POWER2
floating-point
unit;
Architecture
and
implementation

The POWER2™ floating-point unit (FPU)
extends the concept of the innovative
muitiply—add fused (MAF) ALU of the RISC
System/6000® processor to provide a floating-
point unit that sets new standards, not only for
computation capability but for data throughput
and processor flexibility. The POWER2 FPU
achieves a performance (MFLOPS) rate

never accomplished before by a personal
workstation machine by 1) integrating dual
generic MAF ALUs, 2) doubling the instruction
bandwidth and quadrupling the data bandwidth
over that of the POWER FPU, 3) adding
support for additional functions, and 4) using
dynamic instruction scheduling techniques to
maximize instruction-level parallelism not only
among its own internal units but with the rest
of the CPU.

Introduction
The original version of the RISC System/6000® (RS/6000)
floating-point unit (FPU) set a new standard for floating-

point performance. Its innovative multiply-add fused
(MAF) dataflow minimizes latency, rounding error, and
chip busing [1]. The MAF unit performs a double-precision
multiply in a single cycle and a double-precision add in the
following cycle. A single round occurs in the final and
bypassable stage of the pipeline. The FPU combines, in a
single two-stage pipeline, capabilities which many other
processors, such as the SuperSPARC Microprocessor [2],
provide with two units, usually a separate multiplier and
adder. The simultaneous use of multiple execution units
requires additional data buses as well as control logic for
detecting dependencies across units. The architecture
supports the exploitation of the MAF capability through a
set of multiply-add instructions. The RS/6000 processor
support of these instructions allows execution of a
dependent pair of operations with a combined latency of
only two cycles. This feature is unique in the industry.

The POWER2™ FPU design goal is to build upon
these strong points to provide a FPU that sets new
standards not only for computation capability but also for
data throughput and processor flexibility. The POWER2
FPU achieves an MFLOPS rate never accomplished
before by a personal workstation machine [3] by

©Copyright 1994 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of

this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 1994

525

T. N. HICKS, R. E. FRY, AND P. E. HARVEY

526

Instruction 1 Instruction 2

Buffers

¥ Y
LPredeiode [Predecode |

| Predecode]I Predecode }

Load Arithmetic Store
queue queue quene
|]

MAF unit

(Arithretic. and
store execution)

y

Data store queue

Two.words

Data bus

ey

Block diagram of RS/6000 FPU.

e Integrating dual generic MAF ALUs.

¢ Doubling the instruction bandwidth and quadrupling
the data bandwidth over that of the RS/6000 FPU.

¢ Adding support for additional functions.

¢ Using dynamic instruction scheduling techniques [4]
to maximize instruction-level parallelism, not only
between its own internal units but also across the rest
of the CPU.

System perspective

Floating-point computation had a very revolutionary role
in the evolution of computer processing. First, in the early
systems, fixed-point arithmetic was used to perform
numerical computation. The necessity for a floating-point
representation grew from the dynamic range limitations
and portability concerns associated with the various fixed-
point work lengths available in the industry. Integer
emulation of floating-point numbers became standard.

T. N. HICKS, R. E. FRY, AND P. E. HARVEY

Second, as silicon became cheaper, it became practical
to dedicate hardware to the task of floating-point
computation. This dedicated hardware could perform the
standard arithmetic operations in significantly less time
than the integer processor, which was customized for
its own specific tasks. The first attempts involved a
coprocessing element which was fed instructions once
the core processor determined that the instructions were
floating-point operations. In early versions, the FPU and
the fixed-point unit (FXU) could not run simultaneously.

The third evolutionary step was incorporating this
dedicated hardware into the rest of the CPU in a way
which maximized floating-point performance and
minimized processor overhead. As an example, processors
such as the Intel 8087 coarsely overlapped floating-point
and nonfloating-point operations. As floating-point
capabilities increased, migration of floating-point-
dominated applications further accelerated the demand
for more advances. Integrating the floating-point
processor with the rest of the CPU became imperative.

Various methods were used in attempting to integrate
these units [5]. The RS/6000 processor achieved much of
its floating-point performance by tightly coupling the FPU
to the rest of the CPU, particularly the FXU. Although
this design point significantly advanced the state of the art
in floating-point computation, the POWER2 FPU has since
taken a further step by removing interlocks and increasing
the autonomy of the muitiple functional units.

RS/6000 FPU overview

Figure 1 shows a block diagram of the RS/6000 FPU. The
FPU receives two instructions from the instruction cache
unit (ICU). These two instructions go through a predecode
stage in which the FPU discards nonfloating-point
instructions, followed by a register-renaming stage [6].
Register renaming allows hardware to remove any read-before-
write or write-before-write conflicts between arithmetic and
subsequent load operations. Register renaming, along with
the pending store queue buffer, greatly increases the
potential for the FXU and FPU to operate independently.
The rename stage forwards the two instructions to the
execution unit responsible for that class of instruction. The
load unit receives load operations, while the MAF execution
unit receives both arithmetic and store operations.

This MAF unit performs all of the floating-point
arithmetic instructions, such as the multiply-add fused
operation, as well as all floating-point store operations.

All internal data representations use the IEEE [7] double-
precision format (with an extended exponent field).

Dual unit motivation for POWER2
Three factors determine the time required by a processor
to complete a program [8]:

IBM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 1994

Instructions 1-4

Yy
Buffers Dispatch stage
1
vy vy vy ———— e
Predecode Predecode 5 Predecode
I I [* J_E Predecode stage
| Renla.me I L Rename I Rename stage
1
A1) Ty SN 111/ e
Load Arithmetic
queue queue
I l l Decode stage
Exccute Bxecueld | MaFunitt
(Arithmetic
To FPRs To FPRs execution) Execute stage
To FPRs To FPRs Data store queue
Four words Four words
Data bus

Block diagram of POWER2 FPU.

e The number of instructions required to execute the
program.

¢ The processor cycle time.

¢ The average number of processor cycles required to
execute an instruction.

Compiler capabilities determine the total number of
instructions required for a given program. The second and
third factors are under the CPU designers’ control. The
POWER?2 FPU targets both factors. To decrease the cycle
time, the POWER?2 processor employs 0.5-um CMOS
technology. This process allows processor clock rates
that are more than twice that of the initial versions of the
RS/6000 processor. In decreasing the average number of
cycles required to execute an instruction, one can either
decrease the latency of the execution unit or add more
execution units. Given a two-cycle latency for dependent
multiply-add instructions, decreasing the latency for a

IBM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 19%4

single FPU instruction is unlikely. However, increasing
instruction-level parallelism to decrease the average time
for execution of a group of instructions is viable. POWER2
achieves this by doubling the number of floating-point
execution units. A fundamental challenge confronting the
POWER2 FPU design team was how to feed both units
simultaneously to achieve maximum performance.

The POWER2 FPU

Figure 2 is a block diagram of the POWER2 FPU. The
figure highlights the functional units that were not present
in the RS/6000 FPU design. The FPU receives four
instructions from the ICU, double that of the RS/6000.

It pipes them through the predecode and register-rename
stages, both twice the width of the analogous RS/6000
stages. Once past the rename stage, the instructions split
up into one of three types of execution units: a load
execution unit, an arithmetic execution unit, and a store

T. N. HICKS, R. E. FRY, AND P. E. HARVEY

527

528

Register rename

* Four instructions

Arithmetic
instruction
queue

(six deep)

MUX

v

Instruction
o MARO

Arithmetic instruction queue.

execution unit. Each one of these units is actually a
plurality of units; two instructions of each class can
execute simultaneously. The arithmetic pipeline can start
two arithmetic operations simultaneously, the store
pipeline can perform two store operations simultaneously,
and the load pipeline can perform two load operations
simultaneously.

Each of these units is capable of executing
independently of the others, barring data dependencies.
However, the FXU, which does all address calculations,
can perform only two loads/stores at any one time (in any
combination: 1d/ld, st/st, ld/st, or st/ld), because it has only
two arithmetic logic units (ALUs).

Unlike the RS/6000 processor, the POWER2 FXU and
FPU receive only the instructions that they will execute,
except for interruptible instructions. After the instruction
stream has passed through the ICU, only two types of
instructions can cause an interrupt: memory-accessing
instructions (loads and stores) and fixed-point trap

T. N. HICKS, R. E. FRY, AND P. E. HARVEY

instructions. POWER?2 systems perform synchronization of
the FXU and FPU units at these interruptible boundaries.
Each unit may “‘get ahead’ of the other (with respect to
the instruction stream) until it encounters a potentially
interrupting instruction. At this point, synchronization must
occur. If the FPU encounters the interruptible operation
(IOP) first, it waits until the FXU performs the address
calculation (or executes the trap) and signals the FPU that
execution can continue. If the FXU encounters the IOP first,
the FXU informs the FPU that instructions can continue past
the IOP. Once the FPU reaches the IOP, it ignores its
interruptible capability (having already been cleared for
execution) and execution continues without any stalls.

This synchronization scheme allows each unit to operate
at its peak performance regardless of stalls within the
other unit. For example, the FXU can proceed to execute
register-to-register and load/store operations even when the
FPU is working on multicycle arithmetic operations, such
as divide or square root.

The POWER?2 FPU targets five areas for improving
floating-point performance:

¢, Maximize parallelism between dual arithmetic units.

*o Maximize parallelism between arithmetic and store
operations.

*eQuadruple data bandwidth and process cache hits under
miss.

*eDouble instruction bandwidth.

*,Migrate operations to hardware.

Maximizing parallelism between dual arithmetic
units

One of the limiting factors in issuing multiple instructions
in a superscalar processor is the number of floating-point
pipelines. As previously mentioned, the POWER2 FPU
contains two generic multiply-add ALUs, each of which is
capable of executing all floating-point register-to-register
operations. The two primary concerns for avoiding
bottlenecks are how to avoid unit interlock when both
units are fed from a common queue, and how to minimize
delays for unit-to-unit dependencies.

While one MAF unit is consumed for many cycles
because of multicycle operations, such as divide or square-
root instructions, the instruction queue should be able
to feed the other unit with independent instructions.
POWER? allows this by providing a backup register
above each of the execution units. This register provides
sufficient instruction buffering and pathways to allow one
unit to continue while the other unit processes a multicycle
operation.

This register also allows one dependent operation
without stalling the other pipe. For example, consider the
following code:

IBM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 1994

From FPRs I From FPRs
1' 53 { 53 { 53 | { 53 {53 {53
La] Lecl L[B] I 3 Cca =]
$
L4
y Y !] Yy
| Booth 1} | [Boon }| MuUx
{ : !
Multiplier ' Multiplier
|
. g0 {0 i© | __L__ 1 §uo 109
I ‘ Reg;sm l ' l Register J
' Y]]
[CSA-PGZ] = | CSA—PGZ]
) i) { : |) |) i |
frer 1 ! fre 51
Lfggg';g;;;" Full adder : 1::&?5:;’;0 Full adder
* ‘ 169 | : ‘ {169
[Normy/shift] | [Normy/shift |
¥ | [59 Add
- -—_I Reg*ister | AT :-—] Register | -
l Leading zero detect | = | Leading zero detect |
£ 59 ¥ 50
|
I Rounder l ' I Rounder l
£53 l ¥ 53
Round
To FPRs e :
- 1
MAF unit 0 | MAF unit 1

Execution unit bypasses.

fd3 <12
fab«~3+4
fma6 < (1*2) + 4

Since the divide instruction is held in the backup register
(and the dependent add is held in decode for MAFO), the
independent multiply—add instruction (fma), and any
following instructions, may execute in MAF1. Figure 3
shows the instruction queue that feeds both units and also
highlights the backup registers.

Bypass buses between the two units minimize unit-to-
unit dependencies. Instead of requiring that the result data

IBM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 1994

be written into the floating-point registers (FPRs) prior to
subsequent use, the RS/6000 FPU has the capability to
bypass the registers and pass the resultant data (leaving
the IEEE rounder) directly into the add operand and (from
before the rounder, which was required to make the setup
time for the multiplier) directly into the multiplier. Both
POWER? units can bypass in the same manner (that is, no
cycle delay is required for passing through the register
file). Figure 4 highlights these bypasses.

When an instruction is in the arithmetic instruction
queue preparing for execution, the logic compares the
operand registers of the instruction with the target of the
instructions already in execution to detect dependencies. If

T. N. HICKS, R. E. FRY, AND P. E. HARVEY

529

530

Bit 0

31

E_; Ngu FPRF ?‘2%5 2
§§§%§§§§5§§>Ea§m Eaaaéé%ﬁeggw%a
L W J_ W

Su}us Cogtrol

FPU status and control register.

the logic detects a dependency, the multiplexers select the
appropriate bypass bus. To utilize these bypass buses, the
result must be a normalized number. Zero, infinity, NANs,
and unnormalized and denormalized numbers cannot use
the data bypasses.

One floating-point architected register, the FPSCR
(floating-point status and control register), controls
rounding, dictates exception handling, and records
exception status of executed arithmetic instructions. When
an arithmetic instruction is in the last cycle of execution,
the FPU reads the rounding mode (bits that specify one of
four IEEE standard [7] rounding modes) from the FPSCR
and updates status flags such as overflow, underflow, and
inexact. The FPSCR holds the rounding mode, floating-
point trap enables, condition codes, and IEEE exception
status. A detailed description can be found in the AIX®
Version 3.2 for RISC System/6000 Assembler Language
Reference Manual [10). The FPSCR register is shown in
Figure 5.

Arithmetic operations may complete differently from
the sequential ordering of the program; an obstacle to
optimizing arithmetic performance is maintaining the
integrity of the FPSCR register when this occurs.

The POWER? FPU, like its predecessor, does not
support precise floating-point interrupts within the
hardware itself. All exceptions are recorded within the
FPSCR register, and execution status is checked by polling
this register and trapping on a software comparison of
the exception flags. As in the RS/6000 architecture, a
mechanism does exist within the instruction unit to put
the system into a state in which precise floating-point
interrupts are possible (the setting of the FE bit within
the MSR register). However, this severely degrades
performance and is only recommended for software
debugging. In POWER?2, hardware support for a floating-

T. N. HICKS, R. E. FRY, AND P. E. HARVEY

point imprecise interrupt was also added in order to aid in
software debugging. The enabled exception summary bit
within the FPSCR register was tied into the external
interrupt line within the instruction unit. The external
interrupt handler is then responsible for polling the FPSCR
register to determine whether the interrupt was due to a
floating-point exception.

Since the FPU handles all data adjustments due to
exceptions “‘on the fly,”” the polling of the FPSCR register
is a viable method of handling exceptions in a superscalar
machine. However, the sequential appearance of the
FPSCR register must be maintained, despite the fact that
the arithmetic operations whose status is being recorded
may complete out of order. When the programmer polls
the FPSCR, it must reflect the state of the FPU at that
instant as if all instructions were executing sequentially.
Also, at the execution time of each arithmetic operation,
the control portion of the FPSCR (such as the rounding
mode) must reflect that of sequential execution.

The RS/6000 floating-point arithmetic instruction set
can be divided into two classes of FPSCR operations:

¢ Typel instructions report the progress of their own
execution to the FPSCR and depend on the control
portion in order to execute properly [e.g., a floating-
point add instruction (FA) which reports the occurrence
of an overflow during execution (UX bit) and whose
results depend upon the IEEE underflow trap enable
flag (UE bit) set in the control portion].

Type2 instructions are instructions whose target is the
FPSCR itself [e.g., a move to or from status registers
instructions (MTFSF and MFFS, respectively]. These
instructions are used to save and restore the state of the
FPU upon task switching or to poll the FPSCR for
exception checking.

IBM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 1994

The FPSCR register is divided into a sticky field and a
nonsticky field. The bits within the sticky field have the
characteristic that once they have been set (switched to an
active state), they stay set until a type2 instruction resets
them. Bits within the nonsticky field are evaluated and
allowed to switch every cycle.

Before explaining the mechanism used, one observation
must be made: At the time of execution of a type2
instruction, all operations sequentially preceding it must
be complete (or guaranteed to complete before the type2
instruction). This is to guarantee that if the type2 operation
is to move (read) the status/control register, it will be
reading the sticky status of ALL the operations before it,
and the nonsticky status of the single instruction preceding
the type2 operation. Therefore, the first rule of this
mechanism is that execution synchronization occurs
on all operations of type 2.

Once this is accomplished, sequential instruction
execution such as this:

typel, typel, typel, typel, type2, typel, typel, typel, type2,
can be viewed as this:

typel,
. typel,
e
typ : typezl typ616 typezzy
typel,
typel,
typel,

where out-of-order optimization can be performed within
the typel instruction boxes.

As mentioned previously, the FPSCR register is divided
into a sticky field and a nonsticky field. Maintaining the
sticky field is not a problem, since order of execution is
not important to a sticky bit (once it is set, it stays set).
However, when the type2 instruction executes, the
nonsticky field must reflect the execution of the previous
instruction. In the above example, when instruction type2,
executes, the nonsticky field must be updated as a result of
instruction typel,.

The mechanism consists of two apparatuses, a state
machine pointer and a tagging mechanism. The state
machine pointer is used to keep track of which execution
unit has the most recent typel (sequential) instruction. The
state machine monitors the dispatch control unit (since this
is the last place serialism is preserved) in order to track
the order of execution. The tagging mechanism is used to
tag the instruction that comes before a type2 instruction.
When a type2 instruction is ready to be dispatched, the
state machine pointer identifies the execution unit that has
the instruction preceding it. The instruction in the earliest

IBM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 1994

seqn
seqan
Sequential
. fetch
seq3
seq2

Y

Execution Execution
unit 0 unit 1
Three stages Three stages

FPSCR register mechanism.

pipeline stage of that execution unit is then tagged.

When an instruction identified by the tag pointer finishes
execution, it is allowed to update the FPSCR. If the tag
pointer does not identify any instruction that has finished
execution, then the instruction identified by the state
machine pointer is allowed to update the FPSCR.
Therefore, if the type2 instruction is not fetched for
several cycles (and therefore no tag has been set), it is
still guaranteed that the instruction preceding this type2
instruction will be reflected in the FPSCR register. Since
execution synchronization occurs on all type2 instructions,
it is guaranteed that they finish alone; therefore, type2
instructions override the state machine pointer. Figure 6
shows the mechanism. Notice that the sticky bits are just
ORed together regardless of execution order, while the
nonsticky bits are selected by a multiplexor controlled by
the state machine pointer.

T. N. HICKS, R. E. FRY, AND P. E. HARVEY

531

532

Cycle

1 2 3 4
2 seq0 typel, typel, type2, typel,
seql typel, typeZ1 typel, typel5
EX0 1 - typel, typel3 type2,
2 - - typell @
Pipeline <
stage 3 - - - typel,
EX1 1 - typel, - -
2 - - typel, -
\ 3 - - - typel,
(for tagging) pointer - 1 0 1
(for MUX) pointer_L - - 1 0
Write tp st/cthreg - - - 1
typel , tagged Pointer write
(don’t care)

Instruction execution timing diagram.

Figure 7 illustrates the execution of the following stream
of code:

typel,, typel,, typel,, type2,, typel,, typel,

1. In cycle one, the first two instructions are in sequential
buffers 0 and 1, ready to execute.

2. In cycle two, the first two instructions begin execution
in execution units 0 and 1, respectively. The third and
fourth instructions (typel, and type2,) move into
sequential buffers 0 and 1. Also in cycle two, the
pointer is pointing at the typel, instruction, since it is
the most recent in execution.

3. In cycle three, the typel, instruction begins to execute.
Since synchronization must occur on all type2
instructions, type2, cannot begin executing in cycle
three. Therefore, it is shifted into sequential buffer 0,
allowing typel, to enter sequential buffer 1. Also in
cycle three, since the next instruction is type2, tagging
is done. The instruction highest in the execution unit

T. N. HICKS, R. E. FRY, AND P. E. HARVEY

Tagged instr. write

5 6 7
typel;
- - - typel,
typel, - -
typel,
type2, typel, - ‘
typel, | type2; | typel, type2,
typel - - ‘
5 typel,,
- typelg - ‘
- - typel, typels
1 1 1
1 1 1
1 1 1

Pointer instr. write

type 2 write

to which the pointer is pointing (in this case execution
unit 1) is tagged (typel, above).

. In cycle four, the type2 instruction begins execution.

Again, typel, cannot start with the type2 instruction.
Therefore, it is shifted into sequential buffer 0, allowing
typel, to move into sequential buffer 1. Also in cycle
four, the first two instructions are completing execution.
Since the pointer is pointing to execution unit 0, typel,
has access to update the nonsticky portion of the
FPSCR register, even though it is not the next sequential
instruction (typel, is). This anomaly is irrelevant
because there is another instruction following (to which
the pointer is actually pointing). When it (typel,)
completes, the status/control register will be corrected.

. In cycle five, the last two instructions begin execution

simultaneously. The tagged instruction (typel,) is in the
final stage of execution, and even though the pointer is
not pointing to it, it writes to the nonsticky FPSCR
register, because of the tag.

IBM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 1994

RN1
Registe: . .
rengalrsnir:g RN2 (Arithmetics and stores are
stage RN3 in sequential order)
RN4
- J .
Arithmetic Store Store p—
queuel count count queue
e vy control field control
SC7
SC6 J
SCs »{ s0s
-t Arithmetic »] SC4 |- Store >l S04
execute execute
- decision —] SC3 |- decision —=1 SQ3 Sto;e;l i
- - - _ inst on
- control »sC2 control »| S0z B
SC1 SQ1
SCO SQO
Execute Execute
Y ¥
Arithmetic Store
execution execution
units units

§ Instruction queues and store count fields.

6. In cycles six and seven, the last two instructions
complete execution. Since there are no more
instructions, the pointer simply follows typel, down
through the pipeline stages, allowing it to write the
nonsticky FPSCR register in cycle seven.

mechanisms: a means of preserving precedence and a
means of detecting dependencies.

Unlike some other RISC implementations [9], the RISC
System/6000 implementation allows instructions to proceed
all the way through the pipeline to the execution stage
before checking operand availability. This increases the
opportunity for instruction-level parallelism. However,
the FPU must preserve the serialization of dependent
arithmetic and store instructions. The POWER2 design
point requires a mechanism to optimize parallel
independent execution while detecting and serializing
dependent execution.

The FPU includes a serializing mechanism, called the

Maximizing parallelism between arithmetic and
store operations

In POWER, floating-point arithmetic and store operations
compete for the single MAF resource. Normalization and
denormalization of store data require the MAF unit.

The POWER?2 FPU separates the store and arithmetic

execution units. This allows arithmetic operations to
operate in parallel with independent store operations. With
this implementation, synchronizing the two units to detect
true data dependencies while allowing out-of-sequence
execution is a challenge. The solution utilizes two

IBM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 19%4

“store count (STC) field,” associated with the instructions
in the arithmetic queue. This field indicates the number

of store instructions in the store queue that are logically
ahead of a particular arithmetic instruction. A bank of
comparators compare the target operand of the arithmetic

T. N. HICKS, R. E. FRY, AND P. E. HARVEY

533

534

Tnstruction buises.

1
B v |
y oy Yy ¥
FPU - FXU
128 bits 128 bits 5 Port
' Data
i Por%l sy 0101
R/W.controls il
) 1117 Address
Data buses - buses

|

Floating-point buses and control structure.

instruction (in AQO) with the source operands of the
instructions in the store queue. This information is then
combined with the information from the STC to determine
whether the pipeline can execute the arithmetic. The

FPU uses this same mechanism to decide when store
instructions can begin execution. Figure 8 illustrates the
STC mechanism.

The figure shows the renaming stage of the instruction
pipeline, at which point instructions are in the sequential
order received from the ICU. Four instructions at a time
move from the rename stage into their respective queues
(arithmetic or store). As an arithmetic instruction moves
into the arithmetic queue (AQ), the serializing mechanism
adds the count of all store .instructions in the rename
stage ahead of the arithmetic instruction to the count of
instructions currently in the store queue (SQ), then
subtracts the number of store instructions starting
execution. The serializing mechanism places the count
in the store count field associated with the arithmetic
instruction in the AQ. The STC data move down the queue
as the arithmetic instruction moves down through the AQ.
The FPU decrements each store count entry in the queue
each time a store instruction executes.

When the STC is zero, there are no store instructions
which could cause a dependency ahead of that arithmetic.
The pipelines can execute arithmetic instructions that have
an STC of zero immediately, regardless of store instruction
comparisons. When the STC is nonzero, the FPU must
compare the arithmetic target register with the source
operands of each store, up to and including the number
of stores indicated by the STC. If none of these store
operands match the arithmetic target, the arithmetic

T. N. HICKS, R. E. FRY, AND P. E. HARVEY

instruction can begin executing, even though these store
instructions are lined up sequentially before the arithmetic.
If the targets do match, the arithmetic instruction must
wait until the store executes, or the operation will destroy
the data being moved to memory by the store instruction.
A store (in SQ0) may execute immediately if all of the
instructions in the AQ have a nonzero STC. This case
indicates that the store came before all of the arithmetic
instructions in the AQ. The FPU must compare the store
operand with the target of all arithmetic instructions in
the AQ that have an STC of zero. If the operands do not
match, the store can execute, even though the store is
lined up sequentially after each arithmetic instruction
with an STC of zero. If the targets do match, a true data
dependency exists, and the store must wait for the
arithmetic instruction to generate the data to be stored
in memory. The fact that POWER?2 can execute two
stores and two arithmetic operations per cycle further
complicates this mechanism. However, this mechanism
allows the POWER2 FPU to separate arithmetic and store
execution units while requiring synchronization only on
true data dependencies.

Quadrupling data bandwidth and processing
cache hits under miss

Modern packaging technology permits chips with large
pin counts. The POWER?2 FPU has 506 signal I/Os. The
designers allocated more than half of these to the dual
quadword (16 bytes) data buses which move data to and
from the data cache unit (DCU). Supporting dual
quadword buses (compared to POWER’s single
doubleword bus) gives POWER? a fourfold increase in
data bandwidth. Storage-reference-limited codes, such

as Linpack, often obtain a substantial performance

boost from dual units, wide buses, and quadword storage
instructions [3]. Figure 9 shows the data and instruction
bus organization. Synchronization between the FXU

and the FPU during the execution of floating-point load
operations is necessary to ensure that the data are routed
to the correct FPRs and aligned properly. Figure 10 shows
the stages of execution for a floating-point load operation.

During the first two stages, the FXU generates and
translates the address and forwards the request to the data
cache. During stages three and four, the FXU loads a data
register into the FPU and tells the FPU which port the
data are on and how to align the data. The FPU then
determines the load instruction to which the data
correspond (depending on previous signals) and moves the
data into the appropriate FPR (or FPRs in the case of a
load quad instruction).

A key design point of the POWER?2 implementation is
the ability to continue processing and executing loads and
stores through one fixed-point execution unit while there is
a cache miss in progress (because of a load or store which

IBM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 1994

1 2 3 4
Address calculation Apply address Align data/
in FXU to DCU load temporary Move to FPR
register in FPU

Floating-point load execution pipeline.

Cycle 1 2 3 4 5
Execution LFDO Cache miss Cache miss Cache miss DATAO
unitd (EA gen)

Execution LFD1 DATA1
unitl (EA gen) LFD2 DATA2
A
(BA gen) LFD3
(EA gen) DATA3

Overlapping load execution with data cache misses

executed in the other execution unit). The two data ports
to the FPU are tied to the two execution units in the FXU.
Therefore, the order for the data ports is the same as that
of the fixed-point execution units (that is, port 0 is the
oldest and port 1 is the newest). However, depending on
the availability of the data in the cache, the loading of data
into the FPU can complete out of order. This means that
the FPU may load data into the FPRs in a different

order from the load instructions. For the sequence of
instructions in Figure 11—which assumes a cache miss for
LFDO (load double)—LFD1, LFD2, and LFD3 complete
before LFDO.

Migrating operations to hardware

Through RS/6000 application performance analyses, the
FPU targeted two operations for enhancement. The
POWER?2 FPU hardware implements the square-root and
convert-to-integer operations, which are both math library
subroutine calls in POWER. The square-root function
improves from a software implementation of roughly 53
cycles to a hardware implementation of 27 cycles. The

IBM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 1994

square-root implementation uses a state machine controller
for the MAF unit similar to the divide implementation.

The architecture adds two forms of convert-floating-
point-to-integer instructions. One performs the rounding
specified in the FPSCR control register; the other forces a
truncation (round-to-zero mode) which provides support
for the FORTRAN intrinsic INT. This eliminates the need
for machine cycles associated with loading the FPSCR
register when truncation is appropriate.

Status and interrupt support
A hardware mechanism in POWER2 maintains the
integrity of the single FPSCR architected register despite
simultaneous updates from the dual MAF units. The only
instructions that force unit-to-unit synchronization are
those specifically directed at the FPSCR registers, such as
MTEFSF (move to FPSCR). These instructions cause a stall
in the MAF1 unit for one or two cycles.

The POWER?2 FPU, like its predecessor, does not.
support precise floating-point interrupts within the

hardware itself. The processor records all exceptions 535

T. N. HICKS, R. E. FRY, AND P. E. HARVEY

536

within the FPSCR register and checks execution status by
polling the register and trapping on a software comparison
of the exception flags. As in the RS/6000 implementation, a
mechanism does exist within the ICU to put the system
into a state that will make precise floating-point interrupts
possible (the setting of the FE bit within the MSR
register). The processor implements this mode by
restricting the ICU’s issue rate so that only one floating-
point instruction is outstanding. This severely degrades
performance and is only recommended for software
debugging. POWER?2 adds hardware support for a floating-
point imprecise interrupt to aid in software debug. This
enables an ““abort on error’” (such as divide by zero) while
the processor is running at full speed.

Summary

The POWER?2 FPU advances the state of the art in
superscalar floating-point architecture by doubling the
number of execution units while supporting the industry’s
fastest dependent multiply-add operation. Its flexible
integration with the rest of the CPU and dynamic
instruction scheduling make its theoretical peak
performance sustainable within loops. Its cache miss
bypassing allows execution to continue during cache
reloads. The status and exception recording mechanism
helps avoid ALU-to-ALU interlocks. All of these
improvements contribute to a peak, and often realizable,
performance of four MFLOPS per MHz (286 MFLOPS at
71.5 MHz).

Acknowledgments

The POWER2 FPU development was a collaborative effort
of many skilled people. Among them, the authors would
like to thank Rudy Pirovitz, George Lerom, and Don
Mehaffey for their managerial direction. The authors also
thank Steve White and John Reysa for reviewing this
manuscript and providing many useful suggestions.

RISC System/6000 and AIX are registered trademarks, and
POWER? is a trademark, of International Business Machines
Corporation.

References

1. R. K. Montoye, E. Hokenek, and S. L. Runyon,
““Design of the IBM RISC System/6000 Floating-Point
Execution Unit,”” IBM J. Res. Develop. 34, 61-62
(January 1990).

2. G. Blanck and S. Krueger, “The SuperSPARC
Microprocessor,”” Technical White Paper, Sun
Microsystems, Inc., Mountainview, CA, 1992.

3. S. W. White and S. Dhawan, “POWER2: Next Generation
of the RISC System/6000 Family,”” IBM J. Res. Develop.
38, 493-502 (1994, this issue).

4. J. E. Smith, “Dynamic Instruction Scheduling and the
Astronautics ZS-1,” Computer 22, 21-35 (July 1989).

5. Vojin G. Oklobdzija, ‘“Issues in CPU-Coprocessor
Communication and Synchronization,” Microprocess. &
Microprogram. 24, 695-700 (1988).

T. N. HICKS, R. E. FRY, AND P. E. HARVEY

6. G. F. Grohoski, “Machine Organization of the IBM RISC
System/6000 Processor,”” IBM J. Res. Develop. 34, 47-52
(January 1990).

7. ANSI/IEEE Standard for Binary Floating-Point
Arithmetic, STD 754-1985, IEEE, New York, August 12,
198s.

8. Mike Johnson, Superscalar Microprocessor Design,
Prentice-Hall, Englewood Cliffs, NJ, 1991, pp. 2-3.

9. DECChip 21064-AA RISC Microprocessor Preliminary
Data Sheet, Digital Equipment Corp., Maynard, MA,
April 29, 1992, pp. 2-15.

10. AIX Version 3.2 for RISC System/6000 Assembler
Language Reference Manual, Order No. SA23-2197, 1992;
available through IBM branch offices.

Received June 3, 1993; accepted for publication
May 31, 1994

Troy N. Hicks IBM RISC System/6000 Division, 11400
Burnet Road, Austin, Texas 78758 (TROYHIX AT AUSVMS,
troy@austin.ibm.com). Mr. Hicks is currently a Staff Engineer
in the RISC System/6000 Division of IBM in Austin. He
received a B.S. in electrical engineering from the University of
South Florida in 1986. In 1987 he joined the AWS division of
IBM in Austin and has since worked in the field of floating-
point design, contributing to the design of the RS/6000

and POWER2 FPUs. Mr. Hicks holds a IBM Invention
Achievement Award and has been awarded several patents

for floating-point and processor invention.

Richard E. Fry IBM RISC System/6000 Division, 11400
Burnet Road, Austin, Texas 78758 (RFRY AT AUSVM6).
Mr. Fry is currently an Advisory Engineer in the RISC
System/6000 Division of IBM in Austin. He received his B.S.
degree in electrical engineering from the University of Texas
in 1976, after which he worked in the area of microprocessor
emulation for Texas Instruments in Austin. Since he joined
IBM in 1984, his field of expertise has been in floating-point
design.

Paul E. Harvey IBM RISC System/6000 Division, 11400
Burnet Road, Austin, Texas 78758 (PHARVEY AT AUSVMG).
Mr. Harvey is currently a Senior Engineer in the RISC
System/6000 Division of IBM in Austin. He received his B.S.
in electrical engineering from Texas A & M University in

1981. He then joined the Motorola Semiconductor Group and
microcoded the MC68881 floating-point coprocessor, later
serving as technical team leader on the MC68882. Since joining
IBM in 1987, he has contributed to the designs of the RS/6000
fixed-point and POWER?2 floating-point chips.

IBM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 1994

