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We consider the problem of deploying work
force to tasks in a project network for which
the time required to perform each task
depends on the assignment of work force to
the task, for the purpose of minimizing the
time to complete the project. The rules
governing the deployment of work force and
the resulting changes in task times of our
problem are discussed in the contexts of a)
related work on project networks and b) more
general allocation problems on polytopes. We
prove that, for these problems, the obvious
lower bound for project completion time is
attainable.

1. Introduction
A PERT network is an approach to organizing a project
that consists of individual tasks satisfying precedence
relations. The project is modeled as an acyclic directed
graph with initial node s, terminal node ¢, and tasks {T}
corresponding to edges {¢ = (u, v)} of the graph. For each
T, we are given d, > 0, the time to perform the task.
T, cannot be started until all tasks T, are completed.
Because of this, the earliest possible completion time y, of
the project is the length of a longest st-path with respect to
the edge lengths d_. This value represents the most time-
consuming sequence of activities that must be performed
in completing the project.

There is interest in studying how y, can be altered if the
set {d_} can be changed by actions of the project planner.
The allocation of extra resources to critical tasks in a

project so as to reduce their duration is commonly called
““crashing.”” We cite two examples from the literature.

Example 1.1 [1] Foreach T, d, is changed tod, — mz,,
where each m_ is a prescribed positive number, each z, is
a nonnegative variable bounded from above, and 2z,

equals a prescribed value.

Example 1.2 [2] For each T,, d, is changed to d,/z,,
where each z, is a positive variable and 2z, equals a
prescribed value.

In both these cases, the general objective is to allocate
the resources in such a way that the length of a longest
path is minimized.

In this paper we consider a problem similar to Example
1.2, but one in which the resources may be reused in the
manner described below. Again, d, is replaced by d,/z,,
but we impose conditions different from those of Example
1.2 on the positive work force variables z,, which we do
not require to be integral. As in Example 1.2, d, represents
the time to perform 7, with one unit of work force, and
d /z, the time with z, units. When a task is completed, in
the variation we consider, the work force assigned to that
task may then be assigned to different tasks. As usual, a
new task may start when all of its predecessor tasks have
been completed.

A total of W units of work force are available. These
units can be shifted from task to task, but at no time can
more than W units be active. How shall the work force be
assigned to minimize the completion time of the total
project? We put some restrictions on this allocation below,
but first we make some preliminary remarks.
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g Sample PERT network. Labels on the edges are values of z, for
the optimal assignment of work force satisfying Condition 1.3
when alld, = 1 and W = 5.

If work force can be reassigned at any time to any task
that is available, given the precedence restrictions of the
PERT network, it is easy to prove that every allocation
that keeps the work force busy will complete the project
in time 3d,/W.

If the work force assigned to a task cannot be changed
during the performance of the task, then 34 /W is a lower
bound on the completion time, and can be attained in
many ways (for instance, by using the entire work force
on each task as it becomes eligible).

The restriction we consider on the allocations was
suggested to us by some managers of software projects.
They pointed out that it is desirable to assign work force
to tasks that grow from and relate to tasks that they have
just performed. A rough attempt to model such a
desideratum would be the requirement that the work
force satisfy the following ““flow”” condition.

Condition 1.3 For each node v = s, ¢, the total work
force assigned to tasks with terminal node v equals the
total work force assigned to tasks with initial node v. The
total work force assigned to tasks with initial node s equals
W, which equals the total work force assigned to tasks
with terminal node ¢.

Figure 1 gives an example of an allocation satisfying
Condition 1.3, with all d, = 1 and W = 5. The project is
completed in time 24 /W = 1. In view of the foregoing,
this is optimum. Moreover, it is the unique optimum
satisfying Condition 1.3. It is also the only allocation
for which all three sz-paths have the identical
length, 1.
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We show below that, for every problem, the minimum
completion time is 24 /W, and is attained by a unique
allocation. In Section 2, we describe a general
mathematical programming model that encompasses the
above problem. This involves the concepts of positive
polytope and flat positive polytope, for which we offer two
Pangloss* theorems. The first is proved in Section 3 for
positive polytopes. A strengthening for flat positive
polytopes is established in Section 4. In Section 5, we
explore the relation between these two theorems, and in
Section 6 we present concluding remarks.

For convenience, in the rest of this paper, we take W = 1.
Because we impose no integrality conditions on z,, we lose
no generality.

2. Allocation problems on positive polytopes
A polytope is a bounded polyhedron. A point x is called
positive (written x > 0) if x, > 0 for all i. We call a
polytope positive if it is entirely contained in the
nonnegative orthant and contains at least one positive
point. We call a positive polytope flat if it is the set of
nonnegative solutions to a nontrivial system of linear
equations.

For a PERT network, let P be the set of all allocations
satisfying Condition 1.3. (Recall that we have set W = 1.)
Then P is a polyhedron, and, since PERT networks
are acyclic, P is bounded. Each extreme point of P

_corresponds to an assignment of one unit to the edges in

an st-path. The polytope P is positive because each edge
is part of some s¢-path.

Letd = (d, '+, d,) > 0 be any positive vector
indexed by the edges of our network. Consider the
problem

max 2 dx; . 2.1
XEP

Since each extreme point of P assigns one unit to the
edges belonging to a particular sz-path, (2.1) computes the
length of a longest s¢-path, with respect to edge lengths 4, .
We consider the PERT problem in which the time
needed for task T, equals d;/z;, where z; is the amount of
work force assigned to task 7. Condition 1.3 states that
z € P; that is, the assignment of work force must be an
st flow of one unit. Hence, our PERT problem is this
variation of (2.1):

min max Y. (d/z)x, . (2.2)

IEP xE€P

Thus, (2.2) allocates the work force so as to minimize the
length of a longest s¢-path, where the length of edge j is
djz.

7T

*In Voltaire’s Candide, Dr. Pangloss says, “All is for the best . . . in this best of all
possible worlds.”
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We actually study (2.1) for every positive polytope P
and every positive vector d, not just for those arising from
PERT problems.

Note that for any positive z € P, if we define ¢, = d/z,
forallj = 1, -+, n, then

Z =
maxchxj—chzi Zdj
xEP

One principal result is the following.

(2.3)

® Theorem 2.1 (Pangloss theorem for positive polytopes)
Let P C R" be a positive polytope and let

d=(d,d, ,d) > 0. Then there exists a

unique ¢ = (c,, **+, ¢,) > 0 such that

there exists positive z € P such that ¢z, = d, for allj

and
max > ¢x = D d= ¢z
xEP

This can be restated as follows: Interpret each x € P
as a vector of feasible activities. Suppose we are given a
vector d of target revenues for our activities. Then there
exists a unique unit profit for each activity with the
following property: If we allocate our resources so as to
maximize the total revenue with respect to these unit
profits, each activity in the optimum solution generates
exactly its prescribed target revenue. More simply, every
vector of proposed target revenues is the optimum set of
revenues for a suitably chosen set of unit proofs. This is
why we refer to this as a “‘Pangloss™ theorem.

Theorem 2.1 is the same as

min max 3 (@fz)x, = 3 4.

21EP xEP

(2.4)

2.5)

which we prove in the next section.
We have the following consequence.

® Corollary 2.2

Let z be the optimal solution to (2.5). Let S be the set
of extreme points of P. Let T C S be such that z can be
expressed as a convex combination of {x : x € T} with
positive weights. Then

z d = 2 (d/z)x, for eachx €T.

Let us interpret this corollary for the case of PERT
networks. With P defined as in the seécond paragraph of
this section, it is well known that each positive vector x in
P is a positive convex combination of all extreme points of
P. Hence, for a PERT network, Corollary 2.2 shows that
every st-path has length Ed}., the length of edge j being
d/z,. For a more general positive polytope P, however,
there can exist extreme points x, which we cannot use to
express z, for which 3(d/z;)x; < 3d,.

(2.6)
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We now describe an example of a polyhedron P that
is positive but not flat. Consider a graph with node set
{s, t, 1, 2, 3, 4, 5} containing the following three sz-paths:

p,={6,1),(1,3),3,4), 40}
pz = {(S, 1)7 (15 3)7 (3, 5)’ (57 t)}a
P =16, 2,2, 3), 3,5, 5,0}

Let v(p,) be the path-edge incidence vector of path p,, that

is, the n-dimensional vector whose jth component equals 1

if edge j is in path p;,, and equals 0 otherwise. Define P

to be the convex hull of {v(p,), v(p,), ¥(p,)}. Any

hyperplane containing P must contain the incidence

vector v(p,) of p, = {(s, 2), (2, 3), (3, 4), (4, 1)},

since v(p,) + v(p,) — ¥(p,) = ¥(p,). The positive

polytope P is not flat because it does not contain v(p,).
We return to flat positive polytopes in Section 4.

3. Pangloss theorem for positive polytopes

It is possible that this is a folk theorem in utility theory,
but we do not know of any reference. We offer two proofs
for Theorem 2.1. For the first, consider the optimization
problem:

min F(z) = z —dj lnzj .

2EP

3.1)

® Theorem 3.1
Let P be a positive polytope and let d > 0. Then (3.1) has
a unique optimal solution z, which also solves (2.5).

Proof Since P contains a positive vector, a standard
compactness argument shows that (3.1) has an optimal
solution z, all of whose components are strictly positive.
Strict convexity of —In z; shows that z is unique.

To show that this z solves (2.5), we select any x € P
different from z and perturb z in the feasible direction
x — z. Specifically, we consider the function
9(¢) = Flz + t(x — z)] for 0 = ¢ = 1, with F(z) defined
as in (3.1). The function g(¢) is convex, differentiable, and
nondecreasing in #—the last because z is optimal. Thus,

0=g'(0) = ¥, (~d/z)(x, - z), forallx € P. (3.2)

Expression (3.2) simplifies to 3d; Z 3(d/z)x; for all
X € P, which, when combined with (2.3), yields (2.5).
A more direct proof proceeds as follows:
First we establish uniqueness. Let z and Z be two
minimizers in (2.5). Since z € P, and 7 is a minimizer in
(2.5),

d
233524
)

(3.3)
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Similarly,

d
27524, (3.4)

Add the inequalities (3.3) and (3.4). Since each d, > 0
and z/Z, + Z/z; 2 2 and we have strict inequality unless
z, = z, the sum of the left sides is at least 22dj. The
sum is ZEdI, if and only if z, = Z, for all j. The sum of
the right sides is 25d, soz = Z.

As noted in (2.3), for any positive z € P,

X, p E(d /z)x, 2 Ed We give two different proofs

of the reverse mequahty

Let M be a matrix whose rows are the vertices of P, so
that P is the convex hull K(M) of the rows of M. We must
prove that

m.d.

there exists 2 € K(M) such that 3} — = 3 d, for all .
j }
(3.3)

Note that for every z € K(M), we have X m,d /z, = 3d,
for at least one i. It is convenient to have M positive. To
that end, let J be the matrix of 1’s, € > 0. We prove that
there exists z(e) € K(M + €J) such that

m+

270

= > d foralli. (3.6)

Now z(e) is in a compact region, so there exists a
sequence of €’s converging to 0 such that the
corresponding z(e)’s converge to some z € K(M). This
z cannot have any coordinate 0; otherwise, since each
column of M contains at least one positive entry (say in
row i), (3.6) would be violated for row i and some e. So,
returning to (3.5), we assume that all entries in M are
positive.

Here is an elementary proof of (3.5). Let z be a
minimizer in (2.5), and assume that (3.5) is false, so that

max 3, (4/z)m; =D*>D = 3, d;.
' J

It can be seen that the maximum cannot be attained for all
i, soif I* = {i : 3(d/z)m, = D*}, then |I*| < m. Now
apply induction on the number of rows of M, since (3.5)
clearly holds if M has one row. Let M* be the submatrix
of M formed by rows in I'*. Then, by induction, there
exists 2 € K(M*) with 3m d /2, = D. If e > 0is
small, then setting Z = €Z + (1 — €)z yiclds a value of
max, Ejm,}dl/z strictly smaller than D*, contradicting the
deﬁnmon of z. Here we use the fact that because M is
strictly positive, E}mudj/w is a strictly convex function
on positive w, smaller when w = Z than when w = z.
Another proof of (3.5) uses Brouwer’s fixed-point

theorem. Assume that M has m rows, and let A be the
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simplex {A : A 2 0, £, = 1}. With z = AM and
D= Edj, consider the continuous mapping of A into
itself:

d
A+ (Z Tzi—’ —D)

j J
+

Al =

! d. ?
1+2(2'1§—1—D)
k j j .

where a, = max (a, 0). Let A be a fixed point of this
map, z = AM. Then

d d
A,-E(kafj—D =(Zmi;j—D
k j ¥ . j j .,

We must show that for every i, the right side of (3.7) is 0.
This is surely so if A, = 0. Further, if it is false, the left
side of (3.7) would be positive for A, > 0, so that the right
side would be positive.

Let A* = {i : A, > 0}. For each i € A*, we would
have 3m d /z, > D S0

2,\2 >D2A— . (3.8)

iEA* j iEA*

3.7)

But (3.8) can be rewritten

d.
D<2 Z)‘ ij)‘imij=2dj=D’
j oI

T iea

which is a contradiction.
4. Pangloss theorem for flat positive polytopes

% Theorem 4.1 (Pangloss theorem for flat positive
polytopes)

Let P be a flat positive polytope, and let

d=(d, - ,d) > 0. Then there exists a
unique ¢ = (c,, * -, c,) > 0 such that

there exists positive z € P such that ¢z, = d, for all j
and
forallx € P, 2 X, = 2 d =D. 4.1)

This theorem asserts that any positive vector d is both
the ““best’” and ““worst’” vector of revenues for some
linear objective function ¢, maximized over P.

Let us deduce Theorem 4.1 from Corollary 2.2. By
hypothesis, P is flat and z is positive. It is easy to show
that z can be written as a positive convex combination
of all extreme points of P. Hence (2.6) holds for each
extreme point of P, and (4.1) follows.

A more insightful proof of (4.1) comes from the
concept of entropy (see [3] for other uses of entropy in
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combinatorial optimization). First, we present some
preliminaries. Let P = {x : Ax = b, x 2 0} be the given
flat positive polytope. Let A; denote the jth column of A.
The following optimization problem is motivated by the
PERT problem:

Minimize 8 = yb  subject to
p: Az =D
4.2
220 “.
W, YA, —djz; 20 for all j.

Clearly, (4.2) is a convex program. Multipliers p and w
are assigned to particular constraints. No multipliers are
assigned to the constraints z 2 0, because an optimal
solution to (4.2) would have z > 0; hence, corresponding
multipliers would all be zero. Because we assume z > 0,
the Karush-Kuhn-Tucker (KKT) optimality conditions for
(4.2) are

w0,
y: Aw =D
z: pA - wjdj/(zj)2 =0, forallj (4.3
w(d/z, — yA) =0,  forallj.

We shall see that an optimal solution to (4.2) and its
KKT multipliers can be obtained from the familiar program

min —-dnz :Az=b,z20. 4.4
J J

® Theorem 4.2

Let z be an optimum for (4.4), and let y be its KKT
multipliers for the constraints Az = b. Then (y; z) is
optimal for (4.2); that program’s KKT multipliers are
p =y and w = z; and the optimal value §* is 2d,.

Proof The KKT conditions for (4.4) are

djz, =yA, forallj. 4.5)
The pair (y; z) satisfies the constraints in (4.2). To satisfy
the optimality conditions in (4.3), we take p = y and
w = z. Finally, we multiply (4.5) by z; and then sum, to
obtain 3d, = yAz = yb = §*.

Theorem 4.2 establishes a “self-dual” property of (4.2).
Its optimal solution and its KKT multipliers equal each

other.

5. Relation between the two Pangloss
theorems

The contrast between Theorems 2.1 and 4.1 suggests that
(4.1) characterizes flat positive polytopes.

IBM J. RES. DEVELOP. VOL. 38 NO. 3 MAY 1994

® Theorem 5.1
Let P be a positive polytope. Then P is flat if and only if,
for each d > 0, there exists positive z € P such that

2 4= 2 (@ /z)x, for all x € P. (5.1)
Proof The necessity is just Theorem 4.1. We prove the
sufficiency. Let d > 0. By hypothesis, there exists z € P
for which (5.1) holds. Let ¢; = d/z; for each j. Equation
(5.1) becomes %c,x; = 2d, for each x € P. Add
sufficiently large multiples of this equation to the equations
and inequalities of a minimal representation of P, to cause
the representation to have the form {x : A x = b, Ax = b?,
x 2 0}, where all coefficients in A, and A, are positive,
and every inequality is essential. Thus, at least one of
these inequalities, which we write as Sa.x; = (a, x) £ b,
has the following properties:

each a > 0; (5.2)
at least one positive z € P satisfies (a, z) = b; (5.3)
at least one x € P satisfies (a, x) < b. (5.4)

Letd = (a,2,, "+, a,2,)and ¢ = (a,, -+, a,). Then,

by (5.2) and (5.3), ¢ and z satisfy the Pangloss theorem for
positive polytopes, and they are unique. By (5.1), we must
have Za,x; = b for all x € P, which contradicts (5.4).
Hence P is flat.

6. Remarks

In closing, we mention three generalizations. First, PERT
networks may require ‘““dummy’’ edges that are not
associated with any real task of the project, but are used
to impose precedence constraints on the other tasks.

A dummy edge e normally has d, = 0. There is no
difficulty in extending our previous results to this case, but
uniqueness of the optimal solution value z, for those e with
d, = 0 is lost. An alternative to the introduction of dummy
edges is to let the nodes of an acyclic graph correspond to
the tasks of a project, and to use the edges simply to
indicate precedence. Results analogous to those

presented in this paper hold in this framework.

Second, we can accommodate ‘‘nonconcurrence
conditions,” that is, requirements that certain pairs of
tasks cannot be performed simultaneously, even if neither
is a predecessor (direct or indirect) of the other in the
acyclic graph. To do so, we consider each such pair in
turn, adding an edge from the terminal node of one of
the task edges to the initial node of the other if no edges
previously added have made either one a predecessor of
the other.

Third, our theorems about positive polytopes hold for
any compact convex subset P of the nonnegative orthant

that contains a positive vector—not just for polytopes. 305
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Nimrod Megiddo has pointed out to us that problem
(3.1) is an instance of finding the weighted analytic center
of a polytope. (The word ““center’” is used as it is in
barrier methods for linear programming.) Thus, efficient
algorithms for finding the center (see [4]) are adaptable.
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