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We describe an environment for efficient and
scalable implementation of large scientific
applications on parallel and distributed
computing systems. We show how this
environment is used to support overlapping
grid methods. In addition to providing a user
interface that reduces programming
complexity, the environment facilitates
dynamic partitioning of data and the
scheduling of both computations and
communication, transparent to the user.
After describing the user interface and some
of the implementation issues, we present
performance data for a model application
executed on two different systems: an eight-
processor IBM Power Paraliel Prototype (PPP)
system and a 32-processor IBM POWER
Visualization System™ (PVS).

Introduction

DSK is a portable scientific database package for managing

hierarchical data structures in FORTRAN programs [1].
The DSK package maintains, in the form of a database,
an image of the data structures in memory, which may be
accessed subsequently by other programs. In this paper,
we describe some extensions to the DSK package to
support parallel and distributed computation. With these
extensions, it is possible for a user to define distributed-
data structures but not necessarily specify the data
distribution explicitly. Furthermore, these extensions
provide, at the user level, a uniform method of access to
local and remote data and an efficient run-time support
environment. The distributed nature of the data is
transparent to the user, and so is the scheduling of
communication. Under the environment provided by the
extended DSK package, a user can write programs for
distributed-memory systems that are not very different
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from sequential programs. Moreover, execution of these
programs does not involve any run-time preprocessing,
as is the case in some other systems.

To demonstrate some features of DSK that make it a
useful tool in the solution of partial differential equations
(PDEs), we explain how we used it in the parallel solution
of a time-dependent PDE on a composite overlapping grid
[2]. This involved an interesting combination of regular
and irregular types of computations: The parallel finite-
difference computations within each component grid
are characterized by regular data dependencies and
communication patterns, whereas the computations
associated with the intergrid interpolations exhibit irregular
dependencies and unstructured communication patterns.
The solution of the problem we selected provides a
nontrivial example of the use of the DSK package for
parallel computation.

We discuss the extended DSK package in the context
of its applicability to a class of problems that has been
referred to as irregularly coupled, regular-mesh
computations [3]. This class includes overlapping-grid,
block-structured grid, and adaptive-grid problems.
Difficulties encountered in parallelizing the application
programs belonging to this class are well known, and
several attempts to reduce the programming burden have
been made in recent years. These attempts include a suite
of library calls, run-time preprocessors, and run-time
environments managed by compilers. Class libraries in
C++®, such as P++ [4] and LPAR [5], have been
developed in recent years. LPAR provides a coarse-grain
parallel-programming model and is primarily intended for
applications with dependencies that may vary dynamically,
such as those in N-body simulations. Multiblock PARTI
[6, 7} is a preprocessor that analyzes dependences at run
time and performs communication optimizations prior to
commencing any numerical computations. Work has been
described in [8] that extends the capabilities of multiblock
PARTI so that its run-time library can be incorporated
by compilers for FORTRAN D [9] and other High
Performance FORTRAN (HPF) data-parallel programming
languages. Both LPAR and PARTI perform run-time
preprocessing to determine communication schedules.
Task-oriented parallel languages, such as FORTRAN M,
also provide facilities for handling irregularly coupled,
regular-mesh applications [10].

The advantage of the DSK package over the other
systems described above is that it allows one to efficiently
execute FORTRAN programs on a variety of parallel
architectures, with minimal user intervention. In addition,
the DSK package performs no run-time preprocessing.

As described in this paper, the overheads involved are
small, and code modifications are minimal.

The organization of the rest of the paper is as follows.
In the next section, we provide some background for
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numerical solution of PDE problems where overlapping
grid techniques are commonly used. We also use that
discussion to provide a motivation for the work we discuss
in the rest of the paper. In the third section, we discuss,
in some detail, a model problem that we solve using the
overlapping-grid method, and we provide an outline of the
parallel implementation of the model problem under the
DSK environment. The details of the DSK package are
given in the next section. The performance results from
our experiments on two parallel systems are presented
and discussed in the following section. The next section
concludes the paper.

Background and motivation

Among scientific computations, the numerical solution of
PDEs, such as the Euler and Navier-Stokes equations
describing fluid flow, is of great interest both to the
research community and to industry. With the help of an
example that requires the solution of PDEs, we motivate
the design and development of the extended DSK package;
however, the tools we describe are applicable to a wider
class of application programs in which large-array data
structures are used.

The complexity of the computations for the numerical
solution of PDEs, in terms of both data dependencies and
programming effort, increases with the complexity of the
associated geometry. For cases in which the geometry is
simple, the physical domain can be discretized with a
Cartesian grid. To properly handle physical domains with a
more complex geometry, a boundary-fitted curvilinear grid
may be used. Such a grid is generated from a Cartesian
grid by a smooth coordinate transformation from the
physical domain to a rectilinear computational domain.

In general, the difference stencils used in discretizing the
PDE:s for numerical solution on Cartesian or curvilinear
grids give rise to data dependencies that are local and
regular in nature. For this reason, implementation of
explicit finite-difference methods that use such stencils is
easy, and implementation of parallel algorithms for these
methods is not very difficult.

When the geometry is nontrivial, a single curvilinear grid
is inadequate, and more powerful techniques must
be used, such as patched-grid (block-structured) or
overlapping-grid methods. With these methods, several
curvilinear component grids are used, which together
cover the physical domain. For patched-grid methods,
adjacent component grids must match exactly along their
common boundary. As a result, the data dependencies of
explicit finite-difference methods for patched grid are such
that computing the difference stencils at the boundary
points of component grids requires an exchange of
rectangular blocks of data among adjacent grids. This
makes patched-grid methods difficult to implement,
especially when a parallel implementation is required.
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For overlapping-grid methods, functions defined on the
composite grid are connected by means of interpolation
between the component grids in their region of overlap.
As a result, finite-difference methods for overlapping grid
use interpolation to complete the computations of the
difference stencil at all points in the region of overlap.
Once the interpolation functions are determined, these
computations turn out to be more straightforward

than those with patched grid. However, the parallel
implementations of the finite-difference methods for
overlapping grid are more complex, since they involve less
structured exchange of data between component grids.
Moreover, correct implementation of an efficient parallel
algorithm is much more difficult. Our interest in the
success of patched- and overlapping-grid methods has
motivated us to develop tools to manage these difficulties.
We consider such tools indispensable for the development
of parallel algorithms and their implementations.

We discuss in some detail the implementation of finite-
difference methods on overlapping grids, because this class
of grids includes as special cases patched grids, single
curvilinear grids, and Cartesian grids. The methods and
tools we describe are applicable to all of these types of
grids. A composite overlapping grid is a set of curvilinear,
logically rectangular grids, each of which covers part of a
physical domain to be discretized. The component grids
that are adjacent to one another overlap, so that functions
defined on the composite grid may be interpolated from
one component grid to the other. Figure 1 shows a simple
two-dimensional overlapping grid, with two components—
a square grid {with some redundant cells eliminated) and
an annular grid. This overlapping grid was generated using
the program CMPGRD [2, 11], which determines what cells
on each component grid may be used in the discretization
of the PDEs over the entire grid and what cells may be
interpolated from other component grids. In Figure 1, the
interpolated cells are marked with small circles at their
centers. A typical overlapping grid for a domain of modest
complexity consists of two to ten component grids, each
containing one thousand to one million grid points.

In recent years, the available physical memory for user
data on uniprocessor systems has increased manyfold;
however, there will aiways be PDE problems we would
like to solve that are too large for any uniprocessor system
to handle. We expect that the largest parallel computers
available in the near future will be of the distributed-
memory type, so we would like to be able to use these
to solve PDE problems on overlapping grids. We have
implemented software tools to facilitate the implementation
of efficient parallel algorithms for the solution of PDEs
with the least possible programming effort. With this
system of tools, it is possible to transform an explicit
sequential time-stepping or iterative PDE algorithm into a
parallel algorithm, with only small changes to the method
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Composite overlapping grid for a disc. Interpolated cells are
marked with circles at their centers.

and to its implementation in a FORTRAN program. This
provides a framework for the use of overlapping grids to
solve PDE problems that are too large to be solved on a
uniprocessor system.

Model application
In this section, we describe our model problem in
some detail. In the following sections, we illustrate the
application of the extended DSK package for the parallel
implementation of the numerical solution of this model
problem. The problem we consider is that of the solution
of Burger’s equation (which describes a nonlinear wave
equation) over a circular disc. This is a relatively
simple example with sufficiently complex geometry. A
discretization of such a body using overlapping grid is
shown in Figure 1. Note that, for simplicity, the model
problem is a two-dimensional example, although the
techniques described are equally applicable to three-
dimensional problems.

We consider a two-dimensional analogue of Burger’s
equation,

w91 ou  m
—+— =] =y = +—=], 1
a " ax\2" ) T\ T a2 @)

with the initial condition

x - X,
u(x, y, 0) = u(x): = ¢ — tanh o
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Grid functions for discretization of model problem. The u’s are at

the cell centers, and F and G are the fluxes at the cell edges.

where v is the coefficient of diffusion. The exact solution
to this equation is

u(x,y, t) = ufx — ct),

which is a shock layer moving to the right with speed c.
Equation (1) has the form

ou i} @
p axﬂ”) oy gu) =0, @
where

1 ) ou
f(u) = Eu -V a
and

u

glu) = —v 5 .

For the solution of the above PDE by finite-difference
methods, overlapping boundary-fitted curvilinear grids may
be used. To discretize, we first transform Equation (2)
from the (x, y) coordinate system to an (r, s) curvilinear
coordinate system, so that the grid spacing in the new
system is uniform and of unit length. This transforms the
physical domain in x-y space into an r-s computational
space that is a rectangular domain and has a regular
uniform mesh. Then, Equation (1) becomes
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ou . 9 0
— - — F + — = 3
a T |G W 0w =0 )
where
ox dy a4y dx
T oros  aros’

dy ax
Flu) = = flu) = — g(u),
and
ax ay
Gl) = — g) = = flw).
We discretize u, F, and G on a staggered Cartesian grid

with unit mesh-size, as shown in Figure 2. We use second-
order centered averaging and difference operators to

compute Fij in terms of Uiy o Uiy jers Ui and Uiy and to
compute G in terms of u, ,_,, u,,, ., U, and u,,, ;. Then
we discretize Equation (3) in space, to second-order
accuracy, as

du) | AAF +A.G)=0 @)

— A ] il

dt J
where

-1

A=,

A+inj = F'+1,j - F

i /4
and

AG,=G,, —G,.

ij+1 g

That is, we use a nine-point difference stencil to compute
(du/dt),.

To discretize Equation (3) on an overlapping grid, we
must supply interpolation boundary conditions in the
regions of overlap among the component grids. On any
component grid k, a cell where we want to update u from
Equation (4) is referred to as a discretization cell. Clearly,
such a cell must be surrounded by other cells where the
solution to u is known. These surrounding cells may be
other discretization cells, they may be cells for which the
Dirichlet boundary condition provides the value of u, or
they may be cells where u is interpolated from another
grid k'. A cell where u is computed using a specified
interpolation boundary condition is referred to as
an interpolated cell. We use biquadratic Lagrange
interpolation from a stencil of nine cells centered on the
cell of grid k' nearest to the interpolated cell on grid k.
As mentioned in the previous section, we use the program
CMPGRD to generate the overlapping grids and to
determine, for each grid k, the list of interpolated cells
that should receive values interpolated from other grids.
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In the example of Figure 1, there are only two overlapping
component grids, but in general, there may be more than
two. In all such cases, CMPGRD determines from which
grid k' each interpolated cell should receive its values and
provides the location of that cell within grid £’. From this
information, the interpolation coefficients for each
interpolated cell can be computed.

To discretize in time, we use the classical fourth-order
four-stage Runge-Kutta time-stepping method, in which
u"*! (the solution at time step n + 1) is computed from u"
(the solution at time step n) as follows:

1
ntl _ ] @ 3) “)
w; =u+ 5 (vi’. + 2v,.j + 2v,.j + v, ), (5a)
where
o = —AtA,[A, FW) + A,G,0, (5b)

1 1
@ _ _ n,_ M PR
vy = AtA‘.j AHF,-,-(” + 2v ) + Aﬂ.Gij(u + 2v )

-

(5¢)

1 1
= n @ n
v = —Atd, Aﬂ.Fij(u +5v ) + Aﬂ,Gij(u + Evm) ,

(d)
and

G " + V). (Se)

Ty

vfj‘” = —AtAij[AH}:'ij(un + v(a)) +A

The initial condition of Equation (1) defines u;. The time
step for the above Runge-Kutta method is chosen close
to the stability limit. Because of the nonlinearity, we
experimentally determined an appropriate time step. In
particular, we use

hZ
At=03—,
14

where

: ax\’ ay :

) Ar, (—) + (—) As}.
as as
The minimum here is taken over all grid points on all
component grids. In advancing the solution by one time
step in the Runge-Kutta method, one computes the
intermediate solutions v of Equation (5) in four stages,
k=1---4.
In the following, we present a sequential algorithm for

the implementation of stage k of the Runge-Kutta method
in the context of overlapping grids.
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on the composite grid of Figure 1. Cells marked with circles are
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|
é interpolated from nine cells (shown bounded by a box) of the other
updated in the direction of periodicity.

Overlapping-grid Runge-Kutta algorithm for stage k

1. Interpolate u" + ak_lv(k'_l’ (or 4" only, for stage k = 1)
for the interpolated cells in the region of overlap
between component grids, where a, = a, = 1/2 and
a, =1.

2. Copy boundary values u" + a,_v*™" (or u") from
opposite sides of the same component grid, for the cells
at which the grid has periodic boundary conditions.

3. For each discretization cell, compute v* from
u" + a,_v*" (or u") [as specified in Equation (5)].

4, If k < 4, compute and save the sum u" + akv(");
ifk =1,setu"" tou" + v";if k > 1, accumulate
Bv" intou""!, where B, = B, = 1/6 and B, = B, = 1/3.

5. Apply boundary conditions to 1" + av ® itk < 4

. 1
otherwise to u"*'.

Figure 3 illustrates the implementation of steps
1 and 2, the interpolation and periodic update of a function
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Grid dims

Composite-grid data structure (simplified).

s

defined on the composite grid shown in Figure 1. Grid 1
corresponds to the square grid (with some cells removed),
and grid 2 corresponds to the annular grid, which has

a periodic boundary condition in one direction. To
interpolate u” on grid 1 in the region of overlap (step 1),
for each cell of grid 1 marked with a circle at its center,
we compute u” as the weighted sum of #” in a 3 x 3 block
of cells of grid 2. The cell in the center of this block is the
nearest cell to the cell interpolated on grid 1. We use
Lagrange interpolation to determine the weights in the
sum. Step 2 primarily serves the purpose of implementing
periodic boundary conditions in a convenient manner.
Note that for the example of Figure 1, step 2 is applicable
only to grid 2, which is periodic in one direction. For
convenience in implementing the discretization given by
Equation (4), we extend grid 2 by an extra row of cells

(a one-cell-wide strip at the two opposite sides, in the
direction of periodicity (in Figure 3, this is depicted by
empty rectangular boxes at the top and bottom edges of
grid 2), and replicate the values of #” from the interior
edge of grid 2 into the opposite edges of grid 2 into the
extended strips (direction of arrows indicates the direction
of replication).

® Data structures

One function of the DSK package [1] is to manage data
structures. This package provides facilities for managing
lists and arrays (including arrays of lists and lists of arrays)
in FORTRAN programs. We use (but do not describe
here) the database features of DSK, which allow us to
access data structures created by the composite-grid-
generation program CMPGRD. Later in this paper,
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we describe some features of DSK that enable us to
implement an efficient parallel version of the solution of
our model problem, with only small modifications to the
algorithm and its implementation in FORTRAN.

In general, it is useful to implement overlapping-grid
PDE code in such a way that the number of component
grids and their sizes need not be known in advance. To
achieve this, we allocate memory for the data structures
that describe the component grids and the discrete solution
of the problem. Figure 4 shows a simplified version of the
hierarchical data structure used in the model problem.

In this figure, data structure dims stores the dimensions
of each of the n, component grids. Each component

grid contains some large arrays, like u (which holds the
solution), whose dimensions are the number of grid cells in
each direction. The boxes in Figure 4 labeled F, G, J, and
u are the large arrays associated with grid 1. Associated
with each component grid are also some small arrays (not
shown in the figure) that contain information about the
grid, such as its periodicity, and some intermediate-sized
arrays containing interpolation data. This data structure is
sufficiently flexible to describe a PDE computation on
overlapping grids with any number of component grids,
all of different sizes.

® Parallel implementation

A natural way to exploit the parallelism inherent in the
solution of a PDE problem is to subdivide each component
grid (in one or more directions) into blocks and to assign
one or more blocks of the various component grids to each
processor. In general, each processor may be assigned
blocks of more than one component grid. Since there may
be any number of component grids, each of a different
size, it is not possible in general to partition the
component grids so that all of the blocks are of the same
size (i.e., have the same amount of work) and to assign
exactly the same number of blocks to each processor.
Thus, in any block-to-processor assignment scheme, the
computational work load may not be balanced across
processors. Moreover, the number of blocks into which
each component grid should be divided in each direction is
a compromise between load balance and communication
complexity. The load balance may be improved by
choosing the total number of blocks to be larger than the
number of processors, estimating the amount of work
associated with computations on each block, and assigning
a set of blocks to each processor so that the total work
from all of the assigned blocks is approximately the

same for all processors. This strategy, however, may
significantly increase the communication overhead. On the
other hand, if the component grids are partitioned into a
few large blocks, locality in computation can be exploited
efficiently, leading to relatively less interprocessor
communication. However, with this strategy, there may
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not be enough blocks to evenly distribute the
computational work among processors.

The first step in assigning blocks to processors is to
assess the work associated with each block. A count of the
number of discretization cells and interpolation cells in a
block provides one estimate of the work associated with
that block. When work per cell is uniform, this estimate is
quite accurate. Quite often, however, the work associated
with interior cells differs significantly from the work
associated with the cells on the domain boundary, the cells
where the values are interpolated. In such cases, the
computational work per block may be measured at run
time, after which the blocks may be assigned to different
processors appropriately. With such a technique,
computational work can be distributed evenly among
processors, but this is possible only at the cost of
significant run-time overhead in estimating the
computational work and distribution of blocks among
processors. Generally, this technique is more suitable for
fine-tuning the computational workload among processors.
The extended DSK package estimates the work per block
to be proportional to the number of discretization cells and
interpolation cells in the block. On this basis, the blocks
are ordered in descending sequence of their computational
work and then assigned to processors, using a bin-packing
type of algorithm.

The control structure of our parallel implementation of
one stage of the Runge-Kutta method on overlapping grid
is almost identical to that in the sequential algorithm. The
main differences are that (1) the interpolation (step 1 of the
sequential algorithm) is split into two steps and (2) the
update for periodicity (step 2) becomes an update of the
overlaps between neighboring blocks of the same grid.

In the distributed algorithm, each processor works on
only the blocks that are assigned to it, and before each
Runge-Kutta stage, we ensure that the data needed for the
computations on each block are available on the processor
to which the block is assigned. Specifically, at stage k of
the distributed Runge-Kutta algorithm for overlapping
grid, each processor performs the following operations

on every block b of each component grid assigned to it.

Distributed Runge-Kutta algorithm for stage k

1. Sum the contributions from blocks of other grids to the
interpolation of u” + a,_v*™" (u", if k = 1) at the
interpolation cells (if there are any) of block b, where
a =a,=12anda, = 1.

2. For each discretization cell, compute v* from
u" + ak_lv(k'l) (or u").

3. If k < 4, compute and save the sum u" + av
ifk=1,setu"" tou" + Blv“); if k > 1, accumulate
B.v" intou™', where B, = B, = 1/6 and B, = B, = 1/3.

4. Apply boundary conditions to u" + av ® ik < 4;
otherwise to u"*".

(k)

3
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5. For the overlapping parts of neighboring blocks of the
same component grid, send updates to u” + akv("’,
if k < 4; otherwise to u""".

6. Compute and send contributions from block b to the
interpolation of u" + a,v* (or u"*') on blocks of other

component grids.

Note that steps 1 and 6 in the above algorithm complete
step 1 of the sequential algorithm, and step 5 replaces step
2. In the following, we explain these modifications in some
detail.

For updating the solution at a discretization cell, values
at the eight neighboring cells are necessary. When a
component grid is partitioned into blocks, the neighboring
cells of a discretization cell may belong to another block.
Thus, the solution update at such cells requires fetching
data from cells belonging to one or more other blocks. For
implementation convenience, we extend the data structures
associated with each block b so that they store the
appropriate data, from the neighboring blocks, needed in
the computations of the discretization cells of block b.
This results in an ‘““overlap’> among blocks of the same
component grid. These overlaps are shown as empty
rectangular boxes in Figure 5. In that figure, for the sake
of clarity, blocks are moved apart from one another, and
the block extensions are indicated by narrow strips of
empty rectangular and square boxes. The arrows indicate
the relations between the boundary regions and the
extensions from neighboring blocks. Thus, in step 5 of the
distributed Runge-Kutta algorithm, the u" + akv“‘) values
computed at the discretization cells on the boundary of a
block are copied into the extended parts of neighboring
blocks of the same component grid. This copying may
involve interprocessor communication if the two blocks
reside on separate processors.

Steps 1 and 6 of the distributed algorithm complete
the interpolation part. This is illustrated in Figure 6. To
understand the interpolation step, it is convenient to think
of interpolation as consisting of step 6 followed by step 1,
since these steps follow each other in going from one
Runge-Kutta stage to the next, or from one time step to
the next. When a processor reaches step 6 of stage &,
it has finished computing u" + akv(k) for the current
block, so it has the information needed to compute the
contributions from this block to the interpolation of cells of
other grids. It computes these contributions as weighted
sums and stores them temporarily in a local array, sorted
according to which blocks of other grids will need them.
These contributions must be made available to the
processors where they will be needed later for step 1 of
the next stage or the next time step. This data movement
is made possible by interfacing with the DSK package
environment, as explained in the following subsection. The

interpolation in step 1 is completed on each processor, 291
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Block boundary update of a distributed composite-grid function,
for the composite grid shown in Figure 1.

once all required contributions from blocks of other grids
are made available.

® Interface to DSK
As mentioned earlier, the DSK package provides a
convenient means for managing data structures that are
typically associated with overlapping-grid computations. In
addition, with the extended DSK package, the distributed
computations described above can be implemented
efficiently and with significantly reduced programming
efforts. Using the model problem described above as an
example, we briefly describe the DSK interface to user
programs.

Shown in Figure 7 is an outline of the outer loop of the
parallel Runge-Kutta algorithm, where the solution is
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advanced by one time step in each loop iterate. The
calls to subroutine RKStage perform the computations
corresponding to the Runge-Kutta stages, which are
outlined in Figure 8. We set a scheduling point before
performing the computations for each Runge-Kutta stage
and at the end of each time step. Such markings in the
control flow of the computations indicate to DSK the
progression of computations on each processor.

Setting a SCHEDULE_POINT essentially translates into
calling dsksch of the DSK package with the appropriate
key word, BEGIN, MIDDLE, or END. We explain the
details of dsksch in the following section. For the current
discussion, it is sufficient to note that the interprocessor
dataflow remains the same from one time step to the next
and that the schedule points are meant to take advantage
of this repetitive pattern in scheduling computations
on a processor as well as in scheduling interprocessor

Distributed interpolation
buffer array for Grid 1
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Interpolation of a distributed composite-grid function, for the com-
posite grid of Figure 1. Contributions from each block of Grid 2
to the interpolation of cells in a block of Grid 1 are accumulated in
a work array local to the processor assigned to the block. The
local array is copied asynchronously into a distributed interpola-
tion buffer for Grid 1. Later, the partial sums in the interpolation
buffer are added together into the interpolated cells of the block of
Grid 1.
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communication. The schedule points marked as BEGIN
and END demarcate this repetitive pattern. [Since a
BEGIN mark follows an END mark of the previous time
step, it is possible to replace these two with a single mark
and achieve the same functionality. (This will, of course,
require an additional marking, either before entering the
loop or upon exiting the loop.) For maximum flexibility
and convenience, however, we use both BEGIN and END
markings.] The interprocessor communication repeats itself
even within a time step. In fact, the dataflow is analogous
for each stage of the Runge-Kutta algorithm. The
completion of one stage and the beginning of the next
stage are indicated to DSK by the MIDDLE marking.

With the help of the schedule points, DSK manages data
integrity across the system and schedules interprocessor
communications in an efficient manner. In the next section,
we describe the details of the optimizations accomplished
with this scheduling mechanism. In the section on
performance results, below, we present experimental
results showing the performance gains obtained by this
type of scheduling.

As indicated above, Figure 8 is an outline of the parallel
algorithm for performing a single stage of the Runge-Kutta
method. There, B is a list of blocks assigned to a processor
(also referred to as LocalBlocks), maintained by DSK for
each processor. On each processor, the single-stage

Initialize arrays
Begin solution for time step:

Set SCHEDULE_POINT to BEGIN
call RKStage (k = 1)

Set SCHEDULE_POINT t0o MIDDLE
call RKStage (k = 2)

Set SCHEDULE_POINT z0 MIDDLE
call RKStage (k = 3)

Set SCHEDULE_POINT to MIDDLE
call RKStage (k = 4)

Set SCHEDULE_POINT fo END

Continue fo next time step.

An outline of the paralle]l Runge—Kutta time-stepping algorithm,
showing the scheduling interface to the DSK environment.
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Algorithm RKStage (k)

B < list of LocalBlocks
foreach b € B do:
ifk=1
GET_ARRAYS u" and interp_buffers for b
Interpolate u" at interpolation cells
Compute v from u"
Initialize u™*' to u"
Accumulate g,v" into u™""!
else
GET_ARRAYS u”, u™"', (u" + a,_v* ™)
and interp_buffers for b
Interpolate u" + ak_lv("“” at interpolation
cells
Compute v from u” + a,_v
Accumulate 8,0 into u™*"'
endif

(k-1)

itk <4
Compute u” + a0
Apply boundary conditions to u” + a,v
Compute local values for interpolation of
u" + akv(") on block of other grids
SAVE_ARRAYS u"*! and u" + a,v®
else
Apply boundary conditions to u""'
Compute local values for interpolation of
u"*" on block of other grids
SAVE_ARRAYS "'
endif
end foreach

)
(k)

end Algorithm RKStage

An outline of the parallel algorithm for performing a single
stage of the Runge-Kutta method. GET_ARRAYS and
SAVE_ARRAYS interface with the DSK environment.

computations are performed on each local block, one after
another. GET_ARRAYS is an interface to DSK, which
accomplishes retrieving the arrays necessary in the
computations of the stage. This interface makes calls to
DSK package routines dskdsw. Before returning control
to the user program, DSK ensures that the variables
associated with the boundary overlaps of these arrays are
appropriately updated. With the values in the interpolation
buffers, interpolations are performed at the interpolated
cells of block b. Following this, v*' is computed at
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Overlapping blocks of an array.

the discretization cells of block b and appropriately
accumulated into array u”*'. Also computed are an array

with values u” + akv(k) {which is used in the computations

of the next stage of the same time step), the values at the
grid boundaries according to the specified boundary
conditions, and the interpolation values that may be
needed for blocks belonging to other grids.
SAVE_ARRAYS forms another interface to DSK. In
performing this function, DSK uses appropriate values
from the arrays just computed to update the boundary
overlaps of neighboring blocks, as well as to update

the interpolation buffers of blocks belonging to other
component grids. Note that some blocks may not have
any data that are needed in interpolation. In that case, no
interpolation data are retrieved. When there are boundary
update data or data for interpolation, DSK copies the data
to the proper arrays of the appropriate blocks. This is
accomplished by a call to dskdcb. If the block to be
updated is assigned to a remote processor, a message is
sent, transparent to the user, and the DSK environment on
the remote processor retrieves that message and copies the
data into the proper array of the appropriate block. Details
of dskdsw and dskdcb are presented in the next section.

Parallelization with the DSK package

In this section, we describe the implementation in the DSK
package of array partitioning and mapping, as well as the
interprocessor communication involved in accessing
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distributed arrays. We discuss in some detail the
communication-optimization techniques embedded in DSK.

& Array partitioning

As mentioned earlier, with the DSK package, the
individual arrays used by an application may be further
partitioned into a user-specified number of array blocks.
The partitioning can be specified along each of the array
dimensions. DSK ensures that the array elements are
divided as evenly as possible along the direction(s) of
partitioning. In the following discussion, when there is no
ambiguity, we use the term block to mean an array block.
Partitioning an array associated with a single grid results in
adjacent blocks. Figure 9 shows a two-dimensional array
partitioned into three blocks in each dimension. The blank
boxes shown between pairs of adjacent large blocks and
the arrows in that figure have the same meanings as in
Figure 5. The pair (i, j) at the center of each array block
is the coordinate of that block (assuming the lower left
corner as the origin). The DSK package can handle higher-
dimensional arrays and their partitioning along multiple
dimensions.

The DSK package subroutine dskdef allows the user to
define a distributed-array data structure by specifying its
dimensions, partitioning parameters (e.g., number of
partitions or size of each partition along each dimension),
periodicity along any of the dimensions, and the width of
the overlaps (extensions may be more than one cell wide)
between adjacent array blocks. This package then
partitions the array into a number of blocks that depends
upon parameters such as the size of the array, the number
of processors available, the desired granularity of
computation, and the type of data dependencies among the
array elements. Since there are many choices, and users
typically want to experiment with various possibilities for
performance, the choice for the number of blocks into
which an array is to be divided is left up to the user. As
noted earlier, load balancing among processors is easier
when the number of blocks is larger than the number of
processors; however, this may result in significantly higher
communication and bookkeeping costs, as well as the costs
of maintaining the overlaps associated with these blocks.

In many applications, including those with multiple,
overlapping grids (see the example of the previous
section), more than one array data structure may be
involved. Moreover, the array dimensions may be
considerably different. Each array may be divided into a
different number of block arrays, and the block sizes may
differ from array to array. Such heterogeneous, multiple,
distributed-array partitionings are managed by the DSK
package with minimal user involvement.

% Mapping of array blocks to processors
DSK automatically distributes the blocks from all of the
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arrays among the available processors so as to divide the
total computational work as evenly as possible. For this,
the total computational work associated with each block is
first determined. With computational work considered as
the weight, all blocks are sorted in descending order of
weight and then mapped to processors according to a
bin-packing algorithm. Entire blocks are assigned to
processors; they are not further divided. Each processor
may be assigned more than one block, and the blocks
assigned to a processor may belong to one or more arrays.
As in the case of array partitioning, the DSK package
provides routines that facilitate mapping array blocks to
processors.

® Update and copy operations
The DSK package provides facilities for “get” and “‘put”
types of communication operations. For example, with a
get type of operation, it is possible to update values in an
array block with values from the adjacent array blocks;
with a put type of operation, the values in the neighboring
blocks can be updated with the values in the array block.
Both of these operations are handled by making a call to
dskdsw. Similarly, a call to dskdcb allows the user to
specify a copy operation between a local array (e.g., a
temporary work array) and an array managed by DSK.
For the model application described earlier, values may
be needed from neighboring biocks prior to performing a
computation on a block. In this case, a call is made to
dskdsw, to update the boundary of the block, for locations
where there is an overlap with the adjacent blocks.
Using the internally stored tables describing the block
partitioning, the DSK package performs the update
operation at all the boundary elements of a block.
Similarly, after an array block is updated at the end of a
Runge-Kutta stage or at the end of a time step, dskdsw
can be called to update the boundaries of the adjacent
blocks. Note that a call to dskdsw is made both to update
the boundaries of a block with the values from adjacent
blocks and to update the boundaries of adjacent blocks
with the values from a specified block. We refer to the
former type of update as the fan-in boundary update and
to the latter type as the fan-out boundary update. The
direction of update is specified by flags passed to dskdsw.
These flags can be used to stipulate a fan-in or a fan-out
update, or even both types of updates. Furthermore, the
updates on a block may be performed using values
corresponding to the same block or from another block.
We used a fan-out update in the model application.
Figure 9 shows an example in which values from blocks
(1,2), (2,1), and (2,2) are needed for the computations to
proceed on block (1,1). Similarly, values computed in
block (1,1) are used to update the boundaries of blocks
(2,1), (1,2), and (2,2). As mentioned earlier, the buffers
shown between neighboring blocks in Figure 9 indicate
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extensions to the array blocks needed to hold values from
the neighboring blocks, and the arrow tails indicate the
array blocks from which the values are copied into the
buffers. The DSK package maintains this information and
performs the appropriate updates when dskdsw is invoked.
This avoids explicit copying of data or buffer management
by the user. Also, there is no need for explicit specification
of which values are to be copied or communicated among
Pprocessors.

During the interpolation phase (steps 1 and 6) of the
model application, a copy operation involving two arrays is
required. One of the arrays may be a local work array, and
the other is an array managed by the DSK package. This
operation is accomplished by calling dskdcb. For example,
Figure 6 shows the steps involved in interpolating the
boundary values of an array associated with grid 1 using
the values from an array associated with grid 2. First the
contributions from each block of the array of grid 2 are
accumulated in local work arrays of the processors or
assigned to kandling the blocks. The contents of the local
work arrays are then copied into the interpolation buffer
arrays associated with the blocks of grid 1. This is
accomplished by calling dskdcb. Note that the
interpolation buffer itself may be partitioned into blocks,
as shown in Figure 6; however, the user need not be
concerned about the distributed nature of these arrays,
since DSK handles the details of the copy operations
transparently.

® Interprocessor communication

As described above, calls to dskdsw and dskdcb involve
accessing one or more array blocks managed by the DSK
package. If all of these array blocks are mapped onto the
same processor that calls dskdsw or dskdcb, DSK satisfies
these requests by performing local memory-to-memory
copy operations; i.e., communication messages are
eliminated when they are not necessary. If one or more
blocks are stored on remote processors, interprocessor
communication is required. The DSK handling of these
communication steps is transparent to the user. In this
case, a call to dskdsw or dskdcb returns control to the
calling program only after the communication has been
successfully completed.

The interprocessor communication is handled through
use of the tables that specify the mapping of blocks to
processors. These tables are created during the setup
phase and are maintained by the DSK package for all
blocks. From the definitions of the blocks, DSK can also
determine the blocks from which the boundary values
are required, for any given block. If a remote block is
involved, a message is sent to the processor to which that
block is assigned. Note that interprocessor communication
may be involved in both the fan-in and fan-out updates; in
both cases the communication is handled by DSK and is
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transparent to the user program. In the case of a fan-in
type of update involving a remote block, requests for
information are sent to the appropriate processors, and
the information is received in response to these explicit
requests. In the case of a fan-our type of update, the
information is sent out to the appropriate processors on
the basis of a priori knowledge of the need at a remote
block for the appropriate local information. With such a
scheme, there is no need to issue explicit messages
requesting specific information from other processors.

& Communication optimization

The above-described interprocessor communication

in the calls to dskdsw and dskdcb may involve extra
communication and synchronization overheads. For
instance, when a call is made to dskdsw with a fan-in type
of boundary update for a particular block and the update
information is not available locally, messages requesting
the necessary information are sent to the ““owner”
processors. We refer to such messages as request-type
messages. Whenever a processor receives a request for
data from another processor (by means of such a request-
type message), it satisfies the request by sending back the
requested data. This is carried out by the DSK system
running on the owner processor, which performs this task
when the user transfers control of execution to DSK via
one of the calls to the DSK package. (In other words,

the requests do not generate interrupts.) Also, since the
storage holding the data generated in one iteration is
reused in the next iteration, it is necessary to ensure

that all request-type messages are satisfied before the
computation on the next iteration begins. A global
synchronization at the end of a time step ensures that

all requests are satisfied, even if these requests arrive
asynchronously. Although the above-described procedure
ensures correct execution, there are two major types of
overhead that affect performance: the request messages
that must be issued for the needed data, and the global
synchronization that must be performed whenever storage
reuse results in loss of data that may be needed elsewhere.
These costs considerably reduce the efficiency of parallel
computation. In the worst case, they can render unscalable
a perfectly scalable application.

We now describe certain optimization steps incorporated
into the DSK package that minimize the effects of the
above-mentioned overheads, without weakening any of the
capabilities. These optimizations take advantage of the
repetitive nature of the computations observed in the
iterative solution of PDEs.

For the class of problems we are considering (steady-
state solution to PDEs), the interblock dependencies do
not change from time step to time step; therefore, one
can reduce the overheads by collecting information on
the data-request and data-delivery patterns among the
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processors by inspecting the execution of the first time
step. This information can then be used in scheduling the
messages. With such an arrangement, owner processors
can send appropriate values to ““consumer”” processors in
the most efficient manner, without being prompted for
those values. Thus, in subsequent time steps, no global
synchronization is needed.

Broadly speaking, there are two ways in which a
program can be monitored for recording communication
requirements. One way is to perform a preprocessing
step prior to commencing the numerical computations.

At the end of the preprocessing step, the monitoring or
inspection step is complete, and all of the iterations in the
computation can be executed using the schedules
established in the preprocessing phase. This approach is
used by the multiblock PARTI library [7]. One advantage
of this approach is that the schedules can be used in all
iterations. A disadvantage is that an explicit preprocessing
step must be introduced, adding some computation and
communication overhead.

The second approach is to gather the necessary
information during the actual execution of the first time
step and create a schedule of communication based on
these observations. The DSK package uses this approach.
An advantage of this approach is that there is no need for
an explicit preprocessing step. A second advantage is that
the schedules can be tuned by taking the system behavior
into account during the actual numerical computations of
an iteration. The only overhead associated with this
approach is in keeping a record of the communication
events in the first time step. As is seen in the following
section, this overhead is small and is amortized over the
rest of the time steps. The gains in each subsequent time
step are substantial.

To realize these optimizations, a call to dsksch must be
made at each schedule point in the user code. A schedule
point is a state in the program at which all pending
messages must be processed, in order for the program to
proceed with correct execution of the code. Note that
global synchronization can be used to accomplish this
objective, by forcing all processors into this state at the
same time. This is an expensive and often nonscalable
means of achieving the result. For that reason, we use
such a global synchronization only at the end of the first
time step. During that time step, at the very beginning of
stage 1, a schedule point is set by making a call to dsksch.
This starts the process of recording the message traffic
on each processor. Another schedule point is set at the
beginning of each subsequent stage of the first time step.
Finally, the end of the first time step is marked by the last
schedule point. At this schedule point, all outstanding
request-type messages are satisfied, the message recording
is terminated, and an explicit global synchronization is
performed to guarantee that all outstanding messages
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are satisfied. The schedule sequence (consisting of five
schedule points) is repeated in subsequent iterations
without the global synchronization at the end of each
iteration. At each schedule point, on a processor, the DSK
system waits until all the messages posted at the previous
schedule point are satisfied; new messages are then posted
for the next phase of computation. Note that there is

no need to issue request messages in the subsequent
iterations, since the DSK package maintains a log, created
at the first time step, of processors that need locally
computed data. In other words, a tightly synchronous
computation is transformed into loosely synchronous
computation.

Performance results

In this section, we present performance results from two
parallel systems at the IBM Thomas J. Watson Research
Center: a 32-processor IBM POWER Visualization
System™ (PVS) and an eight-processor experimental
system called Power Parallel Prototype (PPP).

The PVS is a bus-based hierarchical-memory system.
Each PVS processor is based on the i860™ microprocessor
with 8KB data cache and 40-MHz clock speed. Each
processor has 16 MB of local memory, of which about 13.5
MB is available to the user. The code, data, and stack for
each processor are kept in its local memory. In addition,
the processors are connected to 256 MB of global memory
via a high-speed bus and communicate with one another
using that shared memory.

The PPP is a distributed-memory system consisting of
eight IBM RISC System/6000® (RS/6000) Model 550
processors, each with 64 KB of cache and 42.5-MHz clock
speed. The processing element has 32 MB of physical
memory. Each processor supports the IBM proprietary
AIX® operating system and can function independently
as a full-fledged workstation with virtual memory. The
processors are connected with one another by a high-speed
switch based on the same high-performance switch
technology as that of the switch used in the IBM Scalable
POWERparallel™ 1 (SP1) system [12].

Both systems we consider are of multiple-instruction-
multiple-data (MIMD) type parallel architectures, and for
both, a separate copy of the code is loaded into the local
memory of every processor. On both systems, we used a
message-passing paradigm for implementing the extended
DSK package. At the lowest level of DSK package
implementation on the PVS, we used the EUIm message-
passing environment [13]. This environment emulates the
IBM Extended User Interface (EUI) message-passing
protocol [14], using the shared memory and semaphores
provided by the PVS. On the PPP, we implemented
the extended DSK package on top of the EUIH
communication protocol, developed at the Watson
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Research Center.* Note that some of the low-level
implementation details differ from system to system;
however, the user program, such as our model application,
remains the same.

We coded our model application, discussed earlier
in the model application section, in FORTRAN 77. The
overlapping grid used as an example in these experiments
consists of two component grids, one with dimensions
144 x 144 (grid 1) and the other with dimensions 360 x 240
(grid 2). We partitioned the first grid into eight blocks,
each with dimensions 36 x 72, by dividing the grid into
four slices along one dimension and two slices along the
other dimension. We partitioned grid 2 into 24 blocks by
making six slices along the longer dimension and four
along the shorter dimension, so that the resulting blocks
had dimensions 60 x 60. While these partitioning
parameters are somewhat arbitrary, they bring out the
characteristics common to real-life applications in which
the component grids have different sizes and the blocks,
after partitioning, may not have the same amounts of
computational work.

We performed the experiments in two modes:
synchronous and asynchronous. Synchronous implies that
no communication optimizations were performed; instead,
a global synchronization was performed at the end of each
time step. Asynchronous implies that during the first time
step, a record was made of the communication pattern and
of the computation sequence. As described above, a global
synchronization was performed at the end of the first time
step. In the subsequent time steps, information gathered
from the first time step was used to schedule messages
sent and received.

Table 1 shows the performance results obtained on the
PVS. The average execution time, in seconds per time
step, and the corresponding speedups in the synchronous
mode are shown under the heading Synchronous. The
execution times are averages over 50 time steps. We have
shown results for 1, 2, 4, 8, 16, and 32 processors.
Although not shown, other numbers of processors are
possible. The performance of the asynchronous mode is
shown in the remaining columns. The execution times for
the first step and for subsequent time steps are shown
separately. For the latter, we have taken the average over
time steps two through fifty. Notice that the first time step
under the asynchronous mode has an overhead of up to
nine percent compared to an average time step in the
synchronous mode; the overhead generally increases with
the number of processors. However, the gains over the
synchronous mode for the subsequent time steps in the
asynchronous mode, which we define as (Synchronous
time per time step — Asynchronous time per time
step)/Synchronous time per time step, range from 26% to

*P. Hochschild, “EUIH: An Experimental EUI Implementation,”” IBM internal
report, IBM Research Division, Yorktown Heights, NY, 1993.
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Table 1 Performance of PVS on model problem.

Number of Synchronous Asynchronous
processors
Average First step Average
Solution time Speedup Solution time Overhead Solution time Gain Speedup
per per (%) per (%)
time step time step time step
(s) s) ®)
1 3.55 1.00
2 2.78 1.28 2.85 2 2.06 26 1.72
4 2.19 1.62 2.23 2 1.12 49 3.17
8 1.26 2.82 1.29 2 0.66 48 5.38
16 0.58 6.12 0.48 — 0.28 52 12.68
32 0.34 10.44 0.37 9 0.21 38 16.90
Table 2 Performance of PPP on model problem.
Number of Synchronous Asynchronous
processors
Average First step Average
Solution time Speedup Solution time Overhead Solution time Gain Speedup
per per (%) per (%)
time step time step time step
®) (s) ®)
1 1.67 1.00
2 1.30 1.28 1.34 3 0.91 30 1.82
4 0.88 1.90 0.89 1 0.53 40 3.13
8 0.48 3.48 0.50 4 0.33 31 5.08

52%. The gains of the asynchronous mode are relatively
small with two processors; however, with more than two
processors, the asynchronous mode results in substantial
gains (about 50%), except with 32 processors, where the
gains drop to 38%. At 32 processors, the computation per
processor is relatively small, and other overheads, such as
those due to load imbalance, bookkeeping, and boundary
overlap manipulations, tend to dominate. Thus, with 32
processors, the effect of not having to synchronize and
issue request messages does not reduce the total execution
by the same factor as that observed with smaller numbers
of processors. Finally, we compare the speedups in Table
1 for the synchronous and asynchronous modes. The
speedup figure for p processors under the synchronous
mode is the ratio of the execution time of an average time
step on p processors to the execution time of an average
time step on one processor. The same is computed under
the asynchronous mode, with the execution time of an
average time step not including the first time step. The
rationale for this is that, in this type of computation,
typically hundreds and even thousands of iterations or time
steps are computed. As a result, the execution time
averaged over all time steps is almost the same as the
execution time averaged over all time steps except for the
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first. The improvements in performance are clear from the
speedup metric.

Similar performance results for the PPP are shown in
Table 2. The overhead in the first time step is 1% to 4%,
while the gain in the subsequent time steps is in the
range of 30% to 40%. As in PVS, with a larger number of
processors, the gain in the total execution time due to
asynchronous communication drops off. The RS/6000
processors are relatively more powerful than the 860
processors; as a result, overheads other than those in
global synchronization start becoming dominant even at
eight processors. Note that we soived the same problem
on both systems, and the problem size we used was small,
as is evident from the total execution time. The two
speedup columns in Table 2 provide another measure for
observing the advantages of the asynchronous mode and
its effect as the number of processors is increased.

It is instructive to compare the performance of PVS and
PPP systems in order to see which system benefits more
by the asynchronous communication strategy, which avoids
global synchronization. Such a comparison is shown in
Table 3. Since PPP has only eight processors, we
restrict our comparison to runs with eight or fewer
processors.
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Shown in the second column of Table 3 are ratios of the
synchronous execution times on PVS to those on PPP
with the same number of processors. The ratio for the
single-processor case is an indicator of the relative speeds of
the 1860 and RS/6000 Model 550 processors. Note that as
the number of processors is increased from two to eight,
the ratio increases, indicating that the PVS becomes
progressively slower. In other words, while the useful
work per processor remains the same, the overhead of
parallel implementation in the synchronous mode is higher
on the PVS. The third column in Table 3 compares the
performance of the first step of the asynchronous mode
on the two systems. These ratios are similar to those in
second column, indicating that the two systems behave
relative to each other in a similar manner as in the
synchronous mode. The last column, which gives the
ratios of the execution times for time steps 2 and onward,
shows a completely different trend. Note that these ratios
are all approximately the same as the ratio for the one-
processor case (approximately 2.1), indicating that under
the asynchronous mode, the overheads of parallel
implementation for both systems grow at a similar rate.
This is evident when we compare the speedup columns
under asynchronous mode in Tables 1 and 2.

Conclusions

For the important class of irregularly coupled regular-mesh
problems, the complex data structures and dependencies
make the task of manual parallel implementation on
scalable architectures very difficult. This is because the
communication primitives available on most scalable
parallel systems present a very low-level programming
interface. Paraliel implementation using these low-level
primitives tends to be tedious and error-prone, even when
the data dependencies are somewhat irregular. The state
of compiler technology has not advanced sufficiently to
handle this class of problem. The environment made
available by DSK helps in overcoming some of these
difficulties. DSK provides a portable parallel-programming
environment, managing distributed data structures and
dependencies. By hiding communication details from the
user, the DSK environment allows the user to focus on the
problem to be solved. Compared to a compiler, a library
package such as DSK gives a higher level of abstraction
and control to the user for performing optimizations.
Together with its database features, this makes DSK a
powertul tool for the class of applications considered here.
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Table 3 A comparison of PVS performance with PPP
performance.

Number of Ratios of Ratios of asynchronous
processors synchronous computation times
computation (toys/topp)
times
(toys!topp) First step Subsequent
steps
1 2.13 — —
2 2.14 2.13 2.26
4 2.49 2.51 2.11
8 2.63 2.58 2.00

POWER Visualization System and POWERparallel are
trademarks, and RISC System/6000 and AIX are registered
trademarks, of International Business Machines Corporation.

C++ is a registered trademark of AT&T.

i860 is a trademark of Intel Corporation.
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