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The POWERP" fixed-point,  data  cache,  and 
storage control units provide  a tightly 
integrated  subunit  for  a  second-generation 
high-performance  superscalar RISC processor. 
These functional units provide  dual  fixed-point 
execution units and  a  large multiported data 
cache,  as well  as  high-performance  interfaces 
to memory, I/O, and  the  other  execution units 
in the  processor.  These units provide  the 
following features:  dual  fixed-point  execution 
units,  improved fixed-pointlfloating-point 
synchronization,  new floating-point load  and 
store  quadword  instructions,  improved 
address  translation,  improved  fixed-point 
multiply/divide,  large  multiported D-cache, 
increased  bandwidth into and  out  of the 
caches  through  wider  data  buses, an 
improved  external interrupt mechanism, 
and  an  improved I/O DMA mechanism 
to support  multiple-streaming  Micro 
Channels.@ 

Introduction 
The POWER2m processor is a next-generation RISC 
design which has significantly improved performance over 

that of previous designs with the addition of multiple 
floating-point  and  fixed-point functional units. To support 
the data and instruction demands of this processor, wider 
data buses, larger caches, and  longer cache lines have been 
implemented. The POWER2  fixed-point  unit (FXU), data 
cache unit (DCU), and storage control unit (SCU) provide 
functions and a system structure similar to those of the 
original  RISC  System/6000@  (RS/6000) processor [l], but 
have improved in the following areas: an additional  fixed- 
point execution unit, improved fixed-point/floating-point 
synchronization, new  floating-point  load  and store 
quadword instructions, improved address translation, 
improved fixed-point  multiply/divide, a multiported 
D-cache, larger caches and  longer cache line size, increased 
bandwidth into and out of the caches through wider data 
buses, an improved external interrupt mechanism, and an 
improved 1/0 DMA mechanism to support multiple- 
streaming Micro Channels@. 

This paper is  organized as follows. First is a system 
overview, followed by a description of the dual FXU 
execution units. Next, POWER2 address translation is 
discussed, and the data cache control and directory unit 
are described. This is  followed by a discussion of the 
DCU  and the multiported data cache array macro. 
Finally, the SCU and the memory  and 1/0 interfaces 
are discussed. 
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System  overview 
Figure 1 shows the POWER2 system. The FXU receives 
instructions from the instruction cache unit (ICU) through 
a four-word interface. The FXU is  tightly coupled to the 
SCU by the processor bus (P-bus), which is used for 
cache-miss requests and 1/0 load/store operations. The 
SCU interfaces with  I/O  through the system I/O bus (SIO), 
and  with  memory  through a split address/control and data 
bus. Both the FXU and SCU control the four DCU chips. 
To support the data demands of the multiple execution 
units as well as the data demands of multiple data- 
streaming Micro  Channel devices, the POWER2 system 
provides large caches, long cache lines,  and  multiple  wide 
data buses. The data cache consists of a four-way set- 
associative, dual-port 256Kl3 cache with a 256-byte 
line.  The instruction cache consists of a two-way set- 
associative 32Kl3 cache with a 128-byte  line.  The memory 

504 bus interface to the DCU chips is either four or eight 

words wide. All cache and DMA operations use this bus. 
In addition, wide buses from the DCU to the ICU, FXU, 
and FPU have  been  implemented. There are two quadword 
interfaces to the FPU (quadrupling the data bandwidth 
over that of the original RS/6000 design  [2]),  two  single- 
word interfaces to the FXU (double that of the original 
design), and a quadword interface to the ICU (double that 
of the original  design).  In addition, an  I/O cache that 
provides Dh4A prefetch capability and a two-word system 
1/0 bus are provided to the 1/0 control chips which 
generate the Micro  Channel. 

Fixed-point  unit 
The fixed-point  unit (FXU) decodes and executes all 
instructions, except branches and floating-point arithmetic. 
Branches never leave the instruction cache unit (ICU), and 
floating-point arithmetic instructions are executed by the 
floating-point  unit (FPU). Fixed- and  floating-point 
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instructions are dispatched by the ICU to the FXU and 
FPU simultaneously, and are executed synchronously in 
the FXU and FPU. In addition, the FXU contains the 
address translation, data protection, and data cache 
directories for both fixed-  and  floating-point  load  and 
store instructions. 

Figure 2 shows a high-level block diagram of the FXU. 
The FXU receives four instructions from the ICU. The 
instruction buffer unit queues and dispatches instructions 
to two decoding units. Each decoding unit takes the 
primary and extended opcode fields  and combines them 
into a single  10-bit  field.  This  10-bit  field is used for 

decoding of  all instructions for execution. At the end of 
the decode cycle, this combined opcode is latched for use 
during the execute cycle. The decoding  unit also controls 
the general-purpose registers (GPRs). The architecture 
calls for thirty-two 32-bit  GPRs. There are two sets of 
these registers, one for each execution unit. The hardware 
keeps these registers consistent with each other. The 
decoding  unit decodes the instructions and  manages their 
dispatch to the two execution units. The execution units 
are identical, except that only execution unit 1 may do 
multiply and divide. For load/store operations, the address 
translation logic converts virtual addresses to real 505 
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addresses, and the data cache control unit controls the 
data cache and directory. The P-bus logic interfaces with 
the other processor chips. 

Instruction  buffer 
Eight instruction buffers are used to queue instructions 
prior to decoding and execution, as shown in Figure 3. The 
I-cache dispatches instructions to the FXU and the FPU 
via the four-instruction (4 X 36 bits)-wide I-bus (I-bus A, 
B,  C, and D). If these instructions are marked valid on the 
buses and the FXU has room to accept them, the FXU 
latches these instructions into the buffers in a FIFO 
manner. Associated with every instruction is a set of 
three tag bits that provide further information about the 
instruction. 

Since both floating- and fixed-point instructions are 
dispatched on the I-bus, there are "holes"  on the bus 
(from the perspective of the FXU) where there are valid 
floating-point instructions. To speed up the loading of 

506 instructions into the buffers, multiplexors are used in the 

dataflow to remove these holes. The instruction buffers are 
also designed to allow no holes to occur. This means that 
valid instructions in the pipeline may not  be separated by 
invalid  buffers. On each cycle, valid instructions are 
moved toward the bottom of the pipeline to occupy 
vacated buffers. This prevents invalid instructions from 
being fed to the execution unit. 

The FXU tells the ICU how  many  buffers  it has free, 
i.e., whether it has room to accept 0, 1, 2, 3, or 4 
sequential instructions. It also tells the ICU whether 
it has room  enough for four target instructions. 

On each cycle the FXU moves valid instructions and 
their tags off the I-bus and into the buffers. The valid bit 
from the ICU is further qualified by the status of pending 
branches, canceled ICU instructions, and other related 
conditions to create the real valid bit for instruction. A 
valid bit is reset and the instruction canceled when the 
instruction is canceled by the ICU in the cycle after its 
dispatch, when it was conditionally dispatched and the 
branch is subsequently taken, or when an interrupt has 
occurred. 

Instruction  decoding 
There are two decoding units, which have the following 
responsibilities: decoding instructions; reading the general- 
purpose registers (GPRs);  managing  GPR bypass controls, 
sign extension and inverter controls, immediate  field 
bypasses, and execute-bypass controls; and managing 
dispatch to the two execution units. The decoding units 
are identical. Each unit takes the primary and extended 
opcode fields and combines them into a single  10-bit 
field, which is then used for decoding of  all instructions 
for execution. At the end of the decode cycle, this 
combined opcode is latched for use during the execute 
cycle. 

execution unit 1) locations are read from the GPR according 
to the address specified in the RS, R A Y  and RB  fields of 
the instruction being decoded. This information is made 
available to the bypass multiplexors above the S, A,  B, 
and U latches. If there are no holdoffs or bypasses, the 
data are latched in the S, A, B, and U latches for use 
during the execute cycle. 

If the data required during the execute cycle are not  in 
the GPR, a bypass of the GPR may be necessary. Figure 4 
shows the fixed-point GPRl bypass dataflow. The three 
types of bypasses are the ALU bypass, the local  load  and 
P-bus bypass, and cache bypass. The ALU bypass occurs 
when  an RR operation is dependent on the RR operation 
immediately preceding it. For example, 

During the decode cycle, three (or four for 

1 2 3  4 
AND R3,Rl,R2 I DEC I EX I WB I 
A R4,R3,R5 I DEC I EX I WB I 
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Because the data for the AND are not in the register file 
during cycle 2, the data must  be bypassed during cycle 2 
for the ADD. (There are no cycles lost in a bypass of this 
kind.)  The  local  load/P-bus bypass occurs when a loadstore 
to I/O or an  MFSPR  (Move  From  Special-Purpose  Register)- 
type  instruction  is  followed by a dependent  operation: 

1 2 3 4 5  
MFSPR R3,LINK I DEC I EX I AC I WB I 
A R4,R3,R5 I DEC I EX I EX I WB I 

In this case, the data  are bypassed from the P-bus or local 
load bus. (If a load or store to 1/0 caused the bypass, it 
may take several cycles for the data to be available.) 

A cache  bypass occurs when a load to memory space occurs: 

1 

507 
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1 2 3 4 5  
LD  R3,R8,R9 I DEC I EX I CA I WB I 
A R4,R3,R5 I DEC I EX I EX I WJ3 I 
In this case, the data are bypassed from the cache data 
bus.  (If there is a cache miss,  it  may be several cycles 
before data are ready.) 

The decode units also manage the dispatching of 
instructions to the two execution units. In particular, 
register dependencies are resolved, as are ops such as 
string ops and  load  and store multiples, which are 
dispatched to both execution units. 
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r 

Fixed-point dual execution unit dataflow 

Execution  control  unit 
The execution control unit (sometimes referred to as the 
pipeline control unit), is responsible for load and store 
execution, holdoffs,  and writeback of GPRs. 

There are two execution units, which are identical 
except  that  only the B execution  unit  may do multiply  and 
divide  operations (see Figure 5). Also, some of the special 
operations such as cache  operations  and all  privileged 
operations  may execute only in the A execution  unit. 

address based on the decoding of the instruction being 
executed, for  example, 

The execution control unit  must calculate an  effective 

508 L RT,RA,RB I DEC I EX I CA I WB I 

The effective address (E/A) in this case is RA + RB, and 
the data are stored in  RT. The operands for the E/A are 
read during decoding  and latched in the A and B latches. 
During execution, the A and B latches feed the adder, and 
the E/A is made available to the cache directory logic  and 
the TLB lookup logic.  If the load was an update form  and 
no interrupts occurred, the E/A is also written into the 
GPR at the address specified by the RA field  in the 
instruction. The data are latched in the T-latch at the end 
of execution, and are written in the GPR once it  is 
determined that no interrupts will occur. 

If the data were available in the cache (e.g.,  no TLB 
miss occurred and no data cache miss occurred), the data 
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are available to be latched in the D-latch at the end of the 
cache access (CA) cycle. Data are written into the GPR 
during the write-back (WB) cycle. The address is latched 
during the decoding cycle from the RD  field  in the 
instruction. This address is  held  until used or canceled. 

Multicycle loads are handled as a series of single-cycle 
loads using both execution units. The opcode is loaded 
into each execution unit, and the two load units are joined 
together to do two loads per cycle. Rotation of the words 
is handled with a doubleword rotator. Figure 6 shows an 
example which does an  unaligned  load string from 
unaligned storage. 

During the initial cycle of the multiword load, 4 is added 
to the E/A in execution unit 1. During all subsequent 
cycles, 8 is added to each E/A to obtain a new  EIA. Thus, 
the two units work in unison fetching odd/even pairs until 
all fetching is done. As far as the cache is concerned, each 

storage unit  is treated as if it were a single-cycle load by 
the TLB and D-cache directory logic, and thus works as 
described above in the load section. During the WB cycle, 
the address is incremented by 2 for use during the next 
WB cycle of the multicycle load. This loop continues until 
all registers requested have been loaded. 

The LSCBX (load string compare byte) instruction 
works like a multicycle load as described above, with one 
enhancement. This instruction loads the requested data 
until a match occurs between a byte in the loaded data 
stream and a byte in the FXU XER register. Once a 
match is found, no more requests are made to memory. 

LSCBX requests the number of bytes specified  in the 
XER (bits 16-23) until a match occurs between data being 
loaded and XER bits 24-31. In this case, the XER  is set 
up for a 12-byte (three-word) load, and the comparison is 
made  for X '  AA' . The match is  found in the first word. 509 
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LSCBX cannot access memory locations past a lock  bit 
boundary (lock bit boundaries are 128 bytes long), until 
all compares up to the boundary have been completed. 
Thus, LSCBX does not access memory locations past a 
compare byte. This prevents unnecessary data storage 
interrupts. 

Note that the comparison is actually made  during the 
WB cycle. This is implemented with 8-byte comparators 
between the D-latches and the GPR (see Figure 4). This 
creates pipelining effects which cause some bytes past 
the compare byte to be undefined  in the register file. 

Execution unit 
The fixed-point execution unit performs the data 
transformations required by fixed-point RR operations, 
as well as the computation of the effective address for all 
storage references. It also provides data steering signals 
(register and MUX selects) to other sections of the chip 
during the execution of move to and move from special- 
purpose register instructions. 

The FXU chip contains two execution units (Figure 5). 
Each unit contains one adder and one logic-unit (LU) 
functional block. The second execution unit also contains 
the multiply-and-divide  logic (MDU) functional block. All 
multiply  and  divide operations are executed by the second 
execution unit, since there is no hardware in the first 
execution unit for these ops. The second execution unit 
also contains a three-leg adder to allow the simultaneous 
execution of dependent adder ops. When executing two 
instructions in parallel that have a common register as 
their target, the one in the second execution unit 
overwrites the result of the first execution unit, as long 
as the second execution unit does not receive a cancel. 

Each execution unit  is  fed by its own copy of the 
S-latch, A-latch,  and B-latch (see Figures 4 and 5), which 
generally correspond to the [RS],  [RA],  and  [RBI operands 
referenced in the instruction word. All results of data 
transformation instructions are routed through an ALU 
MUX. Each ALU MUX drives the result data bus, from 
which data may be steered through bypass MUXes to the 
S-latch, A-latch, or B-latch, in addition to being latched by 
the register file  input register. Store data from the fixed- 
point  unit pass through each execution unit directly to the 
FXU pending-store queue (PSQ) register, and do not use 
the ALU MUX result data bus. 

Each execution unit operates as a slave to the execution 
control unit  and the decode units. The primary control 
interface is a 10-bit opcode derived by the decode unit 
from the 32-bit instruction word. These control vectors are 
decoded by each execution unit to determine the actions to 
be taken during the current execute cycle. A similar  10-bit 
opcode which represents the instruction currently in the 
decode phase of the pipeline  is also decoded by each 

51 0 execution unit in order to set up latches which must 
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provide timing-critical control signals early in the next 
execute cycle. 

as well as the XICR bus (by which the condition register 
CR on the I-cache chip is updated with execution results) 
for  all instructions executed by the fixed-point  chip. 

The results of fixed-point instructions which update the 
CR are developed and placed on each execution unit’s 
XICR  bus.  The  only exceptions to this are the instructions 
LSCBX and RAC. The execution and condition code 
generation for those instructions are controlled by the 
execution control unit and the translation unit, 
respectively, which  signal the results to the execution 
units. 

Each execution unit  manages the MQ and  XER registers 

The data transformation circuits in the first execution 
unit  may be divided into two subunits: 

1. Two-leg  32-bit carry-lookahead adder unit. 
2. Logic unit, comprising a rotator, a count-leading-zeros 

unit, and a BooleanlmasWmerge  unit. 

The data transformation circuits in the second execution 
unit may be divided into three subunits: 

1. Three-leg 32-bit carry-lookahead adder unit. 
2. Logic unit, comprising a rotator, a count-leading-zeros 

3. A 36 x 36 multiply array and associated control logic 
unit, and a Boolean/masWmerge  unit. 

for  performing a converging divide algorithm. 

The adder unit for the first execution unit is a 32-bit two- 
input carry-lookahead adder with one carry in;  it produces 
a 32-bit sum, two carry-outs, and a zeros-and-ones 
detect signal. The ones detect signal is not used in this 
implementation. The adder receives its two inputs from the 
AO-latch and the BO-latch; the carry-in signal comes from a 
latch in the XGA  RLM. The execution control unit loads 
the [RA]  and  [RBI operands into these registers during the 
decode cycle of  an adder operation. If the operation calls 
for subtraction (e.g., negate, subtract, compare), the 
execution control unit loads the Boolean inverse 
of [RA] into the AO-latch. In such cases, the execution 
unit sets the carry-in bit to the adder during the 
execute cycle. 

The adder for the second execution unit  is a 32-bit 
three-input carry-save adder with one carry-in, followed 
by a 32-bit two-input lookahead adder with one carry-in. 
It produces a 32-bit sum with four carry-outs and a zeros- 
and-ones detect signal. A three-leg adder is used in the 
second execution unit so that sequential operations can be 
executed in one cycle, such as 

A Rl,R2,R3 
A R4,Rl,R5 
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The multiply/divide  unit (MDU) in POWER2 has been 
enhanced over that of the original  RS/6000  [3]. The 
multiply array allows for two-cycle multiplications for 
all  multiply instructions (MUL, MULS, MULI), an 
improvement over the earlier RS/6000, which took three 
to five cycles for a multiply. The two divide instructions 
(DIV, DIVS) are implemented  with  an adaptation of the 
Anderson-Earle-Goldschmidt-Powers converging division 
algorithm  for adapting floating-point numbers to fixed-point 
arithmetic. The DIVS and DIV instructions execute in  13 
to 14 cycles; the DIV instruction may require three extra 
cycles if the algorithm converges from above. This is  an 
improvement over the earlier design, which took 19 to 20 
cycles for a multiply.  When the divisor for the DIV 
instruction is the most negative number (0X80000000), 
two extra cycles are required. 

The MDU is available only  on the second execution 
unit.  During decoding, multiply  and divide instructions 
that come into the first execution unit are passed to the 
second execution unit, where they execute in the next 
cycle. The first execution unit may continue to execute 
for one cycle while the multiply or divide instruction is 
executing on the second unit. After the first cycle, only the 
second execution unit  can execute until the multiply or 
divide  is complete. 

The POWER2  fixed-point  divide  algorithm  is based on a 
floating-point converging algorithm.  This  algorithm starts 
with a table lookup to generate the first n good bits; it then 
iterates to produce the quotient. The remainder is then 
computed by multiplying the quotient by the divisor and 
subtracting it  from the dividend. 

Synchronization of Bed-point and floating-point units 
Synchronization between the FXU and FPU ensures 
the integrity of the association between data and the 
instruction that operates upon the data. For example, on 
a floating-point  load instruction, it ensures that the data 
fetched by the FXU are loaded into the correct floating- 
point register (FPR).  In both the POWER and POWER2 
implementations, data integrity is maintained by 
synchronizing on  all  floating-point loads; a floating-point 
load executes in the FXU during the same cycle in which 
the rename stage in the FPU is selecting a new  physical 
register for the load's target register. 

Synchronization also helps preserve precise interrupts 
by ensuring that the FPU does not execute an interruptible 
operation (IOP), or subsequent instructions, before the 
FXU indicates that the execution may proceed. POWER 
implementations use two mechanisms to preserve precise 
interrupts [3]. An interruptible instruction latch in the FPU 
ensures that the FPU never executes an IOP ahead of 
the FXU. The FXU may  not execute an IOP until the 
instruction reaches the FPU rename stage. A counter, 
indicating the relative execution positions of the FXU and 
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FPU, limits  how far either unit can be ahead of the other. 
The counter-based synchronization scheme relies on the 
FXU and FPU seeing all instructions on the IBUS. 

In  POWER2 implementations, the FXU does not see 
FPU arithmetic operations, and the FPU does not see 
FXU arithmetic operations. Therefore, a queueing scheme 
was devised to allow precise interrupts. As in POWER, 
the FPU may  not execute IOPs ahead of the FXU. 
However, the synchronization has been relaxed to allow 
the FXU to execute all operations, except the floating- 
point loads, ahead of the FPU [4]. Thus, the FXU can 
execute all operations except floating-point loads ahead of 
the FPU and the FPU can execute all operations except 
IOPs ahead of the FXU. As a result, the POWER2 FXU 
can execute further up the instruction stream and, under 
certain conditions, provide data to the FPU in fewer 
cycles. 

Address translation and data protection unit 
The POWER2 address translation has also been improved 
over that of the original RS/6000. In the new scheme, only 
one memory reference is required for fetching page table 
entries, rather than the two memory references required by 
the earlier design. A second difference  is that page table 
entries for sequential pages can be cached; formerly, page 
tables could  not be cached. More details on address 
translation follow. 

Data transfers between CPU and memory occur via 
load/store operations only. For example, there are no 
instructions that take the contents of a memory location 
and  add  it to the contents of another memory location. 
To support the high data rates required by the pipelined 
processor, a high-speed data cache is placed next to the 
CPU. Most load/store operations can be served by the 
cache without degrading the FXU pipeline. Data not  in the 
cache are fetched from the main  memory. If the data are 
not in  main memory, a page fault is taken, and the data 
are retrieved from mass storage (hard disk). 

The major features of the storage mechanism are the 
following: 

Page size is 4 KB (2'* bytes). 
Maximum real memory size is 4 GB (232 bytes, 

Presumed minimum real memory size is 16  MB 

Virtual memory size is 252 bytes. 
Number of segments is zz4 (16M). 
Number of transaction IDS  is 216 (64K). 
Hardware support for special segments (physical lock 

Automatic granting of locks in special segments. 
Memory-mapped  I/O into 1/0 segments. 

POWER2  is a register-intensive load/store architecture. 

one million pages). 

(2" bytes, 4K pages). 

management on a 128-byte line). 
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An overview of the address translation scheme is shown 
in Figure 7. Address translation is enabled by two bits in 
the machine state register (MSR)-one  for data address 
translation, MSR(DR), the other for instruction address 
translation, MSR(1R).  Both are independent bits and may 
be set differently. When translation is off  (MSR = 0), the 
segment register is accessed only to determine whether it 
is an  I/O segment for data storage accesses. If the T-bit in 
the segment register is zero, the effective address is the 
real address, and its numerical value is the address of a 
byte in  main memory. If the T-bit  is one, the effective 
address is sent to I/O. 

the 32-bit EA is converted to a 52-bit virtual address as 
follows: 

However, if address translation is enabled (MSR = l), 

1. Use bits 0-3 of the effective address to identify one of 
the sixteen segment registers (SR[O * 151). 

2. Concatenate the 24-bit segment ID (SID) field of the 
accessed segment register with bits 4-31  of the EA. 

This 52-bit virtual address is then converted into a 32-bit 
real address (RA) via the hashed page table (HTAB or 

51 2 HPT). 

The hashed page table (HTAB) contains a maximum  of 
219 hash table entry groups (HTEGs). The HTEGs are 
addressable elements within the HTAB, and each HTEG 
contains eight  page table entries (PTEs). Hashing the 
virtual address produces a pointer to the first of two 
HTEGs that could contain the translation for the virtual 
address. If the translation is  not  found in the initial HTEG, 
the virtual address is rehashed and a secondary HTEG is 
searched. 

As mentioned above, each HTEG contains eight PTEs. 
Each PTE is composed of a two-word entry. The two- 
word entry contains fields to specify the segment  ID (SID), 
the abbreviated virtual page index (AVPI), the real  page 
number (RPN), page protection bits (pp), the reference bit 
(f), and the change bit  (c). The organization of the hashed 
page table and the content of the page table entries are 
shown in Figure 8. 

is defined by the HTAB,  and conceptually this table is 
searched by the address relocation hardware to translate 
every reference. However, for performance reasons the 
hardware keeps a translation lookaside buffer (TLB) which 
holds PTEs that have recently been used. A TLB is 
organized like a PTE; hence, it can be considered as a 

The translation between virtual address and real address 
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cache that contains a subset of the page table entry. The 
TLB is searched before referring to the page table in 
storage. As a consequence, when software makes changes 
to the page table, it  must issue the appropriate instructions 
to invalidate the TLB and thereby maintain the 
consistency between the TLB and the page tables. 

the TLB), the HTAB mask  and HTAB org in storage 
description register 1 (SDRl), the SID in the segment 
register, and the effective address are used to calculate 
the address of the first PTE group. 

The FXU searches through the first group of PTE 
entries until a matching entry is found. A matching entry 
is one for which the valid bit  is active, the SID in the 
segment register matches the SID of the PTE (bits 1-24; 
word 0), and bits 4-8 of the EA match the AVPI of the 
PTE (bits 27-31; word 0). If a matching entry is found, 
the RPN (bits 0-19) contained in word 1 of the PTE is 
concatenated with the offset (bits 20-31)  of the EA to form 
the 32-bit word real address. However, if no match is 
found  in the first set of eight PTEs, a secondary HTEG 
address is hashed, and the search is repeated as described 
above. 

All  eight PTEs in the secondary HTEG are searched to 
find a matching entry. If no  matching PTE is found, the 
translation fails, a page fault occurs, and a data/instruction 
storage interrupt is generated. 

Since POWER2 contains two FXU execution units, a 
translation miss  from execution unit 0 must always be 
resolved before a miss  from execution unit 1 can  be 
resolved (this occurs when a load/store is received 
simultaneously from both execution units). Furthermore, 
any interrupt caused by unit 0 does not interfere with the 
translation of a miss for unit 1 and vice versa. 

When there is a  TLB miss  (Le., no matching entry in 

Translation lookaside buffer (TLB) 
The data flow for the data TLB is shown in Figure 9. The 
data TLBs are dual ports, two-way set-associative with 256 
entries per set, and each entry contains two words (word 0 
and word 1 of the PTE). An automatic hardware reload 
of TLB entries on a miss and HPT update of reference/ 
change bits and data locking bits is included.  The k e d -  
point unit performs all TLB reloading and HPT updating 
for the instruction cache unit, since it contains the only 
path to the data cache. 

Data  cache  control  and  directory  unit 
The data cache control and directory unit  is responsible for 
controling loads and stores for the FXU and FPU. Design 
features include increased data path bandwidth and 
D-cache support for multiple capacities and  line sizes 
in a nonblocking store-back design. 

The D-cache pipeline  for a fixed-point  load  begins in the 
execution cycle with the access of the directory and status 
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arrays. The cache address tag  and the TLB real page 
number are compared (along with the associated control, 
TLB hit,  and cache valid bits) to form the cache late 
selects. Also in this cycle, the D-cache address is launched 
from the FXU and captured in the DCU. In the next cycle, 
the cache access cycle, the D-cache is read and the FXU’s 
late-select signal instructs the DCU multiplexer to send 
the desired data to the FXU. This is the only two-chip 
crossing path in the entire processor complex. The data 
which arrive at the FXU are formatted and latched in the 
D-latch (where data can update the GPRs) and  may  be 
bypassed to the execution cycle input latches. 

The data cache control and directory unit supports 
two  design points. The  high-performance  design  point 
incorporates a 256-byte  line,  256KB D-cache with an 
eight-word memory interface. The low-cost design  point 
incorporates a 128-byte  line,  128KB  D-cache  with a four- 
word memory interface. Both design points implement 
a four-way set-associative D-cache; therefore, the 
corresponding cache sets are 64KB  and  32KB, 
respectively. The  longer  line size improves performance on 
sequential data accesses. However, since a  cache set is 16 
pages in size, the lower four bits of the page address are 
required to index into the cache. This scheme places the 
following restriction on the operating system: Any data 
referenced with translation on, and then again  with 
translation off, must keep the cache address portion of the 
virtual and  real addresses equal. This aliasing restriction 
eliminates the chance of the same data being located in 
the cache in two locations. Memory bus bandwidth is 
augmented by a store-back D-cache design  with  two 
change bits per line. To handle a cache store-back 
operation, a 256/128-byte store-back buffer  is implemented 
to hold the data until the memory bus is available. 

With the increased computing power of POWER2, the 
data path bandwidth has been increased to prevent the 
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data access from  becoming a bottleneck. The D-cache 
logic  path  is  fully dual-ported from the directory arrays 
and D-TLB to the D-cache itself. This  allows the processor 
to execute two load/store instructions per cycle. A three- 
port adder in the EA generation path provides the 
capability to execute two update-form load/store 
instructions in  parallel. Each data port to the FXU is a 
single word wide, allowing two independent data 
accesses. The  new  floating-point quadword load  and store 
instructions, matched with two quadword-wide buses to 
the FPU, give the processor the ability to move four 
doublewords per cycle.into the FPU. The D-cache custom 
array is capable of  aligning data on a doubleword 
boundary, so quadword accesses need only be on a 
doubleword boundary. 

The  POWER2 D-cache is a nonblocking  design; the 
D-cache can still be accessed on one port while the other 
port resolves a cache miss. A second miss blocks all 
accesses. Each port functions similarly to the POWER 
single-port design,  with many of the same dataflow 
structures duplicated for the additional port. The following 
sections describe the data flow  in more detail. 

Load  dataflow 
Figure 10 shows the load FXU/DCU dataflow. The 
D-cache logic,  including directories, D-cache, and 

514 status array (not shown) is fully dual-ported. The design 

is  dynamic; either port may be driven from E-unit 0 or 
E-unit 1. This is a nonblocking D-cache. Data can still 
be  accessed  from  the  D-cache  with one outstanding  “miss.” 

Fixed-point  store  dataflow 
Figure 11 shows the fixed-point store FXU/DCU dataflow. 
Two fixed-point stores can be executed per cycle and 
placed in the fixed-point  pending store queue (XPSQ). 
One or two entries from the XPSQ can be written into 
the D-cache per cycle using any available port. The XPSQ 
is a non-overrunnable queue and has the first priority in 
clearing entries. Data are always transferred from the FXU 
to the DCU in the first cycle after executing a store and 
are placed in a fixed-point store data register (XSDR) on 
the DCU. Whenever a load/cache op is executed, it is 
compared to all entries in the XPSQ to check for a match. 
All compares are done using the effective address, and are 
performed  down to the word level, bits 14-29. 

Floating-point store dataflow 
Figure 12 shows the floating-point store FXU/DCU/FPU 
dataflow. Two floating-point stores can be executed per 
cycle and  placed in the floating-point  pending store queue 
(FPSQ). One or two entries from the FPSQ can be written 
into the D-cache per cycle using any available port. The 
FPSQ is  an overrunnable queue capable of stopping 
execution of floating-point stores. The FPSQ has lower 
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priority than the XPSQ. Data can be transferred from the 
FPU to the DCU after the FXU receives a data-ready from 
the FPU, depending upon bus availability.  Data are placed 
in a floating-point store data register (FSDR) on the DCU. 
Whenever a load/fixed-point storekache  op is executed, 
it is compared to all entries in the FPSQ to check for a 
match. All  compares are done using the effective address, 
and are performed  down to the word level, bits 14-29. 

Reload and store-back dataflow 
Figure  13 shows the reload and store-back dataflow.  When 
the data are not found in the D-cache, a reload operation 
moves data from  memory to the D-cache. If the D-cache 
destination for the new data contains data which have 
previously been modified, a store-back operation moves 
the modified data to memory. 

The D-cache reload function is accomplished through a 
third (reload) port on the D-cache array. The DCU  is  given 

a reload command  specifying the address and set. As 
memory data arrive, the data are written into the D-cache 
in the second half  of the cycle. Load-through data are 
bypassed from the memory data latch and sent to the FXU 
or FPU in the first data cycle of  all loads. If an ECC error 
is detected for bypassed data, the FXU or FPU will retry 
the request; the second data cycle will contain corrected 
data from the D-cache. 

D-cache reloads are based on a true LRU algorithm  with 
the memory bus delivering  eight (four) words of data per 
cycle to fill a 256 (128)-byte cache line in eight cycles. The 
cache line  is fetched in a wraparound fashion in  which the 
first  eight  (four) words from  memory  contain the referenced 
data.  The  memory data are loaded  directly  into the D-cache 
on the  reload  port.  This  additional cache port  provides 
minimal processor  performance  loss  during a reload  operation. 

The D-cache store-back function supports half-line 
granularity by maintaining one change bit per half line. The 51 5 
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DCU contains two cache line store-back buffers, SBBO and 
SBB1. The two buffers  allow optimal performance on 
reloads. SBBO is used to postpone write functions to the 
memory. The FXU cache control will pass the reload 
command to the SCU immediately on a miss  with one 
outstanding store-back in  SBBO. The SCU will  perform 
reads before writes and postpone store-back operations to 
give additional reload performance. 

SBBl has the additional capability of being able to be 
written from the XPSQ  and the FPSQ. The XPSQ  and 
FPSQ are not checked before a reload command is issued 
to the SCU. Once the reload has been given to the SCU, 
the control logic moves the replacement line to SBB1. 
The control logic checks the XPSQ  and FPSQ against the 
replacement line. If there is a match, the stores are done 
to SBB1. SBBl is then moved to SBBO  if it is available. 
If not, the control logic holds until SBBO is unloaded to 
memory and then moves SBBl  to SBBO. 

Data cache unit (DCU) 
The DCU consists of four identical chips, which provide a 
four-way set-associative multiport store-back cache. The 
DCU supports two design points. The first consists of a 
256-byte  line,  256KB D-cache with an eight-word memory 
interface. The second consists of a 128-byte  line,  128Kl3 
D-cache with a four-word memory interface. As shown in 
Figure 14, the DCU also provides several buffers for cache 
and DMA operations, as well as error detection/correction 
and  bit steering for all data sent to and received from 
memory. 51 6 
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The DCU provides a 128-byte instruction reload buffer 
(IRB) for transferring instruction cache lines to the ICU, 
as well as store-back buffers for data cache operations. 
Data cache reload buffers are built into the data cache 
array macro. The DCU also provides an 1/0 cache for 
DMA operations. This cache holds up to four 1/0 cache 
lines and is controlled by the SCU. The following section 
describes the data cache array macro. The other DCU 
functions are described in more detail in the section 
on the SCU. 

Data cache array macro 
The data cache array is a four-way set-associative 64Kl3 
dual-port array, with support for half-line store-back 
operations, as well as support for quadword access on a 
doubleword boundary. To meet the demands of the dual 
execution units, the data cache array macro has been 
enhanced over the previous cache designs [5]. The cache 
is a multiported design which uses a virtual multiport 
technique [6] and a standard single-port cell  macro. 
This technique has kept the size of the array small  while 
providing  multiple ports. Other features of the array are 
line zeroing, port swapping,  unaligned access, and an array 
built-in  self test (ABIST). 

The data cache array macro has three unique ports. 
There are two 36-bit read/write ports (Port 0 and Port 1) 
and one 72-bit write-only port (CRB port). The cache also 
has a 288-bit read-only port designed for storing back 
cache lines. 

The virtual multiport technique provides a full three-port 
array to the outside logic,  while internally it  pipelines three 
sequential cycles within one processor cycle. The  first two 
read/write cycles are always performed. The third cycle is 
for the CRB port and is only performed during cache 
reloads. The CRB port is used for loading data from the 
memory bus into the cache. Memory data are loaded one 
word per cache macro per cycle in a four-word memory 
system, and two words per cache macro per cycle in  an 
eight-word system. 

A port-swap feature minimizes the delay for a read to 
port 1 when preceded by a write to port 0. The feature 
swaps the port operations to guarantee that a port 1 read 
will never follow a port 0 write. This swap allows the 
RAM to take advantage of the faster array recovery 
following a read, and to start the port 1 access earlier than 
if it  had  followed a write cycle. The port-swap circuitry 
identifies when port 0 is writing,  and then simply reverses 
the internal port clocks. Forcing port 0 to occur second, 
whenever a write occurs, allows it to become the priority 
port during the double-write case. The reload write 
maintains priority over the two execution unit ports. 

The cache can read (write) from (onto) the cache-to- 
processor buses on doubleword boundaries. Because each 

The cache supports both aligned and unaligned accesses. 
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DCU chip provides four bytes of a quadword, each array 
requires access to data on either a word or half-word 
boundary. The cache is organized to  readhrite “aligned 
data,” such as a word (bytes Al, B1,  C1, Dl), or data on 
a half-word boundary (see Figure 15). In this case, bytes C 
and D from word 1 can be  merged  with bytes A and B 
from word 2 to form the word CllDllM(B2. The RAM 
increments the address for half  of the bytes and then 
swaps the data between the upper and lower bytes for 
proper alignment. The last word on the line  is  not  valid for 
this function; therefore, data misaligned across cache lines 
require two RAM accesses. 

The virtual multiport cache is designed to be logically 
equivalent to a real multiport array. This requires a 
compare-bypass feature for the two read/write ports to 
guarantee that the execution unit receives the last data 
written when the ports simultaneously read and write the 
same address. Because the port-swapping feature will force 
the read access to occur first, an address comparator and 
data-iddata-out multiplexor are included to identi@  when an 
address collision has occurred so that it can bypass written 
data to the  previously  read  port.  The  comparator  not  only 
identifies  when the addresses are equal,  but  also  when 
they are adjacent along a cache line. This is necessary 51 7 
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when one access is  aligned  and the other is misaligned. 
Although the addresses are different, portions of the 
two accesses may overlap, and the comparator must 
be able to bypass half of the bytes during a read/write 
cycle. 

mechanism  is provided by which the FXU can zero-out 
cache lines. This feature allows lines in the cache to be 
initialized without requiring the line to be transferred from 
memory. This initialization is significantly faster than a 
series of stores with zeros for data. 

To permit the software to initialize lines in the cache, a 

Storage  control  unit (SCU) 
The main function of the SCU is to control the 
communication between the processor complex and the 
other system units: I/O control units, main memory unit, 
and the IPL read-only storage (ROS) unit. The SCU 
interfaces with the FXU and ICU processor chips across 
the P-bus, with 1/0 and  ROS over the SI0  bus, and  with 
main memory using the memory address and control 
buses. Each of these interfaces has a unique set of control 
signals. In addition to managing these interfaces, the SCU 
contains logic for external interrupts and the performance 

51 8 monitor. 

Figure 16 shows a high-level block diagram of the SCU. 
The SCU logic consists of the following areas: P-bus 
interface, SI0  bus interface, memory interface, ROS 
interface, performance monitor, and external interrupts. 
The memory interface is further broken down into cache 
reload  and store-back operations, memory scrub 
Operations, error handling,  and bit steering. 

P-bus interface 
The P-bus interface supports three types of operations: 
memory, 1/0 load/store, and  move.  Memory addresses 
are moved  from the P-bus into the P-bus memory queue 
and then moved out to main  memory via the memory 
row/column address generation logic. 1/0 load/store 
operations to the SCU are used to read and write SCU 
registers, DCU registers, and 1/0 registers. The only SCU 
registers which can be read and written from the P-bus are 
the performance monitor registers, bank configuration 
registers, external interrupt registers, SCU control 
registers, and error registers. For 110 load/store operations 
to the DCU  and 1/0 registers, the 128-byte PI0  buffer is 
used to move data between the P-bus and SI0 bus.  Move 
operations transfer the interrupt-level control register 
(ILCR) to/from the P-bus in a single cycle. 

Memory  interface 
The memory interface is a high-speed, synchronous, split 
address/data bus which allows the processor, as well as 
I/O devices, to access main  memory. The two primary 
changes to the memory interface are support for both a 
four-word and  an eight-word memory-to-D-cache interface, 
capable of transfer rates of more than 2000 MB/s, and 
support for three cache line sizes. The memory interface 
also improves performance through its memory request 
queuing schemes and reload/store-back strategies. Like 
POWER, this implementation enhances reliability with 
memory scrubbing, ECC, and  bit steering. 

D-cache line size support 
The  POWER  memory interface supports 64-byte lines for 
the 1/0 and instruction caches and  128-byte lines for the 
D-cache. The POWER2  design supports both 128-byte  and 
256-byte D-cache lines while  providing both 64-byte 
support for the POWER2 1/0 cache line and  128-byte 
support for the I-cache. A new protocol was required not 
only for four-cycle and eight-cycle transfers, but also for 
two-cycle transfers. In addition, a new real-to-DRAM 
address translation was required by the SCU for the eight- 
word system. This translation is generated in a single 
cycle, as is described later. 

Memory configuration 
The memory interface supports both a lower-cost four- 
word configuration  and a high-performance eight-word 
configuration. The four-word interface maintains 
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compatibility with the existing memory cards and 
POWER’S 1/0 subsystem, creating a stable interface for 
debugging the POWER2 processor chips. The high- 
performance eight-word interface supports the improved 
processing capabilities of  POWER2. This unique memory 
interface selects the mode by detecting the number of 
installed memory cards. 

Memory cards are two words wide; a minimum 
configuration consists of two cards. When two additional 
cards  are installed, the memory interface becomes an 
eight-word bus. The design provides the customer an 
opportunity to buy a system with a minimal set of memory 
cards. With no changes to the planar, hardware, or 
software, the customer can  add memory cards, providing 
both a wider data bus and a larger memory. The wider 
data bus doubles the memory performance. 

The hardware automatically detects the number of 
memory cards present and establishes the width of the 
memory data bus. The on-card sequencer (OCS) monitors 
a memory card detect signal to determine how  many 
memory cards are present. The OCS interfaces with the 
common on-chip processor (COP) logic [7] in the processor 
chips over a COP bus to configure the system. During IPL, 
the OCS initializes a mode latch in the FXU, SCU, and 
DCU that the processor chips use to determine a memory 
transfer’s data width and  number of cycles. 

Memov request queues and controls 
To improve storage bandwidth and latency, the SCU 
queues and prioritizes memory requests and controls 
memory access. The SCU maintains three memory request 
queues. The first queue holds up to three processor 51 9 
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requests, the second holds two 1/0 DMA requests, 
and the third holds one memory scrub request. Three 
corresponding address generators create the address and 
the bank selects for the next request on the queue. The 
SCU arbitrates for the memory bus in parallel with the 
address generation. The SCU’s memory arbiter grant logic 
selects one of three requests. The memory arbiter 
prioritizes the requests in the following order: DMA 
requests are highest in priority, followed by processor 
requests, followed by memory scrub operations. If back- 
to-back DMA requests are active along  with processor 
requests, the arbiter grants the two DMA requests first, 
followed by one processor request. 

While the arbiter is generating the bus grant, the bank 
select logic determines which one of 16 memory banks to 
activate. This logic compares the upper address bits of 
the real address with the base address bits in the bank 
configuration registers. The number of bits compared 
depends on the size of the field  in the configuration 
register. If the addresses match, the bank select for that 
register is activated, and the transfer is completed. 

The memory interface control reduces latency on back- 
to-back requests. By  allowing two memory operations to 
be pending at any given  time, the memory card begins to 
process the second request before the first is complete. 

Cache reloads and storebacks 
When cache misses occur, cache reload and store-back 
operations move instructions and data between memory 
and the ICU, DCU,  and FXU. These operations are jointly 
executed by the FXU, DCU, ICU, and SCU. D-cache 
miss performance is improved by implementing a load- 
through path for reloads, a store-back buffer which allows 
reloads to occur in parallel with a store-back operation to 
the buffer, and a high-priority reload feature. The I-cache 

520 miss sequence routes the data through the DCU to the 

ICU, reducing the pin count and providing the DCU’s 
error detection and correction (ECC) coverage. 

D-cache miss  and store-back requests are initiated by 
the FXU and are sent  as a processor request to the SCU. 
The SCU controls the four-word or eight-word transfers 
from memory to the DCU. As shown at the top of Figure 
5, data pass through the bit-steering logic before being sent 
along two data paths. The ECC logic path goes to the 
D-cache. The load-through path bypasses the D-cache, 
sending data directly to the FXU and FPU data buses. 
When a new  line of data is brought into the DCU, the 
word that satisfies the request is brought in first, 
minimizing latency. When the end of the line  is reached, 
the first word of the line  and the remaining sequential 
words are fetched until  all  eight  four-word or eight-word 
data packets arrive in the DCUs. 

performance advantage for  all D-cache miss operations 
that require the cast-out of a “dirty” line. For these 
operations, two events must occur: Data from the D-cache 
must be written back to memory and data from memory 
must be stored into the D-cache. From a programmer’s 
viewpoint, the data returned from memory are highest in 
priority. The data written back to memory are no  longer 
needed. The high-priority reload design hides the cache 
line store-back penalties on the memory bus. When the 
SCU queues the cache reload and store-back requests, the 
reload and store-back addresses are monitored. If the 
addresses are not for the same cache line, the reload is 
given  higher priority. The store-back operation must then 
wait to access the memory bus until there are no reload 
requests pending. 

I-cache miss requests are initiated by the ICU and are 
sent as a processor request to the SCU. The SCU controls 
the four-word or eight-word data transfers from memory to 
the 128-byte I-cache reload buffer in the DCU. The SCU 

The high-priority reload operation provides a 
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controls the order in  which data are loaded (quadword 0 
or quadword 1 first) and  when data are sent on the 
I-cache reload  bus. The I-cache reload  memory data pass 
through the DCU’s bit steering and ECC logic. To reduce 
latency, the first  quadword of the memory data includes 
the instruction requested by the ICU. A wraparound load 
of the instructions is performed. 

Memory scrubbing 
To reduce the chances of an unrecoverable failure, the 
processor hardware provides a software-controlled 
memory-scrubbing function that attempts to find and 
correct single-bit errors before they become double-bit 

errors. The software uses three registers, located in local 
I/O space, to control the scrub function: the scrub start 
address register (SSAR), the scrub end address register 
(SEAR), and the scrub timer value register (STVR). 

a read operation to detect errors, a write operation to 
correct the errors, and a read operation to verify that the 
data have been corrected. If no errors are detected during 
the initial  read operations, the subsequent write and read 
operations are not executed. When an error is detected, 
the hardware records the type of error (soft, hard, 
or uncorrectable) and the address where it was 
detected. 

The scrub sequence consists of three memory transfers: 



Error detection and correction 
The ECC logic  allows the DCU to correct all  single-bit 
errors and to detect all double-bit errors. The system 
memory bus is  divided into either eight or four ECC 
words; each DCU chip receives either one or two words 
per data transfer. The ECC word contains 32 data bits, 
seven check bits, and one spare bit. Each word  is encoded 
with a modified  Hamming code when written to memory 
and  is checked for errors when  read  from  memory. If a 
single-bit error is detected, the DCU corrects the data and 
writes the ECC syndrome (eight-bit code which indicates 
which  bit failed) into a register. This register and the 
corresponding failing address register and the 
corresponding failing address register in the SCU can 
be read by software to isolate the memory  failure to a 
particular memory bit. 

Bit steering 
Bit steering improves reliability by providing a “hot stand- 
by” bit if a memory  bit  fails. The SCU enables bit steering 
when a hard error in memory  is detected through ECC and 
memory scrubbing. The SCU sets one of the bit-steering 
configuration registers (BSCR) to indicate the data word 
position to which the spare bit should be steered. Each 
DCU contains 16  BSCR registers, one for each memory 
bank. Each 8-bit BSCR contains the ECC syndrome. The 
DCU steers the spare bit into any data or check bit 
position  within the ECC word  during transfers to memory 
or from memory. 

Read-only storage 
The ROS, located on the system planar, provides the code 
and data required to initialize the system and  perform 
various disgnostic tests. This type of memory is typically 
separate from the larger  main  memory discussed earlier. 
For example, the POWER  ROS interface used a separate 
address and data bus. Packaging the POWER2  on a 
multichip  module  limits the processor to 512 functional 
signals, leaving  few  signals available for the ROS interface. 
POWER2 uses the SI0  bus as a ROS address bus, 
eliminating the need  for a unique bus. 

POWER2  reserves the upper 1 MB  of the system address 
space for  ROS.  When the SCU detects an address in this 
range,  it arbitrates for the SI0 bus and generates the ROS 
address. The SCU controls the transfer of data from the 
ROS to the DCUs. When a full  memory bus width (four 
or eight words) has been received, the data are written to 
either the I-cache or the D-cache. The fact that the data 
come from  ROS  is transparent to the ICU and FXU. 

System I/O bus 
The SI0  bus is a dedicated internal bus used for 
communication between the processing units and the 1/0 
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The 86 bidirectional signals consist of a 72-bit  multiplexed 
address and data bus (which includes eight bits of parity), 
and  an eight-bit control bus with one parity bit  and  five 
control tags (address valid, data valid, acknowledge, 
processor lock,  and checkstop). The other 12 
unidirectional signals (four bus requests, four bus grants, 
and four busy signals) are used for SI0  bus arbitration, 
and by the I/O control units to hold  off I/O transfers. 

The SI0  bus supports the following transfers: 1/0 loads 
and stores, DMA block transfers, and 1/0 interrupt 
requests to the processing unit. All  DMA transfers and  I/O 
store transfers are single-envelope; the current transaction 
in progress must  be completed before a new request is 
honored. All I/O load transfers have a disjoint reply 
packet. The processor issues the 1/0 load request for one 
of the 1/0 control units and then releases the SI0  bus 
while it waits for the load data. When the load data are 
ready, the I/O control unit requests the SI0 bus and 
transfers its data to the processor. 

System I/O direct memory access 
The POWER2 I/O system overcomes many of the POWER 
bottlenecks in  moving data between main  memory  and  I/O 
devices, such as disk controllers and LAN adapters. 
Improvements include increased 1/0 transfer rates, support 
for  more  I/O controllers, I/O prefetch, and an  I/O cache. 
First, a DMA sequence is described. 

64-byte DMA read and write requests on the SI0  bus. 
These operations are initiated by sending a command  and 
address to the SCU over the SI0  bus. Data are routed 
through the I/O buffers in the DCU. The SCU uses a 
round-robin buffer selection scheme to choose which I/O 
buffer  will  be  used for the operation. For DMA write 
requests, the SCU receives the 32-bit  real address and 64 
bytes of data from the 1/0 control unit. It then loads the 
data into an 1/0 buffer two words at a time  and unloads 
the data to memory either eight or four words at a time. 

units; each unit  manages four to eight  Micro  Channel 
channels (or slots). Each channel can transfer up to 
80 MB/s  using the Micro  Channel Streaming Data 
protocol [8]. 

To support the increased I/O  bandwidth  which results 
from the multiple  I/O control units, the POWER2  DCU 
contains an 1/0 cache. The POWER  implementation of 
asingle I/O buffer [5] cannot sustain the high data transfer 
rates on  Micro  Channel. The POWER2 I/O cache improves 
both read and write performance. The I/O cache consists 
of 1/0 buffers in which data are prefetched for DMA read 
requests from 1/0 bus units. This removes the memory- 
card-DRAM latency for DMA data and provides a 
continuous stream on the SI0  bus. For prefetch 
operations, the SCU fetches the 64 bytes requested as well 

Data are moved between memory and I/O devices using 

The  POWER2 SI0 bus supports up to four I/O control 
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as  the next sequential 64 bytes. For  each  new 64-byte 
request,  the  SCU  unloads  the  data  that  were previously 
prefetched and  fetches  the  next 64 bytes in parallel. 

In addition, the 1/0 cache  can buffer several 1/0 cache 
lines  during a stream of DMA writes, hiding the  latency of 
memory  bus  interference  from  the  CPU. When access  to 
the  memory  bus is  obtained, the  data  are  written in parallel 
with  the loading of new  cache lines. 

External  interrupt  logic 
The  external  interrupt  structure  provides a mechanism 
for some  external  event,  such  as  an I/O device requiring 
service,  to  break  the normal flow of instructions. POWER2 
provides a new high-performance external  interrupt 
mechanism that  incorporates a hardware high-priority 
detect, a priority mask, and a minimal set of single-cycle 
instructions. 

The POWER external  interrupt  structure  has  two 
primary bottlenecks.  First,  the 64 interrupt  bits  are masked 
on an individual basis.  When an  interrupt  occurs,  the 
software  interrupt handler  iteratively  loops  through each 
bit of the  interrupt register  until the highest-priority  bit set 
is  found.  Second,  the  interrupt register is mapped into 
I/O space, requiring a segment register to  be  set  up every 
time a load or  store  to this register occurs.  These I/O 
load/store instructions are inherently  slow  operations 
because of the setup and  the  handshake  between  the 
FXU and  SCU. 

To improve this  scheme,  the  POWER2  external  interrupt 
structure  incorporates in hardware  the high-priority 
detection  that  was  previously handled in software. 
Additionally, the  instructions  used  to  interface  to  the 
interrupt logic have  been  changed  from slow I/O 
load/stores  to single-cycle move  operations which operate 
on a set of special-purpose registers. A data field in one of 
these  control  registers provides the capability to  set,  reset, 
and  update  the  external  interrupt hardware. 

Pe~ormance monitor 
The  SCU implements a centralized performance monitor 
making  possible a wide  variety of POWER2  performance 
measurements [9]. The monitor consists of 22 software- 
accessible  counters  that monitor activity in each of the 
eight chips  that  make  up  the  POWER2  processor. A 
performance monitor control register  in the  SCU  selects 
the  events  to  be monitored. Such  data could not  be 
obtained using an  external monitor, since  the  processor is 
packaged on a multichip  module where  only  the  memory 
and S I 0  buses  can  be probed. 

Summary 
One of the  primary goals of POWER2  was  to  improve 
performance  by adding  more execution units than  those 
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found in the original RS/6000, but still maintain a balanced 
system  that  avoids  bottlenecks in the  cache, memory, and 
1/0 interfaces. POWER2  has achieved  this  goal in the 
FXU, DCU, and  SCU  by  the addition of a fixed-point 
execution unit, a larger  multiported data  cache,  an 
improved bus organization, and  an improved 110 interrupt 
and  DMA  subsystem. 
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