The POWER2
performance
monitor

The POWER2™ performance monitor
(“monitor’’) provides the detailed hardware
measurements necessary to study the
hardware/software interactions of workloads
executed by the POWER2 processor. The
monitor is integrated into the processor and is
fully software accessible. Of interest is the
ability of this monitor to selectively measure
specific software processes with minimal
perturbation of those processes.

Introduction
Driven by advancing fabrication and miniaturization
technologies, advances in RISC processor machine
organizations offer new opportunities for enhanced system
performance. These opportunities are realized by adapting
the fine-grain execution details of software workloads to
the special organizational features made possible by
advanced technology, as described in [1]. Unfortunately,
as systems become more complex and highly integrated,
these organizationally dependent opportunities for
enhanced performance are often not easily detectable.
Consequently, when the performance of a software
workload is studied to optimize its performance,
performance-critical information concerning the
hardware/software interaction is difficult to obtain, and
the need for “‘embedded’” performance-monitoring
techniques, which do not themselves inhibit performance,
is greatly increased.

Important performance measures include instructions
executed, elapsed cycles, counts and delays associated

with cache and TLB misses, utilization of the various
execution elements, and inefficiencies caused by
inappropriate instruction scheduling by compilers. Such
measures can help to efficiently locate and eliminate
performance bottlenecks, and the POWER2™ performance
monitor (“‘monitor’’) makes them an integral part of
POWER?2 processor operation.

This paper describes the motivation for the design
and implementation of the monitor hardware and the
implementation of the monitor access software; it
summarizes certain of the measurable events and various
monitor usage scenarios. Examples of the application of
the measurement data can be found in [2, 3].

We say that a measurement is a hardware measurement
if the event being measured both affects performance and
is typically invisible to the software. Cache misses are an
example of such an event, since cache misses clearly
affect system performance and a program cannot
generally determine how many cache misses it has
encountered.

Hardware measurements can provide direction to the
design of future systems by identifying existing
bottlenecks, a matter of importance to both system
architects and implementors. Just as important, however,
is that a good measurement facility can point out ways to
improve the performance of existing systems as well. That
is, hardware measurement facilities in a given machine
can benefit that machine as well as future ones. It is not
necessary to justify the expense of hardware
measurements on the basis of benefit to future designs
only; hardware measurement facilities can also be justified
by the improvements afforded to the machine that provides
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them. For example, it is useful to be able to identify
opportunities for improving instruction scheduling to more
efficiently utilize execution elements. Instances of such
opportunities are described in [4] and [5]. The development
of compiler scheduling algorithms that increase utilization
and throughput can be addressed in a more timely manner
if it is possible to quickly identify what scheduling
opportunities exist.

With an appropriate hardware measurement facility, it is
possible to examine the characteristics of large suites of
programs more efficiently than otherwise. Since many
optimizations performed by compilers are heuristic,’ it is
possible that a given optimization beneficial for a specific
program may be inappropriate for other programs. Thus,
it is useful to examine the effect of an optimization for a
particular program on many other programs to ensure
that a specific optimization does not cause a substantial
number of other programs to degrade in performance.
Improvements to the effectiveness of a system’s compiler
generally improve overall system performance without
necessitating hardware changes.’

Of course, hardware measurement is not the only
method of understanding system behavior. Simulation
can be used to study hardware/software interaction, but
simulation is impractical if the systems to be simulated are
very large. Also, simulation requires much more time to
produce a needed result than does measurement. A final
consideration is the difficulty of developing the typical
large simulation models required. Indeed, a most effective
use of simulation is to study high-level system behavior
using measurement data provided at least in part by
hardware instrumentation [6].

While simulation is an alternative to hardware
measurement for many purposes, a hardware measurement
facility that can be accessed efficiently by software offers
the opportunity for adaptive system tuning. Given the
correct set of measurable events, the system software may
be able to sequence system events in such a way as to
more fully utilize the system resources. Process scheduling
is an area for which adaptation to workload could enhance
system performance.

Drawbacks inherent in current RS/6000
measurement facilities

In previous RISC System/6000® (RS/6000) systems,
hardware performance information was obtained by special
external instrumentation, which was for the most part
retrofitted to the processor model under consideration.
This was possible in part because the RS/6000 multiple-
chip design provided many signals that were needed for
functional operation but could also be used to extract

1 Optimization techniques based on the examination of specific cases may not be
generally applicable.
2 If this process can be carried out in a timely manner, so much the better.
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performance information [7]. Even so, it was usually the
case that derivatives of the functional signals were actually
required. To obtain these derivative signals, the functional
signals had to be augmented with special-case signals
solely for performance monitoring. These signals were
provided either by multiplexed functional pins or by pins
dedicated to measurement data.

Multiplexing functional pins alternately between
functional data and performance data does provide limited
access to internal signals that would not ordinarily be
externalized. However, such an arrangement typically
forces the information bandwidth requirement on such pins
to be doubled. This usually means that such pins must be
clocked at multiples of the basic CPU clock rate (e.g.,
double). This becomes increasingly difficult to accomplish
as the base CPU clock rate increases. Adding dedicated
pins does not have the special bandwidth concern just
mentioned, but pins are usually a constrained resource.

A consequence is that many important measurements are
typically not readily available because of pin limitations.
Thus, such special external instrumentation can provide
the needed information, but a drawback to such
instrumentation is that it requires extra pins or degrades
the system CPU clock rate. Moreover, some acquisition
device must actually be connected to the provided pins.

System implementors are usually reluctant to design
extra components into a board, since these components
increase the cost of the system and occupy valuable board
space. This usually means that the acquisition device must
be externally attached to the system, and some strategy
for connecting the required acquisition device must be
devised, which entails yet more problems for measurement
personnel.

The above considerations typically result in essentially
custom (and expensive) instrumentation for each CPU
model that is to be instrumented. The result is that such
instrumentation is usually designed for only a few
system models. Additionally, the custom nature of the
instrumentation typically constrains the number of design
instances that can actually be physically instrumented.

Desirable monitor characteristics

If the system under test can efficiently access the
measurements of its own execution and control the points
at which measurements are made, a great simplification
of the measurement capability will be afforded to the
measurement analysts. A further improvement is a
simplified means of adapting the instrumentation to the
system.

Assuming that a system can be equipped with
instrumentation, there is then the practical matter of
defining the points in time and threads of execution that
are of interest. Not all execution may be of interest. An
analyst studying a numerical analysis application may be
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interested in a particular subroutine or even particular
loops. An analyst studying a commercial application may
want to be able to exclude time spent idle during 1/O
waits [2].

As indicated, systems are becoming more complex and
highly integrated, causing less data to be available as
outputs that might allow external hardware to intercept
and record the data. In particular, the POWER2 processor
is packaged on a multiple-chip module (MCM), and the
only available interfaces are for the memory and I/O
buses [8, 9].

Regardless of the difficulty increasing packaging
densities imposes on hardware measurement, overall
system performance continues to become increasingly
dependent on a detailed understanding of hardware
and software interaction. The availability of a software-
accessible hardware measurement facility can be an asset
in understanding this interaction and thus in improving the
performance of cutrent and future systems.

The instrumentation should be designed so that it can be
inexpensively attached, and provide a simple yet effective
method to access the information it provides. An example
of such capability is the Cray Y-MP [10], which has
software-accessible counters. In the Cray monitor, no
alteration to the system hardware is required. It was
desired that RS/6000 follow-on designs provide similar
capabilities.

Implementation of monitor

The POWER?2 Central Electronics Complex (CEC) is
composed of five basic units (each unit a distinct chip): the
fixed-point unit (FXU), the floating-point unit (FPU), the
branch unit (or instruction cache unit, ICU), the storage
control unit (SCU), and the data cache units (DCUs).
Additional details are provided in [8, 11, 12].

As shown in Figure 1, the monitor consists of twenty-
two 32-bit counters to be used to count performance-
related events in CPU and storage. In addition to the
counters, a monitor mode control register (MMCR), with a
special status bit in the architected machine state register
(MSR), allows selective measurement of specific threads of
execution. The counters and the MMCR are addressable
for read and write via programmed I/O (PIO) operations.
Five counters are dedicated to each of the ICU, FPU,
SCU, and FXU units. Similarly, each of the four basic
units is provided a four-bit control field in the MMCR that
selects the set of events to be counted. Thus, for ecach
unit, it is possible to choose any one of sixteen groups
of five events for monitoring.

The selection of the events to count for any unit is
independent of the selection of those for the other
three units. In a special case for the SCU, the setting
MMCR(SGA) = 1 will cause the SCU to operate all
of the counters for SCU events. This gives much useful
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information concerning storage operations. In addition

to these selectable counters, there are two dedicated
counters, a CPU cycle counter and a correctable memory
error counter.

The instruction match register (IMR) located in the
FXU counts the occurrences of specific instructions. By
repetitively cycling through the list of defined instruction
codes, it is possible to obtain a sampling of the instruction
execution frequencies.

Finally, a bit referred to as the software-programmable
event (SPE) allows software to create software events as
desired. The number of cycles for which the SPE bit is
““1”” (set by software) is an event that the FXU counters
can count.

Selection of monitoring states

The POWER architecture defines the system-wide machine
state register (or MSR, similar to the System/370™ PSW)
which is architecturally part of the process state. MSR bit
number 29, the process mark (PM) bit, can be used to
control the state of the monitor.

Bit number 17 of the MSR, the PR bit, distinguishes
between privileged and problem execution states. When
PR = 0, all instructions may be executed (this condition
is the privileged state). When PR = 1, only nonprivileged
instructions may be executed (this condition is the problem
state). Bits MMCR(DP) and MMCR(DU), in conjunction
with MSR(PR), can be used to limit monitoring to either
privileged state or nonprivileged state as defined by
Figure 2 and Table 1.

The MSR(PM) bit can similarly control the state of the
monitor. When MSR(PM) = 1, the associated process is
said to be marked. When MSR(PM) = 0, the associated
process is unmarked. The state of the monitor with respect
to MSR(PM) depends on the setting of MMCR(DMS) and
MMCR(DMR) as defined by Figure 2 and Table 1. The
setting of the MSR(PM) bit is not altered by the execution
of a supervisor call (SVC) instruction, but is set to zero
when any other interrupt is fielded, so the monitoring
effect of the PM bit is preserved across calls to the kernel.
Since the MSR is part of the process state and is saved
and restored when processes pause and resume execution,
and since only the state of the monitor is affected by the
MSR(PM), this bit can be used to selectively qualify
processes for monitoring with very low overhead. Thus,
the MSR(PM) bit is useful as a nondisruptive method of
measuring the performance of specific threads of system
execution. The various combinations of the effects are
outlined in Table 1.

The settings of DIS, DP, DU, DMS, and DMR bits of
the MMCR, coupled with the settings of PM and PR bits
of the MSR, provide control of the performance monitor
by distinguishing between kernel events and user events.
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Organization of monitor hardware.

Table 1 shows the set of conditions that can be used
to qualify the control of the performance monitor
counters.

Thus, with the MMCR the MSR can control the state
of the monitor. By incorporating a significant portion of
the control of the monitoring function in the MSR, this
control becomes part of the process state and is thus saved
and restored by the interrupt response activity of the
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architected hardware. Careful use of this function reduces
the intrusiveness of the monitor to negligible levels for
most cases of importance.

Selection of observable events

In contrast to the RS/6000 measurement facilities, which
provide signals from which external hardware can
construct the required performance event in the POWER2
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processor, the performance event to be examined can be
constructed in the form needed within the unit where it
occurs.” The list of events to be implemented can therefore
be based on what the performance analysts want as
opposed to what can be observed given the available
signals (even considering the special signals provided to
augment the functional signals of the previous RS/6000
designs). As a consequence of this organization, it has
been possible for the chip implementors to provide a
comparative wealth of event information. A summary

of these events is presented in the following four
sections.

® FXU observable events

The FXU (fixed-point unit) provides counts of the cycles
during which it is inhibited from continuing execution for
a variety of reasons. These include branch delays, data
cache misses, floating-point interactions, TLB reloads,*
and the timing of multicycle instructions. Fixed-point
instruction counts are provided, including variations in
counting the utilization of the internal elements.

A special set of counts identifies cases for which there
is opportunity for performance improvement by altering
the scheduling of the instruction streams being executed.
Related to this is a set of counts that identifies the kind
of scheduling opportunities (based on causes of FXU
execution delay). Thus, the monitor can help an analyst
to identify both the degree and the particulars of the
opportunity available from enhanced fixed-point code
scheduling.

3 Generally, the signals necessary to produce the required event are available on
the chip. Limited signal availability caused by pin restrictions tends to prohibit this
on external instrumentation.

4 In RS/6000 and POWER?2, storage accesses that miss in either the data or the
instruction TLB are satisfied by the FXU in hardware and, barring page faults, are
transparent to software.

Table 1 Defined monitoring states.

Monitor mode control register

DIS | DP | DU [DMS|DMR|SGA | // |FPU |FXU|ICU | SCU

1 2 3 4 5 6 16 20 24 28

This register is set to 0 on power-up. Reading this register does not
change its content.

Bits 6 through 15 are reserved, and always read as 0’s. In order to
maintain compatibility with future implementations, software
must not write nonzero values into bits 6 through 15. The named
fields have the following definitions.

DIS: Disable counting unconditionally: This bit, when set to a
1, causes the counters to stop counting unconditionally.
The counter values are not changed, only suspended.

DP:  Disable counting when in privileged state: This bit, when a
1, causes the counters to stop counting when MSR(PR) is a
0. The counter values are not changed, only suspended.

DU: Disable counting when in problem state: This bit, when a
1, causes the counters to stop counting when MSR(PR) is a
1. The counter values are not changed, only suspended.

DMS: Disable counting when MSR(PM) is set: This bit, when a
1, causes the counters to stop counting when MSR(PM) is
a 1. The counter values are not changed, only suspended.

DMR: Disable counting when MSR(PM) is reset: This bit, when
a 1, causes the counters to stop counting when MSR(PM)
is a 0. The counter values are not changed, only
suspended.

SGA: SCU gets all: This bit when a 1, allows the SCU to control

all 22 counters; i.e., the SCU gets all of the counters. This

bit overrides the FPU, FXU, ICU, and SCU source event

set selection.
FPU: MMCR[16:19], four-bit code selecting FPU source event set.
FXU: MMCR[20:23], four-bit code selecting FXU source event set.

ICU: MMCR][24:27], four-bit code selecting ICU source event set.

SCU: MMCR([28:31], four-bit code selecting SCU source event set.

DIS DP DU DMS DMR Disabled Counted
0 0 0 0 0 Nothing Everything
0 0 0 0 1 -PM Marked (PR = X)
0 0 0 1 0 +PM Unmarked (PR = X)
0 0 1 0 0 +PR Privileged (PM = X)
0 1 0 0 0 -PR Not privileged (PM = X)
0 0 1 0 1 +PR or —PM Privileged AND marked
0 0 1 1 0 +PR or +PM Privileged AND unmarked
0 1 0 0 1 -PR or -PM Not privileged AND marked
0 1 0 1 0 —PR or +PM Not privileged AND unmarked
X X X 1 1 Everything Nothing
X 1 1 X X Everything Nothing
1 X X X X Everything Nothing
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® JCU observable events

The ICU (branch unit) provides counts of the number of
instruction cache and TLB misses that have occurred, the
number of instructions fetched, dispatched, and executed,
the number of interrupts acknowledged, and a breakdown
of the classes of instructions executed (particularly branch
instructions). Finally, there are counts that help identify
the sources of dispatch and branch delay.

® FPU observable events

The FPU (floating-point unit) provides counts that give
many details on conditions causing floating-point execution
delays, execution element utilizations, and the number

of instructions executed and special number processing
delays. In addition, there is a breakdown of the classes

of instructions executed, and there are counts of cycles
causing register-renaming stalls and of various queue-
related stall cases.

® SCU observable events
The SCU (storage control unit) counts the number of and
type of storage operation requests that are presented to it,
measures latency for such requests, and measures DMA
activity, memory bus activity, and SIO bus activity.
Storage performance is critical in RISC machines [1}; in
order to most effectively measure storage-caused delays, a
special mode has been defined for the SCU. Ordinarily, the
FXU, ICU, FPU, and SCU can operate only five counters
each. However, for the SCU there is a special case
described in Figure 2 involving the SGA bit of the MMCR
that allows the SCU to operate 20 of the 22 counters with
strictly storage-control counts. This mode gives a very
detailed view of the storage and I/O activity.

Application to system measurement
The POWER? performance monitor allows monitoring of
CPU activity without resorting to sampling. One of the key
features of the monitor is the ability to examine particular
processes or kernel activity with essentially no overhead.
In particular, it is important to note that the monitor can
be automatically enabled, either during execution of a
particular process or by supervisory activities. Also of
note is that supervisory services can be excluded from the
measurement process. The same holds true for processes
with respect to the MSR(PM) bit. Since it is not difficult to
set MSR(PM) = 1 and MMCR(DMR) = 1 for all user
processes,’ it is easy to filter out the user processes and
count only operating system tasks, whether kernel or not.°
Finally, a single task can also be excluded from
measurement. For example, a process whose responsibility

5 This is a matter of defining a default value of the MSR to be used as the basis for
all processes that are not considered part of the operating system.

6 Not all operating system execution is carried out by the kernel in privileged mode;
some operating system code executes in problem state.
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it is to manage the monitor could be defined with
MSR(PM) = 1; if MMCR(DMS) = 1, in this case all
execution is measured except the task that manages the
performance monitor. This mode can be used to eliminate
the effect of the monitor management task, for example.

Basic monitoring considerations

A 32-bit counter incrementing at a 66-MHz rate will
overflow in 65.1 seconds. Thus, as long as the monitor
counters are read at least once every 65.1 seconds, no data
are lost due to overflow. In particular, if the counters are
inspected at every real-time clock interrupt (occurring
about once every 10 milliseconds) and every task switch,
there is no risk of overflow ambiguity.

If the counters are managed by the operating system at a
user’s request, it is possible to allow muitiplexing of the
monitoring function across multiple processes. Since the
counters are both read and write, it is possible to give each
process the illusion of operating the counter entirely by
itself.

To reduce the intrusion incurred by reading the
counters, they should be accessed using POWER
load/store multiple instructions. In this case,7 about 60
cycles are required to save 23 general-purpose registers
(GPRs), load the MMCR and the 22 counters, store out
the MMCR and 22 counters, and then reload 23 GPRs.

If the environment being monitored operates in a steady
state, it might prove useful to alternate the events to
be counted. On a periodic basis, one could cycle the
values of MMCR(FPU), MMCR(FXU)}, MMCR(ICU), and
MMCR(SCU) through the values of 0, 1, 2, - - -, 15. In this
way one could sample all events and thereby obtain
information from all of the defined event types. Such a
procedure was used to obtain the data for [2].

Monitoring all events using a log

If a trace of counts for all process and operating system
activity is desired, an algorithm similar to that used by
aixtrace [13] can be applied. In this algorithm, a log file is
constructed for a performance-tracing session. This log file
is processed after the tracing session by the postprocessor
rmap, as described in [13]. This method does not rely on
the MSR(PM) for control of the monitor; instead, all
processes are monitored. Note that the monitor counters
are to be considered process state, just as the general-
purpose registers are considered process state. Thus, in
order to create the illusion of private counters on a per-
thread/process level, it is necessary that the monitor
counters be saved and restored as threads and processes
stop (or exit) and start (or resume execution). The aixtrace
trace buffer is used to record the content of the monitor
counters. Each entry consists of the process id, the

7 Excluding TLB and page misses, but counting cache misses.
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MMCR, the counter values, and the real-time clock at the
time that the counters are read. As this buffer fills, it is
written to a mass storage device if the accumulated data
are to be postprocessed by rmap.

The save/restore algorithm for the monitor is as follows:

1. At the point in time that a monitored process is
stopped, record the current monitoring mode, counts,
and process ID into a system-wide buffer in a storage
area designated for this purpose.

2. Immediately before starting the next process, record
the mode and counts that the operating system has
accumulated. Set the monitoring mode and events of
interest for the process to be started or resumed, and
clear the residual counts in the counters.

3. Start or resume the process (usually with an RFI or
RFSVC instruction).

The implementation of this procedure is discussed in a
subsequent section of this paper.

Monitoring one process

Almost all performance studies focus on a single process,
usually a benchmark such as li from the SPEC™
benchmark suite [14]. In such a case, the MMCR and
the MSR(PM) bits can be used to great advantage in
collecting performance data.

The benchmark in question has both MSR(PM) and
MMCR(DMR) set to 1. All other processes executing
have their respective MSR(PM) bits set to 0. As a
consequence, only the benchmark process with
MSR(PM) = 1 is able to alter the performance counters.
Thus, the performance counters do not have to be saved
or restored, eliminating the attendant overhead.

As mentioned earlier, the counters may “‘roll over™
as often as once every 65 seconds. Thus, the operating
system must schedule an event that will save the
performance counters at a frequency consistent with this.
Also, the monitor control software must supply certain
managerial functions for the monitor, because reading and
writing the MMCR and the MSR are privileged operations.
In general, the monitor is a serially reusable (i.e., the
monitor contains state information) resource and must be
managed to some extent to ensure that it is used in a
reliable manner.

Monitoring a set of processes

It is possible to monitor the cumulative effects of any set
of the executing processes using the above technique. To
do this, the control software must be able to recognize
what subset is to be monitored. When the subset has
been determined, each process of the subset will have its
MSR(PM) set to 1.
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As long as a consistent set of parameters to be measured
is specified across the process set, each time a marked
process (from the set of processes to be monitored)
commences execution, the MSR for that process is
reloaded with the previous state, which enables the
monitor. {In AIX there is a special case called a ““process
group,”” consisting of a parent process (the group leader)
and all of its progeny (processes that it creates via fork,
etc.). In this case, each child inherits its MSR from its
immediate parent. Hence, if the group leader (i.e., the root
process of the group) is marked, all of the children will
likewise be marked and hence easily monitored. No
special effort to achieve this behavior is required, since it
capitalizes on an aspect of AIX architecture.] The data
strecam emanating from the counters can be treated in the
same way as the data stream from a single process.

Monitoring segments of code with well-defined
entries and exits

If a segment of code has exactly one entry point, it is
possible to monitor the events that occur within the
segment by placing a call to enable monitoring at the entry
point and placing a trap instruction at each possible exit
point. While the call to enable monitoring and the trap to
disable monitoring incur some overhead, this overhead
does not affect the measurements made on the code
segment in question.® The implementation of such
capability is discussed in a subsequent section of this

paper.

System-level monitor software

The software for the POWER?2 performance monitor has
evolved to support two types of tasks, providing data for
visualization software and producing counter data with as
little intrusion as possible. This section briefly describes
both software methods and their future potential.

Data for visualization software such as pv [15] is
provided through the aixtrace facility [13). This allows the
visualization software to correlate the data provided by the
performance monitor with the normal trace data in order to
provide more informative displays. The counter data are
inserted into the trace as an aixtrace record every n
software clock ticks, or when the process dispatched is
different from the current process. This allows report
generators that postprocess the trace to produce per-
process performance statistics.

Calls which request the capture of information are
embedded at particular and significant locations in the
software. These calls are referred to as ““hooks.” Each
distinct hook has a unique identifier, the hook ID, which
is used to distinguish between the various hooks. Hooks

8 Except for possibly causing a small number of extra cache misses and some initial
disruption of the pipelines. 551
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may be system- or user-defined and may be disabled and
enabled as desired. Each is designed to pass hook-specific
data. A purpose of aixtrace is to record the data passed by
these hook invocations.

POWER?2 performance monitor gixtrace support is
implemented using a kernel extension which attaches itself
to the operating system call that puts data into the aixtrace
trace buffer. The monitor counters can be dumped when
either system- or user-specified trace hooks are triggered.
This gives the report generators the ability to fine-tune
their analysis, with the finest granularity being that of the
trace hooks that are enabled. The extension analyzes the
arguments of the hook and, on the basis of the hook ID,
some state variables, and the link register, determines
whether it is an appropriate time to dump the counters.

If so, the kernel extension calls the trace routine on its
own behalf, inserting the counter data into the trace.

This implementation is a fairly flexible one, since the
kernel extension provides the ability to specify which
hooks cause the monitor counters to be recorded. Also,
additional software logic may be added without having to
rebuild the kernel. The major drawback of this method is
that the aixtrace facility and the appropriate kernel
extension must be active. This means that depending on
the number of hooks enabled, data gathering is slightly
intrusive (in the neighborhood of 10%).

A more efficient way of implementing this functionality
would be to modify the operating system kernel directly.
This would significantly reduce the overhead incurred by
the kernel extension. A second method addresses this
problem in a different way.

Monitor command line tools
The second software method, the POWER?2 performance
monitor command line tools (CLT), was created to provide
a simple way to acquire the performance monitor counters.
It consists of a set of command line programs and system
calls that allow the user to manipulate the performance
monitor control registers (the MMCR and IMR) and to
periodically write the values of the counters to the
operating system standard out stream or a file.

If a program runs in a short time (less than 65
seconds, given a 66-MHz processor clock), it is possible
to reset the counters, run the program, and acquire the
counters. One can then monitor the program with no
intrusion at all. For longer programs, it is necessary to
save the counters periodically to prevent them from
overflowing. One of the tools operates somewhat like
iostat [13] and writes the counters at a frequency specified
by the user. When this program or an analogous one is
run, the amount of intrusion is roughly equivalent to a
context switch each time the counters are recorded. To
gain finer granularity in the measuring of a program, it is
possible to instrument the program with function calls to
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manipulate the control registers. Thus, one can analyze
only certain portions of the code and gather performance
data just for those sections.

Access to the performance monitor hardware is provided
through a kernel extension. The extension provides a set
of system calls which manipulate the control register
and allow the resetting or retrieval of the counters. The
command line tools simply call functions available in
the kernel extension. The major drawback to using this
technique for generating data is that the current operating
system kernel does not preserve the MSR(PM) bit, and
per-process tracing is therefore not available. It is,
however, possible to modify the operating system kernel
to preserve this bit; if this is done, per-process tracing
is possible. Effort is underway to accomplish this.

Monitor data reduction tools

The last component of software for the monitor involves
the data reduction. Several tools are available to reduce
the data generated by the MMCR to useful information.
The visualization tool pv uses a filter that converts the
aixtrace data, including the additional monitor data, into a
pv data stream, allowing pv to display informative graphs
of the state and performance of the machine. Because the
trace stream contains large amounts of operating system
data in addition to the counters, pv is able to give a much
richer display than would otherwise be possible. The
coupling of the monitor data to the operating system data
has proven most useful [2].

To easily generate interesting values from the data
provided by means of the monitor command line tools, a
set of postprocessors was developed. Because it is possible
to generate interesting values in a variety of ways, it is
nearly impossible to predict what derived values a
particular user might find most interesting. Therefore, the
postprocessor uses a user-specified input-rule set to
determine how to arrive at a given set of results. The
postprocessor reduces the input to these values, complete
with statistics. A secondary postprocessor uses these
results with a different set of rules to produce more
complex relationships. This is useful when programs have
large steady-state periods. With such programs, it is
possible during these periods to change the MMCR value
in order to get a broader set of counters than normally
available. With the expanded set of counters, it is possible
to derive values not otherwise obtainable.

This set of programs has been successfully used to
analyze several benchmarks, including TPC [2, 3].

Summary

The POWER?2 performance monitor provides a set of
hardware measures that are important to software
developers tuning operating system and application
software as well as to system designers responsible for the
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development of new systems. The events monitored
include important measures involving storage system
performance and compiler instruction scheduling, both
critical to good system performance.
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