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Let 0 be a univariate 2z-periodic function .
Suppose that s >_ 1 and f is a 21r-periodic
function of s real variables . We study sufficient
conditions in order that a neural network
having a single hidden layer consisting of n
neurons, each with an activation function 0,
can be constructed so as to give a mean
square approximation to f within a given
accuracy en, independent of the number of
variables. We also discuss the case in which
the activation function 0 is not 21r-periodic .

1 . Introduction
In recent years, many authors have studied the problem of
approximation by neural networks (e .g ., [1-4]) . A neural
(mapping) network is a device for highly parallel
computation of functions . In this paper, we are concerned
with neural networks consisting of three layers, one of
them hidden. The hidden layer consists of a number of
nrocessors . or neurons, working in parallel . Each of these

neurons is equipped with a local memory and is capable of
performing some simple computations . A neuron is trained
by setting the contents of its local memory. The numbers
in the local memory are called the weights . A neuron
accepts a number of real-valued inputs and evaluates a
weighted sum of these inputs with the weights stored
in its memory . It then calculates a transfer function (or

activation function), typically nonlinear, of this weighted
sum and puts out the result . Usually, we assume that one
of the inputs is always 1 . If the remaining inputs are
represented by a vector x E R s , and if the activation
function is 0 : R --* R, then the output of a neuron is
4(w • x + b), where the vector w and the number b are
stored in the local memory and w • x denotes the inner
product of w and x. In many models, the function ¢ is the
Heaviside function, assuming the value 1 if its argument is
positive and 0 otherwise . The neuron can then be thought
of as a decision-maker, which fires if and only if the
weighted sum of the inputs exceeds -b, a preset
threshold. However, other functions are also used often
and are sometimes more efficient for various applications .
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The input layer of a network consists of a simple device 
that fans the input x to each of the neurons in the hidden 
layer. The output layer consists of a single device similar 
to a neuron, except that it puts out a weighted  sum of its 
inputs without evaluating a transfer function of this sum. 
For a more extensive introduction to our concept of a 
neural network, we refer to [SI. 

Mathematically, the output of a network with a 
single  hidden layer with n neurons, each evaluating a 
transfer function 4, is a special function of form 
E[=, ck4(wk x + bk) .  (The weights ck are associated with 
the output-layer device.) The primary goal  in the 
construction of a mapping network is to approximate an 
arbitrary function by such special functions. In this 
context, we often use the term network to denote the 
function evaluated by the network. A typical  problem 
in this area is the density problem, where one seeks 
conditions on 4 that ensure that an arbitrarily accurate 
approximation of a certain class of functions is  possible. 
The  more  difficult complexity problem is to determine how 
many neurons are necessary to yield a prescribed degree 
of approximation, defined  below  in Equation (2.6),  for 
every function in a given class. 

A typical  problem  can be described more precisely as 
follows. Let s 2 1 be an integer and K C R" be a 
compact set. Given a locally square integrable  function 
f : R" -+ R, a suitable activation function 4 and a 
tolerance E > 0, one seeks an integer n, weights wk E R', 
thresholds b, E R, and coeficients ck E R (1 5 k 5 n)  
such that 

where 1 1  * I I K  denotes the usual L 2  norm on K with respect 
to the s-dimensional Lebesgue measure. 

There is a large amount of literature on the density 
problem,  i.e., the possibility of such an approximation; 
we refer the reader to [6] for some of the references. The 
complexity problem, which has been studied less, is to 
determine the relationship between E and n .  Equivalently, 
given n, one seeks to estimate the smallest possible value 
of E in approximating every function  from a given class. 
For the case in which the class of functions being 
approximated is the class of  all functions having a locally 
square integrable gradient, and for which the activation 
function 4 is a bounded sigmoidal function, a particular 
case of our results in [6] gives &'(n-"(2St2') as an upper 
bound for the quantity E in (1.1). For a different class of 
functions, defined in terms of the Fourier transform rather 
than the bounds on the gradient, Barron [l] has obtained 
the upper bound 6'(n - I /*) ,  again for the case in which the 
activation function is a bounded sigmoidal function. An 
interesting feature of this bound is that it is independent 

of the number of input variables s. When the class of 
functions being approximated is  defined  in the classical 
manner, in terms of the bounds on the partial derivatives, 
it is  known [7] that such a dimension-independent bound 
for the degree of approximation is not  possible. 

In this paper, we obtain an  analogue of Barron's result 
for a large class of activation functions, not necessarily 
sigmoidal. As pointed out by Hecht-Nielson [3] (see also 
[6]), the problem of approximating any function on a 
compact set can be reduced to one in which the function 
being approximated is 27-periodic in each of its variables. 
Accordingly,  we consider only the approximation of 
2a-periodic functions on Qs : = [ - a, 7 1  '. It is then 
convenient to assume that the activation function C#I is 
also a 27"periodic function of one variable. We establish 
sufficient conditions to ensure a dimension-independent 
bound on the degree of approximation with the activation 
function 4. We emphasize that the actual bound  itself  is 
not the critical issue here; the novelty of our results is that 
the bound is dimension-independent and is valid for a large 
class of activation functions, not necessarily sigmoidal. 
We also illustrate with examples two techniques that may 
be used to apply our results to the case in  which the 
activation function is not  periodic. 

proofs of  all  of the new results in Section 2 are given  in 
Section 3. 

In the next section, we formulate our main results. The 

2. Main results 
In order to describe our main result, we need some 
notation. In the sequel, s 2 1 is a fixed integer, 
Q s  : = [ - a, 7 1  '. For a Lebesgue-measurable function 
f : Q s  -+ R, we denote 

The class of  all Lebesgue-measurable functions 
f : Rs -+ R that are 27-periodic in each of the s 
variables and for  which I l f l l ,  < cQ is denoted by L:, 
with the usual convention that functions which are equal 
almost everywhere are identified. Iff E L:, its Fourier 
coefficients are defined by 

1 
Ak) := - 

(2ar)" 
j Q s f l t ) e t d t ,  k E Z'. 

kEZs 

and  define 

sFs := i fE L5 : Ilf IlSF,, < m}. (2.4) 

We observe that functions in SF, are actually continuous, 
but not necessarily absolutely continuous. Therefore, the 



condition that f E SF, is weaker than the periodic version 
of the condition in Barron's work [l]. If 4 E L: and n 2 1 
is  an integer, we define 

fl := 2 ak4(wk - x + b,) : ak, bk E R, wk E Z", 
%n,s [ k:l 

k = 1, , n ., (2.5) I 
The class nan,, is the class of all possible functions that 
can be represented as outputs of a neural network with 
one hidden layer consisting of n neurons, each with an 
activation function 4, and each receiving the same input 
from R". For the sake of convenience in proving our 
theorems, we assume that 4 is 27-periodic; therefore, to 
maintain this periodicity, the weights wk are restricted to 
integers. Later, we discuss a few examples to demonstrate 
how these restrictions may be removed in the case of 
certain commonly used activation functions. 

the degree of approximation 
In this paper, we are interested in obtaining bounds on 

E,,",,(f 1 := inf I l f  - Pll, f E SFs . (2.6) 
PE%. n, s 

The bound on E,,,,( f )  depends not just on 11 f I I S F , s  
but also on 4. If A C Z", we denote the class of  all 
expressions of the form ake"" by H A .  The number 
of elements of A is denoted IAI. For f E Ls, its Fourier 
projection on H A  is  defined by 

P,,(f; x )  := PA,,(f; x )  := Cf(k)e'"' (2.7) 
kEA 

and the degree of approximation from H A  by 

€ l \ ( f )  := € A , " ( f )  := inf Ilf - PII, . (2.8) 
PEH, 

It is well known that the unique trigonometric 
polynomial P E H A  that attains the infimum  in  (2.8) is 
given by the Fourier projection PA( f ). We define, for 
f E L:, 

'n,s(f) := inf ' A , s ( f  )* (2.9) 
AEZS,lAlsn 

One may think of E,,,( f )  as E+,,,,( f ), where $(x)  = e L .  
If A 2 1 is a real number and LA1 denotes the largest integer 
not exceeding A, we define 

' A , , ( f )  := 'LAJ,s ( f  ), E,,,4,s(f) := E,$,lAj,s(f )* (2.10) 

The bounds on E4,",,( f ) are given  in the following 
theorem, in which it is convenient to introduce one more 
parameter N and to estimate E,,2nN,s( f ). 
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Theorem 2.1 Let s 2 1 be an integer, f E SF,, 4 E L:, 
and $(1) f 0. Then, for integers n , N 2 1, 

(2.11) 

where (8,) is a sequence ofpositive numbers, 0 < 8, 5 2, 
depending upon f such that 8, + 0 as n + m. Moreover, 
the coeficients in the network that yie/ds (2.11) are 
bounded, with the bound  being  independent  of n and N .  

We discuss a few  immediate consequences of this 
theorem. From the proof  of Theorem 3.1 below,  it  is clear 
that if 4 E SF,, 

where {q,} is a sequence of numbers in the interval (0, 21, 
depending upon 4, and limn_m q, = 0. Therefore, 
choosing N = n in Theorem 2.1 leads to the following 
estimate. 

Corollary 2.2 If 4 E SF,,  

(2.12) 

where 8. E (0, 21 converges to 0 as n -+ m but may 
depend  upon 4 as well as f. 

The error bound in  (2.12) is weaker than the one given 
by Barron [l] but applies for a large class of activation 
functions that may not necessarily be sigmoidal. Moreover, 
the conditions on the target function f are weaker than 
the periodic analogue of the conditions required in [l]. 
An important aspect of the estimate (2.12)  is that it is 
independent of the dimension s. We observe that this is no 
contradiction to the saturation results in  [7], because the 
class of functions being approximated here is different 
from the class for which the results of  [7] are applicable. 
Moreover, our proof is constructive in nature, if we  know 
all  of the Fourier coefficients of the target function and are 
able to preprocess them. 

If 4 is  known to be a smooth function, it is possible to 
improve  upon the bound (2.12). Thus, if 

$(k )  = O(e-*K') (2.13) 

for some constant (Y > 0, then a simple estimation of the 
Fourier expansion of 4 shows that 

with a properly chosen constant c .  In the sequel, the letter 
c ,  appearing in various formulas, denotes a positive 
constant independent of s, n ,  and f. Its value may be 
different at different occurrences, even within the same 
formula. There are standard results in approximation 
theory that guarantee (2.13) under certain analyticity 
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conditions on the function 4. We refer the reader to [8] for 
details and  merely state the following corollary of  (2.14). 

Corollary 2.3 I f  &k) = O(e-'lkl) for some constant 
a > 0, 

a n  
E + , n l o g n , s ( f )  ' - IlfllSF,s 7 4 (2.15) 

where Sn E (0, 21 now depends on 4 as well as f, and 
limn+mSn = 0. 

We  give two applications of Theorem 2.1  in order to 
illustrate two techniques that can be used to apply this 
theorem to the more  usual case, in which the activation 
function is not periodic. 

Example I :  The squashing activation function 
In this example,  let 

u(x) := - 
1 

1 + e - x '  
(2.16) 

Then u is a bounded sigmoidal function. The  function 

A ( x )  := U(X + 1) - U(X - 1) (2.17) 

is a hump function that satisfies 

I A ( X ) (  = O(e-lxI) as 1x1 "* m. (2.18) 

Hence, 

4(x) := 2 h(x + 2k7r)  (2.19) 
kEZ 

is a 2n"periodic continuous function. Using contour 
integration, one can easily calculate the Fourier 
coefficients of 4 so as to verify that 4 satisfies condition 
(2.13). Therefore, forf E SFs, (2.15) yields a function 
(network) 

d X )  := 2 a k 4 ( W k  x + ' k ) >  (2.20) 
l r k s n l o g n  

with properly chosen coefficients,  weights,  and thresholds, 
such that 

C 
I l f  - 911, 5 p IlfllSF,, . (2.21) 

Using  (2.18),  we  may obtain a constant a > 0, such that 
with N := la log n l ,  

I ~ ( x )  - 2 A ( x  + 2 j ~ ) l  5 -p, X E R. (2.22) 

Since the coefficients ak in the network g are bounded, 
independent of n ,  the network defined by 

h(x) := 2 ak 2 A(wk - x + bk + 2j~r),  

C 

j€Z. If IsN 

280 l rksn logn  j€Z,ljlsN 
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consisting of O(n log2 n )  neurons, satisfies the dimension- 
independent bound 

Example 2: The truncated power function 
In this example, let m be a fixed integer and 

ifx 2 0, 

ifx < 0. 

Then (see [6]) the B-spline 

u(x) := (2.23) 

is an m-times continuously differentiable  function  and 
vanishes outside of [0, 11, in particular, at +T. Therefore, 
one may extend Bm to R as a 2~-periodic function 4. The 
direct theorems of approximation theory [8] imply that 

C 

' N , 1 ( 4 )  5 . 
Let v : = 1 n lt l iZmJ and f E SF,. Theorem 2.1 yields a 
network defined  by 

(2.25) 

with properly chosen coefficients, weights, and thresholds, 
such that 

where the constant c depends upon m. The network 
defined by 

h(x) := 2 akBm((wk x + bk) mod 27), 

containing (m + 1)v  neurons, then satisfies 

k = l  

(2.27) 

where c > 0 is a constant depending  on m only. We 
observe that the larger the value of m, the smaller 
(asymptotically) the number of neurons in the network h.  

4(x) = e [equivalently, +(x) = cos x or +(x) = sin x], 
it is possible to construct a network of size n to yield  an 
approximation power of n - I i 2 ;  Le.,  in this case 

The proof of Theorem 3.1 below shows that when 
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We observe that a network in nm,n,s is defined by (s + 2)n 
parameters. In the construction given in the proof  of 
Theorem 2.1, these parameters do not necessarily depend 
continuously on the function  being approximated. Theorem 
2.4,  given below, shows that the order of approximation 
given by (2.28) is the best possible for the whole class SFs,  
if these parameters are to be chosen continuously. 

To  state this theorem, we recall some terminology  from 
[7]. Let M be any mapping  from RN into Ls and Y, the 
corresponding N-dimensional manifold: 

AN := {M(a) : a E RN}. 

where the series converges in the norm of X. We define 
the set 

s, := f E  X :  2 la,(f)l I 1 [ k:l 

If A G Z, we  define UA to be the linear span of 
{hk : k E A}, and we let TA denote the projection 
operator onto U,. We write 

%$(f) := inf / I f -  hll, f E  X 

and  recall that 

hEUA 

q f )  = I l f  - T,(f)ll. 

For instance, is an (s + 2)n-dimensional manifold in We are interested in the quantity 
Ls when 4 E Ls.  We  let A,, :=  := sup inf gA(f), n = 1, 2, * *  . (3.5) 
K, := {f : IlfllSF,, 5 11. (2.29) pS, ALZ, IAlsn 

The continuous n-width of K, in L: is defined as 

d%KslL; := inf SUP Ilf - M(g(f))l l ,  (2.30) 1 

where the infimum is taken over all continuous functions 2& 
g : L: + RN and  manifolds  (mappings) M : RN + Ls. 

all  of Ks by a continuous selection of parameters 
from N-dimensional manifolds in Ls. In particular, for ‘ n  

N = (s + 2)n, it  gives a lower  bound for continuous 
selections from nd,n,s for any activation function 4 E L;. 

Theorem 2.4 We have 

Theorem 3.1 We have 

L7.M f q  1 
-SA,,‘- \in+l, n = 1,2;.. . 

Moreover, i f f  E S,, there is a sequence (6,) of numbers 
Thus, d;(&)~: how we can approximate such that each 8, E (0, 21, 8” + 0 as n -+ m, and 

inf %,,(f) 5 - , n = 1,2, . 6 (3.7) 
AGZ, IAlsn 

Proof Letf E S, be arbitrary. We observe that all 
rearrangements of the expansion (3.1) converge in X tof. 

1 Therefore, we may rearrange this expansion and write 
d3KJL,z 2 - N =  1,2;.*. (2.31) 

m 

To summarize our discussion intuitively, we have shown 
that for the approximation of a function in SFs, the 
function e~ is in some sense the “best” choice for a 
periodic activation function. Moreover, the closer an 
activation function is to this ideal function, the better order 
of approximation one obtains for the class SFs.  

3. Proofs 
A crucial ingredient in our proof  of Theorem 2.1 is a 
theorem that is similar in spirit to what is sometimes 
known as Jones’s lemma (see [9]). Let X be  an arbitrary, 
separable Hilbert space, let (., e) denote the inner product 
on X, and let I( * 1 1  denote the corresponding norm. Let 
H := {hk}k:l be a complete orthonormal family in X. 
Anyf E X can then be written in the form 

where the set { g k }  is the same as H and the coefficients dk 
satisfy 

m 

ldkl 2 Idk+ll 2 0, k = 1, 2, * - , and 2 Idk[ I 1. 
k=l  

Using Parseval’s identity and  (3.9), we obtain 

m m 

k=n+l k = l  
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Using the fact [see (3.9)] that {ldkl} is a decreasing 
sequence, we obtain 

nl2sksntl 

Since the series Z ldkl converges, the left-hand side of the 
above inequality tends to 0 as n + m. Moreover, 

ni2Sksnt l  

Therefore, (3.10) leads to (3.7). Again, in view of (3.9), we 
obtain 

n+l 

1 2 2 IdkI 2 (n + l)ldn+ll - 
k=l  

Together with (3.10) and the fact that f E S, is arbitrary, 
this leads to the second inequality in (3.6). 

Let 
1 2n 

g : = - z h , .  (3.11) 
2n k = l  

Then g E S,, and it is obvious, using Parseval's identity, 
that 

(3.12) 

This leads to the first inequality in (3.6) and completes the 
proof. W 

Our  proof of Theorem 2.1 requires the use of a 
quadrature formula in order to express certain integrals 
involving exponential functions as finite sums. The 
following  lemma (see [lo], Exercise 2.5.8, p. 100) provides 
the necessary details. For the convenience of the reader, 
we sketch a proof. 

Lemma 3.2 Let n 2 1 be an integer. Given any 
continuous (complex-valued) functions { gk}[=l on Qs, 
there exist nonnegative numbers A, and vectors tj E Q s ,  
j = 1, * , 2n + 1 (depending upon  the family of 
functions) such that E,:''Aj = 1 and 

1 -  2n+l 

gk(t)dt = Ajgk(f.) ,  k = 1, * * , n.  (3.13) 
j = l  

Proof  of  Lemma 3.2 First, we assume that the functions 
g ,  are real-valued. Let G C_ R" be the set defined by 

G := { ( g l ( t ) ,  * * , g,,(t)) : t E QsI 
and co(G) be its convex hull. We observe that co(G) is 
necessarily closed; hence, the definition of the Riemann 
integral implies that the point 

is in co(G). In view of the Caratheodory theorem (see [lo], 
Theorem 2.2, p. 69), there exist n + 1 points {uj};;' E Qs 

and  nonnegative  numbers {b$";' with T=+:b = 1 such  that 

1 n + l  

os I,, gk(t)dt = 2 cLjgk(uj), k = 1, * 7 n.  
j=1 

The lemma  follows by considering the real and imaginary 
parts of gk as separate functions. I 

Proof of  Theorem  2.1 Using Theorem 3.1 and the 
definition of ~ ~ , ~ ( 4 ) ,  we find sets AI C Zs and 4 C Z 
such that ]All = n ,  1A21 = N ,  and, with PI  := PA,,,( f )  
and P2 := PA2,1(4) ,  

where 6n + 0 and 8, E (0, 21. Without loss of generality, 
we may assume that 1 E A2 and 0 E A,. Let 

h : = { l  - k : k E A , }  

and let numbers Aj 2 0, tj E [--P, -PI be found as in 
Lemma 3.2, so that E,ZAj = 1 and 

2N 

e"dt = Ajeikfi, k E A. (3.15) 

[Since 0 E A, we may use Lemma 3.2 with the functions 
{e'"} fork E A\{O} and thus obtain (3.15)"in fact, with 
2N - 1 summands on the right-hand side of (3.15), rather 
than 2N summands as above.] From the formula 

and (3.15), we obtain 

Pl(x) = j ( O )  + f(k)e'" 
k E 4 \ 0  

(3.16) 

* X - u)du 
1 

= j ( O )  + - 2 f(k) 1" eiUP2(k 
2ad(1) k€A,\{O) -. 
1 2N 

Let 
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, 2N 

g(x) :=f (O)  + 2 A,f(k)e’$+(k * x - fJ. (3.18) 
‘(I) kEA,\{O} j=l 

Using (3.14) and Parseval’s identity, one may easily 
check that for the difference +(x) : = P,(k x - fj) - 
+(k - x - ti),  where k E A, \{O}, 

11+11, 2‘N,1(+)* 

Since 
2N 

kEA, j = 1  

Equation (3.17) implies that 

Using (3.14), we obtain 

Since &1) z 0, it follows that +(a)  f 0 for some 
a E [ - T, TI .  Hence, we  may write 

30, = (4(a))”f(O)d(O x + a) .  

Therefore, g E n,2nN,s and the proof  is complete. 

general context of a Hilbert space, as in Theorem 3.1. 
Thus, continuing the notation as before, we define the 
continuous n-width 

d: := daSH), := inf sup I l f  - M ( g ( f ) ) l l ,  (3.19) 

where the infimum  is taken over all continuous functions 
g : X -+ RN and manifolds (mappings) M : RN + X. 
Theorem 2.4 is then a special case of the following 
theorem. 

Finally, we prove Theorem 2.4. This is done in the more 

g.M ESH 

Theorem 3.3 We have 

1 
daSH), 5 - , N =  1 , 2 , * . * .  (3.20) JN+I 
Proof Let X be any N + 1-dimensional subspace of X, 
and let p : = p ( X )  be the largest constant such that 

l l f l l  2 Pllfll, 9 

where, with the notation as in (3.1), l \ f l l s H  denotes 
X,:, lak(f)l. Theorem 3.1 of [7] establishes that 

d:(SH), ’ suP{p(x)}9 (3.21) 

where the supremum is taken over all N + 1 -dimensional 
subspaces X of X. Now, if A C Z” and /AI = N + 1, we 
have for the expression f = X,,,a,h, , 

(3.22) 

Therefore, for the N + 1-dimensional space 
X = span{h, : k E A}, p ( X )  5 (N + l)-1’2. The 
inequality (3.20) now  follows  from (3.21). 

4. Conclusions 
We have considered the problem of obtaining dimension- 
independent bounds for the degree of approximation of a 
periodic function using a neural network with a single 
hidden layer. Our results are applicable for a large class of 
target functions and activation functions. We have also 
obtained a lower bound for the degree of approximation. 
We have illustrated the application of our theory by 
discussing two cases in  which the activation function is  not 
periodic.  Among the activation functions considered is the 
standard squashing activation function. 
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