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We describe the algorithms and architecture
approach to produce high-performance codes
for numerically intensive computations. In this
approach, for a given computation, we design
algorithms so that they perform optimally
when run on a target machine—in this case,
the new POWER2™ machines from the RS/6000
family of RISC processors. The algorithmic
features that we emphasize are functional
parallelism, cache/register blocking,
algorithmic prefetching, loop unrolling, and
algorithmic restructuring. The architectural
features of the POWER2 machine that we
describe and that lead to high performance
are multiple functional units, high bandwidth
between registers, cache, and memory, a large
number of fixed- and floating-point registers,
and a large cache and TLB (translation

lookaside buffer). The paper gives two
examples that illustrate how the algorithms
and architectural features interplay to produce
high-performance codes. They are BLAS (basic
linear algebra subroutines) and narrow-band
matrix routines. These routines are included in
ESSL (Engineering and Scientific Subroutine
Library); an overview of ESSL is also given in
the paper.

Introduction

The new POWER2™ workstations [1-4] of the RISC
System/6000® (RS/6000) family of processors provide
multiple fixed-point units (FXUs) and floating-point

units (FPUs) which can work in parallel if there are no
dependencies. We call this functional parallelism. To
achieve functional parallelism requires that the underlying
numerical algorithm be parallelized at a very low level
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(instruction level). The functional parallelism can be
achieved if, at the innermost loop level, several
computations can be done in parallel. Various algorithmic
techniques can be utilized to facilitate functional
parallelism. Loop unrolling is an example of such a
technique. Multiple FXUs help in prefetching of data into
cache. One of the two FXUs can be utilized for cache
prefetching, while the second FXU continues to remain
available to load/store data (already in cache) into
registers. This also requires algorithmic modifications.
In many situations, the computation may have to be
restructured to get around the serial bottlenecks and
arithmetic pipeline delays. POWER2 workstations also
provide quad load/store instructions which double the
effective bandwidth between floating-point registers (FPRs)
and cache. To exploit the quad load/store instructions,
the algorithm may have to be modified to access data
with stride one. These are all examples of algorithmic
techniques which can help to exploit the functional
parallelism capability of POWER?2 and to realize its full
performance potential of four floating-point operations
(flops) per cycle. The techniques described in this paper
have been heavily utilized in the development of some of
the ESSL (Engineering and Scientific Subroutine Library)
subroutines for the RS/6000 family of workstations.
(Although the PowerPC™ family [5, 6] of processors is
not discussed in this paper, the techniques described here
work equally well, with appropriate modification, for
PowerPC implementations.)

In this paper, we first give an overview of ESSL. We
then describe salient CPU and cache/memory features
of POWER2 which can affect optimal algorithm design.
Next we describe various algorithmic techniques used to
facilitate utilization of multiple function units. In each
case, we provide appropriate examples and discuss the
performance achieved.

ESSL overview

ESSL is a high-performance library of mathematical
subroutines for IBM RISC System/6000 workstations
(ESSL/6000), and ES/9000™ and ES/3090™ vector and/or
scalar mainframes (ESSL/370) [7]. Currently, ESSL V2.2
consists of 441 subroutines that cover the following
computational areas: linear algebra subprograms, matrix
operations, linear algebraic equations, eigensystems
analysis, Fourier transforms, convolutions/correlations,
and other related signal-processing routines, sorting

and searching, interpolation, numerical quadrature,

and random number generation.

ESSL can be used for both developing and enabling
many different types of scientific and engineering
applications, as well as for numerically intensive
applications in other areas such as finance. Existing
applications can be enabled by replacing comparable
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subroutines and in-line code with calls to ESSL
subroutines. Because of the availability of a large number
of subroutines in ESSL, the effort required in developing a
new application is significantly reduced. This also makes it
easier to move an application to a new platform, because
ESSL is tuned for all platforms where it is available.

In the area of linear algebra, ESSL routines can be used
in two different ways. ESSL provides a set of routines to
solve linear equations of various kinds. Most of these
routines are functionally the same as the public domain
software LAPACK [8, 9], though not necessarily in the
same call sequence. The user application can be modified
to call these ESSL subroutines instead of LAPACK
subroutines. This approach provides the highest level
of performance. Alternatively, ESSL also provides a
complete set of tuned basic linear algebra subprograms
(BLAS). There are 140 BLAS subroutines in ESSL. BLAS
are an industry-wide standard [10-14], providing a uniform
functionality and call sequence interface, which makes an
application using calls to BLAS highly portable across
high-performance platforms from different vendors. In
LAPACK subroutines, most of the computing is done in
BLAS subroutines. LAPACK expects platform vendors to
provide a set of tuned BLAS to achieve high performance.
This is the alternative approach, in which the user
application calls LAPACK subroutines and links to ESSL
for tuned BLAS. This approach provides portability and
performance at the same time. The performance achieved
in this approach is slightly lower than that obtained by
calling ESSL subroutines directly, but it is still very good.

ESSL /6000 provides a set of subroutines tuned for
performance on the RISC System/6000 family of
workstations which include the older POWER™
workstations and the newer POWER2™ workstations.
These are predominantly compatible with the ESSL/370
product, resulting in easy cross-platform migration
between mainframes and workstations. All ESSL /6000
computational subroutines are written in FORTRAN;
they are callable from application programs written in
FORTRAN and in C. All of the subroutines are fully
described in the ESSL Guide and Reference [7].

POWER2 CPU considerations

POWER?2 workstations differ from the original POWER
workstations in many respects. POWER workstations
have one fixed-point unit (FXU) and one floating-point
unit (FPU) and therefore can perform one floating-point
multiply-add instruction and a fixed-point instruction every
cycle, if there are no dependencies. Additionally, branch
instructions can also be overlapped and therefore in effect
result in zero-cycle branches. All load/store instructions,
including the floating-point load/stores, are handled by
the FXU. Additionally, floating-point stores also require
the FPU, and therefore these instructions cannot be
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overlapped with the floating-point arithmetic instructions.
See [15] for a full description of a POWER machine.

POWER?2 workstations have two FXUs and two FPUs
and therefore can perform two fixed-point instructions and
two floating-point instructions every cycle, if there are
no dependencies. In contrast to POWER, on POWER?2
floating-point store instructions can also be overlapped
with floating-point arithmetic instructions. Floating-point
instructions have a two-to-three-cycle pipeline delay;
therefore, to keep both FPUs fully utilized, at least four
independent floating-point instructions must be executing
at the same time. (See [1-3] for details.)

Two additional innovative features of POWER2 are the
floating-point quad load/store instructions. The quad load
instruction can load two consecutive doublewords of
memory into two consecutive FPRs, and the quad store
instruction can store two consecutive FPRs into two
consecutive doublewords of memory. With both FXUs in
use, this results in an effective bandwidth of four
doublewords per cycle between the cache and the FPRs.
This increased bandwidth is particularly important for
those computational kernels where performance would
otherwise be limited by the bandwidth between registers
and cache. BLAS-1 (level-1 BLAS), for example DDOT
and DAXPY, are examples of such kernels. For these
kernels, on the same cycle time basis, POWER?2 can
perform four times faster than POWER. However, it is not
always easy for the compiler to generate quad load/store
instructions; loops often require additional unrolling.
Also, quad load/stores require two consecutive FPRs; this
restriction imposes additional constraints on the register
assignment logic of the compiler. Please note that
quad load/store instructions can be used only if two
consecutive data elements from memory are needed in
the loop. This may also require a restructuring of
the loops.

Individual quad accesses which cross a cache line
boundary require additional cycle(s). If the loop
performance is limited by the cache bandwidth, quad loads
crossing the cache line boundary reduce the available
bandwidth. Special coding techniques can be used to
handle such a situation. For example, assuming that all
double-precision arrays are aligned on doubleword
boundaries, there are two possibilities: The array is either
aligned on a quadword boundary or on an odd doubleword
boundary. Here, we are also assuming that the array is
accessed in the loop with stride one using quad load
instructions. Then, if the array is aligned on a quadword
boundary, a quad load will never cross the cache line
boundary. This follows from the fact that the cache line
size is a multiple of quadwords. If the array is aligned
on an odd doubleword boundary, one load is purposely
handled outside the loop, thus making all quad loads inside
the loop quadword-aligned. For double-precision two-
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dimensional arrays, if possible, the user should make the
leading dimensions even. This ensures that if the first
column is quadword-aligned, all other columns are also
quadword-aligned.

POWER2 cache considerations

The data cache size on POWER2 workstations is 256 KB;
however, only 128 KB may be accessible on machines
having fewer than four memory cards. In this paper, we
refer to the data cache as simply the cache. All POWER2
models have 1024 cache lines arranged in four-way
associative sets. The cache size of the largest POWER2
models is four times greater than that of the largest
POWER models. POWER?2 models also have a
significantly higher bandwidth to the memory system. The
memory system bandwidths on all machines are designed
to fetch a complete cache line in eight cycles. Thus,
machines with larger caches also have higher bandwidth to
the memory system. All POWER2 workstations have a
512-entry, two-way set-associative TLB (table lookaside
buffer). This is significantly larger than the 128-entry TL.B
on POWER machines. Furthermore, the number of cycles
required for TLB miss processing on POWER? is
considerably smaller than the number of cycles required
for TLB miss processing on POWER. This has a very
significant impact on considerations of blocking (of large
problems) for POWER2. For most problems, the TLB size
of POWER? is not a consideration in blocking. In those
computational kernels where arrays are used several times,
appropriate cache and TLB blocking is sufficient to give
the best possible level of performance. For these kernels,
the delay in accessing a cache line is not important
because the data are used several times. BLAS-3

routines are examples of such kernels. However, in
BLAS-1 and BLAS-2 routines, the arrays are used only
once, and cache miss latency becomes the important
consideration.

Loop unrolling

Loop unrolling is a common technique used to exploit
multiple functional units and quad load/store capabilities.
(See [16] for a discussion of how the compilers for
POWER and POWER? handle this.) In its simplest form,
unrolling a loop amounts to a mini-vectorization of the
loop. For example, unrolling a loop by eight is equivalent
to using a vector length of eight. Generally speaking,
vectorization results in independent computations, unless
the vector operation is a reduction operation. Inner
product (dot product) computation and finding the
maximum or minimum of a vector are examples of
reduction operations. For these examples also,
parallelization is easily achieved if the vectors are long.
For the inner product example, outside the loop, we can

set up four variables (or registers) for partial sums. The 565
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loop is on the length of the inner product and is unrolled
by four. Inside the loop, the four partial sum registers are
updated with multiply-add operations. This results in four
independent computations which can take place in parallel.
At the completion of the loop, the four partial sum terms
are added together to form the inner product. The final
sum computation is only partially parallelized.

Loop unrolling also helps in reusing the data loaded in
registers, and thereby reduces the bandwidth (load/store)
requirements between registers and cache and between
cache and main memory. The loop unrolling need not be
limited to the innermost loop. A series of nested loops can
be unrolled to further facilitate data reuse. Some loop
variables can be reused only if outer loops are unrolled.
The matrix-matrix multiplication is a good example of
nested loop unrolling. By unrolling all three nested loops,
all variables in the loop can be reused. The degree of loop
unrolling is generally limited by the number of registers
available. Heavy loop unrolling may require more registers
(floating and/or fixed) and therefore may result in spills.
Spills are caused when the number of ““logical’’ registers
needed by the compiler exceeds the available number of
architected registers. In that case, inside the innermost
loop, ““logical registers’” are saved and restored from
temporary memory location, resulting in a large
degradation of performance. It is advisable for the user
to look at the listings generated by the compiler. If the
listings indicate spills in the innermost loop, the degree
of unrolling should be reduced.

In many situations, an array is not accessed with stride
one in the innermost loop, so quad load/store instructions
cannot be used. However, this array may have a stride-one
access in one of the outer loops. In that case, to facilitate
the use of quad/load store instructions, that outer loop
should be unrolled. If multiple arrays are accessed in the
innermost loop, they may have a stride-one access
pattern in different nesting levels of the nested loop. To
facilitate quad access of all these arrays, all corresponding
nested loops at nesting levels in which an array has stride-
one access must be unrolled.

To summarize, loop unrolling serves two goals. The
main goal is parallelization of the computation; the
secondary goal is reduction in register/cache/memory
bandwidth requirements. At some degree of unrolling,
we will have achieved a sufficient level of functional
parallelism and memory bandwidth reduction to result
in peak performance, if the data remain in cache. The
question is ‘““Can we get a higher level of performance by
further unrolling the loop(s)?”’ The answer depends on the
ratio of the computation cost (number of floating-point
operations, or ““flops”) to the data movement cost (number
of data items involved in the computation). For the
BLAS-3 (matrix-matrix multiplication is an example) kind
of computation, where the ratio of flops to data movement
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cost is large, we do some kind of cache blocking so that
data remain in cache. For these computations, occasional
cache misses do not seriously affect overall performance.
However, for those computations in which flops and data
movement cost are about equal (for example, BLAS-1 and
BLAS-2), data in cache are not reused, and the cache miss
latency becomes very important. In such applications, by
reducing the bandwidth requirements (via loop unrolling)
between registers and cache, we can free up one of the
FXUs to do cache prefetching. This is discussed in detail
in the next section.

Algorithmic prefetching

On POWER?2 machines, the cache miss latency is roughly
of the order of 14-20 cycles. The desired data come

after 14-20 cycles, followed by the rest of the line in a
wraparound fashion in the next seven cycles. There are
two FXUs, and each of them can process only one

cache miss at a time. In a typical stride-one access code,
if a load results in a cache miss, the subsequent load also
results in a cache miss to the same line. This ties up both
FXUs in fetching the same cache line. Specialized coding
gets around this problem and can thus greatly improve
memory system performance. We call this algorithmic
prefetching [17]; it can significantly improve performance
on POWER? machines. It is fairly easy to implement
algorithmic prefetching for the stride-one situation on
POWERQ. Typically, several cycles before the data from
the next cache line are actually needed, a dummy load of
an element from the next cache line is done. (A dummy
load is a load where the data loaded are not actually used
in the computation.) If the next line is already in cache,
the load is completed in one cycle, and the FXU becomes
available for the next set of instructions. On the other
hand, if this load results in a cache miss, it ties up one of
the FXUs until the cache miss is processed. However, the
other FXU is still available to do the required loads into
FPRs to feed both FPUs. When quad loads are extensively
used, many computing kernels require only one FXU to
feed both FPUs.

Prefetching on POWER is more difficult, because
POWER has only one FXU, and a cache miss will stall it.
However, in those loops where there are more arithmetic
operations than load/store operations, specialized
techniques can be used to do prefetching on POWER [17].
The primary concept is to load FPRs with data at the
beginning of the loop, so that when the cache miss stalls
the FXU, the FPU is kept busy with useful work using
data already loaded in the FPRs.

We have used algorithmic prefetching on POWER
and POWER?2 in many computing kernels. However,
prefetching requires extensive loop unrolling. This loop
unrolling with dummy loads can actually be done in
FORTRAN. In prefetching, there are several different
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variations, some being quite intricate and complex. If the
cache bandwidth is a consideration, the loop is unrolled in
such a way that the data loaded during a ‘“‘dummy load”
are actually used in the computation. Depending on the
kernel and the number of arrays to be prefetched, this can
become complicated, especially if quad loads are to be
used and relative quad alignments of different arrays are
to be taken into account. On the other hand, if the cache
bandwidth is not a consideration (one FXU can handle all
of the required loads), a simple prefetching scheme will do
a dummy load and not use the data. In this case, if the
data are actually in cache, prefetching does not degrade
performance. If the data are not in cache, prefetching
improves performance significantly.

BLAS implementation using loop unrolling
and cache prefetching

We now illustrate the use of the above techniques in
implementing some key BLAS routines.

® BILAS-1 implementation

Because there is very little reuse of data loaded in
registers, BLAS-1 performance tends to be limited by the
available bandwidth between the cache and the FPRs.
Maximum bandwidth is achieved by using quad load/store
instructions. An optimal implementation also tries to avoid
crossing a cache line boundary on quadword accesses.
There is also some limited opportunity for algorithmic
prefetching. Here, we describe the implementation and
performance of two key BLAS-1 kernels—the DAXPY and
DDOT routines. We assume that all arrays have stride
one; otherwise, it is not possible to use quad load/store
instructions.

DAXPY

In DAXPY, we update a vector y with a scalar multiple

of another vector x. The scalar multiplier is loaded

outside the loop and remains in a register throughout

the computation. For each multiply-add (FMA),

DAXPY requires two loads and one store; therefore, its
performance is limited by the available bandwidth to the
FPRs. Depending on the alignments of the x and y arrays,
there are four possibilities. When both arrays are even-
aligned, the coding to obtain optimal quad load/stores

is easy. If both arrays are odd-aligned, one element is
computed outside the loop. This makes both the remaining
arrays quad-aligned. The difficult case arises when one
array is even-aligned and the other is odd-aligned. In this
case also, we can restructure the computation so that all
quad accesses inside the loop are quad-aligned. This
requires accessing one element of the odd-aligned array
outside the loop. The loop is unrolled by four and executes
in three cycles, achieving the peak bandwidth of two
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quadword accesses between the cache and the FPRs every
cycle. On a 50-MHz POWER?2, the best performance that
can theoretically be expected is 133 MFLOPS. For data in
cache, we actually achieve nearly this performance for all
four possible alignments of the arrays. By comparison, on
a 50-MHz POWER machine, the best possible performance
is 33 MFLOPS.

DDOT
The DDOT function computes the dot product of two
vectors. Since FMA requires two loads, this seems to
match the capabilities of POWER?2 ideally, assuming that
data are in cache. Thus, on POWER?2, DDOT should run
at its peak rate of four flops per cycle. However, as a
result of the register-renaming implementation, the
FXUs cannot perform two load quads every cycle on a
continuous basis. The best that can be achieved is eight
load quads in five cycles. Thus, the best performance that
can be expected on a 50-MHz POWER? is 160 MFLOPS,
and we nearly achieved that level of performance. Recall
that in the DAXPY case we were doing both quad loads
and quad stores; therefore, in that case we did achieve
the peak bandwidth of two quad load/stores every cycle.
We developed two versions of the DDOT function, one
for data in cache and another for long sequences where
data are unlikely to be in cache. For the function which
assumes that data are in cache, we unrolled the loop by
eight and used four temporary variables to accumulate
the partial results. The four subresults were then added
together outside the loop. As in the DAXPY case, we
had to take into account even-odd quad alignments of
both arrays in order to achieve near-peak performance.
However, the cost of examining the alignments of both
arrays and setting up the unrolling by eight adds extra
overhead to the subroutine, which is significant for small
n. As an example, on a 50-MHz machine, for a dot
product of size n = 2000, we measured 148 MFLOPS
for all four possible quad alignments of the two arrays.
We also developed a version of the DDOT function
which does algorithmic prefetching for long sequences.
Here we assume that data are not in cache. The subroutine
must know the cache line size of the machine in order to
do optimal prefetching. When data are not in cache, the
performance is limited by the available bandwidth between
cache and the memory system, and the prefetching is
implemented to maximize it. Recall that during
prefetching, one FXU is tied down when a cache miss
occurs, but the other FXU remains available to load/store
data already in cache. For these routines, we unrolled the
loop by 16 and did dummy loads 16 elements apart for
both arrays. On a POWER2 machine (50 MHz and 256KB
cache size), for data not in cache, this subroutine
performed at about 103 MFLOPS, while the subroutine

which assumed that the data were in cache performed at 567
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TO =Y() ! load 24 y elements
T =Y(+1) !in 24 FPRs.
T23 = Y(1+23)

DO J=J1, J1+JBLK-1

Xd =X(J) ! load an element of x
FO =A(, J) ! one load quad loads
F1 =A(+1,J) ! both FO and F1

TO =TO + XJ*FO
T1 =T1 + XJ*F1

FO = A(1+22,J)
F1 = A(+234)
T22 = T22 + XJ*FO
T23 = T23 + XJ*F1

ENDDO

Y =TO0 | store y elements
Y({l+1) =Ti | after the loop
Y({1+23) = T23

DGEMV matrix—vector multiplication (without prefetching).

about 74 MFLOPS. This represents a 40% performance
improvement, due to algorithmic prefetching. However,
the prefetched version of this subroutine requires extra
loads, and if the data are actually in cache, its performance
drops by about 10% compared to the subroutine optimized
for data in cache.

If the data loaded in registers (for prefetching) can
actually be used in the computation, we can achieve the
best performance for data in cache as well as for data not in
cache. The coding becomes complicated because one must
take into account not only relative quadword alignments
of the two arrays, but also their relative cache line
alignments. This extra logic adds overhead to the routine
which is justifiable only for long sequences, say of the
order of 2000. We implemented one such version on the
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above machine. For data in cache, this routine performed
in the 150-156-MFLOPS range. For data not in cache, it
performed in the 97-103-MFLOPS range. The performance
of the subroutine varied in a narrow range depending on
the relative alignments of the two arrays.

® BLAS-2 implementation

BLAS-2 computations typically involve a matrix and one
or two vectors. In these computations, the matrix elements
are generally used only once; for a large matrix, most of it
cannot be in cache. When the matrix is not in cache, the
best that can be expected is to fully utilize the matrix data
brought into cache and simultaneously prefetch the next
cache line. During the prefetch, computing is being done
on the data just brought into cache. We must also use
register, cache, and TLB blocking for the matrix and the
vectors, in order to fully use the data before they are
swapped out of the cache and the TLB. Reference [17]
describes algorithmic prefetching as it was implemented for
BLAS-2 for POWER. We now consider implementation on
POWER?2. As pointed out earlier, because of multiple
function units on POWER2, prefetching is easier. It is
particularly important to get sufficient reuse of data loaded
in registers so as to minimize the load/store requirements.
This requires the inner loop to be unrolled by a large
factor, and the use of the quad load/store capability of
POWER?2. To illustrate the computational techniques, we
describe the example of the matrix-vector multiplication
subroutine DGEMYV, where the matrix A is stored in the
normal form, i.e., column major order.

The location in memory of matrix A is significant.
Typically, we declare a two-dimensional array in
FORTRAN as A(LDA, *) where LDA = M. Here, LDA
refers to the leading dimension of the array A. In what
follows, a matrix stored this way is called a dense matrix.
If the (1, 1) doubleword of matrix A is stored in memory
location «, the FORTRAN convention of storing A places
the (i, j)th doubleword of A in memory location & + i — 1
+ (j — 1) x LDA. (We assume that this address and o
are in units of doublewords.) It is important to realize that
the value of LDA can influence how well blocks of A fit
into cache and TLB. For cache considerations, a good
LDA is an odd multiple of the line size. For LDA = 512,
each column of A begins on a different page. In order to
avoid a TLB miss, n must be chosen so that translation
information for » pages fits comfortably into the TLB. We
have determined experimentally that » = 200 is a good
choice for the two-way set-associative TLB with 512 entries.

DGEMV—Normal case

In DGEMYV, a vector x is multiplied by a matrix A and
then added to another vector y (y <~ y + A#x). Cache
prefetching is the most important consideration in
DGEMV. An optimal implementation of cache prefetching
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requires knowing the cache line size. Here, we describe
the implementation on machines with a 256-byte line size.
The outermost blocking was on the number of columns,

to minimize the finite cache and TLB effects. Within a
vertical block, we unrolled the computation by a large
factor (i.e., we implemented a horizontal register
blocking). The ideal block size (the unrolling factor)
corresponds to the cache line size, so that in each
subcolumn there is exactly one cache line (32
doublewords). However, because of the floating-point
register limitation (there are only 32 FPRs), we restricted
the unrolling to 24. The innermost loop operates on the
number of columns in a vertical block. Outside this loop,
we loaded 24 elements of the y vector into 24 FPRs, TO,
T1, - -+, T23, corresponding to the horizontal block size or
the loop unrolling factor. Within this loop, we processed a
subcolumn of the A matrix of size 24. This is like a mini-
vectorization with a vector length of 24. We can assume,
because of the cache blocking, that a block of the A matrix
remains in cache. The code shown in Figure 1 is indicative
of the code without prefetching. Here XJ corresponds to a
floating-point register. Note that one quad load loads two
FPRs, feéding both FPUs. Thus, one FXU can feed both
FPUs, except for the initial load of x(j) into FPR XJ. There
are 24 FMAs in the innermost loop (the J loop), requiring
24 loads for the matrix elements which can be performed
as 12 quad loads. This gives a 24X reuse factor for XJ.
Thus, for 12 cycles, we can keep one FXU feeding both
FPUs at the peak rate of two FMAs per cycle. The other
FXU is free to handle cache miss processing by doing a
dummy load of an element from the second next column of
A, which is not likely to be in cache. The prefetching is
accomplished by inserting the following instruction in the
inner loop:

D =A(+23,J+2) !dummy load for prefetch

The dummy variable D is not used in the loop. Its sole
purpose is to bring the desired section of column (J + 2)
into cache if it is not already in cache. The second FXU
on POWER?2 accomplishes this goal. By prefetching two
columns ahead, our measurements show that all of the
required data are in cache. If the LDA of the A matrix is
even and the initial alignment of the matrix is on an odd
doubleword boundary, we process one row outside the
main blocking loop, so that each subblock in the main loop
is aligned on a quadword boundary. This is to make sure
that none of the quad loads inside the inner loop cross a
cache line boundary. If LDA of the matrix is odd, for
every other column quad loads will cross the cache line
boundary, slightly degrading the performance. This is the
reason why we recommended earlier that the leading
dimensions of multidimensional arrays should be even.
This implementation of DGEMYV with algorithmic
prefetching is optimal even when the matrix is actually
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ESSL vs. LAPACK DGEMYV on POWER2
(256KB cache, 66.5 MHz)
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ESSL performance compared with LAPACK for BLAS-2 matrix—
vector multiplication.

in cache. In that case, the prefetch load does not result

in a cache miss and becomes an ordinary load. Since the
innermost loop is not limited by the load/store bandwidth,
this extra load has no impact on the execution of the loop.
For matrices which fit in cache, we achieved 96% of the
peak performance. For very large matrices which do not
fit in cache, we achieved 81% of the peak (on a 50-MHz
machine).

Figure 2 compares the performance of ESSI. DGEMV
against that of the LAPACK ‘“vanilla’ routine. The
performance is plotted for square matrices of sizes 10 to
100 in steps of 5, and 150 to 1000 in steps of 50. For values
of n above 200, we see the effect of the matrices no longer
residing in cache.

® BLAS-3 routine—DGEMM

For BLAS-3 routines, appropriate cache and TLB blocking
is generally sufficient to give the best possible level of
performance. For these kernels, the delay in accessing a
cache line is not important because the data are used
multiple times. DGEMM is typical of BLAS-3 routines.

It basically computes the product of two matrices. For
DGEMM, fairly good performance can be obtained from
the vanilla code, if appropriate preprocessing options are
used at the compile time. In most cases, the preprocessor
does a reasonable job of cache blocking. The problem
arises when the matrix dimensions are powers of two

(or related to them). In those cases, because of the cache
congruence class conflicts, the effective cache size is
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reduced. In this case, preprocessor cache blocking is not
very effective.

ESSL BLAS-3 routines do cache and TLB blocking
customized for the platform on which they are run. They
are designed to provide robust performance in almost
all situations. If necessary, subarrays are copied into
temporary buffers in order to eliminate any problem due to
bad leading dimensions. Because the copied data are used
many times, the cost of copying becomes insignificant. If
the arrays are blocked for cache, we can assume that data
remain in cache. In that case, the only consideration is to
obtain peak performance at the innermost loop level. For
BLAS-3 kernels, the bandwidth between cache and FPRs
is not a consideration, because the nested loops can be
unrolled in many different ways to get a significant reuse
of data loaded into registers. The unrolling of loops also
makes it possible to utilize multiple functional units fully,
and avoids FPU pipeline delays.

For the previous release of ESSL, which was only for
POWER, we implemented a two-by-two unrolling; i.e., a
two-by-two block of the result matrix was computed in the
innermost loop. This is equivalent to computing four dot
products in the innermost loop. This was sufficient to give
the peak performance on POWER. On POWER?, to
ensure robust performance in utilizing multiple functional
units, we implemented a four-by-two unrolling. This
resulted in the peak performance at the innermost loop
level for all combinations of the matrix form parameters.
Form parameters specify whether the matrices are stored
by rows or columns. The four-by-two blocking used for
POWER? is also optimal for POWER. This helps in
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producing a single source code for POWER and POWER2
machines. The cache and TLB blocking is customized for
the platform. This requires different compilations for
POWER and POWER?2. By using a different compilation
for POWER?2 machines, we also obtained some additional
performance by exploiting quad load/store instructions
which are not available on POWER. Blocking for different
cache sizes is done at run time. The line size of the
machine can be used to determine the cache size at run
time. We use the special subroutine IRLINE to determine
line size. Once the line size is known, we can set cache
size parameters for the particular POWER or POWER2
machine. This determination of cache size parameters is
done only once.

Figure 3 shows DGEMM performance on two different
models of POWER?2 and one model of POWER. The
performance is plotted for square matrices of sizes 10
to 100 in steps of 5, 150 to 1000 in steps of 50, and all
powers of two from 16 to 512. For small values of N, the
performance is somewhat uneven, because of our choice of
four-by-two blocking. Note that even for matrix sizes as
small as 20, performance reaches 200 MFLOPS on a 66.6-
MHz POWER?2 machine. For large-size matrices, including
powers of two, the performance is essentially uniform in
the range of 90-95% of the peak for the machine.

To summarize, a very efficient DGEMM has been
produced on POWER and POWER2 machines by using
cache blocking and dot-product-based kernels. DGEMM is
the basic computing kernel and building block for almost
all of the computing in the area of linear algebra for dense
matrices. Therefore, it must demonstrate uniformly good
performance for all reasonable choices of parameters and
matrix storage formats. ESSL. DGEMM has this property.

Algorithmic restructuring of narrow-band
matrix computations

On POWER?2 machines, the divide and square-root
instructions take many cycles to complete. They utilize
one of the two FPUs. If the next floating-point instruction
depends on the result of the previous divide/sqrt
instruction, the other FPU is stalled. In some numerical
kernels, cycles spent in the divide/sqrt instructions account
for a large fraction of the total computation time. If during
this period one of the FPUs remains under-utilized, the full
performance potential of POWER?2 is not achieved. This
constitutes a serial bottleneck in the computation. In many
such situations, it may be possible to restructure the
computation so that both FPUs can be fully utilized.

We now consider Cholesky factorization of a positive
definite symmetric narrow-band matrix. This numerical
kernel serves as an example that illustrates algorithmic
restructuring of the computation. For this computation,
factoring each column requires one square-root operation,
one divide operation, and approximately m’/2
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multiply-add operations. When the bandwidth m of the
matrix is very small (narrow-band case), the cycles spent

in the square-root operation (about 27 cycles) and the do j=m,n ! the outer loop starts from
divide operation (about 19 cycles) dominate. In the a0 = a(0,j) ! column j
standard computational algorithm, the square-root and a2j2 = a(2,j-2)
divide operations are done serially; thus, during these a0 = a0 — a2j2«a2j2
operations, the other FPU remains idle. al = a(1.)) ! next four instructions
A general (for any bandwidth) implementation of the a2 = a(2,) ! can be done
Cholesky band factorization consists of three nested loops. alji = a(1,j—1) ! as two quad loads
The outermost loop is on the length n of the band matrix, azjl = a(2,j-1)
and the two inner loops are on the bandwidth m. For al = al - atj1+a2jl
very small values of m, the loop-setup time for the inner a0 = a0 - atji+aiji
loops becomes very significant; therefore, an optimized a0 = sqrt(a0)
implementation completely unrolls these loops. We have a(0,j) = a0 o _
done this by writing different routines for each value of m. = 1./a0 ! this is the serial bottleneck
We illustrate the techniques for the computation m = 2. al = atst ! scfale res_t of the column
This case corresponds to a positive definite symmetric a2 = a2« ! w,'th the inverse of the
penta-diagonal problem which is frequently encountered in a(t "_) = al ! diagonal element
some applications. For our implementation, we choose a end:(oal) = a2

left-looking algorithm (see form jki of [18]), and for
simplicity we leave out the computational details for the
factorization of the first m columns. This also assumes that
only the lower part of the symmetric band matrix is stored
as a compact band matrix, with the main diagonal as the
top row (row zero) and the next two diagonals as the next
two rows of a two-dimensional array. A straightforward
implementation of the algorithm is represented by the code
shown in Figure 4. In this code, only one FPU is utilized
during the computation of the square-root and divide

Example of matrix factorization without restructuring.

operations. Since these two operations account for most aljl = a(1,m-1) ! pre-load alj1 and a2j1

of the loop time, we are not getting any benefit from the a2j1 = a(2,m-1) !

second FPU. Another problem with the above code is do j=m,n I the outer loop starts

that a1 and a2 values are stored in memory and then a0 = a(0,j) ! from column j

immediately loaded in the next iteration (j + 1), as alj1 az2j2 = a(2,j-2)

and a2j1 values. On many high-performance machines, a0 = a0 — a2j2+a2j2

a store/load sequence can be delayed by many cycles al = a(1,j)

because of the memory system and pipeline latencies. a2 = a(2,))

This can easily be avoided by reusing the values from al = a1 — atjt*a2j1 !note alj1 and a2j1

the previous iteration of the loop. This eliminates the a0 = a0 — atjt+alj1 !values are used

store/load sequence penalty, and it also reduces the a0 = sqgri(a0) ! from the previous iteration

total number of loads by two. This is shown in the code a(0,j) = a0

presented in Figure 5. t=1./a0 I this is the serial bottleneck
Now let us address the problem of serial bottleneck. An aljl = atst I scale rest of the column

equivalent expression for computing 1 is sqrt(a0) * (1./a0). azj1 = a2xt ! with the inverse of the

By using this identity, both sqrt(a0) and 1./a0 can be a(1)) = atj1 ! diagonal element

computed in parallel using both FPUs, as shown in a(2,)) = a2j1

Figure 6. enddo

The code shown in Figure 6, in comparison to the code
in Figure 5, significantly improves the performance;
however, the code in Figure 6 can still be improved.

This is because the FPU computing the divide finishes
its work in only 19 cycles, while the FPU computing the
square root takes about 27 cycles. The next operation

Kemel of Figure 4 with reuse of values from prior iteration.
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aljt = a(i,m-1) ! pre-load-a1j1 and a2j1

azj1 = a(2,m—1) !
do j=m,n ! the outer loop starts
a0 = a(0,j) ! from column |
a2j2 = a(2,j—2)
a0 = a0 — a2j2«a2j2
at =-a(1,j)
a2 = a(2,)
at-= at — alj1*a2j1

a0 = a0 — atjt*aijt

ra0 = 1./a0 ! These two instructions
a0 = sqrt(a0) ! are computed in parallel
a(0,j) = a0
t = alxra0
aljl = alst ! scale rest of the column
a2j1 = a2t | with the inverse of the
a(1,j) = atj1 ! diagonal element
a(2)) = a2t

enddo

Kernel of Figure 5 with restructured computation of t.

(t = a0+ra0) depends on both the results. Thus, one of the
FPUs remains idle for about eight cycles. This inefficiency
can also be avoided if we further restructure the
computation. It can be shown that the next diagonal
element of A can be computed using only the current
divide operation and thus avoids using the current square-
root operation. This can be accomplished by choosing a
mathematically equivalent computation of the next
diagonal element. To see this, consider the two-by-two
symmetric matrix A and its Cholesky factor L:

all a21 1
A= L= .
a21 a22|’ 21 122
The required computations are given below:

111 = sgrt(alt)
21 = a21/111
122 = sqrt(a22 - 121 x121)

The above computation can also be rewritten as
follows:
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Table 1 Performance timing of the codes in Figures 4
through 7.

Code n m lda Time Cycles Computed
(s) perloop  cycles per

iteration loop iteration

Figure 4 10000 2 3 0.009091 60.61 56.6
Figure 5 10000 2 3 0.007855 52.4 50.6
Figure 6 10000 2 3 0.005714 38.1 36.6
Figure 7 10000 2 3 0.004662 31.1 31.1

rall =1./all

11 =sqrt(all)

21 = a21xral1xl11

22 = sqri(a22 — a21+a21xrall)

The above equations are mathematically equivalent. Note
that the [22 computation can be initiated as soon as the
ral1 computation is complete. Actually, it would be useful
to have a reciprocal square-root (rsqrt) instruction. In that
case, the following code could be implemented:

t =rsgri(all)

M1 =txall

121 = a21 =t

122 = sgrt (222 — 121%121)

This code requires only one expensive (multicycle)
intrinsic function. In terms of hardware complexity and/or
the number of cycles required, a hardware implementation
of the rsqrt instruction should be comparable to the sqrt
instruction. However, it is currently not available on
RS/6000 machines. We have just demonstrated another
algorithmic computational restructuring technique for the
two-by-two case. By incorporating these two ideas we can
restructure the computation of Figure 5 as shown in
Figure 7.

Since the ra0 computation is a divide, it takes about
eight fewer cycles to complete than the sqrt operation.
Thus, as soon as the ra0 computation is complete, we can
initiate the computation of aOn (122 in the equations above)
of the next iteration, even before the final value of a0 of
the current iteration has been computed! In this code,
essentially the entire loop computation is overlapped with
the sqrt computation. If we unroll the loop by two, we can
achieve a slightly better scheduling of the instructions.
Although we have illustrated the algorithmic restructuring
technique for m = 2, it is applicable for even wider bands.
For wider bands, where our code was for a general value
of m, the above restructuring technique has provided a
significant performance enhancement, for m up to 20
or so.
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| we are not giving the initialization

| details (aOn, alj1, a2j1 values set
| outside the loop).

| aOn represents the value of a{0,j)

| just before the sqrt/divide operation.

| It was computed in the previous iteration
| ra0 computation is overtapped with

| the sqrt computation below which was

| initiated in the previous iteration.

doj=m+2,n
ra0 = 1./aOn
al = a(l,))
a2 = a(2,j)

at = al — aiji»a2ji
a0n = a(0,j+1)
aon = abn ~ a2j1*a2j1

! load aOn for the next iteration
! note that this a2j1 corresponds

| to a2j2 in the code of Figure 5.

t1 = at»al
aon = aOn — t1sra0

1a0n = aOn — al*at+*ra0

| now we need the result of the sqrt
| computation initiated in the last iteration.

t = a0*ra0
a(0,j) = a0

a0 = sqrt(aln)
aljl = aist
a2j1 = a2«t
a(1,j) = atj1
a(2,j) = a2j1

enddo

| scale rest of the column with
| the inverse of the diagonal element

We produced four codes based on Figures 4 through 7
and made timing runs for » = 10000. Although unrolling
these loops by two helps the scheduling, we did not unroll
the four codes we produced. In these timings we first
flushed the cache. Thus, for each run, we had to bring
30000 doublewords into cache. Since each line contained
32 doublewords, 938 lines were brought in during each
run. Assuming a latency of 17 cycles for each line to arrive
accounts for 0.000239 seconds of time. This time amount
corresponds to 1.6 cycles per loop iteration. The numbers

IBM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 1994

Kernel of Figure 5 with restructuring of both square-root and divide computations.

in the column cycles per loop iteration are equal to

time/(n * CT), where CT is the cycle time of 15 x 107°
seconds. The computed cycle time is obtained by hand-
counting the number of cycles for both the fixed- and
floating-pointing units for each of the codes in Figures

4 through 7. In each case, we added 1.6 cycles to the
estimate to account for data coming from memory. In
these hand calculations, we used the observed values of 19
cycles for a divide and 27 cycles for a square root. In the
hand calculation for Figure 4, we did not add in any extra
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cycles for the store load instruction sequence. As can be
seen from Table 1, there is a surprisingly good agreement
between the observed cycle counts and the hand-calculated
cycle counts. The discrepancy of four cycles for Figure 4
is perhaps due to the penalty for the store/load sequence.
Nonetheless, the main point is that algorithmic
restructuring works extremely well in this case; the

code in Figure 7 runs twice as fast as the code in

Figure 4.

For narrow-band matrices, it is more efficient to use
Gaussian L, DL factorization in place of the LL" Cholesky
factorization, where L, is a unit lower triangular matrix
and D is a diagonal matrix. The two factorizations are
related by L = L,D"?. The Gaussian factorization does not
require any square-root computation. For the narrow-band
case, the techniques discussed above can be used to
overlap the divide operation with the rest of the loop
computation in the Gaussian factorization. For the very
natrow-band case, the divide operation dominates the loop
computation. Therefore, even though we can overlap the
divide computation with the rest of the computation, the
second FPU remains under-utilized. The only way we can
increase performance in this case is to reduce the total
number of divides. We can use the following idea* to
reduce the number of divides. Let x = a*b and y = 1/x;
then, 1/a = by and 1/b = a*y. The only potential
problem with this approach is that there is a slight increase
in the probability of underflow or overflow of exponents.
To illustrate this technique in factoring symmetric
positive definite matrices, consider a two-by-two diagonal
block (A) of a symmetric band matrix and its Gaussian

factor L1:
all a1 dii

A= , 1= .
a21 a22 121 d22

The required computations are given below:

d11 =ait

i =1/dn

21 =a21%n

d22 =a22 - 121+a21
r2 =1/d22

In the above computation, we wish to compute r1 and r2
using only one divide operation. This can be done by
choosing X to be equal to the product of the two minors
of A:

* We heard about this idea from Jim Shearer of IBM Research. He said he heard
about it from Don Coppersmith of IBM Research. Don thinks the idea is part of the
folklore.
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del = a22+a11 — a21+a21 ! second minor

x =allxdel ! product of the two minors
y =1k ! only divide

r1 =ys=del Il = i/d11

21 = a21+nr1

12 =y=altl=alt 'r2 = 1/d22

The above computations are mathematically equivalent.
Using this technique, we have replaced two divides with
one divide and a few multiply-adds. We have not explicitly
computed the d22 term. This is because, on the diagonal,
instead of storing the diagonal terms, we store their
reciprocals. By storing the reciprocals, we avoid divides
during the solve phase of the computation.

Summary

In this paper, we have described the novel architectural
features of the POWER?2 workstations. These features
include multiple functional units, quad load/store
instructions, and a very high-bandwidth memory system.
If one uses the quad load capability of the POWER2
machines, a single FXU can feed both FPUs at the peak
rate; therefore, the other FXU can be used to prefetch
data into cache. Thus, the multiple functional units of
POWER? allow for the possibility of prefetching data into
cache. In other words, POWER2 capabilities can be used
to provide functional parallelism, if one develops high-
performance numerical algorithms to do so. We have
exploited functional parallelism by developing many highly
tuned routines for ESSL. The three main techniques we
used to exploit functional parallelism were loop unrolling,
algorithmic prefetching, and algorithmic restructuring of
the computation to serial bottlenecks. We have provided
several examples of these techniques. For many BLAS-1
and BLAS-2 routines, on the same cycle time basis, we
have demonstrated performance on POWER?2 machines
that is up to four times higher than that available using
POWER. The quadword access facility, along with our use
of algorithmic cache prefetching, was primarily responsible
for this high level of performance. For BLAS-3 routines,
the performance improvement over POWER is slightly
more than a factor of two. The two FXUs and two FPUs
are responsible for the factor of two. The significantly
higher bandwidth of the memory system makes the
improvement factor greater than two. Finally, using
algorithmic restructuring of computation, we have also
demonstrated a factor of two improvement for the
Cholesky factorization of very narrow-band matrices.
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