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Since its announcement, the IBM RISC
System/6000® processor has characterized
the aggressive instruction-level parallelism
approach to achieving performance. Recent
enhancements to the architecture and
implementation provide greater superscalar
capability. This paper describes the
architectural extensions which improve
storage reference bandwidth, allow hardware
square-root computation, and speed
floating-point-to-integer conversion. The
implementation, which exploits these
extensions and doubles the number of
functional units, is also described. A
comparison of performance results on a
variety of industry standard benchmarks
demonstrates that superscalar capabilities are
an attractive alternative to aggressive clock
rates.

Introduction

In 1990, IBM announced the RISC System/6000® (RS/6000)
family of highly concurrent superscalar workstations and
servers, supporting clock rates ranging from 20 MHz to

30 MHz [1]. The 25-MHz Model 530 achieved performance
levels which exceeded those of many of its contemporaries

(Sun™ 4/200, DECstation 3100, MIPS® M/2000, and
Apollo DN10000) by more than 40% on a variety of
benchmarks [Dhrystones 1.1, Whetstones, Linpack (dp)
Livermore Loops (geometric mean), and SPECmark™)] [2].
All models included an 8KB instruction cache (I-cache)
and either a 32KB or a 64KB data cache (D-cache). These
POWER processors were the first implementations of the
IBM POWER (Performance Optimized With Enhanced
RISC) Architecture™.

Over the years, the POWER-based RS/6000 offerings
have improved incrementally. Desktop, deskside, and rack
system clock rates increased up to 62.5 MHz. More than
ten of these models support a 32KB I-cache. Additional
compiler capability, especially in the area of restructuring
data access patterns, has improved benchmarks and
customers’ code. Changes in the I/O area have increased
Micro Channel® bandwidth from 40 MB/s to 80 MB/s peak.

While these changes were taking place, the competition
also improved. A dichotomy in design philosophies became
apparent. RS/6000 systems and compilers aggressively
exploit superscalar capabilities. Other designs, such as Sun
SuperSPARC™ and Motorola 88110, also exhibit this
philosophy. These superscalar capabilities involve multiple
functional units and the hardware complexity to allow the
units to function relatively autonomously. Some argue that
the complexity makes high clock rates difficult to achieve,
and that more performance can be achieved by clock rate
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than by aggressive instruction-level parallelism. Examples
of this alternative philosophy are the DEC™ 21064 (also
known as Alpha™), the HP PA7100, and the MIPS R4000.
The debate about the advantages of each approach appears
on electronic forums and in articles and editorials. The
popularity of the topic has led to the coining of catchy
synonyms for the two approaches, such as the ““Speed
Demons’” (high clock rate) versus the ““Brainiacs”
(complexity) [3].

While it is desirable to pursue both approaches, the
goals are often in conflict [4]. For a given technology,
there are likely to be sets of clock-rate/instruction-level
parallelism pairs which provide near-optimal performance.
Although many factors (compiler optimization, as well as
chip and system designers’ abilities) cloud a comparison,
hardware measurement is the generally accepted method of
judging the trade-offs. Benchmarks clearly illustrate that
the optimal design point is very application-specific.

Tracking the performance of various systems for the
past few years has made two points apparent. First,
performance improves at a healthy pace in the workstation
and server markets; without continual improvements,
leaders soon lose their position. Second, performance for a
given vendor is a stair-step function. Often the competition
is close, with several vendors jockeying for the lead
position. While at any instant a system may be dominant,
leaders change frequently.

This paper describes the next generation of
implementations of the POWER Architecture, POWER2™
processors, and systems. The initial three models are the
55-MHz Model 58H, the 66.5-MHz Model 590, and the
71.5-MHz Model 990. The arrival of the POWER?2-based
systems moves the RS/6000 family into the lead on many
industry standard benchmarks, with a combination of
increased clock rate, exploitation of architectural
enhancements, doubled functional units, and increased
cache capacity. The POWER2 enhanced superscalar
capability further widens the gap between the instruction-
level parallelism and clock rate approaches.

This paper consists of four major sections. The
architecture section discusses enhancements to the
programmer’s view of the hardware, primarily new
instructions which improve storage reference bandwidth,
allow hardware square root, and speed floating-point-to-
integer conversion. The implementation section provides a
description of the POWER?2 processor, including functional
units, caches, and translation lookaside buffers (TLBs.)
The third section describes the fabrication technology.
The performance section examines how these changes
affect performance and compares the resulting POWER2
performance to that of several competitive systems on a
variety of industry standard benchmarks. The performance
results demonstrate that superscalar capabilities are an
attractive alternative to aggressive clock rates.
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Architecture

The RS/6000 systems are implementations of a reduced
instruction set computer (RISC) architecture. As is
characteristic of many RISC architectures, loads and
stores provide the only storage access; arithmetic
instructions use only register operands. Several
instructions, often considered more complex than a
traditional RISC definition, enhance performance. The
instructions include a floating-point multiply-add (FMA)
instruction, a branch-on-count (BCT) operation, and
update forms of storage references.

The FMA compound instruction consists of a floating-
point multiply and a dependent add. On POWER and
POWER? implementations, the FMA operation performs
the multiply and add with a total latency of only two
cycles. Independent FMA instructions can start every
cycle. The FMA operation allows a peak MFLOPS rate
equal to twice the MHz rate while using a single functional
unit. Many experts credit the FMA instruction as a key
component of the RS/6000 processor’s outstanding
floating-point performance. The HP PA7100 has a similar
compound operation that allows a floating-point multiply
and an independent add. Simple coding of common
constructs, such as inner product or daxpy, often involves
dependent pairs of operations, requiring additional
compiler complexity to exploit the HP compound
operations.

The BCT form of a conditional branch decrements and
tests a special-purpose register, the count register, to
determine the outcome of the branch. Often a loop-closing
branch can be coded using the BCT form; the programmer
loads the count register with an iteration count for the
loop, and the branch unit decrements and tests this value
independently of other fixed-point unit (FXU) work. In
many other architectures, a general-purpose register (GPR)
is used to hold the iteration count, and the FXU performs
the decrement and test. The FXU forwards the test result
to the branch unit in the form of a condition code result.
The RS/6000 BCT instruction and count register are
examples of architectural separation of resources that
enhance the implementer’s ability to exploit instruction-
level parallelism. The FXU can offload the loop count
decrement and test operations, while the branch unit
can accurately determine the fetch path without FXU
synchronization. This results in a zero-cycle branch
from the FXU’s point of view.

Both addressing forms of storage references, indexed
and displacement, support an ‘‘update form.”” This pre-
update of the base register (with the effective address)
greatly decreases the need for explicit address arithmetic.
The multiple operations, which comprise each of the
FMA, the BCT, and the update forms, allow designers an
opportunity to provide instruction-level parallelism beyond
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DO 100 i=1,n
a(i,j) = a(i,j) + a(ik) * atemp

loop: Ifd

#a(ij)
#a(ik)

fpr2,8(r11)
lfdu fprd,8(r12)

ENDDO fma fpré,fpr2,fprd.fpr8  #fpr8=atemp
stfdu fpr6,8(r11) #a(i,j)
bet loop

DO 100 i=1,n,2 loop: Ifq fpr2,fpr3,16(r11)  #a(i,j). a(i+1.j)

aij) = a(ij) + a(ik)* atemp
a(i+1,j)=a(i+1,j) + a(i+1,k) = atemp
ENDDO

ifqu fprd,fpr5,16(r12)  #a(i,k), a(i+1,k)

fma fpr6,fpr2,fprd,fpr8  #fpr8=atemp
fma fpr7,fpr3,fpr5,fpr8
stfqu fpr6,fpr7,16(r11)
bet loop

#a(ij), a(i+1,j)

Quad-word storage reference benefit on Linpack benchmark.

both the number of functional units and the available
dispatch bandwidth.

POWER?2 supports a superset of the POWER
Architecture. New instructions provide performance
opportunity: quad-word floating-point storage references,
square root, and convert to integer. Virtual address
translation changes improve performance and add
capability. The architecture also adds hardware
performance monitoring. Support of all POWER
instructions maintains upward compatibility for programs.

® New instructions
The architecture adds high-performance floating-point
storage access instructions, load quad and store quad,
which support all of the addressing forms for double-
precision storage references: indexed and displacement,
with and without update forms. The quad-word (128
bits) loads move two adjacent double-precision storage
operands into two adjacent floating-point registers (FPRs).
Because of the BCT branch and the implicit register
updates available in storage reference instructions, most
RS/6000 floating-point loops simply consist of storage
references, floating-point arithmetic, and a BCT-type
branch. The FXU (which executes all storage reference
instructions) and floating-point unit (FPU) operate fairly
autonomously. Therefore, either the number of storage
references or the number of arithmetic instructions usually
limits the number of cycles required to execute an iteration
of a floating-point loop. When storage references limit the
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performance of a loop, load quad and store quad
instructions can provide improvement.

The dominant loop from the Linpack benchmark [5]
shown in Figure 1 illustrates the quad-word benefit. The
top code block represents the dominant loop after inlining
but without unrolling. The pseudo-assembly code shows
three storage reference instructions, the performance
limiter for this code on a POWER processor. After
unrolling this stride-1 loop (by a factor of two), the new
loop contains three pairs of storage references. Each pair
involves two adjacent storage locations and two adjacent
FPRs. As shown in the bottom code block, a quad-word
reference can replace each pair. Because an iteration of
the unrolled loop with quad-word storage references
requires the same number of cycles as an iteration of the
original loop, the quad-word storage reference capability
almost doubles the performance of storage-reference-
limited code such as the Linpack benchmark.

In addition to the quad-word storage reference
instructions, the architecture adds a square-root
instruction. On previous RS/6000 systems, a library routine
call provided the square-root function. When the call is
replaced with a single instruction, the number of cycles per
operation drops from about 50 to roughly 25. In the SPEC
CFP92 suite, hardware square root provides a substantial
gain on the ORA benchmark, which spends about 50%
of its time in the library square-root routine. Application
areas that exhibit performance gains from the square-root
instruction include computational physics and graphics.
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Additional new instructions allow more efficient
conversion of a floating-point value to an integer value.
The fcir and fcirz instructions provide the conversion with
default rounding and with round toward zero, respectively.
They improve random number generation where the
seed is a floating-point value but the modulo arithmetic
calculations require integer inputs. Other examples of use
include histogram updates and table-lookup routines that
convert a floating-point input value into an integer value
for indexing a table or array. Furthermore, interpolation
can use the floating-point-to-integer conversion to
determine which two adjacent grid points (integer indices)
surround a calculated point on a grid. The compiler can
use fcirz to provide the Fortran INT intrinsic function.

® Enhanced translation

In addition to the newly added instructions, users benefit
from a performance gain from the modifications to the
virtual address translation process. As in most virtual
memory systems, the operating system manages a set

of architecturally defined page tables which maintain a
mapping of virtual pages to real pages. To increase

the efficiency of this process, TLBs cache translation
information for recently accessed pages. When a storage
reference requires translation information which is not
available in the TLBs, a TLB miss occurs, and hardware
searches the page tables for the transiation information and
either updates the TLBs or signals the occurrence of a
page fault.

The POWER hardware TLB miss search consists of
hashing bits from the virtual address, indexing a hash
anchor table (HAT) to obtain a pointer into the page frame
table (PFT), and following the pointers through a chain
of PFT entries to find a match. Because the translation
information is noncacheable, this process requires a
minimum of two cache misses per TLB miss: one for the
HAT entry and one for the PFT entry. Since this PFT is
an inverted page table, entries along a PFT chain tend to
be scattered through the table; each additional search step
along a PFT chain usually incurs an additional cache miss.
Another attribute of an inverted page table is that it can
map only one virtual page to a given real page. Support for
aliasing at the page level results in ‘““‘ping-ponging’” of PFT
entries.

Rather than chaining PFT entries together, the POWER2
translation scheme [6] places PFT entries (for pages whose
addresses hash to the same value) in a contiguous group.
The virtual address hashing results in a pointer directly to
the first entry in the group, rather than indirectly through
the HAT, reducing the number of storage references. The
POWER?2 PFT entries are cacheable. As a result, the table
walk associated with a TLB miss often requires at most
one cache miss. The new definition of the PFT structure
(away from an inverted PFT) simplifies page-level aliasing.
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® Performance monitor

While the preceding architectural enhancements aim at
improving performance, a set of performance monitors
allows observation of many processor aspects that
affect performance [7]. This facility allows the
measurement of

e Instruction/data cache/TLB misses.

e Functional unit utilization.

e Instruction distribution by a functional unit.

e Number of instructions executed from a particular class
or group.

This performance monitor facility provides a wealth of
information that allows the detection of performance
bottlenecks. Examples of how this monitor facility can be
used on applications can be found in [8].

Implementation

As shown in Figure 2, the POWER?2 processor complex
consists of eight semi-custom chips partitioned in a fashion
similar to POWER: an instruction cache unit (ICU) which
also processes branches, the FXU, the FPU, four data
cache units (DCUSs), and a storage control unit (SCU). The
ICU prefetches instructions from the I-cache and places
them in instruction buffers. ICU control logic decodes or
analyzes the instructions in the buffers. The ICU executes
ICU instructions (primarily branches), sometimes affecting
the prefetch path. The ICU dispatches non-ICU
instructions to the FXU and FPU over a four-instruction-
wide instruction dispatch bus (I-bus). The FXU and FPU
process their respective arithmetic instructions. The FXU
also processes storage reference instructions by generating
and translating the addresses before placing them on the
cache address bus.

The FXU contains the D-cache directories, while the
ICU contains the I-cache directories and arrays. When
a data (instruction) cache miss occurs, the FXU (ICU)
arbitrates for the processor bus (P-bus). After the FXU
(ICU) places the cache miss request on the P-bus, the
SCU ““sees” the request and generates the corresponding
memory control signals to start a memory operation. The
returning data arrive at the DCUs, which place the data in
the D-cache (or else forward the data to the ICU on the
instruction reload bus).

The FXU and FPU each contain two exccution units.
The memory, instruction reload, and instruction dispatch
buses, as well as the interface from the DCU to the FXU
and FPU, are wider than in the POWER implementation to
support these additional execution units. The POWER2
implementation can execute six instructions (branch,
condition register, two fixed-point, and two floating-point)
per cycle. Like POWER, the POWER2 FPU supports
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POWER? eight-word system.

the compound FMA instruction. Because each of the
two floating-point instructions can produce both an add
result and a multiply result, the peak execution rate is
eight operations per cycle. The interfaces between

the multichip module (MCM) and the memory and

I/O units are compatible with those in POWER
systems.

The POWER?2 processor chip set offers two system
configurations: a four-word memory bus with a 128KB
D-cache and an eight-word memory bus with a 256KB
D-cache. The I-cache is 32KB for either configuration.
Figure 2 shows an eight-word memory system. A four-
word system differs in that it has only two memory cards
and supports transfers of four words per cycle between
memory and the MCM.

Upgrade paths from POWER-based systems (for

example, from Models 570 and 580 to the Model 590) exist.

The upgrade process replaces the CPU planar along with
some miscellaneous parts such as an air dam. An upgraded
system requires new memory cards; however, the 80-ns
single in-line memory modules (SIMMs) from the upgraded
system may populate the new memory cards.
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® [nstruction cache unit

The ICU fetches and dispatches instructions. It contains a
two-way set-associative 32KB I-cache with 128-byte lines,
the associated I-cache directories, and a 128-entry two-way
set-associative instruction TLB (I-TLB). The ICU control
logic fetches instructions from the I-cache and places

them in one of two instruction buffers, depending on the
expected path and the occurrence of conditional branches.
The buffer for sequential path instructions has 16 elements.
The ICU removes unconditional branches (and instructions
following these branches) from the sequential buffer, alters
the fetch path, and appends instructions along the new
path to those remaining in the sequential buffer. The fetch
logic places instructions from a conditional branch target
path in an eight-entry target buffer. The ICU processes
instructions in the sequential buffer. It executes branch
and condition-register instructions and dispatches the
remaining instructions to the FXU and FPU. The ICU

can fetch eight instructions per cycle from the I-cache
regardless of alignment. It can dispatch six instructions per
cycle: two internally and four externally to the FXU and
FPU.
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Generally, the FXU and FPU receive an uninterrupted
instruction stream; often the ICU can process branches
without introducing pipeline delays. The ICU dispatches
the sequential path instructions to the FXU and FPU.

The ICU conditionally dispatches instructions beyond an
unresolved conditional branch; the FXU and FPU hold
conditionally dispatched instructions in their instruction
buffers until the branch is resolved. Then the FPU

or FXU issues or cancels the conditionally dispatched
instructions.

To minimize conditional branch delay after an incorrect
guess, the ICU also fetches the branch-taken path from the
I-cache and dispatches the target instructions over the
I-bus. Until the branch is resolved, the FXU and FPU
ignore these target path instructions. If the branch is
resolved as ‘‘not taken,” the instructions for the correct
path are in the FXU/FPU instruction buffers and usually
incur no penalty. If the ICU or FXU resolves the branch
as ““taken,”” the FXU and FPU cancel the conditionally
dispatched instructions and load the target instructions
(from the I-bus) into the FXU and FPU instruction buffers.

Unconditional branches, not-taken conditional branches,
and “‘taken but resolved’” branches often cause no pipeline
delay. Taken branches which are not resolved when they
are processed often result in a one-cycle delay in the
FXU/FPU pipelines. More ICU details can be found
in [9].

® Fixed-point unit

The FXU performs all storage references, integer
arithmetic, and logical operations. The FXU contains the
GPRs, two fixed-point execution units, the data cache
directory, the data TLB (D-TLB), and the TLB reload
hardware. Two eight-port (4R/4W) register files, one for
each execution unit, implement the thirty-two 32-bit GPRs.
The register files implement full bypass to minimize delay
between dependent operations. The FXU performs register
scoreboarding so that D-cache accesses do not hold off
subsequent independent register-to-register instructions.

The dual execution units can execute a total of two
instructions per cycle. An eight-element (six-element in
POWER) FXU instruction buffer, which holds only fixed-
point instructions, feeds the dual execution units. Each
unit contains an adder and a logic functional unit. The
second unit also contains a multiply and divide unit. The
multiply/divide unit executes a multiply in two cycles
(three to five cycles in POWER) and a divide in 13 to 17
cycles (19-20 cycles in POWER).

When both functional units are ready to accept a new
instruction, the issue logic sends the (logically) first
instruction to the first unit. If a second FXU instruction
exists in the FXU instruction buffers, and its input
operands are available, the issue logic sends it to the
second unit. To minimize data dependencies, the upper
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portion of the second unit has a three-input adder. As a
result, if an add-type operation (or storage reference with
update) in the first unit is updating the source registers for
the second FXU instruction, the second instruction can
execute in parallel.

Since address generation uses the GPRs in the FXU, the
FXU executes all storage reference instructions, including
the address translation and D-cache directory search. It
contains the sixteen 32-bit segment registers (effective
to virtual) and a 512-entry (128-entry in POWER) two-
way set-associative D-TLB (virtual to real) for address
translation. It also has TLB reload hardware for processing
both I-TLB and D-TLB misses. Dual-ported D-cache
arrays and dual-ported directories support the two
execution units. The cache supports first-order
nonblocking accesses; subsequent load/store operations
can overlap with D-cache misses.

Single-element loads incur the same load-use delay as
POWER; one cycle separates the load from a dependent
arithmetic. The dual execution units allow two storage
references (including quad-word) per cycle. In POWER
systems, hardware handles the most frequent cases for
unaligned accesses. POWER2 extends hardware support
for unaligned accesses to include quad-word accesses on
any odd-word boundary. Both POWER?2 FXU execution
units work together on multicycle load/store operations.
The issue logic loads the opcode into both units, and
two load/store operations execute per cycle. A detailed
description of the FXU implementation can be found
in [6].

® Floating-point unit
The FPU includes the FPRs and two double-precision
(64-bit) execution units. Dual units allow execution of
two floating-point instructions per cycle. As in POWER,
POWER? implements FPR renaming to increase FXU/FPU
autonomy. The number of physically implemented registers
exceeds the number (32) defined by the architecture.
Mapping hardware selects a ““free” physical register to
hold the destination value for each floating-point load
operation. Because loads do not overwrite the previous
data in the architected register, functional units may
execute a load before the completion of a logically
previous arithmetic instruction, even if it loads an FPR
which is a source operand for the arithmetic. This is a
substantial benefit on short loops, where register renaming
cannot be done in software. Moving the loads further
ahead allows the effects of load-use delay to be
minimized. To support the increased number of functional
pipelines, the FPU supports 54 physical registers {40 in
POWER processors).

The functional units in the FPU are more symmetrical
and autonomous than in the FXU. Usually the FXU can
only issue an instruction to the second functional unit
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if two instructions are ready for issue simultaneously.

In the FPU, whenever an instruction is ready to be

issued and a functional unit is available, the FPU can
issue the instruction. Except for compares, both FPU units
perform all operations, including divide and square root
instructions. An eight-element instruction buffer, which
may contain eight floating-point interruptible instructions,
feeds the execution units. Arithmetic results conform to
the IEEE 754 binary floating-point standard.

As in POWER, the POWER2 FPU supports the
compound multiply-add instruction. The pipelines perform
two operations with a single rounding of the result and
with the same latency as a single multiply or add
operation. Dual units enable the FPU to execute two
double-precision multiply/add instructions every cycle,
resulting in up to four floating-point operations per cycle.

When loops contain multiple divides, or when single
divide loops are unrolled, proper scheduling may allow
divide operations to be performed in parallel, providing
roughly a factor of two advantage over POWER. Since the
square-root instruction is roughly twice as fast as the
POWER library sequence, dual execution of square-root
instructions gives POWER2 roughly a factor-of-four
advantage over POWER for this function.

To exploit the bandwidth potential of the quad-word
storage reference instructions, a dual quad-word interface
to the data cache supports the dual FPU execution units.
Dual units and quad-word storage references can load up
to four FPRs per cycle.

The POWER?2 FPU has a separate unit for normalizing
store data, allowing stores to execute in parallel with
arithmetic operations. As a result, floating-point stores
effectively require zero FPU cycles, whereas they require
one FPU cycle in POWER. Additional FPU details can be
found in [10].

® Data cache unit

POWER?2 has a four-way set-associative dual-ported
D-cache that consists of four identical chips. These four
chips generate two one-word data buses to the FXU, two
quad-word buses to the FPU, a four-word instruction
reload bus to the ICU, and a two-word system I/O (SIO)
bus to the I/O subsystem for DMA data (see Figure 2).
For increased reliability, the DCUs support

¢ Memory scrubbing.

e Single-bit correction double-bit detection error checking
code (ECC).

e Bit steering.

Two DCU configurations are possible: a 256KB capacity
cache (256-byte lines) fed with an eight-word memory bus
or a 128KB data cache (128-byte lines) with a four-word
memory bus. (POWER supports 64-byte and 128-byte
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lines.) The memory system can include two, four, or eight
memory cards. When the system contains two memory
cards, it configures itself as a four-word memory system.
If there are more than two memory cards, an eight-word
memory system exists. A detailed description of the DCU,
SCU, and memory and /O interfaces can be found in [6].
The store-back cache design minimizes memory bus traffic.

® Storage control unit

The SCU contains the controls and configuration registers
for memory, and arbitrates for all communications between
the CPU (ICU, FXU, DCU), the memory, and the SIO
bus. It generates the controls for the SIO bus and a data
path for programmed 1/O. The SIO bus enhancements
allow prefetching of DMA read data from memory,
enabling the system to sustain high DMA rates using the
streaming data protocol on the Micro Channel. POWER
systems can use memory cards from POWER?2 systems.

® J/O unit

The POWER2 I/0O unit is the same as the one in the
RS/6000 Models 580 and 980. The I/O unit implements the
64-bit streaming data protocol on the Micro Channel at

10 MHz. The I/O unit implements dual 64-byte buffers per
DMA channel so that operations over the SIO bus and
Micro Channel can fully overlap. The I/O unit, along

with some logic on the I/O planar, reduces the arbitration
time on the Micro Channel from 400 ns to 100 ns. This
improves bandwidth and bus utilization. In addition,
enhancements to the protocol for the SIO bus include
prefetch data commands from the I/O unit so that the
DMA data from memory are available to the I/O unit with
minimum delay.

For DMA transfers to memory, the I/O unit keeps a
record of every modified byte in the 64-byte buffer. If all
bytes are modified, a write to memory results. If only
some of the bytes in the 64-byte buffer are modified, the
1/0 unit performs a read-modify-write. The previous
version of the I/O unit performs a read-modify—write for
all transfers to memory. This implementation almost
doubles the throughput for all DMA operations to memory.

Chip and packaging technology
Table 1 shows the transistor counts and die sizes for the
chips contained on the MCM, as well as the external signal
1/0 count for the MCM. The POWER?2 processor chip set
contains over 23 million transistors on a silicon area of
1217 mm?. The chips incorporate CMOS technology with
an effective channel length of 0.45 um. The chips contain
one level of polysilicon and four levels of metal wiring.
POWER?2 systems mount the chips on a ceramic MCM
that provides most of the chip-to-chip wiring. While the
total chip I/O is 3181, all but 512 connections are internal
to the MCM. The MCM includes a 64-mm by 64-mm pin
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Table 1 Physical attributes of the POWER2 processor chip

set.

Chip values and  Transistor count Die size Signal

MCM totals (thousands) (mm x mm) J/O
Logic  Memory

FXU 583 848 12.7 x 12.7 473

FPU 1001 315 12.7 x 12.7 504

ICU 547 2277 12.7 x 12.7 464

DCU (x4) 1117 16000 12.7 x 12.7 366

sCU 349 — 9.4%x94 276

MCM 3597 19440 1217 sq. mm 512

Table 2 Industry standard benchmark comparison.

System RS/6000 HP DEC 10000
PA7100
Model Model Models  Model 610
580 590 735/755 Axp™
Clock rate 62.5 MHz 66.5 MHz 99 MHz 200 MHz
SPECint92 73.3 117.0 80.6 116.5
SPECp92 134.6 242.4 149.8 193.6
Linpack 38 130 41 43
TPP 104 236 107 155
TPC-C (tpmC) - N/A 726.13 613.80* N/A
$/tpm-C N/A $1603 $2488* N/A

*The TPC values for HP are not available for Models 735/755. The TPC-C values
shown in Table 2 for HP are for the 96-MHz HP 9000 series 800 Model H50, which
is based on the HP PA7100 processor.

grid array with 512 signal I/Os. At 66.5 MHz, the total
power dissipated by the MCM is about 65 W. More MCM
and packaging information can be found in [11].

Performance

There are two categories for the performance gains
associated with the improvements described previously.
The first category applies to code that a compiler may
have generated prior to POWER2-based systems. Without
recompiling, many programs obtain benefits from the larger
caches and TLB structures, as well as the enhanced
address translation process. Calls to library routines such
as ESSL obtain POWERZ2-specific tuning benefits when
new libraries are linked. Furthermore, the additional
functional units exploit the instruction-level parallelism
which has been exposed in the compiled code.

The second category includes the enhanced exploitation
of the functional units obtainable through recompiling for
a POWER? target. The compiler can expose additional
instruction-level parallelism after more aggressive
loop unrolling. POWER?2 scheduling, which takes into
account POWER? latencies and interlocks, can improve
performance. Recompiling also allows applications to
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benefit from the new instructions. Reference [12] contains
benchmark data comparing the performance effects of
existing binaries versus recompiled applications.

The previous three sections described architectural,
implementation, and technology details that allow the
RS/6000 processor to increase its clock rate while
significantly increasing its superscalar abilities. This paper
opened with the debate topic: “Which delivers more
performance, instruction-level parallelism or clock rate?”
The complexity of the trade-offs and their interactions
makes this a difficult question. Proof of a good answer is
overall performance. Table 2 compares a POWER2-based
system with a POWER-based system and two competitive
workstations/servers [5, 13-16]. While new announcements
continually move the performance bar forward, Table 2
shows the publicly available data as of October 1, 1993.
While the HP and DEC systems have substantially higher
clock rates, the POWER2-based system uses instruction-
level parallelism to move ahead on all of these industry-
standard benchmarks. (During the final review of this
paper, DEC announced slightly higher values which are
roughly equivalent to those for the 71.5-MHz IBM Model
990.)

The SPEC CINT92 suite consists of six integer
codes representing compilers, spreadsheets, and so on.
The SPEC CFP92 suite consists of 14 floating-point
benchmarks from the workstation and server market.
SPEC rules do not permit hand optimization of the codes
in either suite. The overall measure in each suite is the
geometric mean for the benchmarks within the suite. The
Model 590 win in the SPECint92™ race confirms that
superscalar ability can compensate for a three times
greater clock rate advantage, even on SPECint92. Because
of the characteristics of SPECfp92™, one expects even
greater opportunity to exploit a superscalar approach. The
25% win of the POWER?2 system over competitors with up
to a factor-of-three clock rate advantage, as well as the
large gain over POWER-based systems, demonstrate the
additional superscalar opportunity in SPECfp92.

The Linpack benchmark represents one specific problem
area: solving dense systems of equations. The benchmark
rules do not allow hand optimization while solving the
100 x 100 matrix problem. For POWER, the optimized
inner loop asymptotically approaches a load and a store
per element update, resulting in an FXU limit of two
cycles. The HP PA7100 requires two cycles for a
store. The resulting limit of three cycles per update
counteracts the rough 3:2 clock rate advantage of PA7100
over POWER (Model 580). As a result, the Linpack
performance of these two systems is very similar. As
discussed earlier, POWER?2 systems benefit substantialty
on Linpack from quad-word storage references. Linpack
performance receives almost another factor-of-two
improvement as the number of functional units doubles.
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While the Linpack performance of the POWER-based
system almost matches that of the competitive systems,
POWER?2 systems boast more than a factor-of-three
advantage.

The TPP (Toward Peak Performance) benchmark solves
the same type of problem as Linpack, on a 1000 x 1000
size problem, but allows hand optimization of the code.
Because this is a numerically intensive benchmark which
exploits hand-coded library routines on many systems, this
benchmark often approaches the peak MFLOPS rate of a
system. The TPP value for POWER? easily surpasses even
the theoretical peak rates of the HP and DEC Alpha
systems, 198 and 200 MFLOPS, respectively.

TPC-C™ is a prominent commercial benchmark. Unlike
the other benchmarks in this comparison, which run a
controlled source version of a program, TPC-Cis a
specification of a workload that “‘is a mixture of read-
only and update intensive transactions that simulate the
activities found in complex OLTP [on-line transaction
processing] application environments” [17]. Detailed
TPC-C characteristics and POWER2’s TPC-C performance
are described in [18].

Summary

A popular debate topic concerns the design philosophy
dichotomy evident in the workstation and server markets.
Aggressive superscalar characterizes the RS/6000
POWER-based systems. DEC Alpha and HP PA7100
systems illustrate the aggressive clock rate approach.
POWER?2’s quad-word storage references and additional
functional units make the divergence even more
pronounced. While the leader in this performance race
changes frequently, industry standard benchmarks
demonstrate how POWER2-based systems allowed the
RS/6000 family to move ahead of other implemented
design points. This result confirms that instruction-level
parallelism is a justifiable alternative to clock rate in the
performance race.
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