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The  POWER2"  floating-point  unit  (FPU) 
extends  the  concept  of  the  innovative 
multiply-add  fused  (MAF)  ALU  of  the  RISC 
System/6000@  processor to provide  a  floating- 
point  unit  that  sets  new  standards,  not  only  for 
computation  capability  but  for  data  throughput 
and  processor  flexibility.  The  POWER2  FPU 
achieves a  performance  (MFLOPS)  rate 
never  accomplished  before  by  a  personal 
workstation  machine  by 1) integrating  dual 
generic  MAF  ALUs, 2) doubling  the  instruction 
bandwidth  and  quadrupling  the  data  bandwidth 
over  that  of  the  POWER  FPU, 3) adding 
support  for  additional  functions,  and 4) using 
dynamic  instruction  scheduling  techniques to 
maximize  instruction-level  parallelism  not  only 
among its  own  internal  units  but  with  the  rest 
of the  CPU. 

Introduction 
The  original version of the RISC System/6000@  (RS/6000) 
floating-point  unit (FPU)  set  a new standard for floating- 

point performance. Its innovative multiply-add fused 
(MAF) dataflow  minimizes latency, rounding error, and 
chip busing [l]. The  MAF  unit performs a double-precision 
multiply in a single cycle and a double-precision add  in the 
following cycle. A single round occurs in the final  and 
bypassable stage of the pipeline.  The FPU combines, in a 
single two-stage pipeline, capabilities which  many other 
processors, such as the SuperSPARC Microprocessor [2], 
provide with two units, usually a separate multiplier  and 
adder. The simultaneous use of multiple execution units 
requires additional data buses as well as control logic for 
detecting dependencies across units. The architecture 
supports the exploitation of the MAF capability through a 
set of  multiply-add instructions. The RS/6000 processor 
support of these instructions allows execution of a 
dependent pair of operations with a combined latency of 
only two cycles. This feature is  unique in the industry. 

The POWER2TM FPU design  goal  is to build  upon 
these strong points to provide a FPU that sets new 
standards not  only for computation capability but also for 
data throughput and processor flexibility. The POWER2 
FPU achieves an MFLOPS rate never accomplished 
before by a personal workstation machine [3] by 
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Integrating dual generic MAF ALUs. 
Doubling the instruction bandwidth and quadrupling 
the data bandwidth over that of the RS/6000 FPU. 
Adding support for additional functions. 
Using dynamic instruction scheduling techniques [4] 
to maximize instruction-level parallelism, not only 
between its own internal units but also across the rest 
of the CPU. 

System  perspective 
Floating-point computation had a very revolutionary role 
in the evolution of computer processing. First, in the early 
systems, fixed-point arithmetic was used to perform 
numerical computation. The necessity for a floating-point 
representation grew from the dynamic range limitations 
and portability concerns associated with the various fixed- 
point work lengths available in the industry. Integer 
emulation of floating-point numbers became standard. 526 
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Second, as silicon became cheaper, it became practical 
to dedicate hardware to the task of floating-point 
computation. This dedicated hardware could  perform the 
standard arithmetic operations in significantly less time 
than the integer processor, which was customized for 
its own specific tasks. The first attempts involved a 
coprocessing element which was fed instructions once 
the core processor determined that the instructions were 
floating-point operations. In early versions, the FPU and 
the fixed-point  unit (FXU) could  not  run simultaneously. 

The third evolutionary step was incorporating this 
dedicated hardware into the rest of the CPU in a way 
which  maximized  floating-point performance and 
minimized processor overhead. As  an example, processors 
such as the Intel 8087 coarsely overlapped floating-point 
and nonfloating-point operations. As floating-point 
capabilities increased, migration of floating-point- 
dominated applications further accelerated the demand 
for more advances. Integrating the floating-point 
processor with the rest of the CPU became imperative. 

Various methods were used in attempting to integrate 
these units [5]. The  RS/6000 processor achieved much  of 
its floating-point performance by  tightly  coupling the FPU 
to the rest of the CPU, particularly the FXU. Although 
this design  point  significantly advanced the state of the art 
in  floating-point computation, the POWER2 FPU has since 
taken a further step by removing interlocks and increasing 
the autonomy of the multiple functional units. 

RS/SOOO FPU overview 
Figure 1 shows a block diagram of the RS/6000 FPU. The 
FPU receives two instructions from the instruction cache 
unit (ICU). These two instructions go  through a predecode 
stage in which the FPU discards nonfloating-point 
instructions, followed by a register-renaming stage [6]. 
Register  renaming  allows  hardware to remove any read-before- 
write or write-before-write conflicts between arithmetic and 
subsequent load operations. Register  renaming,  along with 
the pending store queue buffer, greatly increases the 
potential for the FXU and FPU to operate independently. 
The rename stage forwards the two instructions to the 
execution unit responsible for that class of instruction. The 
load  unit  receives  load  operations,  while the MAF execution 
unit receives both arithmetic and store operations. 

This MAF unit performs all  of the floating-point 
arithmetic instructions, such as the multiply-add fused 
operation, as well as all  floating-point store operations. 
All internal data representations use the IEEE [7] double- 
precision format (with  an extended exponent field). 

Dual  unit  motivation  for POWER2 
Three factors determine the time required by a processor 
to complete a program [8]: 
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program. 

Compiler capabilities determine the total number of 
instructions required for a given  program. The second and 
third factors are under the CPU designers' control. The 
POWER2 FPU targets both factors. To decrease the cycle 
time, the POWER2 processor employs 0.5-pm CMOS 
technology. This process allows processor clock rates 
that are more than twice that of the initial versions of the 
RS/6000 processor. In decreasing the average number of 
cycles required to execute an instruction, one can either 
decrease the latency of the execution unit or add  more 
execution units. Given a two-cycle latency for dependent 
multiply-add instructions, decreasing the latency for a 

single FPU instruction is  unlikely. However, increasing 
instruction-level parallelism to decrease the average time 
for execution of a group of instructions is viable. POWER2 
achieves this by doubling the number of floating-point 
execution units. A fundamental challenge confronting the 
POWER2 FPU design  team was how to feed both units 
simultaneously to achieve maximum performance. 

The POWER2 FPU 
Figure 2 is a block diagram of the POWER2 FPU. The 
figure  highlights the functional units that were not present 
in the RS/6000 FPU design. The FPU receives four 
instructions from the ICU, double that of the RS/6000. 
It pipes them  through the predecode and register-rename 
stages, both twice the width of the analogous RS/6000 
stages. Once past the rename stage, the instructions split 
up into one of three types of execution units: a load 
execution unit, an arithmetic execution unit, and a store 527 
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execution unit. Each one of these units is actually a 
plurality of units; two instructions of each class can 
execute simultaneously. The arithmetic pipeline can start 
two arithmetic operations simultaneously, the store 
pipeline can perform two store operations simultaneously, 
and the load  pipeline  can perform two load operations 
simultaneously. 

independently of the others, barring data dependencies. 
However, the FXU, which does all address calculations, 
can  perform only two loads/stores at any one time  (in any 
combination:  Idfld, st& ld/st, or st/ld), because it has only 
two arithmetic logic units (ALUs). 

Unlike the RS/6000 processor, the POWER2 FXU and 
FPU receive only the instructions that they will execute, 
except for interruptible instructions. After the instruction 
stream has passed through the ICU, only two types of 
instructions can cause an interrupt: memory-accessing 

Each of these units is capable of executing 

528 instructions (loads and stores) and fixed-point trap 
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instructions. POWER2 systems perform synchronization of 
the FXU and FPU units at these interruptible boundaries. 
Each unit  may  "get  ahead" of the other (with respect to 
the instruction stream) until  it encounters a potentially 
interrupting instruction. At this point, synchronization must 
occur. If the FPU encounters the interruptible operation 
(IOP) first, it waits until the FXU performs the address 
calculation (or executes the trap) and signals the FPU that 
execution  can  continue. If the FXU encounters the  IOP  first, 
the FXU informs the FPU that  instructions  can  continue  past 
the IOP.  Once the FPU reaches the IOP,  it  ignores its 
interruptible capability (having already been cleared for 
execution) and execution continues without any stalls. 

at its peak performance regardless of stalls within the 
other unit. For example, the FXU can proceed to execute 
register-to-register and load/store operations even when the 
FPU is  working on multicycle arithmetic operations, such 
as divide or square root. 

The  POWER2 FPU targets five areas for improving 
floating-point performance: 

Maximize  parallelism between dual arithmetic units. 
Maximize  parallelism between arithmetic and store 

Quadruple data bandwidth and process cache hits under 

Double instruction bandwidth. 
Migrate operations to hardware. 

This synchronization scheme allows each unit to operate 

operations. 

miss. 

Maximizing  parallelism  between  dual  arithmetic 
units 
One of the limiting factors in issuing  multiple instructions 
in a superscalar processor is the number of floating-point 
pipelines. As previously mentioned, the POWER2 FPU 
contains two generic multiply-add ALUs, each of which is 
capable of executing all  floating-point register-to-register 
operations. The two primary concerns for avoiding 
bottlenecks are how to avoid  unit interlock when both 
units are fed  from a common queue, and  how to minimize 
delays for unit-to-unit dependencies. 

While one h4AF unit  is consumed for many cycles 
because of multicycle operations, such as divide or square- 
root instructions, the instruction queue should be  able 
to feed the other unit  with independent instructions. 
POWER2 allows this by providing a backup register 
above each of the execution units. This register provides 
sufficient instruction buffering  and pathways to allow one 
unit to continue while the other unit processes a multicycle 
operation. 

without stalling the other pipe. For example, consider the 
following code: 

This register also allows one dependent operation 
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Since  the divide instruction is held in the  backup register 
(and the  dependent  add is  held  in decode  for MAFO), the 
independent multiply-add instruction (fma), and  any 
following instructions,  may  execute in MAF1. Figure 3 
shows  the  instruction  queue  that  feeds  both units and  also 
highlights the  backup registers. 

Bypass  buses  between  the two units minimize  unit-to- 
unit dependencies.  Instead of requiring that  the result data 

be  written  into  the floating-point registers (FPRs) prior to 
subsequent use, the RS/6000 FPU  has  the capability to 
bypass  the  registers  and  pass  the resultant data (leaving 
the IEEE rounder)  directly  into  the  add  operand  and (from 
before  the  rounder, which was required to  make  the  setup 
time  for the multiplier) directly  into  the multiplier. Both 
POWER2 units can  bypass in the  same  manner  (that is, no 
cycle delay  is  required for passing  through the register 
file). Figure 4 highlights these  bypasses. 

When an  instruction is in the  arithmetic  instruction 
queue  preparing  for  execution,  the logic compares  the 
operand  registers of the  instruction with the target of the 
instructions  already in execution  to  detect dependencies. If 529 
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the logic detects a dependency, the multiplexers select the 
appropriate bypass bus. To utilize these bypass buses, the 
result must be a normalized  number. Zero, infinity, NANs, 
and unnormalized  and denormalized numbers cannot use 
the data bypasses. 

(floating-point status and control register), controls 
rounding, dictates exception handling,  and records 
exception status of executed arithmetic instructions. When 
an arithmetic instruction is in the last cycle of execution, 
the FPU reads the rounding mode (bits that specify one of 
four IEEE standard [7] rounding modes) from the FPSCR 
and updates status flags such as overflow,  underflow,  and 
inexact. The FPSCR holds the rounding mode, floating- 
point trap enables, condition codes, and  IEEE exception 
status. A detailed description can  be  found  in the A Z P  
Version 3.2 for RISC System/6000 Assembler Language 
Reference Manual [lo]. The FPSCR register is shown in 
Figure 5. 

Arithmetic operations may complete differently  from 

One  floating-point architected register, the FPSCR 

the sequential ordering of the program;  an obstacle to 
optimizing arithmetic performance is  maintaining the 
integrity of the FPSCR register when this occurs. 

The POWER2 FPU,  like its predecessor, does not 
support precise floating-point interrupts within the 
hardware itself. All exceptions are recorded within the 
FPSCR register, and execution status is checked by polling 
this register and trapping on a software comparison of 
the exception flags. As in the RS/6000 architecture, a 
mechanism does exist within the instruction unit to put 
the system into a  state in which precise floating-point 
interrupts are possible (the setting of the FE bit  within 
the MSR register). However, this severely degrades 
performance and  is only recommended for software 

530 debugging.  In POWER2, hardware support for a floating- 
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point imprecise interrupt was also added in order to aid in 
software debugging. The enabled exception summary bit 
within the FPSCR register was tied into the external 
interrupt line  within the instruction unit. The external 
interrupt handler  is then responsible for polling the FPSCR 
register to determine whether the interrupt was due to a 
floating-point exception. 

Since the FPU handles all data adjustments due to 
exceptions “on the fly,” the polling of the FPSCR register 
is a viable method of handling exceptions in a superscalar 
machine. However, the sequential appearance of the 
FPSCR register must be maintained, despite the fact that 
the arithmetic operations whose status is being recorded 
may complete out of order. When the programmer  polls 
the FPSCR, it  must  reflect the state of the FPU at that 
instant as if  all instructions were executing sequentially. 
Also, at the execution time of each arithmetic operation, 
the control portion of the FPSCR (such as the rounding 
mode)  must  reflect that of sequential execution. 

The RS/6000 floating-point arithmetic instruction set 
can be  divided into two classes of  FPSCR operations: 

Type1 instructions report the progress of their own 
execution to the FPSCR and  depend  on the control 
portion in order to execute properly [e.g., a floating- 
point  add instruction (FA) which reports the occurrence 
of  an overflow  during execution (UX bit) and whose 
results depend upon the IEEE underflow trap enable 
flag (UE bit) set in the control portion]. 
Type2 instructions are instructions whose target is the 
FPSCR itself  [e.g., a move to  or from status registers 
instructions (MTFSF  and  MFFS, respectively]. These 
instructions are used to save and restore the state of the 
FPU upon task switching or to poll the FPSCR for 
exception checking. 

IBM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 1994 



The  FPSCR register is  divided into a sticky field and a 
nonsticky field. The bits within the sticky field have the 
characteristic that once they have been set (switched to an 
active state), they stay set until a type2 instruction resets 
them. Bits within the nonsticky field are evaluated and 
allowed to switch every cycle. 

must be made: At the time  of execution of a type2 
instruction, all operations sequentially preceding it  must 
be complete (or guaranteed to complete before the type2 
instruction). This is to guarantee that if the type2 operation 
is to move (read) the status/control register, it  will be 
reading the sticky status of ALL the operations before it, 
and the nonsticky status of the single instruction preceding 
the type2 operation. Therefore, the first rule of this 
mechanism is that execution synchronization occurs 
on  all operations of type 2. 

Once this is accomplished, sequential instruction 
execution such as this: 

Before explaining the mechanism used, one observation 

type',  type',  type',  type',  type21  type',  type22 
can  be  viewed as this: 

where out-of-order optimization can be performed within 
the typel instruction boxes. 

into a sticky field  and a nonsticky field.  Maintaining the 
sticky field  is  not a problem, since order of execution is 
not important to a sticky bit (once it is set, it stays set). 
However, when the type2 instruction executes, the 
nonsticky field must  reflect the execution of the previous 
instruction. In the above example, when instruction type2, 
executes, the nonsticky field must  be updated as  a result of 
instruction typel,. 

The mechanism consists of two apparatuses, a  state 
machine pointer and a tagging  mechanism.  The state 
machine pointer is  used to keep track of which execution 
unit has the most recent typel (sequential) instruction. The 
state machine monitors the dispatch control unit (since this 
is the last place serialism is preserved) in order to track 
the order of execution. The  tagging  mechanism  is used to 
tag the instruction that comes before a type2 instruction. 
When a type2 instruction is ready to be dispatched, the 
state machine pointer identifies the execution unit that has 
the instruction preceding it. The instruction in the earliest 

As mentioned previously, the FPSCR register is  divided 
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Dispatch logic 10 Execution 0 Execution 

unit 1 

Three stages 

pipeline stage of that execution unit  is then tagged. 
When  an instruction identified by the  tag pointer finishes 
execution, it is  allowed to update the FPSCR. If the tag 
pointer does not identify any instruction that has finished 
execution, then the instruction identified by the state 
machine pointer is  allowed to update the FPSCR. 
Therefore, if the type2 instruction is  not fetched for 
several cycles (and therefore no tag has been set), it is 
still guaranteed that the instruction preceding this type2 
instruction will be reflected in the FPSCR register. Since 
execution synchronization occurs on  all type2 instructions, 
it  is guaranteed that they finish alone; therefore, type2 
instructions override the state machine pointer. Figure 6 
shows the mechanism. Notice that the sticky bits are just 
ORed together regardless of execution order, while the 
nonsticky bits are selected by a multiplexor controlled by 
the state machine pointer. 
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Figure 7 illustrates the execution of the following stream 
of code: 

type117  type129  type139  type219  type147 @Pel, 

1. In cycle one, the first two instructions are in sequential 
buffers 0 and 1, ready to execute. 

2. In cycle two, the first two instructions begin execution 
in execution units 0 and 1, respectively. The third and 
fourth instructions (typel, and type2,) move into 
sequential buffers 0 and 1. Also in cycle two, the 
pointer is  pointing at the typel, instruction, since it  is 
the most recent in execution. 

3. In cycle three, the typel, instruction begins to execute. 
Since synchronization must occur on all type2 
instructions, type2, cannot begin executing in cycle 
three. Therefore, it  is shifted into sequential buffer 0, 
allowing typel, to enter sequential buffer 1. Also in 
cycle three, since the next instruction is  type2,  tagging 
is done. The instruction highest  in the execution unit 

to which the pointer is pointing (in this case execution 
unit 1) is  tagged (typel, above). 

4. In cycle four, the type2 instruction begins execution. 
Again, typel, cannot start with the type2 instruction. 
Therefore, it is shifted into sequential buffer 0, allowing 
typel, to move into sequential buffer 1. Also in cycle 
four, the first two instructions are completing execution. 
Since the pointer is pointing to execution unit 0, typel, 
has access to update the nonsticky portion of the 
FPSCR register, even though  it  is  not the next sequential 
instruction (typel, is). This anomaly  is irrelevant 
because there is another instruction following (to which 
the pointer is actually pointing).  When  it (typel,) 
completes, the status/control register will be corrected. 

5. In cycle five, the last two instructions begin execution 
simultaneously. The tagged instruction (typel,) is in the 
final stage of execution, and  even  though the pointer is 
not  pointing to it, it writes to the nonsticky FPSCR 
register, because of the tag. 



Execui 

Arithmetic 
execution 

units 

I Instruction queues and  store  count fields. 
~~ 

6. In  cycles six and  seven,  the  last two instructions 
complete  execution.  Since  there  are  no  more 
instructions,  the pointer  simply  follows typel, down 
through  the pipeline  stages, allowing it to  write  the 
nonsticky  FPSCR register in cycle seven. 

Maximizing  parallelism  between  arithmetic  and 
store  operations 
In POWER, floating-point arithmetic  and  store  operations 
compete  for  the single MAF  resource. Normalization and 
denormalization of store  data  require  the  MAF unit. 
The  POWER2  FPU  separates  the  store  and  arithmetic 
execution units. This allows arithmetic  operations  to 
operate in parallel with  independent  store  operations. With 
this  implementation, synchronizing  the two units to  detect 
true  data  dependencies while allowing out-of-sequence 
execution is  a  challenge. The solution  utilizes two 
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mechanisms:  a means of preserving  precedence  and a 
means of detecting  dependencies. 

Unlike some  other  RISC implementations [9], the  RISC 
System/6000 implementation  allows instructions  to  proceed 
all the  way through the pipeline to  the  execution  stage 
before checking operand availability. This  increases  the 
opportunity  for instruction-level parallelism. However, 
the  FPU  must  preserve  the serialization of dependent 
arithmetic  and  store instructions. The  POWER2 design 
point requires a  mechanism to optimize  parallel 
independent  execution while detecting  and serializing 
dependent execution. 

The  FPU  includes a  serializing  mechanism,  called the 
“store  count (STC) field,” associated  with  the  instructions 
in the arithmetic  queue. This field indicates the  number 
of store  instructions in the  store  queue  that  are logically 
ahead of a  particular arithmetic instruction. A bank of 
comparators  compare  the  target  operand of the  arithmetic 533 
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instruction (in AQO) with the source operands of the 
instructions in the store queue. This information is then 
combined with the information  from the STC to determine 
whether the pipeline can execute the arithmetic. The 
FPU uses this same mechanism to decide when store 
instructions can begin execution. Figure 8 illustrates the 
STC mechanism. 

The figure shows the renaming stage of the instruction 
pipeline, at which point instructions are in the sequential 
order received from the ICU. Four instructions at a time 
move  from the rename stage into their respective queues 
(arithmetic or store). As an arithmetic instruction moves 
into the arithmetic queue (AQ), the serializing  mechanism 
adds the count of  all store .instructions in the rename 
stage ahead of the arithmetic instruction to the count of 
instructions currently in the store queue (SQ), then 
subtracts the number of store instructions starting 
execution. The serializing mechanism places the count 
in the store count field associated with the arithmetic 
instruction in the AQ. The STC data move  down the queue 
as the arithmetic instruction moves down through the AQ. 
The FPU decrements each store count entry in the queue 
each time a store instruction executes. 

When the STC is zero, there are no store instructions 
which  could cause a dependency ahead of that arithmetic. 
The pipelines can execute arithmetic instructions that have 
an STC of zero immediately, regardless of store instruction 
comparisons. When the STC is nonzero, the FPU must 
compare the arithmetic target register with the source 
operands of each store, up to and including the number 
of stores indicated by the STC. If none of these store 

534 operands match the arithmetic target, the arithmetic 
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instruction can begin executing, even though these store 
instructions are lined  up sequentially before the arithmetic. 
If the targets do match, the arithmetic instruction must 
wait  until the store executes, or the operation will destroy 
the data being  moved to memory by the store instruction. 

A store (in SQO) may execute immediately if  all  of the 
instructions in the AQ have a nonzero STC.  This case 
indicates that the store came before all  of the arithmetic 
instructions in the AQ. The FPU must compare the store 
operand with the target of  all arithmetic instructions in 
the AQ that have an STC of zero. If the operands do  not 
match, the store can execute, even though the store is 
lined up sequentially after each arithmetic instruction 
with  an STC of zero. If the targets do match, a true data 
dependency exists, and the store must  wait  for the 
arithmetic instruction to generate the data to be stored 
in  memory. The fact that POWER2  can execute two 
stores and  two arithmetic operations per cycle further 
complicates this mechanism. However, this mechanism 
allows the POWER2 FPU to separate arithmetic and store 
execution units while  requiring synchronization only on 
true data dependencies. 

Quadrupling  data  bandwidth  and  processing 
cache  hits  under  miss 
Modern  packaging technology permits chips with  large 
pin counts. The POWER2 FPU has 506 signal I/Os. The 
designers allocated  more than half  of these to the dual 
quadword (16 bytes) data buses which  move data to and 
from the data cache unit (DCU). Supporting dual 
quadword buses (compared to POWER’S  single 
doubleword bus) gives  POWER2 a fourfold increase in 
data bandwidth. Storage-reference-limited codes, such 
as Linpack, often obtain a substantial performance 
boost from  dual units, wide buses, and quadword storage 
instructions [3]. Figure 9 shows the data and instruction 
bus organization. Synchronization between the FXU 
and the FPU during the execution of floating-point  load 
operations is necessary to ensure that the data are routed 
to the correct FPRs and aligned properly. Figure 10 shows 
the stages of execution for a floating-point  load operation. 

translates the address and forwards the request to the data 
cache. During stages three and four, the FXU loads a data 
register into the FPU and tells the FPU which port the 
data are on  and  how to align the data. The FPU then 
determines the load instruction to which the data 
correspond (depending on previous signals) and moves the 
data into the appropriate FPR (or FPRs in the case of a 
load  quad instruction). 

A key design  point of the POWER2  implementation is 
the ability to continue processing and executing loads and 
stores through one fixed-point execution unit  while there is 
a cache miss  in progress (because of a load or store which 

During the first two stages, the FXU generates and 
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1 2 3 4 

Address  calculation  Apply  address 
in FXU 

Align datal 

register  in FPU 
to Dcu load temporary Move to FPR 

Cycle 1 2 3 4 5 

Execution 
unit0 

Execution 
unit1 

Cache miss Cache miss Cache miss 

DATA3 

DATA0 

._I._,_._._. ~ ". . .". ..  .. . .~........I. ... ." .. " . . . .. . . .. . .. . . . . 

1 Overlapping  load execution with data cache misses. 

executed in the other execution unit). The two data ports 
to the FPU are tied to the two execution units in the FXU. 
Therefore, the order for the data ports is the same as that 
of the fixed-point execution units (that is, port 0 is the 
oldest and port 1 is the newest). However, depending on 
the availability of the data in the cache, the loading of data 
into the FPU can complete out of order. This means that 
the FPU may  load data into the FPRs in a different 
order from the load instructions. For the sequence of 
instructions in Figure 11-which assumes a cache miss for 
LFDO (load  double)-LFD1, LFD2, and LFD3 complete 
before LFDO. 

Migrating  operations  to  hardware 
Through RS/6000 application performance analyses, the 
FPU targeted two operations for enhancement. The 
POWER2 FPU hardware implements the square-root and 
convert-to-integer operations, which are both math library 
subroutine calls in  POWER. The square-root function 
improves from a software implementation of roughly 53 
cycles to a hardware implementation of  27 cycles. The 

square-root implementation uses a state machine controller 
for the MAF  unit  similar to the divide implementation. 

The architecture adds two forms of convert-floating- 
point-to-integer instructions. One performs the rounding 
specified in the FPSCR control register; the other forces a 
truncation (round-to-zero mode) which provides support 
for the FORTRAN intrinsic INT. This eliminates the need 
for machine cycles associated with  loading the FPSCR 
register when truncation is appropriate. 

Status  and  interrupt  support 
A hardware mechanism in POWER2 maintains the 
integrity of the single  FPSCR architected register despite 
simultaneous updates from the dual MAF units. The only 
instructions that force unit-to-unit synchronization are 
those specifically directed at the FPSCR registers, such as 
MTFSF (move to FPSCR). These instructions cause a stall 
in the MAFl unit for one or two cycles. 

The POWER2 FPU, like its predecessor, does not 
support precise floating-point interrupts within the 
hardware itself. The processor records all exceptions 535 
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within the  FPSCR register and  checks  execution  status  by 
polling the register and trapping on a software  comparison 
of the  exception flags. As in the RS/6000 implementation, a 
mechanism does exist  within the  ICU  to  put  the  system 
into a state  that will make  precise floating-point interrupts 
possible (the  setting of the FE bit within the MSR 
register). The  processor implements this  mode  by 
restricting the ICU’s issue  rate so that  only  one floating- 
point  instruction  is  outstanding. This  severely  degrades 
performance  and is only  recommended  for  software 
debugging. POWER2  adds  hardware  support  for a floating- 
point  imprecise interrupt  to aid in software debug. This 
enables  an  “abort on error”  (such  as divide by  zero) while 
the  processor is running at full speed. 

Summary 
The  POWER2  FPU  advances  the  state of the  art in 
superscalar floating-point architecture  by doubling the 
number of execution units  while supporting  the industry’s 
fastest  dependent multiply-add operation. Its flexible 
integration with  the  rest of the  CPU  and  dynamic 
instruction scheduling make  its  theoretical  peak 
performance  sustainable within  loops. Its  cache miss 
bypassing  allows execution  to  continue during cache 
reloads. The  status  and  exception recording  mechanism 
helps avoid ALU-to-ALU interlocks. All of these 
improvements  contribute  to a peak,  and often  realizable, 
performance of four  MFLOPS  per  MHz (286 MFLOPS  at 
71.5 MHz). 
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