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This  paper  is  a  survey  of  some  results  on 
Newton's  method  as  applied to the  implicit 
function  theorem,  homotopy  methods,  and 
Berout's theorem.  An  application to 
macroeconomics is also  described. 

Introduction 
Newton's method is one of the primary techniques used 
for solving systems of nonlinear equations. It attempts to 
replace the problem of solving nonlinear equations by an 
iterative process of linear-equation solving. First, we 
introduce some terminology. If we have n equations 
in m real variables [fi(xl, - * , x,,,) = 0, * , 
&(x, ,  - - , x,,,) = 01, we can summarize this information 
by one vector equation, 

f(x) = 0, 

where x = (x1, * - * , x,,,) and f = (fl, , f,). Thus, 
f : R'" + R". The symbol R" stands for m-dimensional 
Euclidean space; the norm of a vector in this space is 
llxll = d x :  + * * + x:. Sometimes our problems have 
constraints, as is apparent in our examples from 
economics, below. So instead of considering only R" or 
R", we consider more generally normed linear spaces 
(over the reals or complexes), which we  call E and F, 
respectively. (A linear space has to  do with vectors, and 
a norm measures their lengths.) Also, sometimes our 
functions are not  globally  defined; that is, they are not 
defined on all of E, but only in some local  region. This 

may occur, for example, because of the failure of a power 
series to converge or because a denominator becomes 
zero. 

The linear system by which the nonlinear equations are 
replaced in Newton's method is given by the derivatives of 
f a t  a point x, which we denote Df(x). For R" and R" as 
above, Df(x) is the Jacobian matrix 

( Y E )  i =  1, ... ,n, j = l;.. 7 m. 

In summary, Newton's method  is  employed to solve 
nonlinear equations f(x) = 0, where f : E + F is a 
differentiable function between two normed  linear spaces 
(see Figure l), and f is either globally or locally defined. 

linearized equation Df(x,,)v = - f ( x , , )  for v and replaces x,, 
with x,, + v as the initial  point for the next iteration. 
Iterations are terminated when some error criterion is 
satisfied. Usually the derivative Df(x,,) is assumed to be 
invertible; then we can write Newton's method as 

x + NJx), where NJx) E x - (Df(x))"f(x). (1) 

Thus, N,(x) is a transformation from the space E to itself. 
Both E and F may  be Euclidean m-space, R". When E is 
the real numbers, R, then (1) has the familiar  form 

For an  initial  point x,, in E, Newton's method solves the 

f(x) 

r ( x )  
x + x - - .  
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f The system of equations f viewed as  a  transformation  from  one I normed linear space to another.  The straight arrow is the vector 

Newton's method has the following two important 
features: 

Fixed points of Nf[Nf(&) = 51 correspond to zeros of f  

At a simple zero of f [f(g) = 0, and Of(@ is invertible], 
the derivative of Newton's method considered as a 
transformation, DN,(ij,), is identically zero. Thus, the 
Taylor series of Nf at 5 begins with quadratic terms, and 
Newton's method converges quadratically to 5 in a ball 

[f(5) = 01. 
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We assume that f is  twice continuously differentiable, C2. 

have written a series of papers [l-41 about Newton's 
method and its extensions. In ths paper, some of the 
results are surveyed in three sections on the implicit 
function theorem, homotopies, and Bezout's theorem. 
In addition, a new  example  applying these methods to 
the theory of economic equilibria  is  given. 

During the past three years, Steve Smale  and the author 

The implicit function  theorem 
I f f  : R" + R" with m > n, we  may still solve the 
linearized equation Df(xJv = -f(xJ for the case in which 
Df(xJ is onto [i.e., of(%) has rank n ] .  For this case, we 
use of(%)+, the Moore-Penrose inverse of of($), which  is 
given by 

Df(XJ+ = m x J * ( ~ f ( x p o ) * ) - ' ,  

where Df(x,,)* is the adjoint of Df(xJ. It is easily seen 
that Df(%) maps R" to R", its image is the orthogonal 
complement of the kernel of Df(%),  and it satisfies 

Df(xJDf(a)' = Id,, . 

We now  define Newton's method for f : R" + R", 
where f is  globally or locally defined, by 

NJx) = X - Df(x)+f(x). 

If is a "starting point"  in R", we  may  define 
x, = Nf(xi-l) as long as D ~ ( X ~ - ~ )  is surjective. Note also 
that the hypothesis that Df(x) is surjective ensures that 

Fixed points of Nf correspond to zeros of f. 

This generalizes the first important feature of Newton's 
method. The generalization of the second important feature 
lies in the domain of the implicit function theorem. Let 
f : R" + R", f be continuously differentiable, f(x) = 0, 
and Df(x) be surjective. Then the implicit  function 
theorem asserts that there is a neighborhood U of x such 
that f"(0) n U is given as the graph of a C' function 
u : x + ker Df(x) + x + (ker Df(x))', where u is 
defined on a neighborhood of zero in ker Df(x), and 
ker Df(x)  is the null space of Df(x). (See Figure 2.) 

In coordinates, we frequently have R" = Rk X R", 
with R k  = ker Df(x). Then u : x + R k  + x + R", where 
u is  defined near 0 in Rk and f(y, u(y)) = 0. That is, u is 
the implicit function. In the next proposition, taken from 
[4], f may be locally or globally  defined,  it  is assumed to 
be of class C2, and 0 is assumed to be a regular value off; 
i.e., Df(x) is surjective for every x such that f(x) = 0. 

Proposition I Suppose that 0 is a regular value of 
f : R" + R". For E f"(O), let 
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W i  = {x E R"lN:(x) converges to 5 as k + m}. 

By N:, we mean the kth iterate of N,. Then 

The  union of Wi over & E f"(0) is a neighborhood of 

The intersection of Wi and a small  neighborhood of 
f"(0) is a cell varying continuously in 5. 
ON,(&) restricted to (ker Of(&))' is zero. The tangent 
space of Wi at 5 is the orthogonal complement to 
T&f"(O)) = (ker of(&))'. 

f"(0). 

This extends the usual  basin of attraction theory from 
the case m = n. The Ws are illustrated as fibers in 
Figure 3. 

To obtain more information on the size of the 
neighborhoods and speed of convergence, we  might  exploit 
Cz estimates in a neighborhood of f"(O), or higher-order 
estimates along f"(0) itself. We take the latter approach; 
henceforth we assume that f is real analytic. Define  for 
x E R" 

p(f,  x) E JJ~f(x)+f(x)Jl [or m if 0 ~ x 1  is not surjective], 

Theorem 1 There is a universal constant q,, 
approximately 1/7, such that iff and x are as above, with 
a(f, x) <  yo and x = ~0, then (a) all the Newton iterates 
xl, %, * are defined  and converge to & E R", with 
f(&) = 0, and (b) for all k 2 1, 

Z k - 1  

Ilxk+l - Xkll 5 (;) llxl - X 0 l l .  (2)  

A point x,, E R" is called  an approximate zero of f 
if ( 2 )  is  satisfied. Then & is called the associated zero. 

We  also verify, in the following theorem from [4], that a 
point  is  an approximate zero in terms of y along f"(0) and 
the distance to f"(0). 

Theorem 2 Let F : R" -+ R" have zero  as a regular 
value, and  define y = maxz,,-l~qy (F, 2). Then there 
is a universal constant C such that if the distance 
d(z ' ,  F"(0)) < C / y ,  then z' is an approximate zero. 

Remark Let f = ( fl,  , f,) and let each6 be 
homogeneous of some degree d;; i.e., 

f ( A 4  = (f,(Ax), * * , fn(W) = (Ad9'Jx), - - , Ad"f,x)). 

It is then easy to see, using the chain rule, that 
p(f, Ax) = Ap(f, x) and y(f, Ax) = (l/A)y(f, x). Thus 
a(f, Ax) = a(f, x) for A f 0. 

Example 1 Homogeneous functions naturally arise 
in economic theory. Given C commodities and prices 
p = (pl, ,pe), wherep, > 0 fori  = 1, e - . ,  C, 
one may  define the excess-demand function 
f(p) = D(p) - S(p)[f(p) E Re]. Here D(p) is the demand 
for the C commodities, and S(p) is the supply at prices p. 
Thus f maps the positive orthant R: to the C-dimensional 
commodity space. An equilibrium is given by supply 
equals demand; i.e., f(p) = 0. There are two additional 
conditions imposed  on f: 

(Walras' law) The dot product p * f(p) = 0, which reflects 
the hypothesis that each economic agent can demand 
only goods whose value equals the value of his supply. 

demand depend only on relative prices, not on the units 
chosen to express them. 

f(Ap) = f(p) for A > 0, which states that supply and 

Let E C Re be the subspace {x E Re I Exi = 0). 
Then E has dimension C - 1. Let g : R: + E be 
defined by g(p) = f(p) - (Cf(p)i/Zp,)p. Then  it  is quite 
easy to see that g(p) = 0 if and only if f(p) = 0. 
The proof is as follows: If f(p) = 0, then f(p), = 0 for 
each i, and g(p) = 0. On the other hand, if g(p) = 0, then 
f(p) is a scalar multiple of p (say pp); however, by Walras' 
law, p f(p) = p pp = yllpll' = 0, so p = 0 and f(p) = 0. 
It is straightforward to show that the image  of g lies  in E. 
In this way, we  may interpret the problem of finding the 
supply-equals-demand equilibrium as the problem of 
finding the zeros of the homogeneous function g : R l  + E. 261 
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F"(0) as seen in Z X R" 

Homotopies 
In this section, we assume that we can replace an 
approximate zero with the precise zero to which  it  is 
converging. One can imagine  adding such an operation or a 
node to the B-S-S model of computation over the reals 
[5]. This hypothesis seems reasonable not only because of 
the rapid convergence of the approximate zero to the 
precise zero but also by the extensive analysis done in 
the approximate case in [l]. For what we say below, 
we may use approximate zeros at only slightly greater 
computational cost (perhaps a factor of three). 

One method for finding zeros of functions f : R" +. R" 
is to start with a function whose zeros are known, 6 ,  and 
to produce the homotopy f ,  = (1 - t)& + tf (0 I t I l), 
so that fl = f. Let I be the unit interval. If we assume that 
0 is a regular value of the joint map F : Z X R" + R", 
where F(t, x) = f,(x), then F"(0) is the union of a finite 
number of paths. (See Figure 4.) 

If we assume, moreover, that F is proper, these paths 
cannot run off to infinity.  Following these paths may  lead 
us  from the zeros of f,, to some of the zeros of fi. Allgower 
and  Georg [6] propose an  algorithm for following  an arc A 
of F"(0) for F : R"' "* R", with 0 as a regular value. 
The algorithm moves tangentially to the curve in a 
predictor step and then uses the Moore-Penrose Newton 
method as a corrector. We assume F to be real analytic 

262 and  make sure that the predictor step gives an approximate 

zero for F, which we then replace with its associated zero. 
We  call this a predictor-corrector step. From [4] we have 
Theorem 3. 

Theorem 3 The complexity (number of predictor- 
corrector steps) sufficient to follow  an arcA of  F"(0) 
(where F : Rntl + R", as above) is C y L ,  where L is the 
length ofA, C is a constant (not more than 20), and 
Y = m q a  Y P ,  4 -  

Theorem 1 can be used quite generally to find  an upper 
bound on the complexity of following homotopies. The 
next result is once again  from [4]. Consider f ,  : IF!" "* R" 
and yr E R", a homotopy and path respectively for 
0 I t I 1, and let &, E 02" satisfy €&,) = yo. 
Define 

AI,,! = max a({, - y,,, x). 
x subject to 

f, (x)=r, 

Observe that A,,, = 0. 

Hypothesis Suppose that A,,,, < a, whenever 
It - t ' 1  I A = llk, where k is a positive integer. 

Corollary of Theorem 1 Let {, yr,  &, be  as above and 
satisfy the hypothesis. Then k of the hypothesis is a 
sufficient  number of steps to solve fl(&) = y,. 

The  proof  from [4] is so simple  we repeat it here. Let 
t ,  = 0 and ti = ti-l + A; thus, a({<, cIi-,) < a,,. Then a 
Moore-Penrose Newton step (corrected to yield the 
associated zero) yields from starting from $, with 
f(g,,) = y,<. The  following two examples are natural 
candidates for application of the corollary. 

Example 2 Let f : R" + R", f, 5 f, f&) = yo, and 
yr = tf(xJ. In this version, see [7] for the case m = n. 
The resulting algorithm has been extensively studied for 
univariate polynomials over the complex numbers. See 
[7, 81 and the references therein. 

Example 3 Let g : R: E be defined as in Example 1. 
Let g and y, tg(x,,). This is a version of Smale's 
global Newton's equation (see [9]), for which we  now have 
a complexity estimate in terms of A .  

see [4]. 
For more  examples, applications, and discussions, 

Bezout's theorem 
Bezout's theorem is the higher-dimensional  analogue of the 
fundamental theorem of algebra. The fundamental theorem 
of algebra asserts that a complex polynomial of degree d ,  
p ( z )  = a d z  + * - + a, (where a, E C the complex 
numbers), has d complex roots. There are two provisos: 

d 
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ad f 0. 
The roots must be counted with  multiplicity. 

The first proviso of this theorem may be eliminated 
by considering homogeneous equations. Let 
&z, w) = adz + ad-,zd-’w + aOwd be a homogeneous 
complex polynomial. Roots are in C2, and since 
&Az, hw) = Adk(z, w )  for h E C, the roots consist 
of whole complex lines in C2. Thus, the fundamental 
theorem of algebra now asserts that i)(z, w) has d solution 
lines in Cz, with the sole proviso that they be counted 
with multiplicity. 

Let 4 : C”” + C be a homogeneous complex 
polynomial of degree d , ,  for i = 1, - , n . Bezout’s 
theorem asserts that the system of equations 

d 

fJ.1 = 0, ,f,(x, = 0 

has 9 = di solution lines in ‘I?“‘’, counted with 
multiplicity. The multiplicity  is 1 if Df(x) has rank n at 
the solution x, [f = (f,, - .  - ,A ) ,  f : C”” ”* C”]. It is 
generally the case that the multiplicity  is 1 for all of the 
solutions. 

In [l-41, we have investigated homotopy methods to 
find  all  of the roots of f given  all of the roots of another 
system g. We use a projective Newton method suggested 
in [lo] instead of Moore-Penrose. Let ( , ) be the standard 
Hermitian product on CnC1 [(x, y) = E:” xijji]. Let 
null x I {v E C“” 1 (v, x) = 0). Then the projective 
Newton method is defined by 

NJX) = x - (DfI&)(X)-lf(X). 

Thus, the image  of (DfInull)(x)-’ is the orthogonal 
complement to the line through x in Cntl .  If E is a 
nondegenerate root of f, then (ker Of(&))’ = null 5; 
however, this is not the case in general, so projective 
Newton and  Moore-Penrose Newton differ. 

Let X(d,, (d) = (dl, , dn)  be the complex vector 
space of systems of homogeneous polynomial equations 
f = (f,, * , f,), where4 : Cn+’ + C’ is a homogeneous 
polynomial of degree d,. 

The algorithm proposed in [l] considers the homotopy 
f ,  = (1 - t)g + tf, where 0 5 t I 1. One of our results, 
proven in [4], gives a bound on the number of projective 
Newton steps required to find  all  of the approximate zeros 
of f (Le., one approximate zero corresponding to each 
precise root). The bound depends only on (d) and the 
probability of success u. 

Theorem 4 The number of projective Newton steps 
sufficient to find  all of the approximate zeros off E X(d, 
with probability u of success is 
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cD39n2(n + 1)(N - 1)(N - 2) 

1 - u  9 

where D = maxi(di), 9 = n:=,di, N is the dimension of 
X(d,, and c is a constant independent of n, (a), and u. 

The space X(d, is given a natural unitarily invariant 
Hermitian product. The measure on X(d, is the usual 
Gaussian distribution given by the Hermitian structure. 

Remarlcr While  we know that there exists a g for each 
X(do, we do not know  how to find  it, even for n = l !  
See [2] for a discussion of this. 

For n = 1, the number of steps is cd6/( 1 - u). 
Reference [ll] is an important predecessor to this paper. 

Specialized to n = 1, Renegar’s result has a factor 
dz6/(  1 - 4)“. In [12] (which applies to only one variable), 
there is a similar result, with d 9 / ( l  - 4’. 

Experiments by Raymond  Russell (a student at Trinity 
College, Dublin), carried out at Berkeley, seem to support 
these findings.* For polynomials in one variable, 
homogenizing the homotopy and using projective Newton 
in  place of Newton for the nonhomogenized homotopy 
produced significant speedup. For nonpolynomial systems, 
speedup may be achieved by homogenizing to degree 0 and 
using  Moore-Penrose or projective Newton. Much more 
experimentation is called for here. 

For one variable, more  efficient  algorithms are known 
for finding  all  of the roots. See [4] for references. 

The number of steps in Theorem 4 must be interpreted 
as parallel steps. The  algorithm moves along  all 9 paths of 
roots simultaneously. For each path, the number of steps 
determined in Theorem 4 is required. For finding one root 
at a time,  we think it  likely that the upper bound in 
Theorem 4 could be divided by 9, giving a Q2 factor for 
total speedup. 
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