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We  consider the problem  of  deploying  work 
force  to  tasks in a  project  network  for  which 
the  time  required  to  perform  each  task 
depends  on  the  assignment  of  work  force  to 
the  task,  for  the  purpose  of  minimizing  the 
time to complete  the  project.  The  rules 
governing  the  deployment  of  work  force  and 
the  resulting  changes  in  task  times  of  our 
problem  are  discussed in the  contexts of  a) 
related  work  on  project  networks  and  b)  more 
general  allocation  problems  on  polytopes. We 
prove  that,  for  these  problems,  the  obvious 
lower  bound  for  project  completion  time  is 
attainable. 

1. Introduction 
A PERT network is an approach to organizing a project 
that consists of individual tasks satisfying precedence 
relations. The project is  modeled as an acyclic directed 
graph with  initial node s, terminal node I ,  and tasks {T,} 
corresponding to edges {e = (u ,  v ) }  of the graph. For each 
Te, we are given de > 0, the time to perform the task. 
T(u,r,, cannot be started until  all tasks T(,,,,., are completed. 
Because of this, the earliest possible completion  time y ,  of 
the project is the length of a longest st-path with respect to 
the edge lengths de. This value represents the most  time- 
consuming sequence of activities that must be performed 
in completing the project. 

set {de} can be changed by actions of the project planner. 
The allocation of extra resources to critical tasks in a 

There is interest in studying howyr can be altered if the 

project so as to reduce their duration is  commonly  called 
“crashing.” We cite two examples from the literature. 

Example 1.1 [ I ]  For each Te,  de is  changed to de - meze, 
where each me is a prescribed positive number, each ze is 
a nonnegative variable bounded from above, and ZZ, 
equals a prescribed value. 

Example 1.2 121 For each Te, de is changed to delz,, 
where each ze is a positive variable and Zze equals a 
prescribed value. 

the resources in such a way that the length of a longest 
path is  minimized. 

1.2, but one in which the resources may be reused in the 
manner described below.  Again, de is replaced by delz,, 
but we impose conditions different  from those of Example 
1.2 on the positive work force variables z,, which  we do 
not require to be integral. As in Example 1.2, de represents 
the time to perform Te with one unit of work force, and 
delz, the time  with ze units. When a task is completed, in 
the variation we consider, the work force assigned to that 
task may then be assigned to different tasks. As usual, a 
new task may start when all  of its predecessor tasks have 
been completed. 

A total of W units of work force are available. These 
units can be shifted from task to task, but at no time can 
more than W units be active. How shall the work force be 
assigned to minimize the completion time of the total 
project? We put some restrictions on this allocation  below, 
but first  we  make some preliminary remarks. 

In both these cases, the general objective is to allocate 

In this paper we consider a problem  similar to Example 

Wopyright 1994 by International Business Machines Corporation. Copying in  printed  form for private use is permitted without payment of royalty provided that (1) each 
reproduction is done without alteration and (2) the Journal reference and  IBM copyright notice are included on the  first page. The title and abstract, but no other portions, of 
this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other 

portion of this paper must be obtained from the Editor. 301 

IBM .I. RES. DEVELOP. VOL. 38 NO. 3 MAY  1994 E. V. DENARDO ET AL. 



302 

1 
P 

‘ Sample PERT network.  Labels on the edges are values of ze for 
the optimal assignment of work force satisfying Condition 1.3 
when  all de = 1 and W = 5. 

If work force can be reassigned at any time to any task 
that is  available,  given the precedence restrictions of the 
PERT network, it is easy to prove that every allocation 
that keeps the work force busy will complete the project 
in  time 8de/W. 

If the work force assigned to a task cannot be changed 
during the performance of the task, then Cd,/W is a lower 
bound on the completion time,  and  can be attained in 
many ways (for instance, by using the entire work force 
on each task as it becomes eligible). 

The restriction we consider on the allocations was 
suggested to us by some managers of software projects. 
They pointed out that it is desirable to assign work force 
to tasks that grow from and relate to tasks that they have 
just performed. A rough attempt to model such a 
desideratum would  be the requirement that the work 
force satisfy the following  “flow” condition. 

Condition 1.3 For each node v z s, t, the total work 
force assigned to tasks with terminal node v equals the 
total work force assigned to tasks with  initial node v .  The 
total work force assigned to tasks with  initial node s equals 
W ,  which equals the total work force assigned to tasks 
with terminal node t. 

Figure 1 gives  an  example of an allocation satisfying 
Condition 1.3, with all de = 1 and W = 5 .  The project is 
completed in  time 2,de/W = 1. In view of the foregoing, 
this is  optimum. Moreover, it  is the unique optimum 
satisfying Condition 1.3. It is also the only allocation 
for which all three st-paths have the identical 
length, 1. 
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We show below that, for every problem, the minimum 
completion time  is 2,de/W, and  is attained by a unique 
allocation. In Section 2, we describe a general 
mathematical programming  model that encompasses the 
above problem.  This involves the concepts ofpositive 
polytope and flat positive polytope, for which we offer two 
Pangloss* theorems. The first  is  proved  in Section 3 for 
positive polytopes. A strengthening for  flat positive 
polytopes is established in Section 4. In Section 5, we 
explore the relation between these two theorems, and in 
Section 6 we present concluding remarks. 

Because  we  impose  no  integrality  conditions  on z,, we  lose 
no  generality. 

2. Allocation  problems on positive  polytopes 
A polytope is a bounded polyhedron. A point x is called 
positive (written x > 0) if x, > 0 for  all i. We  call a 
polytope positive if it is entirely contained in the 
nonnegative orthant and contains at least one positive 
point. We call a positive polytope flat if it is the set of 
nonnegative solutions to a nontrivial system of linear 
equations. 

For a PERT network, let P be the set of  all allocations 
satisfying Condition 1.3. (Recall that we  have set W = 1.) 
Then P is a polyhedron, and, since PERT networks 
are acyclic, P is bounded. Each extreme point of P 
corresponds to an assignment of one unit to the edges in 
an st-path. The polytope P is positive because each edge 
is part of some st-path. 

indexed by the edges of our network. Consider the 
problem 

max 2 djxj . (2.1) 

For convenience, in the rest of this  paper,  we  take W = 1. 

Let d = ( d l ,  - , d,,) > 0 be any positive vector 

X E P  

Since each extreme point of P assigns one unit to the 
edges belonging to a particular st-path, (2.1) computes the 
length of a longest st-path, with respect to edge lengths de. 

needed  for task q equals dj/zj ,  where zj is the amount of 
work force assigned to task q. Condition 1.3 states that 
z E P ;  that is, the assignment of work force must  be  an 
s t  flow of one unit. Hence, our PERT problem  is this 
variation of (2.1): 

min max 2 (dj/zj)xj . (2.2) 

We consider the PERT problem in which the time 

Z€P X E P  

Thus, (2.2) allocates the work force so as to minimize the 
length of a longest st-path, where the length of edge j is 
di/zj. 

*In Voltaire’s Cundide, Dr. Pangloss says, “All is for the best . . . in this best of all 
possible worlds.” 
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We actually study (2.1) for every positive polytope P 
and every positive vector d, not just for those arising  from 
PERT problems. 

Note that for any positive z E P ,  if we define cj = dj/zj 
for all j = 1, * , n,  then 

One  principal result is the following. 

Theorem 2.1 (Pangloss theorem for positive polytopes) 
Let P C R" be a positive  polytope and let 
d = (d l ,   d , ,  , dn)  > 0. Then there exists a 
unique c = (cl, * * * , cn)  > 0 such that 

there exists positive z E P such that clzj = d, for all j 

and 

This can be restated as follows: Interpret each x E P 
as a vector of feasible activities. Suppose we are given a 
vector d of target revenues for our activities. Then there 
exists a unique  unit  profit for each activity with the 
following property: If we allocate our resources so as to 
maximize the total revenue with respect to these unit 
profits, each activity in the optimum solution generates 
exactly its prescribed target revenue. More  simply, every 
vector of proposed target revenues is the optimum set of 
revenues for a suitably chosen set of unit proofs. This is 
why we refer to this as a "Pangloss" theorem. 

Theorem 2.1 is the same as 

min max (dj/zj)xj = 2 d, , 
ZEP X E P  

which we prove in the next section. 
We have the following consequence. 

Corollary 2.2 
Let z be the optimal solution to (2.5). Let S be the set 
of extreme points of P. Let T C S be such that z can be 
expressed as a convex combination of {x : x E T }  with 
positive weights. Then 

E dj = (dj/zj)xj  for each x E 7'. 

Let us interpret this corollary for the case of PERT 
networks. With P defined as in the second paragraph of 
this section, it is well  known that each positive vector x in 
P is a positive convex combination of  all extreme points of 
P .  Hence, for a PERT network, Corollary 2.2 shows that 
every st-path has length Zd,, the length of edge j being 
dj/zj. For a more general positive polytope P ,  however, 
there can exist extreme points x, which we cannot use to 
express z, for which Z(dj/zj)xj < Zd,. 

We  now describe an  example of a polyhedron P that 
is positive but not  flat. Consider a graph with node set 
{s, t ,  1, 2, 3, 4, 5} containing the following three st-paths: 

P1 = {(s, 11, (1, 31, (3, 41, (4, t ) } ,  

P2 = {(s, I), (1, 3), (3, 5), (5, t)} ,  

P3 = {(s, 21, (2, 31, (3, 51, (5, t)>. 

Let v (p , )  be the path-edge incidence vector of path p i ,  that 
is, the n-dimensional vector whose jth component equals 1 
if edge j is in path p i ,  and equals 0 otherwise. Define P 
to be the convex hull of { v (p l ) ,   v (p , ) ,   v (p3 ) } .  Any 
hyperplane containing P must contain the incidence 

since v ( p l )  + v ( p 3 )  - v (p , )  = v (p , ) .  The positive 
polytope P is not flat because it does not contain v(p , ) .  

We return to flat positive polytopes in Section 4. 

vector V(P,) O f P ,  -= {(s, 2), (2, 31, (3, 4), (4, t)} ,  

3. Pangloss theorem  for  positive  polytopes 
It is possible that this is a folk theorem in utility theory, 
but we do not know of any reference. We offer two proofs 
for Theorem 2.1. For the first, consider the optimization 
problem: 

min 
Z E P  

F(z)  = 2 I n ? .  

Theorem 3.1 
Let P be a positive  polytope and let d > 0. Then (3.1) has 
a unique optimal solution z ,  which also solves (2.5). 

Proof Since P contains a positive vector, a standard 
compactness argument shows that (3.1) has an optimal 
solution z, all of whose components are strictly positive. 
Strict convexity of  -In zj shows that z is unique. 

To show that this z solves (2.5), we select any x E P 
different  from z and perturb z in the feasible direction 
x - z. Specifically,  we consider the function 
g( t )  = F [ z  + t(x - z)] for 0 5 t 5 1, with F ( z )  defined 
as in (3.1). The function g( t )  is convex, differentiable,  and 
nondecreasing in  t-the last because z is optimal. Thus, 

0 5 g'(0) = 2 (-dj/zj)(xj - zj), for all x E P.  ( 3 4  

Expression (3.2) simplifies to Zdj L Z(dj/zj)xj for all 
x E P ,  which, when combined with (2.3), yields (2.5). 

A more direct proof proceeds as follows: 
First we establish uniqueness. Let z and Z be two 

minimizers in (2 .5) .  Since z E P ,  and i is a minimizer in 
(2.51, 
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d. 

4 
E d j .  (3.4) 

Add the inequalities (3.3) and (3.4). Since each dj > 0 
and zj/.Zj t Tj/zj 2 2 and we have strict inequality unless 
zJ = 5, the sum of the left sides is at least 2Zdj. The 
sum is 2Zdj if and only if zj = Tj for all j .  The  sum of 
the right sides is 284, so z = Z. 

maxxEp Z(dj/zj)xj 2 Zd,. We give two different proofs 
of the reverse inequality. 

Let M be a matrix whose rows are the vertices of P ,  so 
that P is the convex hull K(M) of the rows of M. We must 
prove that 

As noted in (2.3), for any positive z E P ,  

there exists z E K(M) such that - 5 4 for all i .  
m,dj 

j J  
1. 

(3.5) 

Note that for every z E K(M), we have Zjmijdj/zj 2 Zdj 
for at least one i .  It is convenient to have M positive. To 
that end, let J be the matrix of l’s, E > 0. We prove that 
there exists Z ( E )  E K(M t EJ)  such that 

mg + E 
S 2 dj for all i .  

Now Z ( E )  is in a compact region, so there exists a 
sequence of E’S converging to 0 such that the 
corresponding Z(E)’S converge to some z E K(M). This 
z cannot have any coordinate 0; otherwise, since each 
column of M contains at least one positive entry (say in 
row i ) ,  (3.6) would be violated for row i and some E. So, 
returning to ( 3 4 ,  we assume that all entries in M are 
positive. 

Here is  an elementary proof  of (3.5). Let z be a 
minimizer  in (2.5), and assume that (3.5) is false, so that 

max 2 (41zj)mg = D* > D E 2 dj . 

It can be seen that the maximum cannot be attained for all 
i ,  so if I* E {i : Zj(dj/zj)mij = D*}, then 11*1 < m .  Now 
apply induction on the number of rows of M, since (3.5) 
clearly holds if M has one row. Let M* be the submatrix 
of M formed by rows in I * .  Then, by induction, there 
exists i E K(M*) with Zjmijdj/q S D. If E > 0 is 
small, then setting i = Ez + (1 - E)Z yields a value of 
maxi Zjmijdj/ij strictly smaller than D*,  contradicting the 
definition of z. Here we use the fact that because M is 
strictly positive, Zjmijdj/wj is a strictly convex function 
on positive w, smaller when w = i than when w = z. 

Another proof of (3.5) uses Brouwer’s  fixed-point 
theorem. Assume that M has m rows, and  let A be the 

i j  

simplex {A : A 2 0, ZAi  = 1). With z = AM and 
D = Zdj, consider the continuous mapping of A into 
itself: 

A i +  ( j m :  z - - D  ) 

where at 1 max (a, 0). Let A be a fixed  point of this 
map, z = AM. Then 

We must show that for every i ,  the right side of (3.7) is 0. 
This  is surely so if Ai = 0. Further, if it  is  false, the left 
side of (3.7) would be positive for Ai > 0, so that the right 
side would be positive. 

have Zimijdjlzj > D ,  so 
Let A* = {i : Ai > 0). For each i E A*, we would 

But (3.8) can be rewritten 

which is a contradiction. 

4. Pangloss theorem for flat positive polytopes 

Theorem 4. I (Pangloss theorem for  pat positive 

Let P be a pat positive  polytope, and let 
d = ( d l ,  - , d,) > 0. Then there mists a 
unique c = (cl, - , c,) > 0 such that 

POlytOP4 

there exists positive z E P such that cj4 = di for all j 

and 

This theorem asserts that any positive vector d is both 
the “best’’ and “worst”  vector of revenues for some 
linear objective function c, maximized over P .  

Let us deduce Theorem 4.1 from Corollary 2.2. By 
hypothesis, P is  flat and z is positive. It is easy to show 
that z can be written as a positive convex combination 
of all extreme points of P .  Hence (2.6) holds for each 
extreme point of P ,  and (4.1) follows. 

A more  insightful  proof of (4.1) comes from the 
concept of entropy (see [3] for other uses of entropy in 
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combinatorial optimization). First, we present some 
preliminaries. Let P = {x : Ax = b, x L 0) be the given 
flat positive polytope. Let Aj denote the jth column of A. 
The following optimization problem  is motivated by the 
PERT problem: 

Minimize 8 = yb subject to 

P :  A z = b  
z 2 0  

wj : yAj - dj/+ 2 0 for all j .  

Clearly, (4.2) is a convex program. Multipliersp and w 
are assigned to particular constraints. No multipliers are 
assigned to the constraints z 2 0, because an  optimal 
solution to (4.2) would have z > 0; hence, corresponding 
multipliers would all be zero. Because we assume z > 0, 
the Karush-Kuhn-Tucker (KKT) optimality conditions for 
(4.2) are 

w 2 0, 

Y :  A w =  b 
Z, : PA, - = 0, for  all j 

w p p ,  - yAj) = 0, for all j .  

(4.3) 

We shall see that an  optimal solution to (4.2) and its 
KKT multipliers can be obtained from the familiar  program 

min 2 -4 In 5 : Az = b, z 2 0. (4.4) 

Theorem 4.2 
Let z be  an  optimum for (4.4), and let y be its KKT 
multipliers for the  constraints Az = b. Then 01; z )  is 
optimal for (4.2); that program’s KKT multipliers are 
p = y and w = z; and the  optimal  value 8* is Xd,. 

Proof The KKT conditions for (4.4) are 

$/+ = yAj for all j .  (4.5) 

The pair (y; z) satisfies the constraints in (4.2). To satisfy 
the optimality conditions in (4.3), we take p = y and 
w = z. Finally, we  multiply (4.5) by zj and then sum, to 
obtain Xdi = yAz = yb = Ox.  

Its optimal solution and its KKT multipliers equal each 
other. 

Theorem 4.2 establishes a “self-dual” property of (4.2). 

5. Relation between the two Pangloss 
theorems 
The contrast between Theorems 2.1 and 4.1 suggests that 
(4.1) characterizes flat positive polytopes. 
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Theorem 5.1 
Let P be a positive  polytope. Then P is flat i f  and  only i j  
for each d > 0, there  exists  positive z E P such  that 

d, = 2 (dj/zj)xj  for allx E P. ( 5 4  

Proof The necessity is just Theorem 4.1. We prove the 
sufficiency. Let d > 0. By hypothesis, there exists z E P 
for which (5.1) holds. Let cj = dj/zj for each j .  Equation 
(5.1) becomes Xcjxj = Xdj for each x E P. Add 
sufficiently  large  multiples of this equation to the equations 
and inequalities of a minimal representation of P, to cause 
the representation to have the form {x : Alx = b’, A,x 5 bZ,  
x 2 0}, where all  coefficients in A, and A, are positive, 
and every inequality is essential. Thus, at least one of 
these inequalities, which we write as Xajxj = (a, x) 5 b,  
has the following properties: 

each aj > 0; (5.2) 

at least one positive z E P satisfies (a, z) = b; (5.3) 

at least one x E P satisfies (a, x) < b. (5.4) 

Let d = (alzl ,  * * , a,z,,) and c = (al, 9 * , a,,). Then, 
by (5.2) and (5.3), c and z satisfy the Pangloss theorem for 
positive polytopes, and they are unique.  By (5.1), we  must 
have Sajxj = b for  all x E P, which contradicts (5.4). 
Hence P is flat. 

6. Remarks 
In closing,  we  mention three generalizations. First, PERT 
networks may require “dummy” edges that are not 
associated with any real task of the project, but are used 
to impose precedence constraints on the other tasks. 
A dummy  edge e normally has de = 0. There is no 
difficulty  in extending our previous results to this case, but 
uniqueness of the optimal solution value z, for those e with 
de = 0 is lost. An alternative to the introduction of dummy 
edges is to let the nodes of an acyclic graph correspond to 
the tasks of a project, and to use the edges simply to 
indicate precedence. Results analogous to those 
presented in this paper hold  in this framework. 

Second, we can accommodate “nonconcurrence 
conditions,” that is, requirements that certain pairs of 
tasks cannot be performed simultaneously, even if neither 
is a predecessor (direct or indirect) of the other in the 
acyclic graph. To do so, we consider each such pair in 
turn, adding an edge  from the terminal node of one of 
the task edges to the initial node of the other if no edges 
previously added have  made either one a predecessor of 
the other. 

Third, our theorems about positive polytopes hold  for 
any compact convex subset P of the nonnegative orthant 
that contains a positive vector-not just for polytopes. 
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Nimrod  Megiddo has pointed out  to us that problem 
(3.1) is an  instance of finding the weighted analytic  center 
of a polytope. (The word  “center” is used  as it is in 
barrier  methods for linear  programming.) Thus, efficient 
algorithms for finding the  center  (see [4]) are adaptable. 
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