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Let ¢ be a univariate 2~periodic function.
Suppose that s = 1 and fis a 2mperiodic
function of s real variables. We study sufficient
conditions in order that a neural network
having a single hidden layer consisting of n
neurons, each with an activation function ¢,
can be constructed so as to give a mean
square approximation to f within a given
accuracy e,, independent of the number of
variables. We also discuss the case in which
the activation function ¢ is not 2=~periodic.

1. Introduction

In recent years, many authors have studied the problem of
approximation by neural networks (e.g., [1-4]). A neural
(mapping) network is a device for highly parallel
computation of functions. In this paper, we are concerned
with neural networks consisting of three layers, one of
them hidden. The hidden layer consists of a number of
processors, or neurons, working in parallel. Each of these

neurons is equipped with a local memory and is capable of
performing some simple computations. A neuron is trained
by setting the contents of its local memory. The numbers
in the local memory are called the weights. A neuron
accepts a number of real-valued inputs and evaluates a
weighted sum of these inputs with the weights stored

in its memory. It then calculates a transfer function (or
activation function), typically nonlinear, of this weighted
sum and puts out the result. Usually, we assume that one
of the inputs is always 1. If the remaining inputs are '
represented by a vector x € R’, and if the activation
function is ¢ : R — R, then the output of a neuron is

&w - x + b), where the vector w and the number b are
stored in the local memory and w - x denotes the inner
product of w and x. In many models, the function ¢ is the
Heaviside function, assuming the value 1 if its argument is
positive and 0 otherwise. The neuron can then be thought
of as a decision-maker, which fires if and only if the
weighted sum of the inputs exceeds —b, a preset
threshold. However, other functions are also used often
and are sometimes more efficient for various applications.
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The input layer of a network consists of a simple device
that fans the input x to each of the neurons in the hidden
layer. The output layer consists of a single device similar
to a neuron, except that it puts out a weighted sum of its
inputs without evaluating a transfer function of this sum.
For a more extensive introduction to our concept of a
neural network, we refer to [5].

Mathematically, the output of a network with a
single hidden layer with n neurons, each evaluating a
transfer function ¢, is a special function of form
2., ¢, d(w, - x + b,). (The weights ¢, are associated with
the output-layer device.) The primary goal in the
construction of a mapping network is to approximate an
arbitrary function by such special functions. In this
context, we often use the term network to denote the
function evaluated by the network. A typical problem
in this area is the density problem, where one seeks
conditions on ¢ that ensure that an arbitrarily accurate
approximation of a certain class of functions is possible.
The more difficult complexity problem is to determine how
many neurons are necessary to yield a prescribed degree
of approximation, defined below in Equation (2.6), for
every function in a given class.

A typical problem can be described more precisely as
foliows. Let s = 1 be an integer and K C R’ be a
compact set. Given a locally square integrable function
f: R’ — R, a suitable activation function ¢ and a
tolerance € > 0, one seeks an integer n, weights w, € R’,
thresholds b, € R, and coefficients c, € R (1 < k < n)
such that

n

fix) — > cdw, - x+b)

k=1

< e, (1.1

K

where || * ||, denotes the usual L*? norm on K with respect
to the s-dimensional Lebesgue measure.

There is a large amount of literature on the density
problem, i.e., the possibility of such an approximation;
we refer the reader to [6] for some of the references. The
complexity problem, which has been studied less, is to
determine the relationship between e and n. Equivalently,
given n, one seeks to estimate the smallest possible value
of € in approximating every function from a given class.
For the case in which the class of functions being
approximated is the class of all functions having a locally
square integrable gradient, and for which the activation
function ¢ is a bounded sigmoidal function, a particular
case of our results in [6] gives O(n ~"**?) as an upper
bound for the quantity € in (1.1). For a different class of
functions, defined in terms of the Fourier transform rather
than the bounds on the gradient, Barron {1] has obtained
the upper bound 0(n ~"*), again for the case in which the
activation function is a bounded sigmoidal function. An
interesting feature of this bound is that it is independent
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of the number of input variables s. When the class of
functions being approximated is defined in the classical
manner, in terms of the bounds on the partial derivatives,
it is known [7] that such a dimension-independent bound
for the degree of approximation is not possible.

In this paper, we obtain an analogue of Barron’s result
for a large class of activation functions, not necessarily
sigmoidal. As pointed out by Hecht-Nielson [3] (see also
[6]), the problem of approximating any function on a
compact set can be reduced to one in which the function
being approximated is 2#-periodic in each of its variables.
Accordingly, we consider only the approximation of
2m-periodic functions on Q° := [~, 7]°. It is then
convenient to assume that the activation function ¢ is
also a 2m-periodic function of one variable. We establish
sufficient conditions to ensure a dimension-independent
bound on the degree of approximation with the activation
function ¢. We emphasize that the actual bound itself is
not the critical issue here; the novelty of our results is that
the bound is dimension-independent and is valid for a large
class of activation functions, not necessarily sigmoidal.
We also illustrate with examples two techniques that may
be used to apply our results to the case in which the
activation function is not periodic.

In the next section, we formulate our main results. The
proofs of all of the new results in Section 2 are given in
Section 3.

2. Main results

In order to describe our main result, we need some
notation. In the sequel, s = 1 is a fixed integer,

Q° := [~m, 7]°. For a Lebesgue-measurable function
f: Q" — R, we denote

1 172
Al == [(_23 L |ft)] dt] . 2.1

The class of all Lebesgue-measurable functions

f: R° — R that are 2#-periodic in each of the s
variables and for which [|f|| < o« is denoted by Lz,
with the usual convention that functions which are equal
almost everywhere are identified. If f € L, its Fourier
coefficients are defined by

i, —— _1__ —ikt s

fk) = = Ls fite ™at, kez'. 2.2)

If f € L%, we set

I llge, s == 2 |0 (2.3)
kEZS

and define

SF,:={f€L’: |fllg, < =} (2.4)

We observe that functions in SF are actually continuous,
but not necessarily absolutely continuous. Therefore, the
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condition that f € SF_ is weaker than the periodic version
of the condition in Barron’s work [1]. If ¢ € LY and n = 1
is an integer, we define

n

I = z adw -x+b): a,b €ER, wEZ,

é,n,s k=1

k=1,"",n 2.5)

The class I1,, | is the class of all possible functions that
can be represented as outputs of a neural network with
one hidden layer consisting of #» neurons, each with an
activation function ¢, and each receiving the same input
from R®. For the sake of convenience in proving our
theorems, we assume that ¢ is 27-periodic; therefore, to
maintain this periodicity, the weights w, are restricted to
integers. Later, we discuss a few examples to demonstrate
how these restrictions may be removed in the case of
certain commonly used activation functions.

In this paper, we are interested in obtaining bounds on
the degree of approximation

E¢,n,s(f) = lnf “f - PHS > (2.6)

PE"¢.",S

fESF,.

The bound on E, , (f) depends not just on ||fllg, ,

but also on ¢. If A C Z°, we denote the class of all
expressions of the form 5., a,e™* by H,. The number
of elements of A is denoted |A|. For f € Lf, its Fourier
projection on H, is defined by

P(f;x):= P, (fi0) = X foe™ @.7)
kEA

and the degree of approximation from H, by

\(f) := €, (f) := inf ||f = P . (2-8)

PeH,

It is well known that the unique trigonometric
polynomial P € H, that attains the infimum in (2.8) is
given by the Fourier projection P, (f). We define, for
felL
€ ,(f):= inf

AEZS,|A|<n

One may think of €, (f) as E, , [(f), where y(x) = e”.
If A = 1is a real number and LA] denotes the largest integer
not exceeding A, we define

eA,s(f) = Ela\],s(f)’ E¢,A,s(f) = Ed’yUJ,x(f)'

€, (f)- (2.9

(2.10)

The bounds on E, , (f) are given in the following
theorem, in which it is convenient to introduce one more
parameter N and to estimate E, , , (f).
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Theorem 2.1 Lets = 1 be an integer, f € SF, ¢ € Lf,
and &(1) # 0. Then, for integers n, N 2 1,

s, 2, ,(4)

E, ,n(f)= {\/n_T—I + W]llf Hsgs »

where {8} is a sequence of positive numbers, ¢ < 8 < 2,
depending upon f such that §, — 0 as n — ». Moreover,
the coefficients in the network that yields (2.11) are
bounded, with the bound being independent of n and N.

We discuss a few immediate consequences of this
theorem. From the proof of Theorem 3.1 below, it is clear
that if ¢ € SF,,

(2.11)

Y

eN‘l(d’) = ‘/ﬁn ||¢”SF,1 3

where {5} is a sequence of numbers in the interval (0, 2],
depending upon ¢, and lim,___ 1, = 0. Therefore,
choosing N = n in Theorem 2.1 leads to the following
estimate.

Corollary 2.2 If ¢ € SF,

30) 1)
where 8 € (0, 2] converges to 0 as n — « but may
depend upon ¢ as well as f.

The error bound in (2.12) is weaker than the one given
by Barron [1] but applies for a large class of activation
functions that may not necessarily be sigmoidal. Moreover,
the conditions on the target function f are weaker than
the periodic analogue of the conditions required in [1].

An important aspect of the estimate (2.12) is that it is
independent of the dimension s. We observe that this is no
contradiction to the saturation results in [7], because the
class of functions being approximated here is different
from the class for which the results of [7] are applicable.
Moreover, our proof is constructive in nature, if we know
all of the Fourier coefficients of the target function and are
able to preprocess them.

If ¢ is known to be a smooth function, it is possible to
improve upon the bound (2.12). Thus, if

d(k) = O(e ™)

3, l#ll
E¢,2n2,s(f) = \/n n 1 [1 + sp,l]“f“spy; »

(2.13)

for some constant a > 0, then a simple estimation of the
Fourier expansion of ¢ shows that

€ logn,1(¢) = @(1/n)

with a properly chosen constant c. In the sequel, the letter
¢, appearing in various formulas, denotes a positive
constant independent of s, n, and f. Its value may be
different at different occurrences, even within the same
formula. There are standard results in approximation
theory that guarantee (2.13) under certain analyticity

(2.14)
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conditions on the function ¢. We refer the reader to [8] for
details and merely state the following corollary of (2.14).

Corollary 2.3 If z})(k) = O(e ¥ for some constant
a >0,

3
E¢,nlogn,s(f) = E I|f||51-"s ’ (2.15)
where 8, € (0, 2] now depends on ¢ as well as f, and
lim 8 = 0.

We give two applications of Theorem 2.1 in order to
illustrate two techniques that can be used to apply this
theorem to the more usual case, in which the activation
function is not periodic.

Example 1: The squashing activation function
In this example, let

1
1+e™°

o(x) := (2.16)

Then o is a bounded sigmoidal function. The function
Axyi=aox+ 1) ~o(x-1) (2.17)

is a hump function that satisfies

Ax)| = O™ as|x| — . (2.18)
Hence,
d(x) 1= ) Mx + 2km) (2.19)

kez

is a 2sr-periodic continuous function. Using contour
integration, one can easily calculate the Fourier
coefficients of ¢ so as to verify that ¢ satisfies condition
(2.13). Therefore, for f € SF_, (2.15) yields a function
(network)

gx) = > abw,x+b), (2.20)
1<k<nlogn

with properly chosen coefficients, weights, and thresholds,
such that

4
If = gll; = —57 Ifllse,s - (2.21)

Using (2.18), we may obtain a constant @ > 0, such that
with N := la logn |,

C
[6(x) = > Alx + 2jm)| = s *ER (2.22)

JEL|j|sN

Since the coefficients a, in the network g are bounded,
independent of n, the network defined by

hx):= Y a4, > Alw,rx+b, +2jm),

i<k<nlogn  jEL|j|sN
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consisting of O(n log’ n) neurons, satisfies the dimension-
independent bound

[
IF = Al < 55 1 Ny, -

Example 2: The truncated power function
In this example, let m be a fixed integer and

m

, ifx =0,

2.23
0, ifx <0. 2239

o(x) := {

Then (see [6]) the B-spline
m+l

[fm+1
B,(x):=— > (—1)’( j o((m + 1)x —j) (2.24)
'

is an m-times continuously differentiable function and
vanishes outside of [0, 1], in particular, at . Therefore,
one may extend B, to R as a 2mperiodic function ¢. The
direct theorems of approximation theory [8)] imply that

C
EN,1(¢) < N

Let v := [n'""*"| and f € SF,. Theorem 2.1 yields a

network defined by
g(x) = Y a,$(W, - x + b)), (2.25)
k=1

with properly chosen coefficients, weights, and thresholds,
such that

c
If = gll, <~z Ifllsr,s » (2.26)

where the constant ¢ depends upon m. The network
defined by

h(x) := i a,B ((w, - x + b,) mod 2m),

k=1

containing (m + 1)» neurons, then satisfies

(4
If = Al < =573 £l » (2.27)

where ¢ > 0 is a constant depending on m only. We

observe that the larger the value of m, the smaller

(asymptotically) the number of neurons in the network 4.
The proof of Theorem 3.1 below shows that when

#(x) = e [equivalently, ¢(x) = cos x or ¢(x) = sinx],

it is possible to construct a network of size n to yield an

approximation power of n~'?; i.e., in this case
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E,,(f)< (2.28)

1
il 1 Nse,s -
We observe that a network in I1,  _ is defined by (s + 2)n
parameters. In the construction given in the proof of
Theorem 2.1, these parameters do not necessarily depend
continuously on the function being approximated. Theorem
2.4, given below, shows that the order of approximation
given by (2.28) is the best possible for the whole class SF.,
if these parameters are to be chosen continuously.

To state this theorem, we recall some terminology from
[7]. Let M be any mapping from R" into L: and M, the
corresponding N-dimensional manifold:

My, = {M(a) : a € R™}.

For instance, I is an (s + 2)n-dimensional manifold in

gms
L when ¢ € L We let
K :={f: \fllg, = 1} (2.29)
The continuous #-width of K_in Lf is defined as
d§(K),> := inf sup ||f — M(g(f)), , (2.30)
9.8 fek,

where the infimum is taken over all continuous functions
g: Lf — R" and manifolds (mappings) M : R — Lf.
Thus, df,(Ks )L§ measures how well we can approximate
all of K by a continuous selection of parameters

from N-dimensional manifolds in Lf. In particular, for

N = (s + 2)n, it gives a lower bound for continuous
selections from I1,  _ for any activation function ¢ € Lf.

Theorem 2.4 We have

de(K)Lzz\/_,
YN+ 1

To summarize our discussion intuitively, we have shown
that for the approximation of a function in SF,, the
function e” is in some sense the “best” choice for a
periodic activation function. Moreover, the closer an
activation function is to this ideal function, the better order
of approximation one obtains for the class SF.

N=1,2,". (2.31)

3. Proofs

A crucial ingredient in our proof of Theorem 2.1 is a
theorem that is similar in spirit to what is sometimes
known as Jones’s lemma (see [9]). Let ¥ be an arbitrary,
separable Hilbert space, let (-, *) denote the inner product
on ¥, and let || - || denote the corresponding norm. Let
H := {h,}," be a complete orthonormal family in .
Any f € ¥ can then be written in the form

f=2 a(fh,, 3.1)
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where the series converges in the norm of #. We define
the set

Sy=1fEX: Y la(f) =11 (3.2)
k=1

If A C Z, we define U, to be the linear span of
{h, : k € A}, and we let T, denote the projection
operator onto U, . We write

€(f):=int |f-hl, fe% (3.3)
heU,
and recall that
€(f) = IIf = TPl (34
We are interested in the quantity
A=A, :=sup inf %E(f), n=12, (3.5)
o fESy ACZ, |Alsn
Theorem 3.1 We have
1

—==<A < n
Z\f .
Moreover, if f € S,,, there is a sequence {8 } of numbers
such that each 8,, €(0,2],8, —>0asn — x and

=1,2,---. (3.6)

inf  %(f) < \/_ n=1,2-:-. 3.7)

ACZ, |A|sn
Proof Letf € S, be arbitrary. We observe that all

rearrangements of the expansion (3.1) converge in ¥ to f.
Therefore, we may rearrange this expansion and write

f= 2 9 » (3.8)

where the set {g,} is the same as H and the coefficients d,
satisfy

)=, |20, k=1,2"---, andEI | < 1.
(3.9)
Using Parseval’s identity and (3.9), we obtain
inf [&(N = If - X dgl’

ACZ, |Alsn k=1

= 2 ‘dk|2 = |dn+1| E |de

k=n+1 k=1
=\, - (3.10)
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Using the fact [see (3.9)] that {|d,|} is a decreasing
sequence, we obtain

nldn \l
2 |dk[ 2 2+ .

ni2sksn+1

Since the series £ |d,| converges, the left-hand side of the
above inequality tends to 0 as n > . Moreover,

S st

nf2sksn+i

Therefore, (3.10) leads to (3.7). Again, in view of (3.9), we
obtain

n+l
= 3 ld) =+ i,
k=1
Together with (3.10) and the fact that f € S, is arbitrary,
this leads to the second inequality in (3.6).

h, . (3.11)

Then g € §,,, and it is obvious, using Parseval’s identity,
that

b 2
inf [%(g)]" = D, (i) = L . (3.12)
ACZ, \|<n * A\ 4n
This leads to the first inequality in (3.6) and completes the
proof. W

Our proof of Theorem 2.1 requires the use of a
quadrature formula in order to express certain integrals
involving exponential functions as finite sums. The
following lemma (see [10], Exercise 2.5.8, p. 100) provides
the necessary details. For the convenience of the reader,
we sketch a proof.

Lemma 3.2 Let n = 1 be an integer. Given any
continuous (complex-valued) functions {g,};"_, on Q°,
there exist nonnegative numbers A, and vectors t, € o°,
j=1,++,2n + 1 (depending upon the family of
functions) such that 2/.2:;'1/\]. = 1and

2n+1

YAgH), k=1.-,n (313
j=1

o

Proof of Lemma 3.2  First, we assume that the functions
g, are real-valued. Let G C R” be the set defined by

G:={g®), - ,g,1):teQ’}

and co(G) be its convex hull. We observe that co(G) is
necessarily closed; hence, the definition of the Riemann
integral implies that the point

H. N. MHASKAR AND C. A. MICCHELLI

1 1
(-(-2;)1 IQ, gtyat, - -, W . gn(t)dt) ER

is in co(G). In view of the Caratheodory theorem (see [10],
Theorem 2.2, p. 69), there ex15t n+1 pomts )’ eqQ
and nonnegative numbers {[L} with =) ,w =1 such that

n+l

gtdt = Y p.g(u),
QJ

j=1

— k=1,"+,n.
@) .

The lemma follows by considering the real and imaginary
parts of g, as separate functions. W

Proof of Theorem 2.1  Using Theorem 3.1 and the
definition of €, ,(¢), we find sets A, C Z° and A, C Z

such that |A1| =n, |A,| = N, and, with P, := P, (f)
and P, := P, (¢),

8 M llgr
If - Pl, = ===, 6 - P, =2,,(4), (319

1 3
where 8, — 0 and §, € (0, 2]. Without loss of generality,
we may assume that 1 € A, and 0 € A,. Let

A={1-k:k€A,}

and let numbers A, = 0, ¢, € [—m, 7] be found as in
Lemma 3.2, so that E A = 1 and

2N

1 = -

o j e¥dt = Y Ae", k€A (3.15)
-1 j=1

[Since 0 € A, we may use Lemma 3.2 with the functions
{€™} for k € A\ {0} and thus obtain (3.15)—in fact, with
2N - 1 summands on the right-hand side of (3.15), rather
than 2N summands as above.] From the formula

it 1 " iu
e _211'd;(1) J:ﬁ:g ¢t — u)du

1 .
ppr B (¢ — u)du (3.16)

and (3.15), we obtain

P =fO) + > fke™

kEA\NO}

=fO) + == ¢() S fk) | e“Pik - x — wydu

KEANO) -7

=fO+=— > ZA F®e"Pik-x—1). (3.17)

kEANO} j=1

(1)
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2N

. 1 e
900 :=f () + 7 S S Afmepk - x —t). (3.18)

KeAND} j=1

Using (3.14) and Parseval’s identity, one may easily
check that for the difference ¢(x) := Py(k - x — £) —
é(k - x — t,), where k € A, \{0},

9l = 2€y,(¢).

Since

> 3 1F®, < flg, -

ke, j=1

Equation (3.17) implies that

20fllsr, s€,(8)
1P, = gl = —55—
Using (3.14), we obtain

s, 26,“(4))

If - gll, < {\/;’—T—l + W}Ilfllsp,s .

Since $(1) = 0, it follows that ¢(a) # 0 for some
a € [—m, m|. Hence, we may write

710) = ($@) " f(0)$(0 - x + a).

Therefore, g € II, ,,, . and the proof is complete. M
Finally, we prove Theorem 2.4. This is done in the more

general context of a Hilbert space, as in Theorem 3.1.

Thus, continuing the notation as before, we define the

continuous n-width

d§, := d(S,), = inf sup ||f — M(g(f DI, (3.19)

g.M feSy

where the infimum is taken over all continuous functions

g : % — R" and manifolds (mappings) M : RY — %.

Theorem 2.4 is then a special case of the following

theorem.

Theorem 3.3 We have
1

dfl(slnczﬁ’
N +1

Proof Let X be any N + 1-dimensional subspace of %,
and let p := p(X) be the largest constant such that

Il = pliAls, »

where, with the notation as in (3.1), ||f|, denotes
2., la,(f)|. Theorem 3.1 of [7] establishes that

d5(S,)y = sup{p(X)}, (3.21)

where the supremum is taken over all N + 1-dimensional
subspaces X of #. Now, if A CZ° and JA] = N + 1, we
have for the expression f = X, _,a/h, ,

N=1,2+--. (3.20)

kEA
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”f”2 = 2 |ak|2

kEA

! E 2 = ! 2 3.22

= = . .
EEL L B e (-2

Therefore, for the N + 1-dimensional space
X = spanfh, : k € A}, p(X) = (N + 1)7. The
inequality (3.20) now follows from (3.21). W

4. Conclusions

We have considered the problem of obtaining dimension-
independent bounds for the degree of approximation of a
periodic function using a neural network with a single
hidden layer. Our results are applicable for a large class of
target functions and activation functions. We have also
obtained a lower bound for the degree of approximation.
We have illustrated the application of our theory by
discussing two cases in which the activation function is not
periodic. Among the activation functions considered is the
standard squashing activation function.
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