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We describe the algorithms and architecture 
approach to produce high-performance codes 
for numerically intensive computations. In this 
approach, for a given computation, we design 
algorithms so that they perform optimally 
when run  on a target machine-in this case, 
the new POWERS'" machines from the RSl6000 
family of RISC processors. The algorithmic 
features that we  emphasize  are functional 
parallelism, cachelregister blocking, 
algorithmic prefetching, loop unrolling, and 
algorithmic restructuring. The architectural 
features of the POWER2 machine that we 
describe and that lead to high performance 
are multiple functional units, high bandwidth 
between registers, cache,  and  memory,  a  large 
number of fixed- and floating-point registers, 
and  a  large  cache  and TLB (translation 

lookaside buffer).  The  paper gives two 
examples that illustrate how the algorithms 
and architectural features interplay to produce 
high-performance codes.  They  are B U S  (basic 
linear algebra subroutines) and narrow-band 
matrix routines. These routines are included in 
ESSL  (Engineering  and Scientific Subroutine 
Library); an overview of ESSL is also given in 
the paper. 

Introduction 
The  new POWER2m workstations [l-41 of the  RISC 
System/6000@ (RS/6000) family of processors provide 
multiple fixed-point units  (FXUs) and floating-point 
units (FPUs) which can  work in parallel if there  are no 
dependencies.  We call this functional  parallelism. To 
achieve functional  parallelism requires  that  the underlying 
numerical  algorithm be parallelized at a very low  level 
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(instruction level). The functional parallelism  can be 
achieved if, at the innermost loop level, several 
computations can be done in  parallel. Various algorithmic 
techniques can be  utilized to facilitate functional 
parallelism. Loop unrolling  is  an example of such a 
technique. Multiple FXUs help in prefetching of data into 
cache. One of the two FXUs can be utilized for cache 
prefetching, while the second FXU continues to remain 
available to load/store data (already in cache) into 
registers. This also requires algorithmic  modifications. 
In many situations, the computation may have to be 
restructured to get around the serial bottlenecks and 
arithmetic pipeline delays. POWER2 workstations also 
provide quad load/store instructions which double the 
effective bandwidth between floating-point registers (FPRs) 
and cache. To exploit the quad load/store instructions, 
the algorithm may have to be modified to access data 
with stride one. These are all examples of algorithmic 
techniques which can help to exploit the functional 
parallelism capability of POWER2  and to realize its full 
performance potential of four floating-point operations 
(flops) per cycle. The techniques described in this paper 
have been heavily  utilized in the development of some of 
the ESSL (Engineering and Scientific Subroutine Library) 
subroutines for the RS/6000 family of workstations. 
(Although the PowerPCTM family [5, 61 of processors is 
not discussed in this paper, the techniques described here 
work equally well,  with appropriate modification,  for 
PowerPC implementations.) 

In this paper, we first  give  an overview of ESSL. We 
then describe salient CPU and cache/memory features 
of POWER2 which can affect  optimal  algorithm  design. 
Next we describe various algorithmic techniques used to 
facilitate utilization of multiple function units. In each 
case, we provide appropriate examples and discuss the 
performance achieved. 

ESSL  overview 
ESSL is a high-performance library of mathematical 
subroutines for IBM RISC System/6000 workstations 
(ESSL/6000), and ES/9000TM  and  ES/3090TM vector and/or 
scalar mainframes (ESSL/370) [7]. Currently, ESSL V2.2 
consists of 441 subroutines that cover the following 
computational areas: linear algebra subprograms, matrix 
operations, linear algebraic equations, eigensystems 
analysis, Fourier transforms, convolutions/correlations, 
and other related signal-processing routines, sorting 
and searching, interpolation, numerical quadrature, 
and random number generation. 

many different types of scientific and engineering 
applications, as well as for numerically intensive 
applications in other areas such as finance. Existing 

564 applications can be enabled by replacing comparable 

ESSL can be used for both developing and  enabling 
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subroutines and  in-line code with calls to  ESSL 
subroutines. Because of the availability of a large  number 
of subroutines in ESSL, the effort required in developing a 
new application is  significantly reduced. This  also makes it 
easier to move an application to a new  platform, because 
ESSL is tuned for all platforms where it is  available. 

in two different ways. ESSL provides a set of routines to 
solve linear equations of various kinds. Most of these 
routines are functionally the same as the public domain 
software LAPACK [8, 91, though  not necessarily in the 
same call sequence. The user application can be modified 
to call these ESSL subroutines instead of LAPACK 
subroutines. This approach provides the highest  level 
of performance. Alternatively, ESSL also provides a 
complete set of tuned basic linear algebra subprograms 
(BLAS). There are 140 BLAS subroutines in ESSL. BLAS 
are an industry-wide standard [lo-141, providing a uniform 
functionality and  call sequence interface, which makes an 
application using calls to BLAS highly portable across 
high-performance platforms from  different vendors. In 
LAPACK subroutines, most of the computing is done in 
BLAS subroutines. LAPACK expects platform vendors to 
provide a set of tuned BLAS to achieve high performance. 
This is the alternative approach, in which the user 
application calls LAPACK subroutines and  links to  ESSL 
for tuned BLAS. This approach provides portability and 
performance at the same time.  The performance achieved 
in this approach is  slightly lower than that obtained by 
calling ESSL subroutines directly, but it is  still very good. 

ESSL/6000 provides a set of subroutines tuned for 
performance on the RISC System/6000  family of 
workstations which include the older POWERTM 
workstations and the newer POWER2TM workstations. 
These are predominantly compatible with the ESSL/370 
product, resulting in easy cross-platform migration 
between mainframes  and workstations. All ESSL/6000 
computational subroutines are written in  FORTRAN; 
they are callable from application programs written in 
FORTRAN  and  in C.  All  of the subroutines are fully 
described in the ESSL Guide and Reference [7]. 

In the area of linear algebra, ESSL routines can be used 

POWER2  CPU  considerations 
POWER2 workstations differ  from the original  POWER 
workstations in many respects. POWER workstations 
have one fixed-point unit (FXU) and one floating-point 
unit (FPU) and therefore can perform one floating-point 
multiply-add instruction and a ked-point instruction every 
cycle, if there are no dependencies. Additionally, branch 
instructions can also be overlapped and therefore in effect 
result in zero-cycle branches. All load/store instructions, 
including the floating-point load/stores, are handled by 
the FXU. Additionally,  floating-point stores also require 
the FPU, and therefore these instructions cannot be 
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overlapped with the floating-point arithmetic instructions. 
See [15] for a full description of a POWER  machine. 

POWER2 workstations have two FXUs and two FPUs 
and therefore can perform two fixed-point instructions and 
two floating-point instructions every cycle, if there are 
no dependencies. In contrast to POWER,  on  POWER2 
floating-point store instructions can also be overlapped 
with  floating-point arithmetic instructions. Floating-point 
instructions have a two-to-three-cycle pipeline delay; 
therefore, to keep both FPUs fully utilized, at least four 
independent floating-point instructions must be executing 
at the same time. (See [l-31 for details.) 

Two additional innovative features of POWER2 are the 
floating-point  quad load/store instructions. The  quad  load 
instruction can load two consecutive doublewords of 
memory into two consecutive FPRs, and the quad store 
instruction can store two consecutive FPRs into two 
consecutive doublewords of memory.  With both FXUs in 
use, this results in  an effective  bandwidth of four 
doublewords per cycle between the cache and the FPRs. 
This increased bandwidth  is particularly important for 
those computational kernels where performance would 
otherwise be limited by the bandwidth between registers 
and cache. BLAS-1 (level-1 BLAS), for example DDOT 
and DAXPY, are examples of such kernels. For these 
kernels, on the same cycle time basis, POWER2  can 
perform four times faster than POWER. However, it  is  not 
always easy for the compiler to generate quad load/store 
instructions; loops often require additional unrolling. 
Also, quad load/stores require two consecutive FPRs; this 
restriction imposes additional constraints on the register 
assignment  logic of the compiler. Please note that 
quad load/store instructions can be used only if two 
consecutive data elements from  memory are needed in 
the loop. This  may also require a restructuring of 
the loops. 

boundary require additional cycle(s). If the loop 
performance is  limited by the cache bandwidth, quad loads 
crossing the cache line boundary reduce the available 
bandwidth. Special coding techniques can be used to 
handle such a situation. For example, assuming that all 
double-precision arrays are aligned  on doubleword 
boundaries, there are two  possibilities:  The array is either 
aligned  on a quadword boundary or on  an  odd doubleword 
boundary. Here, we are also assuming that the array is 
accessed in the loop with stride one using  quad  load 
instructions. Then, if the array is aligned  on a quadword 
boundary, a quad  load  will never cross the cache line 
boundary. This follows  from the fact that the cache line 
size is a multiple of quadwords. If the array is aligned 
on  an  odd doubleword boundary, one load  is purposely 
handled outside the loop, thus making  all  quad loads inside 
the loop quadword-aligned. For double-precision two- 

Individual quad accesses which cross a cache line 
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dimensional arrays, if possible, the user should make the 
leading dimensions even. This ensures that if the first 
column  is quadword-aligned, all other columns are also 
quadword-aligned. 

POWER2 cache  considerations 
The data cache size on  POWER2 workstations is 256 KB; 
however, only 128 KB may  be accessible on machines 
having  fewer than four memory cards. In this paper, we 
refer to the data cache as simply the cache. All POWER2 
models have 1024 cache lines arranged in four-way 
associative sets. The cache size of the largest  POWER2 
models  is four times greater than that of the largest 
POWER models. POWER2  models also have a 
significantly  higher  bandwidth to the memory system. The 
memory system bandwidths on all machines are designed 
to fetch a complete cache line in  eight cycles. Thus, 
machines with  larger caches also have  higher  bandwidth to 
the memory system. All POWER2 workstations have a 
512-entry, two-way set-associative TLB (table lookaside 
buffer).  This is significantly larger than the 128-entry TLB 
on  POWER machines. Furthermore, the number of cycles 
required for TLB miss processing on  POWER2 is 
considerably smaller than the number of cycles required 
for TLB miss processing on  POWER. This has a very 
significant impact on considerations of blocking (of large 
problems) for  POWER2. For most problems, the TLB size 
of POWER2 is not a consideration in blocking.  In those 
computational kernels where arrays are used several times, 
appropriate cache and TLB blocking  is  sufficient to give 
the best possible level of performance. For these kernels, 
the delay in accessing a cache line  is  not important 
because the data are used several times. BLAS-3 
routines are examples of such kernels. However, in 
BLAS-1 and  BLAS-2 routines, the arrays are used  only 
once, and cache miss latency becomes the important 
consideration. 

Loop unrolling 
Loop unrolling  is a common technique used to exploit 
multiple functional units and  quad load/store capabilities. 
(See [16] for a discussion of  how the compilers for 
POWER and POWER2  handle this.) In its simplest form, 
unrolling a loop amounts to a mini-vectorization of the 
loop. For example,  unrolling a loop by eight  is equivalent 
to using a vector length of eight. Generally speaking, 
vectorization results in independent computations, unless 
the vector operation is a reduction operation. Inner 
product (dot product) computation and  finding the 
maximum or minimum of a vector are examples of 
reduction operations. For these examples also, 
parallelization is easily achieved if the vectors are long. 
For the inner product example, outside the loop, we can 
set up four variables (or registers) for partial sums. The 
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loop  is on the length of the inner product and is unrolled 
by four. Inside the loop, the four partial sum registers are 
updated with  multiply-add operations. This results in four 
independent computations which can take place in parallel. 
At the completion of the loop, the four partial sum terms 
are added together to form the inner product. The final 
sum computation is only partially parallelized. 

Loop unrolling also helps in reusing the data loaded in 
registers, and thereby reduces the bandwidth (load/store) 
requirements between registers and cache and between 
cache and  main  memory. The loop  unrolling  need  not be 
limited to the innermost loop. A series of nested loops can 
be unrolled to further facilitate data reuse. Some loop 
variables can be reused only if outer loops are unrolled. 
The matrix-matrix  multiplication  is a good  example of 
nested loop unrolling.  By  unrolling all three nested loops, 
all variables in the loop  can be reused. The degree of loop 
unrolling  is generally limited by the number of registers 
available. Heavy loop  unrolling  may require more registers 
(floating and/or fixed) and therefore may result in spills. 
Spills are caused when the number of “logical” registers 
needed by the compiler exceeds the available  number of 
architected registers. In that case, inside the innermost 
loop, “logical registers” are saved and restored from 
temporary memory location, resulting in a large 
degradation of performance. It is advisable for the user 
to look at the listings generated by the compiler. If the 
listings indicate spills in the innermost loop, the degree 
of unrolling should be reduced. 

In  many situations, an array is not accessed with stride 
one in the innermost loop, so quad load/store instructions 
cannot be used. However, this array may have a stride-one 
access in one of the outer loops. In that case, to facilitate 
the use of quadboad store instructions, that outer loop 
should be unrolled. If multiple arrays are accessed in the 
innermost loop, they may have a stride-one access 
pattern in different nesting levels of the nested loop. To 
facilitate quad access of  all these arrays, all corresponding 
nested loops at nesting levels in which an array has stride- 
one access must be unrolled. 

To summarize, loop unrolling serves two goals.  The 
main  goal  is parallelization of the computation; the 
secondary goal  is reduction in register/cache/memory 
bandwidth requirements. At some degree of unrolling, 
we  will have achieved a sufficient  level of functional 
parallelism and memory bandwidth reduction to result 
in peak performance, if the data remain in cache. The 
question is “Can we get a higher  level of performance by 
further unrolling the loop(s)?” The answer depends on the 
ratio of the computation cost (number of floating-point 
operations, or “flops”) to the data movement cost (number 
of data items involved  in the computation). For the 
BLAS-3 (matrix-matrix  multiplication is an example) kind 

566 of computation, where the ratio of flops to data movement 

cost is  large,  we do some kind of cache blocking so that 
data remain in cache. For these computations, occasional 
cache misses do not seriously affect overall performance. 
However, for those computations in which flops  and data 
movement cost are about equal  (for example, BLAS-1 and 
BLAS-2), data in cache are not reused, and the cache miss 
latency becomes very important. In such applications, by 
reducing the bandwidth requirements (via  loop  unrolling) 
between registers and cache, we can free up one of the 
FXUs to do cache prefetching. This is discussed in detail 
in the next section. 

Algorithmic prefetching 
On  POWER2 machines, the cache miss latency is  roughly 
of the order of  14-20 cycles. The desired data come 
after 14-20 cycles, followed by the rest of the line  in a 
wraparound fashion in the next seven cycles. There are 
two FXUs, and each of them can process only one 
cache miss at a time.  In a typical stride-one access code, 
if a load results in a cache miss, the subsequent load also 
results in a cache miss to the same line.  This ties up both 
FXUs in fetching the same cache line. Specialized coding 
gets around this problem  and  can thus greatly improve 
memory system performance. We call this algorithmic 
prefetching [17];  it can significantly improve performance 
on  POWER2  machines. It is fairly easy to implement 
algorithmic prefetching for the stride-one situation on 
POWER2. Typically, several cycles before the data from 
the next cache line are actually needed, a dummy  load  of 
an element from the next cache line is done. (A  dummy 
load  is a load where the data loaded are not actually used 
in the computation.) If the next line  is already in cache, 
the load  is  completed in one cycle, and the FXU becomes 
available for the next set of instructions. On the other 
hand, if this load results in a cache miss,  it ties up one of 
the FXUs until the cache miss  is processed. However, the 
other FXU is  still available to do the required loads into 
FPRs to feed both FPUs. When  quad loads are extensively 
used, many computing kernels require only one FXU to 
feed both FPUs. 

POWER has only one FXU, and a cache miss  will stall it. 
However, in those loops where there are more arithmetic 
operations than load/store operations, specialized 
techniques can be used to do prefetching on  POWER  [17]. 
The primary concept is to load FPRs with data at the 
beginning of the loop, so that when the cache miss stalls 
the FXU, the FPU is kept busy with  useful work using 
data already loaded in the FPRs. 

We have used algorithmic prefetching on  POWER 
and  POWER2 in many computing kernels. However, 
prefetching requires extensive loop  unrolling. This loop 
unrolling  with  dummy loads can actually be done in 
FORTRAN. In prefetching, there are several different 

Prefetching on POWER  is  more  difficult, because 
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variations, some being quite intricate and complex. If the 
cache bandwidth is a consideration, the loop is  unrolled in 
such a way that the data loaded during a “dummy load” 
are actually used in the computation. Depending on the 
kernel and the number of arrays to be prefetched, this can 
become complicated, especially if quad loads are to be 
used and relative quad alignments of different arrays are 
to be taken into account. On the other hand, if the cache 
bandwidth is not a consideration (one FXU can handle  all 
of the required loads), a simple prefetching scheme will do 
a dummy  load and not use the data. In this case, if the 
data are actually in cache, prefetching does not degrade 
performance. If the data are not in cache, prefetching 
improves performance significantly. 

BIAS implementation  using  loop  unrolling 
and  cache  prefetching 
We  now illustrate the use of the above techniques in 
implementing some key BLAS routines. 

B U S - 1  implementation 
Because there is very little reuse of data loaded in 
registers, B U S - 1  performance tends to be limited by the 
available bandwidth between the cache and the FPRs. 
Maximum bandwidth is achieved by using quad load/store 
instructions. An optimal implementation also tries to avoid 
crossing a cache line boundary on quadword accesses. 
There is also some limited opportunity for algorithmic 
prefetching. Here, we describe the implementation and 
performance of two key BLAS-1 kernels-the  DAXPY  and 
DDOT routines. We assume that all arrays have stride 
one; otherwise, it is not  possible to use quad load/store 
instructions. 

DAXPY 
In  DAXPY, we update a vector y with a scalar multiple 
of another vector x. The scalar multiplier is loaded 
outside the loop and remains in a register throughout 
the computation. For each multiply-add (FMA), 
DAXPY requires two loads and one store; therefore, its 
performance is  limited by the available bandwidth to the 
FPRs. Depending  on the alignments of the x and y arrays, 
there are four possibilities. When both arrays are even- 
aligned, the coding to obtain optimal quad load/stores 
is easy. If both arrays are odd-aligned, one element is 
computed outside the loop. This makes both the remaining 
arrays quad-aligned. The difficult case arises when one 
array is even-aligned  and the other is odd-aligned. In this 
case also, we can restructure the computation so that all 
quad accesses inside the loop are quad-aligned. This 
requires accessing one element of the odd-aligned array 
outside the loop. The loop  is  unrolled by four and executes 
in three cycles, achieving the peak bandwidth of two 

quadword accesses between the cache and the FPRs every 
cycle. On a 50-MHz  POWER2, the best performance that 
can theoretically be expected is 133 MFLOPS. For data in 
cache, we actually achieve nearly this performance for all 
four possible  alignments of the arrays. By comparison, on 
a 50-MHz  POWER machine, the best possible performance 
is 33 MFLOPS. 

DDOT 
The DDOT function computes the dot product of two 
vectors. Since FMA requires two loads, this seems to 
match the capabilities of POWER2  ideally,  assuming that 
data are in cache. Thus, on POWR2, DDOT should run 
at its peak rate of four flops per cycle. However, as a 
result of the register-renaming implementation, the 
FXUs cannot perform two load quads every cycle on a 
continuous basis. The best that can be achieved is  eight 
load quads in  five cycles. Thus, the best performance that 
can be expected on a 50-MHz  POWER2 is 160 MFLOPS, 
and we nearly achieved that level of performance. Recall 
that in the DAXPY case we were doing both quad loads 
and  quad stores; therefore, in that case we  did achieve 
the peak bandwidth of two quad load/stores every cycle. 

for data in cache and another for long sequences where 
data are unlikely to be in cache. For the function which 
assumes that data are in cache, we  unrolled the loop by 
eight and used four temporary variables to accumulate 
the partial results. The four subresults were then added 
together outside the loop. As in the DAXPY case, we 
had to take into account even-odd  quad  alignments of 
both arrays in order to achieve near-peak performance. 
However, the cost of examining the alignments of both 
arrays and setting up the unrolling by eight adds  extra 
overhead to the subroutine, which is  significant for small 
n. As an example, on a 50-MHz  machine, for a dot 
product of size n = 2000,  we measured 148 MFLOPS 
for all four possible quad alignments of the two arrays. 

We also developed a version of the DDOT function 
which does algorithmic prefetching for  long sequences. 
Here we assume that data are not in cache. The subroutine 
must  know the cache line size of the machine in order to 
do optimal prefetching. When data are not in cache, the 
performance is limited by the available bandwidth between 
cache and the memory system, and the prefetching is 
implemented to maximize it. Recall that during 
prefetching, one FXU is tied  down when a cache miss 
occurs, but the other FXU remains available to loadhtore 
data already in cache. For these routines, we  unrolled the 
loop by 16 and  did  dummy loads 16 elements apart for 
both arrays. On a POWER2  machine (50 MHz and 256KB 
cache size), for data not in cache, this subroutine 
performed at about 103 MFLOPS, while the subroutine 
which assumed that the data were in cache performed at 

We developed two versions of the DDOT function, one 
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TO = Y(I) 
T1 = Y(I+l) 

... 
T23 = Y(I+23) 

DO J = J1,  J1  +JBLK-1 
XJ = X(J) 

FO = A(I, J) 
F1 = A(I+I,J) 
TO = TO + XJ*FO 
T I  = T1 + XJ*F1 

... 
FO = A(I+22,J) 
F1 = A(I+23,J) 
T22 = T22 + XJ*FO 
T23 = T23 + XJ*FI 

ENDDO 

Y(I) = TO 
Y(I+l) = T1 

... 

Y(I+23) = T23 

! load 24 y elements 
! in 24  FPRs. 

! load an element of x 

! one  load  quad  loads 
! both FO and F1 

! store y elements 
! after  the loop 

1 DGEMV matrix-vector multiplication (without prefetching). 

about 74 MFLOPS. This represents a 40% performance 
improvement, due to algorithmic prefetching. However, 
the prefetched version of this subroutine requires extra 
loads, and if the data are actually in cache, its performance 
drops by about 10% compared to the subroutine optimized 
for data in cache. 

If the data loaded in registers (for prefetching) can 
actually be used in the computation, we can achieve the 
best performance for data in cache as well as for data not in 
cache. The coding becomes complicated because one must 
take into account not only relative quadword alignments 
of the two arrays, but also their relative cache line 
alignments. This extra logic adds overhead to the routine 
which is justifiable only for long sequences, say of the 

568 order of  2000.  We implemented one such version on the 
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above machine. For data in cache, this routine performed 
in the 150-156-MFLOPS  range. For data not in cache, it 
performed in the 97-103-MFLOPS  range. The performance 
of the subroutine varied in a narrow range  depending on 
the relative alignments of the two arrays. 

B U S - 2  implementation 
BLAS-2 computations typically involve a matrix and one 
or two vectors. In these computations, the matrix elements 
are generally used only once; for a large  matrix,  most of  it 
cannot be in cache. When the matrix is not in cache, the 
best that can be expected is to fully  utilize the matrix data 
brought into cache and simultaneously prefetch the next 
cache line.  During the prefetch, computing is being done 
on the data just brought into cache. We  must also use 
register, cache, and TLB blocking for the matrix and the 
vectors, in order to fully use the data before they are 
swapped out of the cache and the TLB. Reference [17] 
describes algorithmic prefetching as it was implemented for 
BLAS-2 for POWER.  We  now consider implementation on 
POWER2. As pointed out earlier, because of multiple 
function units on  POWER2, prefetching is easier. It is 
particularly important to get  sufficient reuse of data loaded 
in registers so as to minimize the load/store requirements. 
This requires the inner loop to be unrolled by a large 
factor, and the use of the quad loadhtore capability of 
POWER2. To illustrate the computational techniques, we 
describe the example of the matrix-vector  multiplication 
subroutine DGEMV, where the matrix A is stored in the 
normal form, i.e.,  column  major order. 

Typically,  we declare a two-dimensional array in 
FORTRAN as A(LDA, *) where LDA 2 M .  Here, LDA 
refers to the leading dimension of the array A. In what 
follows, a matrix stored this way is called a dense matrix. 
If the (1,  1) doubleword of matrix A is stored in  memory 
location a, the FORTRAN convention of storing A places 
the (i, j ) th  doubleword of A in memory location a + i - 1 
+ ( j  - 1) X LDA. (We assume that this address and a 
are in units of doublewords.) It is important to realize that 
the value of LDA can influence  how  well blocks of A fit 
into cache and TLB. For cache considerations, a good 
LDA is an odd  multiple of the line size. For LDA 2 512, 
each column of A begins on a different  page.  In order to 
avoid a TLB miss, n must be chosen so that translation 
information  for n pages fits comfortably into the TLB. We 
have determined experimentally that n = 200 is a good 
choice for the two-way set-associative TLB with 512 entries. 

DGEW-Noma1 case 
In  DGEMV, a vector x is multiplied by a matrix A and 
then added to another vector y (y + y + A*x). Cache 
prefetching is the most important consideration in 
DGEMV. An optimal implementation of cache prefetching 

The location in memory of matrix A is  significant. 
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requires knowing the cache line size. Here, we describe 
the implementation on machines with a 256-byte  line size. 
The outermost blocking was on the number of columns, 
to minimize the finite cache and TLB effects. Within a 
vertical block, we unrolled the computation by a large 
factor (i.e.,  we  implemented a horizontal register 
blocking).  The  ideal  block size (the unrolling factor) 
corresponds to the cache line size, so that in each 
subcolumn there is exactly one cache line  (32 
doublewords). However, because of the floating-point 
register limitation (there are only 32 FPRs), we restricted 
the unrolling to 24. The innermost loop operates on the 
number of columns in a vertical block. Outside this loop, 
we loaded 24 elements of the y vector into 24 FPRs, TO, 
T1, * , T23, corresponding to the horizontal block size or 
the loop  unrolling factor. Within this loop,  we processed a 
subcolumn of the A matrix of size 24. This  is  like a mini- 
vectorization with a vector length of  24.  We can assume, 
because of the cache blocking, that a block of the A matrix 
remains in cache. The code shown in Figure 1 is indicative 
of the code without prefetching. Here XJ corresponds to a 
floating-point register. Note that one quad  load loads two 
FPRs, feeding both FPUs. Thus, one FXU can feed  both 
FPUs, except for the initial  load of x(j) into FPR XJ. There 
are 24 FMAs in the innermost loop (the J loop), requiring 
24 loads for the matrix elements which  can be performed 
as 12 quad loads. This gives a 24x reuse factor for XJ. 
Thus, for 12 cycles, we  can keep one FXU feeding both 
FPUs at the peak rate of two FMAs  per cycle. The other 
FXU is free to handle cache miss processing by  doing a 
dummy  load of an element from the second next  column of 
A, which is not  likely to be  in cache. The prefetching is 
accomplished  by inserting the following instruction in the 
inner loop: 

D = A(1+23, J+2) ! dummy load for prefetch 

The  dummy variable D is  not used in the loop. Its sole 
purpose is to bring the desired section of column (J + 2) 
into cache if it is  not already in cache. The second FXU 
on  POWER2 accomplishes this goal.  By prefetching two 
columns ahead, our measurements show that all  of the 
required data are in cache. If the LDA of the A matrix is 
even and the initial  alignment of the matrix is on an  odd 
doubleword boundary, we process one row outside the 
main  blocking loop, so that each subblock in the main  loop 
is  aligned on a quadword boundary. This  is to make sure 
that none of the quad loads inside the inner  loop cross a 
cache line boundary. If LDA of the matrix is odd, for 
every other column  quad loads will cross the cache line 
boundary, slightly  degrading the performance. This is the 
reason why we  recommended earlier that the leading 
dimensions of multidimensional arrays should be even. 

This implementation of DGEMV  with  algorithmic 
prefetching is optimal even when the matrix is actually 
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10’ loL 

Matrix size 

10’ 

ESSL performance compared with LAPACK for  BLAS-2 matrix- 
vector multiplication. 

in cache. In that case, the prefetch load does not result 
in a cache miss  and becomes an ordinary load.  Since the 
innermost loop is not  limited by the loadistore bandwidth, 
this extra load has no impact on the execution of the loop. 
For matrices which fit  in cache, we  achieved  96% of the 
peak performance. For very large matrices which do  not 
fit in cache, we  achieved 81% of the peak (on a 50-MHz 
machine). 

Figure 2 compares the performance of ESSL DGEMV 
against that of the LAPACK “vanilla” routine. The 
performance is plotted for square matrices of sizes 10 to 
100  in steps of  5, and 150 to 1000 in steps of 50. For values 
of n above 200, we see the effect  of the matrices no longer 
residing in cache. 

B U S 3  routine-DGEMM 
For BLAS-3 routines, appropriate cache and TLB blocking 
is generally sufficient to give the best possible level of 
performance. For these kernels, the delay in accessing a 
cache line  is  not important because the data are used 
multiple  times.  DGEMM  is  typical of BLAS-3 routines. 
It basically computes the product of two matrices. For 
DGEMM,  fairly  good performance can  be obtained from 
the vanilla code, if appropriate preprocessing options are 
used at the compile time. In  most cases, the preprocessor 
does a reasonable job of cache blocking.  The  problem 
arises when the matrix dimensions are powers of two 
(or related to them). In those cases, because of the cache 
congruence class conflicts, the effective cache size is 
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reduced. In this case, preprocessor cache blocking  is  not 
very effective. 

ESSL BLAS-3 routines do cache and TLB blocking 
customized for the platform  on  which they are run. They 
are designed to provide robust performance in almost 
all situations. If necessary, subarrays are copied into 
temporary buffers  in order to eliminate any problem due to 
bad  leading  dimensions. Because the copied data are used 
many times, the cost of copying becomes insignificant. If 
the arrays are blocked for cache, we can assume that data 
remain in cache. In that case, the only consideration is to 
obtain peak performance at the innermost loop  level. For 
BLAS-3 kernels, the bandwidth between cache and FPRs 
is not a consideration, because the nested loops can be 
unrolled in many different ways to get a significant reuse 
of data loaded into registers. The unrolling of loops also 
makes it possible to utilize  multiple functional units fully, 
and avoids FPU pipeline delays. 

For the previous release of ESSL, which was only for 
POWER,  we  implemented a two-by-two unrolling;  i.e., a 
two-by-two block of the result matrix was computed in the 
innermost loop. This  is equivalent to computing four dot 
products in the innermost loop. This was sufficient to give 
the peak performance on POWER.  On  POWER2, to 
ensure robust performance in utilizing  multiple functional 
units, we  implemented a four-by-two unrolling. This 
resulted in the peak performance at the innermost loop 
level  for all combinations of the matrix form parameters. 
Form parameters specify whether the matrices are stored 
by rows or columns. The four-by-two blocking  used for 

570 POWER2  is also optimal for POWER. This helps in 
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producing a single source code for POWER  and  POWER2 
machines. The cache and TLB blocking  is customized for 
the platform.  This requires different compilations for 
POWER  and  POWER2.  By  using a different  compilation 
for POWER2  machines,  we also obtained some additional 
performance by exploiting  quad loadlstore instructions 
which are not available on  POWER.  Blocking  for  different 
cache sizes is done at run  time.  The  line size of the 
machine can be  used to determine the cache size at run 
time. We use the special subroutine IRLINE to determine 
line size. Once the line size is known, we can set cache 
size parameters for the particular POWER or POWER2 
machine.  This determination of cache size parameters is 
done only once. 

models of POWER2  and one model  of  POWER. The 
performance is plotted for square matrices of sizes 10 
to 100  in steps of 5 ,  150 to 1000  in steps of 50, and all 
powers of two from 16 to 512. For small values of N ,  the 
performance is somewhat uneven, because of our choice of 
four-by-two blocking. Note that even for matrix sizes as 
small as 20, performance reaches 200 MFLOPS on a 66.6- 
MHz  POWER2  machine. For large-size matrices, including 
powers of two, the performance is essentially uniform in 
the range of 90-95% of the peak for the machine. 

To summarize, a very efficient  DGEMM has been 
produced on POWER  and  POWER2 machines by using 
cache blocking  and dot-product-based kernels. DGEMM is 
the basic computing kernel and  building block for almost 
all  of the computing in the area of linear algebra for dense 
matrices. Therefore, it  must demonstrate uniformly  good 
performance for all reasonable choices of parameters and 
matrix storage formats. ESSL DGEMM has this property. 

Algorithmic restructuring of narrow-band 
matrix computations 
On POWER2 machines, the divide  and square-root 
instructions take many cycles to complete. They utilize 
one of the two FPUs. If the next floating-point instruction 
depends on the result of the previous divide/sqrt 
instruction, the other FPU is stalled. In some numerical 
kernels, cycles spent in the dividelsqrt instructions account 
for a large fraction of the total computation time. If during 
this period one of the FPUs remains under-utilized, the full 
performance potential of POWER2  is  not achieved. This 
constitutes a serial bottleneck in the computation. In  many 
such situations, it  may be possible to restructure the 
computation so that both FPUs can be fully  utilized. 
We  now consider Cholesky factorization of a positive 
definite symmetric narrow-band matrix. This numerical 
kernel serves as an example that illustrates algorithmic 
restructuring of the computation. For this computation, 
factoring each column requires one square-root operation, 
one divide operation, and approximately m2/2 

Figure 3 shows DGEMM performance on two different 
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multiply-add operations. When the bandwidth m of the 
matrix is very small (narrow-band case), the cycles spent 
in the square-root operation (about 27 cycles) and the 
divide operation (about 19 cycles) dominate. In the 
standard computational algorithm, the square-root and 
divide operations are done serially; thus, during these 
operations, the other FPU remains idle. 

A general (for any bandwidth) implementation of the 
Cholesky band factorization consists of three nested loops. 
The outermost loop is on the length n of the band matrix, 
and the two inner loops are on the bandwidth m .  For 
very small values of m, the loop-setup time for the inner 
loops becomes very significant; therefore, an optimized 
implementation completely unrolls these loops. We  have 
done this by writing different routines for each value of m .  
We illustrate the techniques for the computation m = 2. 
This case corresponds to a positive definite symmetric 
penta-diagonal problem  which  is frequently encountered in 
some applications. For our implementation, we choose a 
left-looking  algorithm (see form jki of  [18]), and for 
simplicity we leave out the computational details for the 
factorization of the first m columns. This also assumes that 
only the lower part of the symmetric band matrix is stored 
as a compact band matrix, with the main  diagonal as the 
top row (row zero) and the next two diagonals as the next 
two rows of a two-dimensional array. A straightforward 
implementation of the algorithm  is represented by the code 
shown in Figure 4. In this code, only one FPU is utilized 
during the computation of the square-root and  divide 
operations. Since these two operations account for most 
of the loop  time, we are not getting any benefit  from the 
second FPU. Another problem  with the above code is 
that a1 and a2 values are stored in memory  and then 
immediately loaded in the next iteration (j + I), as a1 jl 
and a2jl values. On many  high-performance machines, 
a store/load sequence can be delayed by many cycles 
because of the memory system and  pipeline latencies. 
This can easily be avoided by reusing the values from 
the previous iteration of the loop. This eliminates the 
storelload sequence penalty, and  it also reduces the 
total number of loads by two. This is shown in the code 
presented in Figure 5. 

equivalent expression for computing t is sqrt(a0) * (1 ./aO). 
By  using this identity, both sqrt(a0) and 1 ./a0 can  be 
computed in parallel using  both FPUs, as shown in 
Figure 6. 

in Figure 5, significantly improves the performance; 
however, the code in Figure 6 can still be improved. 
This is because the FPU computing the divide  finishes 
its work in only 19 cycles, while the FPU computing the 
square root takes about 27 cycles. The next operation 

Now let us address the problem of serial bottleneck. An 

The code shown in Figure 6, in comparison to the code 
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do j = m,n 
a0 = a(0,j) 
a2j2 = a(2,j-2) 
a0 = a0 - a2j2*a2j2 
a1 = a(1,j) 
a2 = a(2,j) 
a l j l  = a(1,j-1) 
a2jl = a(2,j-1) 
a1 = a1 - a l j l  *a2jl 
a0 = a0 - a l j l *a l j l  
a0 = sqrt(a0) 
a(0,j) = a0 
t = l./aO 
a1 = al* t  
a2 = a2*t 
a(1,j) = a1 
a(2,j) = a2 

enddo 

! the outer  loop  starts  from 
! column j 

! next  four  instructions 
! can  be  done 
! as two quad  loads 

! this is the  serial  bottleneck 
! scale  rest  of  the  column 
! with  the  inverse  of the 
! diagonal  element 

a l j l  = a(1,m-1) ! pre-load a l j l  and a2jl 
a2jl = a(2,m-1) ! 
do j = m,n ! the  outer  loop  starts 

a0 = a(0,j) ! from  column j 
a2j2 = a(2,j-2) 
a0 = a0 - a2j2*a2j2 
a1 = a(l ,j) 
a2 = a(2J) 
a1 = at - alj l*a2jl ! note a l j l  and a2jl 
a0 = a0 - a l j l *a l j l  
a0 = sqrt(a0) 
a(0,j) = a0 
t = l./aO 
a l j l  = al*t 
a2jl = a2*t 

values  are  used 
from  the  previous  iteration 

this is the  serial  bottleneck 
scale  rest of the column 
with  the  inverse of the 

a(1,j) = a l j l  ! diagonal  element 
a(2,j) = a2jl 

enddo 
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(t = aO* ra0) depends on both the results. Thus, one of the 
FPUs remains idle for about eight cycles. This  inefficiency 
can also be avoided if we further restructure the 
computation. It can be shown that the next diagonal 
element of A can be computed using  only the current 
divide operation and thus avoids using the current square- 
root operation. This can be accomplished by choosing a 
mathematically equivalent computation of the next 
diagonal element. To see this, consider the two-by-two 
symmetric matrix A and its Cholesky factor L 

all  a21 

a 2 1  a22 

The required computations are given  below: 

I1 1 = sqrt(al1) 

121 = a21/111 

122 = sqrt(a22 - 121 *121) 

The above computation can also be rewritten as 
572 follows: 

Table 1 Performance  timing  of  the codes in  Figures 4 
through 7. 

Code n rn Ida  Time Cycles Computed 
( s )  per loop  cycles per 

iteration  loop  iteration 

Figure 4 10000 2 3 0.009091 60.61 56.6 
Figure 5 10000 2 3 0.007855 52.4 50.6 
Figure 6 10000 2 3 0.005714 38.1 36.6 
Figure 7 10000 2 3 0.004662 31.1 31.1 

rall = l . /a l l  

I1 1 = sqrt (ai 1) 

121 = a 2 1  *rall *I11 

122 = sqrt(a22 - a21 *a21 era1 1) 

The above equations are mathematically equivalent. Note 
that the 122 computation can be initiated as soon as the 
ral 1 computation is complete. Actually, it  would be useful 
to have a reciprocal square-root (rsqrt) instruction. In that 
case, the following code could be implemented: 

t = rsqrt(a1 I )  

111 = t * a l l  

121 = a21 * t  

122 = sqrt(a22 - 121*121) 

This code requires only one expensive (multicycle) 
intrinsic function. In terms of hardware complexity and/or 
the number of cycles required, a hardware implementation 
of the rsqrt instruction should be comparable to the sqrt 
instruction. However, it  is currently not available on 
RS/6000 machines. We have just demonstrated another 
algorithmic computational restructuring technique for the 
two-by-two case. By incorporating these two ideas we can 
restructure the computation of Figure 5 as shown in 
Figure 7. 

Since the ra0 computation is a divide, it takes about 
eight fewer cycles to complete than the sqrt operation. 
Thus, as soon as the raO computation is complete, we can 
initiate the computation of aOn (122 in the equations above) 
of the next iteration, even before the final value of a0 of 
the current iteration has been computed! In this code, 
essentially the entire loop computation is overlapped with 
the sqrt computation. If we  unroll the loop by two, we can 
achieve a slightly better scheduling of the instructions. 
Although  we have illustrated the algorithmic restructuring 
technique for rn = 2, it is applicable for even wider bands. 
For wider bands, where our code was for a general value 
of rn, the above restructuring technique has provided a 
significant performance enhancement, for m up to 20 
or so. 
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do j = m+2,n 

ra0 = 1 ./aOn 

a1 = a(1,j) 
a2 = a(2,j) 
a1 = a1 - alj l*a2jl 
aOn = a(O,j+l) 
aOn = aOn - a2jl*a2jl 

t l  = al*al  
aOn = aOn - tl*raO 

t = aO*raO 
a(0,j) = a0 
a0 = sqrt(a0n) 
a l j l  = al*t 
a2jl = a2*t 
a(1,j) = a l j l  
a(2,j) = a2jl 

enddo 

I we  are  not  giving the  initialization 
I details (aOn,  a1 j l  , a2jl values  set 
I outside  the  loop). 
I aOn represents  the  value  of  a(0,j) 
I just  before  the sqwdivide operation. 
I It was  computed in the  previous  iteration 
i ra0  computation is overlapped  with 
! the sqrt computation  below  which  was 
I initiated in the  previous  iteration. 

I load aOn for  the  next  iteration 
I note  that  this a2jl corresponds 
I to a2j2 in the  code  of  Figure 5. 

I aOn = aOn - a1 *a1 *raO 
I now  we  need  the  result  of  the sqrt 
I computation  initiated in the  last  iteration. 

! scale  rest of the  column  with 
I the  inverse of the  diagonal  element 

"_l_..l . .. .. . 

Kernel of Figure 5 with restructuring of both square-root  and divide computations. 

We produced four codes based on Figures 4 through 7 
and  made  timing runs for n = 10000. Although  unrolling 
these loops by two helps the scheduling, we  did not unroll 
the four codes we produced. In these timings  we  first 
flushed the cache. Thus, for each run, we had to bring 
30000 doublewords into cache. Since each line contained 
32 doublewords, 938 lines were brought in  during each 
run. Assuming a latency of 17 cycles for each line to arrive 
accounts for 0.000239 seconds of time. This time amount 
corresponds to 1.6 cycles per loop iteration. The numbers 
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in the column cycles per loop iteration are equal to 
time/@ * CT),  where CT is the cycle time of 15 X 

seconds. The computed cycle time  is obtained by hand- 
counting the number of cycles for both the fixed-  and 
floating-pointing units for each of the codes in Figures 
4 through 7. In each case, we added 1.6 cycles to the 
estimate to account for data coming  from  memory.  In 
these hand calculations, we used the observed values of 19 
cycles for a divide and 27 cycles for a square root. In the 
hand calculation for Figure 4, we did not  add in any extra 573 
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cycles for the store load instruction sequence. As can be 
seen from Table 1, there is a surprisingly good agreement 
between the observed cycle counts and the hand-calculated 
cycle counts. The discrepancy of four cycles for Figure 4 
is perhaps due to the penalty for the storelload sequence. 
Nonetheless, the main  point  is that algorithmic 
restructuring works extremely well  in this case; the 
code in Figure 7 runs twice as fast as the code in 
Figure 4. 

Gaussian L,DL: factorization in  place of the LLT Cholesky 
factorization, where L, is a unit lower triangular matrix 
and D is a diagonal matrix. The two factorizations are 
related by L = LID1’*. The Gaussian factorization does not 
require any square-root computation. For the narrow-band 
case, the techniques discussed above can be used to 
overlap the divide operation with the rest of the loop 
computation in the Gaussian factorization. For the very 
narrow-band case, the divide operation dominates the loop 
computation. Therefore, even though we can overlap the 
divide computation with the rest of the computation, the 
second FPU remains under-utilized. The only way we can 
increase performance in this case is to reduce the total 
number of divides. We can use the following idea* to 
reduce the number of divides. Let x = a* b and y = l/x; 
then, 1 /a = b * y and 1 /b = a * y. The only potential 
problem  with this approach is that there is a slight increase 
in the probability of underflow or overflow of exponents. 
To illustrate this technique in factoring symmetric 
positive definite matrices, consider a two-by-two diagonal 
block (A) of a symmetric band matrix and its Gaussian 
factor L1: 

For narrow-band matrices, it is more  efficient to use 

a l l  a21 

a21  a22 A = [ 1 ,  L1 = * 

The required computations are given  below: 

dl1  = a l l  

r l  = l / d l l  

121 = a 2 1  * r l  

d22 =a22 - 121 *a21 

r2 =l/d22 

In the above computation, we wish to compute r l  and r2 
using  only one divide operation. This can be done by 
choosing x to be equal to the product of the two minors 
of A: 

about it from Don Coppersmith of IBM Research. Don thinks the idea is part of the 
* We  heard about this idea from  Jim Shearer of IBM Research. He said he heard 

folklore. 

del = a22*a11 - a21 *a21 

x = a l l * d e l  

y = l/x 

r l  = y*del 

121 = a21 * r l  

second  minor 

product of the two minors 

only  divide 

r l  = l / d l l  

r2 = y * a l I  *a1 1 ! r2 = IN22 

The above computations are mathematically equivalent. 
Using this technique, we have replaced two divides with 
one divide and a few  multiply-adds.  We have not explicitly 
computed the d22 term. This is because, on the diagonal, 
instead of storing the diagonal terms, we store their 
reciprocals. By storing the reciprocals, we  avoid divides 
during the solve phase of the computation. 

Summary 
In this paper, we have described the novel architectural 
features of the POWER2 workstations. These features 
include multiple functional units, quad loadhtore 
instructions, and a very high-bandwidth memory system. 
If one uses the quad load capability of the POWER2 
machines, a single FXU can feed both FPUs at the peak 
rate; therefore, the other FXU can be used to prefetch 
data into cache. Thus, the multiple functional units of 
POWER2  allow for the possibility of prefetching data into 
cache. In other words, POWER2 capabilities can be used 
to provide functional parallelism, if one develops high- 
performance numerical algorithms to do so. We have 
exploited functional parallelism by developing many  highly 
tuned routines for ESSL. The three main techniques we 
used to exploit functional parallelism were loop  unrolling, 
algorithmic prefetching, and  algorithmic restructuring of 
the computation to serial bottlenecks. We have provided 
several examples of these techniques. For many BLAS-1 
and BLAS-2 routines, on the same cycle time basis, we 
have demonstrated performance on  POWER2 machines 
that is up to four times  higher than that available using 
POWER. The quadword access facility, along  with our use 
of algorithmic cache prefetching, was primarily responsible 
for this high level of performance. For B U S - 3  routines, 
the performance improvement over POWER is slightly 
more than a factor of two. The two FXUs and two FPUs 
are responsible for the factor of two. The significantly 
higher bandwidth of the memory system makes the 
improvement factor greater than two. Finally, using 
algorithmic restructuring of computation, we have also 
demonstrated a factor of two improvement for the 
Cholesky factorization of very narrow-band matrices. 
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