POWER2
fixed-point,
data cache,
and storage
control units

by D. J. Shippy
T. W. Griffith

The POWER2™ fixed-point, data cache, and
storage control units provide a tightly
integrated subunit for a second-generation

high-performance superscalar RISC processor.

These functional units provide dual fixed-point
execution units and a large muitiported data
cache, as well as high-performance interfaces
to memory, 1/O, and the other execution units
in the processor. These units provide the
following features: dual fixed-point execution
units, improved fixed-point/floating-point
synchronization, new floating-point load and
store quadword instructions, improved
address translation, improved fixed-point
multiply/divide, large multiported D-cache,
increased bandwidth into and out of the
caches through wider data buses, an
improved external interrupt mechanism,

and an improved I/0 DMA mechanism

to support multiple-streaming Micro
Channels.®

Introduction
The POWER2™ processor is a next-generation RISC
design which has significantly improved performance over

that of previous designs with the addition of multiple
floating-point and fixed-point functional units. To support
the data and instruction demands of this processor, wider
data buses, larger caches, and longer cache lines have been
implemented. The POWER? fixed-point unit (FXU), data
cache unit (DCU), and storage control unit (SCU) provide
functions and a system structure similar to those of the
original RISC System/6000® (RS/6000) processor [1], but
have improved in the following areas: an additional fixed-
point execution unit, improved fixed-point/floating-point
synchronization, new floating-point load and store
quadword instructions, improved address translation,
improved fixed-point multiply/divide, a multiported
D-cache, larger caches and longer cache line size, increased
bandwidth into and out of the caches through wider data
buses, an improved external interrupt mechanism, and an
improved 1/O DMA mechanism to support multiple-
streaming Micro Channels®.

This paper is organized as follows. First is a system
overview, followed by a description of the dual FXU
execution units. Next, POWER?2 address translation is
discussed, and the data cache control and directory unit
are described. This is followed by a discussion of the
DCU and the multiported data cache array macro.
Finally, the SCU and the memory and 1/O interfaces
are discussed.

©Copyright 1994 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The titie and abstract, but no other portions, of

this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 1994

D. J. SHIPPY AND T. W. GRIFFITH

503

504

Multichip CPU module P-bus

ICU
I-cache reload
bus (quadword)
Instruction dispatch
bus

4 single words

FPU FXU

FPU reload bus
(2 quadwords)

(single word)

FXPT reload bus
(2 single words) XI0 XI0 ROS

Micro Micro
Channel bus Channel bus

SIO bus
(double word)

ROS data bus (1 byte)

Memory address/controls
Memory data bus
(4 or 8 words)

DATA} | DATA] DATA| |DATA, DATA| |DATA DATAJ} JDATA
(=] = == — = [——] =3 | e}
=CNTL= =:CNTIT==I =CNTL=! =CNTL=:I
{ ==} [—] = [=] | =} | e § == [-]

POWER? system configuration with eight-word memory bus.

System overview

Figure 1 shows the POWER?2 system. The FXU receives
instructions from the instruction cache unit (ICU) through
a four-word interface. The FXU is tightly coupled to the
SCU by the processor bus (P-bus), which is used for
cache-miss requests and I/O load/store operations. The
SCU interfaces with I/O through the system I/O bus (SIO),
and with memory through a split address/control and data
bus. Both the FXU and SCU control the four DCU chips.
To support the data demands of the multiple execution
units as well as the data demands of multiple data-
streaming Micro Channel devices, the POWER2 system
provides large caches, long cache lines, and multiple wide
data buses. The data cache consists of a four-way set-
associative, dual-port 256KB cache with a 256-byte

line. The instruction cache consists of a two-way set-
associative 32KB cache with a 128-byte line. The memory
bus interface to the DCU chips is either four or eight

D. J. SHIPPY AND T. W. GRIFFITH

words wide. All cache and DMA operations use this bus.
In addition, wide buses from the DCU to the ICU, FXU,
and FPU have been implemented. There are two quadword
interfaces to the FPU (quadrupling the data bandwidth
over that of the original RS/6000 design [2}), two single-
word interfaces to the FXU (double that of the original
design), and a quadword interface to the ICU (double that
of the original design). In addition, an I/O cache that
provides DMA prefetch capability and a two-word system
1/0 bus are provided to the 1/O control chips which
generate the Micro Channel.

Fixed-point unit

The fixed-point unit (FXU) decodes and executes all
instructions, except branches and floating-point arithmetic.
Branches never leave the instruction cache unit (ICU), and
floating-point arithmetic instructions are executed by the
floating-point unit (FPU). Fixed- and floating-point

IBM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 1994

Instruction bus (I-bus)
P-bus Data cache 0.1
\ Y \
Instruction Register file input latches and MUXes
buffer
J r
Al
‘ R/W controls > Register file L i] Bypass
Instruction (36 X 36) (4R/4W)
decode Register file
units R/W controls - (36 X 36) (4R/4W)
Yy vy Yy VvV VY
ALU and logic unit input latches and MUXes
Y Yy vV YV Y V VY
Execution — Execution unit 0 > Execution unit |
control 2-port adder and logic 3-port adder, multiply/
units unit divide unit, and logic
unit
Floating-
POt <fmmand
synchronization
\ i \
Adder output MUXes
\ Y
f Y \ —
; " ual-port
P-bus logic Pending store TLB - Data cache control - 1 data nghe
queue (PSQ) segment) and translation control < 5| directories
l l register =i | and status
P-bus Data cache ‘
Data cache 0 Data cache 1
address/controls address/controls

Fixed-point unit high-level block diagram.

instructions are dispatched by the ICU to the FXU and
FPU simultaneously, and are executed synchronously in
the FXU and FPU. In addition, the FXU contains the
address translation, data protection, and data cache
directories for both fixed- and floating-point load and
store instructions.

Figure 2 shows a high-level block diagram of the FXU.
The FXU receives four instructions from the ICU. The
instruction buffer unit queues and dispatches instructions
to two decoding units. Each decoding unit takes the
primary and extended opcode fields and combines them
into a single 10-bit field. This 10-bit field is used for

IBM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 1994

decoding of all instructions for execution. At the end of
the decode cycle, this combined opcode is latched for use
during the execute cycle. The decoding unit also controls
the general-purpose registers (GPRs). The architecture
calls for thirty-two 32-bit GPRs. There are two sets of
these registers, one for each execution unit. The hardware
keeps these registers consistent with each other. The
decoding unit decodes the instructions and manages their
dispatch to the two execution units. The execution units
are identical, except that only execution unit 1 may do

- multiply and divide. For load/store operations, the address

translation logic converts virtual addresses to real

D. J. SHIPPY AND T. W. GRIFFITH

505

506

T-bus A I-bus B I-bus C I-bus D

Lr__l ITl,_l (]

6 port 1B5
6 port 1B4
F
L_6port iB3
I i
[_Sport 1B2]
. |
i
IBO T 3port Dec()[IB1| 4port Decl
par chk [}]
r——%—- =" parchk
| Decode control |
L oo s i s e s s i i it S s e o 4

Fixed-point unit instruction buffer dataflow.

addresses, and the data cache control unit controls the
data cache and directory. The P-bus logic interfaces with
the other processor chips.

® [nstruction buffer

Eight instruction buffers are used to queue instructions
prior to decoding and execution, as shown in Figure 3. The
I-cache dispatches instructions to the FXU and the FPU
via the four-instruction (4 x 36 bits)-wide I-bus (I-bus A,
B, C, and D). If these instructions are marked valid on the
buses and the FXU has room to accept them, the FXU
latches these instructions into the buffers in a FIFO
manner. Associated with every instruction is a set of
three tag bits that provide further information about the
instruction.

Since both floating- and fixed-point instructions are
dispatched on the I-bus, there are ““holes” on the bus
(from the perspective of the FXU) where there are valid
floating-point instructions. To speed up the loading of
instructions into the buffers, multiplexors are used in the

D. J. SHIPPY AND T. W. GRIFFITH

dataflow to remove these holes. The instruction buffers are
also designed to allow no holes to occur. This means that
valid instructions in the pipeline may not be separated by
invalid buffers. On each cycle, valid instructions are
moved toward the bottom of the pipeline to occupy
vacated buffers. This prevents invalid instructions from
being fed to the execution unit.

The FXU tells the ICU how many buffers it has free,
i.e., whether it has room to accept 0, 1, 2, 3, or 4
sequential instructions. It also tells the ICU whether
it has room enough for four target instructions.

On each cycle the FXU moves valid instructions and
their tags off the I-bus and into the buffers. The valid bit
from the ICU is further qualified by the status of pending
branches, canceled ICU instructions, and other related
conditions to create the real valid bit for instruction. A
valid bit is reset and the instruction canceled when the
instruction is canceled by the ICU in the cycle after its
dispatch, when it was conditionally dispatched and the
branch is subsequently taken, or when an interrupt has
occurred.

® [nstruction decoding

There are two decoding units, which have the following
responsibilities: decoding instructions; reading the general-
purpose registers (GPRs); managing GPR bypass controls,
sign extension and inverter controls, immediate field
bypasses, and execute-bypass controls; and managing
dispatch to the two execution units. The decoding units
are identical. Each unit takes the primary and extended
opcode fields and combines them into a single 10-bit

field, which is then used for decoding of all instructions
for execution. At the end of the decode cycle, this
combined opcode is latched for use during the execute
cycle.

During the decode cycle, three (or four for
execution unit 1) locations are read from the GPR according
to the address specified in the RS, RA, and RB fields of
the instruction being decoded. This information is made
available to the bypass multiplexors above the S, A, B,
and U latches. If there are no holdoffs or bypasses, the
data are latched in the S, A, B, and U latches for use
during the execute cycle.

If the data required during the execute cycle are not in
the GPR, a bypass of the GPR may be necessary. Figure 4
shows the fixed-point GPR1 bypass dataflow. The three
types of bypasses are the ALU bypass, the local load and
P-bus bypass, and cache bypass. The ALU bypass occurs
when an RR operation is dependent on the RR operation
immediately preceding it. For example,

1 2 3 4
| DEC | EX | WB |
| DEC | EX | WB |

AND R3,R1,R2
A R4,R3,RS

IBM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 1994

P-bus &

local
Cacherot 1
ALU 1
T1
LSCBX
compare
DO
T0
; \)]
TO Tl DO
GPR 1 (32 X 36) (4R/4W)
S1 Al B1 Ul
P-bus &
local
. - Cache rot 1
:LLS(; : = Cache rot 0
YYYVY YYVY REEXER i;vvww
"4
N— N N—— N /
i MUX0,

Y ¥ O’S—‘ :n%

1 [

i MUX1
S 3 O’S se se
Iy 'W[i‘
L

3
l Bl Ul I

L

se
Buffer Buffer ; Z Buffer
par chk par chk

Buffer -\- %
par chk par chk

% Fixed-point unit GPR1 bypass dataflow.

Because the data for the AND are not in the register file
during cycle 2, the data must be bypassed during cycle 2
for the ADD. (There are no cycles lost in a bypass of this
kind.) The local load/P-bus bypass occurs when a load/store
to I/O or an MFSPR (Move From Special-Purpose Register)-
type instruction is followed by a dependent operation:

1 2 3 4 5
| DEC| EX | AC | WB |
| DEC | EX | EX | WB |

MFSPR R3,LINK
A R4,R3,R5

In this case, the data are bypassed from the P-bus or local
load bus. (If a load or store to 1/O caused the bypass, it
may take several cycles for the data to be available.)

IBM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 1994

A cache bypass occurs when a load to memory space occurs:

1 2 3 4 5
|DEC| EX | CA | WB |
| DEC| EX | EX | WB |

LD R3,R8R9
A R4,R3,R5

In this case, the data are bypassed from the cache data
bus. (If there is a cache miss, it may be several cycles
before data are ready.)

The decode units also manage the dispatching of
instructions to the two execution units. In particular,
register dependencies are resolved, as are ops such as
string ops and load and store multiples, which are
dispatched to both execution units.

D. J. SHIPPY AND T. W. GRIFFITH

507

508

rot0

Y
0o oo = B
—
1]] (] L] L ¥ IR |
TO T1 DO D1 T0 Tl DO D1
GPR 0(32 X 32) (4R/A4W) é GPR 1 (32 X 32) (4R/4W)
SO A0 BO Uo g St Al Bl Ul
—F g 3
<= 3 < L, <
i '_ﬂr 2 Y y]
: || R
1 k|]
N £ S I
LU Of = LU 1
Yy
y MDU Yy ¥
M T N\MUX 7

Fixed-point dual execution unit dataflow.

® Execution control unit

The execution control unit (sometimes referred to as the
pipeline control unit), is responsible for load and store
execution, holdoffs, and writeback of GPRs.

There are two execution units, which are identical
except that only the B execution unit may do multiply and
divide operations (see Figure 5). Also, some of the special
operations such as cache operations and all privileged
operations may execute only in the A execution unit.

The execution control unit must calculate an effective
address based on the decoding of the instruction being
executed, for example,

L RT,RARB | DEC | EX | CA | WB |

D. J. SHIPPY AND T. W. GRIFFITH

The effective address (E/A) in this case is RA + RB, and
the data are stored in RT. The operands for the E/A are
read during decoding and latched in the A and B latches.
During execution, the A and B latches feed the adder, and
the E/A is made available to the cache directory logic and
the TLB lookup logic. If the load was an update form and
no interrupts occurred, the E/A is also written into the
GPR at the address specified by the RA field in the
instruction. The data are latched in the T-latch at the end
of execution, and are written in the GPR once it is
determined that no interrupts will occur.

If the data were available in the cache (e.g., no TLB
miss occurred and no data cache miss occurred), the data

IBM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 1994

Bus_Data_Fetched_On

MemWordAddress (E/A[0-29]) | xxxa | 0
(E/A[0~29] +4) | bede | 1
(E/A[0~29] +8) | fghi | 0
(E/A[0~29] +12) | jkim | 1
(E/A[0~29] +16) | nopx | 0
(E/A[0-29] +20) | o0xx | 1

where a through p are the 16 bytes we are interested in and x is don’t care data

Lsn R28, RA, 12
Add2 RT, R28, RB
Add3
Add4

where RA is some non-word-aligned address.

* 16 bytes: loads R28, R29, R30, R31

* dependent on a register loaded by LSI
* nondependent

* nondependent

CYCLE 1 2 3 4 5 6 7 8
DEC LS1/AD2 | AD2/AD3 | AD2/AD3 | AD2/AD3 | AD4 | AD4 |
EX | LSI/LS1 | LSI/LSI | LS/~ |AD2/AD3 | AD2/AD3 | AD2AD3| AD4

l
|

CA i I
I l | |
I | |
l | |

Notes
CA: normal cache access cycle.

FORMAT: formatting of data for write into the GPRs.

WRITE: data are written into the GPRs.

|

|

| xxxabede | fghijkim | nopxooo | | |
|

| abcdefgh | ijklmnop | | |

|

| HH | HH |

| abedefgh | ijklmnop |

§ Construction of an unaligned load string from unaligned storage.

are available to be latched in the D-latch at the end of the
cache access (CA) cycle. Data are written into the GPR
during the write-back (WB) cycle. The address is latched
during the decoding cycle from the RD field in the
instruction. This address is held until used or canceled.

Multicycle loads are handled as a series of single-cycle
loads using both execution units. The opcode is loaded
into each execution unit, and the two load units are joined
together to do two loads per cycle. Rotation of the words
is handled with a doubleword rotator. Figure 6 shows an
example which does an unaligned load string from
unaligned storage.

During the initial cycle of the multiword load, 4 is added
to the E/A in execution unit 1. During all subsequent
cycles, 8 is added to each E/A to obtain a new E/A. Thus,
the two units work in unison fetching odd/even pairs until
all fetching is done. As far as the cache is concerned, each

IBM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 1994

storage unit is treated as if it were a single-cycle load by
the TLLB and D-cache directory logic, and thus works as
described above in the load section. During the WB cycle,
the address is incremented by 2 for use during the next
WB cycle of the multicycle load. This loop continues until
all registers requested have been loaded.

The LSCBX (load string compare byte) instruction
works like a multicycle load as described above, with one
enhancement. This instruction loads the requested data
until a match occurs between a byte in the loaded data
stream and a byte in the FXU XER register. Once a
match is found, no more requests are made to memory.

LSCBX requests the number of bytes specified in the
XER (bits 16-23) until a match occurs between data being
loaded and XER bits 24-31. In this case, the XER is set
up for a 12-byte (three-word) load, and the comparison is
made for X' AA'. The match is found in the first word.

D. J. SHIPPY AND T. W. GRIFFITH

509

510

LSCBX cannot access memory locations past a lock bit
boundary (lock bit boundaries are 128 bytes long), until
all compares up to the boundary have been completed.
Thus, LSCBX does not access memory locations past a
compare byte. This prevents unnecessary data storage
interrupts.

Note that the comparison is actually made during the
WB cycle. This is implemented with 8-byte comparators
between the D-latches and the GPR (see Figure 4). This
creates pipelining effects which cause some bytes past
the compare byte to be undefined in the register file.

® Execution unit

The fixed-point execution unit performs the data
transformations required by fixed-point RR operations,
as well as the computation of the effective address for all
storage references. It also provides data steering signals
(register and MUX selects) to other sections of the chip
during the execution of move to and move from special-
purpose register instructions.

The FXU chip contains two execution units (Figure 5).
Each unit contains one adder and one logic-unit (LU)
functional block. The second execution unit also contains
the multiply-and-divide logic (MDU) functional block. All
multiply and divide operations are executed by the second
execution unit, since there is no hardware in the first
execution unit for these ops. The second execution unit
also contains a three-leg adder to allow the simultaneous
execution of dependent adder ops. When executing two
instructions in parallel that have a common register as
their target, the one in the second execution unit
overwrites the result of the first execution unit, as long
as the second execution unit does not receive a cancel.

Each execution unit is fed by its own copy of the
S-latch, A-latch, and B-latch (see Figures 4 and 5), which
generally correspond to the [RS], [RA], and [RB] operands
referenced in the instruction word. All results of data
transformation instructions are routed through an ALU
MUX. Each ALU MUX drives the result data bus, from
which data may be steered through bypass MUXes to the
S-latch, A-latch, or B-latch, in addition to being latched by
the register file input register. Store data from the fixed-
point unit pass through each execution unit directly to the
FXU pending-store queue (PSQ) register, and do not use
the ALU MUX result data bus.

Each execution unit operates as a slave to the execution
control unit and the decode units. The primary control
interface is a 10-bit opcode derived by the decode unit
from the 32-bit instruction word. These control vectors are
decoded by each execution unit to determine the actions to
be taken during the current execute cycle. A similar 10-bit
opcode which represents the instruction currently in the
decode phase of the pipeline is also decoded by each
execution unit in order to set up latches which must

D. J. SHIPPY AND T. W. GRIFFITH

provide timing-critical control signals early in the next
execute cycle.

Each execution unit manages the MQ and XER registers
as well as the XICR bus (by which the condition register
CR on the I-cache chip is updated with execution results)
for all instructions executed by the fixed-point chip.

The results of fixed-point instructions which update the
CR are developed and placed on each execution unit’s
XICR bus. The only exceptions to this are the instructions
LSCBX and RAC. The execution and condition code
generation for those instructions are controlled by the
execution control unit and the translation unit,
respectively, which signal the results to the execution
units.

The data transformation circuits in the first execution
unit may be divided into two subunits:

1. Two-leg 32-bit carry-lookahead adder unit.
2. Logic unit, comprising a rotator, a count-leading-zeros
unit, and a Boolean/mask/merge unit.

The data transformation circuits in the second execution
unit may be divided into three subunits:

1. Three-leg 32-bit carry-lookahead adder unit.

2. Logic unit, comprising a rotator, a count-leading-zeros
unit, and a Boolean/mask/merge unit.

3. A 36 x 36 multiply array and associated control logic
for performing a converging divide algorithm.

The adder unit for the first execution unit is a 32-bit two-
input carry-lookahead adder with one carry in; it produces
a 32-bit sum, two carry-outs, and a zeros-and-ones

detect signal. The ones detect signal is not used in this
implementation. The adder receives its two inputs from the
A0-latch and the BO-latch; the carry-in signal comes from a
latch in the XGA RLM. The execution control unit loads
the [RA] and [RB] operands into these registers during the
decode cycle of an adder operation. If the operation calls
for subtraction {e.g., negate, subtract, compare), the
execution control unit loads the Boolean inverse

of [RA] into the A0-latch. In such cases, the execution
unit sets the carry-in bit to the adder during the

execute cycle.

The adder for the second execution unit is a 32-bit
three-input carry-save adder with one carry-in, followed
by a 32-bit two-input lookahead adder with one carry-in.
It produces a 32-bit sum with four carry-outs and a zeros-
and-ones detect signal. A three-leg adder is used in the
second execution unit so that sequential operations can be
executed in one cycle, such as

A RL,R2,R3
A R4,R1,R5

IBM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 19%4

The multiply/divide unit (MDU) in POWER?2 has been
enhanced over that of the original RS/6000 [3]. The
multiply array allows for two-cycle multiplications for
all multiply instructions (MUL, MULS, MULLI), an
improvement over the earlier RS/6000, which took three
to five cycles for a multiply. The two divide instructions
(D1V, DIVS) are implemented with an adaptation of the
Anderson-Earle-Goldschmidt-Powers converging division
algorithm for adapting floating-point numbers to fixed-point
arithmetic. The DIVS and DIV instructions execute in 13
to 14 cycles; the DIV instruction may require three extra
cycles if the algorithm converges from above. This is an
improvement over the earlier design, which took 19 to 20
cycles for a multiply. When the divisor for the DIV
instruction is the most negative number (0X80000000),
two extra cycles are required.

The MDU is available only on the second execution
unit. During decoding, multiply and divide instructions
that come into the first execution unit are passed to the
second execution unit, where they execute in the next
cycle. The first execution unit may continue to execute
for one cycle while the multiply or divide instruction is
executing on the second unit. After the first cycle, only the
second execution unit can execute until the multiply or
divide is complete.

The POWER? fixed-point divide algorithm is based on a
floating-point converging algorithm. This algorithm starts
with a table lookup to generate the first n good bits; it then
iterates to produce the quotient. The remainder is then
computed by multiplying the quotient by the divisor and
subtracting it from the dividend.

& Synchronization of fixed-point and floating-point units
Synchronization between the FXU and FPU ensures

the integrity of the association between data and the
instruction that operates upon the data. For example, on
a floating-point load instruction, it ensures that the data
fetched by the FXU are loaded into the correct floating-
point register (FPR). In both the POWER and POWER?2
implementations, data integrity is maintained by
synchronizing on all floating-point loads; a floating-point
load executes in the FXU during the same cycle in which
the rename stage in the FPU is selecting a new physical
register for the load’s target register.

Synchronization also helps preserve precise interrupts
by ensuring that the FPU does not execute an interruptible
operation (IOP), or subsequent instructions, before the
FXU indicates that the execution may proceed. POWER
implementations use two mechanisms to preserve precise
interrupts [3]. An interruptible instruction latch in the FPU
ensures that the FPU never executes an IOP ahead of
the FXU. The FXU may not execute an IOP until the
instruction reaches the FPU rename stage. A counter,
indicating the relative execution positions of the FXU and

IBM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 1994

FPU, limits how far either unit can be ahead of the other.
The counter-based synchronization scheme relies on the
FXU and FPU seeing all instructions on the IBUS.

In POWER? implementations, the FXU does not see
FPU arithmetic operations, and the FPU does not see
FXU arithmetic operations. Therefore, a queueing scheme
was devised to allow precise interrupts. As in POWER,
the FPU may not execute IOPs ahead of the FXU.
However, the synchronization has been relaxed to allow
the FXU to execute all operations, except the floating-
point loads, ahead of the FPU [4]. Thus, the FXU can
execute all operations except floating-point loads ahead of
the FPU and the FPU can execute all operations except
IOPs ahead of the FXU. As a result, the POWER2 FXU
can execute further up the instruction stream and, under
certain conditions, provide data to the FPU in fewer
cycles.

Address translation and data protection unit
The POWER? address translation has also been improved
over that of the original RS/6000. In the new scheme, only
one memory reference is required for fetching page table
entries, rather than the two memory references required by
the earlier design. A second difference is that page table
entries for sequential pages can be cached; formerly, page
tables could not be cached. More details on address
translation follow.

POWER? is a register-intensive load/store architecture.
Data transfers between CPU and memory occur via
load/store operations only. For example, there are no
instructions that take the contents of a memory location
and add it to the contents of another memory location.

To support the high data rates required by the pipelined
processor, a high-speed data cache is placed next to the
CPU. Most load/store operations can be served by the
cache without degrading the FXU pipeline. Data not in the
cache are fetched from the main memory. If the data are
not in main memory, a page fault is taken, and the data
are retrieved from mass storage (hard disk).

The major features of the storage mechanism are the
following:

o Page size is 4 KB (2" bytes).

& Maximum real memory size is 4 GB (2% bytes,
one million pages).

& Presumed minimum real memory size is 16 MB
(2* bytes, 4K pages).

« Virtual memory size is 2* bytes.

» Number of segments is 2** (16M).

& Number of transaction IDs is 2'* (64K).

& Hardware support for special segments (physical lock
management on a 128-byte line).

& Automatic granting of locks in special segments.

& Memory-mapped 1/0 into /O segments. 511

D. J. SHIPPY AND T. W. GRIFFITH

512

| SegReg | VPI] PBO] Effective address EA)
0 3 19 | 31
L Virtual page L-> Offset in page
index (4-10) (20-31)
-
0 l SegReg 0 I
¥ ' . L]
SegRegi —-\T|K|SV/ /A SID]
S v 0 1 23 8 31
L 15 SegReg F | Virtual address = 24 bits SID + bits 4-31 of EA
[SID | VPI |
AN S
' Lookup
Page table
| Real page number (RPN) | PBO] Realaddress(RA)

Address translation overview.

An overview of the address translation scheme is shown

in Figure 7. Address translation is enabled by two bits in
the machine state register (MSR)—one for data address
translation, MSR(DR), the other for instruction address
translation, MSR(IR). Both are independent bits and may
be set differently. When translation is off (MSR = 0), the
segment register is accessed only to determine whether it
is an I/O segment for data storage accesses. If the T-bit in
the segment register is zero, the effective address is the
real address, and its numerical value is the address of a
byte in main memory. If the T-bit is one, the effective
address is sent to I/O.

However, if address translation is enabled (MSR = 1),
the 32-bit EA is converted to a 52-bit virtual address as
follows:

1. Use bits 0-3 of the effective address to identify one of
the sixteen segment registers (SR[O0 - - - 15]).

2. Concatenate the 24-bit segment ID (SID) field of the
accessed segment register with bits 4-31 of the EA.

This 52-bit virtual address is then converted into a 32-bit

real address (RA) via the hashed page table (HTAB or
HPT).

D. J. SHIPPY AND T. W. GRIFFITH

The hashed page table (HTAB) contains a maximum of
2" hash table entry groups (HTEGs). The HTEGs are
addressable elements within the HTAB, and each HTEG
contains eight page table entries (PTEs). Hashing the
virtual address produces a pointer to the first of two
HTEGs that could contain the translation for the virtual
address. If the translation is not found in the initial HTEG,
the virtual address is rehashed and a secondary HTEG is
searched.

As mentioned above, each HTEG contains eight PTEs.
Each PTE is composed of a two-word entry. The two-
word entry contains fields to specify the segment ID (SID),
the abbreviated virtual page index (AVPI), the real page
number (RPN), page protection bits (pp), the reference bit
(f), and the change bit (c). The organization of the hashed
page table and the content of the page table entries are
shown in Figure 8.

The translation between virtual address and real address
is defined by the HTAB, and conceptually this table is
searched by the address relocation hardware to translate
every reference. However, for performance reasons the
hardware keeps a translation lookaside buffer (TL.B) which
holds PTEs that have recently been used. A TLB is
organized like a PTE; hence, it can be considered as a

IBM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 1994

cache that contains a subset of the page table entry. The
TLB is searched before referring to the page table in
storage. As a consequence, when software makes changes
to the page table, it must issue the appropriate instructions
to invalidate the TLB and thereby maintain the
consistency between the TLB and the page tables.

When there is a TLB miss (i.e., no matching entry in
the TLB), the HTAB mask and HTAB org in storage
description register 1 (SDR1), the SID in the segment
register, and the effective address are used to calculate
the address of the first PTE group.

The FXU searches through the first group of PTE
entries until a matching entry is found. A matching entry
is one for which the valid bit is active, the SID in the
segment register matches the SID of the PTE (bits 1-24;
word 0), and bits 4-8 of the EA match the AVPI of the
PTE (bits 27-31; word 0). If a matching entry is found,
the RPN (bits 0-19) contained in word 1 of the PTE is
concatenated with the offset (bits 20-31) of the EA to form
the 32-bit word real address. However, if no match is
found in the first set of eight PTEs, a secondary HTEG
address is hashed, and the search is repeated as described
above.

All eight PTEs in the secondary HTEG are searched to
find a matching entry. If no matching PTE is found, the
translation fails, a page fault occurs, and a data/instruction
storage interrupt is generated.

Since POWER?2 contains two FXU execution units, a
translation miss from execution unit 0 must always be
resolved before a miss from execution unit 1 can be
resolved (this occurs when a load/store is received
simultaneously from both execution units). Furthermore,
any interrupt caused by unit 0 does not interfere with the
translation of a miss for unit 1 and vice versa.

& Translation lookaside buffer (TLB)

The data flow for the data TLB is shown in Figure 9. The
data TLBs are dual ports, two-way set-associative with 256
entries per set, and each entry contains two words (word 0
and word 1 of the PTE). An automatic hardware reload

of TLB entries on a miss and HPT update of reference/
change bits and data locking bits is included. The fixed-
point unit performs all TLB reloading and HPT updating
for the instruction cache unit, since it contains the only
path to the data cache.

Data cache control and directory unit
The data cache control and directory unit is responsible for
controling loads and stores for the FXU and FPU. Design
features include increased data path bandwidth and
D-cache support for multiple capacities and line sizes
in a nonblocking store-back design.

The D-cache pipeline for a fixed-point load begins in the
execution cycle with the access of the directory and status

IBM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 1994

HTAB -
PTEO
HTEGOJ | [pTE1]
P [ETEZL > 5] SID T7TR AVPL]Word 0
HIEG FIE3L | RPN V2772 f[c]Pp|Word 1
[PTE4 | Lo 20
L | PTES |
PTE 6 = i i i
—HTEG LA AVPI = Abbreviated virtual page index
Ly [PTE7 RPN = Real page number pes
h = Hash function selector
f = Reference bit
c = Change bit
pp = Pageprotection bit
v = Valid bit

% Hashed page table and page table entries.

arrays. The cache address tag and the TLB real page
number are compared (along with the associated control,
TLB hit, and cache valid bits) to form the cache late
selects. Also in this cycle, the D-cache address is launched
from the FXU and captured in the DCU. In the next cycle,
the cache access cycle, the D-cache is read and the FXU’s
late-select signal instructs the DCU multiplexer to send
the desired data to the FXU. This is the only two-chip
crossing path in the entire processor complex. The data
which arrive at the FXU are formatted and latched in the
D-latch (where data can update the GPRs) and may be
bypassed to the execution cycle input latches.

The data cache control and directory unit supports
two design points. The high-performance design point
incorporates a 256-byte line, 256KB D-cache with an
eight-word memory interface. The low-cost design point
incorporates a 128-byte line, 128KB D-cache with a four-
word memory interface. Both design points implement
a four-way set-associative D-cache; therefore, the
corresponding cache sets are 64KB and 32KB,
respectively. The longer line size improves performance on
sequential data accesses. However, since a cache set is 16
pages in size, the lower four bits of the page address are
required to index into the cache. This scheme places the
following restriction on the operating system: Any data
referenced with transiation on, and then again with
translation off, must keep the cache address portion of the
virtual and real addresses equal. This aliasing restriction
eliminates the chance of the same data being located in
the cache in two locations. Memory bus bandwidth is
augmented by a store-back D-cache design with two
change bits per line. To handle a cache store-back
operation, a 256/128-byte store-back buffer is implemented
to hold the data until the memory bus is available.

With the increased computing power of POWER2, the
data path bandwidth has been increased to prevent the

D. J. SHIPPY AND T. W. GRIFFITH

513

514

Unit0 Unit 1
Effective address Effective address
(from ALU) (from ALU)
32 32
V(12++19) b (12:-19)
©0--3) 12194 1 1219 1 (16"'19)"
1?0...3) (16"'19)'
Y 1] Yy Y ‘ Y
Segment ;’ v
register TLBA || TLBA TLBB || TLBB pect
segment
| Word 0 || Word 1 | Word 0| Word 1 e [o
S I
lRPNl v * Y
\ \ \ y A \
] 1 . vV coMP COMP
l COMP‘ COMP] COMP COMP SS Hitd SSHitl
RPNO
TLBAO‘ TLBAI‘ RPNO 11pBol TLBBI
hit hit hit hit

Data translation lookaside buffer organization.

data access from becoming a bottleneck. The D-cache
logic path is fully dual-ported from the directory arrays
and D-TLB to the D-cache itself. This allows the processor
to execute two load/store instructions per cycle. A three-
port adder in the EA generation path provides the
capability to execute two update-form load/store
instructions in parallel. Each data port to the FXU is a
single word wide, allowing two independent data
accesses. The new floating-point quadword load and store
instructions, matched with two quadword-wide buses to
the FPU, give the processor the ability to move four
doublewords per cycle into the FPU. The D-cache custom
array is capable of aligning data on a doubleword
boundary, so quadword accesses need only be on a
doubleword boundary.

The POWER?2 D-cache is a nonblocking design; the
D-cache can still be accessed on one port while the other
port resolves a cache miss. A second miss blocks all
accesses. Each port functions similarly to the POWER
single-port design, with many of the same dataflow
structures duplicated for the additional port. The following
sections describe the data flow in more detail.

& [oad dataflow

Figure 10 shows the load FXU/DCU dataflow. The
D-cache logic, including directories, D-cache, and
status array (not shown) is fully dual-ported. The design

D. J. SHIPPY AND T. W. GRIFFITH

is dynamic; either port may be driven from E-unit 0 or
E-unit 1. This is a nonblocking D-cache. Data can still
be accessed from the D-cache with one outstanding ““miss.”

® Fixed-point store dataflow

Figure 11 shows the fixed-point store FXU/DCU dataflow.
Two fixed-point stores can be executed per cycle and
placed in the fixed-point pending store queue (XPSQ).
One or two entries from the XPSQ can be written into

the D-cache per cycle using any available port. The XPSQ
is a non-overrunnable queue and has the first priority in
clearing entries. Data are always transferred from the FXU
to the DCU in the first cycle after executing a store and
are placed in a fixed-point store data register (XSDR) on
the DCU. Whenever a load/cache op is executed, it is
compared to all entries in the XPSQ to check for a match.
All compares are done using the effective address, and are
performed down to the word level, bits 14-29.

& Floating-point store dataflow

Figure 12 shows the floating-point store FXU/DCU/FPU
dataflow. Two floating-point stores can be executed per
cycle and placed in the floating-point pending store queue
{FPSQ). One or two entries from the FPSQ can be written
into the D-cache per cycle using any available port. The
FPSQ is an overrunnable queue capable of stopping
execution of floating-point stores. The FPSQ has lower

IBM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 1994

E-unit O adder E-unit 1 adder
—1 |
[mox || mux |
Port 0 Port 1
D-cache
directory
Port 0/1
TLB A/B RPN FPU data, FXU data
E/A(DR = 0) Port0 Port1 Port0 Portl
FXU
. Vol | Qudvortl
| D-cache
DCU data
[mux] [mux]
Late select
Port 0
MUX [FIMUX
Port 1 I

Dual load dataflow.

priority than the XPSQ. Data can be transferred from the
FPU to the DCU after the FXU receives a data-ready from
the FPU, depending upon bus availability. Data are placed
in a floating-point store data register (FSDR) on the DCU.
Whenever a load/fixed-point store/cache op is executed,

it is compared to all entries in the FPSQ to check for a
match. All compares are done using the effective address,
and are performed down to the word level, bits 14-29.

® Reload and store-back dataflow
Figure 13 shows the reload and store-back datafiow. When
the data are not found in the D-cache, a reload operation
moves data from memory to the D-cache. If the D-cache
destination for the new data contains data which have
previously been modified, a store-back operation moves
the modified data to memory.

The D-cache reload function is accomplished through a
third (reload) port on the D-cache array. The DCU is given

IBM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 19%4

a reload command specifying the address and set. As
memory data arrive, the data are written into the D-cache
in the second half of the cycle. Load-through data are
bypassed from the memory data latch and sent to the FXU
or FPU in the first data cycle of all loads. If an ECC error
is detected for bypassed data, the FXU or FPU will retry
the request; the second data cycle will contain corrected
data from the D-cache.

D-cache reloads are based on a true LRU algorithm with
the memory bus delivering eight (four) words of data per
cycle to fill a 256 (128)-byte cache line in eight cycles. The
cache line is fetched in a wraparound fashion in which the
first eight (four) words from memory contain the referenced
data. The memory data are loaded directly into the D-cache
on the reload port. This additional cache port provides
minimal processor performance loss during a reload operation.

The D-cache store-back function supports half-line
granularity by maintaining one change bit per half line. The

D. J. SHIPPY AND T. W. GRIFFITH

515

516

E-unit0 E-unit 1 Store() Store 1
adder adder data data

[XpsQl |

e

Dual fixed-point store dataflow.

DCU contains two cache line store-back buffers, SBBO and
SBBI1. The two buffers allow optimal performance on
reloads. SBBO is used to postpone write functions to the
memory. The FXU cache control will pass the reload
command to the SCU immediately on a miss with one
outstanding store-back in SBB0. The SCU will perform
reads before writes and postpone store-back operations to
give additional reload performance.

SBBI1 has the additional capability of being able to be
written from the XPSQ and the FPSQ. The XPSQ and
FPSQ are not checked before a reload command is issued
to the SCU. Once the reload has been given to the SCU,
the control logic moves the replacement line to SBB1.
The control logic checks the XPSQ and FPSQ against the
replacement line. If there is a match, the stores are done
to SBB1. SBBI1 is then moved to SBBO if it is available.
If not, the control logic holds until SBBO is unloaded to
memory and then moves SBB1 to SBBO.

Data cache unit (DCU)

The DCU consists of four identical chips, which provide a
four-way set-associative multiport store-back cache. The
DCU supports two design points. The first consists of a
256-byte line, 256KB D-cache with an eight-word memory
interface. The second consists of a 128-byte line, 128KB
D-cache with a four-word memory interface. As shown in
Figure 14, the DCU also provides several buffers for cache
and DMA operations, as well as error detection/correction
and bit steering for all data sent to and received from
memory.

D. J. SHIPPY AND T. W. GRIFFITH

The DCU provides a 128-byte instruction reload buffer
(IRB}) for transferring instruction cache lines to the ICU,
as well as store-back buffers for data cache operations.
Data cache reload buffers are built into the data cache
array macro. The DCU also provides an I/O cache for
DMA operations. This cache holds up to four I/O cache
lines and is controlled by the SCU. The following section
describes the data cache array macro. The other DCU
functions are described in more detail in the section
on the SCU.

® Data cache array macro

The data cache array is a four-way set-associative 64KB
dual-port array, with support for half-line store-back
operations, as well as support for quadword access on a
doubleword boundary. To meet the demands of the dual
execution units, the data cache array macro has been
enhanced over the previous cache designs [5]. The cache
is a multiported design which uses a virtual multiport
technique [6] and a standard single-port cell macro.

This technique has kept the size of the array small while
providing multiple ports. Other features of the array are
line zeroing, port swapping, unaligned access, and an array
built-in self test (ABIST).

The data cache array macro has three unique ports.
There are two 36-bit read/write ports (Port 0 and Port 1)
and one 72-bit write-only port (CRB port). The cache also
has a 288-bit read-only port designed for storing back
cache lines.

The virtual multiport technique provides a full three-port
array to the outside logic, while internally it pipelines three
sequential cycles within one processor cycle. The first two
read/write cycles are always performed. The third cycle is
for the CRB port and is only performed during cache
reloads. The CRB port is used for loading data from the
memory bus into the cache. Memory data are loaded one
word per cache macro per cycle in a four-word memory
system, and two words per cache macro per cycle in an
eight-word system.

A port-swap feature minimizes the delay for a read to
port 1 when preceded by a write to port 0. The feature
swaps the port operations to guarantee that a port 1 read
will never follow a port 0 write. This swap allows the
RAM to take advantage of the faster array recovery
following a read, and to start the port 1 access earlier than
if it had followed a write cycle. The port-swap circuitry
identifies when port 0 is writing, and then simply reverses
the internal port clocks. Forcing port 0 to occur second,
whenever a write occurs, allows it to become the priority
port during the double-write case. The reload write
maintains priority over the two execution unit ports.

The cache supports both aligned and unaligned accesses.
The cache can read (write) from (onto) the cache-to-
processor buses on doubleword boundaries. Because each

IBM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 1994

adder E-unit 1
adder

FPSQ5 |

FPU data queue

FPSQ'S
FPSQ4
FPSQ3
FPSQ2

FPSQ4 |

FPSQ1

FPSQO

§; Dual floating-point store dataflow.

DCU chip provides four bytes of a quadword, each array
requires access to data on either a word or half-word
boundary. The cache is organized to read/write “‘aligned
data,” such as a word (bytes Al, B1, C1, D1), or data on
a half-word boundary (see Figure 15). In this case, bytes C
and D from word 1 can be merged with bytes A and B
from word 2 to form the word C1{D1]A2[B2. The RAM
increments the address for half of the bytes and then
swaps the data between the upper and lower bytes for
proper alignment. The last word on the line is not valid for
this function; therefore, data misaligned across cache lines
require two RAM accesses.

IBM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 1994

The virtual multiport cache is designed to be logically
equivalent to a real multiport array. This requires a
compare-bypass feature for the two read/write ports to
guarantee that the execution unit receives the last data
written when the ports simultaneously read and write the
same address. Because the port-swapping feature will force
the read access to occur first, an address comparator and
data-in/data-out multiplexor are included to identify when an
address collision has occurred so that it can bypass written
data to the previously read port. The comparator not only
identifies when the addresses are equal, but also when
they are adjacent along a cache line. This is necessary

D. J. SHIPPY AND T. W. GRIFFITH

517

518

Memory bus
Latch
s-wgg bus A Load-through data
A 10 FXU 0/1 data bus
4-word bus to FPU 0/1 data bus
AdrPort0
Port 1 FPSQ
Adr reload

Reload and store-back dataflow.

when one access is aligned and the other is misaligned.
Although the addresses are different, portions of the
two accesses may overlap, and the comparator must
be able to bypass half of the bytes during a read/write
cycle.

To permit the software to initialize lines in the cache, a
mechanism is provided by which the FXU can zero-out
cache lines. This feature allows lines in the cache to be
initialized without requiring the line to be transferred from
memory. This initialization is significantly faster than a
series of stores with zeros for data.

Storage control unit (SCU)

The main function of the SCU is to control the
communication between the processor complex and the
other system units: I/O control units, main memory unit,
and the IPL read-only storage (ROS) unit. The SCU
interfaces with the FXU and ICU processor chips across
the P-bus, with I/O and ROS over the SIO bus, and with
main memory using the memory address and control
buses. Each of these interfaces has a unique set of control
signals. In addition to managing these interfaces, the SCU
contains logic for external interrupts and the performance
monitor.

D. J. SHIPPY AND T. W. GRIFFITH

Figure 16 shows a high-level block diagram of the SCU.
The SCU logic consists of the following areas: P-bus
interface, SIO bus interface, memory interface, ROS
interface, performance monitor, and external interrupts.
The memory interface is further broken down into cache
reload and store-back operations, memory scrub
operations, error handling, and bit steering.

® P-bus interface

The P-bus interface supports three types of operations:
memory, 1/O load/store, and move. Memory addresses

are moved from the P-bus into the P-bus memory queue
and then moved out to main memory via the memory
row/column address generation logic. I/O load/store
operations to the SCU are used to read and write SCU
registers, DCU registers, and I/O registers. The only SCU
registers which can be read and written from the P-bus are
the performance monitor registers, bank configuration
registers, external interrupt registers, SCU control
registers, and error registers. For 1/O load/store operations
to the DCU and 1/O registers, the 128-byte PIO buffer is
used to move data between the P-bus and SIO bus. Move
operations transfer the interrupt-level control register
(ILCR) to/from the P-bus in a single cycle.

® Memory interface

The memory interface is a high-speed, synchronous, split
address/data bus which allows the processor, as well as
I/O devices, to access main memory. The two primary
changes to the memory interface are support for both a
four-word and an eight-word memory-to-D-cache interface,
capable of transfer rates of more than 2000 MB/s, and
support for three cache line sizes. The memory interface
also improves performance through its memory request
queuing schemes and reload/store-back strategies. Like
POWER, this implementation enhances reliability with
memory scrubbing, ECC, and bit steering.

® D-cache line size support

The POWER memory interface supports 64-byte lines for
the I/O and instruction caches and 128-byte lines for the
D-cache. The POWER?2 design supports both 128-byte and
256-byte D-cache lines while providing both 64-byte
support for the POWER?2 I/O cache line and 128-byte
support for the I-cache. A new protocol was required not
only for four-cycle and eight-cycle transfers, but also for
two-cycle transfers. In addition, a new real-to-DRAM
address translation was required by the SCU for the eight-
word system. This translation is generated in a single
cycle, as is described later.

® Memory configuration

The memory interface supports both a lower-cost four-
word configuration and a high-performance eight-word
configuration. The four-word interface maintains

IBM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 1994

FIXObus FIX1bus FLOATObus FLOATI bus ROS(8)
\i | { i]

SIO bus
y

Memory BUSO Memory BUS1

. 4 DCU
]
[Xspro] [XsDR1] [FSDR0] [ESDRI o enl [MEM j'jlatch SIO laich]
{]
]
I 08 latc
3 4 \bit st/ bit sf
L1 1
N/ __/ Parity | g
check
ECC
72 bits l
PortOin Portlin CRBin N/
Cache array
Port 0 out Port 1 out SBB out ; Vo o
Instruction -
reload cache _l_
buffer)
3
| sBBieven]| | SBB1odd |
1 1
SBBO0 even l SBBO odd l
| 1
[ECC gen | [ECC gen]
__/ [MEMdata] [MEMdata] |] [SIOlatch]
A
) J] Y
FIXO0 bus FLOATO FIXlbus FLOAT!I Memory BUSO Memory BUS1 ICRLD bus SIO bus (18)
bus bus (40) (36)

DCU dataflow.

compatibility with the existing memory cards and
POWER’s I/O subsystem, creating a stable interface for
debugging the POWER?2 processor chips. The high-
performance eight-word interface supports the improved
processing capabilities of POWER?2. This unique memory
interface selects the mode by detecting the number of
installed memory cards.

Memory cards are two words wide; a minimum
configuration consists of two cards. When two additional
cards are installed, the memory interface becomes an
eight-word bus. The design provides the customer an
opportunity to buy a system with a minimal set of memory
cards. With no changes to the planar, hardware, or
software, the customer can add memory cards, providing
both a wider data bus and a larger memory. The wider
data bus doubles the memory performance.

IBM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 1994

The hardware automatically detects the number of
memory cards present and establishes the width of the
memory data bus. The on-card sequencer (OCS) monitors
a memory card detect signal to determine how many
memory cards are present. The OCS interfaces with the
common on-chip processor (COP) logic [7] in the processor
chips over a COP bus to configure the system. During IPL,
the OCS initializes a mode latch in the FXU, SCU, and
DCU that the processor chips use to determine a memory
transfer’s data width and number of cycles.

® Memory request queues and controls

To improve storage bandwidth and latency, the SCU
queues and prioritizes memory requests and controls
memory access. The SCU maintains three memory request
queues. The first queue holds up to three processor

D. J. SHIPPY AND T. W. GRIFFITH

519

520

Word 0 Word 1 Word 2 Word 9 Word 15
bytes bytes bytes bytes bytes
AO/BO/CO/DO | Al/BI/CI/D1 | A2/B2/C2/D2 A9/B9/C9/D9 Al5/B15/C15/D15
Data out Data out
“unaligned”” “aligned”
C1/D1/A2/B2 A9/B9/CO/DY

Aligned and unaligned data access across the cache line.

requests, the second holds two I/O DMA requests,

and the third holds one memory scrub request. Three
corresponding address generators create the address and
the bank selects for the next request on the queue. The
SCU arbitrates for the memory bus in paraliel with the
address generation. The SCU’s memory arbiter grant logic
selects one of three requests. The memory arbiter
prioritizes the requests in the following order: DMA
requests are highest in priority, followed by processor
requests, followed by memory scrub operations. If back-
to-back DMA requests are active along with processor
requests, the arbiter grants the two DMA requests first,
followed by one processor request.

While the arbiter is generating the bus grant, the bank
select logic determines which one of 16 memory banks to
activate. This logic compares the upper address bits of
the real address with the base address bits in the bank
configuration registers. The number of bits compared
depends on the size of the field in the configuration
register. If the addresses match, the bank select for that
register is activated, and the transfer is completed.

The memory interface control reduces latency on back-
to-back requests. By allowing two memory operations to
be pending at any given time, the memory card begins to
process the second request before the first is complete.

® Cache reloads and storebacks

When cache misses occur, cache reload and store-back
operations move instructions and data between memory
and the ICU, DCU, and FXU. These operations are jointly
executed by the FXU, DCU, ICU, and SCU. D-cache
miss performance is improved by implementing a load-
through path for reloads, a store-back buffer which allows
reloads to occur in parallel with a store-back operation to
the buffer, and a high-priority reload feature. The I-cache
miss sequence routes the data through the DCU to the

D. J. SHIPPY AND T. W. GRIFFITH

ICU, reducing the pin count and providing the DCU’s
error detection and correction (ECC) coverage.

D-cache miss and store-back requests are initiated by
the FXU and are sent as a processor request to the SCU.
The SCU controls the four-word or eight-word transfers
from memory to the DCU. As shown at the top of Figure
5, data pass through the bit-steering logic before being sent
along two data paths. The ECC logic path goes to the
D-cache. The load-through path bypasses the D-cache,
sending data directly to the FXU and FPU data buses.
When a new line of data is brought into the DCU, the
word that satisfies the request is brought in first,
minimizing latency. When the end of the line is reached,
the first word of the line and the remaining sequential
words are fetched until all eight four-word or eight-word
data packets arrive in the DCUs.

The high-priority reload operation provides a
performance advantage for all D-cache miss operations
that require the cast-out of a ““dirty’” line. For these
operations, two events must occur: Data from the D-cache
must be written back to memory and data from memory
must be stored into the D-cache. From a programmer’s
viewpoint, the data returned from memory are highest in
priority. The data written back to memory are no longer
needed. The high-priority reload design hides the cache
line store-back penalties on the memory bus. When the
SCU queues the cache reload and store-back requests, the
reload and store-back addresses are monitored. If the
addresses are not for the same cache line, the reload is
given higher priority. The store-back operation must then
wait to access the memory bus until there are no reload
requests pending.

I-cache miss requests are initiated by the ICU and are
sent as a processor request to the SCU. The SCU controls
the four-word or eight-word data transfers from memory to
the 128-byte I-cache reload buffer in the DCU. The SCU

IBM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 1994

P-bus in SIO bus in

]
T ¥ ¥ ¥
Performance External Y ’
monitor interrupt P-bus SEG reg DMA
registers registers y memory EFF req prefetch
PMCO PEISO queue queue
PMC1 PEIS1
PMC2 DEB K]
. MEEB DMA
M EPOW queue
PMC22 ILCR I
Scrub]
yome | I
SSAR External
SEAR interrupt logic Yy
STVR
I Error
L] regs 128-byte
Memory EESR/EEAR PIO
b logi
Bk scrub logic EECAR butfor
: ;‘:ﬁg o MESR/MEAR
regs y b SBSR/SBAR
CREO DSIRR
CREl MTOR
. vy |
*
Error logic
CREL5 ROS address
generation
\MRAT ¥ ———
Memory bank Memory Yyvy Vv YvYy
select logic address logic N i | I
\j v \J \j \/
Memory Memory Error P-bus out SIO bus out
bank select row/col address signals

s

SCU high-level diagram.

controls the order in which data are loaded (quadword 0
or quadword 1 first) and when data are sent on the
I-cache reload bus. The I-cache reload memory data pass
through the DCU’s bit steering and ECC logic. To reduce
latency, the first quadword of the memory data includes
the instruction requested by the ICU. A wraparound load
of the instructions is performed.

® Memory scrubbing

To reduce the chances of an unrecoverable failure, the
processor hardware provides a software-controlled
memory-scrubbing function that attempts to find and
correct single-bit errors before they become double-bit

IBM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 1994

errors. The software uses three registers, located in local
1/0 space, to control the scrub function: the scrub start
address register (SSAR), the scrub end address register
(SEAR), and the scrub timer value register (STVR).

The scrub sequence consists of three memory transfers:
a read operation to detect errors, a write operation to
correct the errors, and a read operation to verify that the
data have been corrected. If no errors are detected during
the initial read operations, the subsequent write and read
operations are not executed. When an error is detected,
the hardware records the type of error (soft, hard,
or uncorrectable) and the address where it was
detected.

D. J. SHIPPY AND T. W. GRIFFITH

521

522

® Error detection and correction

The ECC logic allows the DCU to correct all single-bit
errors and to detect all double-bit errors. The system
memory bus is divided into either eight or four ECC
words; each DCU chip receives either one or two words
per data transfer. The ECC word contains 32 data bits,
seven check bits, and one spare bit. Each word is encoded
with a modified Hamming code when written to memory
and is checked for errors when read from memory. If a
single-bit error is detected, the DCU corrects the data and
writes the ECC syndrome (eight-bit code which indicates
which bit failed) into a register. This register and the
corresponding failing address register and the
corresponding failing address register in the SCU can

be read by software to isolate the memory failure to a
particular memory bit.

® Bit steering

Bit steering improves reliability by providing a “‘hot stand-
by’” bit if a memory bit fails. The SCU enables bit steering
when a hard error in memory is detected through ECC and
memory scrubbing. The SCU sets one of the bit-steering
configuration registers (BSCR) to indicate the data word
position to which the spare bit should be steered. Each
DCU contains 16 BSCR registers, one for each memory
bank. Each 8-bit BSCR contains the ECC syndrome. The
DCU steers the spare bit into any data or check bit
position within the ECC word during transfers to memory
or from memory.

® Read-only storage

The ROS, located on the system planar, provides the code
and data required to initialize the system and perform
various disgnostic tests. This type of memory is typically
separate from the larger main memory discussed earlier.
For example, the POWER ROS interface used a separate
address and data bus. Packaging the POWER?2 on a
multichip module limits the processor to 512 functional
signals, leaving few signals available for the ROS interface.
POWER?2 uses the SIO bus as a ROS address bus,
eliminating the need for a unique bus.

POWER? reserves the upper 1 MB of the system address
space for ROS. When the SCU detects an address in this
range, it arbitrates for the SIO bus and generates the ROS
address. The SCU controls the transfer of data from the
ROS to the DCUs. When a full memory bus width (four
or eight words) has been received, the data are written to
either the I-cache or the D-cache. The fact that the data
come from ROS is transparent to the ICU and FXU.

® System I1/O bus

The SIO bus is a dedicated internal bus used for
communication between the processing units and the 1/0
control units. The bus contains a total of 98 signal I/Os.

D. J. SHIPPY AND T. W. GRIFFITH

The 86 bidirectional signals consist of a 72-bit multiplexed
address and data bus (which includes eight bits of parity),
and an eight-bit control bus with one parity bit and five
control tags (address valid, data valid, acknowledge,
processor lock, and checkstop). The other 12
unidirectional signals (four bus requests, four bus grants,
and four busy signals) are used for SIO bus arbitration,
and by the I/O control units to hold off I/O transfers.

The SIO bus supports the following transfers: 1/O loads
and stores, DMA block transfers, and 1/O interrupt
requests to the processing unit. All DMA transfers and 1/O
store transfers are single-envelope; the current transaction
in progress must be completed before a new request is
honored. All I/O load transfers have a disjoint reply
packet. The processor issues the I/O load request for one
of the I/O control units and then releases the SIO bus
while it waits for the load data. When the load data are
ready, the 1/O control unit requests the SIO bus and
transfers its data to the processor.

® System I/O direct memory access

The POWER? 1/O system overcomes many of the POWER
bottlenecks in moving data between main memory and I/O
devices, such as disk controllers and LAN adapters.
Improvements include increased 1/O transfer rates, support
for more 1/O controllers, I/O prefetch, and an I/O cache.
First, a DMA sequence is described.

Data are moved between memory and I/O devices using
64-byte DMA read and write requests on the SIO bus.
These operations are initiated by sending a command and
address to the SCU over the SIO bus. Data are routed
through the I/O buffers in the DCU. The SCU uses a
round-robin buffer selection scheme to choose which I/O
buffer will be used for the operation. For DMA write
requests, the SCU receives the 32-bit real address and 64
bytes of data from the I/O control unit. It then loads the
data into an I/O buffer two words at a time and unloads
the data to memory either eight or four words at a time.

The POWER2 SIO bus supports up to four 1/0 control
units; each unit manages four to eight Micro Channel
channels (or slots). Each channel can transfer up to
80 MB/s using the Micro Channe! Streaming Data
protocol [8].

To support the increased I/O bandwidth which results
from the multiple I/O control units, the POWER2 DCU
contains an I/O cache. The POWER implementation of
asingle I/O buffer [5] cannot sustain the high data transfer
rates on Micro Channel. The POWER?2 I/O cache improves
both read and write performance. The I/O cache consists
of I/O buffers in which data are prefetched for DMA read
requests from I/O bus units. This removes the memory-
card-DRAM latency for DMA data and provides a
continuous stream on the SIO bus. For prefetch
operations, the SCU fetches the 64 bytes requested as well

IBM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 1994

as the next sequential 64 bytes. For each new 64-byte
request, the SCU unloads the data that were previously
prefetched and fetches the next 64 bytes in parallel.

In addition, the I/O cache can buffer several I/O cache
lines during a stream of DMA writes, hiding the latency of
memory bus interference from the CPU. When access to
the memory bus is obtained, the data are written in parallel
with the loading of new cache lines.

® [FExternal interrupt logic

The external interrupt structure provides a mechanism

for some external event, such as an I/O device requiring
service, to break the normal flow of instructions. POWER2
provides a new high-performance external interrupt
mechanism that incorporates a hardware high-priority
detect, a priority mask, and a minimal set of single-cycle
instructions.

The POWER external interrupt structure has two
primary bottlenecks. First, the 64 interrupt bits are masked
on an individual basis. When an interrupt occurs, the
software interrupt handler iteratively loops through each
bit of the interrupt register until the highest-priority bit set
is found. Second, the interrupt register is mapped into
T/O space, requiring a segment register to be set up every
time a load or store to this register occurs. These 1/O
load/store instructions are inherently slow operations
because of the setup and the handshake between the
FXU and SCU.

To improve this scheme, the POWER?2 external interrupt
structure incorporates in hardware the high-priority
detection that was previously handled in software.
Additionally, the instructions used to interface to the
interrupt logic have been changed from slow I/O
load/stores to single-cycle move operations which operate
on a set of special-purpose registers. A data field in one of
these control registers provides the capability to set, reset,
and update the external interrupt hardware.

® Performance monitor

The SCU implements a centralized performance monitor
making possible a wide variety of POWER?2 performance
measurements {9]. The monitor consists of 22 software-
accessible counters that monitor activity in each of the
eight chips that make up the POWER?2 processor. A
performance monitor control register in the SCU selects
the events to be monitored. Such data could not be
obtained using an external monitor, since the processor is
packaged on a multichip module where only the memory
and SIO buses can be probed.

Summary
One of the primary goals of POWER?2 was to improve
performance by adding more execution units than those

IBM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 1994

found in the original RS/6000, but still maintain a balanced
system that avoids bottlenecks in the cache, memory, and
I/O interfaces. POWER?2 has achieved this goal in the
FXU, DCU, and SCU by the addition of a fixed-point
execution unit, a larger multiported data cache, an
improved bus organization, and an improved 1/O interrupt
and DMA subsystem.

Acknowledgments

The authors would like to acknowledge several people who
contributed to the POWER2 FXU, DCU, and SCU chips.
Larry Thatcher, David Ray, Alex Spencer, Warren Maule,
Roger Bailey, Mir Ali, Bert Williams, and Jennifer Le
worked on the FXU logic design, and Joaquin Fentanes,
Jr. worked on the physical design. Geordie Braceras
worked on the data cache array macro. Larry Howell,
Gary Countryman, Tao Brown, and Robert Wagner
worked on the DCU logic design, and Mike Chung worked
on the physical design. Doug Moran, Kurt Feiste, and
Hakim Mosleh worked on the SCU logic design, and
Adrienne Kokoszka worked on the physical design.

These teams documented much of the technical detail
presented in this paper. Ed Silha and John O’Quin were
hardware and software architects for the entire POWER?2
chip set.

POWER? is a trademark, and Micro Channel and RISC
System/6000 are registered trademarks, of International
Business Machines Corporation.

References

1. H. B. Bakoglu, G. F. Grohoski, and R. K. Montoye, ““The
IBM RISC System/6000 Processor: Hardware Overview,”
IBM J. Res. Develop. 34, 12-22 (1990).

2. G. F. Grohoski, ‘“Machine Organization of the IBM RISC
System/6000 Processor,” IBM J. Res. Develop. 34, 37-58
(1990).

3. G. F. Grohoski, J. A. Kahle, L. E. Thatcher, and C. R.
Moore, ‘‘Branch and Fixed-Point Instruction Execution
Units,”” IBM RISC System/6000 Technology, Order No.
SA23-2619, IBM Corporation, 1990, pp. 24-32; available
through IBM branch offices.

4. T. N. Hicks, R. E. Fry, and P. E. Harvey, “POWER2
Floating Point Unit: Architecture and Implementation,””
IBM J. Res. Develop. 38, 525-536 (1994, this issue).

5. William R. Hardell, Jr., Dwain A. Hicks, Lawrence C.
Howell, Jr., Warren E. Maule, Robert Montoye, and
David P. Tuttle, ““Data Cache and Storage Control Units,”
IBM RISC System/6000 Technology, Order No. SA23-2619,
IBM Corporation, 1990, pp. 44-51; available through IBM
branch offices.

6. Geordie Braceras et al., “A 200 MHz Internal/66 MHz
External 64KB Embedded Virtual Three-port Cache
SRAM,,”* ISSC Digest of Technical Papers, February 1994,
1EEE, Piscataway, NJ, pp. 262-263.

7. Ton M. Ratiu, ““Pseudorandom Built-In Self-Test,”” IBM
RISC System/6000 Technology, Order No. SA23-2619, IBM
Corporation, 1990, pp. 74-77; available through IBM
branch offices.

8. James O. Nicholson, ‘“Micro Channel Features,”” IBM

RISC System/6000 Technology, Order No. SA23-2619, IBM 523

D. J. SHIPPY AND T. W. GRIFFITH

Corporation, 1990, pp. 52-55; available through IBM branch
offices.

9. E. H. Welbon, C. C. Chan-Nui, D. A. Hicks, and D. J.
Shippy, “The POWER2 Performance Monitor,”” IBM J.
Res. Develop. 38, 545-554 (1994, this issue).

Received August 3, 1993; accepted for publication May
23, 1994

524

D. J. SHIPPY AND T. W. GRIFFITH

David J. Shippy IBM Systems Technology & Architecture
Division, 11400 Burnet Road, Austin, Texas 78758
(shippy@ibmoto.com). Mr. Shippy has a B.S. degree

in electrical engineering from the University of Kentucky

and an M.S. degree in computer engineering from Syracuse
University. He is currently an Advisory Engineer working in
the PowerPC processor development group at Somerset. Prior
to that he worked on the POWER?2 processor design. He
started with IBM in Endicott, New York, in the System/370
midrange processor development group. Mr. Shippy has
received two IBM Outstanding Technical Achievement
Awards and one IBM Division Award, as well as three IBM
Invention Achievement Awards. He holds several patents and
has numerous technical publications.

T. W. Griffith, Jr. IBM RISC System/6000 Division, 11400
Burnet Road, Austin, Texas 78758 (GRIFFITH at AUSVM6).
Mr. Griffith received a B.S. in electrical engineering from
the University of Texas in 1979 and an M.S. in electrical
engineering from Florida Atlantic University in 1982. He
joined IBM in 1979 in Boca Raton, Florida, where he worked
on Series/1 test engineering. He transferred to Austin in 1986
to work on the RS/6000 I/O channel controller.

System/370 is a trademark of International Business Machines Corporation.

IBM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 1994

