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The high performance of pipelined,
superscalar processors such as the POWER2™
and PowerPC™ is achieved in large part
through the parallel execution of instructions.
This fine-grain parallelism cannot always

be achieved by the processor alone, but
relies to some extent on the ordering of the
instructions in a program. This dependence
implies that optimizing compilers for these
processors must generate or schedule the
instructions in an order that maximizes the
possible parallelism. This paper describes the
parts of the TOBEY compiler which address
the instruction scheduling issue.

Introduction

The TOBEY' family of compilers is designed to optimize
code for the superscalar IBM RISC System/6000®
(RS/6000) computers based on the POWER, POWER2™,
and PowerPC™ architectures. All of these machines have
pipelined, superscalar implementations that manage
instruction-level parallelism in hardware. The
implementations differ in the degree of superscalar
parallelism, the depth of pipelines, and the latencies of
instructions. Advanced models also include register
renaming and true out-of-order execution. This variety of
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implementations has placed great demands on the compiler
and particularly on the instruction scheduler. The
scheduler is the compiler component responsible for the
reordering and replicating of instructions for the purpose
of minimizing execution time for a given target machine.
The scheduler must be flexible enough to generate code
optimized for machines with a wide range of capabilities.
The scheduler must also be portable, to ease the
application of TOBEY compiler technology to a larger
class of target machines. This paper describes the
fundamental algorithms used in the TOBEY instruction
scheduler, along with the engineering solutions designed to
make them work somewhat independently of the target
machine. The IBM Haifa Scientific Center, the IBM
Toronto Laboratory, and the IBM Thomas J. Watson
Research Center jointly developed the instruction
scheduler. '

Overview of the TOBEY compiler

Figure 1 depicts the TOBEY compiler organization,
highlighting the role of instruction scheduling. One of
several language processors translates the source
programming language, such as C, C++%, or FORTRAN,
into a common intermediate language. The intermediate
form is analyzed and transformed by a suite of global
optimizations. The subsequent compiler stages include
instruction scheduling, register allocation, and final code
generation.
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The program undergoes two transformations before the
first phase of instruction scheduling is done. First, inner
loops are unrolled to expose more independent instructions
per iteration. Next, the lifetimes’ of variables are analyzed
and renamed so that each unique lifetime has a unique
name. The global scheduling and software pipelining
phase performs global code motion and high-level loop
transformations, providing greater flexibility and
opportunity to the two scheduling phases which follow.
The local scheduling phase creates basic block instruction
schedules using a sophisticated model of the target
machine. Global register allocation assigns registers to
variables using an enhanced implementation of the Chaitin
algorithm [1]. Finally, the postpass instruction scheduling
phase schedules code generated by the register allocator,
2_"ﬁm;t?'amab]e is a portion of the program over which the variable

contains a useful value. The lifetime begins with the definition and ends with the
last use of the variable.
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schedules interlocks due to register assignment, and
performs some special-case scheduling of branch
instructions.

Local instruction scheduling

The local instruction scheduler processes linear, branch-
free segments of a program (basic blocks), reordering

to optimize the use of the target machine. In general,
instruction scheduling reorders instructions subject to
control flow and data dependence constraints. Limiting the
scope to basic blocks allows the local scheduler to move
instructions without being concerned about legality of code
motion across control flow. This leaves data dependence
as the only constraint to reordering.

The local scheduler divides a basic block into windows
of instructions. A window is delimited by reaching a
maximum size, by reaching a boundary instruction
(for example, a trap or special fence instruction), or by
reaching the end of the block. The scheduler processes
windows of limited size primarily to avoid the excessive
compile time of reordering long sequences of instructions.
To improve the scheduling of instructions which are near
window boundaries, the windows are overlapped. For each
window, the local scheduler builds a dependence graph in
which the nodes are instructions and the directed edges
correspond to some type of data dependence between
instructions.

Using the dependence graph, the scheduler executes an
algorithm called list scheduling to issue all nodes in the
graph in an order which minimizes pipeline delays and idle
processor cycles. The algorithm is essentially a time-driven
simulation of the target machine where, in each cycle, one
or more instructions may be issued.

® Dependence graph

The scheduler analyzes the sequence of instructions to be
reordered, identifying any interesting data dependences.
Three types of dependence are typically of interest: true
dependence, antidependence, and output dependence. An
instruction has a true dependence on a previous instruction
if it uses a value generated by the other instruction.

An instruction has an antidependence on a previous
instruction if it writes to a register or memory location
which is used by the other instruction. Finally, an
instruction has an output dependence on a previous
instruction if it writes to a register or memory location
which is also written by the other instruction. Figure 2
shows examples of each type of dependence.

The scheduler labels or weights the dependence graph
edges with nonnegative integers representing the pipeline
delay that would result if the two instructions represented
by the incident nodes were issued in sequence. For
example, if the edge represents the dependence of a fixed-
point instruction on a value loaded from memory, the edge
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is labeled I to represent the single cycle typically required

to access the data cache. Edge weights may also be True Anti- Output
assigned the special value weak if the incident nodes dependence dependence dependence
represent instructions that may be executed in parallel on

the target machine. Weak edges represent an ordering add  r3,rd,r5 add r3,r4,r5 add r3,rd,rs

relation (that is, the dependent instruction may not be
issued before the instruction on which it depends), but

do not require the incident instructions to be issued in
different cycles. A weak edge is typically used when there
is an antidependence or output dependence between two
instructions.

The dependence graph used by instruction scheduling
also includes information about the execution time of
each instruction. In our model, the execution time of
an instruction is a list of execution resources (such as
functional units and register files) required and the number

subf r6,r7,r3 subf rd4,r6,r7 subf r3,r6,r7

Types of data dependence.

of cycles consumed on each functional unit. The number FORTRAN program: Generated PowerPC code:
of consumed cycles on a functional unit is the minimal
number required to compute the result, not including poI=1,N
rename, decode, or writeback stages. As expected for a T8 = (A1) +8(1)) vz gr0,-1596(gr3) 1

R . L. . 1wz  gr4,-1196(gr3) 2
RISC machine, this time is usually one cycle. However, addc gr5,gr0,grd 3
the RS/6000 machines include complex instructions, 70 = (A(I) - B(I)) subfc gr0,gr0,gré 4
such as integer multiply and divide, which may require T0 = T0 * C(1) Twz  gr4,-796{gr3) §
many cycles to complete execution. Each node in the mullw gr0,gr0,grd 6
dependence graph is labeled with a resource list E(1) =75 /70 divw grg.zz's,gro ;
representing the execution time. END DO st 970,4(r3)

Figure 3 shows a program segment and its corresponding
dependence graph for the PowerPC 601™ target machine.
Dependence graph:

® List-scheduling algorithm

List scheduling is a well-known algorithm originally
designed to solve the microcode compaction problem for
horizontal microarchitectures [2], and more recently
applied to the reordering of instructions for optimization
of RISC programs [3-5].

The algorithm is a time-driven machine simulation which
issues a group of instructions in each cycle which are
expected to issue in parallel on the target machine.

The group to be issued is based upon a working set of
instructions called the tentatively scheduled set. The
tentative set is formed by considering all possible
combinations of instructions which are available to be
issued (according to data dependences) and comparing
these alternatives using a preference function ¥. The
committed set is the final form of the tentative set and
represents the instructions actually issued in the cycle.

The preference function used to decide the final form of
the issue group is the most important factor in the success
of the algorithm. The heuristics built into this function
include the earliest time that an instruction may be issued
and the latest time it may be issued without delaying the
execution of the window of instructions. These two
measures determine the freedom of motion of the
instruction. Given these bounds, the scheduler determines
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an ordering of the instructions which is optimal with

respect to a set of additional measures based on the

dependence graph and target machine resource constraints.
The algorithm proceeds roughly as follows:

1. Compute the dependence graph and the heuristic values
needed to evaluate instruction preferences.

2. Initialize the ready list of instructions. This is the list of
instructions that are candidates to be issued. To enter
the list, a node in the dependence graph must either
have no incoming edges or have only weak incoming
edges from nodes already in the ready list. Initialize the
machine cycle counter to 0.

3. Let J be the tentatively scheduled set. Set § = .

For each instruction v in the ready list, do step 4.

4. If v is eligible for issue, then attempt to allocate
machine resources for v. If resources are available for
v, thenlet T = J U {v}. Otherwise, let @ C J be the
set of instructions in the tentatively scheduled set which
compete for resources required by v. If (v, w) prefers
v, Yw € B then displace the instructions in D.
Displacing an instruction places it back on the ready list
but locks out the resources which were assigned to v
for future allocation in this cycle. This is a guarantee
of forward progress.

5. Commit all tentatively scheduled instructions for this
cycle. Update the ready list to include any nodes
uncovered by the issuing of instructions in this cycle
(that is, any instructions which have become candidates
as defined above because of the issuing of instructions
in this cycle). If all nodes in the graph have been
issued, then exit.

6. Increment the cycle counter. Go to step 3.

In step 4, we need conditions for deciding whether
instruction v is eligible to be issued in the current cycle.
The following conditions are checked:

1. If v was entered into the ready list with incoming weak
edges, check that all weak predecessors (friggers) have
either been issued or are tentatively scheduled to be
issued.

2. Check that the time clock has reached the earliest time
for v.

3. Check that the execution-unit synchronization counter
does not exceed the machine tolerance (for example, for
the RS/6000, check that the FXU is not executing too
far ahead of the FPU or vice versa).

The key to the success of this algorithm is the nature
and ordering of the heuristics encoded in the preference
function #. The heuristics attempt to balance the many
factors involved in the prioritization of instructions for
issue. They are divided roughly between those that check
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for violation of machine resource constraints and those
that prefer instructions based upon calculations on the
dependence graph. For each heuristic, if two instructions
are equal according to its measurements, the test proceeds
to the next heuristic; therefore, the order given is
significant. Note that the heuristics designed to prevent
resource exhaustion (store queue and register files) are
checked first, but in practice are rarely used to decide
schedules.

Given a pair of instructions (v, v,), the heuristic set for
local scheduling is the following:

1. Prefer not to issue floating-point store instructions when
more consecutive floating-point stores have been issued
than can fit in the store queue.

2. Prefer floating-point stores to other instructions if the
stores remaining to be issued exceed the critical store
count for the remainder of the scheduling window. The
critical store count is roughly (g * r)/(g + 1), where
q is the size of the store queue and r is the number of
instructions remaining to be issued.

3. If register pressure (approximately equal to the number
of live variables) is greater than the number of available
registers for some register file,’ then prefer the
instruction that has the smallest positive or largest
negative net effect on register pressure.

4. Each instruction has a deadline cycle which indicates
that issuing the instruction after that cycle will cause
delays in completing the scheduling window. If issuing
v, first will cause v, to miss its deadline, then prefer v,.
Similarly, if issuing v, first will cause v, to miss its
deadline, then prefer v,.

5. Each instruction is assigned a weight that includes the
net effect on register pressure combined with various
heuristic measures designed to moderate the upward
code motion effect of scheduling. Prefer the instruction
with lower weight.

6. The uncover count of an instruction is the number of
instructions that would become available for entry to
the ready list if it were issued. Prefer the instruction
with a larger uncover count.

7. Each instruction v has a sum-delay, S , which is
defined as

max (W, + §)

i€Succ(v)

if Succ(v) # I,

v

0 otherwise,

where Succ(v) is the set of successors of v in the
dependence graph and W is the weight of edge (v, i).
The sum-delay is the maximum number of idle
processor cycles (represented as nonzero edge weights)

3 The RS/6000 machines include separate register files for integer and address
values, floating-point values, and condition codes.
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on any path to the completion of the window. Prefer the
instruction with the larger sum-delay.
8. Each instruction v has a critical path, C , which is
defined as
max W, + C) if Succ(v) # I,
i€Succ(v)

C,=E +

v

0 otherwise,

where E_ is the execution time of instruction v. The
critical path is similar to the sum-delay measure but
includes the execution time of instructions in the path.
Prefer the instruction with the larger critical path.

9. Prefer the instruction appearing first in the original
sequence of code.

® Machine simulation

The allocation of machine resources to instructions is a
critical mechanism in the scheduling of instructions for
superscalar machines. To efficiently utilize the resources
of the machine, particularly multiple execution units, the
scheduler models the dynamic behavior of the machine

as closely as possible. The scheduler manipulates data
structures corresponding to real machine resources such
as functional units, registers, register read and write ports,
synchronization counters, and store queues. Most of these
attributes (for example, the number and type of functional
units) are specified using an abstract machine description
language so that the scheduling simulation can be made as
independent of the target architecture as possible.

One of the significant features of the TOBEY instruction
scheduler is that it is almost entirely driven by tables
which represent the target machine organization. The
tables are generated by a software tool which understands
the high-level machine description language. This allows
for greater flexibility in the application of the scheduler
to new machines and easier modification of machine
attributes. The high-level description language also serves
as an effective communication device between compiler
developers and chip engineers. The edges of the
dependence graph are constructed and weighted using a
machine-independent algorithm. The algorithm obtains
machine-specific execution time and delay values by
lookup in the target machine tables.

To take advantage of the tables generated from machine
descriptions, the machine simulation is designed to handle
a generic superscalar RISC processor. The dispatcher is
used to allocate machine resources for an instruction based
on the target machine tables. If some resource is not
available because some other instruction is tentatively
assigned the resource, it determines which instruction
is to be issued.

When instructions compete for execution resources, a
preference function is evaluated to determine which
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instruction is better to issue. If the instruction being
considered is better than the one tentatively assigned the
resource, the latter is displaced in favor of the former.
During the allocation of resources to an instruction, one
or more instructions may be displaced. After successfully
allocating resources to an instruction, the dispatcher tries
to allocate resources for any displaced instructions (since
they may be better than some other tentatively scheduled
instructions). This process is guaranteed to terminate by
preventing the allocation of a resource to a displaced
instruction when the resource is tentatively assigned to
the instruction which caused the displacement.

Global instruction scheduling

Many techniques have been successful in addressing the
problem of local instruction scheduling. By comparison,
the scheduling of instructions across basic block
boundaries is a much more difficult problem, with far
fewer solutions that work well in practice. Global
scheduling is complicated by the need to make decisions
about the benefit and correctness of moving instructions
between basic blocks. Optimal scheduling also requires
that appropriate loop-level transformations such as loop
unrolling are performed. Previous work in this area
includes the trace-scheduling technique developed by
Fisher and Ellis [6-8], the global parallelization techniques
developed by Ebcioglu [9-11], and a collection of
algorithms for software pipelining of loops [12-16].

The TOBEY compiler implements a global scheduling
algorithm that is a generalization of list scheduling [17]. To
capture the constraints imposed by control flow, the global
scheduler replaces the dependence graph used in local
scheduling with the program dependence graph (PDG)
[18]. The PDG represents both the control and data
dependence relationships between statements or
instructions in a program.

® Control dependence and classification of code motion
The control dependence graph (CDG) is a part of the PDG
that summarizes the relationship of instructions in the
control flow of the program. We simplify the graph to
group instructions belonging to the same basic block so
that the nodes of the CDG are simply basic blocks. The
global scheduler processes the program one loop or
strongly connected region® at a time, beginning with the
innermost (that is, those loops not containing other loops).
Loops nested within other loops are treated as a single
control flow node for the purpose of scheduling the
containing loop. A PDG is built for each loop as it is
processed. Since we may assume that we are building
control dependence relations for a strongly connected
mected region of any directed graph is a collection of nodes and

edges in which there is at least one path between any pair of nodes. TOBEY also
includes the entire control flow graph as an outermost containing region.
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region of the flow graph, we may also assume that there

is no backward control flow (that is, we assume that the
region has a single entry point called a header and that any
edges leading to the header are not included in the region).
This simplifies the control dependence graph to a special
form known as the forward control dependence graph [19].
This form of CDG is a directed acyclic graph in which a
directed edge from B, to B, represents a conditional flow
of control at the exit from block B,, which proceeds to
block B, if the condition evaluates to a given value (for
example, true or false) labeling the edge. We insert
additional edges in the graph to connect blocks with the
same set of control dependences (that is, they are executed
under the same conditions). We call these blocks
equivalent.

We need to review the concepts of dominance and
postdominance to further understand the constraints
of control flow on global code motion in instruction
scheduling. Block B, dominates block B, if every thread of
control from the entry of the procedure to B, includes B,.
Block B, postdominates block B, if every thread of control
from B, to the exit of the procedure includes B,. Note that
we use a modified definition of postdomination in which
back edges are considered equivalent to loop exits. Two
trees are built, one to represent a relation of immediate
dominance and the other, postdominance. Note that if B,
dominates B, and B, postdominates B,, B, and B, are
equivalent, as defined above.

There are three primary classes of code motion. If an
instruction is moved from block B, to block B, the
movement is called useful if B, and B, are equivalent.

The movement is called speculative if B, does not
postdominate B,. The movement requires duplication
if B, does not dominate B,. A movement may both be
speculative and require duplication.

Figure 4 shows a small program written in C along with
a typical sequence of instructions (written using pseudo-
assembly language) that might be generated for the
PowerPC 601. The generated code includes markers to
indicate the beginning of new basic blocks. Movement
of an instruction from B, to B, is classified as useful.
Movement from B, to B, is speculative but does not
require duplication. Movement from B, to B, requires
duplication (in B,) but is not speculative. Movement from
B, to B, is speculative and requires duplication (in B,).

® Speculative code motion

We need to take some care in handling code motion from a
conditionally executed part of a program to a part of the
program that does not depend on the same conditions.
Since code motion occurs in the upward direction (to
control flow predecessors) only, speculative code motion
is strictly concerned with the movement of instructions
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from a block B, into some block B, where B, does not
postdominate B,. There are two problems to address
here: legality and profitability.

The code motion is legal if the instruction does not
destroy any upward-exposed variables’ in other successor
blocks to B, and does not cause any observable side
effects. In general, we cannot speculatively move an
instruction that may cause an exception or alter memory.
On the RS/6000 and PowerPC machines, this restriction
excludes the movement of floating-point instructions,
stores, procedure calls, and some loads. We will later
see that some effort in the analysis of memory
addressing will allow us to move a large class of load
instructions.

Movement of an instruction is profitable if the
instruction would likely be executed anyway or if the
instruction costs nothing to execute (for example, if it is
scheduled in an otherwise idle processor slot). To assess
the relative likelihood of execution, we label the edges in
the control dependence graph with probabilities which
represent an estimate of the chance of following the
conditional path indicated in the graph. The probability of
executing an instruction in B, relative to the execution of
B, is the product of the probabilities labeling the edges on
the path from B, to B, in the CDG. Generally, we move
an instruction that has a relative probability of 50% or more
of being executed. In the absence of actual knowledge of
the likely direction of conditional branches, we use static
predictions based on the context of the branch. For
example, if the branch is the closing of a loop, we assume
that the branch is almost always taken (that is, we assume
that loops are usually iterated many times before exiting).
This framework for assessing the profitability of code
motion is also capable of using information that might be
available from a basic block execution profile.

® Speculative loads

The most important class of instructions to move across
basic blocks are those that load values from memory.
Since most computation is done on register operands
and the most common way to get values into registers is
by using a load instruction, the movement of a load
instruction usually allows the movement of many more
instructions which are dependent upon the value loaded.
Unfortunately, it is difficult to decide whether the
movement of a load is legal. Speculative movement of a
load is considered illegal if it violates memory-ordering
constraints (that is, if the memory location is volatile) or
causes an exception that would not have happened if
the instruction had not been moved. The first of these
conditions is easy to check; the second is much more
mward-exposed in a basit block if there is a use of the variable

before any definition in the block (that is, it depends on a value defined in a
predecessor block).
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C program: Generated code:

*begin 1
if (a < 10) Twz ri=a
cmpwi cr=r0,1
bge Ll,cr0
*begin 2
b=Db + 1; Twz rl=b
addi ri=rl,1
stw b=rl
b L2
*begin 3
else 11: 1wz r2=c
c=c¢ + 1; addi r2=r2,1
stw c=r2
*begin 4
d=d + 1; 12: Twz r3=d
addi r3=r3,1
stw d=r3
if (b > 20) Twz ré=h
cmpwi crl=r4, 20
ble L3,crl
*begin 5
e=¢e + 1; Twz rb5=e
addi r5=r5,1
stw e=r5
*begin 6
13:
Control flow graph (CFG):
Control dependence graph (CDG):
G.) Q)
T

Dominator tree: Postdominator tree:

(5) ()
OO RO &) ()
OO O ONNO

C program with example RS/6000 code and the associated flow and dominance graphs.
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Control dependence graph:

If B, is atarget block and B, is a source block,
B, and 35 are escape blocks.

Example control dependence graph showing escape blocks.

difficult to determine. Bernstein et al. [20] describe a
collection of proof techniques that may determine the
legality of a speculative load.

Determining that a load does not cause an exception
is dependent upon the operating system and machine on
which the program runs. We later describe the set of tests
used for the RS/6000 machines running the AIX 3.2
operating system.

The compiler can determine that many loads are
incapable of generating an exception regardless of their
context. We call these loads globally safe. The scheduler
recognizes these loads by their use of a special base
addressing register. For example, loads using the stack
frame pointer or TOC (table of contents) base register
are usually considered safe. Also, those loads using base
registers loaded from the TOC and with displacements that
are smaller than the allocated memory for the external
being referenced are usually considered safe.

When a load cannot be determined to be globally safe,
the load is usually an array reference or an indirect
reference through a pointer variable. In this case, the
safety of the load may be dependent on the context of the
reference.

The first set of context-sensitive tests is performed on
the target block and its dominators. The compiler searches
the target and dominators for other loads that are similar
to the candidate load or that define its base register to an
address known to be safe. Given two loads L, and L,,
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we consider L, to be similar to L, if L, and L, share
addressing registers and the displacement on L, *‘covers”
the displacement on L,. There are varying degrees of
strictness in the similarity test. The strictest version of the
test demands that the safety of load L, implies the safety
of load L, (that is, the memory referenced by L, is a
subset of the memory referenced by L). More permissive
versions of the test are used at higher optimization levels
(—03) that allow for a larger tolerance in the difference in
displacements on L, and L,. In addition to similar loads,
the target block is searched for definitions of the base
register used on the candidate load that are known to be
safe locations. For example, loads from the TOC are
usually considered safe definitions.

The second set of context-sensitive tests is performed on
the conditional branches controlling the execution of the
candidate load and the set of escape blocks along the path
from B, (the target block) to B, (the source block) in the
CDG. An escape block is a block that is control-dependent
on some block on the path from B, to B, along a condition
other than the one controlling the execution of B,. For
example, in Figure 5, if B, is a target block and B, is a
source block, then B, and B, are escape blocks. First, the
escape blocks are scanned for the presence of any similar
loads. If there are none, the conditional branches closing
the blocks in the CDG between B, and B, are scanned for
conformance to a special form that compares the base
register of the candidate load with zero. If the ‘‘equal to
zero’’ condition controls the escape path, the load is
proven to be safe to move above that condition, because if
control were to pass to the escape block, the load would
have been using a base register of value zero. We are
guaranteed not to get an exception in this case because
AIX 3.2 allows the first page of memory to be readable
(therefore, we also require the load displacement to be in
the range [0, 4095]). This context-sensitive test is most
commonly applied in programs which follow pointer-based
data structures such as trees or linked lists that represent
null pointers with a value of zero. In Figure 6, showing a
program fragment, the load of r4 may be moved above the
conditional branch. Once the load is moved above the
conditional branch, we may also move the addi instruction
(since 6 is not live on the escape path of the branch), but
we cannot move the store instruction speculatively, since
it may alter memory which might not otherwise have been
altered.

® Software pipelining

Recent efforts in the scheduling of instructions for wide-
issue and deeply pipelined computers have turned to loop-
level transformations designed to offer greater opportunity
for the resolution of delay slots and the parallel execution
of instructions. The most widely used technique is called
software pipelining [12-16). The technique rearranges
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loops so that an iteration can be started before a previous
iteration completes. Optimal software pipelining is a
difficult problem in general®, but it has a variety of
approximate solutions that work well in practice. The
global scheduling algorithm presented in [17] does not
include a software pipelining technique but has been
subsequently enhanced to include an approximate software
pipelining algorithm [22]. This algorithm is implemented

in the TOBEY compiler. Ebcioglu and Nakatani have
demonstrated a similar technique [23].

The algorithm is a simple extension to the global
scheduling framework described above. Most inner loops
that are candidates to be globally scheduled are first
unrolled once. The loop is then processed normally, except
that only the original loop blocks (the real iteration) are
scheduled. The loop blocks from the unrolled or virtual
iteration are used only as sources of instructions for the
scheduling of the original loop body. Movement of an
instruction from the virtual iteration to the real iteration is
a special code motion that requires the ““twin’” instruction
in the real iteration to be moved to a prologue of the loop.
When scheduling is complete, some instructions may have
been moved to a loop prologue because of pipelined code
motion. We construct a complementary epilogue section of
code following the loop that contains all instructions of the
virtual iteration which were not scheduled into the real
iteration. The algorithm as stated handles the overlapping
of only two iterations of the loop. A simple extension
allows us to overlap an arbitrary number of iterations
while constructing the appropriate prologue and epilogue
sections of the loop. Figure 7 shows an example of a loop
compiled for the PowerPC 601 before, during, and after
software pipelining. Notice that the resulting loop avoids
delays between the load and use of registers r7 and r8 in
the loop.

Some machines include dynamic scheduling hardware
in the floating-point unit, such as register renaming and a
store queue which realizes many of the benefits of static
pipelining. Software pipelining has a smaller observable effect
on loops which can take advantage of these special facilities.

® Duplication of code

The movement of instructions which require duplication
presents a special problem for the scheduler. For example,
consider the movement of an instruction from B, to B, in
Figure 4. Since B, is not on every path of execution that
might reach B,, the scheduler must create copies of the
instruction to ensure that the program produces the same
results. The scheduler computes a set of basic blocks
including B, that collectively dominates B, and creates
copies of the moved instruction in each block in the set.
met al. show that optimal pipelining of loops with conditional

jumps on a machine with infinite resources is undecidable [21]. The decidability of
optimal pipelining for a machine with finite resources is an open problem.
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Before scheduling: After scheduling:

Twz r5,0(r3) Twz r5,0(r3)
cmpwi  crl,r5,0 Twz r4,0(r5)
beq cri,ll cmpwi  crl,r5,0
Twz r4,0(r5) addi ré,rd,1
addi ré6,rd,1 beq crl,1l
stw r4,0(r5) stw rd,0(r5)
11: Twz r6,8(r3) 11: 1wz r6,8(r3)
Twz rd,16(r3) Twz r4,16(r3)

i

a’ Example of moving a load above a compare with zero.

The set does not include more than one block which

lies on the same path to B,, and the instruction is thus
executed only once on any path from the entry node.” The
scheduler also tries to minimize the number of duplicates
that must be generated. The dominating set generated
under these requirements is called a minimal independent
separating set (MISS). An algorithm for computing the set
is described in [25].

The algorithm assumes that there are no join-split
control flow edges in the program. A control flow edge is
called a split edge if the predecessor block has more than
one successor and is called a join edge if the successor
block has more than one predecessor. A join-split edge
is both a split edge and a join edge. To ensure that the
program does not contain a join-split edge, the control
flow graph is modified before global scheduling by
replacing join-split edges with a split edge leading to a
dummy basic block which leads to a join edge. Given two
basic blocks B, and B,, the following algorithm computes
the MISS N(B,, B,). The algorithm is guaranteed not
to fail if the control flow graph contains no join-split
edges.

. Mark ali blocks that are reachable from B,.

.M, M ={B,}.

. Remove a marked block v from M.

. Let P be the set of immediate predecessors of v. Let
P=P—-M.LetM =MUP and M' = M U P'.

. Mark all blocks reachable from members of P’.

. If B, is marked, then fail.

. If M contains marked blocks, then goto step 3.

. N(B,, B,) = M.

£ N =

0 3 N W

7 The requirement that no two nodes lie on the same path ensures that no execution
path is made slower because of duplication. Moon and Ebcioglu demonstrate a
technique which relaxes this requirement for less frequently executed paths [24].
This may result in better optimization of more frequently executed paths.
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Before: During: After:
Twz  r3,0(r6) Twz r3,0(r6) Twz r3,0(r6)
11: lwzu r7,8(r4) 11: lwzu r7,4(r4) Twzu r7,4(r4)
add r3,r3,r7 add- r3,r3,r7 Twzu r8;4(r5)
Twzu r8,8(r5) Twzu r8,4(r5) bdz 12
subf r3,r8,r3 subf r3,r8,r3 11: add r3,r3,r7
bdnz 11 = eeeeseiemaceaaaes Twzu r7,4(r8)
Twzu r7,4(r4) subf r3,r8,r3
add r3,r3,r7 Twzu r8,4(r5)
Twzu r8,4(r5) bdnz ‘11
subf r3,r8,r3 12: add r3,r3,r7
bdnz 11 subf r3,r8,r3

Software pipelining of a simple loop.

® Elimination of false dependences

Data dependences are the fundamental constraints on

the movement of code by instruction scheduling. True
dependence represents data flow and usually cannot be
avoided. Antidependence and output dependence are
artifacts of variable naming and register allocation. We call
these false dependences, since they can both be avoided
by using a different selection of variable names or register
numbers.

The global scheduler identifies situations where the
presence of an antidependence interferes with the
generation of well-scheduled code. In such situations, it
creates a new register name for the written register in
an antidependence pair and then introduces a register
copy to the old register name. This renaming allows the
antidependence edge in the PDG to be broken, and
therefore allows the incident nodes to be reordered as
necessary. Once the scheduling is complete, we are
left with the problem of removing the register copy
instructions. This is done by unrolling the containing loop
once and then propagating the renamed register into all
uses in the unrolled iteration, eliminating the need for the
register copy instruction. Figure 8 illustrates this process
for a simple program segment. A similar dynamic renaming
technique is used in the global scheduling algorithm
presented in [24].

Some true dependences can also be collapsed by the
scheduler. In cases where two instructions which have
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immediate forms on the target machine are related by a
true dependence, it may be possible to rewrite the
dependent instruction to reflect the effect of the other
instruction. For example, consider the instruction

add r3,r3,1, followed by cmpwi cr1, r3, 1. The compare
depends on the incremented value of r3, but may be
moved above the add instruction if it is rewritten as
cmpwi cr1,r3,0.

Some machines in the PowerPC family lack dynamic
register-renaming capabilities. This provides further
incentive to statically rename registers involved in false
dependences. Since many antidependences are created by
the register allocator in an attempt to optimize register
reuse, a special renaming optimization transforms the
program after register assignment. This optimization
understands when registers should be renamed for the
target machine and which registers are available for use at
any point in the program. The renaming transformation is
done before postpass instruction scheduling to explicitly
break false dependence edges.

Postpass instruction scheduling

The instruction scheduling algorithms used in the compiler
are general enough to create good schedules for most
programs, but experience shows that some specialized
optimizations are necessary to obtain the best performance
for certain code patterns. One weakness of the general
scheduling algorithm is the inability to rearrange
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Before: During: After:
Twz ~ r3,0(r4) wz r3,0(r4) 1wz r3,0(rd)
11: Twz 1r6,0(r7) 11: Twz r6,0(r7) 11: 1wz r6,0(r7)
addi r5,r3,1 addi r8,r6,1 addi r8,r6,1
addi r3,r6,1 addi r5,r3,1 addi r5,r3,1
stwu r5,4(r4) COPY r3=r8 stwu r8,4(r7)
stwu r3,4(r7) stwu r3,4(r7) stwu r5,4(r4)
bdnz 11 stwu r5,4(r4) 1wz r6,0(r7)
bdnz 11 addi r3,r6,1

addi r5,r8,1
stwu r3,4(r7)
stwu r5,4(rd)
bdnz 11

! Elimination of an antidependence.

branches to avoid delays in the speculative dispatch of
instructions.

® Branch swapping
The RS/6000 machines execute branch instructions in
parallel with the execution of fixed- and floating-point
instructions. Optimal performance can be achieved only
when the stream of fixed- and floating-point computation
remains uninterrupted. If the branch unit encounters a
conditional branch which depends on either an unavailable
condition (that is, the condition computation has not yet
completed) or a branch whose target address is similarly
unavailable, we call such branches unresolved. In these
situations, the branch unit cannot determine which
instructions are to be executed next, but speculatively
dispatches instructions to the fixed- and floating-point units
from the fall-through path of the branch. If there are
enough fixed- or floating-point instructions on the fall-
through path, unresolved branches suffer no penalty if they
are not taken. If, however, the branch unit encounters
another branch (which may or may not be resolved),
speculative dispatch of instructions is stopped and waits
until the first branch is resolved.

The compiler often has opportunities to rearrange the
instructions in a program to avoid the branch unit
hold-off caused by encountering a resolved branch while
speculatively dispatching instructions on the fall-through
path of an unresolved branch. An optimization called
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branch swapping identifies situations where an unresolved
branch may contain a resolved branch on the fall-through
path. In these situations, it attempts to swap the branches
while duplicating any intervening code. A typical branch
swapping opportunity is a conditional exit from a counted
loop. In this case, we usually have an unresolved
conditional branch that contains a branch-on-count-register
instruction (always resolved) in the fall-through path.
Figure 9 shows a simple example of branch swapping.

® Branch reversal
Conditional branches which are not taken usuaily suffer
no penalty on the POWER and POWER?2 machines. It is
possible to put the most likely target of a branch on the
fall-through path in order to avoid the delay of a taken
branch. The problem here is that it is not always clear
what direction a branch is most likely to take. The
compiler currently uses a set of heuristics to guess which
direction the branch will most likely take. Sometimes the
heuristics are fairly certain (for example, the branch
closing a loop is likely to be taken); in other cases, the
heuristic is weaker (for example, we assume that if a
branch leads to a call in one successor path but not the
other, the path without the call is more likely to be taken).
More certainty can be achieved by using the information
contained in a basic block execution profile.

Given information about the relative probability of
branch directions, the branch reversal optimization may
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FORTRAN program:

COMMON A,B,C
REAL A(100),B(100),C(100)

D0 10 I=1,N
B(I) = —B(1)

IF (B(I) .LT. 1.0) GOTO 20

A(1) = B(I) » C(I)

10 CONTINUE
20 sToOP

Generated code after branch swapping:

1fs  fp2=1.0
b 13
11: bgt  c¢ri,l12

1fs  fpl,400(r3)
fmuls fp0,fp0,fpl

# Yoad C(I)

stfs fp0,-400(r3) # store A(I)
13: 1fs  fp0,4(r3) # load B(I)
fneg fp0,fp0

stfsu fp0,4(r3)

fempu crl, fp2,fp0

bdnz 11

bgt crl,12

1fs = fpl,400(r3)

fmuls fp0,fp0,fpl

stfs  fp0,-400(r3) # store A(I)
12: (stop)

# store B(I)

# load C(I)

Generated code:

1fs  fp2=1.0

11: 1fs  fp0,4(r3)
fneg fp0,fp0
stfsu fp0,4(r3)
fempu crl, fp2,fp0
bgt c¢rl,12
1fs-  fpl,400(r3) # load C(I)
fmuls fpo,fp0,fpl
stfs fp0,~400(r3) # store A(I)
bdnz 11

12: (stop)

# load B(I)

# store B{I)

Branch swapping for a conditional loop exit.

decide to reverse the direction of a branch, bringing the
instructions on the taken path into the fall-through position
and moving instructions on the fall-through path to the
taken position. This often has the effect of moving
infrequently executed code in a loop out of line, so that
the fall-through paths of conditional branches lead directly
to the closing of the loop.
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® Gluing

An additional opportunity to avoid branch unit hold-offs is
the situation in which an unconditional branch lies in the
fall-through path of an unresolved conditional branch. To
avoid the hold-off upon encountering the unconditional
branch, gluing copies code from the target of the
unconditional branch to the fall-through of the unresolved
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Before branch reversal:

11: Twz  r3,4(rd)
cmpwi crl,r3,1
bne ¢ri,12
bl some_function
12: addi r3,r3,1
stwzu r3,4(r4)
bdnz 11

After branch reversal and gluing:

11: 1wz r3,4(rd)
cmpwi crl,r3,1
beq crl,i3

12: addi r3,r3,1
stwzu r3,4(r4)
bdnz 11
b 14

13: bl some_function
b 12

14;

Example of branch reversal and gluing.

branch, and then replaces the unconditional branch with
one targeted to the end of the code that was copied.
Gluing also serves as the code-copying mechanism for
branch reversal. Figure 10 illustrates the reversal of a
branch and the subsequent gluing of instructions on the
taken path into the fall-through position. Notice that if
the branch is mostly taken in the original code, it is now
mostly not taken in the transformed code, making the
resulting loop faster.

Performance results

All of the instruction scheduling techniques described so
far have been implemented as part of the latest production
versions of the CSet++ and XI. FORTRAN/6000
compilers. Tables 1 and 2 show the results of running the
SPECint92 and SPECfp92 benchmark programs on the
POWER?2 (RS/6000 Model 590) and PowerPC 601 (RS/6000
Model 250) machines. The various levels of scheduling
measured are described in Table 3. The SPECint92 and
SPECfp92 benchmark programs are described in Tables 4
and §, respectively. The measurements should not be
taken as official performance measurements, since they
were not performed using the carefully selected set of
options and quiet execution environment required for
regular published results. The measurements compare the
benchmark scores (expressed as SPECratios) using various
phases of instruction scheduling against a baseline score
which represents no instruction scheduling. The percentage
of execution time reduction is relative to the next lowest
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level of instruction scheduling (B relative to A, C relative
to B, and so on). All measurements include the maximum
optimization available in the TOBEY compiler and also
include options to specifically target the machines being
measured.

The measurements illustrate the effect of the various
types of instruction scheduling on the performance of
the two machines. Notice first that the effect is more
significant on the POWER2, which has a larger degree of
instruction-level parallelism {two integer and two floating-
point units) than the PowerPC 601 machine. The net effect
of all instruction scheduling on the POWER2 is 19.4%
on SPECint92 and 37.8% on SPECfp92, whereas the
respective improvements on the PowerPC 601 are 7.9%
and 16.5%. Another interesting measurement is the
small or nonexistent improvement due to loop-based
optimizations such as unrolling and software pipelining
on the SPECint92 programs. The performance of these
programs does not depend as heavily as that of the
SPECfp92 programs on the execution time of loops and
is not expected to benefit much by these optimizations.
Notice also that the effect of local instruction scheduling
is more significant for the SPECfp92 programs and the
effect of branch optimizations is more significant for the
SPECint92 programs. These effects are an indication of the
relative size of basic blocks in the two benchmark suites
(SPECfp92 blocks are larger) and the relative frequency
of branch instructions (SPECint92 has more frequent
branching).
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Table 1 SPECint92 performance results.

A B C D E F G

None Local Local C + branch D + global E + software F + loop

pass 1 passes 1 & 2 optimization scheduling pipelining unrolling
(%) (%) (%) (%) (%) (%)
POWER2 73.18 4.4 1.0 8.4 29 0.0 1.5
PowerPC 601 46.58 2.9 2.0 24 0.0 0.0 0.6

Table 2 SPECfp92 performance results.

A B C D E F G

None Local Local C + branch D + global E + software F + loop

pass 1 passes 1 & 2 optimization scheduling pipelining unrolling
(%) (%) (%) (%) (%) (%)
POWER2 139.04 9.1 1.5 3.2 83 6.2 4.9
PowerPC 601 54.35 8.4 0.5 0.1 3.0 2.9 0.8

Table 3 Levels of instruction scheduling measured.

A Baseline: no instruction scheduling.

B The first pass of local scheduling (before register
allocation) only.

C  Both passes of local scheduling.

D  Local scheduling and branch optimizations (branch
swapping, reversal, and gluing).

E  Local scheduling, branch optimizations, and global
scheduling.

F  Local scheduling, branch optimizations, global
scheduling, and software pipelining.

G  Local scheduling, branch optimizations, global scheduling,
software pipelining, and inner loop unrolling.

Future directions

Higher degrees of instruction-level parallelism in new
processors will require the TOBEY instruction scheduler
to transform code more aggressively to keep the many
execution units busy and will demand higher performance
in the presence of conditional branches. This anticipated
advance in the organization of superscalar machines
changes the problem of instruction scheduling to be more
similar to the problem of generating code for certain VLIW
(very long instruction word) machines {26]. Aggressive
scheduling techniques for these processors have been an
active research topic [6, 8, 10, 24]. Our future work will
rely increasingly on these techniques.

® Advanced scheduling algorithms
The TOBEY compiler is beginning to incorporate
techniques developed as part of the IBM VLIW machine
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project at the Thomas J. Watson Research Center [10, 23,
24, 27-31). The compiler developed for this project
includes a global scheduling algorithm, an approximate
software pipelining algorithm, loop unrolling, and

register renaming. All of these techniques have been
prototyped in a development version of the TOBEY
compiler.

Before the application of any of the instruction
scheduling techniques, inner loops are unrolled where
heuristics suggest a benefit. Other parts of the TOBEY
compiler attempt both inner and outer loop unrolling, but
this unrolling phase is specifically concerned with exposing
more independent instructions to the scheduler. The
heuristics attempt to determine the optimal unrolling factor
for a loop based on the number of execution units of
each type available on the machine and the set of data
dependence relations and associated pipeline delays
applicable to the instructions in the loop. Where possible,
registers in unrolled iterations are given names distinct
from the corresponding registers in the original iteration
in order to avoid introducing antidependence relations
between iterations.

In the prototype implementation, the TOBEY global
scheduling phase is replaced by the VLIW global
scheduling and enhanced pipeline scheduling algorithms
[23, 24]. For each basic block, VLIW scheduling creates a
set of instructions which are available to move forward.
Scheduling chooses the best instruction from the set of
instructions that can move to a point in the program
and moves the instances of that instruction forward.
Scheduling also makes bookkeeping copies (similar to the
duplication used in the TOBEY scheduler) for edges that
join the path of the selected instructions’ upward motion
(but are not on these paths) and updates the set of
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available instructions associated with basic blocks only on
the paths that were traversed by the moved instructions.
This algorithm provides a general mechanism for the
reordering of instructions in a program across arbitrary
control flow while preserving the semantics of the original
program. The key advantages of this technique over the
existing TOBEY scheduler are the larger scope of analysis
and the ability to handle the movement of conditional
branch instructions between basic blocks. One of the key
disadvantages is the greatly increased compilation time
required.

® Memory disambiguation

To extract large amounts of parallelism from sequential
code, the instructions must be somewhat independent.
Instructions which reference memory often have an
unknown dependence relationship because the effective
addresses referenced may not be known at compile time.
The compiler is able to determine that certain variable
references cannot refer to the same memory location, but
elements of the same array and indirect pointer references
are usually aliased to one another by the compiler. Some
of these aliased references do not in fact interfere, and the
scheduler can do a better job if they can be proven not to
interfere at compile time.

When memory is referenced through the indexing of the
same array, indices can be compared and determined not
to reference the same array element. The problem of
determining that two array references are independent has
many practical solutions originally designed as part of
vectorizing compilers [32-35]. The problem is somewhat
more difficult when encountered by instruction scheduling,
since the subscript expressions of multidimensional arrays
have usually been linearized. A framework for building
symbolic indexing expressions along with a suite of
dependence tests has been prototyped in the TOBEY
compiler. The dependence tests are successful in proving
that many array references are distinct, but fail to
disambiguate most pointer dereferences. In order to
generate well-scheduled code for programs which have
uncertain pointer-induced aliases, the scheduler includes a
prototype implementation of run-time disambiguation. This
technique creates a copy of certain loops and optimizes
one of the copies assuming that certain reference pairs are
distinct and the other copy assuming that they are aliased.
A test is introduced to choose which loop to execute
depending on the actual pointer values. The first
disambiguation technique (array-based dependence
analysis) is uniformly successful in improving execution
time but has a large compile-time cost. The run-time
disambiguation technique is successful in some cases but
requires a careful analysis to determine when the cost of a
run-time test is profitable.
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Table 4 SPECint92 benchmark programs.

espresso Generates and optimizes programmable logic arrays.

li Uses a LISP interpreter to solve the nine-queens
problem, using a recursive backtracking algorithm.

Translates a logical representation of a Boolean
equation to a truth table.

eqntott

compress Reduces the size of input files by using Lempel-Ziv
coding.

sC Calculates budgets, SPEC metrics, and amortization
schedules in a spreadsheet based on the UNIX
cursor-controlled package ““curses.”

gee Translates preprocessed C source files into
optimized Sun-3 assembly language output.

Table 5 SPECfp92 benchmark programs.

spice2gb6  Simulates analog circuits.

doduc Performs Monte Carlo simulation of the time
evolution of a thermo-hydraulic model for a
nuclear reactor’s component.

mdljdp2  Solves motion equations for a model of 500
atoms interacting through the idealized
Lennard-Jones potential (double precision).

mdljsp2  Same as mdljdp2 but single precision.

waves Solves particle and Maxwell’s equations on a
Cartesian mesh.

tomcatv Generates two-dimensional, boundary-fitted
coordinate systems around general geometric
domains.

ora Traces rays through an optical surface
containing spherical and planar surfaces.

alvinn Trains a neural network using back-propagation.

ear Simulates the human ear by converting a sound
file to a cochleagram using fast Fourier
transforms and other math library functions.

swm256  Solves the system of shallow-water equations
using finite difference approximations.

su2cor Calculates masses of elementary particles in the
framework of the quark gluon theory.

hydro2d  Uses hydrodynamical Navier-Stokes equations
to calculate galactical jets.

nasa7 Executes seven program kernels representative
of operations used in NASA applications.

fpppp Calculates multi-electron integral derivatives.

® Profile-directed optimizations

Many aggressive algorithms for extracting parallelism from
sequential code assume some knowledge of the paths

of execution that are most often taken. In fact, some
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techniques go so far as to optimize the most frequent paths
at the expense of the less frequently taken paths. If we are
to use such aggressive techniques, we must determine the
most frequently taken paths on the basis of actual program
executions. It is necessary to evaluate the dynamic
behavior of the program while processing typical data sets
and then feed this information back into the compiler. The
level of detail required by the compiler to make decisions
about the likelihood of certain execution paths is beyond
most standard programs which produce execution profiles.
Therefore, we are investigating various techniques for
obtaining execution profile information at the basic block
level. In addition, we are investigating enhancements

to the compiler which might take advantage of this
information and solutions to the problem of keeping the
information correct while performing the normal set of
optimizing program transformations.
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