Trace-directed
program
restructuring
for AlIX

executables

by R. R. Heisch

This paper presents the design and
implementation of trace-directed program
restructuring (TDPR) for AIX® executable
programs. TDPR is the process of reordering
the instructions in an executable program,
using an actual execution profile (or
instruction address trace) for a selected
workload, to improve utilization of the
existing hardware architecture. Generally, the
application of TDPR results in faster programs,
programs that use less real memory, or both.
Previous similar work [1—-6] regarding profile-
guided or feedback-directed program
optimization has demonstrated significant
improvements for various architectures. TDPR
applies these concepts to AIX executable
programs at a global level (i.e., independent
of procedure or other structural boundaries)
running on the POWER, POWER2™, and
PowerPC 601™ machines and adds the
methodology to preserve correctness and
debuggability for reordered executables. Using
the prototype tools developed for this effort
on a selection of both user-level application
programs and operating system (kernel) code,
improvements in execution time of up to 73%

and reduced instruction memory requirements
of up to 61% were measured. The techniques
used to restructure AIX executables are
discussed, and the performance improvements
and memory reductions measured for several
application programs are presented.

Introduction

Today’s high-performance computer memory architectures
are optimized for programs which exhibit high spatial
and/or temporal locality for both instructions and data.
Memory hierarchies have evolved in an attempt to
minimize cost and maximize performance by exploiting
this ““locality of reference’ program characteristic.
Similarly, design assumptions are typically made regarding
other program characteristics (such as branching behavior)
which result in processor designs optimized for those
assumed characteristics (such as branch prediction).

As long as these program assumptions hold, processor
performance is maximized. However, when a program
deviates from these assumed characteristics, the processor
architecture is inefficiently utilized, which usually leads to
reduced performance or excessive use of real memory.

While hardware design tradeoffs are made on the basis
of software-related assumptions, compilers attempt to

©Copyright 1994 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of

this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 1994

R. R. HEISCH

595

596

Original text

Cache 0x10000330 1 r2,0x14(rl)

line 1 0x10000334 1 r3,0x38(rl1)
0x10000338 cmp crl,r2,r3
0x1000033¢c bne 1,0x10000374
0x10000340 ai r3,r31,0x8
0x10000344 1 r4,0x38(rl)
0x10000348 bl 0x10000530
0x1000034c 1 r2,0x14(rl)
0x10000350 - ai r3,r31,0xlc
0x10000354 1 r4,0x38(r1)
0x10000358 bl 0x10000530
0x1000035¢ 1 r2,0x14(rl1)
0x10000360 ai r3,r31,0x30
0x10000364 1 r4,0x38(rl)
0x10000368 bl 0x10000530
0x1000036¢ 1 r2,0x14(r1)

Cache 0x10000370 b 0x10000384

line 2 0x10000374 1 r3,0x3c(rl)
0x10000378 1 r4,0x38(rl)]
0x1000037¢ - b1 0x10000278
0x10000380 st r3,0x40(rl)
0x10000384 1 r3,0x38(r1)

Reordering example.

generate ““optimum’” code targeted for a specific hardware
architecture (including the memory hierarchy) on the basis
of similar program assumptions. However, compiler
optimizations are usually limited to a purely static analysis
of a program which includes speculation as to how a
program will probably execute on a given hardware
platform. Additionally, since many programs result

from binding together multiple, separately compiled (or
assembled) object modules, the compiler does not usually
have a “‘global view’” of the final organization of the
executable image and therefore cannot perform a truly
global optimization.

TDPR effectively “closes the loop”” in the optimization
process. It attempts to further optimize a program by
collecting information on the actual behavior of a program
while it is executed and using that information to reorder

R. R. HEISCH

Reordered text

0x10000330 b 0x10000590
0x10000334 b 0x10000594
0x10000338 b 0x10000598

0x1000033¢. - bne 1,0x10000374
0x10000340 ai - r3,r31,0x8

0x10000590 1 r2,0x14(r1)
0x10000594 1 r3,0x38(rl1)
0x10000598 cmp crl,r2,;r3
0x1000059¢c - beq 1,0x10000340
0x100005a0 1 r3,0x3c(rl)

{ 0x10000524 1 r4,0x38(r1)
0x10000528 © bl 0x100005b0

0x100005ac b - 0x100005d8
0x100005b0 . stu rl,-64(rl)
0x100005b4 ~ st r3,0x58(rl)
0x100005b8 st ra;,0x5¢c(rl)
0x100005bc 1- r3,0x58(rl)
0x100005¢0 “srai- r3,r3,0x3

and modify instructions across the entire executable

program image to optimize the use of the hardware.
Consider the following simple example of poor program

locality for a typical high-level language code sequence:

if (x ==y)
{

/* Error handler code */

}

/¥ Otherwise, execution continues here */

In this code sequence, the error path (taken when

variable x is equal to variable y) is usually not executed
(information which is not known at compile time). Figure 1
shows the resulting assembler code generated for a typical
code sequence of this type. The example represents a
machine with 16 instructions per instruction cache line.

IBM J. RES. DEVELOP, VOL. 38 NO. 5 SEPTEMBER 1994

Notice that although only the first four instructions are
usually executed [the instructions for the if (x == y)
statement], the remaining unexecuted instructions
(representing the error handler code) are also loaded into
the cache. Since the minimum allocatable unit of a cache
(typically a cache line) is usually much larger than a single
instruction, poor program locality results in higher miss
rates, and therefore reduced performance, due to
inefficient cache utilization. Similarly, real memory space
may be wasted on instructions which are usually not
executed but, due to their proximity to frequently executed
code, are loaded when a real page is allocated.

Figure 1 also shows the results of reordering the
instructions according to the way in which they are
executed. On the basis of information collected at run
time, the frequently executed code paths are grouped
together. The result is improved performance [due to
reduced instruction cache and TLB (translation lookaside
buffer) miss rates] and a reduction in run-time memory
requirements (due to improved utilization of real memory
pages).

Also, the conditional branch instruction has been
recoded with a different branch target address and
the opposite (reversed sense) condition code (from a
BNE Target Address to BEQ Fall Thru Address).

This illustrates an additional opportunity to improve
performance, on the basis of actual program behavior, by
reducing inefficient use of available hardware optimizations
(which, in this case, are reduced pipeline stalls due to
incorrectly predicted-not-taken branches).

Another improvement, which results indirectly from
stringing together frequently executed code paths, is that
of reduced collisions in an N-way set-associative cache. If
more than N instructions in a highly executed code loop
map to the same cache congruence class, constant cache
misses will occur because of the thrashing which results
from these collisions. Reordering the instructions in a
program according to the actual execution path potentially
produces additional performance improvements by
reducing “conflict misses’ in an N-way set-associative
cache.

TDPR process overview

The process of applying trace-directed program
restructuring is illustrated in Figure 2. First, the executable
program to be restructured is run for the desired workload
(W) while an instruction address trace (or execution
profile) is captured and analyzed. The result of this
analysis is an address reorder list which represents the
“‘optimal”” ordering of the instructions in that executable
program image for the given workload. Second, the
address reorder list and the executable program file

are used to create a new, restructured, executable by

IBM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 19%4

Workload W

. Execution analysis
Executable

\ Reorder list

New, reordered executable
(optimized for workload W)

s

TDPR process diagram.

reordering the instructions from the original program
in the sequence specified in the reorder list.

The reordered executable resulting from applying the
TDPR process will exhibit varying degrees of performance
improvement and/or reduced instruction memory
requirements when run on workload W (or similar
workloads).

Design and implementation of TDPR for AIX
executables

The design and implementation of trace-directed program
restructuring for AIX® executable programs entails solving
two major problems: 1) managing dynamically calculated
branches (computed goto’s) and 2) generating an
““optimal’” address reorder list. Once these problems are
solved, the remainder of the effort revolves around the
fairly simple repositioning and accounting required to build
the reordered executable.

In this implementation, the minimum reorderable unit is
the basic block (a basic block is defined as a sequence of
instructions that has exactly one entry point and exactly
one exit point). The addresses specified for TDPR are the
addresses of the first instruction in the basic block. When
a basic block is moved while reordering an executable, all
of the instructions in the basic block are moved together.

® Managing dynamically calculated branches

The branch target or destination address of a dynamically
calculated branch (DCB) is calculated as a program runs
and is usually difficult if not impossible to determine
statically. For the POWER, POWER2™ and PowerPC 601™

R. R. HEISCH

597

598

Original text Patched original text
Instruction 1 Bli1
12:] “Instruction 2 |- BL2 12: "‘I
Instruction 3 ! BL3
Instruction 4 i Instruction 4 |
Traceback { 2 Traceback 7] I
|
Branch reg ef —-i Branch reg o1 — —-!
~-L1:] Instruction 1 .

| 21 Instruction 2 | ----2
bt 1. 3: | Instruction 3

Reordered text

Managing dynamically calculated branches.

processors, the DCB takes the form of a branch-to-register
instruction. In order to move instructions during TDPR,
some mechanism must be provided to eliminate

the problem of a DCB calculating and branching to the
address of an instruction that has been moved. One such
mechanism would be to attempt to recognize all possible
types of DCBs generated for some subset of all compilers
(and compiler versions) used to create the executable
programs. The problem with this approach is that it is not
fail-safe, and program functionality or correctness cannot be
guaranteed because of the possibility of unanticipated code
sequences (such as might arise with different compiler
versions or with user-written, ‘‘nonstandard” assembler
programs).

The mechanism developed to manage dynamically
calculated branches for this implementation of TDPR is
illustrated in Figure 3. The idea is to keep the original text
(instruction) section intact except for instructions that
are reordered (i.e., moved during TDPR). Reordered
instructions are appended to the end of the original
executable (in the “‘reordered text area’) and are replaced
(in the ““original text area””) with branches to the new
addresses where the instructions have been moved.

For example, Instructions 1, 2, and 3 in the original text
section shown in Figure 3 have been moved to locations
L1, L2, and L3 in the reordered text area, and the original
instructions in the patched original text area have been
replaced with branches (B) to locations L1, L2, and L3,
respectively. Instruction 4 and the Branch reg (branch to
register) instruction, which are not part of a frequently

R. R. HEISCH

executed code path in this example, are not moved.
Additionally, all traceback entries (which are embedded at
the end of each procedure for program debug) are removed
from highly executed code paths (i.e., not moved with
reordered code) but are maintained in the original text
section for debuggability. With this mechanism in place, if
an unanticipated DCB attempts to branch to the address of
a moved instruction (such as the Branch reg to location
12), it will simply the encounter the branch (B L2) to the
new location of the instruction and then branch to that
new location, thus preserving functionality.

Although this technique for managing DCBs does
maintain functionality for most programs (high-level
language and assembler alike), it can be undesirable from
the perspective of performance and memory utilization
because of the double branch sequence, resulting from
undetected DCBs, which usually forces two memory pages
to be touched. However, the vast majority of DCBs found
in AIX executables are due to 1) the C switch/case
statement (which typically generates a branch table in the
program constant area) and 2) calling a function through a
pointer (which uses a function descriptor in the program
data area). This double branch sequence can usually be
eliminated by updating the addresses of moved instructions
in the branch tables and function descriptors with the new
reordered addresses. In this implementation of TDPR,
both the branch tables and the function descriptors are
scanned for the addresses of moved instructions and are
(optionally) modified with the correct reordered addresses.

Using this mechanism for managing DCBs, a branch to
the reordered text arca is executed once when a program
first begins; from that point on, execution is constrained
to the optimized reordered text area. If, however, an
unanticipated DCB (i.e., one that is undetectable and/or
cannot be modified) is encountered during program
execution, the performance improvement gained by
reordering may degrade slightly, but the program will
continue to produce the expected results.

® Generating an address reorder list for TDPR
To apply TDPR to a program, the instruction address trace
(or profile) collected during program execution must first
be analyzed to determine an ““optimal’ basic block
ordering which will result in the maximum speedup
(execution time improvement) and/or memory requirement
reduction. Determining the optimal ordering of the basic
blocks in a program is a challenging problem. The
approach used here (similar to that discussed in [3]) is to
attempt to identify the most frequently executed paths
through the code by building a directed flow graph (DFG)
from the address trace (or profile) collected during program
execution.

The DFG consists of a node for every basic block with
an associated count of the number of times that basic

IBM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 1994

block was executed. Additionally, each node has one or
more edges (or pointers), with associated counts, to the
node of the basic block or blocks which are executed next.
For example, Figure 4 shows the DFG generated for the
following sequential instruction address trace:

200, 800, 100, 800, 400, 200, 800, 400, 200, 800,
400, 200, 800, 400, 200, 800, 400, 200, 800, 400,
200, 600, 200, 600, 200, 700

In this simple example trace, the basic block at address
200 is executed first, followed by the basic blocks at
addresses 800, 100, 800 and so on up to the last basic
block at address 700. The basic block at address 200
was executed a total of nine times, six of which ended in
transferring control to the basic block at address 800, two
going to 600, and one to address 700. As can be seen in
the DFG, the frequently executed or “hot’* code path for
this address trace is the sequence 200—800-400.

The algorithm used in this implementation for generating
the reorder list is described as follows:

1. Build the DFG from the instruction address trace or

profile as shown in Figure 4.

2. Provide the following alternate methods for traversing
the DFG to produce the address reorder list:

a. Starting with the most frequently executed basic
block, follow the most frequently executed paths
until a cycle is detected (i.e., a previously visited
basic block). As each basic block node is visited
in the DFG, append the basic block address to
the address reorder list. When a cycle is
detected, restart the process at the next most
frequently executed address. This is the np = 0
option.

b. Same as (a), except that when a cycle is detected,
back up one node and then go visit each next
most frequently executed basic block. This is
the np = 1 option.

Same as (b) except that when backing up to visit
each next most frequently executed basic block,
visit only those nodes which are executed next
more than N times. This is the np = N option.

O
N

Table 1 shows the address reorder lists generated for the
DFG shown in Figure 4 using this algorithm.

While the slight differences in the reorder lists shown
may appear inconsequential, the performance differences
can be significant for large code sequences which approach
or exceed the size of the instruction cache. Selecting the
appropriate np option, however, is usually a matter of trial
and error (although the np = 0 option usually provides the
best speedup for most programs in this implementation).

IBM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 1994

Entry

£

Directed flow graph example.

Table 1 Reorder lists for different np options.

np =0 np =1 np=N=2
200 200 200
800 800 800
400 400 400
600 100 600
100 600
700 700

& Maintaining basic block movement

The remainder of the implementation involves the
housekeeping required to accommodate the movement of
basic blocks within the program while maintaining the
expected functionality. In this implementation of TDPR,
basic blocks are moved sequentially in a single pass, as
specified in the address reorder list.

The diagram shown in Figure 5 illustrates the movement
of a basic block (BBn) from its original position in the
program to its new location (in the reordered text area). In
this example, basic block BBn branches to the basic block
at address L1, and two basic blocks (B1 and B2) both
branch to BBn. When a basic block is moved, both the
branch out of the basic block (if it exists) and all branches
into the basic block must be adjusted.

Basic block movement is managed by maintaining a dual
entry log for each basic block in the original text section.
The first entry is an address that indicates where the basic
block for this log entry has been moved. The second entry
is a pointer to a list of all basic blocks that branch to the
basic block for this log entry. Whenever a basic block is
moved, the moved_to log entry for that block is assigned

R. R. HEISCH

599

600

Before After Basic block movement log
loB1 B1
BBn moved._to |branches_here

Reordered text area

§ Tracking basic block movement.

Table 2 Measured program speedups (%).

Program POWER POWER?2 PowerPC {y-bit}
EEe— 601
(8KIC) (32KIC)
ksh +45 +14 +13 +20 {+4)
awk +19 +9 +10 +11 {+2}
vi +13 +8 +6 +22 {+2}
sed +7 +5 +4 +6 {+3}
SPEC 022.li +20 +5 +4 +9 {+2}
SPEC 072.sc +11 +4 +1 +5 {+2}
SPEC 056.ear +9 +9 +4 +2 {-1}
RDBMS1 TPC-A — — +15 —
RDBMS1 TPC-B +17 +19 — —
RDBMS2 TPC-C — +12 — —

the new address of the basic block, and all basic blocks
which branch to the block to be moved (indicated by the
branches_here entry) are adjusted to branch to the new
location.

® Branch replacement

During the course of moving basic blocks while applying
TDPR, the opportunity or requirement may arise to modify
the branch that usually terminates a basic block. This
modification may come in one of the following forms:

1. Changing the sense of a conditional branch (and
modifying the branch target address) to improve
hardware branch prediction.

2. Converting to a branch sequence to handle ‘‘branch
target out of range’” and ‘““moved fall-through code”
problems. The ““branch target out of range”” problem
occurs if a target address is not reachable from the
address of a branch instruction (because of the size
of the branch displacement field in the instruction);

R. R. HEISCH

“moved fall-through code”” problems occur if the code
which follows a basic block is moved elsewhere.

3. Adjusting branch target addresses due to moved basic
blocks.

4. Eliminating a branch instruction altogether.

The branch replacement algorithm in this implementation
consists of two main cases: 1) branch-to-register, and

2) branch immediate (not to register). For the branch-to-
register case, if the basic block at the fall-through address
(i.e., immediately following the basic block) will not be
moved next, an additional branch to the fall-through code
is inserted (if needed). For the conditional branch
immediate, depending upon whether the basic block at the
fall-through or target address is the next basic block in
sequence, the branch condition is adjusted (if possible and
necessary) such that the branch will be predicted correctly
most often (where the sequence of the basic blocks from
the reorder list implies the most frequently executed path).
Also, the branch target range for existing or modified
branches is examined, and unconditional ““far’” branches
are added if the branch target or fall-through address is out
of range.

TDPR for user-level programs
Applying TDPR to user-level application programs
involves the following;:

1. Reading/decoding the AIX XCOFF (eXtended Common
Object File Format) executable program image and
collecting the different sections (data, text, etc.).

2. Reordering the text section. This is done by applying
the techniques described above and appending the
reordered code to the end of the original text section.
The size of the text section specified in the XCOFF
text header is adjusted accordingly.

3. Applying any ““fix-ups”” to the branch tables (for
switch/case statements), to the function descriptors in
the data section (for function calls through pointers),
and to any other XCOFF sections (such as debug
information).

4. Writing out the new executable XCOFF file image of
the reordered program.

TDPR results
The results measured for reordering user-level applications
are shown in the tables which follow. The RISC
System/6000® Model 530 was used for POWER 8KB
instruction cache (8KIC) measurements, and the RISC
System/6000 Model 570 was used for POWER 32KIC
measurements.

Table 2 shows the speedups measured for the 8KIC and
32KIC POWER machines and for the POWER?2 and 601
machines. All speedups shown were calculated by

IBM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 1994

comparing the execution time of the original program to
that of the reordered program for the same workload on
the same machine. Two different, commercially available,
relational database management systems (RDBMS1 and
RDBMS2) were used for the TPC-A,™ TPC-B,™ and
TPC-C™ tests.

It is important to note that each of the programs shown
in Table 2 was reordered and tested on the exact same
workload specific to that test; results for cross-workload
measurements are presented in Table 5, shown later.

Also shown in Table 2 are the results of adjusting the
601 branch predict bit (y-bit) using the actual execution
profile data collected for these programs. The 601
processor provides a bit in the conditional branch option
field that allows software to adjust the branch prediction
algorithm used for conditional branches. TDPR was not
applied for these y-bit tests. Actual branch-taken/not-taken
percentages were calculated from the execution profile
data, and the y-bit was adjusted accordingly to improve the
success of hardware branch prediction. These data, along
with the hardware monitor results shown below, provide
an indication of the amount of speedup due only to
improved branch prediction. The 1% performance decrease
seen for the SPEC™ 056.ear benchmark is apparently due
to second-order cache and branch prediction effects.

The factors contributing to the 17% speedup measured
for the RDBMS1 TPC-B test (on the POWER machine) are
shown in Table 3. These measurements were taken using a
POWER hardware performance monitor which provides
exact counts for clock cycles, instructions executed,
cache and TLB misses, etc., throughout the execution of
the program. These data indicate that the application of
TDPR provides an improvement in CPI (cycles per
instruction) resulting from reduced instruction cache (IC)
and TLB miss rates, and reductions in the percentage
of conditionally issued instructions (i.e., conditional
branches) that were canceled (i.e., predicted incorrectly).

The reductions in text real memory requirements for
several user-level application programs are shown in
Table 4. The changes in memory requirements were
calculated using two different methods (shown as xx/yy in
the table). The first number (xx) represents the change in

the total number of pages required for the execution of the -

program; the second number (yy) indicates the change
in the maximum simultaneous pages required during
execution. The increases shown for awk and vi are due to
missed branch table modifications (as described above),
which result in additional text memory pages touched
during execution. However, the 61% reduction for the
RDBMS1 TPC-B test represents an instruction memory
savings for this program of more than 512 KB.

Applying TDPR using the methodology described herein
does have the disadvantage of increasing the size of the
executable program file (because the reordered text

IBM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 1994

Table 3 Factors contributing to RDBMS1 TPC-B speedup.

Parameter Reordered Original
CP1 2.52 2.98

IC miss 4.20% 5.90%
ITLB miss 0.150% 0.390%
Can/cond 23.0% 52.0%

Table 4 Text working set and executable size changes (%).

Program Text memory Executable size
requirements
ksh —51/-63 +16
awk —9/+40 +16
vi +9/-64 +31
sed —-25/-25 +41
SPEC 022.li -31/-59 +11
SPEC 072.sc —28/-24 +19
SPEC 056.ear —18/-48 +8
RDBMS1 TPC-B —43/-61 +5

is appended to the original executable). However, in
environments where disk space is not an extremely critical
resource, trading additional disk storage requirements for
both improved performance and reduced real memory
requirements is usually desirable. The increases in
executable file sizes are also shown in Table 4.

Cross-workload effects

One potential problem with applying TDPR is that of
determining an appropriate workload to use while
reordering a program. If two different workloads exercise a
program in a completely different manner, finding a single
address reorder list that is optimal for both workloads is
improbable. For example, a program is reordered for
workload A, and the reordered version is then run on
workload A and results in a speedup of Sa. Similarly, a
version reordered for workload B is run on workload B
and results in a speedup of Sb. Reordering a third version
of the program for both workloads A and B together,
where the workloads use and exercise the program very
differently, and running that version separately on both
workloads usually results in speedups of less than Sa and
Sb. Also, running a reordered program on workload C,
where workload C was not in the set of workloads used to
reorder the program, typically also yields little (or possibly
negative) improvement if workload C is very different from
the other workloads.

For example, Table 5 shows the cross-workload results
for reordering both the awk and ksh executable programs.
The three reordered programs for awk are awk.heap
(reordered for a heapsort workload), awk.pts [reordered for
an awk PTS (performance test suite) workload], and

R. R. HEISCH

601

602

Kernel memory map

Software vectors

Low-level assembler

/ (i 7z

/// TDPR: target area ///
227007 %

Pinned OS routines

Pinned text

Pageable OS routines

Pageable text

! Applying TDPR to the AIX kernel.

Table 5 Cross-workload results.

Workload Reordered program speedups (%)
awk.heap awk.pts awk.comb
heapsort +19 -9 +18
PTS +18 +22 +18
ksh.scr ksh.sum ksh.comb
scri +21 +3 +18
sum.ksh +11 +45 +30

awk.comb (reordered for both the heapsort and PTS
workloads). The reordered programs for ksh are ksh.scr
(reordered for the ksh ““built-in’> commands workload
scr1), ksh.sum (reordered for the sequential summation
workload sum.ksh), and ksh.comb (reordered for both
scr1 and sum.ksh workloads).

As the data of Table 5 indicate, running the awk.pts
program on the heapsort workload (i.e., a workload not used
to reorder the program) actually results in a decrease in
performance. However, running awk.heap on the PTS
workload (again, a workload not used to reorder the
program) results in an 18% speedup (slightly less than
awk.heap run on the heapsort workload). The combined
reordered awk (awk.comb) produces significant speedups for
both workloads (although awk.comb running PTS yields less
improvement than awk.pts running PTS). The ksh cross-
workload results are quite similar to the awk results, with

R. R. HEISCH

only +3% speedup shown for ksh.sum running the scr1
workload and still significant speedups for ksh.comb on both
workloads. However, to achieve the maximum performance
improvements (at least for ksh and awk and these simple
workloads), the program must be reordered for the exact
workload for which it is to be used.

A potential solution to the ““cross-workload effect”

. problem for widely varying workloads is to produce

different versions of the program which are each optimized
for specific workload types. Then, knowing what workload
type is to be run, the reordered version of the program
that is optimized for that workload type is used.

TDPR for kernel/kernel extensions and device
drivers

In addition to user-level executable programs, significant
improvements can also be achieved by applying TDPR

to AIX base operating system (kernel) code, kernel
extensions, and device drivers with the following special
considerations. Implementing TDPR on executable images
is not well suited to programs which utilize self-modifying
or otherwise position-dependent code because of the
difficulty in detecting and correcting for modifications to
code that has been moved. A form of position-dependent
code can be found in system-level software (such as the
base kernel, kernel extensions, and device drivers of AIX)
which utilizes pinned instruction memory. Pinned memory
is memory (in a virtual memory system) that is never
“paged out™ (i.e., always present in real memory,
especially during interrupts and other critical times) and,
therefore, will never result in page faults when referenced.

If an area of pinned instruction memory is reordered,
the area in the reordered text section where those
instructions are moved must also be pinned. Since the
granularity provided for pinning memory is usually at least
a page, it can be quite inefficient to pin text reordered at the
basic block level. One solution would be to pin the entire
reordered text area. However, the base kernel usually has
other position-dependent code that makes dynamic extension
of the kernel more difficult than user-levelcode.

The solution developed and implemented here relies on
the standard practice of building the AIX kernel with
separate pinned and pageable sections. As illustrated in
Figure 6, the kernel is built with a sufficiently large ““hole™
or reorder area in the pinned section; when TDPR is
applied, all reordered text is moved to that pinned reorder
area (TDPR target area). Through the use of this
technique, reordered pinned code remains pinned and
reordered pageable code becomes pinned.

Although one may argue that pinning code that was
previously pageable reduces the effectiveness of a pageable
kernel, a case can be made that reordered code, which is
frequently executed code, should be pinned (or would be
“‘paged-in”’ anyway) because of its utilization.

IBM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 1994

Debugging support

Reordering an executable program as described herein
can impose some additional requirements in the area of
program debugging. Any debugging information embedded
in the executable file that points to code which has been
reordered must be adjusted either in the executable file

(if possible) or during the debug process. Also, AIX
executables contain traceback entries at the end of

every procedure which are used, among other things, to
determine the procedure name for an instruction address if
a program crash occurs. These traceback entries are not
moved while reordering and are therefore not present in
the reordered code (but are left intact relative to the
instructions in the original text section).

Debugging a TDPR-reordered executable is possible by
utilizing a special TDPR XCOFF section created in the
reordered executable program file which provides a cross-
reference table containing the original and reordered
addresses for all moved code. Using this cross-reference
information, along with the original text area which still
has the traceback entries in place, the debugger (with
minor modifications) can function as it would with the
original program.

Conclusions

The application of trace-directed program restructuring on
programs running in a hierarchical virtual memory system
has the potential to produce significant performance
enhancements and reductions in real memory requirements
for both user-level and kernel programs. By using the
prototype tools developed for this investigation,
performance improvements for AIX executable programs
of up to 73% and reductions in text real memory
requirements of up to 61% were measured. For
applications where the workloads are not critical to
program behavior, producing a single reordered executable
to realize these improvements should be feasible. In cases
where different workloads change program behavior
dramatically, providing multiple executables (each
reordered for a specific workload type) or reordering for
the most common workload may still prove beneficial.

The techniques described herein have been implemented
in the IBM AIX software product “FDPR”’ (feedback
directed program restructuring); preliminary results
indicate significant performance improvements for a
variety of programs.

Opportunities for additional work in this area include
the development of ““optimal’” algorithms for reorder-list
generation, including techniques to maintain pre-existing
compiler optimizations and direct optimization for N-way
set-associative cache collisions, multi-workload
optimizations, and data reordering.

IBM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 1994

Acknowledgments
The author would like to thank Tom Keller for inspiring and

supporting this work, Brian Twichell for his address trace
tool, Bob Urquhart, William Alexander, Brian Twichell,
Michael Fortin, Marc Stephenson, Bruce Mealey, and Maher
Saba for their many fruitful discussions, Maurice Franklin
and Ava Dixon for database testing, R. J. Rusnak for the
hardware performance monitor, Robert Berry and Steve
White for reviewing this manuscript, and Jerry Kilpatrick,
Doug Matson, John Reysa, and Sohel Saiyed for their
support and commitment.

AIX and RISC System/6000 are registered trademarks, and
POWER?2 and PowerPC 601 are trademarks, of International
Business Machines Corporation.

TPC-A, TPC-B, and TPC-C are trademarks of the Transaction
Processing Performance Council.

SPEC is a trademark of Standard Performance Evaluation
Corporation.

References

1. Pohua P. Chang, Scott A. Mahlke, and Wen-Mei W. Hwu,
““Using Profile Information to Assist Classic Code
Optimizations,” Software—Pract. & Exper. 21, No. 12,
1301-1321 (December 1991).

2. David W. Wall, “Predicting Program Behavior Using Real
or Estimated Profiles,” Proceedings of the ACM
SIGPLAN’91 Conference on Programming Language
Design and Implementation, Toronto, Ontario, June 26-28,
1991, pp. 59-70.

3. Karl Pettis and Robert C. Hansen, ““Profile Guided Code
Positioning,” Proceedings of the ACM SIGPLAN’90
Conference on Programming Language Design and
Implementation, White Plains, NY, June 20-22, 1990,
pp- 16-27.

4. Scott McFarling, ‘‘Program Optimization for Instruction
Caches,” ASPLOS-III Proceedings: Third International
Symposium on Architectural Support for Programming
Languages and Operating Systems, Boston, April 3-6,
1989, pp. 183-191.

5. D. Ferrari, “The Improvement of Program Behavior,”
Computer 9, No. 11, 39-47 (November 1976).

6. D. J. Hatfield and J. Gerald, ‘‘Program Restructuring for
Virtual Memory,”” IBM Syst. J. 10, No. 3, 168-192 (1971).

Received September 17, 1993; accepted for publication
February 18, 1994

Randall R. Heisch IBM RISC System/6000 Division, 11400
Burnet Road, Austin, Texas 78758 (HEISCH at AUSVM6). Mr.
Heisch joined IBM in 1984 and has worked in several areas,
including two IBM Fellowship Projects, where he was involved
in RISC microcode emulation and high-performance multimedia,
AIX PC Simulator/6000 development, and the IBM Voice
Communications Adapter and 1/O products development groups.
He received the B.S. degree in electrical engineering in 1980 and
the M.S. degree in engineering in 1991 from the University of
Texas at Austin. Mr. Heisch is currently an advisory
programmer in the Processor and System Performance group;
he has interests in high-performance real-time operating
systems/executives, embedded processors and controllers, fast
prototyping, and simulation.

603

R. R. HEISCH

