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This paper presents the design and 
implementation of trace-directed program 
restructuring (TDPR) for AIX@  executable 
programs. TDPR is the process of reordering 
the instructions in an  executable  program, 
using an actual execution profile (or 
instruction address trace) for a selected 
workload, to improve utilization of the 
existing hardware architecture. Generally, the 
application of TDPR results in faster programs, 
programs that use less real memory, or both. 
Previous similar work [l-61 regarding profile- 
guided or feedback-directed program 
optimization has demonstrated significant 
improvements for various architectures. TDPR 
applies these concepts to AIX executable 
programs at  a global level (i.e., independent 
of procedure or  other structural boundaries) 
running on the POWER,  POWERP”, and 
PowerPC  601” machines and adds the 
methodology to preserve correctness and 
debuggability for reordered executables. Using 
the prototype tools developed for  this effort 
on a selection of both user-level application 
programs and operating system (kernel)  code, 
improvements in execution time of up to 73% 

and reduced instruction memory requirements 
of up to 61% were  measured.  The techniques 
used to restructure AIX executables  are 
discussed, and the performance improvements 
and  memory reductions measured for several 
application programs are  presented. 

Introduction 
Today’s  high-performance computer memory architectures 
are optimized for programs which exhibit high spatial 
and/or temporal locality for both instructions and data. 
Memory hierarchies have evolved in an attempt to 
minimize cost and  maximize performance by exploiting 
this “locality of reference” program characteristic. 
Similarly,  design assumptions are typically  made  regarding 
other program characteristics (such as branching behavior) 
which result in processor designs  optimized for those 
assumed characteristics (such as branch prediction). 

As long as these program assumptions hold, processor 
performance is  maximized. However, when a program 
deviates from these assumed characteristics, the processor 
architecture is  inefficiently utilized, which  usually leads to 
reduced performance or excessive use of real  memory. 

While hardware design tradeoffs are made on the basis 
of software-related assumptions, compilers attempt to 
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Reordering example. 

generate “optimum” code targeted for a specific hardware 
architecture (including the memory hierarchy) on the basis 
of similar  program assumptions. However, compiler 
optimizations are usually  limited to a purely static analysis 
of a program which includes speculation as to how a 
program  will probably execute on a given hardware 
platform.  Additionally, since many programs result 
from  binding together multiple, separately compiled (or 
assembled) object modules, the compiler does not  usually 
have a “global view” of the final organization of the 
executable image  and therefore cannot perform a truly 
global optimization. 

TDPR effectively “closes the loop” in the optimization 
process. It attempts to further optimize a program  by 
collecting information  on the actual behavior of a program 

596 while  it  is executed and using that information to reorder 

and  modify instructions across the entire executable 
program  image to optimize the use  of the hardware. 

locality  for a typical  high-level  language code sequence: 

if (x == y) 

Consider the following  simple  example of poor  program 

{ 

} 
/* Error handler code */ 

/* Otherwise, execution continues here */ 

In this code sequence, the error path (taken when 
variable x is equal to variable y) is usually not executed 
(information  which  is  not  known  at  compile  time). Figure 1 
shows the resulting assembler code generated for a typical 
code sequence of this type. The example represents a 
machine with 16 instructions per instruction cache line. 
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Notice  that although only  the first four  instructions  are 
usually executed  [the  instructions  for  the if (x = = y) 
statement],  the remaining unexecuted  instructions 
(representing the  error handler code)  are  also  loaded  into 
the  cache.  Since  the minimum allocatable unit of a cache 
(typically  a cache line) is usually  much  larger than a single 
instruction, poor program  locality results in higher miss 
rates,  and  therefore  reduced  performance,  due  to 
inefficient cache utilization.  Similarly,  real memory  space 
may  be  wasted  on  instructions which are usually not 
executed  but,  due  to their  proximity to  frequently  executed 
code,  are loaded when a  real  page is allocated. 

Figure 1 also  shows  the  results of reordering  the 
instructions  according  to  the  way in which they  are 
executed. On the basis of information  collected at run 
time, the  frequently  executed  code  paths  are grouped 
together.  The result is improved performance  [due  to 
reduced  instruction  cache  and  TLB (translation  lookaside 
buffer) miss rates]  and a  reduction in run-time  memory 
requirements  (due  to improved  utilization of real memory 
pages). 

Also, the conditional branch instruction has been 
recoded with  a different branch target address  and 
the  opposite  (reversed  sense) condition code (from a 
BNE Target-Address to BEQ Fall-Thm-Address). 
This illustrates  an  additional opportunity  to improve 
performance,  on  the basis of actual program behavior,  by 
reducing inefficient use of available hardware optimizations 
(which, in this case,  are reduced  pipeline  stalls due  to 
incorrectly  predicted-not-taken  branches). 

Another improvement,  which results indirectly  from 
stringing  together  frequently executed  code  paths, is that 
of reduced  collisions in an N-way set-associative  cache. If 
more  than N instructions in a highly executed  code loop 
map  to  the  same  cache  congruence class, constant  cache 
misses will occur  because of the thrashing  which results 
from these collisions.  Reordering the  instructions in a 
program  according to  the  actual execution path potentially 
produces additional performance  improvements  by 
reducing  “conflict  misses” in an N-way  set-associative 
cache. 

TDPR process overview 
The  process of applying  trace-directed  program 
restructuring is  illustrated in Figure 2. First,  the  executable 
program to  be  restructured is run for  the  desired  workload 
(W) while  an instruction  address  trace (or execution 
profile) is captured  and analyzed. The result of this 
analysis  is  an  address  reorder list which represents  the 
“optimal” ordering of the  instructions in that  executable 
program image for  the given workload.  Second,  the 
address  reorder list and  the  executable program file 
are  used  to  create a  new, restructured,  executable  by 

Workload W . 

\ Reorder list e5 Reordering 

1 

I I New, reordered executable 
(optimized for workload W )  

reordering  the  instructions  from  the original program 
in the  sequence specified in the  reorder list. 

The  reordered  executable resulting  from  applying the 
TDPR process will exhibit  varying degrees of performance 
improvement  and/or reduced instruction memory 
requirements  when  run  on  workload W (or similar 
workloads). 

Design and implementation of TDPR  for AIX 
executables 
The design and implementation of trace-directed program 
restructuring for AIX@  executable programs  entails  solving 
two major  problems: 1) managing dynamically  calculated 
branches (computed goto’s) and 2) generating  an 
“optimal” address  reorder list. Once  these problems are 
solved, the remainder of the effort revolves  around  the 
fairly  simple  repositioning and accounting  required to build 
the  reordered  executable. 

In this  implementation, the minimum reorderable unit is 
the  basic block (a basic  block is defined as a sequence of 
instructions  that  has  exactly  one  entry point and  exactly 
one exit  point). The  addresses specified for  TDPR are  the 
addresses of the first instruction in the  basic block.  When 
a basic block  is  moved  while reordering an  executable, all 
of the  instructions in the  basic block are moved together. 

D 
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Managing dynamically calculated branches 
The  branch target or destination address of a  dynamically 
calculated branch (DCB) is calculated as a  program runs 
and is usually difficult if not impossible to  determine 
statically. For  the POWER, POWER2“ and  PowerPC 60fM 



Original text Patched original text 

U 
Reordered  text 

., 

Managing  dynamically calculated branches. 

processors, the DCB  takes  the form of a branch-to-register 
instruction. In order  to move  instructions during TDPR, 
some mechanism must be provided to eliminate 
the problem of a DCB calculating and branching to the 
address of an instruction that has been moved. One  such 
mechanism would be  to attempt to recognize all possible 
types of DCBs  generated  for some subset of all compilers 
(and compiler versions)  used to  create  the executable 
programs. The problem with  this  approach is that it is not 
fail-safe, and program functionality or correctness  cannot be 
guaranteed because of the possibility of unanticipated code 
sequences (such as might arise with different compiler 
versions or with user-written, “nonstandard” assembler 
programs). 

The mechanism developed  to manage  dynamically 
calculated branches for this implementation of TDPR is 
illustrated in Figure 3. The idea  is to  keep  the original text 
(instruction) section  intact  except  for  instructions  that 
are  reordered (i.e., moved  during  TDPR). Reordered 
instructions  are  appended  to  the  end of the original 
executable (in the  “reordered  text  area”)  and  are replaced 
(in the “original text  area”) with branches  to  the  new 
addresses  where  the  instructions  have  been moved. 

For example, Instructions 1, 2, and 3 in the original text 
section  shown in Figure 3 have  been  moved  to locations 
L1, L2, and L3 in the  reordered  text  area,  and  the original 
instructions in the  patched original text  area  have  been 
replaced with  branches (B) to  locations L1,  L2, and L3, 
respectively. Instruction 4 and  the Branch reg (branch  to 

598 register)  instruction,  which are  not part of a frequently 

executed  code path in this example, are  not moved. 
Additionally, all traceback  entries (which are  embedded  at 
the  end of each  procedure for  program  debug) are removed 
from highly executed  code  paths (i.e., not  moved with 
reordered  code) but are maintained in the original text 
section for debuggability. With this  mechanism in place, if 
an unanticipated DCB  attempts  to  branch  to  the  address of 
a moved instruction (such as  the Branch reg to location 
12), it will simply the  encounter  the  branch (B E) to  the 
new  location of the  instruction  and  then  branch  to  that 
new  location, thus preserving  functionality. 

Although  this technique for managing DCBs  does 
maintain  functionality for most  programs (high-level 
language and  assembler alike), it can  be undesirable  from 
the  perspective of performance  and  memory utilization 
because of the double branch  sequence, resulting  from 
undetected DCBs,  which  usually forces two memory pages 
to  be  touched.  However,  the  vast majority of DCBs  found 
in AIX  executables  are  due  to 1) the C switchhase 
statement (which typically generates a branch table in the 
program constant  area)  and 2) calling a function  through a 
pointer (which uses a function descriptor in the program 
data area). This double branch  sequence  can usually be 
eliminated by updating the  addresses of moved instructions 
in the  branch  tables  and function descriptors  with  the  new 
reordered  addresses. In this  implementation of TDPR, 
both  the  branch  tables  and  the function descriptors  are 
scanned  for  the  addresses of moved instructions  and  are 
(optionally) modified with  the  correct  reordered  addresses. 

Using this mechanism  for managing DCBs, a branch  to 
the  reordered  text  area is executed  once  when a program 
first begins;  from that point on, execution is constrained 
to  the optimized reordered  text area. If, however,  an 
unanticipated DCB (i.e., one  that is undetectable  and/or 
cannot  be modified) is encountered  during program 
execution,  the  performance improvement  gained by 
reordering may  degrade slightly, but  the program will 
continue  to  produce  the  expected results. 

Generating an address reorder list for TDPR 
To apply  TDPR to a program, the  instruction  address  trace 
(or profile) collected  during  program  execution  must first 
be analyzed to  determine  an “optimal” basic block 
ordering which will result in the maximum speedup 
(execution  time  improvement) and/or  memory requirement 
reduction.  Determining the optimal ordering of the  basic 
blocks in a program is a challenging problem. The 
approach used here (similar to  that  discussed in [3]) is to 
attempt  to identify the  most frequently executed  paths 
through the  code  by building a directed flow graph  (DFG) 
from the  address  trace (or profile) collected  during  program 
execution. 

The  DFG  consists of a node  for  every  basic  block  with 
an  associated  count of the  number of times that  basic 
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block was executed. Additionally, each node has one or 
more edges (or pointers), with associated counts, to the 
node of the basic block or blocks which are executed next. 
For example, Figure 4 shows the DFG generated for the 
following sequential instruction address trace: 

200,  800, 100, 800,  400,  200,  800,  400,  200,  800, 
400,  200,  800,  400,  200,  800,  400,  200,  800,  400, 
200, 600, 200, 600, 200, 700 

In this simple example trace, the basic block at address 
200 is executed first, followed by the basic blocks at 
addresses 800, 100, 800 and so on up to the last basic 
block at address 700. The basic block at address 200 
was executed a total of  nine times, six of which ended in 
transferring control to the basic block at address 800, two 
going to 600, and one to address 700. As  can be seen in 
the DFG, the frequently executed or “hot” code path for 
this address trace is the sequence 200-800-400. 

the reorder list  is described as follows: 
The algorithm used in this implementation for generating 

1. Build the  DFG from the instruction address  trace  or 
profile as  shown in Figure 4. 

2. Provide the following alternate methods for traversing 
the  DFG  to  produce  the  address  reorder list: 
a. Starting  with the most frequently  executed basic 

block, follow the most  frequently executed  paths 
until a cycle is detected (i.e., a  previously  visited 
basic block). As each  basic block  node is visited 
in the  DFG, append the  basic block address  to 
the  address  reorder list. When  a cycle  is 
detected,  restart the process  at  the next  most 
frequently  executed  address. This is the np = 0 
option. 

b. Same  as  (a),  except  that  when a cycle is detected, 
back  up  one node  and  then go visit each next 
most frequently  executed  basic block. This is 
the np = 1 option. 

c. Same  as (b) except  that  when backing  up to visit 
each  next most  frequently executed  basic block, 
visit only  those  nodes which are  executed  next 
more than N times. This is the np = N option. 

Table 1 shows the address reorder lists generated for the 
DFG shown in Figure 4 using this algorithm. 

While the slight differences in the reorder lists shown 
may appear inconsequential, the performance differences 
can be significant for large code sequences which approach 
or exceed the size of the instruction cache. Selecting the 
appropriate np option, however, is usually a matter of trial 
and error (although the np = 0 option usually provides the 
best speedup for most programs in this implementation). 

Table 1 Reorder lists for different np options. 

np = 0 np = 1 n p = N = 2  

200 200 200 
800 800 800 
400 400 400 
600 100 600 
100 600 
700 700 

Maintaining basic block movement 
The remainder of the implementation involves the 
housekeeping required to accommodate the movement of 
basic blocks within the program  while  maintaining the 
expected functionality. In this implementation of TDPR, 
basic blocks are moved sequentially in a single pass, as 
specified in the address reorder list. 

The  diagram shown in Figure 5 illustrates the movement 
of a basic block (BBn) from its original  position in the 
program to its new  location (in the reordered text area). In 
this example, basic block BBn branches to the basic block 
at address L1, and two basic blocks (B1 and 62) both 
branch to BBn. When a basic block is  moved, both the 
branch out of the basic block (if it exists) and  all branches 
into the basic block  must be adjusted. 

Basic block movement is  managed  by  maintaining a dual 
entry log for each basic block in the original text section. 
The first entry is  an address that indicates where the basic 
block for this log entry has been moved. The second entry 
is a pointer to a list of  all basic blocks that branch to the 
basic block for this log entry. Whenever a basic block  is 
moved, the rnovedto log entry for that block is assigned 599 
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Before After Basic block movement log 

Reordered  text  area 

1 Tracking  basic  block  movement. 

Table 2 Measured program speedups (%). 

Program POWER POWER2 PowerPC {y-bit} 
601 

(8KIC) (32KIC) 

ksh +45 +I4  +13 +20 {+4} 
awk +19 +9 +10 +11 {+2} 
vi +13 +8 +6 +22 {+2} 
sed +7 +5 +4 +6 {+3} 
SPEC 022.li +20 +5 +4 +9 {+2} 
SPEC 072.sc +11 +4 + 1  +5 {+2} 
SPEC 056.ear +9 +9 +4 +2 {-1} 
RDBMSl TPC-A - - + 15 - 
RDBMSl  TPC-B +17  +19 
RDBMS2 TPC-C - +12 - 

- - 
- 

the  new  address of the  basic block, and all basic  blocks 
which branch  to  the  block  to  be moved  (indicated by  the 
branches-here entry)  are adjusted to  branch  to  the  new 
location. 

Branch replacement 
During the  course of moving basic  blocks while  applying 
TDPR, the  opportunity or requirement may  arise  to modify 
the  branch  that usually terminates a basic  block.  This 
modification may  come in one of the following forms: 

1. Changing the  sense of a  conditional branch (and 
modifying the  branch  target  address) to  improve 
hardware  branch prediction. 

2. Converting to a branch  sequence  to handle “branch 
target out of range”  and  “moved fall-through code” 
problems. The  “branch target out of range”  problem 
occurs if a  target address is not reachable from  the 
address of a branch  instruction  (because of the size 

600 of the  branch displacement field in the instruction); 

“moved fall-through code”  problems  occur if the  code 
which  follows  a basic  block is moved  elsewhere. 

3. Adjusting branch target addresses  due  to moved basic 

4. Eliminating  a branch  instruction altogether. 

The  branch replacement algorithm in this  implementation 
consists of two main cases: 1) branch-to-register, and 
2) branch immediate (not  to register). For  the branch-to- 
register case, if the basic  block at the fall-through address 
(i.e., immediately following the  basic block) will not be 
moved  next,  an  additional branch  to  the fall-through code 
is inserted (if needed). For  the conditional branch 
immediate,  depending  upon whether  the  basic  block  at  the 
fall-through or target address is the next basic block in 
sequence,  the  branch condition is adjusted (if possible and 
necessary)  such  that  the  branch will be  predicted  correctly 
most  often  (where the  sequence of the  basic blocks  from 
the  reorder list implies the most frequently  executed  path). 
Also, the  branch target  range  for  existing or modified 
branches is examined, and unconditional “far”  branches 
are  added if the  branch target or fall-through address is out 
of range. 

blocks. 

TDPR  for  user-level  programs 
Applying  TDPR to user-level  application  programs 
involves the following: 

1. Reading/decoding the  AIX  XCOFF  (extended Common 
Object  File Format)  executable program image and 
collecting the different sections  (data,  text,  etc.). 

2. Reordering the  text  section.  This is done  by applying 
the  techniques  described  above  and appending the 
reordered  code  to  the  end of the original text  section. 
The  size of the  text section  specified in the  XCOFF 
text  header is adjusted  accordingly. 

switch/case statements),  to  the function descriptors in 
the  data  section (for function  calls through  pointers), 
and to  any  other  XCOFF  sections (such as  debug 
information). 

4. Writing out  the  new  executable  XCOFF file image of 
the  reordered program. 

3. Applying any “fix-ups” to  the  branch  tables (for 

TDPR results 
The  results  measured for  reordering  user-level  applications 
are  shown in the  tables which follow. The  RISC 
System/6000@ Model 530 was used for  POWER  8KB 
instruction cache (8KIC) measurements,  and  the  RISC 
System/6000 Model 570 was used  for POWER  32KIC 
measurements. 

Table 2 shows  the  speedups  measured for the  8KIC  and 
32KIC  POWER machines and for the POWER2 and 601 
machines. All speedups  shown  were calculated by 
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comparing the  execution time of the original program to 
that of the  reordered program for  the  same  workload on 
the  same machine. Two different,  commercially  available, 
relational database management systems  (RDBMSl  and 
RDBMS2) were  used  for  the TPC-A,TM  TPC-B,TM and 
TPC-CTM  tests. 

It is important  to  note  that  each of the  programs shown 
in Table 2 was  reordered  and  tested on the exact  same 
workload specific to  that  test;  results for cross-workload 
measurements  are  presented in Table 5, shown  later. 

Also shown in Table 2 are  the  results of adjusting the 
601 branch  predict bit (y-bit) using the actual  execution 
profile data collected  for these programs. The 601 
processor  provides a bit in the conditional branch option 
field that allows software  to  adjust  the  branch prediction 
algorithm  used  for  conditional branches. TDPR was not 
applied  for these  y-bit  tests.  Actual  branch-takenhot-taken 
percentages  were calculated  from the  execution profile 
data,  and  the  y-bit  was adjusted  accordingly to improve the 
success of hardware  branch prediction. These  data, along 
with  the  hardware monitor results  shown below,  provide 
an indication of the amount of speedup  due  only  to 
improved  branch prediction. The 1% performance decrease 
seen  for  the  SPECTM 056.ear benchmark is apparently  due 
to  second-order  cache and branch prediction  effects. 

The  factors contributing to  the 17% speedup  measured 
for  the  RDBMSl  TPC-B  test (on the  POWER machine) are 
shown in Table 3. These  measurements  were taken using a 
POWER  hardware  performance monitor  which  provides 
exact  counts  for  clock cycles, instructions  executed, 
cache  and  TLB misses, etc., throughout  the  execution of 
the program. These  data indicate that  the application of 
TDPR provides an  improvement in CPI  (cycles per 
instruction) resulting  from reduced instruction cache  (IC) 
and  TLB miss rates,  and  reductions in the  percentage 
of conditionally  issued instructions (i.e., conditional 
branches)  that  were canceled (i.e., predicted incorrectly). 

The reductions in text real memory  requirements  for 
several user-level  application programs  are  shown in 
Table 4. The  changes in memory requirements  were 
calculated using two different methods  (shown  as  xxlyy in 
the table). The first number ( x x )  represents  the  change in 
the  total number of pages required  for  the  execution of the 
program;  the  second number (yy)  indicates  the  change 
in the maximum simultaneous pages  required  during 
execution.  The  increases  shown for awk and vi are  due  to 
missed branch  table modifications (as  described above), 
which  result in additional text  memory pages  touched 
during execution.  However,  the 61% reduction for the 
RDBMSl  TPC-B  test  represents an instruction  memory 
savings  for this program of more  than 512 KB. 

does  have  the disadvantage of increasing the  size of the 
executable program file (because  the  reordered  text 

Applying TDPR using the methodology described herein 

Table 3 Factors contributing to RDBMSl TPC-B speedup. 

Parameter Reordered  Original 

CPI 
IC miss 
ITLB miss 
Canlcond 

2.52 2.98 
4.20% 5.90% 
0.150% 0.390% 

23.0%  52.0% 

Table 4 Text working set and executable size changes (%). 

Program Text memory  Executable site 
requirements 

ksh 
awk 
vi 
sed 
SPEC 022.li 
SPEC 072.sc 
SPEC 056.ear 
RDBMSl TPC-B 

-511-63 
-91+40 
+91-64 

-251-25 
-311-59 
-281-24 
-181-48 
-431-61 

+ 16 
+ 16 
+31 
+41 
+11 
+ 19 
+8 
+5 

is appended  to  the original executable). However, in 
environments  where disk space is not  an extremely critical 
resource, trading  additional disk  storage  requirements for 
both improved performance  and  reduced real  memory 
requirements is usually  desirable. The  increases in 
executable file sizes  are  also  shown in Table 4. 

Cross-workload effects 
One potential  problem with applying TDPR is that of 
determining  an appropriate workload to use while 
reordering a  program. If two different workloads  exercise a 
program in a completely different manner, finding a single 
address  reorder list that is optimal for both workloads is 
improbable. For  example, a  program is reordered for 
workload A, and  the  reordered  version is then  run  on 
workload A and  results in a speedup of Sa. Similarly,  a 
version  reordered  for workload B is run  on  workload B 
and  results in a speedup of Sb. Reordering  a  third version 
of the program  for  both workloads A and 8 together, 
where  the  workloads  use  and  exercise  the program very 
differently, and running that  version  separately  on  both 
workloads usually results in speedups of less  than Sa and 
Sb. Also, running  a reordered program  on  workload C, 
where  workload C was  not in the  set of workloads  used  to 
reorder  the program,  typically also yields  little  (or  possibly 
negative) improvement if workload C is very different  from 
the  other  workloads. 

For  example, Table 5 shows  the  cross-workload  results 
for  reordering both  the awk and ksh executable programs. 
The  three  reordered  programs for awk are awk.heap 
(reordered for a heapsort workload), awk.pts [reordered for 
an awk PTS (performance test  suite)  workload],  and 
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Table 5 Cross-workload results. 

Workload Reordered program  speedups (%) 

a wk. heap  a wk.pts a wk.  comb 

heapsort 
PTS 

+ 19 -9 
+ 18 

+18 
+ 22 +18 

ksh.scr kshsum ksh.comb 

scrl +21 +3 + 18 
sum.ksh +11 + 45 +30 

awk.comb (reordered for both  the heapsort and PTS 
workloads). The  reordered  programs  for ksh are ksh.scr 
(reordered  for  the ksh “built-in” commands  workload 
scrl), ksh.sum (reordered  for  the  sequential summation 
workload sum.ksh), and ksh.cornb (reordered for  both 
scrl and sum.ksh workloads). 

As the data of Table 5 indicate, running the awk.pts 
program on  the heapsort workload (i.e., a workload not used 
to reorder the program) actually results in a decrease in 
performance. However, running awk.heap on the PTS 
workload (again, a workload not used to reorder the 
program) results in an 18% speedup (slightly less than 
awk.heap run on the heapsort workload). The combined 
reordered awk (awkxomb) produces significant speedups  for 
both  workloads (although awk.comb running PTS yields less 
improvement than awk.pts running PTS). The ksh cross- 
workload  results are quite similar to  the awk results, with 602 
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only +3% speedup  shown  for ksh.surn running the scrl 
workload and still significant speedups  for kshmrnb on both 
workloads. However, to achieve  the maximum performance 
improvements (at least for ksh and awk and  these simple 
workloads), the program must be reordered for the  exact 
workload for which it is to  be used. 

A potential  solution to  the  “cross-workload effect” 
problem  for  widely varying  workloads is to  produce 
different versions of the program  which are  each optimized 
for  specific  workload types.  Then, knowing what  workload 
type is to  be run, the  reordered  version of the program 
that is  optimized  for that workload type is  used. 

TDPR for kernel/kernel extensions and device 
drivers 
In addition to user-level executable programs, significant 
improvements  can  also  be achieved by applying  TDPR 
to  AIX  base  operating  system (kernel) code, kernel 
extensions,  and device drivers with the following special 
considerations.  Implementing  TDPR on executable images 
is not  well  suited to programs  which  utilize  self-modifying 
or  otherwise position-dependent code  because of the 
difficulty in detecting and  correcting  for modifications to 
code  that  has  been moved. A form of position-dependent 
code  can  be found in system-level software (such as  the 
base kernel,  kernel extensions,  and  device  drivers of AIX) 
which  utilizes  pinned instruction  memory. Pinned memory 
is memory (in a virtual  memory  system)  that is never 
“paged out” (i.e., always  present in real  memory, 
especially  during interrupts  and  other critical times) and, 
therefore, will never result in page faults  when referenced. 

If an  area of pinned instruction  memory is reordered, 
the  area in the  reordered  text section where  those 
instructions  are moved must  also  be pinned.  Since the 
granularity  provided for pinning memory is usually  at  least 
a page, it can be quite inefficient to pin text  reordered at the 
basic  block level. One solution would be  to pin the entire 
reordered  text  area.  However,  the  base kernel usually has 
other position-dependent code that  makes  dynamic  extension 
of the kernel more difficult than user-levelcode. 

The solution developed  and implemented here relies on 
the  standard  practice of building the  AIX kernel with 
separate pinned  and  pageable  sections. As illustrated in 
Figure 6 ,  the kernel  is built with a sufficiently large “hole” 
or  reorder  area in the pinned  section; when TDPR  is 
applied, all reordered  text is moved  to  that pinned reorder 
area  (TDPR target  area).  Through the  use of this 
technique, reordered pinned code  remains pinned and 
reordered pageable code  becomes pinned. 

Although one  may argue that pinning code  that  was 
previously  pageable reduces  the effectiveness of a pageable 
kernel, a case  can  be made that  reordered  code, which  is 
frequently  executed  code, should be pinned  (or would  be 
“paged-in’’ anyway) because of its utilization. 
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Debugging support 
Reordering  an executable program as  described herein 
can impose some additional requirements in the  area of 
program debugging. Any debugging information embedded 
in the  executable file that  points  to  code which has  been 
reordered must be adjusted  either in the  executable file 
(if possible) or during the  debug  process. Also, AIX 
executables  contain  traceback  entries  at  the  end of 
every  procedure  which  are  used, among other things, to 
determine  the  procedure name for an instruction address if 
a  program crash  occurs.  These  traceback  entries  are not 
moved while reordering  and  are therefore not  present in 
the  reordered  code  (but  are left intact  relative to  the 
instructions in the original text  section). 

Debugging a TDPR-reordered  executable is possible by 
utilizing a  special  TDPR XCOFF  section  created in the 
reordered  executable program file which  provides  a cross- 
reference table  containing the original and reordered 
addresses for all moved  code. Using this  cross-reference 
information,  along  with the original text  area  which still 
has  the  traceback  entries in place, the debugger (with 
minor modifications) can function as it would with  the 
original program. 

Conclusions 
The application of trace-directed program restructuring  on 
programs running in a  hierarchical virtual  memory  system 
has  the potential to  produce significant performance 
enhancements and reductions in real memory  requirements 
for both user-level and kernel  programs. By using the 
prototype  tools developed  for  this  investigation, 
performance improvements  for  AIX  executable programs 
of up  to 73% and reductions in text real memory 
requirements of up  to 61% were measured. For 
applications where  the  workloads  are not  critical to 
program behavior, producing  a single reordered  executable 
to realize these  improvements should be feasible. In cases 
where different workloads  change program behavior 
dramatically,  providing multiple executables (each 
reordered for  a  specific  workload  type) or reordering for 
the  most common workload  may still prove beneficial. 

in the IBM AIX  software  product  “FDPR” (feedback 
directed program  restructuring);  preliminary results 
indicate significant performance  improvements for  a 
variety of programs. 

Opportunities  for additional work in this area include 
the  development of “optimal”  algorithms  for  reorder-list 
generation,  including techniques  to maintain  pre-existing 
compiler  optimizations  and direct optimization  for N-way 
set-associative  cache collisions,  multi-workload 
optimizations, and  data reordering. 

The  techniques described  herein  have been implemented 
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