The implicit
function
theorem
revisited

by M. Shub

This paper is a survey of some results on
Newton’s method as applied to the implicit
function theorem, homotopy methods, and
Bezout’s theorem. An application to
macroeconomics is also described.

Introduction

Newton’s method is one of the primary techniques used
for solving systems of nonlinear equations. It attempts to
replace the problem of solving nonlinear equations by an
iterative process of linear-equation solving. First, we
introduce some terminology. If we have n equations

in m real variables [f,(x, ***,x,) =0, -,

f(x, -, x,) = 0], we can summarize this information
by one vector equation,

f(x) = 0,

where x = (x,, *+-,x,)and f = (f;, -+, f,). Thus,
f: R™ — R". The symbol R™ stands for m-dimensional
Euclidean space; the norm of a vector in this space is
[x]| = Vx? + --+ + x>. Sometimes our problems have
constraints, as is apparent in our examples from
economics, below. So instead of considering only R” or
R", we consider more generally normed linear spaces
(over the reals or complexes), which we call E and F,
respectively. (A linear space has to do with vectors, and
a norm measures their lengths.) Also, sometimes our
functions are not globally defined; that is, they are not
defined on all of E, but only in some local region. This

may occur, for example, because of the failure of a power
series to converge or because a denominator becomes
Zero.

The linear system by which the nonlinear equations are
replaced in Newton’s method is given by the derivatives of
f at a point x, which we denote Df(x). For R™ and R" as
above, Df(x) is the Jacobian matrix

( of(x)

ox,

J

) i=1-,n, j=1-,m

In summary, Newton’s method is employed to solve
nonlinear equations f(x) = 0, where f: E > Fis a
differentiable function between two normed linear spaces
(see Figure 1), and f is either globally or locally defined.
For an initial point x; in E, Newton’s method solves the
linearized equation Df(x)v = —£(x,) for v and replaces x,
with x;, + v as the initial point for the next iteration.
Iterations are terminated when some error criterion is
satisfied. Usually the derivative Df(x ) is assumed to be
invertible; then we can write Newton’s method as

x = N((x), where N(x) = x - (Df(x)) (). )]

Thus, N(x) is a transformation from the space E to itself.
Both E and F may be Euclidean m-space, R™. When E is
the real numbers, R, then (1) has the familiar form

f(x)
X=X — ——

f(x)
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£710) as a graph of a function defined on ker Df(x).

Newton’s method has the following two important
features:

* Fixed points of N,[N,(§) = £] correspond to zeros of f
[f(€) = 0].

e At a simple zero of f [f(§) = 0, and Df(§) is invertible],
the derivative of Newton’s method considered as a
transformation, DN(§), is identically zero. Thus, the
Taylor series of N, at & begins with quadratic terms, and
Newton’s method converges quadratically to & in a ball
around §.
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We assume that f is twice continuously differentiable, C”.
During the past three years, Steve Smale and the author

have written a series of papers [1-4] about Newton’s

method and its extensions. In ths paper, some of the

results are surveyed in three sections on the implicit

function theorem, homotopies, and Bezout’s theorem.

In addition, a new example applying these methods to

the theory of economic equilibria is given.

The implicit function theorem

If f: R" — R"” with m > n, we may still solve the
linearized equation Df(x )v = —f(x,) for the case in which
Df(x,) is onto [i.e., Df(x,) has rank n]. For this case, we
use Df(xo)*, the Moore-Penrose inverse of Df(x;), which is
given by

Df(x))" = Df(x,)*(DEx,)Df(x,)*) ",

where Df(x,)* is the adjoint of Df(x ). It is easily seen
that Df(x,) maps R" to R", its image is the orthogonal
complement of the kernel of Df(x)), and it satisfies

Df(x)Df(x))" = Id,. .

We now define Newton’s method for f : R” — R",
where f is globally or locally defined, by

N{(x) = x — Df(x)"f(x).

If x, is a “starting point” in R”, we may define
x, = N/(x,_,) as long as Df(x,_, ) is surjective. Note also
that the hypothesis that Df{x) is surjective ensures that

Fixed points of N, correspond to zeros of f.

This generalizes the first important feature of Newton’s
method. The generalization of the second important feature
lies in the domain of the implicit function theorem. Let
f: R™ — R", f be continuously differentiable, f(x) = 0,
and Df(x) be surjective. Then the implicit function
theorem asserts that there is a neighborhood U of x such
that £7'(0) N U is given as the graph of a C' function
o : x + ker Df(x) > x + (ker Df(x))*, where o is
defined on a neighborhood of zero in ker Df(x), and
ker Df(x) is the null space of Df(x). (See Figure 2.)

In coordinates, we frequently have R™ = R* x R",
with R* = ker Df(x). Then o : x + R* — x + R", where
o is defined near 0 in R* and f(y, o(y)) = 0. That is, o is
the implicit function. In the next proposition, taken from
[4], £ may be locally or globally defined, it is assumed to
be of class C*, and 0 is assumed to be a regular value of f;
i.e., Df(x) is surjective for every x such that f(x) = 0.

Proposition 1  Suppose that 0 is a regular value of
f: R™ — R". For { € £7(0), let
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wi={x € R"|N;(x) converges to  as k — o}.

By Nf , we mean the kth iterate of N,. Then

* The union of W, over { € £7'(0) is a neighborhood of
£7(0).

e The intersection of W; and a small neighborhood of
£71(0) is a cell varying continuously in &.

* DN,(%) restricted to (ker Df(L))* is zero. The tangent
space of Wg‘ at { is the orthogonal complement to
T('(0) = (ker DEY)".

This extends the usual basin of attraction theory from
the case m = n. The W; are illustrated as fibers in
Figure 3.

To obtain more information on the size of the
neighborhoods and speed of convergence, we might exploit
C? estimates in a neighborhood of £7'(0), or higher-order
estimates along £ (0) itself. We take the latter approach;
henceforth we assume that f is real analytic. Define for
x € R"”

B, x) = ||Dftx) 'fx)|

[or = if Df(x) is not surjective],

DM(x) [|\ D
(£, %) = max (( Di(x)’ )
k>1 k '
[or  if Df(x) is not surjective],
and

a(f, x) = B(E, x)v(f, x).

Theorem 1  There is a universal constant o,
approximately 1/7, such that if f and x are as above, with
a(f, x) < ¢, and x = x,, then (a) all the Newton iterates
X,, X,, * * * are defined and converge to { € R", with

f(f) = 0, and (b) for allk = 1,

%y — %Il < (5) I = %]l 2)

A point x; € R" is called an approximate zero of f
if (2) is satisfied. Then { is called the associated zero.

We also verify, in the following theorem from (4], that a
point is an approximate zero in terms of y along £~'(0) and
the distance to £'(0).

Theorem 2 Let ¥ : R™ — R” have zero as a regular
value, and define y = max .,y (F, z). Then there

is a universal constant C such that if the distance
d(z', F'(0)) < C/v, then z’ is an approximate zero.

Remark Letf= (f,, -, f,) and let each f; be
homogeneous of some degree d;; i.e.,
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:  The fibering of a neighborhood of f ~1(0) by the cells of Proposi-
g tion 1.

fA%) = (f,(Ax), -+, £(A%) = AY,(x), -+, A% ().

It is then easy to see, using the chain rule, that
B(E, Ax) = AB(f, x) and y(f, Ax) = (1/A)y(f, x). Thus
a(f, x) = aff, x) for A # 0.

Example 1 Homogeneous functions naturally arise

in economic theory. Given € commodities and prices
p=(p, - ,p), wherep, >0fori=1,---,¢,

one may define the excess-demand function

f(p) = D(p) — S(p)[f(p) € R). Here D(p) is the demand
for the € commodities, and S(p) is the supply at prices p.
Thus f maps the positive orthant IRf to the €-dimensional
commodity space. An equilibrium is given by supply
equals demand; i.e., f(p) = 0. There are two additional
conditions imposed on f:

e (Walras’ law) The dot product p - f(p) = 0, which reflects
the hypothesis that each economic agent can demand
only goods whose value equals the value of his supply.

e f(Ap) = f(p) for A > 0, which states that supply and
demand depend only on relative prices, not on the units
chosen to express them.

Let E C R° be the subspace {x € R‘ | Zx, = 0}.
Then E has dimension ¢ — 1. Let g : R} — E be
defined by g(p) = f(p) — (2f(p)/2p,)p. Then it is quite
casy to see that g(p) = 0 if and only if f(p) = 0.
The proof is as follows: If f(p) = 0, then f(p), = 0 for
each i, and g(p) = 0. On the other hand, if g(p) = 0, then
f(p) is a scalar multiple of p (say up); however, by Walras’
law, p - f(p) = p - up = ullp|l’ = 0, so u = 0 and f(p) = 0.
It is straightforward to show that the image of g lies in E.
In this way, we may interpret the problem of finding the
supply-equals-demand equilibrium as the problem of
finding the zeros of the homogeneous function g : [Rif —E.

M. SHUB
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F~0) as seen in I x R".

Homotopies

In this section, we assume that we can replace an
approximate zero with the precise zero to which it is
converging. One can imagine adding such an operation or a
node to the B-S-S model of computation over the reals
[5]. This hypothesis seems reasonable not only because of
the rapid convergence of the approximate zero to the
precise zero but also by the extensive analysis done in
the approximate case in [1]. For what we say below,

we may use approximate zeros at only slightly greater
computational cost (perhaps a factor of three).

One method for finding zeros of functions f: R* - R”
is to start with a function whose zeros are known, £, and
to produce the homotopy £ = (1 - )f + #f 0 <t =< 1),
so that f = f. Let J be the unit interval. If we assume that
0 is a regular value of the joint map F : I x R" —» R”",
where F(¢, x) = f(x), then F~'(0) is the union of a finite
number of paths. (See Figure 4.)

If we assume, moreover, that F is proper, these paths
cannot run off to infinity. Following these paths may lead
us from the zeros of f; to some of the zeros of f. Allgower
and Georg [6] propose an algorithm for following an arc A
of F'(0) for F : R™™" — R”, with 0 as a regular value.
The algorithm moves tangentially to the curve in a
predictor step and then uses the Moore-Penrose Newton
method as a corrector. We assume F to be real analytic
and make sure that the predictor step gives an approximate
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zero for F, which we then replace with its associated zero.
We call this a predictor—corrector step. From [4] we have
Theorem 3.

Theorem 3 The complexity (number of predictor-
corrector steps) sufficient to follow an arc 4 of F(0)
(where F : R**' — R", as above) is CyL, where L is the
length of A, C is a constant (not more than 20), and

y = max ., y(F, x).

Theorem 1 can be used quite generally to find an upper
bound on the complexity of following homotopies. The
next result is once again from [4]. Consider f, : R™ — R"
and y, € R", a homotopy and path respectively for
0<¢<1,andlet§ € R" satisfy £(&) = y,-

Define

A4, = max af, -y, x).
x subject to
f, (x)=y,

Observe that Au = 0.

Hypothesis ~ Suppose that 4,, < &, whenever
|t — ¢'| < A = 1/k, where k is a positive integer.

Corollary of Theorem 1  Letf, y,, {, be as above and
satisfy the hypothesis. Then & of the hypothesis is a
sufficient number of steps to solve £ ({) = y,.

The proof from [4] is so simple we repeat it here. Let
ty,=0ands, =7_ + A; thus, a(f, §,_) < &. Thena
Moore-Penrose Newton step {corrected to yield the
associated zero) yields ¢, from L, , starting from &, with
f(€,) = y,. The following two examples are natural
candidates for application of the corollary.

Example 2 Letf: R" - R", £ =f, f(x) = y,, and
¥y, = tf(x;). In this version, see [7] for the case m = n.
The resulting algorithm has been extensively studied for
univariate polynomials over the complex numbers. See
[7, 8] and the references therein.

Example 3 letg: Rf — E be defined as in Example 1.
Let g = g andy, = rg(x;). This is a version of Smale’s
global Newton’s equation (see [9]), for which we now have
a complexity estimate in terms of 4.

For more examples, applications, and discussions,
see [4].

Bezout’s theorem

Bezout’s theorem is the higher-dimensional analogue of the
fundamental theorem of algebra. The fundamental theorem
of algebra asserts that a complex polynomial of degree d,
p(z) = adzd + ++- + g, (where a, € C the complex
numbers), has d complex roots. There are two provisos:
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ea, #0.
e The roots must be counted with multiplicity.

The first proviso of this theorem may be eliminated
by considering homogeneous equations. Let
P(z,w) = az’ + a, z''w + aw’ be a homogeneous
complex polynomial. Roots are in C?, and since
P(Az, aw) = A?P(z, w) for A € C, the roots consist
of whole complex lines in C?. Thus, the fundamental
theorem of algebra now asserts that P(z, w) has d solution
lines in C?, with the sole proviso that they be counted
with multiplicity.

Letf : C"*' - C be a homogeneous complex
polynomial of degree d;, fori = 1, -+, n. Bezout’s
theorem asserts that the system of equations

fi®) =0, ,£(x)=0

has @ = I1", d, solution lines in C"*', counted with
multiplicity. The multiplicity is 1 if Df(x) has rank » at
the solution x, [f = (f, <+, f), £: C"*' = C"]. It is
generally the case that the multiplicity is 1 for all of the
solutions.

In [1-4], we have investigated homotopy methods to
find all of the roots of f given all of the roots of another
system g. We use a projective Newton method suggested
in [10] instead of Moore-Penrose. Let (, ) be the standard
Hermitian product on C"*' [(x, y) = 5 x,7]. Let
null x = {v € C"*" | (v, x) = 0}. Then the projective
Newton method is defined by

N(x) = x — (Df], , J®) f(x).

Thus, the image of (Df |m‘”)(x)'1 is the orthogonal
complement to the line through x in C"*'. If £ is a
nondegenerate root of f, then (ker Df(£))* = null &;
however, this is not the case in general, so projective
Newton and Moore-Penrose Newton differ.

Let &, (d) = (d, "+, d,) be the complex vector
space of systems of homogeneous polynomial equations
f=(f, " ,f), where f : C"*' > C' is a homogeneous
polynomial of degree d,.

The algorithm proposed in [1] considers the homotopy
f =(1-t)g+ tf, where 0 < ¢ < 1. One of our results,
proven in [4], gives a bound on the number of projective
Newton steps required to find all of the approximate zeros
of f (i.e., one approximate zero corresponding to each
precise root). The bound depends only on (d) and the
probability of success o.

Theorem 4 The number of projective Newton steps
sufficient to find all of the approximate zeros of f € ¥,
with probability o of success is
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cD’dn*(n + HIN - 1IN - 2)

1-¢

B

where D = max (d,), D = I d,, N is the dimension of

?t’( a and ¢ is a constant independent of n, (d), and o.
The space ¥, is given a natural unitarily invariant

Hermitian product. The measure on %, is the usual

Gaussian distribution given by the Hermitian structure.

Remarks While we know that there exists a g for each
%( 0 We do not know how to find it, even for n = 1!
See [2] for a discussion of this.

For n = 1, the number of steps is cd /(1 — o).

Reference [11] is an important predecessor to this paper.
Specialized to n = 1, Renegar’s result has a factor
d®/(1 = &)*. In [12] (which applies to only one variable),
there is a similar result, with d°/(1 — o).

Experiments by Raymond Russell (a student at Trinity
College, Dublin), carried out at Berkeley, seem to support
these findings.* For polynomials in one variable,
homogenizing the homotopy and using projective Newton
in place of Newton for the nonhomogenized homotopy
produced significant speedup. For nonpolynomial systems,
speedup may be achieved by homogenizing to degree 0 and
using Moore-Penrose or projective Newton. Much more
experimentation is called for here.

For one variable, more efficient algorithms are known
for finding all of the roots. See [4] for references.

The number of steps in Theorem 4 must be interpreted
as parallel steps. The algorithm moves along all & paths of
roots simultaneously. For each path, the number of steps
determined in Theorem 4 is required. For finding one root
at a time, we think it likely that the upper bound in
Theorem 4 could be divided by 9, giving a @ factor for
total speedup.
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