
Instruction 
scheduling 
in the TOBEY 
compiler 

The  high  performance of pipelined, 
superscalar  processors  such  as  the  POWERS" 
and  PowerPC" is  achieved in large  part 
through  the  parallel  execution of instructions. 
This fine-grain parallelism  cannot  always 
be  achieved  by  the  processor  alone,  but 
relies  to  some  extent  on  the  ordering  of  the 
instructions  in  a  program.  This  dependence 
implies  that  optimizing  compilers  for  these 
processors  must  generate  or schedule the 
instructions in an  order  that  maximizes  the 
possible  parallelism.  This  paper  describes  the 
parts of the TOBEY  compiler  which  address 
the  instruction  scheduling  issue. 

Introduction 
The  TOBEY' family of compilers is designed to optimize 
code for the superscalar IBM RISC System/6000@ 
(RS/6000) computers based on the POWER,  POWER2m, 
and  PowerPCm architectures. All  of these machines have 
pipelined, superscalar implementations that manage 
instruction-level parallelism in hardware. The 
implementations differ in the degree of superscalar 
parallelism, the depth of pipelines, and the latencies of 
instructions. Advanced models also include register 
renaming  and true out-of-order execution. This variety of 
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implementations has placed great demands on the compiler 
and particularly on the instruction scheduler. The 
scheduler is the compiler component responsible for the 
reordering and replicating of instructions for the purpose 
of  minimizing execution time for a given target machine. 
The scheduler must be flexible  enough to generate code 
optimized for machines with a wide range of capabilities. 
The scheduler must also be portable, to ease the 
application of TOBEY compiler technology to a larger 
class of target machines. This paper describes the 
fundamental algorithms used in the TOBEY instruction 
scheduler, along  with the engineering solutions designed to 
make  them work somewhat independently of the target 
machine.  The  IBM  Haifa Scientific Center, the IBM 
Toronto Laboratory, and the IBM Thomas J. Watson 
Research Center jointly developed the instruction 
scheduler. 

Overview of the TOBEY  compiler 
Figure 1 depicts the TOBEY compiler organization, 
highlighting the role of instruction scheduling.  One of 
several language processors translates the source 
programming  language, such as C, C++@,  or FORTRAN, 
into a common intermediate language. The intermediate 
form  is analyzed and transformed by a suite of global 
optimizations. The subsequent compiler stages include 
instruction scheduling, register allocation, and final code 
generation. 
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Instruction  scheduling  in TOBEY. 

The program undergoes two transfonnations before the 
first phase of instruction scheduling is done. First, inner 
loops are unrolled to expose more independent instructions 
per iteration. Next, the lifetimes* of variables are analyzed 
and renamed so that each unique lifetime has a unique 
name. The global scheduling and  software pipelining 
phase performs global code motion and high-level  loop 
transformations, providing greater flexibility and 
opportunity to the two scheduling phases which  follow. 
The local  scheduling phase creates basic block instruction 
schedules using a sophisticated model of the target 
machine. Global  register  allocation assigns registers to 
variables using an enhanced implementation of the Chaitin 
algorithm [l]. Finally, the posrpass instruction  scheduling 
phase schedules code generated by the register allocator, 

* A lifetime of a  variable is a portion  of  the  program  over  which  the  variable 
contains  a  useful  value.  The  lifetime  begins  with  the  definition  and  ends  with  the 
last  use  of  the  variable. 578 

R. J. BLAINEY 

schedules interlocks due to register assignment, and 
performs some special-case scheduling of branch 
instructions. 

Local  instruction  scheduling 
The local instruction scheduler processes linear, branch- 
free segments of a program (basic  blocks), reordering 
to optimize the use of the target machine. In general, 
instruction scheduling reorders instructions subject to 
control flow and data dependence constraints. Limiting the 
scope to basic blocks allows the local scheduler to move 
instructions without being concerned about legality of code 
motion across control flow. This leaves data dependence 
as the only constraint to reordering. 

The local scheduler divides a basic block into windows 
of instructions. A window is delimited by reaching a 
maximum size, by reaching a boundary instruction 
(for example, a trap or special fence instruction), or by 
reaching the end of the block. The scheduler processes 
windows of limited size primarily to avoid the excessive 
compile  time of reordering long sequences of instructions. 
To improve the scheduling of instructions which are near 
window boundaries, the windows are overlapped. For each 
window, the local scheduler builds a dependence  graph in 
which the nodes are instructions and the directed edges 
correspond to some type of data dependence between 
instructions. 

Using the dependence graph, the scheduler executes an 
algorithm  called list  scheduling to issue all nodes in the 
graph in  an order which  minimizes  pipeline delays and idle 
processor cycles. The algorithm is essentially a time-driven 
simulation of the target machine where, in each cycle, one 
or more instructions may be issued. 

Dependence  graph 
The scheduler analyzes the sequence of instructions to be 
reordered, identifying any interesting data dependences. 
Three types of dependence are typically of interest: true 
dependence,  antidependence, and output  dependence. An 
instruction has a true dependence on a previous instruction 
if it uses a value generated by the  other instruction. 
An instruction has an antidependence on a previous 
instruction if it writes to a register or memory location 
which  is used by the other instruction. Finally, an 
instruction has an output dependence on a previous 
instruction if it writes to a register or memory location 
which is also written by the  other instruction. Figure 2 
shows examples of each type of dependence. 

The scheduler labels or weights the dependence graph 
edges  with nonnegative integers representing the pipeline 
delay that would result if the two instructions represented 
by the incident nodes were issued in sequence. For 
example, if the edge represents the dependence of a fixed- 
point instruction on a value loaded from memory, the edge 
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is labeled I to represent the single cycle typically required 
to access the data cache. Edge  weights may also be 
assigned the special value weak if the incident nodes 
represent instructions that may be executed in  parallel  on 
the target machine. Weak edges represent an ordering 
relation (that is, the dependent instruction may not be 
issued before the instruction on which  it depends), but 
do not require the incident instructions to be  issued  in 
different cycles. A weak edge  is  typically used when there 
is an antidependence or output dependence between two 
instructions. 

The dependence graph used by instruction scheduling 
also includes information about the execution  time of 
each instruction. In our model, the execution time of 
an instruction is a list of execution resources (such as 
functional units and register files) required and the number 
of cycles consumed on each functional unit. The number 
of consumed cycles on a functional unit  is the minimal 
number required to compute the result, not  including 
rename, decode, or writeback stages. As expected for a 
RISC machine, this time  is  usually one cycle. However, 
the RS/6000 machines include complex instructions, 
such as integer multiply  and divide, which  may require 
many cycles to complete execution. Each node in the 
dependence graph is labeled with a resource list 
representing the execution time. 

dependence graph for the PowerPC 601TM target machine. 
Figure 3 shows a program segment and its corresponding 

List-scheduling  algorithm 
List scheduling is a well-known  algorithm  originally 
designed to solve the microcode compaction problem for 
horizontal microarchitectures [2], and more recently 
applied to the reordering of instructions for optimization 
of RISC programs [3-51. 

issues a group of instructions in each cycle which are 
expected to issue in parallel on the target machine. 
The group to be issued is based upon a working set of 
instructions called the tentatively  scheduled set. The 
tentative set is formed by considering all  possible 
combinations of instructions which are available to be 
issued (according to data dependences) and comparing 
these alternatives using a preference function X. The 
committed  set is the final form of the tentative set and 
represents the instructions actually issued in the cycle. 

The preference function used to decide the final  form  of 
the issue group is the most important factor in the success 
of the algorithm. The heuristics built into this function 
include the earliest time that an instruction may  be issued 
and the latest time it may be issued without  delaying the 
execution of the window of instructions. These two 
measures determine the freedom of motion of the 
instruction. Given these bounds, the scheduler determines 

The algorithm is a time-driven machine  simulation  which 

True Anti- output 
dependence dependence dependence 

add r3,r4,r5 add r3,r4,r5 add r3,r4,r5 

subf r6,r7,r3 \ I  subf r4,r6,r7 subf r3,r6,r7 1 

Types of data dependence. 

FORTRAN program:  Generated  PowerPC  code: 

DO I = 1. N 
T5 = ( A ( 1 )  + B ( I ) )  lwz gr0.-1596(gr3) 1 

lwz gr4.-1196(gr3) 2 
addc gr5,grO,gr4 3 

TO = ( A ( I )  - B(1))  subfc grO,grO,gr4 4 
TO = TO * C ( I )  lwz gr4,-796(gr3) 5 

mullw grO.grO.gr4 6 
E(I) = T5 / TO divw grO.gr5.grO 7 

stwu gr0,4(gr3) 8 
END DO 

Dependence  graph 

Example dependence graph for the PowerPC 601. 
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an ordering of the instructions which  is  optimal  with 
respect to a set of additional measures based on the 
dependence graph and target machine resource constraints. 

The algorithm proceeds roughly as follows: 

1. Compute the dependence graph and the heuristic values 
needed to evaluate instruction preferences. 

2. Initialize the ready list of instructions. This  is the list of 
instructions that are candidates to be issued. To enter 
the list, a node in the dependence graph must either 
have no  incoming edges or have only  weak  incoming 
edges from nodes already in the ready list. Initialize the 
machine cycle counter to 0. 

3. Let 9 be the tentatively scheduled set. Set 9 = 0. 
For each instruction v in the ready list, do step 4. 

4. If v is  eligible for issue, then attempt to allocate 
machine resources for v .  If resources are available for 
v ,  then let 9 = 9 U { v } .  Otherwise, let 9 C 9 be the 
set of instructions in the tentatively scheduled set which 
compete for resources required by v .  If X ( v ,  w )  prefers 
v ,  V w  E 9 then displace the instructions in 9. 
Displacing  an instruction places it  back  on the ready list 
but locks out the resources which were assigned to v 
for future allocation in this cycle. This is a guarantee 
of forward progress. 

5. Commit  all tentatively scheduled instructions for this 
cycle. Update the ready list to include any nodes 
uncovered by the issuing of instructions in this cycle 
(that is, any instructions which have become candidates 
as defined above because of the issuing of instructions 
in this cycle). If  all nodes in the graph have  been 
issued, then exit. 

6. Increment the cycle counter. Go to step 3. 

In step 4, we need conditions for deciding whether 
instruction v is eligible to be issued in the current cycle. 
The following conditions are checked: 

1. If v was entered into the ready list with  incoming  weak 
edges, check that all  weak predecessors (triggers) have 
either been issued or are tentatively scheduled to be 
issued. 

2.  Check that the time clock has reached the earliest  time 
for v .  

3. Check that the execution-unit synchronization counter 
does not exceed the machine tolerance (for example, for 
the RS/6000, check that the FXU is not executing too 
far ahead of the FPU or vice versa). 

The key to the success of this algorithm  is the nature 
and ordering of the heuristics encoded in the preference 
function X. The heuristics attempt to balance the many 
factors involved in the prioritization of instructions for 

580 issue. They are divided  roughly between those that check 
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for violation of machine resource constraints and those 
that prefer instructions based upon calculations on the 
dependence graph. For each heuristic, if two instructions 
are equal according to its measurements, the test proceeds 
to the next heuristic; therefore, the order given  is 
significant. Note that the heuristics designed to prevent 
resource exhaustion (store queue and register files) are 
checked first, but in practice are rarely used to decide 
schedules. 

local scheduling is the following: 

1. Prefer not to issue floating-point store instructions when 
more consecutive floating-point stores have been issued 
than can fit  in the store queue. 

2. Prefer floating-point stores to other instructions if the 
stores remaining to be issued exceed the critical store 
count for the remainder of the scheduling window. The 
critical store count is  roughly (q  * r ) / ( q  + l), where 
q is the size of the store queue and r is the number of 
instructions remaining to be issued. 

3.  If register pressure (approximately equal to the number 
of live variables) is greater than the number of available 
registers for some register file,3 then prefer the 
instruction that has the smallest positive or largest 
negative net effect  on register pressure. 

4. Each instruction has a deadline cycle which indicates 
that issuing the instruction after that cycle will cause 
delays in completing the scheduling window.  If issuing 
v l  first will cause v2 to miss its deadline, then prefer v z .  
Similarly, if issuing v2 first will cause v ,  to miss its 
deadline, then prefer v l .  

5. Each instruction is  assigned a weight that includes the 
net  effect on register pressure combined with various 
heuristic measures designed to moderate the upward 
code motion  effect of scheduling. Prefer the instruction 
with lower weight. 

6. The uncover  count of an instruction is the number of 
instructions that would become available for entry to 
the ready list if it were issued. Prefer the instruction 
with a larger uncover count. 

defined as 

Given a pair of instructions (vI , v z ) ,  the heuristic set for 

7. Each instruction v has a sum-delay, Sn, which is 

max (Woj + Si) if Succ(u) # M, 
s, = 

i € S U C C ( " )  

otherwise, 

where Succ(v)  is the set of successors of v in the 
dependence graph and Wui is the weight of edge ( v ,  i ) .  
The sum-delay  is the maximum number of idle 
processor cycles (represented as nonzero edge  weights) 

3 The RSI6M)O machines include separate register files for integer and address 
values, floating-point values, and condition codes. 
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on  any  path  to  the completion of the window.  Prefer the 
instruction with the larger  sum-delay. 
Each  instruction v has  a critical path, Cn ,  which  is 
defined as 

max (WVi + CJ if Succ(v) f 0, 

otherwise, 

where Ev is the  execution time of instruction v .  The 
critical path is  similar to  the sum-delay measure but 
includes the  execution time of instructions in the  path. 
Prefer  the  instruction with the larger  critical path. 
Prefer  the  instruction  appearing first in the original 
sequence of code. 

Machine  simulation 
The allocation of machine resources  to  instructions is a 
critical  mechanism  in the scheduling of instructions  for 
superscalar  machines.  To efficiently utilize the  resources 
of the  machine, particularly  multiple execution  units,  the 
scheduler models the  dynamic  behavior of the machine 
as closely as possible. The  scheduler manipulates data 
structures  corresponding  to real  machine resources  such 
as functional units,  registers,  register read and write ports, 
synchronization  counters,  and  store  queues. Most of these 
attributes (for example,  the  number  and  type of functional 
units) are specified using an  abstract machine description 
language so that  the scheduling  simulation can  be made as 
independent of the target architecture  as possible. 

One of the significant features of the  TOBEY instruction 
scheduler is that it  is almost entirely  driven by tables 
which represent  the target  machine  organization. The 
tables  are  generated  by a software tool  which understands 
the high-level machine description language. This allows 
for  greater flexibility in the application of the scheduler 
to  new machines and  easier modification of machine 
attributes.  The high-level description language also serves 
as  an effective  communication device  between compiler 
developers  and  chip engineers. The  edges of the 
dependence  graph  are  constructed  and weighted  using a 
machine-independent  algorithm. The algorithm obtains 
machine-specific execution  time  and delay  values by 
lookup in the  target machine  tables. 

To take  advantage of the  tables  generated  from machine 
descriptions,  the machine  simulation  is  designed to handle 
a generic  superscalar  RISC  processor.  The dispatcher is 
used to  allocate machine resources  for  an  instruction  based 
on  the  target machine tables. If some  resource is not 
available because  some  other  instruction is  tentatively 
assigned the  resource, it determines which instruction 
is to  be issued. 

When  instructions  compete  for  execution  resources, a 
preference  function is evaluated  to  determine which 

instruction is better  to  issue. If the  instruction being 
considered is better than  the  one  tentatively assigned the 
resource,  the  latter is displaced in favor of the  former. 
During the allocation of resources  to  an  instruction,  one 
or more instructions may be  displaced. After  successfully 
allocating resources  to  an  instruction,  the  dispatcher  tries 
to allocate resources  for  any displaced instructions (since 
they may be  better  than  some  other  tentatively scheduled 
instructions). This  process is guaranteed  to  terminate  by 
preventing the allocation of a resource  to a displaced 
instruction when  the  resource is tentatively assigned to 
the instruction  which caused  the  displacement. 

Global instruction scheduling 
Many techniques  have  been  successful in addressing  the 
problem of local instruction scheduling.  By comparison, 
the scheduling of instructions  across  basic block 
boundaries is a much  more difficult problem, with far 
fewer solutions that  work well in practice.  Global 
scheduling is complicated by the need to  make decisions 
about  the benefit and  correctness of moving instructions 
between basic blocks. Optimal  scheduling also  requires 
that  appropriate loop-level transformations  such  as loop 
unrolling are  performed.  Previous  work in this  area 
includes the trace-scheduling technique  developed  by 
Fisher  and Ellis [6-81, the global  parallelization techniques 
developed by Ebcioglu [9-111, and a collection of 
algorithms for  software pipelining of loops [12-161. 

The  TOBEY compiler  implements a global  scheduling 
algorithm that is a  generalization of list  scheduling [17]. To 
capture  the  constraints  imposed  by  control flow, the global 
scheduler replaces  the  dependence  graph  used in  local 
scheduling with  the program  dependence  graph (PDG) 
[18]. The PDG represents  both  the  control  and  data 
dependence relationships between  statements  or 
instructions in a program. 

Control dependence and classijication of code  motion 
The control dependence  graph (CDG) is  a part of the  PDG 
that  summarizes  the  relationship of instructions in the 
control flow of the  program.  We simplify the graph to 
group  instructions belonging to  the  same  basic block so 
that  the  nodes of the  CDG  are simply  basic  blocks. The 
global scheduler  processes  the program one  loop  or 
strongly connected region4 at a time, beginning with the 
innermost  (that  is,  those  loops  not containing other loops). 
Loops  nested within other  loops  are  treated  as a single 
control flow node  for  the  purpose of scheduling the 
containing loop. A PDG is built for  each  loop as it  is 
processed.  Since  we  may  assume  that  we  are building 
control  dependence  relations  for a strongly connected 

4 A strongly connected region of any directed graph is a collection of nodes and 
edges in which there is at least one path between any pair of nodes. TOBEY also 
includes the entire control flow graph as an outermost containing region. 
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region of the flow graph, we  may also assume that there 
is no backward control flow (that is, we assume that the 
region has a single entry point called a header and that any 
edges leading to the header are not  included in the region). 
This simplifies the control dependence graph to a special 
form  known as the forward control dependence  graph [19]. 
This form of  CDG is a directed acyclic graph in which a 
directed edge from B ,  to B ,  represents a conditional flow 
of control at the exit from block B , ,  which proceeds to 
block B,  if the condition evaluates to a given value (for 
example, true or false) labeling the edge. We insert 
additional edges in the graph to connect blocks with the 
same set of control dependences (that is, they are executed 
under the same conditions). We call these blocks 
equivalent. 

We need to review the concepts of dominance and 
postdominance to further understand the constraints 
of control flow on global code motion  in instruction 
scheduling. Block B ,  dominates block B,  if every thread of 
control from the entry of the procedure to B,  includes B ,  . 
Block B ,  postdominates block B ,  if every thread of control 
from B ,  to the exit of the procedure includes B , .  Note that 
we use a modified  definition of postdomination in which 
back edges are considered equivalent to loop exits. Two 
trees  are built, one to represent a relation of immediate 
dominance and the other, postdominance. Note that if B ,  
dominates B,  and B ,  postdominates B , ,  B ,  and B ,  are 
equivalent, as defined above. 

instruction is  moved from block B,  to block B ,  , the 
movement is called useful if B ,  and B ,  are equivalent. 
The movement is  called speculative if B ,  does not 
postdominate B ,  . The movement requires duplication 
if B ,  does not dominate B , .  A movement may both be 
speculative and require duplication. 

a typical sequence of instructions (written using pseudo- 
assembly language) that might be generated for the 
PowerPC 601. The generated code includes markers to 
indicate the beginning of  new basic blocks. Movement 
of an instruction from B,  to B ,  is classified as useful. 
Movement from B ,  to B ,  is speculative but does not 
require duplication. Movement from B,  to B,  requires 
duplication (in B,)  but is not speculative. Movement from 
B,  to B,  is speculative and requires duplication (in B , ) .  

There are three primary classes of code motion. If an 

Figure 4 shows a small  program written in C along  with 

Speculative code motion 
We need to take some care in  handling code motion  from a 
conditionally executed part of a program to a part of the 
program that does not depend on the same conditions. 
Since code motion occurs in the upward direction (to 
control flow predecessors) only, speculative code motion 

582 is strictly concerned with the movement of instructions 
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from a block B ,  into some block B ,  where B ,  does not 
postdominate B ,  . There are two problems to address 
here: legality and profitability. 

The code motion  is legal if the instruction does not 
destroy any upward-exposed variables’  in other successor 
blocks to B ,  and does not cause any observable side 
effects. In general, we cannot speculatively move an 
instruction that may cause an exception or alter memory. 
On the RS/6000 and PowerPC machines, this restriction 
excludes the movement of floating-point instructions, 
stores, procedure calls, and some loads. We  will later 
see that some effort  in the analysis of memory 
addressing will allow  us to move a large class of load 
instructions. 

instruction would  likely be executed anyway or if the 
instruction costs nothing to execute (for example, if it is 
scheduled in  an otherwise idle processor slot). To assess 
the relative likelihood of execution, we label the edges in 
the control dependence graph with probabilities which 
represent an estimate of the chance of following the 
conditional path indicated in the graph. The probability of 
executing an instruction in B,  relative to the execution of 
B ,  is the product of the probabilities labeling the edges on 
the path from B ,  to B,  in the CDG. Generally, we move 
an instruction that has a relative probability of 50% or more 
of  being executed. In the absence of actual knowledge of 
the likely direction of conditional branches, we use static 
predictions based on the context of the branch. For 
example, if the branch is the closing of a loop, we assume 
that the branch is almost always taken (that is, we assume 
that loops are usually iterated many times before exiting). 
This framework for assessing the profitability of code 
motion  is also capable of using information that might be 
available from a basic block execution profile. 

Movement of an instruction is profitable if the 

Speculative  loads 
The most important class of instructions to move across 
basic blocks are those that load values from memory. 
Since  most computation is done on register operands 
and the most  common  way to get values into registers is 
by using a load instruction, the movement of a load 
instruction usually allows the movement of many more 
instructions which are dependent upon the value loaded. 
Unfortunately, it  is  difficult to decide whether the 
movement of a load  is  legal. Speculative movement of a 
load  is considered illegal if it violates memory-ordering 
constraints (that is, if the memory location is volatile) or 
causes an exception that would  not have happened if 
the instruction had not been moved. The first of these 
conditions is easy to check; the second is  much more 

5 A variable is upward-exposed in a basit block if there is a use of the variable 
before any definition in the block (that is, it depends on a value defined in a 
predecessor block). 
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c program: 

if  (a c 10) 

b = b  + 1; 

else 
c = c  + 1; 

d = d +  1; 

if (b > 20) 

e = e  + 1; 

Generated code: 

*begin 1 
lwz r O a  
cmpwi crbr0,l 
bge L1,crO 

addi  rl=rl,l 
lwz  rl=b 

stw b=rl 
b 12 

*begin 2 

*begin 3 
11: 1wz  r2=c 

addi  r2=r2.1 

*begin 4 
stw c=r2 

12: lwz r3=d 
addi r3=r3.1 
stw d=r3 
lwz r4=b 
cmpwi crl=r4,20 
ble L3,crl 

addi r5=r5,1 
lwz r5=e 

stw -1-5 

*begin 5 

*begin 6 
13: 

Control flow graph (CFG): 

Control dependence graph (CDG):  

------- Equivalence  edge 

Dominator tree: Postdominator tree: 

1 C program with example RS/6000 code and  the associated flow and dominance graphs. 
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we consider L ,  to be similar to L, if L ,  and L ,  share 

the displacement on L, .  There are varying degrees of 
strictness in the similarity test. The strictest version of the 
test demands that the safety of load L ,  implies the safety 
of load L ,  (that is, the memory referenced by L ,  is a 
subset of the memory referenced by 15,). More permissive 
versions of the test are used at higher optimization levels 
(-03) that allow for a larger tolerance in the difference in 
displacements on L ,  and L,.  In addition to similar loads, 
the target block  is searched for definitions of the base 
register used on the candidate load that  are known to be 
safe locations. For example, loads from the TOC are 
usually considered safe definitions. 

Control dependence graph: addressing registers and the displacement on L ,  “covers” 

The second set of context-sensitive tests is performed on 

If E ,  is a target block and E ,  is a source block, 
B4 and Es ate escape blocks. 

the conditional branches controlling the execution of the 
candidate load  and the set of escape  blocks along the path 
from B ,  (the target block) to B,  (the source block)  in the 
CDG.  An escape block  is a block that is control-dependent 
on  some  block  on the path from B ,  to B,  along a condition 
other than the one controlling the execution of B , .  For 

Example control dependence graph showing escape blocks. example, in Figure 5, if B ,  is a target block and B ,  is a 
source block, then B ,  andB, are escape blocks. First, the 
escape blocks are scanned for the presence of any similar 

difficult to determine. Bernstein et al. [20] describe a 
collection of proof techniques that may determine the 
legality of a speculative load. 

Determining that a load does not cause an exception 
is dependent upon the operating system and machine on 
which the program runs. We later describe the set of tests 
used for the RS/6000 machines running the AIX  3.2 
operating system. 

The compiler can determine that many loads are 
incapable of generating an exception regardless of their 
context. We call these loads globally  safe. The scheduler 
recognizes these loads by their use of a special base 
addressing register. For example, loads using the stack 
frame pointer or TOC (table of contents) base register 
are usually considered safe. Also, those loads using base 
registers loaded from the TOC and with displacements that 
are smaller than the allocated memory for the external 
being referenced are usually considered safe. 

the load  is  usually  an array reference or an indirect 
reference through a pointer variable. In this case, the 
safety of the load  may  be dependent on the context of the 
reference. 

The first set of context-sensitive tests is performed on 
the target block and its dominators. The compiler searches 
the target and dominators for other loads that are similar 
to the candidate load or that define its base register to an 

When a load cannot be determined to be  globally safe, 

584 address known to be safe. Given two loads L ,  and L, ,  

loads. If there are none, the conditional branches closing 
the blocks  in the CDG between B ,  and B ,  are scanned for 
conformance to a special form that compares the base 
register of the candidate load  with zero. If the “equal to 
zero” condition controls the escape path,  the load is 
proven to be safe to move above that condition, because if 
control were to pass to the escape block, the load  would 
have been using a base register of value zero. We are 
guaranteed not to get an exception in this case because 
AIX  3.2  allows the first  page of memory to be readable 
(therefore, we also require the load displacement to be  in 
the range [0, 40951). This context-sensitive test is most 
commonly  applied  in programs which  follow pointer-based 
data structures such as trees or linked lists that represent 
null pointers with a value of zero. In Figure 6, showing a 
program fragment, the load of r4 may be moved above the 
conditional branch. Once the load  is  moved above the 
conditional branch, we  may also move the addi instruction 
(since r6 is not live on the escape path of the branch), but 
we cannot move the store instruction speculatively, since 
it  may alter memory  which  might  not otherwise have been 
altered. 

Software pipelining 
Recent efforts  in the scheduling of instructions for wide- 
issue and deeply pipelined computers have turned to loop- 
level transformations designed to offer greater opportunity 
for the resolution of delay slots and the parallel execution 
of instructions. The most  widely used technique is  called 
software pipelining [12-161. The technique rearranges 
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loops so that an iteration can be started before a previous 
iteration completes. Optimal software pipelining is a 
difficult  problem  in general6, but it has a variety of 
approximate solutions that work well in practice. The 
global scheduling algorithm presented in [17] does not 
include a software pipelining technique but has been 
subsequently enhanced to include an approximate software 
pipelining  algorithm [22]. This algorithm  is  implemented 
in the TOBEY compiler. Ebcioglu  and Nakatani have 
demonstrated a similar technique [23]. 

The algorithm is a simple extension to the global 
scheduling framework described above. Most  inner loops 
that are candidates to be globally scheduled are first 
unrolled once. The loop is then processed normally, except 
that only the original  loop blocks (the real iteration) are 
scheduled. The loop blocks from the unrolled or virtual 
iteration are used only as sources of instructions for the 
scheduling of the original loop body. Movement of  an 
instruction from the virtual iteration to the real iteration is 
a special code motion that requires the “twin” instruction 
in the real iteration to be  moved to a prologue of the loop. 
When scheduling is complete, some instructions may have 
been moved to a loop prologue because of pipelined code 
motion. We construct a complementary epilogue section of 
code following the loop that contains all instructions of the 
virtual iteration which were not scheduled into the real 
iteration. The algorithm as stated handles the overlapping 
of only two iterations of the loop. A simple extension 
allows us to overlap an arbitrary number of iterations 
while constructing the appropriate prologue  and  epilogue 
sections of the loop. Figure 7 shows an example of a loop 
compiled  for the PowerPC 601 before, during,  and after 
software pipelining. Notice that the resulting  loop avoids 
delays between the load  and use of registers r7 and r8 in 
the loop. 

Some machines include dynamic scheduling hardware 
in the  floating-point  unit,  such as register  renaming  and a 
store queue  which  realizes  many of the benefits of static 
pipelining.  Software  pipelining has a smaller  observable  effect 
on  loops  which  can take advantage of these special  facilities. 

Duplication of code 
The movement of instructions which require duplication 
presents a special problem  for the scheduler. For example, 
consider the movement of an instruction from B ,  to B, in 
Figure 4. Since B, is  not on every path of execution that 
might reach B,, the scheduler must create copies of the 
instruction to ensure that the program produces the same 
results. The scheduler computes a set of basic blocks 
including B, that collectively dominates B,  and creates 
copies of the moved instruction in each block in the set. 

6 Schwiegelshohn et al. show that  optimal pipelining of loops with conditional 
jumps on a machine with infinite resources is undecidable [21]. The decidability of 
optimal pipelining for a machine with finite resources is an open problem. 

Before  scheduling:  After  scheduling: 

1 wz 
cmpwi 
beq 
1 wz 
addi 
stw 

11:  lwz 
1 wz 

r5,0(r3) 
crl,r5,0 
cr1,ll 
r4,0(r5) 
r6,r4,1 
r4,0(r5) 
r6,8(r3) 
r4,16(r3) 

1 wz 
1 wz 
cmpwi 
addi 
beq 
stw 

11: lwz 
1 wz 

r5,0(r3) 
r4,0(r5) 
crl,r5,0 
r6,r4,1 
cr1,ll 
r4,0(r5) 
r6,8(r3) 
r4,16(r3) 

’ Example of moving a load  above a compare with zero. i 

The set does not  include  more than one block which 
lies on the same path to B,, and the instruction is thus 
executed only once on any path from the entry node.’  The 
scheduler also tries to minimize the number of duplicates 
that must be generated. The dominating set generated 
under these requirements is  called a minimal  independent 
separating set (MISS). An algorithm for computing the set 
is described in [25]. 

control flow edges in the program. A control flow edge  is 
called a split edge if the predecessor block has more than 
one successor and  is  called a join edge if the successor 
block has more than one predecessor. A join-split  edge 
is both a split  edge and a join edge. To ensure that the 
program does not contain a join-split edge, the control 
flow graph is modified before global scheduling by 
replacing  join-split edges with a split  edge  leading to a 
dummy basic block which leads to a join edge.  Given  two 
basic blocks B ,  and B,, the following  algorithm computes 
the MISS N(Bl, B 2 ) .  The algorithm  is guaranteed not 
to fail if the control flow  graph contains no  join-split 
edges. 

The  algorithm assumes that there are no joinsplit 

1. Mark all blocks that are reachable from B,  . 

3. Remove a marked block u from A. 
4. Let P be the set of immediate predecessors of u .  Let 

5. Mark all blocks reachable from members of P’. 
6. If B ,  is marked, then fail. 
7. If A contains marked blocks, then goto step 3. 
8. N ( B , ,  B,) = A. 

2. A, A’ = {E$}. 

P’ = P - At’. Let A = A U P’ and A’ = A’ U P’ 
B 

585 
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7 The requirement  that no two nodes lie on the same path ensures that no execution 
path is made slower because of duplication. Moon and Ebcioglu demonstrate a 
technique which relaxes this requirement for less frequently executed paths [W]. 
This may result in better optimization of more frequently executed paths. 



Before: 

lwz r3,0(r6) 
11:   lwzu r7,8(r4) 

add r3, r3 , r7 
lwzu r8.8(r5) 
s u b f  r3,r8,r3 
bdnz  11 

During: 

lwz r3,0(r6) 
11:   lwzu r7,4(r4) 

add r3, r3,  r7 
lwzu r8,4(r5) 
s u b f  r3,r8,r3 

lwzu r7,4(r4) 
add r3 , r3, r7 
lwzu r8,4(r5) 
s u b f  r3,  r8, r3 
bdnz  11  

""""""""" 

After: 

lwz r3,0(r6) 
lwzu r7,4(r4) 
lwzu r8,4(r5) 
bdz  12 

11:  add r3,r3,r7 
lwzu r7,4(r4) 
s u b f  r3,r8,r3 
lwzu r8,4(r5) 
bdnz 11 

12: add r3,r3,r7 
s u b f  r3,r8,r3 

Elimination of false dependences 
Data dependences are the fundamental constraints on 
the movement of code by instruction scheduling. True 
dependence represents data flow  and  usually cannot be 
avoided. Antidependence and output dependence are 
artifacts of variable naming  and register allocation. We call 
these false  dependences, since they can both be  avoided 
by  using a different selection of variable names or register 
numbers. 

The global scheduler identifies situations where the 
presence of an antidependence interferes with the 
generation of well-scheduled code. In such situations, it 
creates a new register name for the written register in 
an antidependence pair and then introduces a register 
copy to the old register name. This renaming  allows the 
antidependence edge in the PDG to be broken, and 
therefore allows the incident nodes to be reordered as 
necessary. Once the scheduling is complete, we are 
left with the problem of removing the register copy 
instructions. This is done by  unrolling the containing loop 
once and then propagating the renamed register into all 
uses in the unrolled iteration, eliminating the need for the 
register copy instruction. Figure 8 illustrates this process 
for a simple program segment. A similar dynamic renaming 
technique is used in the global scheduling algorithm 
presented in [24]. 

Some true dependences can also be collapsed by the 
586 scheduler. In cases where two instructions which have 

immediate forms on the target machine are related by a 
true dependence, it  may be possible to rewrite the 
dependent instruction to reflect the effect of the other 
instruction. For example, consider the instruction 
add r3,r3,1, followed  by cmpwi crl , r3, 1. The compare 
depends on the incremented value of r3, but may be 
moved above the add instruction if it is rewritten as 
cmpwi crl ,r3,0. 

Some machines in the PowerPC family lack dynamic 
register-renaming capabilities. This provides further 
incentive to statically rename registers involved  in false 
dependences. Since many antidependences are created by 
the register allocator in an attempt to optimize register 
reuse, a special renaming optimization transforms the 
program after register assignment. This optimization 
understands when registers should be renamed for the 
target machine  and  which registers are available for use at 
any point in the program. The renaming transformation is 
done before postpass instruction scheduling to explicitly 
break false dependence edges. 

Postpass instruction  scheduling 
The instruction scheduling algorithms used in the compiler 
are general enough to create good schedules for most 
programs, but experience shows that some specialized 
optimizations are necessary to obtain the best performance 
for certain code patterns. One weakness of the general 
scheduling  algorithm  is the inability to rearrange 
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Before: 

lwz r3,0(r4) 
11: lwz r6,0(r7) 

addi  r5,r3,1 
addi  r3,r6,1 
stwu r5,4(r4) 
stwu r3,4(r7) 
bdnz 11 

During: 

lwz r3,0(r4) 
11: lwz r6,0(r7) 

addi  r8,r6,1 
addi  r5,r3,1 
COPY r3=r8 
stwu r3,4(r7) 
stwu r5,4(r4) 
bdnz 11 

After: 

lwz r3,0(r4) 
11: lwz r6,0(r7) 

addi  r8,r6,1 
addi  r5,r3,1 
stwu r8,4(r7) 
stwu r5,4(r4) 
lwz r6,0(r7) 
addi  r3,r6,1 
addi  r5,r8,1 
stwu r3,4  (r7) 
stwu r5,4(r4) 
bdnz 11 

branches to avoid delays in the speculative dispatch of 
instructions. 

Branch swapping 
The RS/6000 machines execute branch instructions in 
parallel with the execution of fixed- and floating-point 
instructions. Optimal performance can be achieved only 
when the stream of fixed- and floating-point computation 
remains uninterrupted. If the branch unit encounters a 
conditional branch which depends on either an unavailable 
condition (that is, the condition computation has not  yet 
completed) or a branch whose target address is similarly 
unavailable, we call such branches unresolved. In these 
situations, the branch unit cannot determine which 
instructions are  to be executed next, but speculatively 
dispatches instructions to the fixed- and floating-point units 
from the fall-through path of the branch. If there are 
enough fixed- or floating-point instructions on the fall- 
through path, unresolved branches suffer no penalty if they 
are not taken. If, however, the branch unit encounters 
another branch (which may or may  not  be resolved), 
speculative dispatch of instructions is stopped and waits 
until the first branch is resolved. 

The compiler often has opportunities to rearrange the 
instructions in a program to avoid the branch unit 
hold-off caused by encountering a resolved branch while 
speculatively dispatching instructions on the fall-through 
path of an unresolved branch. An optimization called 

branch swapping identifies situations where an unresolved 
branch may contain a resolved branch on the fall-through 
path. In these situations, it attempts to swap the branches 
while  duplicating any intervening code. A typical branch 
swapping opportunity is a conditional exit from a counted 
loop. In this case, we usually have an unresolved 
conditional branch that contains a branch-on-count-register 
instruction (always resolved) in the fall-through path. 
Figure 9 shows a simple example of branch swapping. 

Branch reversal 
Conditional branches which are not taken usually suffer 
no penalty on the POWER and POWER2 machines. It is 
possible to put the most  likely target of a branch on the 
fall-through path in order to avoid the delay of a taken 
branch. The problem here is that it is not always clear 
what direction a branch is  most  likely to take. The 
compiler currently uses a set of heuristics to guess which 
direction the branch will most  likely take. Sometimes the 
heuristics are fairly certain (for example, the branch 
closing a loop is likely to be taken); in other  cases,  the 
heuristic is weaker (for example, we assume that if a 
branch leads to a call  in one successor path but not the 
other, the path without the call is more  likely to be taken). 
More certainty can be achieved by  using the information 
contained in a basic block execution profile. 

Given information about the relative probability of 
branch directions, the branch reversal optimization may 587 
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FORTRAN program: Generated code: 

C M N  A,B,C 
REAL A(100) ,B(lOO),C(lOO) 

DO 10 I=l,N 
B(1) = -B(I) 

IF (B(1)  .LT.  1.0) GOT0 20 

A(I) = B(1) * C(1) 

10  CONTINUE 
20 STOP 

lfs  fp24.0 

fneg fp0,fpO 
stfsu  fpOS4(r3) # store B(I) 
fcmpu crl,fpZ,fpO 
bgt cr1.12 
lfs  fpl9400(r3) # load C ( I )  
fmuls fpO,fpO,fpl 
stfs fpOS-400(r3) # store A(1)  
bdnz  11 

11: lfs fp0,4(r3) # load B(1) 

12: (stop) 

Generated  code  after  branch swapping: 

lfs fp2=1.0 
b 13 

lfs  fplS400(r3) # load C(1) 
fmuls  fpO,fpO,fpl 
stfs fpOS-400(r3) # store A(I) 

13: lfs fp0,4(r3) # load B(1) 
fneg  fp0,fpO 
stfsu  fpOS4(r3) # store B(1) 
fcmpu crl.fp2,fpO 
bdnz 11 
bgt  cr1,12 
lfs fp1,400(r3) # load C(1) 
fmuls fpO,fpO,fpl 
stfs fpOS-400(r3) # store A(I) 

11: bgt cr1,12 

12: (stop) 

Branch swapping for a conditional loop exit. 

decide to reverse the direction of a branch, bringing the Gluing 
instructions on the taken path into the fall-through position An additional opportunity to avoid branch unit hold-offs  is 
and moving instructions on the fall-through path to the the situation in which an unconditional branch lies in the 
taken position. This often has the effect of  moving fall-through path of an unresolved conditional branch. TO 
infrequently executed code in a loop out of line, so that avoid the hold-off upon encountering the unconditional 
the fall-through paths of conditional branches lead directly branch, gluing copies code from the target of the 

588 to the closing of the loop. unconditional branch to the fall-through of the unresolved 
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Before branch reversal: After  branch reversal and gluing: 

11: lwz r3,4(r4) 11: lwz r3,4(r4) 
crnpwi crl,r3,1 cmpwi crl.r3,1 
bne cr1.12 beq  cr1.13 
bl some-function 12: addi r3,r3,1 

stwzu r3,4(r4) bdnz  11 
bdnz  11 b 14 

b 12 

12: addi r3,r3,1 stwzu r3,4(r4) 

13: bl some-function 

14: 

branch, and then replaces the unconditional branch with 
one targeted to the end of the code that was copied. 
Gluing also serves  as the code-copying mechanism for 
branch reversal. Figure 10 illustrates the reversal of a 
branch and the subsequent gluing of instructions on the 
taken path into the fall-through position. Notice that if 
the branch is mostly taken in the original code, it is now 
mostly not taken in the transformed code, making the 
resulting loop faster. 

Performance  results 
All  of the instruction scheduling techniques described so 
far have been implemented as part of the latest production 
versions of the CSet+ + and XL FORTRAN/6000 
compilers. Tables 1 and 2 show the results of running the 
SPECint92 and SPECfp92 benchmark programs on the 
POWER2  (RS/6000  Model  590)  and PowerPC 601  (RS/6000 
Model 250) machines.  The various levels of scheduling 
measured are described in Table 3. The SPECint92 and 
SPEC’92 benchmark programs are described in Tables 4 
and 5, respectively. The measurements should not be 
taken as official performance measurements, since they 
were not performed using the carefully selected set of 
options and quiet execution environment required for 
regular published results. The measurements compare the 
benchmark scores (expressed as SPECrutios) using various 
phases of instruction scheduling against a baseline score 
which represents no instruction scheduling. The percentage 
of execution time reduction is relative to the next lowest 

level of instruction scheduling (B relative to A, C relative 
to B, and so on). All measurements include the maximum 
optimization available in the TOBEY compiler and also 
include options to specifically target the machines being 
measured. 

The measurements illustrate the effect of the various 
types of instruction scheduling on the performance of 
the two machines. Notice first that the effect is more 
significant on the POWER5 which has a larger degree of 
instruction-level parallelism (two integer and two floating- 
point units) than the PowerPC 601  machine. The net  effect 
of  all instruction scheduling on the POWER2  is  19.4% 
on SPECint92 and 37.8% on SPECfp92, whereas the 
respective improvements on the PowerPC 601 are 7.9% 
and 16.5%. Another interesting measurement is the 
small or nonexistent improvement due to loop-based 
optimizations such as unrolling and software pipelining 
on the SPECint92 programs. The performance of these 
programs does not depend as heavily as that of the 
SPECfp92 programs on the execution time of loops and 
is not expected to benefit  much by these optimizations. 
Notice also that the effect of local instruction scheduling 
is more  significant for the SPEC’92 programs and the 
effect of branch optimizations is more  significant for the 
SPECint92 programs. These effects are an indication of the 
relative size of basic blocks in the two benchmark suites 
(SPECfp92 blocks are larger) and the relative frequency 
of branch instructions (SPECint92 has more frequent 
branching). 589 
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Table 1 SPECint92  performance  results. 

A B c D E F G 
None  Local  Local C + branch D + global E + software F + loop 

pass 1 passes 1 & 2 optimization  scheduling  pipelining  unrolling 
(%I (%I (%) ("/.I @I (%I 

POWER2 73.18 4.4 1.0 8.4 2.9 0.0 1.5 
PowerPC  601 46.58 2.7  2.0 2.4 0.0 0.0 0.6 

Table 2 SPECfp92  performance  results. 

A B c D E F G 
None  Local  Local C + branch D + global E + software F + loop 

pass I passes I & 2 optimization  scheduling  pipelining  unrolling 
(%) ("/.I (%I (%I ("/.I (%I 

POWER2 139.04 9.1  1.5 3.2  8.3 6.2  4.9 
PowerPC 601 54.35 8.4 0.5 0.1 3.0 2.9 0.8 

Table 3 Levels of instruction  scheduling  measured. 

A Baseline: no instruction  scheduling. 
B The  first  pass of  local  scheduling  (before  register 

allocation)  only. 
C Both  passes of local  scheduling. 
D Local scheduling and branch  optimizations  (branch 

swapping, reversal,  and  gluing). 
E Local  scheduling,  branch  optimizations,  and  global 

scheduling. 

F Local  scheduling,  branch  optimizations,  global 
scheduling, and software  pipelining. 

G Local  scheduling,  branch  optimizations,  global  scheduling, 
software  pipelining, and inner  loop  unrolling. 

Future  directions 
Higher degrees of instruction-level parallelism  in  new 
processors will require the TOBEY instruction scheduler 
to transform code more aggressively to keep the many 
execution units busy and  will  demand  higher performance 
in the presence of conditional branches. This anticipated 
advance in the organization of superscalar machines 
changes the problem of instruction scheduling to be more 
similar to the problem of generating code for certain VLIW 
(very long instruction word) machines [26]. Aggressive 
scheduling techniques for these processors have been an 
active research topic [6, 8, 10,  241. Our future work will 
rely increasingly on these techniques. 

Advanced scheduling algorithm 
The TOBEY compiler is beginning to incorporate 

590 techniques developed as part of the IBM VLIW machine 

project at the Thomas J. Watson Research Center [lo, 23, 
24, 27-31]. The compiler developed for this project 
includes a global scheduling algorithm,  an approximate 
software pipelining  algorithm, loop unrolling,  and 
register renaming. All of these techniques have been 
prototyped in a development version of the TOBEY 
compiler. 

Before the application of any of the instruction 
scheduling techniques, inner loops are unrolled where 
heuristics suggest a benefit. Other parts of the TOBEY 
compiler attempt both inner and outer loop unrolling, but 
this unrolling phase is specifically concerned with exposing 
more independent instructions to the scheduler. The 
heuristics attempt to determine the optimal unrolling factor 
for a loop based on the number of execution units of 
each type available  on the machine and the set of data 
dependence relations and associated pipeline delays 
applicable to the instructions in the loop.  Where possible, 
registers in unrolled iterations are given names distinct 
from the corresponding registers in the original iteration 
in order to avoid introducing antidependence relations 
between iterations, 

In the prototype implementation, the TOBEY global 
scheduling phase is replaced by the VLIW global 
scheduling and enhanced pipeline scheduling algorithms 
[23, 241. For each basic block, VLIW scheduling creates a 
set of instructions which are available to move forward. 
Scheduling chooses the best instruction from the set of 
instructions that can move to a point in the program 
and moves the instances of that instruction forward. 
Scheduling also makes bookkeeping copies (similar to the 
duplication used in the TOBEY scheduler) for edges that 
join the path of the selected instructions' upward motion 
(but are not on these paths) and updates the set of 
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available instructions  associated  with  basic  blocks  only  on 
the  paths  that  were  traversed  by  the  moved  instructions. 
This algorithm provides a general mechanism  for  the 
reordering of instructions in a program across  arbitrary 
control flow while preserving  the  semantics of the original 
program. The  key  advantages of this  technique  over  the 
existing TOBEY  scheduler  are  the larger scope of analysis 
and  the ability to  handle  the  movement of conditional 
branch  instructions  between  basic blocks. One of the  key 
disadvantages  is  the  greatly  increased compilation  time 
required. 

Memory disambiguation 
To extract large amounts of parallelism from sequential 
code,  the  instructions  must  be  somewhat  independent. 
Instructions  which  reference  memory often have  an 
unknown  dependence relationship because  the effective 
addresses  referenced  may  not  be  known  at compile time. 
The compiler is  able  to  determine  that  certain  variable 
references  cannot  refer  to  the  same  memory location, but 
elements of the  same  array  and indirect pointer  references 
are usually aliased to  one  another  by  the compiler. Some 
of these aliased references do  not in fact  interfere,  and  the 
scheduler  can  do a better  job if they  can  be  proven  not  to 
interfere  at compile time. 

When  memory  is  referenced through the indexing of the 
same  array, indices can  be  compared  and  determined  not 
to  reference  the  same  array element. The problem of 
determining that two array  references  are  independent  has 
many practical solutions originally  designed as  part of 
vectorizing  compilers [32-351. The problem  is somewhat 
more difficult when  encountered  by  instruction scheduling, 
since  the  subscript  expressions of multidimensional arrays 
have usually been linearized. A framework  for building 
symbolic indexing expressions along with a suite of 
dependence  tests  has  been  prototyped in the  TOBEY 
compiler. The  dependence  tests  are  successful in proving 
that  many  array  references  are distinct, but fail to 
disambiguate most pointer dereferences.  In  order  to 
generate well-scheduled code  for  programs  which have 
uncertain pointer-induced  aliases, the  scheduler includes a 
prototype implementation of run-time  disambiguation. This 
technique  creates a copy of certain  loops  and optimizes 
one of the  copies assuming that  certain  reference  pairs  are 
distinct  and the  other  copy assuming that  they  are aliased. 
A test is introduced  to  choose  which  loop  to  execute 
depending on  the  actual  pointer values. The first 
disambiguation technique  (array-based  dependence 
analysis) is uniformly  successful in improving execution 
time  but  has a large  compile-time cost.  The run-time 
disambiguation  technique is  successful in some  cases  but 
requires a careful  analysis  to  determine  when  the  cost of a 
run-time test is profitable. 

Table 4 SPECint92 benchmark programs. 

espresso 
li 

eqntott 

compress 

sc 

gcc 

Generates and optimizes programmable logic arrays. 
Uses a LISP interpreter to solve the nine-queens 
problem, using a recursive backtracking algorithm. 
Translates a logical representation of a Boolean 
equation to a truth table. 
Reduces the size of input files  by  using  Lempel-Ziv 
coding. 
Calculates budgets, SPEC metrics, and amortization 
schedules in a spreadsheet based on the UNIX@ 
cursor-controlled package “curses.” 
Translates preprocessed C source files into 
optimized Sun-3 assembly language output. 

Table 5 SPECfp92 benchmark programs. 

spice2g6 
doduc 

mdljdp2 

mdljsp2 

wave5 

tomcatv 

ora 

alvinn 
ear 

swm256 

su2cor 

hydro2d 

nasa7 

fPPPP 

Simulates analog circuits. 
Performs Monte Carlo simulation of the time 
evolution of a thermo-hydraulic model for a 
nuclear reactor’s component. 
Solves motion equations for a model of 500 
atoms interacting through the idealized 
Lennard-Jones potential (double precision). 
Same as mdljdp2 but single precision. 

Solves particle and  Maxwell’s equations on a 
Cartesian mesh. 
Generates two-dimensional, boundary-fitted 
coordinate systems around general geometric 
domains. 
Traces rays through an optical surface 
containing spherical and planar surfaces. 
Trains a neural network using back-propagation. 
Simulates the human ear by converting a sound 
file to a cochleagram using fast Fourier 
transforms and other math library functions. 
Solves the system of shallow-water equations 
using  finite difference approximations. 
Calculates masses of elementary particles in the 
framework of the quark gluon theory. 
Uses hydrodynamical Navier-Stokes equations 
to calculate galactical jets. 
Executes seven program kernels representative 
of operations used in NASA applications. 
Calculates multi-electron integral derivatives. 

Projle-directed optimizations 
Many aggressive  algorithms for  extracting parallelism from 
sequential  code  assume  some knowledge of the  paths 
of execution that  are  most often  taken. In  fact,  some 



techniques go so far as to optimize the most frequent paths 
at the expense of the less frequently taken paths. If  we are 
to use such aggressive techniques, we must determine the 
most frequently taken paths on the basis of actual program 
executions. It is necessary to evaluate the dynamic 
behavior of the program  while processing typical data sets 
and then feed this information back into the compiler. The 
level of detail required by the compiler to make decisions 
about the likelihood of certain execution paths is beyond 
most standard programs which produce execution profiles. 
Therefore, we are investigating various techniques for 
obtaining execution profile information at the basic block 
level. In addition, we are investigating enhancements 
to the compiler which  might take advantage of this 
information and solutions to the problem of keeping the 
information correct while  performing the normal set of 
optimizing program transformations. 
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