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We describe  features of the POWERS” 
processor  and  memory  subsystem  that 
enhance  RISC System/6000@’ performance 
on  commercial  workloads. We explain the 
performance  characteristics of commercial 
workloads  and  some of the  common 
benchmarks  used  to  measure  them. Our  own 
analysis  methods  are  also  described. 

Introduction 
Data-intensive applications such as transaction processing 
and file servers form a major market segment for computer 
systems. These applications are collectively called 
“commercial” applications, as most were initially used 
primarily by commercial enterprises such as banks, 
airlines, and insurance companies. Early microprocessor- 
based systems simply  could  not  handle such data-intensive 
applications because they did not have  enough processing 
power and I/O connectivity to accommodate large numbers 
of data processing users concurrently. In recent years, the 
dramatic increase in the processing power available  from 

microprocessors has made  it possible for systems such as 
RISC-based workstations to compete in markets that 
were once exclusively the domain of mainframes.  In fact, 
commercial applications represent one of the most  rapidly 
growing market segments for RISC-based UNIX@ 
workstations today [l]. 

In this paper, we examine some of the features of the 
POWER2TM-based  RISC  System/6000@ that make it 
suitable for the commercial workload arena. We  begin by 
describing the performance characteristics of commercial 
workloads. We then discuss our analysis methodology and 
some of the common benchmarks used by the industry to 
compare commercial performance. This  is  followed by a 
discussion of the POWER2 hardware features that 
contribute to the enhanced commercial performance of the 
RISC System/6000. 

Characteristics of commercial  workloads 
Commercial workloads include a wide variety of 
applications; some of the more prominent include on-line 
transaction processing, other database management 
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Table 1 Characteristics of commercial  benchmarks. 

Benchmark  Branches  Branches 
(%) taken 

(%I 

TPC-A da 18.8 66.4 
TPC-A cs 16.9 67.1 
TPC-C 18.9 65.1 
LADDIS 18.9 68.7 
KENBUS 16.3 64.9 
SDET 17.8 66.5 

Average 
sequential 
block  size 

(instructions) 

8.0 
8.8 
8.1 
7.7 
9.5 
8.4 

Percentage 

instructions 
in OS 

67 
40 
43 

100 
23 
50 

of 

services such as batch transaction processing and  decision 
support, and file servers. 

While  different commercial applications stress the 
system in different ways, most share some common 
characteristics. These include 

Many (up to hundreds or thousands of) concurrent users. 
Long path lengths over a large set of instructions, with a 
substantial part of the path length in the operating 
system code. 
Fewer repetitive loops and  more  non-loop-closing 
branches than in scientific applications (see [2] for an 
analysis of the branching characteristics of some 
scientific benchmarks). 
Extensive manipulations of data structures via pointers, 
requiring integer arithmetic for address resolution. 
Relatively little floating-point arithmetic; data 
manipulation consists primarily of string or integer 
comparison, updates, or insertions. 
High  random  I/O rates, with data spread over many 
megabytes or gigabytes of disk; disk I/Os are primarily 
short (4 or 8 KB), and successive disk I/Os are often 
randomly distributed over the total disk space used. 

Note that the characteristics of commercial applications 
differ dramatically from those of scientific or numerically 
intensive programs, which often have small instruction 
working sets with tight loops, use  floating-point arithmetic 
extensively,  and  often do sequential  rather  than  random  I/O. 

commercial benchmarks. The benchmarks themselves, 
as well as the methodology used to determine these 
characteristics, are discussed in the next section. 

The first  two numeric columns show the percentage of 
instructions executed that are branches, and of these the 
percent that are taken. An analysis of branching behavior 
helps to explain one of the reasons why the I-cache miss 
rates for commercial workloads are higher than those 
for scientific applications. Consider a typical scientific 
workload dominated by short-to-medium-length loops. 
For such a workload, where most branch instructions are 

Table 1 shows some characteristics of certain 
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executed to return to the head of a loop, the percentage 
of branches that are taken would be much  higher than 
the percentages shown in Table 1. Also, if the largest 
instruction loop for this workload fits in the I-cache, the 
I-cache miss rate for the scientific application would be 
very low.  In contrast, the branching data in  Table 1 show 
that, for commercial applications, the percentage of taken 
branches is relatively low,  indicating that there are 
relatively few loops executed in these applications. This 
scarcity of loops implies that the application has a lower 
probability of re-executing recent instructions present in 
the I-cache, leading to a higher I-cache miss rate. Other 
characteristics of commercial applications that lead to high 
I-cache miss rates include large numbers of processes and 
a high context switch rate. The  number of processes is 
often proportional to the number of concurrent users; 
frequent context switches are the result of frequent short 
I/Os and interprocess synchronization. Commercial 
applications tend to have higher data cache (D-cache) miss 
rates as well, because their data exhibit less locality and 
sequentiality than scientific applications. 

The  column  labeled Average sequential block size 
in Table 1 shows in a different way the tendency of 
commercial workloads to cause branching.  In this paper 
we  define the term "sequential block" to be the sequence 
of instructions executed between two taken branches 
(including the second branch instruction). (This is a 
dynamic measure, not something obtainable from a static 
analysis of the code.) These sequential block sizes are 
much shorter than in the scientific  and  engineering 
applications we have analyzed. 

The last column in Table 1 shows the percentage 
of the total number of instructions executed in the AIX@ 
operating system code, as opposed to the instructions 
executed by the user application and in shared library 
code. These numbers indicate that much of the work in 
commercial applications is actually done by the operating 
system. One reason for this relatively high usage of the 
operating system code is that, in these applications, there 
is frequent movement of small amounts of data between 
different levels of the system, and little arithmetic 
computation on the data. (For example, queries must  be 
sent from an on-line user's terminal to a database server, 
and responses must be sent back; this involves the use of a 
lot of operating system communication code, and very 
little arithmetic.) This  is in contrast to many  scientific 
applications, where once data are brought to the 
application space by the operating system, extensive 
arithmetic manipulation  is  performed before the data are 
handed back to the operating system for storage. Operating 
system code typically has a high incidence of branches and 
few loops. 

integer arithmetic units, the sizes, organization, and 
Clearly, architectural features such as the number of 
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number of levels of instruction and data caches, and the 
latency to caches and to memory, all have a strong bearing 
on the degree to which commercial applications perform 
well on a system. The I/O subsystem has an important 
effect on the performance of most applications, but in this 
paper we focus on processors and  memory subsystems, 
and  I/O is not discussed further. 

Until recently, many RISC-based UNIX workstations 
focused on the scientific application environment, but as 
this paper and others in this publication [3] show, the 
POWERZbased workstation is designed to provide 
superior performance in both scientific and commercial 
environments. 

Performance  methodology  and  benchmarks 
The results presented in this paper come from one of three 
sources: direct measurement on POWERZbased systems, 
analysis of traces taken on POWER-based systems, or 
simulations using these traces. 

POWER2 performance measurement 
The  POWER2 processor has a built-in hardware 
performance monitoring capability that collects 
measurements which  allow  not only detailed performance 
analysis, but also detailed workload characterization and 
analysis of system behavior [4]. 

Traces and simulation 
The AIX performance group has a tool that collects 
instruction traces. These traces record the sequence 
of instructions executed (for both system code and 
application code) along  with the virtual address of 
each instruction and data reference. The traces can be 
postprocessed to reveal workload characteristics such as 
those shown in Table 1. They can also drive simulators 
of the processor and memory subsystem. From the 
simulations we can determine many of the same 
system performance characteristics as from hardware 
measurements, including cache miss rates. 

Determining these quantities from a software trace 
plus simulations is less accurate than direct hardware 
measurements, but it has the advantage of applying to 
system configurations that do not actually exist; for 
example, we can create a trace once and  use  it to 
investigate many different cache configurations. It also 
allowed us to begin  analyzing  POWER2 performance 
before the processor was actually available, and to analyze 
workload characteristics on systems that do not have 
hardware counters. 

We have validated our trace-based simulation 
methodology  against direct hardware measurements on 
both POWER-  and POWERZbased systems, and the 
results almost always agree to within 10%. 

Commercial benchmarks 
In the intensely competitive marketplace of open systems, 
performance comparisons provide a key differentiator in 
making purchasing decisions. 

While some customers have developed their own, often 
proprietary, benchmarks to help them choose among 
different systems, several benchmarks have been accepted 
by the industry as good indicators of the performance 
capabilities of systems aimed at different parts of the 
commercial market. These include the set of TPC 
benchmarks for database applications, the LADDIS 
benchmark for file server applications, and SPEC'?'' SDM 
benchmarks such as SDET and KENBUS for  multi-user 
software development applications. The traces used in this 
paper are of these benchmark programs. 

The TPC benchmarks 
The Transaction Processing Performance Council (TPC) 
benchmarks are probably the best known and most 
frequently cited measures of commercial performance. 
The TPC is a collection of representatives from  many  of 
the computer systems vendors and several of the database 
vendors competing in the commercial arena throughout the 
world.  At the time of writing, the TPC has released three 
benchmarks, called  TPC-A,  TPC-B,  and  TPC-C,  along 
with  rules  for  running  them  and reporting results that are 
intended to produce fair comparisons among possibly 
dissimilar  commercial computing systems. 

TPC-A simulates a banking application where users 
submit simple debit or credit transactions to the system 
from automated teller machines. (TPC-B is  logically very 
similar to TPC-A; it differs  mainly in that it is easier and 
cheaper to configure a system to run TPC-B than to 
configure  it for TPC-A. We do not discuss TPC-B further 
in this paper.) 

The trace called  TPC-A  da in this paper was collected 
while the TPC-A benchmark was running in direct-attach 
mode  using a commercially available relational database 
management system (RDBMS)  on a RISC  System/6000 
Model 530. In the direct-attach mode, the workstation 
executes the entire TPC-A benchmark code, including the 
user interface, the application code, and the database 
server. 

The trace called  TPC-A cs was collected while the 
TPC-A benchmark was running in client-server mode  using 
a different  commercially available RDBMS on a RISC 
System/6000  Model 530 as a server. In the client-server 
mode, the user interface part of the TPC-A benchmark 
runs on one or more client machines, while the rest runs 
on a server. Since TPC-A cs captures only server code, it 
provides a different view of the workload than the TPC-A 
da trace, and the two traces are not directly comparable; 
we  include  both in our analysis because both modes of 
operation are fairly  common in the marketplace. 

1 
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Table 2 TPC-C instructions by unit. 

Execution unit Percentage of 
instruction mix 

78.0 
21.8 
0.2 

FXU 
ICU 
FPU 

TPC-A transactions are relatively short and  uniform.  In 
fact, TPC-A transactions are so simple  and so short that 
this benchmark is  becoming obsolete as a measure of  high- 
end commercial performance; the demand  from industry 
for more realistic and more complex benchmarks has led 
to the development of TPC-C.  TPC-C is intended to 
simulate an order-entry environment, with a mix of read- 
only and update-intensive transactions. 

The  TPC-C trace was collected on the server portion 
of the TPC-C benchmark in a client-server configuration 
running on yet another type of commercially available 
RDBMS  on a RISC System/6000  Model 550. 

The LADDIS benchmark 
The LADDIS benchmark measures a system’s file serving 
capability [5]. One or more client workstations submit a 
mix of Network File Server (NFS)TM requests to the 
server. LADDIS is the basis of a new system-level file 
server (SFS) benchmark suite recently announced by the 
Standard Performance Evaluation Corporation (SPEC) [6]. 
The LADDIS trace was collected on a RISC System/6000 
Model  530H. 

The KENBUS and SDET benchmarks 
KENBUS and SDET are two of the benchmarks that make 
up the SPEC SDM (System Development Multitasking) 
suite [7]. Both KENBUS and SDET represent multi-user 
software development environments with  large numbers of 
concurrent users executing common UNIX commands 
such as edits, compiles,  and binds. KENBUS represents a 
UNIX/C research and development environment, while 
SDET represents a C-based commercial software 
development environment. The KENBUS and SDET 
traces were collected on a RISC  System/6000  Model  530. 

System performance 
The performance metric that is  published for each of the 
benchmarks described in the previous section is a measure 
of throughput: transactions per second or minute  for the 
TPC benchmarks and  LADDIS,  and scripts per hour for 
the KENBUS and SDET benchmarks. Systems being 
tested against these benchmarks are always  configured 
so that the processor is the bottleneck by, for example, 
adding  enough disks to ensure that this is so. In these 

558 configurations, the latencies for 1/0 are entirely overlapped 

by the processing of instructions, and the processor is  fully 
utilized,  while 1/0 devices are not. 1/0 performance and 
system response time are important considerations, but are 
beyond the scope of this paper. 

throughput is determined by three factors: the average 
number of instructions (NI) in the path length for the 
transaction or operation, the average number of cycles 
it takes to execute an instruction (CPI, or “cycles per 
instruction”) for that benchmark, and the number of 
processor cycles per second (usually expressed in 
megaHertz, or MHz). Throughput (TP) in transactions or 
operations per second is expressible as a function of these 
three variables as 

When the processor is the bottleneck, system 

MHz x 1,000,000(cycles/s) 
NI(instr/trans) X CPI(cycles/instr) . TP = 

Operating system and application developers can improve 
throughput by reducing the average path  length.  MHz  is 
influenced by processor size, design, implementation 
technology,  and cost. In the next section, we describe 
features of  POWER2 that are aimed at raising throughput 
by reducing CPI. 

POWER2 features for high performance 
Three features of the POWER2  design  improve its 
performance on  commercial workloads compared to that 
of the POWER processor: 

Second integer instruction unit. 
Larger caches. 
Longer cache lines. 

We  now discuss the effect of each of these features in 
more detail. 

Second integer instruction unit 
The POWER2 processor is superscalar; i.e.,  it  is capable 
of executing more than one instruction per processor 
cycle. As described in  [3], the POWER2 has two  floating- 
point instruction execution units (FPUs), two  fixed-point 
(integer) instruction execution units (FXUs), and  an 
instruction cache unit (ICU) that handles branch 
instructions. The POWER2 processor is capable of 
executing up to six instructions simultaneously in one 
cycle. In practice, the number of instructions that can be 
executed in any given cycle is constrained by  which 
instructions are actually present in the section of code 
being executed, and by data dependencies among the 
instructions. 

Multiple  floating-point instruction units, which  allow 
multiple  floating-point instructions to be executed 
simultaneously, are fairly common in processors aimed at 
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Table 3 L1 cache miss rates for three cache configurations. 

Workload Configuration POWER2 Hypothetical A Hypothetical B 

size type 32KB Z 256KB D 16KB I 16KB D 8KB Z 8KB D 
assoclln sz 211 28 41256 4/64  4/64  2/32  2/32 

TPC-A da 2.4 0.5 4.5 2.1 9.0 3.5 
TPC-A cs 4.0 1.2 6.9 4.1 12.7  6.7 
TPC-C 2.7  0.4 5.2  2.6 10.3  4.6 
LADDIS 2.5  0.4 5.0 3.5  9.9  6.6 
KENBUS 0.9 0.4 1.7 1.6  4.4 
SDET 

3.1 
1.5 0.5 2.7  1.8  6.2  3.3 

scientific/engineering workloads. However, commercial 
workloads have relatively few  floating-point instructions; 
Table 2 shows POWER2 hardware measurements of the 
fractions of  all instructions executed by the ICU, the 
FXUs, and the FPUs for the TPC-C benchmark, run under 
the same RDBMS type as that used to produce our TPC-C 
trace. 

Our instrumentation also indicates that almost all  of the 
ICU instructions are branch instructions. Taken together, 
the data in Tables 1 and 2 show that most instructions in 
commercial applications are executed by integer units; 
about 15-20% of the instructions executed are branches, 
and only a small fraction of these are floating-point 
instructions. 

Measurements taken on the POWER2 processor running 
TPC-C show that of  all the FXU instructions executed, 
one FXU executed 68%, while the second FXU executed 
the remaining 32%. Generally, instructions are routed to 
the second FXU only if there is also an instruction to 
dispatch to the first FXU; this implies that the presence of 
the second FXU resulted in a reduction of up to 32% in 
execution time for the integer instructions. Analysis of 
other hardware measurements confirms that, in fact, the 
second FXU was busy 48% of the time that the first FXU 
was busy. Put another way, the presence of the second 
FXU allows the POWER2 to increase integer instruction 
execution throughput for TPC-C by a factor of about one 
half. Note that the theoretical maximum performance 
improvement (a doubling of the integer instruction 
execution throughput by two equally utilized FXUs) is 
difficult to attain because of dependencies between 
instructions, which require one unit to hold off execution 
until the other completes the preceding operation. (The 
exact speedup provided by the second FXU also depends 
on  how  many of the instructions executed by  it could  have 
been scheduled in cycles when the first FXU would 
otherwise have been idle. As integer instructions account 
for about three quarters of the total instructions, the 
presence of the second FXU leads to a significant 
performance gain for the POWER2 processor. 

Larger caches 
The POWR2 processor  has  separate  level 1 (Ll) instruction 
and data  caches.  The I-cache  holds  32 KB and  is  two-way 
set-associative,  with a line  size  of  128 bytes.  The  D-cache  is 
256 KB, four-way,  and  has a 256-byte  line. The original 
POWER processor  had  an 8KB I-cache  and a 64KB 
D-cache. 

The larger caches mean  fewer cache misses. In 
particular, they increase the execution speed of 
commercial workloads, which  tend to have larger cache 
footprints than scientific/engineering workloads. 

To show the effect of cache size and geometry, we 
compare the POWER2 L1 cache configuration  with two 
smaller, hypothetical configurations as detailed in Table 3. 
The cache size, set associativity, and  line size in bytes 
of the instruction and data caches are given for each of 
the three configurations. 

For each configuration, Table 3 shows the cache miss 
rates as predicted by our model,  using the benchmark 
traces described earlier. Miss rates are expressed as 
percentages, normalized to total instructions issued: 

number of misses 
miss rate = 100 X 

total instructions * 

As Table 3 shows, the larger caches reduce misses 
significantly, thereby speeding execution of these 
benchmarks. 

Longer cache lines 
The POWER2 also has longer L1 cache line sizes than the 
POWER. (A ‘‘line’’  is the unit of transfer between memory 
and caches.) The I-cache has 128-byte  lines, and the 
D-cache has 256-byte lines. Longer lines help performance 
in two ways. 

First, longer lines increase the probability that 
instructions in a sequential block or sequential data 
references will  fall  within the same line rather than 
crossing a line boundary into a different  line.  When two 
consecutive references lie  in the same cache line, the 559 
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Table 4 I-cache  missbranch characteristics with different line sizes. 

Workload Average Total I-cache miss rate Fraction of misses to Branches to same line 
sequential (%I first byte of line 
block sue (a) 

(instructions) 
32-byte 128-byte 32-byte 128-byte 32-byte 128-byte 
line sue line size line size line sue line size line size 

TPC-A da 8.0 5.0 2.4 65.3 38.9 13.8 34.5 
TPC-A cs 8.8  9.5 4.0  67.1 40.6 15.1 38.3 
TPC-C 8.1  6.0 2.7  67.0 41.9 15.1 36.3 
LADDIS 7.7 5.6 2.5  67.4 42.4 13.7 38.0 
KENBUS 9.5 1.8 0.9 69.9 41.9  14.4 38.5 
SDET 8.4  3.1 1.5 68.3 41.0  13.8 36.5 

second reference is almost always found in the cache; 
the probability of generating a cache miss increases 
when consecutive references lie  in  different lines. 

We used our traces to drive simulations of two I-cache 
geometries: Both I-caches held  32K total bytes, but one 
had a 32-byte  line  and the other a 128-byte  line (with, of 
course, one fourth as many lines). We counted the fraction 
of I-cache misses that were references to the first byte 
of the new  line;  many of these misses are caused by 
sequential blocks that happened to cross line boundaries. 
Note that I-cache misses caused by references to all bytes 
of a line other than the first are caused by taken branches, 
and cannot be attributed to the  fact that sequential blocks 
sometimes cross line boundaries. 

workload repeated from Table 1; the total I-cache miss 
rate expressed as a percentage of instructions executed; 
of these, the percent of misses that were references to the 
first byte of a line; and the percentage of branches taken 
that were to a location within the same cache line. 

Table 4 shows the average sequential block size for each 

Table 4 shows that longer cache lines reduce both 
I-cache misses to the first byte of a line and total misses; 
not all misses are due to sequential blocks crossing line 
boundaries, of course. 

The second benefit of longer I-cache lines shown in 
Table 4 is that they increase the probability that a branch 
will be to an instruction that is present in the same cache 
line.  Recall that the two I-cache configurations were the 
same size, 32 KE3; only the line size was changed. 

As can be seen, longer I-cache lines  significantly reduce 
the fraction of branches that land outside the current line, 
thereby helping to reduce total cache misses as shown in 
Table 4. This effect should especially benefit commercial 
workloads, which have a high incidence of branches. 

While our measurements show that they reduce cache 
misses, longer cache lines have the disadvantage of taking 
longer to fill than shorter lines. To help alleviate this 
effect, the POWER2 has a memory bus that is 8 words 

560 (256 bits) wide. 

Summary 
Commercial applications form an increasingly larger 
segment of the market for microprocessor-based systems 
such as  the RISC System/6000.  Commercial workloads 
differ substantially from scientific and engineering 
workloads in their demands on the system. In this paper 
we describe these differences and, using data obtained 
from widely accepted commercial benchmarks, explain 
how some of the features of the POWER2 processor and 
memory subsystem make it  well suited for high 
performance in the commercial arena. 
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