,
Elsevier/North-Holland, 1989, pp. 217—221.

. K. Gallivan, W. Jalby, U. Meier, and A. Sameh, “Impact

of Hierarchical Memory Systems on Linear Algebra
Algorithms Design,” Intl. J. Supercomputer Appl. 2,
12-48 (1988).

. IBM Engineering and Scientific Subroutine Library, Guide

and Reference, Order No. SC23-0526, 1992; available
through IBM branch offices.

. E. Dekel, D. Nassimi, and S. Sahni, ‘‘Parallel Matrix and

Graph Algorithms,”” SIAM J. Comput. 10, No. 4, 657-673
(1981).

. G. Fox, S. Otto, and A. Hey, ‘“Matrix Algorithms on a

Hypercube I: Matrix Multiplication,’” Parallel Computing,
Elsevier/North-Holland, Amsterdam, 1987, pp. 17-31.

. L. Johnsson and C. T. Ho, ‘“Matrix Multiplication on

Boolean Cubes Using Generic Communication
Primitives,”” Parallel Processing and Medium Scale
Multiprocessors, Society for Industrial and Applied
Mathematics, 1989, pp. 108-156.

. C. T. Ho, S. L. Johnsson, and A. Edelman, ‘‘Matrix

Multiplication on Hypercubes Using Full Bandwidth and

Constant Storage,”” Sixth Distributed Memory Computing
Conference Proceedings, IEEE Computer Society Press,

New York, 1991, pp. 447-451.

. L. Johnsson and C. T. Ho, ““Algorithms for Multiplying

Matrices of Arbitrary Shapes Using Shared-Memory
Primitives on Boolean Cubes,’” Technical Report
YALEU/DCS/TR-569, Department of Computer Science,
Yale University, New Haven, CT, 1987.

C. Lin and L. Snyder, ‘““‘A Matrix Product Algorithm and
Its Comparative Performance on Hypercubes,””
Proceedings of Scalable High-Performance Computer
Conference (SHPCC-92), IEEE, Williamsburg, VA, 1992,
pp. 190-194.

J. Choi, J. J. Dongarra, and D. W. Walker, “PUMMA:
Parallel Universal Matrix Multiplication Algorithms on
Distributed Memory Concurrent Computers,”
Concurrency: Pract. & Exper. 6, No. 7, 543-570 (1994);
also in Technical Reports of Oak Ridge National
Laboratory, Mathematical Sciences Section, TM-12252,
August 1993.

J. W. Demmel, M. T. Heath, and H. A. Vorst, “‘Parallel
Numerical Linear Algebra,”” LAPACK Working Note 60,
University of Tennessee, Knoxville, TN, CS-93-192, 1993.
K. A. Gallivan, R. J. Plemmons, and A. H. Sameh,
“‘Parallel Algorithms for Dense Linear Algebra
Computations,”” SIAM Rev. 32, No. 1, 54-135 (1990).

S. Huss-Lederman, E. Jacobson, and A. Tsao,
““‘Comparison of Scalable Parallel Matrix Multiplication

IBM J. RES. DEVELOP. VOL. 38 NO. 6 NOVEMBER 1994

Libraries,”” Proceedings of the Scalable Parallel Libraries
Conference, Starksville, MI, October 1993, pp. 142-149.

15. S. Huss-Lederman, E. Jacobson, A. Tsao, and G. Zhang,
““Matrix Multiplication on the Intel Touchstone DELTA,”’
Technical Report SRC-TR-93-101, Supercomputing
Research Center, Bowie, MD, February 1994.

16. F. G. Gustavson and M. Zubair, ‘A High Performance
Multiplication Algorithm on a Distributed-Memory Parallel
Machine Using Overlapped Communication,”” Research
Report RC-18694 (81769), IBM Thomas J. Watson
Research Center, Yorktown Heights, NY, 1993.

Received August 2, 1993; accepted for publication
March 18, 1994

IBM J. RES. DEVELOP. VOL. 38 NO. 6 NOVEMBER 1994

Ramesh C. Agarwal IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights,
New York 10598 (AGARWAL at YKTVMYV, agarwal@watson.
ibm.com). Dr. Agarwal received a B.Tech. (Hons.) degree
from the Indian Institute of Technology (IIT), Bombay. He
was the recipient of The President of India Gold Medal

while there. He received M.S. and Ph.D. degrees from Rice
University and was awarded the Sigma Xi Award for best
Ph.D. thesis in electrical engineering. He has been a member
of the Mathematical Sciences Department at the IBM Thomas
J. Watson Research Center since 1983. Dr. Agarwal has

done research in many areas of engineering, science, and
mathematics and has published over 60 papers in various
journals. Currently, his primary research interest is in the area
of algorithms and architecture for high-performance computing
on workstations and scalable parallel machines. In 1974, Dr.
Agarwal received the Senior Award from the IEEE Acoustics,
Speech, and Signal Processing (ASSP) group, for best papers.
He has received several Outstanding Achievement Awards and
a Corporate Award from IBM. Dr. Agarwal is a Fellow of the
IEEE and a member of the IBM Academy of Technology.

Fred G. Gustavson /BM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights,
New York 10598 (GUSTAV at YKTVMYV, gustav@watson.
ibm.com). Dr. Gustavson is manager of Algorithms and
Architectures in the Mathematical Sciences Department at the
IBM Thomas J. Watson Research Center. He received his
B.S. in physics, and his M.S. and Ph.D. degrees in applied
mathematics, all from Rensselaer Polytechnic Institute. He
joined IBM Research in 1963. One of his primary interests has
been in developing theory and programming techniques for
exploiting the sparseness inherent in large systems of linear
equations. Dr. Gustavson has worked in the areas of nonlinear
differential equations, linear algebra, symbolic computation,
computer-aided design of networks, design and analysis of
algorithms, and programming applications. He and his group
are currently engaged in activities that are aimed at exploiting
the novel features of the IBM family of RISC processors.
These include hardware design for divide and square root, new
algorithms for POWER2™ for the Engineering and Scientific
Subroutine Library (ESSL) and for other math kernels, and
parallel algorithms for distributed memory processors. Dr.
Gustavson has received an IBM Outstanding Contribution
Award, an IBM Outstanding Innovation Award, an IBM
Outstanding Invention Award, two IBM Outstanding Technical
Achievement Awards, two IBM Corporate Technical
Recognition Awards, and a Research Division Technical
Group Award.

Mohammad Zubair I/BM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights,
New York 10598 (ZUBAIR at YKTVMYV, zubair@watson.ibm.
com). Dr. Zubair received his Ph.D. degree in 1987 from the
Indian Institute of Technology (IIT), New Delhi. From

1981 to 1987, he was at the Center for Applied Research in
Electronics, IIT Delhi. In 1987, he became an Assistant
Professor at Old Dominion University, Norfolk, VA, and

in 1993 he became an Associate Professor. He joined IBM
Research in 1994, Dr. Zubair’s primary research interest is in
the algorithm and architecture aspects of large-scale scientific
computing. He has published more than 30 papers in various
journals and conference proceedings.

681

POWER? is a trademark of International Business Machines Corporation.

R. C. AGARWAL, F. G. GUSTAVSON, AND M. ZUBAIR

	ibmrd3806D673.pdf
	page 1

