Commercial
workload
performance

in the IBM
POWER2 RISC
System/6000
Processor

by M. T. Franklin

W. P. Alexander
R. Ja

A. M. G. Maynard
B. R. Olszewski

We describe features of the POWER2™
processor and memory subsystem that
enhance RISC System/6000® performance

on commercial workioads. We explain the
performance characteristics of commercial
workloads and some of the common
benchmarks used to measure them. Our own
analysis methods are also described.

Introduction

Data-intensive applications such as transaction processing
and file servers form a major market segment for computer
systems. These applications are collectively called
“‘commercial’” applications, as most were initially used
primarily by commercial enterprises such as banks,
airlines, and insurance companies. Early microprocessor-
based systems simply could not handle such data-intensive
applications because they did not have enough processing
power and I/O connectivity to accommodate large numbers
of data processing users concurrently. In recent years, the
dramatic increase in the processing power available from

microprocessors has made it possible for systems such as
RISC-based workstations to compete in markets that
were once exclusively the domain of mainframes. In fact,
commercial applications represent one of the most rapidly
growing market segments for RISC-based UNIX®
workstations today [1].

In this paper, we examine some of the features of the
POWER2™-based RISC System/6000® that make it
suitable for the commercial workload arena. We begin by
describing the performance characteristics of commercial
workloads. We then discuss our analysis methodology and
some of the common benchmarks used by the industry to
compare commercial performance. This is followed by a
discussion of the POWER?2 hardware features that
contribute to the enhanced commercial performance of the
RISC System/6000.

Characteristics of commercial workloads
Commercial workloads include a wide variety of
applications; some of the more prominent include on-line
transaction processing, other database management
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Table 1 Characteristics of commercial benchmarks.

Benchmark Branches Branches  Average Percentage
(%) taken sequential of

(%) block size  instructions

(instructions) in OS

TPC-A da 18.8 66.4 8.0 67
TPC-A cs 16.9 67.1 8.8 40
TPC-C 18.9 65.1 8.1 43
LADDIS 18.9 68.7 7.7 100
KENBUS 16.3 64.9 9.5 23
SDET 17.8 66.5 8.4 50

services such as batch transaction processing and decision
support, and file servers.

While different commercial applications stress the
system in different ways, most share some common
characteristics. These include

e Many (up to hundreds or thousands of) concurrent users.

¢ Long path lengths over a large set of instructions, with a
substantial part of the path length in the operating
system code.

Fewer repetitive loops and more non-loop-closing
branches than in scientific applications (see [2] for an
analysis of the branching characteristics of some
scientific benchmarks).

¢ Extensive manipulations of data structures via pointers,
requiring integer arithmetic for address resolution.
Relatively little floating-point arithmetic; data
manipulation consists primarily of string or integer
comparison, updates, or insertions.

High random I/O rates, with data spread over many
megabytes or gigabytes of disk; disk I/Os are primarily
short (4 or 8 KB), and successive disk 1/Os are often
randomly distributed over the total disk space used.

Note that the characteristics of commercial applications
differ dramatically from those of scientific or numerically
intensive programs, which often have small instruction
working sets with tight loops, use floating-point arithmetic
extensively, and often do sequential rather than random 1/0.

Table 1 shows some characteristics of certain
commercial benchmarks. The benchmarks themselves,
as well as the methodology used to determine these
characteristics, are discussed in the next section.

The first two numeric columns show the percentage of
instructions executed that are branches, and of these the
percent that are taken. An analysis of branching behavior
helps to explain one of the reasons why the I-cache miss
rates for commercial workloads are higher than those
for scientific applications. Consider a typical scientific
workload dominated by short-to-medium-length loops.
For such a workload, where most branch instructions are
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executed to return to the head of a loop, the percentage
of branches that are taken would be much higher than
the percentages shown in Table 1. Also, if the largest
instruction loop for this workload fits in the I-cache, the
I-cache miss rate for the scientific application would be
very low. In contrast, the branching data in Table 1 show
that, for commercial applications, the percentage of taken
branches is relatively low, indicating that there are
relatively few loops executed in these applications. This
scarcity of loops implies that the application has a lower
probability of re-executing recent instructions present in
the I-cache, leading to a higher I-cache miss rate. Other
characteristics of commercial applications that lead to high
I-cache miss rates include large numbers of processes and
a high context switch rate. The number of processes is
often proportional to the number of concurrent users;
frequent context switches are the result of frequent short
I/0s and interprocess synchronization. Commercial
applications tend to have higher data cache (D-cache) miss
rates as well, because their data exhibit less locality and
sequentiality than scientific applications.

The column labeled Average sequential block size
in Table 1 shows in a different way the tendency of
commercial workloads to cause branching. In this paper
we define the term ““sequential block’ to be the sequence
of instructions executed between two taken branches
(including the second branch instruction). (This is a
dynamic measure, not something obtainable from a static
analysis of the code.) These sequential block sizes are
much shorter than in the scientific and engineering
applications we have analyzed.

The last column in Table 1 shows the percentage
of the total number of instructions executed in the AIX®
operating system code, as opposed to the instructions
executed by the user application and in shared library
code. These numbers indicate that much of the work in
commercial applications is actually done by the operating
system. One reason for this relatively high usage of the
operating system code is that, in these applications, there
is frequent movement of small amounts of data between
different levels of the system, and little arithmetic
computation on the data. (For example, queries must be
sent from an on-line user’s terminal to a database server,
and responses must be sent back; this involves the use of a
lot of operating system communication code, and very
little arithmetic.) This is in contrast to many scientific
applications, where once data are brought to the
application space by the operating system, extensive
arithmetic manipulation is performed before the data are
handed back to the operating system for storage. Operating
system code typically has a high incidence of branches and
few loops.

Clearly, architectural features such as the number of
integer arithmetic units, the sizes, organization, and
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number of levels of instruction and data caches, and the
latency to caches and to memory, all have a strong bearing
on the degree to which commercial applications perform
well on a system. The I/O subsystem has an important
effect on the performance of most applications, but in this
paper we focus on processors and memory subsystems,
and I/O is not discussed further.

Until recently, many RISC-based UNIX workstations
focused on the scientific application environment, but as
this paper and others in this publication [3] show, the
POWERZ2-based workstation is designed to provide
superior performance in both scientific and commercial
environments.

Performance methodology and benchmarks
The results presented in this paper come from one of three
sources: direct measurement on POWER2-based systems,
analysis of traces taken on POWER-based systems, or
simulations using these traces.

& POWER?2 performance measurement

The POWER?2 processor has a built-in hardware
performance monitoring capability that collects
measurements which allow not only detailed performance
analysis, but also detailed workload characterization and
analysis of system behavior [4].

® Traces and simulation

The AIX performance group has a tool that collects
instruction traces. These traces record the sequence

of instructions executed (for both system code and
application code) along with the virtual address of
each instruction and data reference. The traces can be
postprocessed to reveal workload characteristics such as
those shown in Table 1. They can also drive simulators
of the processor and memory subsystem. From the
simulations we can determine many of the same
system performance characteristics as from hardware
measurements, including cache miss rates.

Determining these quantities from a software trace
plus simulations is less accurate than direct hardware
measurements, but it has the advantage of applying to
system configurations that do not actually exist; for
example, we can create a trace once and use it to
investigate many different cache configurations. It also
allowed us to begin analyzing POWER?2 performance
before the processor was actually available, and to analyze
workload characteristics on systems that do not have
hardware counters.

We have validated our trace-based simulation
methodology against direct hardware measurements on
both POWER- and POWER2-based systems, and the
results almost always agree to within 10%.
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o Commercial benchmarks

In the intensely competitive marketplace of open systems,
performance comparisons provide a key differentiator in
making purchasing decisions.

While some customers have developed their own, often
proprietary, benchmarks to help them choose among
different systems, several benchmarks have been accepted
by the industry as good indicators of the performance
capabilities of systems aimed at different parts of the
commercial market. These include the set of TPC
benchmarks for database applications, the LADDIS
benchmark for file server applications, and SPEC™ SDM
benchmarks such as SDET and KENBUS for multi-user
software development applications. The traces used in this
paper are of these benchmark programs.

The TPC benchmarks

The Transaction Processing Performance Council (TPC}
benchmarks are probably the best known and most
frequently cited measures of commercial performance.
The TPC is a collection of representatives from many of
the computer systems vendors and several of the database
vendors competing in the commercial arena throughout the
world. At the time of writing, the TPC has released three
benchmarks, called TPC-A, TPC-B, and TPC-C, along
with rules for running them and reporting results that are
intended to produce fair comparisons among possibly
dissimilar commercial computing systems.

TPC-A simulates a banking application where users
submit simple debit or credit transactions to the system
from automated teller machines. (TPC-B is logically very
similar to TPC-A; it differs mainly in that it is easier and
cheaper to configure a system to run TPC-B than to
configure it for TPC-A. We do not discuss TPC-B further
in this paper.)

The trace called TPC-A da in this paper was collected
while the TPC-A benchmark was running in direct-attach
mode using a commercially available relational database
management system (RDBMS) on a RISC System/6000
Model 530. In the direct-attach mode, the workstation
executes the entire TPC-A benchmark code, including the
user interface, the application code, and the database
server.

The trace called TPC-A cs was collected while the
TPC-A benchmark was running in client-server mode using
a different commerciaily available RDBMS on a RISC
System/6000 Model 530 as a server. In the client-server
mode, the user interface part of the TPC-A benchmark
runs on one or more client machines, while the rest runs
on a server. Since TPC-A cs captures only server code, it
provides a different view of the workload than the TPC-A
da trace, and the two traces are not directly comparable;
we include both in our analysis because both modes of
operation are fairly common in the marketplace.
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Table 2 TPC-C instructions by unit.

Execution unit Percentage of

instruction mix

FXU 78.0
ICU 21.8
FPU 0.2

TPC-A transactions are relatively short and uniform. In
fact, TPC-A transactions are so simple and so short that
this benchmark is becoming obsolete as a measure of high-
end commercial performance; the demand from industry
for more realistic and more complex benchmarks has led
to the development of TPC-C. TPC-C is intended to
simulate an order-entry environment, with a mix of read-
only and update-intensive transactions.

The TPC-C trace was collected on the server portion
of the TPC-C benchmark in a client-server configuration
running on yet another type of commercially available
RDBMS on a RISC System/6000 Model 550.

The LADDIS benchmark

The LADDIS benchmark measures a system’s file serving
capability [5]. One or more client workstations submit a
mix of Network File Server (NFS)™ requests to the
server. LADDIS is the basis of a new system-level file
server (SFS) benchmark suite recently announced by the
Standard Performance Evaluation Corporation (SPEC) [6].
The LADDIS trace was collected on a RISC System/6000
Model 530H.

The KENBUS and SDET benchmarks

KENBUS and SDET are two of the benchmarks that make
up the SPEC SDM (System Development Multitasking)
suite [7]. Both KENBUS and SDET represent multi-user
software development environments with large numbers of
concurrent users executing common UNIX commands
such as edits, compiles, and binds. KENBUS represents a
UNIX/C research and development environment, while
SDET represents a C-based commercial software
development environment. The KENBUS and SDET
traces were collected on a RISC System/6000 Model 530.

System performance

The performance metric that is published for each of the
benchmarks described in the previous section is a measure
of throughput: transactions per second or minute for the
TPC benchmarks and LADDIS, and scripts per hour for
the KENBUS and SDET benchmarks. Systems being
tested against these benchmarks are always configured

so that the processor is the bottleneck by, for example,
adding enough disks to ensure that this is so. In these
configurations, the latencies for I/O are entirely overlapped
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by the processing of instructions, and the processor is fully
utilized, while I/O devices are not. 1/O performance and
system response time are important considerations, but are
beyond the scope of this paper.

When the processor is the bottleneck, system
throughput is determined by three factors: the average
number of instructions (NI) in the path length for the
transaction or operation, the average number of cycles
it takes to execute an instruction (CPI, or ““cycles per
instruction’’) for that benchmark, and the number of
processor cycles per second (usually expressed in
megaHertz, or MHz). Throughput (TP) in transactions or
operations per second is expressible as a function of these
three variables as

MHz x 1,000,000(cycles/s)
Nl(instr/trans) X CPI(cycles/instr) -

Operating system and application developers can improve
throughput by reducing the average path length. MHz is
influenced by processor size, design, implementation
technology, and cost. In the next section, we describe
features of POWER?2 that are aimed at raising throughput
by reducing CPI.

POWER?2 features for high performance

Three features of the POWER2 design improve its
performance on commercial workloads compared to that
of the POWER processor:

e Second integer instruction unit.
e Larger caches.
¢ Longer cache lines.

We now discuss the effect of each of these features in
more detail.

® Second integer instruction unit
The POWER? processor is superscalar; i.e., it is capable
of executing more than one instruction per processor
cycle. As described in [3], the POWER? has two floating-
point instruction execution units (FPUs), two fixed-point
(integer) instruction execution units (FXUs), and an
instruction cache unit (ICU) that handles branch
instructions. The POWER?2 processor is capable of
executing up to six instructions simultaneously in one
cycle. In practice, the number of instructions that can be
executed in any given cycle is constrained by which
instructions are actually present in the section of code
being executed, and by data dependencies among the
instructions.

Multiple floating-point instruction units, which allow
multiple floating-point instructions to be executed
simultaneously, are fairly common in processors aimed at
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Table 3 L1 cache miss rates for three cache configurations.

Workload Configuration POWER?2 Hypothetical A Hypothetical B
size type 32KB I 256KB D 16KB I 16KB D 8KB I 8KB D
assoc/ln sz 2/128 4/256 4/64 4/64 2/32 2/32
TPC-A da 2.4 0.5 4.5 2.1 9.0 3.5
TPC-A cs 4.0 1.2 6.9 4.1 12.7 6.7
TPC-C 2.7 0.4 5.2 2.6 10.3 4.6
LADDIS 2.5 0.4 5.0 3.5 9.9 6.6
KENBUS 0.9 0.4 1.7 1.6 4.4 31
SDET 1.5 0.5 2.7 1.8 6.2 33

scientific/engineering workloads. However, commercial
workloads have relatively few floating-point instructions;
Table 2 shows POWER?2 hardware measurements of the
fractions of all instructions executed by the ICU, the
FXUs, and the FPUs for the TPC-C benchmark, run under
the same RDBMS type as that used to produce our TPC-C
trace.

Our instrumentation also indicates that almost all of the
ICU instructions are branch instructions. Taken together,
the data in Tables 1 and 2 show that most instructions in
commercial applications are executed by integer units;
about 15-20% of the instructions executed are branches,
and only a small fraction of these are floating-point
instructions.

Measurements taken on the POWER2 processor running
TPC-C show that of all the FXU instructions executed,
one FXU executed 68%, while the second FXU executed
the remaining 32%. Generally, instructions are routed to
the second FXU only if there is also an instruction to
dispatch to the first FXUj this implies that the presence of
the second FXU resulted in a reduction of up to 32% in
execution time for the integer instructions. Analysis of
other hardware measurements confirms that, in fact, the
second FXU was busy 48% of the time that the first FXU
was busy. Put another way, the presence of the second
FXU allows the POWER? to increase integer instruction
execution throughput for TPC-C by a factor of about one
half. Note that the theoretical maximum performance
improvement (a doubling of the integer instruction
execution throughput by two equally utilized FXUs) is
difficult to attain because of dependencies between
instructions, which require one unit to hold off execution
until the other completes the preceding operation. (The
exact speedup provided by the second FXU also depends
on how many of the instructions executed by it could have
been scheduled in cycles when the first FXU would
otherwise have been idle. As integer instructions account
for about three quarters of the total instructions, the
presence of the second FXU leads to a significant
performance gain for the POWER2 processor.
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® Larger caches

The POWER?2 processor has separate level 1 (L1) instruction
and data caches. The I-cache holds 32 KB and is two-way
set-associative, with a line size of 128 bytes. The D-cache is
256 KB, four-way, and has a 256-byte line. The original
POWER processor had an 8KB I-cache and a 64KB
D-cache.

The larger caches mean fewer cache misses. In
particular, they increase the execution speed of
commercial workloads, which tend to have larger cache
footprints than scientific/engineering workloads.

To show the effect of cache size and geometry, we
compare the POWER?2 L1 cache configuration with two
smaller, hypothetical configurations as detailed in Table 3.
The cache size, set associativity, and line size in bytes
of the instruction and data caches are given for each of
the three configurations.

For each configuration, Table 3 shows the cache miss
rates as predicted by our model, using the benchmark
traces described earlier. Miss rates are expressed as
percentages, normalized to total instructions issued:

number of misses

miss rate = 100 X ——— .
total instructions

As Table 3 shows, the larger caches reduce misses
significantly, thereby speeding execution of these
benchmarks.

® Longer cache lines

The POWER?2 also has longer L1 cache line sizes than the
POWER. (A ““line” is the unit of transfer between memory
and caches.) The I-cache has 128-byte lines, and the
D-cache has 256-byte lines. Longer lines help performance
in two ways.

First, longer lines increase the probability that
instructions in a sequential block or sequential data
references will fall within the same line rather than
crossing a line boundary into a different line. When two
consecutive references lie in the same cache line, the
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Table 4 1-cache miss/branch characteristics with different line sizes.

Workload Average Total I-cache miss rate Fraction of misses to Branches to same line
sequential (%) first byte of line (%)
block size (%)
(instructions)
32-byte 128-byte 32-byte 128-byte 32-byte 128-byte
line size line size line size line size line size line size
TPC-A da 8.0 5.0 2.4 65.3 38.9 13.8 345
TPC-A cs 8.8 9.5 4.0 67.1 40.6 15.1 38.3
TPC-C 8.1 6.0 2.7 67.0 41.9 151 36.3
LADDIS 7.7 5.6 2.5 67.4 42.4 13.7 38.0
KENBUS 9.5 1.8 0.9 69.9 41.9 14.4 38.5
SDET 8.4 31 1.5 68.3 41.0 13.8 36.5
second reference is almost always found in the cache; Summary

the probability of generating a cache miss increases
when consecutive references lie in different lines.

We used our traces to drive simulations of two I-cache
geometries: Both I-caches held 32K total bytes, but one
had a 32-byte line and the other a 128-byte line (with, of
course, one fourth as many lines). We counted the fraction
of I-cache misses that were references to the first byte
of the new line; many of these misses are caused by
sequential blocks that happened to cross line boundaries.
Note that I-cache misses caused by references to all bytes
of a line other than the first are caused by taken branches,
and cannot be attributed to the fact that sequential blocks
sometimes cross line boundaries.

Table 4 shows the average sequential block size for each
workload repeated from Table 1; the total I-cache miss
rate expressed as a percentage of instructions executed;
of these, the percent of misses that were references to the
first byte of a line; and the percentage of branches taken
that were to a location within the same cache line.

Table 4 shows that longer cache lines reduce both
I-cache misses to the first byte of a line and total misses;
not all misses are due to sequential blocks crossing line
boundaries, of course.

The second benefit of longer I-cache lines shown in
Table 4 is that they increase the probability that a branch
will be to an instruction that is present in the same cache
line. Recall that the two I-cache configurations were the
same size, 32 KB; only the line size was changed.

As can be seen, longer I-cache lines significantly reduce
the fraction of branches that land outside the current line,
thereby helping to reduce total cache misses as shown in
Table 4. This effect should especially benefit commercial
workloads, which have a high incidence of branches.

While our measurements show that they reduce cache
misses, longer cache lines have the disadvantage of taking
longer to fill than shorter lines. To help alleviate this
effect, the POWER?2 has a memory bus that is 8§ words
(256 bits) wide.
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Commercial applications form an increasingly larger
segment of the market for microprocessor-based systems
such as the RISC System/6000. Commercial workloads
differ substantially from scientific and engineering
workloads in their demands on the system. In this paper
we describe these differences and, using data obtained
from widely accepted commercial benchmarks, explain
how some of the features of the POWER?2 processor and
memory subsystem make it well suited for high
performance in the commercial arena.
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