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The POWERS” performance  monitor 
(“monitor”)  provides  the  detailed  hardware 
measurements  necessary  to  study  the 
hardwarehobare interactions of  workloads 
executed  by  the POWER2 processor.  The 
monitor is integrated  into  the  processor  and is 
fully  software  accessible. Of interest  is  the 
ability of this monitor  to  selectively  measure 
specific  software  processes  with  minimal 
perturbation of those  processes. 

Introduction 
Driven by advancing  fabrication and miniaturization 
technologies, advances in RISC processor machine 
organizations offer new  opportunities for enhanced  system 
performance.  These  opportunities  are realized by adapting 
the fine-grain execution details of software  workloads  to 
the  special organizational features  made possible by 
advanced technology, as  described in [l]. Unfortunately, 
as  systems  become  more  complex  and highly  integrated, 
these organizationally dependent  opportunities  for 
enhanced  performance  are  often  not easily detectable. 
Consequently,  when  the  performance of a software 
workload is studied  to optimize  its performance, 
performance-critical  information  concerning the 
hardware/software  interaction  is difficult to obtain, and 
the  need for “embedded” performance-monitoring 
techniques,  which  do not themselves inhibit performance, 
is greatly  increased. 

Important  performance  measures include instructions 
executed,  elapsed  cycles,  counts  and  delays  associated 

with cache  and  TLB misses,  utilization of the  various 
execution  elements,  and inefficiencies caused  by 
inappropriate instruction  scheduling by compilers. Such 
measures  can  help  to efficiently locate  and eliminate 
performance  bottlenecks,  and  the POWER2TM performance 
monitor (“monitor”)  makes  them  an integral part of 
POWER2 processor operation. 

This  paper  describes  the motivation for  the design 
and implementation of the  monitor  hardware  and the 
implementation of the  monitor access  software; it 
summarizes  certain of the  measurable  events  and  various 
monitor  usage scenarios.  Examples of the application of 
the  measurement  data  can  be found in [2, 31. 

We say  that a measurement is a hardware  measurement 
if the event being measured both  affects performance  and 
is typically invisible to  the software. Cache  misses  are an 
example of such an event,  since  cache misses  clearly 
affect system  performance  and a  program cannot 
generally determine  how  many  cache misses it has 
encountered. 

design of future  systems  by identifying  existing 
bottlenecks, a matter of importance  to both system 
architects  and implementors. Just  as important, however, 
is that a  good measurement facility can point out  ways  to 
improve the  performance of existing systems  as well. That 
is, hardware  measurement facilities in a given machine 
can benefit that machine as well as  future  ones.  It is not 
necessary  to  justify the expense of hardware 
measurements  on  the  basis of benefit to  future designs 
only; hardware  measurement facilities can  also  be justified 
by  the  improvements afforded to  the  machine  that  provides 

Hardware  measurements  can provide  direction to  the 
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them. For example, it is  useful to be able to identify 
opportunities for improving instruction scheduling to more 
efficiently  utilize execution elements. Instances of such 
opportunities are described in [4] and [ 5 ] .  The development 
of compiler scheduling algorithms that increase utilization 
and throughput can be addressed in a more timely manner 
if it  is possible to quickly identify what scheduling 
opportunities exist. 

possible to examine the characteristics of large suites of 
programs  more  efficiently than otherwise. Since many 
optimizations performed by compilers are heuristic,’  it  is 
possible that a given optimization beneficial for a specific 
program  may be inappropriate for other programs. Thus, 
it is  useful to examine the effect of  an optimization for a 
particular program  on many other programs to ensure 
that a specific optimization does not cause a substantial 
number of other programs to degrade in performance. 
Improvements to the effectiveness of a system’s compiler 
generally improve overall system performance without 
necessitating hardware changes.’ 

Of course, hardware measurement is  not the only 
method of understanding system behavior. Simulation 
can  be  used to study hardware/software interaction, but 
simulation  is impractical if the systems to be simulated are 
very large. Also, simulation requires much  more  time to 
produce a needed result than does measurement. A final 
consideration is the difficulty  of developing the typical 
large  simulation  models required. Indeed, a most  effective 
use of simulation  is to study high-level system behavior 
using measurement data provided at least in part by 
hardware instrumentation [6]. 

While  simulation  is  an alternative to hardware 
measurement for many purposes, a hardware measurement 
facility that can  be accessed efficiently  by software offers 
the opportunity for adaptive system tuning.  Given the 
correct  set of measurable events, the system software may 
be able to sequence system events in such a way as to 
more  fully  utilize the system resources. Process scheduling 
is  an area for which adaptation to workload could enhance 
system performance. 

With  an appropriate hardware measurement facility, it is 

Drawbacks inherent in current RSl6000 
measurement facilities 
In previous RISC System/6000@ (RS/6000) systems, 
hardware performance information was obtained by special 
external instrumentation, which was for the most part 
retrofitted to the processor model  under consideration. 
This was possible in part because the RS/6000 multiple- 
chip design  provided  many  signals that were needed for 
functional operation but could also be used to extract 

Optimization techniques based on the examination of specific cases may not be 

If this process can be carried out in a timely manner, so much the better. 546 
generally applicable. 

performance information [7]. Even so, it was usually the 
case that derivatives of the functional signals were actually 
required. To obtain these derivative signals, the functional 
signals  had to be  augmented  with special-case signals 
solely for performance monitoring. These signals were 
provided either by  multiplexed functional pins or by pins 
dedicated to measurement data. 

Multiplexing functional pins alternately between 
functional data and performance data does provide  limited 
access to internal signals that would  not ordinarily be 
externalized. However, such an arrangement typically 
forces the information bandwidth requirement on such pins 
to be doubled. This  usually means that such pins must  be 
clocked at multiples of the basic CPU clock rate (e.g., 
double). This becomes increasingly  difficult to accomplish 
as the base CPU clock rate increases. Adding dedicated 
pins does not have the special bandwidth concern just 
mentioned, but  pins are usually a constrained resource. 
A consequence is that many important measurements are 
typically  not  readily available because of  pin limitations. 
Thus, such special external instrumentation can  provide 
the needed information, but a drawback to such 
instrumentation is that it requires extra pins or degrades 
the system CPU clock rate. Moreover, some acquisition 
device  must actually be connected to the provided  pins. 

System implementors are usually reluctant to design 
extra components into a board, since these components 
increase the cost of the system and occupy valuable board 
space. This usually means that the acquisition device  must 
be externally attached to the system, and some strategy 
for connecting the required acquisition device  must be 
devised, which entails yet more problems for measurement 
personnel. 

The above considerations typically result in essentially 
custom (and expensive) instrumentation for each CPU 
model  that  is to be instrumented. The result is that such 
instrumentation is  usually  designed for only a few 
system models.  Additionally, the custom nature of the 
instrumentation typically constrains the number of design 
instances that can actually be physically instrumented. 

Desirable monitor characteristics 
If the system under test can  efficiently access the 
measurements of its own execution and control the points 
at which measurements are made, a great simplification 
of the measurement capability will be afforded to the 
measurement analysts. A further improvement is a 
simplified means of adapting the instrumentation to the 
system. 

instrumentation, there is then the practical matter of 
defining the points in time  and threads of execution that 
are of interest. Not all execution may  be of interest. An 
analyst studying a numerical analysis application may  be 

Assuming that a system can  be equipped with 
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interested in a particular subroutine or even particular 
loops. An analyst studying a commercial application may 
want to be able to exclude time spent idle  during I/O 
waits [2]. 

highly integrated, causing less data to be available as 
outputs that might  allow external hardware to intercept 
and record the data. In particular, the POWER2 processor 
is  packaged on a multiple-chip  module  (MCM),  and  the 
only available interfaces are for the memory  and 1/0 
buses [8, 91. 

Regardless of the difficulty increasing packaging 
densities imposes on hardware measurement, overall 
system performance continues to become increasingly 
dependent on a detailed understanding of hardware 
and software interaction. The availability of a software- 
accessible hardware measurement facility can be an asset 
in understanding this interaction and thus in  improving the 
performance of current and future systems. 

The instrumentation should be designed so that it can be 
inexpensively attached, and provide a simple yet effective 
method to access the information it provides. An example 
of such capability is  the Cray Y-MP [lo], which has 
software-accessible counters. In the Cray monitor, no 
alteration to the system hardware is required. It was 
desired that RS/6000 follow-on  designs provide similar 
capabilities. 

As indicated, systems are becoming  more complex and 

Implementation of monitor 
The  POWER2 Central Electronics Complex (CEC)  is 
composed of  five basic units (each unit a distinct chip): the 
fixed-point  unit (FXU), the floating-point  unit (FPU), the 
branch unit (or instruction cache unit, ICU), the storage 
control unit (SCU), and the data cache units (DCUs). 
Additional details are provided in [8, 11, 121. 

two  32-bit counters to be  used  to count performance- 
related events in CPU and storage. In  addition to the 
counters, a monitor mode control register (MMCR), with a 
special status bit in the architected machine state register 
(MSR), allows selective measurement of specific threads of 
execution. The counters and the MMCR are addressable 
for  read  and write via programmed I/O (PIO) operations. 
Five counters are dedicated to each of the ICU, FPU, 
SCU, and FXU units. Similarly, each of the four basic 
units is  provided a four-bit control field in the MMCR that 
selects the set of events to be counted. Thus, for each 
unit, it  is possible to choose any one of sixteen groups 
of  five events for monitoring. 

The selection of the events to count for any unit  is 
independent of the selection of those for the other 
three units. In a special case for the SCU, the setting 
MMCR(SGA) = 1 will cause the SCU to operate all 
of the counters for SCU events. This gives much  useful 

As shown in Figure 1, the monitor consists of twenty- 
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information concerning storage operations. In  addition 
to these selectable counters, there are two dedicated 
counters, a CPU cycle counter and a correctable memory 
error counter. 

The instruction match register (IMR) located in the 
FXU counts the occurrences of specific instructions. By 
repetitively cycling  through the list of defined instruction 
codes, it  is possible to obtain a sampling of the instruction 
execution frequencies. 

Finally, a bit referred to as the software-programmable 
event (SPE) allows software to create software events as 
desired. The  number of cycles for which the SPE bit  is 
“1” (set by software) is  an event that the FXU counters 
can count. 

Selection of monitoring  states 
The  POWER architecture defines the system-wide machine 
state register (or MSR,  similar to the System/370TM  PSW) 
which is architecturally part of the process state. MSR bit 
number 29, the process mark (PM) bit, can  be  used to 
control the state of the monitor. 

Bit  number  17 of the MSR, the PR bit, distinguishes 
between privileged  and  problem execution states. When 
PR = 0, all instructions may be executed (this condition 
is the privileged state). When  PR = 1, only  nonprivileged 
instructions may be executed (this condition is theproblem 
state). Bits MMCR(DP)  and MMCR(DU), in conjunction 
with  MSR(PR), can be  used to limit  monitoring to either 
privileged state or nonprivileged state  as defined  by 
Figure 2 and Table 1. 

The  MSR(PM)  bit  can  similarly control the state of the 
monitor. When  MSR(PM) = 1, the associated process is 
said  to be marked. When  MSR(PM) = 0, the associated 
process is unmarked. The state of the monitor with respect 
to MSR(PM) depends on the setting of MMCR(DMS)  and 
MMCR(DMR) as defined by Figure 2 and Table 1. The 
setting of the MSR(PM)  bit  is  not altered by the execution 
of a supervisor call  (SVC) instruction, but  is set to zero 
when any other interrupt is  fielded, so the monitoring 
effect of the PM  bit is preserved across calls to the kernel. 
Since the MSR  is part of the process state and  is saved 
and restored when processes pause and resume execution, 
and since only the state of the monitor  is  affected by the 
MSR(PM), this bit  can be used to selectively qualify 
processes for monitoring  with very low overhead. Thus, 
the MSR(PM)  bit  is  useful as a nondisruptive method of 
measuring the performance of specific threads of system 
execution. The various combinations of the effects are 
outlined in Table 1. 

The settings of DIS,  DP, DU, DMS,  and DMR bits of 
the MMCR, coupled with the settings of  PM and PR bits 
of the MSR, provide control of the performance monitor 
by  distinguishing between kernel events and user events. 
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Up  to 80 events  can be monitored  per  chip. 
A total of 320 events  can be defined. 
22 counters  monitor  simultaneously: 

20 counters  for  selectable  events 

Two nonselectable  events 
One  cycle  counter 

* One soft error  counter 

Five  events for each of  FPU, FXU,  ICU, SCU 

Five incrementors 
SCU monitors 

Organization of monitor hardware. 

Table 1 shows the set of conditions that can  be used 
to qualify the control of the performance monitor 
counters. 

Thus, with the MMCR the MSR can control the state 
of the monitor. By incorporating a significant portion of 
the control of the monitoring  function in the MSR, this 
control becomes part of the process state and  is thus saved 
and restored by the interrupt response activity of the 

architected hardware. Careful use of this function reduces 
the intrusiveness of the monitor to negligible levels for 
most cases of importance. 

Selection of observable  events 
In contrast to the RS/6000 measurement facilities, which 
provide  signals  from  which external hardware can 
construct the required performance event in the POWER2 



processor,  the  performance  event  to  be examined can  be 
constructed in the form needed within the unit where it 
O C C U ~ S . ~  The list of events  to  be implemented can  therefore 
be based on what  the performance analysts  want  as 
opposed  to  what  can  be  observed given the available 
signals  (even  considering the special  signals  provided to 
augment the functional  signals of the  previous RS/6000 
designs). As a consequence of this  organization, it has 
been possible for  the  chip  implementors  to provide  a 
comparative  wealth of event information. A summary 
of these  events is presented in the following four 
sections. 

FXU observable events 
The FXU (fixed-point unit) provides  counts of the cycles 
during  which  it is inhibited  from  continuing execution for 
a variety of reasons.  These include branch  delays,  data 
cache misses, floating-point interactions, TLB  reload^,^ 
and  the timing of multicycle instructions. Fixed-point 
instruction counts  are provided,  including variations in 
counting  the utilization of the internal elements. 

A special set of counts identifies cases  for which there 
is opportunity  for  performance  improvement  by altering 
the  scheduling of the instruction streams being executed. 
Related to  this is a set of counts  that identifies the kind 
of scheduling opportunities (based on causes of FXU 
execution delay). Thus,  the monitor can  help an  analyst 
to identify both  the degree and  the  particulars of the 
opportunity available  from enhanced fixed-point code 
scheduling. 

3 Generally,  the  signals necessary to produce the required event are  available on 
the chip.  Limited  signal  availability caused by  pin restrictions tends to prohibit this 
on external instrumentation. 
4 In RSi6000 and  POWERZ, storage accesses that  miss  in either the  data  or  the 
instruction TLB are satisfied  by  the FXU in hardware and, barring page faults, are 
transparent to software. 

Monitor mode control register 

DIS SCU ICU FXU FPU // SGA DMR DMS DU DP 

0 1 2  3 4 5 6 1 6 2 0 2 4 2 8  

This register is set to 0 on power-up. Reading this register does not 

Bits 6 through 15 are reserved, and always read as 0's. In order to 
change its content. 

maintain compatibility with future implementations, software 
must not write nonzero values into bits 6 through 15. The named 
fields have the following definitions. 

DIS: Disable counting unconditionally: This bit, when set to a 

The counter values are not changed, only suspended. 
1, causes the counters to stop counting unconditionally. 

DP: Disable counting when in privileged state: This bit, when a 

0. The counter values are not changed, only suspended. 
I, causes the counters to stop counting when MSR(PR) is a 

DU: Disable counting when in problem state: This bit, when a 
1, causes the counters to stop counting when MSR(PR) is a 
1, The counter values are not changed, only suspended. 

DMS: Disable counting when MSR(PM) is set: This bit, when a 

a 1. The counter values are not changed, only suspended. 
1, causes the counters to stop counting when MSR(PM) is 

DMR: Disable counting when MSR(PM) is reset: This bit, when 
a 1, causes the counters to stop counting when MSR(PM) 
is a 0. The counter values are not changed, only 
suspended. 

SGA: SCU gets all: This bit  when a 1, allows the SCU to control 
all 22 counters; i.e., the SCU gets all of the counters. This 
bit ovemdes the F'PU, FXU, ICU, and SCU source event 
set selection. 

FPU: MMCR[ 16191, four-bit code selecting FPU source event set. 

FXU: MMCR[20:23], four-bit code selecting FXU source event set. 

ICU MMCR[24:27], four-bit code selecting ICU source event set. 

SCU: MMCR[28:31], four-bit code selecting SCU source event set. 

1 Monitor  mode  control  register  format. i' 

Table 1 Defined monitoring states. 

DIS DP  DU DMS DMR Disabled Counted 

0 
~~~~~~~ ~ ~ 

0 0 0 0 Nothing Everything 
0 0 0 0 1 -PM Marked (PR = X) 
0 0 0 1 0 +PM Unmarked (PR = X) 
0 0 1 0 0 + PR Privileged (PM = X) 
0 1 0 0 0 -PR Not privileged (PM = X) 
0 0 1 0 1 +PR  or -PM Privileged AND  marked 
0 0 1 1 0 +PR  or  +PM Privileged AND unmarked 
0 1 0 0 1 -PR or  -PM Not privileged AND marked 
0 1 0 1 0 -PR  or  +PM Not privileged AND unmarked 
X X X 1 1 Everything Nothing 
X 1 1 X X Everything Nothing 
1 X X X X Everything Nothing 
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ICU observable events 
The ICU (branch unit) provides counts of the number of 
instruction cache and TLB misses that have occurred, the 
number of instructions fetched, dispatched, and executed, 
the number of interrupts acknowledged, and a breakdown 
of the classes of instructions executed (particularly branch 
instructions). Finally, there are counts that help identify 
the sources of dispatch and branch delay. 

FPU Observable events 
The FPU (floating-point unit) provides counts that give 
many details on conditions causing floating-point execution 
delays, execution element utilizations, and the number 
of instructions executed and special number processing 
delays. In addition, there is a breakdown of the classes 
of instructions executed, and there are counts of cycles 
causing register-renaming stalls and of various queue- 
related stall cases. 

SCU observable events 
The SCU (storage control unit) counts the number of and 
type of storage operation requests that are presented to it, 
measures latency for such requests, and measures DMA 
activity, memory bus activity, and SI0 bus activity. 

Storage performance is critical in RISC machines [l]; in 
order to most  effectively measure storage-caused delays, a 
special mode has been  defined for the SCU. Ordinarily, the 
FXU, ICU, FPU, and SCU can operate only  five counters 
each. However, for the SCU there is a special case 
described in Figure 2 involving the SGA bit of the MMCR 
that allows the SCU to operate 20 of the 22 counters with 
strictly storage-control counts. This mode  gives a very 
detailed view of the storage and 1/0 activity. 

it is to manage the monitor  could  be  defined  with 
MSR(PM) = 1; if MMCR(DMS) = 1,  in this case all 
execution is measured except the task that manages the 
performance monitor. This  mode  can be used to eliminate 
the effect of the monitor  management task, for example. 

Basic  monitoring  considerations 
A 32-bit counter incrementing at a 66-MHz rate will 
overflow in  65.1 seconds. Thus, as long as the monitor 
counters are read at least once every 65.1 seconds, no data 
are lost due to overflow. In particular, if the counters are 
inspected at every real-time clock interrupt (occurring 
about once every 10 milliseconds)  and every task switch, 
there is no risk of overflow  ambiguity. 

user’s request, it  is  possible to allow  multiplexing of the 
monitoring function across multiple processes. Since the 
counters are both read  and write, it  is possible to give  each 
process the illusion of operating the counter entirely by 
itself. 

If the counters are managed by the operating system at a 

To reduce the intrusion incurred by reading the 
counters, they should be accessed using  POWER 
load/store multiple instructions. In this case,’ about 60 
cycles are required to save 23 general-purpose registers 
(GPRs), load the MMCR and the 22 counters, store out 
the MMCR and 22 counters, and then reload 23 GPRs. 

state, it  might prove useful to alternate the events to 
be counted. On a periodic basis, one could cycle the 
values of MMCR(FPU),  MMCR(FXU),  MMCR(ICU),  and 
MMCR(SCU)  through the values of 0, 1, 2, , 15. In this 
way one could  sample  all events and thereby obtain 
information  from all of the defined event types. Such a 
procedure was used to obtain the data for [2]. 

If the environment being monitored operates in a steady 

Application  to  system  measurement 
The  POWER2 performance monitor  allows  monitoring of 
CPU activity without resorting to sampling.  One of the key 
features of the monitor  is the ability to examine particular 
processes or kernel activity with essentially no overhead. 
In particular, it is important to note that the monitor can 
be automatically enabled, either during execution of a 
particular process or by supervisory activities. Also of 
note is that supervisory services can be excluded from the 
measurement process. The same holds true for processes 
with respect to the MSR(PM) bit. Since it  is  not  difficult to 
set MSR(PM) = 1 and  MMCR(DMR) = 1 for all user 
proce~ses,~ it is easy to filter out the user processes and 
count only operating system tasks, whether kernel or not.6 

measurement. For example, a process whose responsibility 
Finally, a single task can also be excluded from 

5 This is a  matter of defining a default value of the MSR to be used as the basis for 
all processes that  are not considered part of the operating system. 
6 Not all operating system execution is carried out by the kernel in privileged mode; 
some operating system  code  executes in problem state. 

Monitoring  all  events  using a log 
If a trace of counts for all process and operating system 
activity is desired, an  algorithm  similar to that used by 
uixtruce [13] can  be applied. In this algorithm, a log  file is 
constructed for a performance-tracing session. This  log file 
is processed after the tracing session by the postprocessor 
m a p ,  as described in  [13]. This  method does not rely on 
the MSR(PM) for control of the monitor; instead, all 
processes are monitored. Note that the monitor counters 
are to be considered process state,  just as the general- 
purpose registers are considered process state. Thus, in 
order to create the illusion of private counters on a per- 
thread/process level, it is necessary that the monitor 
counters be saved and restored as threads and processes 
stop (or exit) and start (or resume execution). The aixtrace 
trace buffer  is  used to record the content of the monitor 
counters. Each entry consists of the process id, the 

’ Excluding TLBand page misses, hut counting cache misses. 
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MMCR, the counter values, and the real-time clock at the 
time that the counters are read. As this buffer fills, it  is 
written to a mass storage device if the accumulated data 
are to be postprocessed by map .  

The save/restore algorithm for the monitor is as follows: 

1. At the point in time that a monitored process is 
stopped, record the current monitoring mode, counts, 
and process ID into a system-wide buffer in a storage 
area designated for this purpose. 

2. Immediately before starting the next process, record 
the mode  and counts that the operating system has 
accumulated. Set the monitoring  mode  and events of 
interest for the process to be started or resumed, and 
clear the residual counts in the counters. 

3. Start or resume the process (usually with  an RFI or 
RFSVC instruction). 

The implementation of this procedure is discussed in a 
subsequent section of this paper. 

Monitoring one process 
Almost all performance studies focus on a single process, 
usually a benchmark such as li from the SPECTM 
benchmark suite [14]. In such a case, the MMCR and 
the MSR(PM) bits can  be  used to great advantage in 
collecting performance data. 

The benchmark in question has both MSR(PM)  and 
MMCR(DMR) set to 1. All other processes executing 
have their respective MSR(PM) bits set to 0. As a 
consequence, only the benchmark process with 
MSR(PM) = 1 is able to alter the performance counters. 
Thus, the performance counters do not have to be saved 
or restored, eliminating the attendant overhead. 

As mentioned earlier, the counters may “roll over” 
as often as once every 65 seconds. Thus, the operating 
system must schedule an event that will save the 
performance counters at  a frequency consistent with  this. 
Also, the monitor control software must supply certain 
managerial functions for the monitor, because reading  and 
writing the MMCR and  the MSR are privileged operations. 
In general, the monitor is a serially reusable (i.e., the 
monitor contains state information) resource and  must be 
managed to some extent to ensure that it is used in a 
reliable manner. 

Monitoring a  set of processes 
It is possible to monitor the cumulative effects of any set 
of the executing processes using the above technique. To 
do this, the control software must  be  able to recognize 
what subset is to be monitored. When the subset has 
been determined, each process of the subset will have its 
MSR(PM) set to 1. 
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As  long as a consistent set of parameters to be measured 
is  specified across the process set, each  time a marked 
process (from the set of processes to be monitored) 
commences execution, the MSR for that process is 
reloaded with the previous state, which enables the 
monitor. [In AIX there is a special case called a “process 
group,” consisting of a parent process (the group leader) 
and  all of its progeny (processes that it creates via fork, 
etc.). In this case, each child inherits its MSR from its 
immediate parent. Hence, if the group leader (i.e., the root 
process of the group) is marked, all  of the children  will 
likewise  be  marked  and hence easily monitored. No 
special effort to achieve this behavior is required, since it 
capitalizes on  an aspect of  AIX architecture.] The data 
stream emanating  from the counters can be treated in the 
same way as the data stream from a single process. 

Monitoring segments of code with well-defined 
entries and exits 
If a segment of code has exactly one entry point, it is 
possible to monitor the events that occur within the 
segment by placing a call to enable monitoring at the entry 
point  and  placing a  trap instruction at each possible  exit 
point. While the call to enable monitoring  and the trap to 
disable monitoring  incur some overhead, this overhead 
does not  affect the measurements made on the code 
segment in question.8 The implementation of such 
capability is discussed in a subsequent section of this 
paper. 

System-level monitor software 
The software for the POWER2 performance monitor has 
evolved to support two types of tasks, providing data for 
visualization software and  producing counter data with as 
little intrusion as possible.  This section briefly describes 
both software methods and their future potential. 

provided  through the airtrace facility [13]. This allows the 
visualization software to correlate the data provided by the 
performance monitor with the normal trace data in order to 
provide more informative displays. The counter data are 
inserted into the trace as an airtrace record every n 
software clock ticks, or when the process dispatched is 
different  from the current process. This  allows report 
generators that postprocess the trace to produce per- 
process performance statistics. 

Calls  which request the capture of information are 
embedded at particular and  significant locations in the 
software. These calls are referred to as “hooks.” Each 
distinct hook has a unique  identifier, the hook ID, which 
is used to distinguish between the various hooks. Hooks 

Data  for visualization software such aspv [15] is 

8 Except for possibly causing a small number of extra cache misses and some initial 
disruption of the pipelines. 
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may  be system- or  user-defined  and  may  be  disabled  and 
enabled as desired. Each is  designed to pass hook-specific 
data. A purpose of uktruce is to record the data passed by 
these hook invocations. 

POWER2 performance monitor aktruce support is 
implemented  using a kernel extension which attaches itself 
to the operating system call that puts data into the uktruce 
trace buffer.  The monitor counters can be  dumped when 
either system- or user-specified trace hooks are triggered. 
This gives the report generators the ability to fine-tune 
their analysis, with the finest granularity being that of the 
trace hooks that are enabled. The extension analyzes the 
arguments of the hook and, on the basis of the hook ID, 
some state variables, and the link register, determines 
whether it is an appropriate time to dump the counters. 
If so, the kernel extension calls the trace routine on its 
own  behalf, inserting the counter data into the trace. 

This implementation  is a fairly  flexible one, since the 
kernel extension provides the ability to specify which 
hooks cause the monitor counters to be recorded. Also, 
additional software logic  may  be added without having to 
rebuild the kernel. The  major drawback of this method is 
that the uktrace facility and the appropriate kernel 
extension must  be active. This  means that depending  on 
the number of hooks enabled, data gathering  is  slightly 
intrusive (in the neighborhood of 10%). 

A more  efficient way of implementing this functionality 
would  be to modify the operating system kernel directly. 
This would  significantly reduce the overhead incurred by 
the kernel extension. A second method addresses this 
problem in a different way. 

Monitor  command line tools 
The second software method, the POWER2 performance 
monitor  command  line tools (CLT), was created to provide 
a simple way to acquire the performance monitor counters. 
It consists of a  set of command  line  programs  and system 
calls that allow the user to manipulate the performance 
monitor control registers (the MMCR and  IMR)  and to 
periodically write the values of the counters to the 
operating system standard out stream or a $le. 

If a program runs in a short time (less than 65 
seconds, given a 66-MHz processor clock), it is possible 
to reset the counters, run the program, and acquire the 
counters. One  can then monitor the program  with no 
intrusion at all. For longer programs, it is necessary to 
save the counters periodically to prevent them from 
overflowing.  One of the tools operates somewhat like 
iostut [13] and writes the counters at a frequency specified 
by the user. When this program or an analogous one is 
run, the amount of intrusion is roughly equivalent to a 
context switch each time the counters are recorded. To 
gain  finer granularity in the measuring of a program,  it  is 
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manipulate the control registers. Thus, one can analyze 
only certain portions of the code and gather performance 
data just for those sections. 

through a kernel extension. The extension provides a set 
of system calls which  manipulate the control register 
and  allow the resetting or retrieval of the counters. The 
command  line tools simply  call functions available in 
the kernel extension. The major drawback to using this 
technique for generating data is that the current operating 
system kernel does not preserve the MSR(PM) bit, and 
per-process tracing is therefore not available. It is, 
however, possible to modify the operating system kernel 
to preserve this bit; if this is done, per-process tracing 
is possible. Effort  is underway to accomplish this. 

Access to the performance monitor hardware is provided 

Monitor  data  reduction  tools 
The last component of software for the monitor involves 
the data reduction. Several tools are available to reduce 
the data generated by the MMCR to useful  information. 
The visualization toolpv uses a filter that converts the 
uktruce data, including the additional  monitor data, into a 
pv data stream, allowingpv to display informative graphs 
of the state and performance of the machine. Because the 
trace stream contains large amounts of operating system 
data in addition to the counters,pv is  able to give a much 
richer display than would otherwise be possible. The 
coupling of the monitor data to the operating system data 
has proven most  useful [2]. 

To easily generate interesting values from the data 
provided  by means of the monitor  command  line tools, a 
set of postprocessors was developed. Because it is possible 
to generate interesting values in a variety of ways, it is 
nearly impossible to predict what derived values a 
particular user might  find  most interesting. Therefore, the 
postprocessor uses a user-specified input-rule set to 
determine how to arrive at a given set of results. The 
postprocessor reduces the input to these values, complete 
with statistics. A secondary postprocessor uses these 
results with a different set of rules to produce more 
complex relationships. This is useful when programs have 
large steady-state periods. With such programs, it  is 
possible during these periods to change the MMCR value 
in order to get a broader set of counters than normally 
available. With the expanded set of counters, it  is possible 
to derive values not otherwise obtainable. 

This set of programs has been successfully used to 
analyze several benchmarks, including TPC [2, 31. 

Summary 
The  POWER2 performance monitor provides a  set of 
hardware measures that are important to software 
developers tuning operating system and  application 
software as well as to system designers responsible for the 

IBM J. RES.  DEVELOP.  VOL. 38 NO. 5 SEPTEMBER 1994 



development of new  systems.  The  events  monitored 
include important  measures involving storage  system 
performance  and compiler instruction scheduling, both 
critical to good system performance. 
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