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Since  its  announcement,  the IBM RISC 
System/6000@  processor  has  characterized 
the  aggressive  instruction-level  parallelism 
approach to achieving  performance.  Recent 
enhancements to the  architecture  and 
implementation  provide  greater  superscalar 
capability.  This  paper  describes  the 
architectural  extensions  which  improve 
storage  reference  bandwidth,  allow  hardware 
square-root  computation,  and  speed 
floating-point-to-integer  conversion.  The 
implementation,  which  exploits  these 
extensions  and  doubles  the  number  of 
functional  units,  is  also  described. A 
comparison of  performance  results  on a 
variety of industry  standard  benchmarks 
demonstrates  that  superscalar  capabilities  are 
an  attractive  alternative  to  aggressive  clock 
rates. 

Introduction 
In 1990,  IBM announced the RISC System/6000@  (RS/6000) 
family of highly concurrent superscalar workstations and 
servers, supporting clock rates ranging  from 20 MHz to 
30 MHz [l]. The 25-MHz  Model  530 achieved performance 
levels which exceeded those of many of its contemporaries 

(SunTM 4/200, DECstation 3100, MIPS@ M/2000, and 
Apollo  DN10000) by more than 40% on a variety of 
benchmarks [Dhrystones 1.1, Whetstones, Linpack (dp) 
Livermore Loops (geometric mean), and SPECmarkTM] [2]. 
All models  included an 8KB instruction cache (I-cache) 
and either a 32KB or a 64KB data cache (D-cache). These 
POWER processors were the first implementations of the 
IBM  POWER (Performance Optimized  With Enhanced 
RISC) ArchitectureTM. 

Over the years, the POWER-based RS/6000 offerings 
have improved incrementally. Desktop, deskside, and rack 
system clock rates increased up to 62.5 MHz.  More than 
ten of these models support a 32KB I-cache. Additional 
compiler capability, especially in the area of restructuring 
data access patterns, has improved benchmarks and 
customers’ code. Changes in the I/O area have increased 
Micro Channel@ bandwidth from 40  MB/s to 80  MB/s peak. 

While these changes were taking place, the competition 
also improved. A dichotomy in  design philosophies became 
apparent. RS/6000 systems and compilers aggressively 
exploit superscalar capabilities. Other designs, such as Sun 
SuperSPARCTM and Motorola 88110, also exhibit this 
philosophy. These superscalar capabilities involve  multiple 
functional units and the hardware complexity to allow the 
units to function relatively autonomously. Some argue that 
the complexity makes high clock rates difficult to achieve, 
and that more performance can be achieved by clock rate 
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than by aggressive instruction-level parallelism. Examples 
of this alternative philosophy are the DECm 21064 (also 
known as Alpham), the HP PA7100, and the MIPS R4000. 
The debate about the advantages of each approach appears 
on electronic forums and in articles and editorials. The 
popularity of the topic has led to the coining of catchy 
synonyms for the two approaches, such as the “Speed 
Demons” (high clock rate) versus the “Brainiacs” 
(complexity) [3]. 

While  it is desirable to pursue both approaches, the 
goals are often in conflict [4]. For a given technology, 
there are likely to be sets of clock-rate/instruction-level 
parallelism pairs which provide near-optimal performance. 
Although many factors (compiler optimization, as well as 
chip and system designers’ abilities) cloud a comparison, 
hardware measurement is the generally accepted method of 
judging the trade-offs. Benchmarks clearly illustrate that 
the optimal design  point is very application-specific. 

Tracking the performance of various systems for the 
past few years has made two points apparent. First, 
performance improves at a healthy pace in the workstation 
and server markets; without continual improvements, 
leaders soon lose their position. Second, performance for a 
given vendor is a stair-step function. Often the competition 
is close, with several vendors jockeying for the lead 
position. While at any instant a system may be dominant, 
leaders change frequently. 

implementations of the POWER Architecture, POWER2TM 
processors, and systems. The initial three models are the 
55-MHz  Model 58H, the 66.5-MHz  Model $90, and the 
71.5-MHz  Model 990. The arrival of the POWERZbased 
systems moves the RS/6000 family into the lead  on  many 
industry standard benchmarks, with a combination of 
increased clock rate, exploitation of architectural 
enhancements, doubled functional units, and increased 
cache capacity. The POWER2 enhanced superscalar 
capability further widens the gap between the instruction- 
level  parallelism  and clock rate approaches. 

This paper consists of four major sections. The 
architecture section discusses enhancements to the 
programmer’s view of the hardware, primarily  new 
instructions which improve storage reference bandwidth, 
allow hardware square root, and speed floating-point-to- 
integer conversion. The implementation section provides a 
description of the POWER2 processor, including functional 
units, caches, and translation lookaside buffers (TLBs.) 
The third section describes the fabrication technology. 
The performance section examines how these changes 
affect performance and compares the resulting POWER2 
performance to that of several competitive systems on a 
variety of industry standard benchmarks. The performance 
results demonstrate that superscalar capabilities are an 
attractive alternative to aggressive clock rates. 

This paper describes the next generation of 
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Architecture 
The RS/6000 systems are implementations of a reduced 
instruction set computer (RISC) architecture. As  is 
characteristic of many RISC architectures, loads and 
stores provide the only storage access; arithmetic 
instructions use only register operands. Several 
instructions, often considered more complex than a 
traditional RISC  definition, enhance performance. The 
instructions include a floating-point  multiply-add (FMA) 
instruction, a branch-on-count (BCT) operation, and 
update forms of storage references. 

The FMA compound instruction consists of a floating- 
point  multiply  and a dependent add. On  POWER and 
POWER2 implementations, the FMA operation performs 
the multiply  and  add  with a total latency of only two 
cycles. Independent FMA instructions can start every 
cycle. The FMA operation allows a peak MFLOPS rate 
equal to twice the MHz rate while  using a single functional 
unit. Many experts credit the FMA instruction as a key 
component of the RS/6000 processor’s outstanding 
floating-point performance. The HP PA7100 has a similar 
compound operation that allows a floating-point  multiply 
and an independent add. Simple  coding of common 
constructs, such as inner product or daxpy, often involves 
dependent pairs of operations, requiring  additional 
compiler complexity to exploit the HP compound 
operations. 

tests a special-purpose register, the count register, to 
determine the outcome of the branch. Often a loop-closing 
branch can be coded using the BCT form; the programmer 
loads the count register with an iteration count for the 
loop,  and the branch unit decrements and tests this value 
independently of other fixed-point  unit (FXU) work. In 
many other architectures, a general-purpose register (GPR) 
is  used to hold the iteration count, and the FXU performs 
the decrement and test. The FXU forwards the test result 
to the branch unit in the form of a condition code result. 
The RS/6000 BCT instruction and count register are 
examples of architectural separation of resources that 
enhance the implementer’s  ability to exploit instruction- 
level  parallelism. The FXU can offload the loop count 
decrement and test operations, while the branch unit 
can accurately determine the fetch path without FXU 
synchronization. This results in a zero-cycle branch 
from the FXU’s  point of view. 

Both addressing forms of storage references, indexed 
and displacement, support an “update form.” This pre- 
update of the base register (with the effective address) 
greatly decreases the need for explicit address arithmetic. 
The multiple operations, which comprise each of the 
FMA, the BCT,  and the update forms, allow designers an 
opportunity to provide instruction-level parallelism beyond 

The BCT  form of a conditional branch decrements and 
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DO 100 i=l ,n loop:  Ifd fpr2,8(rll) 
a(i,j) = a(i,j) + a(i,k) * atemp lfdu fpr4,8(rl2) 

ENDDO fma fpr6,fpr2,fpr4,fpr8 
stfdu fpr6,8(rll) 
bct loop 

*******************t**********************R*~***~*~********************** 

DO 100 i=l,n,2 loop:  Ifq fpr2,fpr3,16(rlI) 
a(i,j) = a(i,j) + a(i,k) * atemp  lfqu fpr4,fpr5,16(rl2) 
a(i+l,j)=a(i+l ,j) + a(i+l ,k) * atemp fma fpr6,fpr2,fpr4,fpr8 

ENDDO fma  fpr7,fpr3,fpr5,fpr8 
stfqu fpr6,fpr7,16(rlI) 
bct  loop 

#a(i,i) 
#a(i,k) 
#fpr8=atemp 
#a(iJ) 

#a(i,j), a(i+1 ,j) 
#a(i,k), a(i+l,k) 
#fpr8=atemp 

#a(i,j), a(i+l ,j) 

both the number of functional units and the available 
dispatch bandwidth. 

Architecture. New instructions provide performance 
opportunity: quad-word floating-point storage references, 
square root, and convert to integer. Virtual address 
translation changes improve performance and  add 
capability. The architecture also adds hardware 
performance monitoring. Support of  all POWER 
instructions maintains upward compatibility for programs. 

POWER2 supports a superset of the POWER 

New instructions 
The architecture adds high-performance floating-point 
storage access instructions, load  quad  and store quad, 
which support all  of the addressing forms for double- 
precision storage references: indexed and displacement, 
with and without update forms. The quad-word (128 
bits) loads move two adjacent double-precision storage 
operands into two adjacent floating-point registers (FPRs). 

Because of the BCT branch and the implicit register 
updates available in storage reference instructions, most 
RS/6000  floating-point loops simply consist of storage 
references, floating-point arithmetic, and a BCT-type 
branch. The FXU (which executes all storage reference 
instructions) and  floating-point unit (FPU) operate fairly 
autonomously. Therefore, either the number of storage 
references or the number of arithmetic instructions usually 
limits the number of cycles required to execute an iteration 
of a floating-point  loop.  When storage references limit the 
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performance of a loop, load  quad  and store quad 
instructions can provide improvement. 

The dominant  loop  from the Linpack benchmark [5] 
shown in Figure 1 illustrates the quad-word benefit. The 
top code block represents the dominant  loop after inlining 
but without unrolling. The pseudo-assembly code shows 
three storage reference instructions, the performance 
limiter  for this code on a POWER processor. After 
unrolling this stride-1 loop (by a factor of two), the new 
loop contains three pairs of storage references. Each pair 
involves two adjacent storage locations and two adjacent 
FPRs. As shown in the bottom code block, a quad-word 
reference can replace each pair. Because an iteration of 
the unrolled loop with quad-word storage references 
requires the same number of cycles as an iteration of the 
original loop, the quad-word storage reference capability 
almost doubles the performance of storage-reference- 
limited code such as the Linpack benchmark. 

instructions, the architecture adds a square-root 
instruction. On previous RS/6000 systems, a library routine 
call provided the square-root function. When the call is 
replaced with a single instruction, the number of cycles per 
operation drops from about 50 to roughly 25. In the SPEC 
CFP92 suite, hardware square root provides a substantial 
gain  on the ORA benchmark, which spends about 50% 
of its time in the library square-root routine. Application 
areas that exhibit performance gains from the square-root 
instruction include computational physics and graphics. 

In  addition to the quad-word storage reference 
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Additional  new instructions allow  more  efficient 
conversion of a floating-point value to an integer value. 
The fcir and fcirz instructions provide the conversion with 
default rounding  and  with round toward zero, respectively. 
They improve  random  number generation where the 
seed is a floating-point value but the modulo arithmetic 
calculations require integer inputs. Other examples of use 
include histogram updates and table-lookup routines that 
convert a floating-point input value into an integer value 
for indexing a table or array. Furthermore, interpolation 
can use the floating-point-to-integer conversion to 
determine which two adjacent grid points (integer indices) 
surround a calculated point  on a grid. The compiler can 
use fcirz to provide the Fortran INT intrinsic function. 

Enhanced  translation 
In  addition to the newly added instructions, users benefit 
from a performance gain  from the modifications to the 
virtual address translation process. As in  most virtual 
memory systems, the operating system manages a set 
of architecturally defined  page tables which maintain a 
mapping of virtual pages to real pages. To increase 
the efficiency of this process, TLBs cache translation 
information for recently accessed pages.  When a storage 
reference requires translation information which is not 
available in the TLBs, a TLB miss occurs, and hardware 
searches the page tables for the translation information and 
either updates the TLBs or signals the occurrence of a 
page fault. 

The POWER hardware TLB miss search consists of 
hashing bits from the virtual address, indexing a hash 
anchor table (HAT) to obtain a pointer into the page frame 
table (PFT), and  following the pointers through a chain 
of PFT entries to find a match. Because the translation 
information is noncacheable, this process requires a 
minimum  of two cache misses per TLB miss: one for the 
HAT entry and one for the PFT entry. Since this PFT is 
an inverted page table, entries along a PFT chain tend to 
be scattered through the table; each additional search step 
along a PFT chain usually incurs an  additional cache miss. 
Another attribute of  an inverted page table is that it can 
map only one virtual page to a given real page. Support for 
aliasing at the page  level results in “ping-ponging” of PFT 
entries. 

Rather than chaining PFT entries together, the POWER2 
translation scheme [6] places PFT entries (for pages whose 
addresses hash to the same value) in a contiguous group. 
The virtual address hashing results in a pointer directly to 
the first entry in the group, rather than indirectly through 
the HAT, reducing the number of storage references. The 
POWER2 PFT entries are cacheable. As a result, the table 
walk associated with a TLB miss often requires at most 
one cache miss. The new  definition of the PFT structure 
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Pe$omance monitor 
While the preceding architectural enhancements aim at 
improving performance, a set of performance monitors 
allows observation of many processor aspects that 
affect performance [7]. This  facility  allows the 
measurement of 

Instruction/data cache/TLB misses. 
Functional unit  utilization. 
Instruction distribution by a functional unit. 
Number of instructions executed from a particular class 
or group. 

This performance monitor facility provides a wealth of 
information that allows the detection of performance 
bottlenecks. Examples of  how this monitor facility can be 
used on applications can be  found  in [8]. 

Implementation 
As shown in Figure 2, the POWER2 processor complex 
consists of eight semi-custom chips partitioned in a fashion 
similar to POWER:  an instruction cache unit (ICU) which 
also processes branches, the FXU, the FPU, four data 
cache units (DCUs), and a storage control unit (SCU). The 
ICU prefetches instructions from the I-cache and places 
them in instruction buffers. ICU control logic decodes or 
analyzes the instructions in the buffers. The ICU executes 
ICU instructions (primarily branches), sometimes affecting 
the prefetch path. The ICU dispatches non-ICU 
instructions to the FXU and FPU over a four-instruction- 
wide instruction dispatch bus (I-bus). The FXU and FPU 
process their respective arithmetic instructions. The FXU 
also processes storage reference instructions by generating 
and translating the addresses before placing  them  on the 
cache address bus. 

The FXU contains the D-cache directories, while the 
ICU contains the I-cache directories and arrays. When 
a data (instruction) cache miss occurs, the FXU (ICU) 
arbitrates for the processor bus (P-bus). After the FXU 
(ICU) places the cache miss request on the P-bus, the 
SCU “sees” the request and generates the corresponding 
memory control signals to start a memory operation. The 
returning data arrive at the DCUs, which  place the data in 
the D-cache (or else forward the data to the ICU on the 
instruction reload bus). 

The FXU and FPU each contain two execution units. 
The memory, instruction reload, and instruction dispatch 
buses, as well as the interface from the DCU to the FXU 
and FPU, are wider than in the POWER  implementation to 
support these additional execution units. The POWER2 
implementation can execute six instructions (branch, 
condition register, two fixed-point, and two floating-point) 
per cycle. Like POWER, the POWER2 FPU supports 
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Note: Each line represents 
a 32-bit bus 

the compound FMA instruction. Because each of the 
two floating-point instructions can produce both an  add 
result and a multiply result, the peak execution rate is 
eight operations per cycle. The interfaces between 
the multichip module  (MCM)  and the memory and 
1/0 units are compatible with those in  POWER 
systems. 

The POWER2 processor chip set offers two system 
configurations: a four-word memory bus with a 128KB 
D-cache and  an eight-word memory bus with a 256KB 
D-cache. The I-cache is  32KB for either configuration. 
Figure 2 shows an eight-word memory system. A four- 
word system differs in that it has only two memory cards 
and supports transfers of four words per cycle between 
memory and the MCM. 

example, from  Models 570 and 580 to the Model 590) exist. 
The upgrade process replaces the CPU planar along  with 
some miscellaneous parts such as an  air  dam. An upgraded 
system requires new  memory cards; however, the 80-ns 
single  in-line  memory  modules  (SIMMs)  from the upgraded 
system may populate the new  memory cards. 

Upgrade paths from  POWER-based systems (for 

Instruction cache unit 
The ICU fetches and dispatches instructions. It contains a 
two-way set-associative 32KB I-cache with 128-byte  lines, 
the associated I-cache directories, and a 128-entry two-way 
set-associative instruction TLB (I-TLB). The ICU control 
logic fetches instructions from the I-cache and places 
them in one of two instruction buffers, depending on the 
expected path and the occurrence of conditional branches. 
The buffer for sequential path instructions has 16 elements. 
The ICU removes unconditional branches (and instructions 
following these branches) from the sequential buffer, alters 
the fetch path, and appends instructions along the new 
path to those remaining in the sequential buffer.  The fetch 
logic places instructions from a conditional branch target 
path in  an eight-entry target  buffer.  The ICU processes 
instructions in the sequential buffer. It executes branch 
and condition-register instructions and dispatches the 
remaining instructions to the FXU and FPU. The ICU 
can fetch eight instructions per cycle from the I-cache 
regardless of alignment. It can dispatch six instructions per 
cycle: two internally and four externally to  the FXU and 
FPU. 497 
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Generally, the FXU and FPU receive an uninterrupted 
instruction stream; often the ICU can process branches 
without introducing pipeline delays. The ICU dispatches 
the sequential path instructions to the FXU and FPU. 
The ICU conditionally dispatches instructions beyond an 
unresolved conditional branch; the FXU and FPU hold 
conditionally dispatched instructions in their instruction 
buffers  until the branch is resolved. Then the FPU 
or FXU issues or cancels the conditionally dispatched 
instructions. 

To minimize conditional branch delay after an incorrect 
guess, the ICU also fetches the branch-taken path from the 
I-cache and dispatches the target instructions over the 
I-bus. Until the branch is resolved, the FXU and FPU 
ignore these target path instructions. If the branch is 
resolved as “not taken,” the instructions for the correct 
path are in the FXU/FPU instruction buffers  and  usually 
incur no penalty. If the ICU or FXU resolves the branch 
as “taken,” the FXU and FPU cancel the conditionally 
dispatched instructions and  load the target instructions 
(from the I-bus) into the FXU and FPU instruction buffers. 

Unconditional branches, not-taken conditional branches, 
and “taken but resolved” branches often cause no pipeline 
delay. Taken branches which are not resolved when they 
are processed often result in a one-cycle delay in the 
FXU/FPU pipelines.  More ICU details can be found 
in [9]. 

Fixed-point unit 
The FXU performs all storage references, integer 
arithmetic, and logical operations. The FXU contains the 
GPRs, two fixed-point execution units, the data cache 
directory, the data TLB (D-TLB), and the TLB reload 
hardware. Two eight-port (4R/4W) register files, one for 
each execution unit, implement the thirty-two 32-bit  GPRs. 
The register files  implement  full bypass to minimize delay 
between dependent operations. The FXU performs register 
scoreboarding so that D-cache accesses do not  hold off 
subsequent independent register-to-register instructions. 

The dual execution units can execute a total of two 
instructions per cycle. An eight-element (six-element in 
POWER) FXU instruction buffer,  which holds only fixed- 
point instructions, feeds the dual execution units. Each 
unit contains an adder and a logic functional unit. The 
second unit also contains a multiply  and  divide  unit. The 
multiply/divide  unit executes a multiply  in  two cycles 
(three to five cycles in POWER) and a divide  in  13 to 17 
cycles (19-20 cycles in  POWER). 

When both functional units are ready to accept a new 
instruction, the issue logic sends the (logically)  first 
instruction to the first  unit. If a second FXU instruction 
exists in the FXU instruction buffers,  and its input 
operands are available, the issue logic sends it to the 
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portion of the second unit has a three-input adder. As a 
result, if  an add-type operation (or storage reference with 
update) in the first unit is updating the source registers for 
the second FXU instruction, the second instruction can 
execute in parallel. 

Since address generation uses the GPRs  in the FXU, the 
FXU executes all storage reference instructions, including 
the address translation and D-cache directory search. It 
contains the sixteen 32-bit segment registers (effective 
to virtual) and a 512-entry  (128-entry  in  POWER) two- 
way set-associative D-TLB (virtual to real) for address 
translation. It also has TLB reload hardware for processing 
both I-TLB and D-TLB misses. Dual-ported D-cache 
arrays and dual-ported directories support the two 
execution units. The cache supports first-order 
nonblocking accesses; subsequent loadlstore operations 
can overlap with D-cache misses. 

Single-element loads incur the same load-use delay as 
POWER; one cycle separates the load  from a dependent 
arithmetic. The dual execution units allow two storage 
references (including quad-word) per cycle. In  POWER 
systems, hardware handles the most frequent cases for 
unaligned accesses. POWER2 extends hardware support 
for unaligned accesses to include quad-word accesses on 
any odd-word boundary. Both POWER2 FXU execution 
units work together on multicycle loadlstore operations. 
The issue logic loads the opcode into both units, and 
two loadlstore operations execute per cycle. A detailed 
description of the FXU implementation can be found 
in  [6]. 

Floating-point unit 
The FPU includes the FPRs and  two double-precision 
(64-bit) execution units. Dual units allow execution of 
two floating-point instructions per cycle. As in  POWER, 
POWER2  implements FPR renaming to increase FXUFPU 
autonomy. The  number of physically implemented registers 
exceeds the number  (32)  defined by the architecture. 
Mapping hardware selects a “free” physical register to 
hold the destination value for each floating-point  load 
operation. Because loads do not overwrite the previous 
data in the architected register, functional units may 
execute a load  before the completion of a logically 
previous arithmetic instruction, even if it loads an FPR 
which  is a source operand for the arithmetic. This is a 
substantial benefit  on short loops, where register renaming 
cannot be done in software. Moving the loads further 
ahead allows the effects of load-use delay to be 
minimized. To support the increased number of functional 
pipelines, the FPU supports 54 physical registers (40 in 
POWER processors). 

The functional units in the FPU are more symmetrical 
and autonomous than in the FXU. Usually the FXU can 
only issue an instruction to the second functional unit 
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if two instructions are ready for issue simultaneously. 
In the FPU, whenever an instruction is ready to be 
issued and a functional unit is  available, the FPU can 
issue the instruction. Except for compares, both FPU units 
perform all operations, including divide and square root 
instructions. An eight-element instruction buffer, which 
may contain eight  floating-point interruptible instructions, 
feeds the execution units. Arithmetic results conform to 
the IEEE 754 binary floating-point standard. 

compound multiply-add instruction. The pipelines perform 
two operations with a single rounding of the result and 
with the same latency as a single  multiply or add 
operation. Dual units enable the FPU to execute two 
double-precision multiply/add instructions every cycle, 
resulting in up to four floating-point operations per cycle. 

When loops contain multiple divides, or when single 
divide loops are unrolled, proper scheduling may  allow 
divide operations to be performed  in parallel, providing 
roughly a factor of two advantage over POWER. Since the 
square-root instruction is  roughly twice as fast as the 
POWER library sequence, dual execution of square-root 
instructions gives POWER2  roughly a factor-of-four 
advantage over POWER for this function. 

To exploit the bandwidth potential of the quad-word 
storage reference instructions, a dual quad-word interface 
to the data cache supports the dual FPU execution units. 
Dual units and quad-word storage references can load  up 
to four FPRs per cycle. 

The POWER2 FPU has a separate unit for normalizing 
store data, allowing stores to execute in parallel with 
arithmetic operations. As a result, floating-point stores 
effectively require zero FPU cycles, whereas they require 
one FPU cycle in  POWER.  Additional FPU details can  be 
found in [lo]. 

As in POWER, the POWER2 FPU supports the 

Data cache unit 
POWER2 has a four-way set-associative dual-ported 
D-cache that consists of four identical chips. These four 
chips generate two one-word data buses to the FXU, two 
quad-word buses to the FPU, a four-word instruction 
reload bus to the ICU, and a two-word system 110 (SIO) 
bus to the I/O subsystem for DMA data (see Figure 2). 
For increased reliability, the DCUs support 

Memory scrubbing. 
Single-bit correction double-bit detection error checking 
code (ECC). 
Bit steering. 

Two DCU  configurations are possible: a 256Kl3 capacity 
cache (256-byte lines) fed with an eight-word memory bus 
or a 128Kl3 data cache (128-byte lines) with a four-word 
memory bus.  (POWER supports 64-byte  and  128-byte 

lines.) The memory system can include two, four, or eight 
memory cards. When the system contains two memory 
cards, it configures itself as a four-word memory system. 
If there are more than two memory cards, an eight-word 
memory system exists. A detailed description of the  DCU, 
SCU, and memory and 1/0 interfaces can be found in  [6]. 
The store-back cache design  minimizes memory bus traffic. 

9 Storage  control unit 
The SCU contains the controls and configuration registers 
for memory,  and arbitrates for all communications between 
the CPU (ICU, FXU, DCU), the memory, and the SI0 
bus. It generates the controls for the S I0  bus and a data 
path  for  programmed I/O. The S I0  bus enhancements 
allow prefetching of  DMA read data from  memory, 
enabling the system to sustain high  DMA rates using the 
streaming data protocol on the Micro Channel. POWER 
systems can use memory cards from  POWER2 systems. 

1/0 unit 
The  POWER2 I10 unit  is the same as the one in the 
RS/6000 Models 580 and 980. The I/O unit  implements the 
64-bit streaming data protocol on the Micro Channel at 
10 MHz. The I/O unit implements dual  64-byte  buffers  per 
DMA channel so that operations over the SI0  bus and 
Micro  Channel  can  fully overlap. The  I/O  unit,  along 
with some logic  on the I/O planar, reduces the arbitration 
time on the Micro  Channel  from 400 ns to 100 ns. This 
improves bandwidth  and bus utilization. In addition, 
enhancements to the protocol for the SI0  bus include 
prefetch data commands from the I/O unit so that the 
DMA data from  memory are available to the I/O unit with 
minimum delay. 

For DMA transfers to memory, the I/O unit keeps a 
record of every modified byte in the 64-byte buffer. If  all 
bytes are modified, a write to memory results. If only 
some of the bytes in the 64-byte  buffer are modified, the 
1/0 unit performs a read-modify-write. The previous 
version of the I10 unit performs a read-modify-write for 
all transfers to memory. This implementation  almost 
doubles the throughput for  all  DMA operations to memory. 

Chip  and  packaging  technology 
Table 1 shows the transistor counts and die sizes for the 
chips contained on the MCM, as well as the external signal 
1/0 count for the MCM. The POWER2 processor chip set 
contains over 23  million transistors on a silicon area of 
1217 mm’. The chips incorporate CMOS technology with 
an effective channel length of  0.45 pm. The chips contain 
one level of polysilicon  and four levels of metal  wiring. 

POWER2 systems mount the chips on a ceramic MCM 
that provides most of the chip-to-chip wiring.  While the 
total chip 1/0 is 3181, all  but  512 connections are internal 
to the MCM. The MCM includes a 64-mm by 64-mm  pin 499 
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Table 1 Physical  attributes of the POWER2 processor  chip 
set. 

~ 

Chip values and Transistor count Die sue Signal 
MCM totals (thousands) (mm X mm) I10 

Logic Memory 

FXU 583 
FPU 1001 

848 12.7 x 12.7 473 

ICU 
315 12.7 x 12.7 504 

DCU (x4) 
547  2277 12.7 x 12.7 464 

scu 
1117  16000 12.7 x 12.7 366 
349 

MCM 
- 9.4 x 9.4 276 

3597  19440  1217 sq. mrn 512 

Table 2 Industry  standard benchmark comparison. 

System RSl6000 HP DEC 10000 
PA 71 00 

Model Model Models Model 610 
580 590 7351755 AXP TM 

Clock rate 62.5 MHz 66.5 MHz 99 MHz 200 MHz 
SPECint92 
SPECfp92 

73.3 117.0 80.6 116.5 
134.6 242.4 149.8 193.6 

Linpack 38  130  41 
TPP 

43 
104 236 107  155 

TPC-C (tprnC) NIA 726.13 613.80* NIA 
Wpm-C NIA $1603 $2488* NIA 

*The  TPC values for HP  are  not available for Models 735/755. The TPC-C values 
shown in Table 2 for HP are for the  96-MHz  HP  9000 series 800 Model H50, which 
is based on the  HP  PA7100 processor. 

grid array with 512 signal I/Os. At 66.5 MHz, the total 
power dissipated by the MCM is about 65  W. More MCM 
and  packaging  information can be found  in [ll]. 

Performance 
There are two categories for the performance gains 
associated with the improvements described previously. 
The  first category applies to code that a compiler  may 
have generated prior to POWER2-based systems. Without 
recompiling, many programs obtain benefits  from the larger 
caches and TLB structures, as well as the enhanced 
address translation process. Calls to library routines such 
as  ESSL obtain POWER2-specific  tuning  benefits when 
new libraries are linked. Furthermore, the additional 
functional units exploit the instruction-level parallelism 
which has been exposed in the compiled code. 

of the functional units obtainable through  recompiling for 
a POWER2 target. The compiler can expose additional 
instruction-level parallelism after more  aggressive 
loop unrolling.  POWER2  scheduling,  which takes into 
account POWER2 latencies and interlocks, can improve 

500 performance. Recompiling also allows applications to 

The second category includes the enhanced exploitation 
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benefit  from the new instructions. Reference [12] contains 
benchmark data comparing the performance effects of 
existing binaries versus recompiled applications. 

The previous three sections described architectural, 
implementation, and technology details that allow the 
RS/6000 processor to increase its clock rate while 
significantly increasing its superscalar abilities. This paper 
opened with the debate topic: “Which delivers more 
performance, instruction-level parallelism or clock rate?” 
The complexity of the trade-offs and their interactions 
makes this a difficult question. Proof  of a good answer is 
overall performance. Table 2 compares a POWER2-based 
system with a POWER-based system and two competitive 
workstations/servers [5, 13-16].  While  new announcements 
continually move the performance bar forward, Table 2 
shows the publicly available data as of October 1, 1993. 
While the HP and DEC systems have substantially higher 
clock rates, the POWER2-based system uses instruction- 
level  parallelism to move ahead on  all of these industry- 
standard benchmarks. (During the final  review of this 
paper, DEC announced slightly  higher values which are 
roughly equivalent to those for the 71.5-MHz  IBM  Model 
990.) 

The SPEC CINT92 suite consists of six integer 
codes representing compilers, spreadsheets, and so on. 
The SPEC CFP92 suite consists of 14 floating-point 
benchmarks from the workstation and server market. 
SPEC rules do not permit  hand optimization of the codes 
in either suite. The overall measure in each suite is the 
geometric mean for the benchmarks within the suite. The 
Model  590  win  in the sPECi11t92~~ race confirms that 
superscalar ability can compensate for a three times 
greater clock rate advantage, even  on  SPECint92. Because 
of the characteristics of s P E C f ~ 9 2 ~ ~ ,  one expects even 
greater opportunity to exploit a superscalar approach. The 
25%  win of the POWER2 system over competitors with  up 
to a factor-of-three clock rate advantage, as well as the 
large  gain over POWER-based systems, demonstrate the 
additional superscalar opportunity in SPECfp92. 

area: solving dense systems of equations. The benchmark 
rules do not  allow  hand optimization while  solving the 
100 X 100 matrix problem. For POWER, the optimized 
inner loop asymptotically approaches a load  and a store 
per element update, resulting in  an FXU limit  of two 
cycles. The HP PA7100 requires two cycles for a 
store. The resulting  limit of three cycles per update 
counteracts the rough  3:2 clock rate advantage of  PA7100 
over POWER  (Model 580). As a result, the Linpack 
performance of these two systems is very similar. As 
discussed earlier, POWER2 systems benefit substantially 
on Linpack from  quad-word storage references. Linpack 
performance receives almost another factor-of-two 
improvement as the number of functional units doubles. 

The Linpack benchmark represents one specific  problem 
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While the  Linpack  performance of the  POWER-based 
system almost matches  that of the  competitive  systems, 
POWER2  systems  boast more than a factor-of-three 
advantage. 

the  same  type of problem as  Linpack,  on a lo00 X 1000 
size problem, but allows  hand  optimization of the  code. 
Because  this  is a numerically  intensive benchmark which 
exploits hand-coded  library routines  on  many  systems,  this 
benchmark  often  approaches  the  peak  MFLOPS  rate of a 
system.  The  TPP  value for POWER2 easily surpasses  even 
the  theoretical  peak  rates of the HP and  DEC Alpha 
systems, 198 and 200 MFLOPS, respectively. 

the  other  benchmarks in this  comparison,  which  run a 
controlled  source  version of a program, TPC-C  is a 
specification of a workload  that  “is a mixture of read- 
only  and  update intensive transactions  that simulate the 
activities found in complex  OLTP [on-line transaction 
processing]  application environments” [17]. Detailed 
TPC-C  characteristics  and POWER2’s TPC-C  performance 
are  described in [18]. 

The  TPP (Toward Peak  Performance)  benchmark  solves 

TPC-Cm is a prominent commercial benchmark.  Unlike 

Summary 
A popular  debate  topic  concerns  the design  philosophy 
dichotomy  evident in the  workstation  and server markets. 
Aggressive superscalar  characterizes  the RS/6000 
POWER-based  systems.  DEC Alpha and H P  PA7100 
systems illustrate the aggressive clock  rate  approach. 
POWER2’s quad-word  storage  references  and additional 
functional units make  the  divergence  even  more 
pronounced. While the  leader in this  performance  race 
changes  frequently,  industry  standard  benchmarks 
demonstrate  how  POWER2-based  systems allowed the 
RS/6000 family to  move  ahead of other implemented 
design  points. This result  confirms that instruction-level 
parallelism  is a justifiable alternative  to  clock  rate in the 
performance  race. 
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