
The POWER2 by E. H. Welbon
C. C. Chan-Nui

1 D. J. Shippy

pertormance
monitor

D. A. Hicks

The POWERS” performance monitor
(“monitor”) provides the detailed hardware
measurements necessary to study the
hardwarehobare interactions of workloads
executed by the POWER2 processor. The
monitor is integrated into the processor and is
fully software accessible. Of interest is the
ability of this monitor to selectively measure
specific software processes with minimal
perturbation of those processes.

Introduction
Driven by advancing fabrication and miniaturization
technologies, advances in RISC processor machine
organizations offer new opportunities for enhanced system
performance. These opportunities are realized by adapting
the fine-grain execution details of software workloads to
the special organizational features made possible by
advanced technology, as described in [l]. Unfortunately,
as systems become more complex and highly integrated,
these organizationally dependent opportunities for
enhanced performance are often not easily detectable.
Consequently, when the performance of a software
workload is studied to optimize its performance,
performance-critical information concerning the
hardware/software interaction is difficult to obtain, and
the need for “embedded” performance-monitoring
techniques, which do not themselves inhibit performance,
is greatly increased.

Important performance measures include instructions
executed, elapsed cycles, counts and delays associated

with cache and TLB misses, utilization of the various
execution elements, and inefficiencies caused by
inappropriate instruction scheduling by compilers. Such
measures can help to efficiently locate and eliminate
performance bottlenecks, and the POWER2TM performance
monitor (“monitor”) makes them an integral part of
POWER2 processor operation.

This paper describes the motivation for the design
and implementation of the monitor hardware and the
implementation of the monitor access software; it
summarizes certain of the measurable events and various
monitor usage scenarios. Examples of the application of
the measurement data can be found in [2, 31.

We say that a measurement is a hardware measurement
if the event being measured both affects performance and
is typically invisible to the software. Cache misses are an
example of such an event, since cache misses clearly
affect system performance and a program cannot
generally determine how many cache misses it has
encountered.

design of future systems by identifying existing
bottlenecks, a matter of importance to both system
architects and implementors. Just as important, however,
is that a good measurement facility can point out ways to
improve the performance of existing systems as well. That
is, hardware measurement facilities in a given machine
can benefit that machine as well as future ones. It is not
necessary to justify the expense of hardware
measurements on the basis of benefit to future designs
only; hardware measurement facilities can also be justified
by the improvements afforded to the machine that provides

Hardware measurements can provide direction to the

“Copyright 1994 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of
this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other

portion of this paper must be obtained from the Editor. 545

IBM J. RES, DEVELOP. VOL. 38 NO. 5 SEPTEMBER 1994 E. n. WELBON ET AL.

them. For example, it is useful to be able to identify
opportunities for improving instruction scheduling to more
efficiently utilize execution elements. Instances of such
opportunities are described in [4] and [5] . The development
of compiler scheduling algorithms that increase utilization
and throughput can be addressed in a more timely manner
if it is possible to quickly identify what scheduling
opportunities exist.

possible to examine the characteristics of large suites of
programs more efficiently than otherwise. Since many
optimizations performed by compilers are heuristic,’ it is
possible that a given optimization beneficial for a specific
program may be inappropriate for other programs. Thus,
it is useful to examine the effect of an optimization for a
particular program on many other programs to ensure
that a specific optimization does not cause a substantial
number of other programs to degrade in performance.
Improvements to the effectiveness of a system’s compiler
generally improve overall system performance without
necessitating hardware changes.’

Of course, hardware measurement is not the only
method of understanding system behavior. Simulation
can be used to study hardware/software interaction, but
simulation is impractical if the systems to be simulated are
very large. Also, simulation requires much more time to
produce a needed result than does measurement. A final
consideration is the difficulty of developing the typical
large simulation models required. Indeed, a most effective
use of simulation is to study high-level system behavior
using measurement data provided at least in part by
hardware instrumentation [6].

While simulation is an alternative to hardware
measurement for many purposes, a hardware measurement
facility that can be accessed efficiently by software offers
the opportunity for adaptive system tuning. Given the
correct set of measurable events, the system software may
be able to sequence system events in such a way as to
more fully utilize the system resources. Process scheduling
is an area for which adaptation to workload could enhance
system performance.

With an appropriate hardware measurement facility, it is

Drawbacks inherent in current RSl6000
measurement facilities
In previous RISC System/6000@ (RS/6000) systems,
hardware performance information was obtained by special
external instrumentation, which was for the most part
retrofitted to the processor model under consideration.
This was possible in part because the RS/6000 multiple-
chip design provided many signals that were needed for
functional operation but could also be used to extract

Optimization techniques based on the examination of specific cases may not be

If this process can be carried out in a timely manner, so much the better. 546
generally applicable.

performance information [7]. Even so, it was usually the
case that derivatives of the functional signals were actually
required. To obtain these derivative signals, the functional
signals had to be augmented with special-case signals
solely for performance monitoring. These signals were
provided either by multiplexed functional pins or by pins
dedicated to measurement data.

Multiplexing functional pins alternately between
functional data and performance data does provide limited
access to internal signals that would not ordinarily be
externalized. However, such an arrangement typically
forces the information bandwidth requirement on such pins
to be doubled. This usually means that such pins must be
clocked at multiples of the basic CPU clock rate (e.g.,
double). This becomes increasingly difficult to accomplish
as the base CPU clock rate increases. Adding dedicated
pins does not have the special bandwidth concern just
mentioned, but pins are usually a constrained resource.
A consequence is that many important measurements are
typically not readily available because of pin limitations.
Thus, such special external instrumentation can provide
the needed information, but a drawback to such
instrumentation is that it requires extra pins or degrades
the system CPU clock rate. Moreover, some acquisition
device must actually be connected to the provided pins.

System implementors are usually reluctant to design
extra components into a board, since these components
increase the cost of the system and occupy valuable board
space. This usually means that the acquisition device must
be externally attached to the system, and some strategy
for connecting the required acquisition device must be
devised, which entails yet more problems for measurement
personnel.

The above considerations typically result in essentially
custom (and expensive) instrumentation for each CPU
model that is to be instrumented. The result is that such
instrumentation is usually designed for only a few
system models. Additionally, the custom nature of the
instrumentation typically constrains the number of design
instances that can actually be physically instrumented.

Desirable monitor characteristics
If the system under test can efficiently access the
measurements of its own execution and control the points
at which measurements are made, a great simplification
of the measurement capability will be afforded to the
measurement analysts. A further improvement is a
simplified means of adapting the instrumentation to the
system.

instrumentation, there is then the practical matter of
defining the points in time and threads of execution that
are of interest. Not all execution may be of interest. An
analyst studying a numerical analysis application may be

Assuming that a system can be equipped with

E. H. WELBON ET AL. 1BM 1. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 1994

interested in a particular subroutine or even particular
loops. An analyst studying a commercial application may
want to be able to exclude time spent idle during I/O
waits [2].

highly integrated, causing less data to be available as
outputs that might allow external hardware to intercept
and record the data. In particular, the POWER2 processor
is packaged on a multiple-chip module (MCM), and the
only available interfaces are for the memory and 1/0
buses [8, 91.

Regardless of the difficulty increasing packaging
densities imposes on hardware measurement, overall
system performance continues to become increasingly
dependent on a detailed understanding of hardware
and software interaction. The availability of a software-
accessible hardware measurement facility can be an asset
in understanding this interaction and thus in improving the
performance of current and future systems.

The instrumentation should be designed so that it can be
inexpensively attached, and provide a simple yet effective
method to access the information it provides. An example
of such capability is the Cray Y-MP [lo], which has
software-accessible counters. In the Cray monitor, no
alteration to the system hardware is required. It was
desired that RS/6000 follow-on designs provide similar
capabilities.

As indicated, systems are becoming more complex and

Implementation of monitor
The POWER2 Central Electronics Complex (CEC) is
composed of five basic units (each unit a distinct chip): the
fixed-point unit (FXU), the floating-point unit (FPU), the
branch unit (or instruction cache unit, ICU), the storage
control unit (SCU), and the data cache units (DCUs).
Additional details are provided in [8, 11, 121.

two 32-bit counters to be used to count performance-
related events in CPU and storage. In addition to the
counters, a monitor mode control register (MMCR), with a
special status bit in the architected machine state register
(MSR), allows selective measurement of specific threads of
execution. The counters and the MMCR are addressable
for read and write via programmed I/O (PIO) operations.
Five counters are dedicated to each of the ICU, FPU,
SCU, and FXU units. Similarly, each of the four basic
units is provided a four-bit control field in the MMCR that
selects the set of events to be counted. Thus, for each
unit, it is possible to choose any one of sixteen groups
of five events for monitoring.

The selection of the events to count for any unit is
independent of the selection of those for the other
three units. In a special case for the SCU, the setting
MMCR(SGA) = 1 will cause the SCU to operate all
of the counters for SCU events. This gives much useful

As shown in Figure 1, the monitor consists of twenty-

IBM J . RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 1994

information concerning storage operations. In addition
to these selectable counters, there are two dedicated
counters, a CPU cycle counter and a correctable memory
error counter.

The instruction match register (IMR) located in the
FXU counts the occurrences of specific instructions. By
repetitively cycling through the list of defined instruction
codes, it is possible to obtain a sampling of the instruction
execution frequencies.

Finally, a bit referred to as the software-programmable
event (SPE) allows software to create software events as
desired. The number of cycles for which the SPE bit is
“1” (set by software) is an event that the FXU counters
can count.

Selection of monitoring states
The POWER architecture defines the system-wide machine
state register (or MSR, similar to the System/370TM PSW)
which is architecturally part of the process state. MSR bit
number 29, the process mark (PM) bit, can be used to
control the state of the monitor.

Bit number 17 of the MSR, the PR bit, distinguishes
between privileged and problem execution states. When
PR = 0, all instructions may be executed (this condition
is the privileged state). When PR = 1, only nonprivileged
instructions may be executed (this condition is theproblem
state). Bits MMCR(DP) and MMCR(DU), in conjunction
with MSR(PR), can be used to limit monitoring to either
privileged state or nonprivileged state as defined by
Figure 2 and Table 1.

The MSR(PM) bit can similarly control the state of the
monitor. When MSR(PM) = 1, the associated process is
said to be marked. When MSR(PM) = 0, the associated
process is unmarked. The state of the monitor with respect
to MSR(PM) depends on the setting of MMCR(DMS) and
MMCR(DMR) as defined by Figure 2 and Table 1. The
setting of the MSR(PM) bit is not altered by the execution
of a supervisor call (SVC) instruction, but is set to zero
when any other interrupt is fielded, so the monitoring
effect of the PM bit is preserved across calls to the kernel.
Since the MSR is part of the process state and is saved
and restored when processes pause and resume execution,
and since only the state of the monitor is affected by the
MSR(PM), this bit can be used to selectively qualify
processes for monitoring with very low overhead. Thus,
the MSR(PM) bit is useful as a nondisruptive method of
measuring the performance of specific threads of system
execution. The various combinations of the effects are
outlined in Table 1.

The settings of DIS, DP, DU, DMS, and DMR bits of
the MMCR, coupled with the settings of PM and PR bits
of the MSR, provide control of the performance monitor
by distinguishing between kernel events and user events.

E. H. WELBON ET AL.

547

scu

ICU -
-14 Four bit p u p id 1 1

ctl I /// I 1 I I
Four bits for each of FPU, FXU, ICU, SCU

16 Monitoring points One bit increment signal ICU monitors
Incrementor "-

16 Monitoring points
Incrementor 1
Incrementor 1 16 Monitoring points

16 Monitoring points
I Incrementa

16 Monitoning points One bit increment signal
Incrementa

One of 16 hit muxes

4

Fxu
.) + FXU monitors

5 Five incrementors

4

FPU
b FPU monitors

5 Five incrementors

DCU
4 * Soft error counter

CPU clock - CYCLE counter

I 1
Up to 80 events can be monitored per chip.
A total of 320 events can be defined.
22 counters monitor simultaneously:

20 counters for selectable events

Two nonselectable events
One cycle counter

* One soft error counter

Five events for each of FPU, FXU, ICU, SCU

Five incrementors
SCU monitors

Organization of monitor hardware.

Table 1 shows the set of conditions that can be used
to qualify the control of the performance monitor
counters.

Thus, with the MMCR the MSR can control the state
of the monitor. By incorporating a significant portion of
the control of the monitoring function in the MSR, this
control becomes part of the process state and is thus saved
and restored by the interrupt response activity of the

architected hardware. Careful use of this function reduces
the intrusiveness of the monitor to negligible levels for
most cases of importance.

Selection of observable events
In contrast to the RS/6000 measurement facilities, which
provide signals from which external hardware can
construct the required performance event in the POWER2

processor, the performance event to be examined can be
constructed in the form needed within the unit where it
O C C U ~ S . ~ The list of events to be implemented can therefore
be based on what the performance analysts want as
opposed to what can be observed given the available
signals (even considering the special signals provided to
augment the functional signals of the previous RS/6000
designs). As a consequence of this organization, it has
been possible for the chip implementors to provide a
comparative wealth of event information. A summary
of these events is presented in the following four
sections.

FXU observable events
The FXU (fixed-point unit) provides counts of the cycles
during which it is inhibited from continuing execution for
a variety of reasons. These include branch delays, data
cache misses, floating-point interactions, TLB reload^,^
and the timing of multicycle instructions. Fixed-point
instruction counts are provided, including variations in
counting the utilization of the internal elements.

A special set of counts identifies cases for which there
is opportunity for performance improvement by altering
the scheduling of the instruction streams being executed.
Related to this is a set of counts that identifies the kind
of scheduling opportunities (based on causes of FXU
execution delay). Thus, the monitor can help an analyst
to identify both the degree and the particulars of the
opportunity available from enhanced fixed-point code
scheduling.

3 Generally, the signals necessary to produce the required event are available on
the chip. Limited signal availability caused by pin restrictions tends to prohibit this
on external instrumentation.
4 In RSi6000 and POWERZ, storage accesses that miss in either the data or the
instruction TLB are satisfied by the FXU in hardware and, barring page faults, are
transparent to software.

Monitor mode control register

DIS SCU ICU FXU FPU // SGA DMR DMS DU DP

0 1 2 3 4 5 6 1 6 2 0 2 4 2 8

This register is set to 0 on power-up. Reading this register does not

Bits 6 through 15 are reserved, and always read as 0's. In order to
change its content.

maintain compatibility with future implementations, software
must not write nonzero values into bits 6 through 15. The named
fields have the following definitions.

DIS: Disable counting unconditionally: This bit, when set to a

The counter values are not changed, only suspended.
1, causes the counters to stop counting unconditionally.

DP: Disable counting when in privileged state: This bit, when a

0. The counter values are not changed, only suspended.
I, causes the counters to stop counting when MSR(PR) is a

DU: Disable counting when in problem state: This bit, when a
1, causes the counters to stop counting when MSR(PR) is a
1, The counter values are not changed, only suspended.

DMS: Disable counting when MSR(PM) is set: This bit, when a

a 1. The counter values are not changed, only suspended.
1, causes the counters to stop counting when MSR(PM) is

DMR: Disable counting when MSR(PM) is reset: This bit, when
a 1, causes the counters to stop counting when MSR(PM)
is a 0. The counter values are not changed, only
suspended.

SGA: SCU gets all: This bit when a 1, allows the SCU to control
all 22 counters; i.e., the SCU gets all of the counters. This
bit ovemdes the F'PU, FXU, ICU, and SCU source event
set selection.

FPU: MMCR[16191, four-bit code selecting FPU source event set.

FXU: MMCR[20:23], four-bit code selecting FXU source event set.

ICU MMCR[24:27], four-bit code selecting ICU source event set.

SCU: MMCR[28:31], four-bit code selecting SCU source event set.

1 Monitor mode control register format. i'

Table 1 Defined monitoring states.

DIS DP DU DMS DMR Disabled Counted

0
~~~~~~~ ~ ~ 

0 0 0 0 Nothing Everything 
0 0 0 0 1 -PM Marked (PR = X) 
0 0 0 1 0 +PM Unmarked (PR = X) 
0 0 1 0 0 + PR Privileged (PM = X) 
0 1 0 0 0 -PR Not privileged (PM = X) 
0 0 1 0 1 +PR  or -PM Privileged AND  marked 
0 0 1 1 0 +PR  or  +PM Privileged AND unmarked 
0 1 0 0 1 -PR or  -PM Not privileged AND marked 
0 1 0 1 0 -PR  or  +PM Not privileged AND unmarked 
X X X 1 1 Everything Nothing 
X 1 1 X X Everything Nothing 
1 X X X X Everything Nothing 

549 

IBM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 1994 E. H. WELBON  ET  AL. 



550 

ICU observable events 
The ICU (branch unit) provides counts of the number of 
instruction cache and TLB misses that have occurred, the 
number of instructions fetched, dispatched, and executed, 
the number of interrupts acknowledged, and a breakdown 
of the classes of instructions executed (particularly branch 
instructions). Finally, there are counts that help identify 
the sources of dispatch and branch delay. 

FPU Observable events 
The FPU (floating-point unit) provides counts that give 
many details on conditions causing floating-point execution 
delays, execution element utilizations, and the number 
of instructions executed and special number processing 
delays. In addition, there is a breakdown of the classes 
of instructions executed, and there are counts of cycles 
causing register-renaming stalls and of various queue- 
related stall cases. 

SCU observable events 
The SCU (storage control unit) counts the number of and 
type of storage operation requests that are presented to it, 
measures latency for such requests, and measures DMA 
activity, memory bus activity, and SI0 bus activity. 

Storage performance is critical in RISC machines [l]; in 
order to most  effectively measure storage-caused delays, a 
special mode has been  defined for the SCU. Ordinarily, the 
FXU, ICU, FPU, and SCU can operate only  five counters 
each. However, for the SCU there is a special case 
described in Figure 2 involving the SGA bit of the MMCR 
that allows the SCU to operate 20 of the 22 counters with 
strictly storage-control counts. This mode  gives a very 
detailed view of the storage and 1/0 activity. 

it is to manage the monitor  could  be  defined  with 
MSR(PM) = 1; if MMCR(DMS) = 1,  in this case all 
execution is measured except the task that manages the 
performance monitor. This  mode  can be used to eliminate 
the effect of the monitor  management task, for example. 

Basic  monitoring  considerations 
A 32-bit counter incrementing at a 66-MHz rate will 
overflow in  65.1 seconds. Thus, as long as the monitor 
counters are read at least once every 65.1 seconds, no data 
are lost due to overflow. In particular, if the counters are 
inspected at every real-time clock interrupt (occurring 
about once every 10 milliseconds)  and every task switch, 
there is no risk of overflow  ambiguity. 

user’s request, it  is  possible to allow  multiplexing of the 
monitoring function across multiple processes. Since the 
counters are both read  and write, it  is possible to give  each 
process the illusion of operating the counter entirely by 
itself. 

If the counters are managed by the operating system at a 

To reduce the intrusion incurred by reading the 
counters, they should be accessed using  POWER 
load/store multiple instructions. In this case,’ about 60 
cycles are required to save 23 general-purpose registers 
(GPRs), load the MMCR and the 22 counters, store out 
the MMCR and 22 counters, and then reload 23 GPRs. 

state, it  might prove useful to alternate the events to 
be counted. On a periodic basis, one could cycle the 
values of MMCR(FPU),  MMCR(FXU),  MMCR(ICU),  and 
MMCR(SCU)  through the values of 0, 1, 2, , 15. In this 
way one could  sample  all events and thereby obtain 
information  from all of the defined event types. Such a 
procedure was used to obtain the data for [2]. 

If the environment being monitored operates in a steady 

Application  to  system  measurement 
The  POWER2 performance monitor  allows  monitoring of 
CPU activity without resorting to sampling.  One of the key 
features of the monitor  is the ability to examine particular 
processes or kernel activity with essentially no overhead. 
In particular, it is important to note that the monitor can 
be automatically enabled, either during execution of a 
particular process or by supervisory activities. Also of 
note is that supervisory services can be excluded from the 
measurement process. The same holds true for processes 
with respect to the MSR(PM) bit. Since it  is  not  difficult to 
set MSR(PM) = 1 and  MMCR(DMR) = 1 for all user 
proce~ses,~ it is easy to filter out the user processes and 
count only operating system tasks, whether kernel or not.6 

measurement. For example, a process whose responsibility 
Finally, a single task can also be excluded from 

5 This is a  matter of defining a default value of the MSR to be used as the basis for 
all processes that  are not considered part of the operating system. 
6 Not all operating system execution is carried out by the kernel in privileged mode; 
some operating system  code  executes in problem state. 

Monitoring  all  events  using a log 
If a trace of counts for all process and operating system 
activity is desired, an  algorithm  similar to that used by 
uixtruce [13] can  be applied. In this algorithm, a log  file is 
constructed for a performance-tracing session. This  log file 
is processed after the tracing session by the postprocessor 
m a p ,  as described in  [13]. This  method does not rely on 
the MSR(PM) for control of the monitor; instead, all 
processes are monitored. Note that the monitor counters 
are to be considered process state,  just as the general- 
purpose registers are considered process state. Thus, in 
order to create the illusion of private counters on a per- 
thread/process level, it is necessary that the monitor 
counters be saved and restored as threads and processes 
stop (or exit) and start (or resume execution). The aixtrace 
trace buffer  is  used to record the content of the monitor 
counters. Each entry consists of the process id, the 

’ Excluding TLBand page misses, hut counting cache misses. 

E. H. WELBON ET AL. IBM J .  RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 



MMCR, the counter values, and the real-time clock at the 
time that the counters are read. As this buffer fills, it  is 
written to a mass storage device if the accumulated data 
are to be postprocessed by map .  

The save/restore algorithm for the monitor is as follows: 

1. At the point in time that a monitored process is 
stopped, record the current monitoring mode, counts, 
and process ID into a system-wide buffer in a storage 
area designated for this purpose. 

2. Immediately before starting the next process, record 
the mode  and counts that the operating system has 
accumulated. Set the monitoring  mode  and events of 
interest for the process to be started or resumed, and 
clear the residual counts in the counters. 

3. Start or resume the process (usually with  an RFI or 
RFSVC instruction). 

The implementation of this procedure is discussed in a 
subsequent section of this paper. 

Monitoring one process 
Almost all performance studies focus on a single process, 
usually a benchmark such as li from the SPECTM 
benchmark suite [14]. In such a case, the MMCR and 
the MSR(PM) bits can  be  used to great advantage in 
collecting performance data. 

The benchmark in question has both MSR(PM)  and 
MMCR(DMR) set to 1. All other processes executing 
have their respective MSR(PM) bits set to 0. As a 
consequence, only the benchmark process with 
MSR(PM) = 1 is able to alter the performance counters. 
Thus, the performance counters do not have to be saved 
or restored, eliminating the attendant overhead. 

As mentioned earlier, the counters may “roll over” 
as often as once every 65 seconds. Thus, the operating 
system must schedule an event that will save the 
performance counters at  a frequency consistent with  this. 
Also, the monitor control software must supply certain 
managerial functions for the monitor, because reading  and 
writing the MMCR and  the MSR are privileged operations. 
In general, the monitor is a serially reusable (i.e., the 
monitor contains state information) resource and  must be 
managed to some extent to ensure that it is used in a 
reliable manner. 

Monitoring a  set of processes 
It is possible to monitor the cumulative effects of any set 
of the executing processes using the above technique. To 
do this, the control software must  be  able to recognize 
what subset is to be monitored. When the subset has 
been determined, each process of the subset will have its 
MSR(PM) set to 1. 

IBM J. RES. DEVELOP. VOL. 3R NO. 5 SEPTEMBER 1994 

As  long as a consistent set of parameters to be measured 
is  specified across the process set, each  time a marked 
process (from the set of processes to be monitored) 
commences execution, the MSR for that process is 
reloaded with the previous state, which enables the 
monitor. [In AIX there is a special case called a “process 
group,” consisting of a parent process (the group leader) 
and  all of its progeny (processes that it creates via fork, 
etc.). In this case, each child inherits its MSR from its 
immediate parent. Hence, if the group leader (i.e., the root 
process of the group) is marked, all  of the children  will 
likewise  be  marked  and hence easily monitored. No 
special effort to achieve this behavior is required, since it 
capitalizes on  an aspect of  AIX architecture.] The data 
stream emanating  from the counters can be treated in the 
same way as the data stream from a single process. 

Monitoring segments of code with well-defined 
entries and exits 
If a segment of code has exactly one entry point, it is 
possible to monitor the events that occur within the 
segment by placing a call to enable monitoring at the entry 
point  and  placing a  trap instruction at each possible  exit 
point. While the call to enable monitoring  and the trap to 
disable monitoring  incur some overhead, this overhead 
does not  affect the measurements made on the code 
segment in question.8 The implementation of such 
capability is discussed in a subsequent section of this 
paper. 

System-level monitor software 
The software for the POWER2 performance monitor has 
evolved to support two types of tasks, providing data for 
visualization software and  producing counter data with as 
little intrusion as possible.  This section briefly describes 
both software methods and their future potential. 

provided  through the airtrace facility [13]. This allows the 
visualization software to correlate the data provided by the 
performance monitor with the normal trace data in order to 
provide more informative displays. The counter data are 
inserted into the trace as an airtrace record every n 
software clock ticks, or when the process dispatched is 
different  from the current process. This  allows report 
generators that postprocess the trace to produce per- 
process performance statistics. 

Calls  which request the capture of information are 
embedded at particular and  significant locations in the 
software. These calls are referred to as “hooks.” Each 
distinct hook has a unique  identifier, the hook ID, which 
is used to distinguish between the various hooks. Hooks 

Data  for visualization software such aspv [15] is 

8 Except for possibly causing a small number of extra cache misses and some initial 
disruption of the pipelines. 

E. H. WELBON ET AL. 

551 



may  be system- or  user-defined  and  may  be  disabled  and 
enabled as desired. Each is  designed to pass hook-specific 
data. A purpose of uktruce is to record the data passed by 
these hook invocations. 

POWER2 performance monitor aktruce support is 
implemented  using a kernel extension which attaches itself 
to the operating system call that puts data into the uktruce 
trace buffer.  The monitor counters can be  dumped when 
either system- or user-specified trace hooks are triggered. 
This gives the report generators the ability to fine-tune 
their analysis, with the finest granularity being that of the 
trace hooks that are enabled. The extension analyzes the 
arguments of the hook and, on the basis of the hook ID, 
some state variables, and the link register, determines 
whether it is an appropriate time to dump the counters. 
If so, the kernel extension calls the trace routine on its 
own  behalf, inserting the counter data into the trace. 

This implementation  is a fairly  flexible one, since the 
kernel extension provides the ability to specify which 
hooks cause the monitor counters to be recorded. Also, 
additional software logic  may  be added without having to 
rebuild the kernel. The  major drawback of this method is 
that the uktrace facility and the appropriate kernel 
extension must  be active. This  means that depending  on 
the number of hooks enabled, data gathering  is  slightly 
intrusive (in the neighborhood of 10%). 

A more  efficient way of implementing this functionality 
would  be to modify the operating system kernel directly. 
This would  significantly reduce the overhead incurred by 
the kernel extension. A second method addresses this 
problem in a different way. 

Monitor  command line tools 
The second software method, the POWER2 performance 
monitor  command  line tools (CLT), was created to provide 
a simple way to acquire the performance monitor counters. 
It consists of a  set of command  line  programs  and system 
calls that allow the user to manipulate the performance 
monitor control registers (the MMCR and  IMR)  and to 
periodically write the values of the counters to the 
operating system standard out stream or a $le. 

If a program runs in a short time (less than 65 
seconds, given a 66-MHz processor clock), it is possible 
to reset the counters, run the program, and acquire the 
counters. One  can then monitor the program  with no 
intrusion at all. For longer programs, it is necessary to 
save the counters periodically to prevent them from 
overflowing.  One of the tools operates somewhat like 
iostut [13] and writes the counters at a frequency specified 
by the user. When this program or an analogous one is 
run, the amount of intrusion is roughly equivalent to a 
context switch each time the counters are recorded. To 
gain  finer granularity in the measuring of a program,  it  is 

552 possible to instrument the program  with  function calls to 

E. H. WELBON ET AL. 

manipulate the control registers. Thus, one can analyze 
only certain portions of the code and gather performance 
data just for those sections. 

through a kernel extension. The extension provides a set 
of system calls which  manipulate the control register 
and  allow the resetting or retrieval of the counters. The 
command  line tools simply  call functions available in 
the kernel extension. The major drawback to using this 
technique for generating data is that the current operating 
system kernel does not preserve the MSR(PM) bit, and 
per-process tracing is therefore not available. It is, 
however, possible to modify the operating system kernel 
to preserve this bit; if this is done, per-process tracing 
is possible. Effort  is underway to accomplish this. 

Access to the performance monitor hardware is provided 

Monitor  data  reduction  tools 
The last component of software for the monitor involves 
the data reduction. Several tools are available to reduce 
the data generated by the MMCR to useful  information. 
The visualization toolpv uses a filter that converts the 
uktruce data, including the additional  monitor data, into a 
pv data stream, allowingpv to display informative graphs 
of the state and performance of the machine. Because the 
trace stream contains large amounts of operating system 
data in addition to the counters,pv is  able to give a much 
richer display than would otherwise be possible. The 
coupling of the monitor data to the operating system data 
has proven most  useful [2]. 

To easily generate interesting values from the data 
provided  by means of the monitor  command  line tools, a 
set of postprocessors was developed. Because it is possible 
to generate interesting values in a variety of ways, it is 
nearly impossible to predict what derived values a 
particular user might  find  most interesting. Therefore, the 
postprocessor uses a user-specified input-rule set to 
determine how to arrive at a given set of results. The 
postprocessor reduces the input to these values, complete 
with statistics. A secondary postprocessor uses these 
results with a different set of rules to produce more 
complex relationships. This is useful when programs have 
large steady-state periods. With such programs, it  is 
possible during these periods to change the MMCR value 
in order to get a broader set of counters than normally 
available. With the expanded set of counters, it  is possible 
to derive values not otherwise obtainable. 

This set of programs has been successfully used to 
analyze several benchmarks, including TPC [2, 31. 

Summary 
The  POWER2 performance monitor provides a  set of 
hardware measures that are important to software 
developers tuning operating system and  application 
software as well as to system designers responsible for the 

IBM J. RES.  DEVELOP.  VOL. 38 NO. 5 SEPTEMBER 1994 



development of new  systems.  The  events  monitored 
include important  measures involving storage  system 
performance  and compiler instruction scheduling, both 
critical to good system performance. 

Acknowledgments 
We  would like to  thank  several  members of the  AIX@  and 
System  Performance groups, and  the Engineering Center 
for their  help in developing the monitor. In addition to 
authors  Shippy  and Hicks, Larry  Thatcher of the  FXU 
design team,  Robert Golla and  Jama  Barreh of the ICU 
design team,  and Richard Fry of the FPU design team 
provided  pragmatic  suggestions  useful in defining events  to 
be measured. Peter Markstein, on behalf of the Compiler 
design  team,  provided insight into useful floating-point 
measures.  Architects  Ed Silha and  John O’Quin assisted in 
the definition of the  measurement control. Author  Chan- 
Nui  developed  the  support  software, aided by useful 
numerical analysis insights  provided by  Processor 
Architects  Steve White  and Sohel Saiyed.  Michael Fortin, 
Randy Heisch, and  John Iacoletti  provided consultation 
for the kernel extension definition and implementation. 
Maurice Franklin  worked  out practical experimental 
designs that  provided  measurement  data initially 
considered unobtainable.  Bryan Rosenburg  and Doug 
Kimelman  provided support in pv. 

POWER2  and System/370 are trademarks, and RISC 
System/6000  and AIX are registered trademarks, of 
International Business Machines Corporation. 

SPEC is a trademark of the Standard Performance Evaluation 
Corporation. 

References 
1. John Cocke and V. Markstein, “The Evolution of RISC 

Technology at IBM,” IBM J. Res.  Develop. 34, No. 1, 
4-11 (January 1990). 

Performance Measurement and Analysis of TPC-C,” 
Digest of Papers, COMPCON Spring ’94, Order No. 
5380-02, IEEE Computer Society Press, Los Alamitos, 

3. M. T. Franklin, W. P. Alexander, R. Jauhari, A. M.  G. 
Maynard, and B.  R. Olszewski, “Commercial Workload 
Performance in the IBM POWER2 RISC System/6000 
Processor,” IBM J. Res.  Develop. 38, No. 5, 555-561 
(September 1994, this issue). 

4. H. S. Warren, Jr., “Instruction Scheduling for the IBM 
RISC System/6000 Processor,” IBM J. Res. Develop. 34, 
No. 1, 85-92 (January 1990). 

5. M. C. Golumbic  and V. Rainish, “Instruction Scheduling 
Beyond Basic Blocks,” ZBM J. Res. Develop. 34, No. 1, 
93-97 (January 1990). 

6. Syed Z. Pasha and E. H. Welbon, “Performance-Directed 
Design Guidance Using Simulation,” IBM RISC 
Systemi6000 Technology, Order No. SA23-2619, available 
through IBM branch offices. 

7. G. F. Grohoski, “Machine Organization of the IBM RISC 
Systemi6000 Processor,” IBM J. Res.  Develop. 34, No. 1, 
37-58 (January 1990). 

2.  M. T. Franklin and E. H. Welbon, “POWER2: 

CA, pp. 399-404. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

S. W. White and S. Dhawan, “The Next Generation of the 
RISC System/6000  Family:  POWER2,” IBM J. Res. 
Develop. 38, No. 5, 493-502 (September 1994, this issue). 
R. S. Reddy and  D. Galvin, “RIOS2 Packaging 
Technology,” ZBM High Performance RISC System/6000 
Technology, Order No. SA23-2737-00; available through 
IBM branch offices. 
Cray X-MP Computer Systems 4-Processor Mainframe 
Reference Manual, Order No. HR-0097, Cray Research, 
In;., Minneapolis, MN. 
D.  J. Shioov and  T. W.  Griffith. Jr., “The IBM  POWER2 
Fixed-Pd;; Data Cache, and Storage Control Units,” 
ZBM J. Res.  Develop. 38, No. 5, 503-524 (September 1994, 
this issue). 
T. N. Hicks, R. E. Fry, and P. E. Harvey, “IBM 
POWER2 Floating-Point Unit Architecture and 
Implementation,” ZBM J. Res.  Develop. 38, No. 5, 
525-536 (September 1994, this issue). 
IBM AIX Version 3.2 for RISC System/6000, Performance 
Monitoring and  Tuning Guide, Order No. SC23-2365, 
available through IBM branch offices. 
K. M. Dixit, “Overview of the SPEC Benchmarks,” The 
Benchmark Handbook for Database and Transaction 
Processing Systems, Jim Gray, Ed.,  Morgan  Kaufman 
Publishers, Inc., San Mateo, CA,  1994, pp. 489-524. 
D.  N. Kimelman  and T. A. Ngo, “The RP3  Program 
Visualization Environment,” IBM J. Res. Develop. 35, 
No. 5/6,  635-651 (September/November 1991). 

Received August 3, 1993; accepted for publication 
March 28, 1994 

Edward H. Welbon IBMRISC System/6000 Division, 11400 
Burnet Road, Austin, Texas  78758 (welbon@austin.ibm.com). 
Mr.  Welbon received a B.S. degree in electrical engineering in 
1978  and an M.S. degree in electrical engineering in  1979, both 
from the University of  Miami at Coral Gables, FL. In 1979 
Mr.  Welbon joined IBM Boca Raton, where he worked on a 
S/1 single-chip minicomputer implementation. In 1986  he 
transferred to IBM Austin to work on the RISC System/6000 
project. Mr.  Welbon is an Advisory Engineer, has numerous 
publications, and has received an  IBM Outstanding Technical 
Achievement Award. 

Christopher  C.  Chan-Nui IBM RISC System/6000 
Division, 11400 Burnet Road, Austin, Texas 78758 
(channui@austin.ibm.com). Mr. Chan-Nui received a B.S. 
degree in computer engineering from the University of 
Washington in 1992. That same year he joined the Architecture 
and Performance group at IBM Austin and  is  now  an 
Associate Programmer. Mr. Chan-Nui has spent the last 
year developing software tools for hardware performance 
monitoring  and data analysis. 

David J. Shippy IBM RISC System/6000 Division, I1400 
Burnet Road, Austin, Texas 78758 (shipp@austin. ibm. com). 
Mr. Shippy is currently working on the design  and architecture 
of future PowerPC microprocessors. Prior to this he worked 
on the design of the POWER2 microprocessor. He started his 
career with  IBM working on midrange  System/370 processor 
designs. Prior to joining IBM,  Mr. Shippy worked on the 

H. WELBON ET P 

553 

iL. IBM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 1994 E. 1 



hardware and software design of multiprocessor computer 
systems with Emerson Electric, Electronics and Space 
Division. He holds a B.S. degree in electrical engineering from 
the University of Kentucky and an M.S. degree in computer 
engineering from Syracuse University. Mr. Shippy has 
numerous patents and technical publications. 

Dwain A. Hicks ZBMRZSC Systeml6000 Division, 11400 
Burnet Road, Austin, Texas 78758 (dwain@austin. ibm.com). 
Mr. Hicks received a B.S. degree in electrical engineering 
from New  Mexico State University in 1984 and an M.S. 
degree in electrical engineering from Columbia University in 
1987. In 1984 he joined AT&T  Bell Laboratory, where he 
worked in the Microsystems group. Mr. Hicks joined the 
IBM Corporation in 1987; he is an Advisory Engineer in the 
Advanced Processor Design group in Austin. He was  a team 
leader in RS/6000 data cache design  and continues to work on 
projects in the area of cache design. 

554 

E. n. WELBON ET AL IBM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 1994 


