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We describe  an  environment  for  efficient  and 
scalable  implementation  of  large scientific 
applications on parallel  and  distributed 
computing  systems. We show  how this 
environment is used to support  overlapping 
grid methods. In addition to providing a  user 
interface  that  reduces  programming 
complexity, the environment  facilitates 
dynamic partitioning of  data  and  the 
scheduling  of  both  computations  and 
communication,  transparent to the  user. 
After  describing  the  user  interface  and some 
of the  implementation  issues, we present 
performance  data  for a model  application 
executed on two different  systems:  an  eight- 
processor IBM Power  Parallel  Prototype  (PPP) 
system  and  a  32-processor IBM POWER 
Visualization  System"  (PVS). 

Introduction 
DSK is a portable scientific database package  for  managing 
hierarchical data structures in FORTRAN programs [l]. 
The DSK package maintains, in the form of a database, 
an  image  of the data structures in memory,  which  may  be 
accessed subsequently by other programs. In this paper, 
we describe some extensions to the DSK package to 
support parallel and distributed computation. With these 
extensions, it  is possible for a user to define distributed- 
data structures but not necessarily specify the data 
distribution explicitly. Furthermore, these extensions 
provide, at the user level, a uniform method of access to 
local and remote data and  an  efficient run-time support 
environment. The distributed nature of the data is 
transparent to the user, and so is the scheduling of 
communication. Under the environment provided by the 
extended DSK package, a user can write programs for 
distributed-memory systems that are not very different 
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from sequential programs. Moreover, execution of these 
programs does not  involve any run-time preprocessing, 
as is the case in some other systems. 

To demonstrate some features of DSK that make  it a 
useful  tool in the solution of partial differential equations 
(PDEs), we  explain  how we used  it in the parallel solution 
of a time-dependent PDE on a composite overlapping grid 
[2]. This involved  an interesting combination of regular 
and irregular types of computations: The parallel finite- 
difference computations within each component grid 
are characterized by  regular data dependencies and 
communication patterns, whereas the computations 
associated with the intergrid interpolations exhibit irregular 
dependencies and unstructured communication patterns. 
The solution of the problem  we selected provides a 
nontrivial example of the use of the DSK package for 
parallel computation. 

of its applicability to a class of problems that has been 
referred to as irregularly coupled, regular-mesh 
computations [3]. This class includes overlapping-grid, 
block-structured grid,  and adaptive-grid problems. 
Difficulties encountered in  parallelizing the application 
programs  belonging to this class are well  known,  and 
several attempts to reduce the programming burden have 
been made in recent years. These attempts include a suite 
of library calls, run-time preprocessors, and run-time 
environments managed by compilers. Class libraries in 
C++@, such as P++  [4] and LPAR [5], have been 
developed in recent years. LPAR provides a coarse-grain 
parallel-programming  model  and  is  primarily intended for 
applications with dependencies that may vary dynamically, 
such as those in N-body simulations. Multiblock  PARTI 
[6, 71 is a preprocessor that analyzes dependences at run 
time and performs communication optimizations prior to 
commencing any numerical computations. Work has been 
described in [8] that extends the capabilities of multiblock 
PARTI  so that its run-time library can be incorporated 
by compilers for FORTRAN D [9] and other High 
Performance FORTRAN (HPF) data-parallel programming 
languages.  Both  LPAR  and  PARTI perform run-time 
preprocessing to determine communication schedules. 
Task-oriented parallel languages, such as FORTRAN M, 
also provide facilities for handling irregularly coupled, 
regular-mesh applications [lo]. 

The advantage of the DSK package over the other 
systems described above is that it  allows one to efficiently 
execute FORTRAN programs on a variety of parallel 
architectures, with  minimal user intervention. In addition, 
the DSK package performs no run-time preprocessing. 
As described in this paper, the overheads involved are 
small,  and code modifications are minimal. 

In the next section, we provide some background for 

We discuss the extended DSK package in the context 
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numerical solution of PDE problems where overlapping 
grid techniques are commonly  used. We also use that 
discussion to provide a motivation for the work we discuss 
in the rest of the paper. In the third section, we discuss, 
in some detail, a model  problem that we solve using the 
overlapping-grid method, and we provide an  outline of the 
parallel  implementation of the model  problem  under the 
DSK environment. The details of the DSK package are 
given  in the next section. The performance results from 
our experiments on two parallel systems are presented 
and discussed in the following section. The next section 
concludes the paper. 

Background  and  motivation 
Among  scientific computations, the numerical solution of 
PDEs, such as the Euler and Navier-Stokes equations 
describing fluid  flow, is of great interest both to the 
research community and to industry. With the help of an 
example that requires the solution of PDEs, we motivate 
the design and development of the extended DSK  package; 
however, the tools we describe are applicable to a wider 
class of application programs in  which large-array data 
structures are used. 

The complexity of the computations for the numerical 
solution of PDEs, in terms of both data dependencies and 
programming  effort, increases with the complexity of the 
associated geometry. For cases in which the geometry is 
simple, the physical  domain  can be discretized with a 
Cartesian grid. To properly handle physical domains  with a 
more complex geometry, a boundary-fitted curvilinear grid 
may be used. Such a grid is generated from a Cartesian 
grid by a smooth coordinate transformation from the 
physical  domain to a rectilinear computational domain. 
In general, the difference stencils used in discretizing the 
PDEs for numerical solution on Cartesian or curvilinear 
grids give  rise to data dependencies that are local  and 
regular in nature. For this reason, implementation of 
explicit  finite-difference methods that use such stencils is 
easy, and implementation of parallel  algorithms  for these 
methods is  not very difficult. 

is inadequate, and  more  powerful techniques must 
be used, such as patched-grid (block-structured) or 
overlapping-grid methods. With these methods, several 
curvilinear component grids are used, which together 
cover the physical  domain. For patched-grid methods, 
adjacent component grids  must match exactly along their 
common boundary. As a result, the data dependencies of 
explicit  finite-difference methods for patched grid are such 
that computing the difference stencils at the boundary 
points of component grids requires an exchange of 
rectangular blocks of data among adjacent grids. This 
makes patched-grid methods difficult to implement, 
especially when a parallel  implementation is required. 

When the geometry is nontrivial, a single curvilinear grid 
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For overlapping-grid methods, functions defined  on the 
composite grid are connected by means of interpolation 
between the component grids in their region of overlap. 
As a result, finite-difference methods for overlapping grid 
use interpolation to complete the computations of the 
difference stencil at all points in the region of overlap. 
Once the interpolation functions are determined, these 
computations turn out to be more straightforward 
than those with patched grid. However, the parallel 
implementations of the finite-difference methods for 
overlapping grid are more complex, since they involve less 
structured exchange of data between component grids. 
Moreover, correct implementation of  an efficient  parallel 
algorithm is much  more  difficult.  Our interest in the 
success of patched- and  overlapping-grid methods has 
motivated us to develop tools to manage these difficulties. 
We consider such tools indispensable for the development 
of parallel algorithms and their implementations. 

We discuss in some detail the implementation of finite- 
difference methods on overlapping grids, because this class 
of grids includes as special cases patched grids, single 
curvilinear grids, and Cartesian grids.  The methods and 
tools we describe are applicable to all  of these types of 
grids. A composite overlapping grid is a set of curvilinear, 
logically rectangular grids, each of which covers part of a 
physical  domain to be discretized. The component grids 
that are adjacent to one another overlap, so that functions 
defined  on the composite grid  may  be interpolated from 
one component grid to the other. Figure 1 shows a simple 
two-dimensional overlapping grid,  with two components- 
a square grid (with some redundant cells eliminated) and 
an annular grid. This overlapping grid was generated using 
the program  CMPGRD [2, 111, which  determines  what  cells 
on each component grid  may be used in the discretization 
of the PDEs over the entire grid and what cells may be 
interpolated from other component grids.  In Figure 1, the 
interpolated cells are marked  with  small circles at their 
centers. A typical overlapping grid  for a domain of modest 
complexity consists of two to ten component grids, each 
containing one thousand to one million  grid points. 

data on uniprocessor systems has increased manyfold; 
however, there will always be PDE problems we  would 
like to solve that are too large for any uniprocessor system 
to handle. We expect that the largest parallel computers 
available in the near future will be of the distributed- 
memory type, so we  would  like to be able to use these 
to solve PDE problems on overlapping grids. We have 
implemented software tools to facilitate the implementation 
of  efficient parallel algorithms for the solution of PDEs 
with the least possible programming  effort.  With this 
system of tools, it is possible to transform an  explicit 
sequential time-stepping or iterative PDE algorithm into a 
parallel algorithm, with only small changes to the method 

In recent years, the available physical  memory  for user 
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Composite overlapping grid for  a disc. Interpolated cells are 
marked  with  circles  at  their centers. 

and to its implementation in a FORTRAN program. This 
provides a framework for the use of overlapping grids to 
solve PDE problems that are too large to be solved  on a 
uniprocessor system. 

Model  application 
In this section, we describe our model  problem in 
some detail. In the following sections, we illustrate the 
application of the extended DSK package for the parallel 
implementation of the numerical solution of this model 
problem. The problem we consider is that of the solution 
of Burger’s equation (which describes a nonlinear wave 
equation) over a circular disc. This is a relatively 
simple example with  sufficiently complex geometry. A 
discretization of such a body using overlapping grid  is 
shown in Figure 1. Note that, for simplicity, the model 
problem  is a two-dimensional example, although the 
techniques described are equally applicable to three- 
dimensional problems. 

equation, 
We consider a two-dimensional analogue of Burger’s 

au a 1 a’u a ’ ~  
- at + - ax ( - u ’ )  2 = v (s + a), 
with the initial  condition 

x -xo  
u(x, y ,  0) = uo(x): = c - tanh - 
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where 
F U F U F U F 

and 

F U F U F U F 

Grid  functions  for  discretization of model  problem. The u's are  at 
the cell centers, and F and G are  the fluxes at  the cell edges. 

where v is the coefficient of diffusion.  The exact solution 
to this equation is 

u(x, y ,  t )  = uo(x - ct), 

which  is a shock layer moving to the right  with speed c. 
Equation (1) has the form 

au a  a 
- + -flu) + - g(u) = 0, 
at ax aY 

where 

1 2  
au 

f l u ) = - u  - v -  
2 ax 

and 

au 

aY 
g(u) = - v  -. 

For the solution of the above PDE by finite-difference 
methods, overlapping boundary-fitted curvilinear grids may 
be used. To discretize, we first transform Equation (2) 
from the ( x ,  y )  coordinate system to an (r,  s) curvilinear 
coordinate system, so that the grid spacing in the new 
system is  uniform  and of unit length.  This transforms the 
physical  domain in x-y space into an r-s computational 
space that is a rectangular domain  and has a regular 
uniform  mesh. Then, Equation (1) becomes 

ax aY 
ar  ar 

G(u) = - g(u) - -flu). 

We discretize u ,  F ,  and G on a staggered Cartesian grid 
with  unit mesh-size, as shown in Figure 2. We use second- 
order centered averaging and difference operators to 
compute Fij in terms of ui- l , j ,  ui-l,jtl,  uij, and uiJrl,  and to 
compute G, in terms of ui,j-l, uitl,j-l, uij, and uitl,j. Then 
we discretize Equation (3) in space, to second-order 
accuracy, as 

where 

A, = (J-'$ , 

A+& = Fi+l,j - Fij 2 

and 

A+jGij = Gi,j+l - G, . 
That is, we use a nine-point difference stencil to compute 
(duldt),. 

To discretize Equation (3) on an overlapping grid,  we 
must supply interpolation boundary conditions in the 
regions of overlap among the component grids. On any 
component grid k ,  a cell where we want to update u from 
Equation (4) is referred to as a discretization  cell. Clearly, 
such a cell  must be surrounded by other cells where the 
solution to u is known. These surrounding cells may  be 
other discretization cells, they may be cells for which the 
Dirichlet boundary condition provides the value of u ,  or 
they may  be cells where u is interpolated from another 
grid k ' .  A cell where u is computed using a specified 
interpolation boundary condition is referred to as 
an intepolated cell. We use biquadratic Lagrange 
interpolation from a stencil of nine cells centered on the 
cell of grid k' nearest to the interpolated cell on grid k .  
As mentioned in the previous section, we use the program 
CMPGRD to generate the' overlapping grids and to 
determine, for each grid k ,  the list of interpolated cells 
that should receive values interpolated from other grids. 
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In the example of Figure 1, there are only two overlapping 
component grids, but in general, there may  be  more than 
two.  In  all such cases, CMPGRD determines from  which 
grid k' each interpolated cell should receive its values and 
provides the location of that cell  within  grid k ' .  From this 
information, the interpolation coefficients for each 
interpolated cell can be computed. 

To discretize in  time,  we use the classical fourth-order 
four-stage Runge-Kutta time-stepping method, in which 
u"" (the solution at time step n + 1) is computed from U" 

(the solution at time step n) as follows: 

1 

6 
u;+' = u; + - (up' + 2.8' + 2.7 + U P ) ,  (54 

where 

u:) = -AtA,[A+iFd(~") + A+jG,(u")], (5b) 

and 

The initial condition of Equation (1) defines ui,". The time 
step for the above Runge-Kutta  method is chosen close 
to the stability limit. Because of the nonlinearity, we 
experimentally determined an appropriate time step. In 
particular, we use 

h2 
At = 0.3 -, 

V 

where 

h = min [ {m Ar, /m As} .  

The minimum here is taken over all  grid points on all 
component grids. In advancing the solution by one time 
step in the Runge-Kutta method, one computes the 
intermediate solutions u r  of Equation ( 5 )  in four stages, 
k = 1 *..4. 

In the following, we present a sequential algorithm for 
the implementation of stage k of the Runge-Kutta  method 
in the context of overlapping grids. 

0 0 0 0 0 0 0  
0 0 0 . . . . . 0 0 0  

00.........00 
0...........0 

00...........00 
0.............0 

o.............o 
00...........00 
0...........0 
00.........00 

0 0 0 . . ' . . 0 0 0  
0000000 

Grid 1 

. . . .  - 
Grid 2 

Interpolation  and  periodic-boundary  update of a function defined 
on the composite grid of Figure 1. Cells marked  with circles are 
interpolated  from  nine cells (shown bounded by a box) of the  other 
grid. The one-cell-wide strips on opposite sides of Grid 2 are 
updated  in  the  direction of periodicity. 

Overlapping-grid Runge-Kutta algorithm for stage k 

1. Interpolate un + ak- lu(k- l )  (or U "  only, for stage k = 1) 
for the interpolated cells in the region  of overlap 
between component grids, where a1 = a2 = 112 and 

2. Copy boundary values U "  + ak-l~(k-l) (or u " )  from 
opposite sides of the same component grid,  for the cells 
at which the grid has periodic boundary conditions. 

U n  + a k - l  . ( k - l )  (or u " )  [as specified in Equation (5 ) ] .  

if k = 1, set u"" to U" + plv('); if k > 1, accumulate 
p k ~ ( k )  into u"", where PI = P4 = 116 and pz = p3 = 113. 

otherwise to u"". 

a3 = 1. 

3. For each discretization cell, compute v ( ~ )  from 

4. If k < 4, compute and save the sum U" + 

5 .  Apply boundary conditions to U" + aku(k ' ,  if k < 4; 

Figure 3 illustrates the implementation of steps 
1 and 2, the interpolation and periodic update of a function 289 
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defined  on the composite grid shown in Figure 1. Grid 1 
corresponds to the square grid (with some cells removed), 
and  grid 2 corresponds to the annular grid, which has 
a periodic boundary condition in one direction. To 
interpolate U "  on  grid 1 in the region  of overlap (step l), 
for each cell of  grid 1 marked  with a circle at its center, 
we compute un as the weighted sum of un in a 3 X 3 block 
of cells of  grid 2. The cell  in the center of this block is the 
nearest cell to the cell interpolated on  grid 1. We use 
Lagrange interpolation to determine the weights in the 
sum. Step 2 primarily serves the purpose of implementing 
periodic boundary conditions in a convenient manner. 
Note that for the example of Figure 1, step 2 is  applicable 
only to grid 2, which is periodic in one direction. For 
convenience in implementing the discretization given by 
Equation (4), we extend grid 2 by an extra row of cells 
(a one-cell-wide strip at the two opposite sides, in the 
direction of periodicity (in Figure 3, this is depicted by 
empty rectangular boxes at the top and bottom edges of 
grid 2), and replicate the values of un from the interior 
edge of  grid 2 into the opposite edges of grid 2 into the 
extended strips (direction of arrows indicates the direction 
of replication). 

Data structures 
One function of the DSK  package [l] is to manage data 
structures. This package provides facilities for  managing 
lists and arrays (including arrays of lists and lists of arrays) 
in FORTRAN programs. We use (but do not describe 
here) the database features of DSK,  which  allow us to 
access data structures created by the composite-grid- 

290 generation program  CMPGRD. Later in this paper, 
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we describe some features of DSK that enable us to 
implement  an  efficient  parallel version of the solution of 
our model problem, with only small  modifications to the 
algorithm and its implementation in FORTRAN. 

In general, it is useful to implement  overlapping-grid 
PDE code in such a way that the number of component 
grids and their sizes need not be known in advance. To 
achieve this, we allocate memory for the data structures 
that describe the component grids and the discrete solution 
of the problem. Figure 4 shows a simplified version of the 
hierarchical data structure used in the model  problem. 
In this figure, data structure dims stores the dimensions 
of each of the ng component grids. Each component 
grid contains some large arrays, like u (which  holds the 
solution), whose dimensions are the number of  grid cells in 
each direction. The boxes in  Figure 4 labeled F, G,  J, and 
u are the large arrays associated with  grid 1. Associated 
with each component grid are also some small arrays (not 
shown in the figure) that contain information about the 
grid, such as its periodicity, and some intermediate-sized 
arrays containing interpolation data. This data structure is 
sufficiently  flexible to describe a PDE computation on 
overlapping grids with any number of component grids, 
all  of different sizes. 

Parallel implementation 
A natural way to exploit the parallelism inherent in the 
solution of a PDE problem  is to subdivide each component 
grid  (in one or more directions) into blocks and to assign 
one or more blocks of the various component grids to each 
processor. In general, each processor may  be  assigned 
blocks of more than one component grid. Since there may 
be any number of component grids, each of a different 
size, it is  not possible in general to partition the 
component grids so that all  of the blocks are of the same 
size (i.e., have the same amount of work) and to assign 
exactly the same number of blocks to each processor. 
Thus, in any block-to-processor assignment scheme, the 
computational work load  may  not be balanced across 
processors. Moreover, the number of blocks into which 
each component grid should be divided in each direction is 
a compromise between load balance and communication 
complexity. The  load balance may be improved by 
choosing the total number of blocks to be larger than the 
number of processors, estimating the amount of work 
associated with computations on each block, and  assigning 
a  set of blocks to each processor so that the total work 
from  all of the assigned blocks is approximately the 
same for all processors. This strategy, however, may 
significantly increase the communication overhead. On the 
other hand, if the component grids are partitioned into a 
few  large blocks, locality in computation can be exploited 
efficiently,  leading to relatively less interprocessor 
communication. However, with this strategy, there may 
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not be enough blocks to evenly distribute the 
computational work among processors. 

The first step in  assigning blocks to processors is to 
assess the work associated with each block. A count of the 
number of discretization cells and interpolation cells in a 
block provides one estimate of the work associated with 
that block. When work per  cell  is  uniform, this estimate is 
quite accurate. Quite often, however, the work associated 
with interior cells differs  significantly  from the work 
associated with the cells on the domain boundary, the cells 
where the values are interpolated. In such cases, the 
computational work per block may be measured at run 
time, after which the blocks may be assigned to different 
processors appropriately. With such a technique, 
computational work can be distributed evenly among 
processors, but this is possible only at the cost of 
significant run-time overhead in estimating the 
computational work and distribution of blocks among 
processors. Generally, this technique is  more suitable for 
fine-tuning the computational workload among processors. 
The extended DSK package estimates the work per block 
to be proportional to the number of discretization cells and 
interpolation cells in the block. On this basis, the blocks 
are ordered in descending sequence of their computational 
work and then assigned to processors, using a bin-packing 
type of algorithm. 

The control structure of our parallel implementation of 
one stage of the Runge-Kutta method on overlapping grid 
is almost identical to that in the sequential algorithm. The 
main differences are that (1) the interpolation (step 1 of the 
sequential algorithm) is  split into two steps and  (2) the 
update for periodicity (step 2) becomes an update of the 
overlaps between neighboring blocks of the same grid. 
In the distributed algorithm, each processor works on 
only the blocks that are assigned to it, and before each 
Runge-Kutta stage, we ensure that the data needed  for the 
computations on each block are available on the processor 
to which the block is assigned.  Specifically, at stage k of 
the distributed Runge-Kutta  algorithm for overlapping 
grid, each processor performs the following operations 
on every block b of each component grid  assigned to it. 

Distributed Rurzge-Kutta  algorithm for stage k 

1. Sum the contributions from blocks of other grids to the 
interpolation of U" + ak-lu(k-l)  (u", if k = 1) at the 
interpolation cells (if there are any) of block b ,  where 
a1 = a2 = 112 and a3 = 1. 

U" + ak-lu(k-l)  (or u " ) .  

if k = 1, set un+l to u n  + plu( ' ) ;  if k > 1, accumulate 
pku(k)  into untl, where p1 = p4 = 1/6 and p2 = p3 = 113. 

otherwise to u 

2. For each discretization cell, compute u @ )  from 

3. If k < 4, compute and save the sum u n  + sku@); 

4. Apply boundary conditions to U" + if k < 4; 
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5. For the overlapping parts of neighboring blocks of the 
same component grid, send updates to U" + sku@), 
if k < 4; otherwise to u n t l .  

6. Compute  and send contributions from block b to the 
interpolation of u n  + sku@) (or untl) on  blocks of other 
component grids. 

Note that steps 1 and 6 in the above algorithm complete 
step 1 of the sequential algorithm,  and step 5 replaces step 
2. In the following,  we  explain these modifications in some 
detail. 

For updating the solution at a discretization cell, values 
at the eight  neighboring cells are necessary. When a 
component grid is partitioned into blocks, the neighboring 
cells of a discretization cell  may  belong to another block. 
Thus, the solution update at such cells requires fetching 
data from cells belonging to one or more other blocks. For 
implementation convenience, we extend the data structures 
associated with each block b so that they store the 
appropriate data, from the neighboring blocks, needed  in 
the computations of the discretization cells of block b .  
This results in an ''overlap" among blocks of the same 
component grid. These overlaps are shown as empty 
rectangular boxes in Figure 5. In that figure, for the sake 
of clarity, blocks are moved apart from one another, and 
the block extensions are indicated by narrow strips of 
empty rectangular and square boxes. The arrows indicate 
the relations between the boundary regions  and the 
extensions from  neighboring blocks. Thus, in step 5 of the 
distributed Runge-Kutta  algorithm, the U" + sku@) values 
computed at the discretization cells on the boundary of a 
block are copied into the extended parts of neighboring 
blocks of the same component grid. This copying  may 
involve interprocessor communication if the two blocks 
reside on separate processors. 

Steps 1 and 6 of the distributed algorithm complete 
the interpolation part. This  is illustrated in Figure 6. To 
understand the interpolation step, it is convenient to think 
of interpolation as consisting of step  6 followed by step 1, 
since these steps follow each other in  going from one 
Runge-Kutta stage to the next, or  from one time step to 
the next. When a processor reaches step  6 of stage k ,  
it has finished computing U" + aku(k) for the current 
block, so it has the information needed to compute the 
contributions from this block to the interpolation of cells of 
other grids. It computes these contributions as weighted 
sums and stores them temporarily in a local array, sorted 
according to which blocks of other grids will need them. 
These contributions must be made available to the 
processors where they will  be  needed later for step 1 of 
the next stage or the next  time step. This data movement 
is  made possible by interfacing with the DSK package 
environment, as explained in the following subsection. The 
interpolation in step 1 is completed on each processor, 
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Grid 1 

- 
Grid 2 

composite-grid function, 

advanced by one time step in each  loop iterate. The 
calls to subroutine RKStage perform the computations 
corresponding to the Runge-Kutta stages, which are 
outlined in Figure 8. We set  a scheduling point before 
performing the computations for  each  Runge-Kutta stage 
and at the end of each time step. Such markings in the 
control flow  of the computations indicate to DSK the 
progression of computations on each processor. 

calling dsksch of the DSK package  with the appropriate 
key word, BEGIN, MIDDLE, or END. We explain the 
details of dsksch in the following section. For the current 
discussion, it is  sufficient to note that the interprocessor 
dataflow remains the same from one time step to the next 
and that the schedule points are meant to take advantage 
of this repetitive pattern in scheduling computations 
on a processor as well as in scheduling interprocessor 

Setting a SCHEDULE-POINT essentially translates into 

Distributed interpolation 
buffer array for  Grid 1 

Local work . . , . 
"f Grid1 

LLocal sum 

once all required contributions from blocks of other grids 
I are made available. 

Interface to DSK 
As mentioned earlier, the DSK package provides a 
convenient means for managing data structures that are 
typically associated with  overlapping-grid computations. In 
addition, with the extended DSK package, the distributed 
computations described above can be implemented 
efficiently  and  with  significantly reduced programming 
efforts.  Using the model  problem described above as an 
example, we  briefly describe the DSK interface to user 
programs. 

~ 

~ 

Shown in Figure 7 is an outline of the outer loop of the 
292 parallel Runge-Kutta algorithm, where the solution is 

0.. . . 
0.. . . 
0.. . . 
0.. . . 
0.. . . 
0.. . . 

Grid 2 

I Interpolation of a distributed composite-grid function,  for the com- 
1 posite grid of Figure 1 .  Contributions from  each block of Grid 2 
j to the interpolation of cells in a block of Grid 1 are accumulated in 
$ a work  array  local  to  the  processor  assigned  to  the block. The 

local array is copied asynchronously into a distributed interpola- \ tion buffer for Grid 1. Later,  the partial sums in the interpolation 
4 buffer are added together into the interpolated cells of the block of 

Grid 1. 
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communication. The schedule points marked as BEGIN 
and END demarcate this repetitive pattern. [Since a 
BEGIN mark  follows an END mark of the previous time 
step, it is possible to replace these two with a single mark 
and achieve the same functionality. (This will, of course, 
require an additional marking, either before entering the 
loop or upon  exiting the loop.) For maximum  flexibility 
and convenience, however, we use both BEGIN and END 
markings.]  The interprocessor communication repeats itself 
even within a time step. In fact, the dataflow  is analogous 
for each stage of the Runge-Kutta algorithm. The 
completion of one stage and the beginning of the next 
stage are indicated to DSK by the MIDDLE marking. 

With the help of the schedule points, DSK manages data 
integrity across the system and schedules interprocessor 
communications in an  efficient manner. In the next section, 
we describe the details of the optimizations accomplished 
with this scheduling mechanism.  In the section on 
performance results, below, we present experimental 
results showing the performance gains obtained by this 
type of scheduling. 

As indicated above, Figure 8 is  an outline of the parallel 
algorithm  for  performing a single stage of the Runge-Kutta 
method. There, B is a list  of blocks assigned to a processor 
(also referred to as LocalBlocks), maintained by DSK for 
each processor. On each processor, the single-stage 

Initialize  arrays 
Begin solution for time  step: 

Set SCHEDULE-POINT to BEGIN 
call RKStage (k = 1) 

Set SCHEDULE-POINT to MIDDLE 
call RKStage (k = 2) 

Set SCHEDULE-POINT to MIDDLE 
call RKStage (k = 3) 

Set SCHEDULE-POINT to MIDDLE 
call RKStage (k = 4) 

Set SCHEDULE-POINT to END 

Continue to next time step. 

Algorithm RKStage (k) 

B + list of LocalBlocks 
foreach b E B do: 

i fk = 1 
GET-ARRAYS U" and  interp-buffers for b 
Interpolate U" at interpolation  cells 
Compute v(l) from un 
Initialize u n+l to u " 
Accumulate Plv(') into untl 

GET-ARRAYS u", u"", (u" + ak-lv(k-l)) 

Interpolate u n  + akYk-lv(k-l)  at intepIation 

Compute v(k)  from u n  + ak-lv(k-') 
Accumulate Pkv(k) into u"" 

else 

and  interp-buffers for b 

cells 

endif 

i f k  < 4 
Compute u n  + akv(k) 
Apply boundary  conditions to U" + akv(k) 
Compute  local  values for interpolation of 

u n  + on block of other  grids 
SAVE-ARRAYS untl and U" + akv(k) 

Apply boundary  conditions to u " " 
Compute  local  values for interpolation of 

SAVE-ARRAYS u " " 

else 

untl on block  of  other g k i s  

endif 
end  foreach 

end Algorithm RKStage 

; An  outline  of  the  parallel  algorithm  for  performing  a  single 
' stage  of  the  Runge-Kutta  method.  GET-ARRAYS  and 

SAVEARRAYS interface with the DSK environment. 

computations are performed  on each local block, one after 
another. GET-ARRAYS  is  an interface to DSK, which 
accomplishes retrieving the arrays necessary in the 
computations of the stage. This interface makes calls to 
DSK package routines dskdsw. Before returning control 
to the user program, DSK ensures that the variables 
associated with the boundary overlaps of these arrays are 
appropriately updated. With the values in the interpolation 
buffers, interpolations are performed at the interpolated 
cells of block b.  Following  this, I J ( ~ )  is computed at 293 
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Overlapping blocks of an array. 
~ . .. . ..  .. .. ." l"".. 

the discretization cells of block b and appropriately 
accumulated into array untl. Also computed are an array 
with values U" + akv@) (which is used in the computations 
of the next stage of the same time step), the values at the 
grid boundaries according to the specified boundary 
conditions, and the interpolation values that may be 
needed for blocks belonging to other grids. 
SAVE-ARRAYS forms another interface to DSK. In 
performing this function, DSK uses appropriate values 
from the arrays just computed to update the boundary 
overlaps of neighboring blocks, as well as to update 
the interpolation buffers of blocks belonging to other 
component grids. Note that some blocks may  not have 
any data that are needed in interpolation. In that case, no 
interpolation data are retrieved. When there are boundary 
update data or data for interpolation, DSK copies the data 
to the proper arrays of the appropriate blocks. This is 
accomplished by a call to dskdcb. If the block to be 
updated is  assigned to a remote processor, a message  is 
sent, transparent to the user, and the DSK environment on 
the remote processor retrieves that message  and copies the 
data into the proper array of the appropriate block. Details 
of dskdsw and dskdcb are presented in the next section. 

Parallelization with the DSK package 
In this section, we describe the implementation in the DSK 
package of array partitioning and  mapping, as well as the 

294 interprocessor communication involved in accessing 

distributed arrays. We discuss in some detail the 
communication-optimization techniques embedded in DSK. 

Array  partitioning 
As mentioned earlier, with the DSK package, the 
individual arrays used by an application may be further 
partitioned into a user-specified  number of array blocks. 
The partitioning can be specified  along each of the array 
dimensions. DSK ensures that the array elements are 
divided as evenly as possible along the direction(s) of 
partitioning. In the following discussion, when there is no 
ambiguity,  we use the term block to mean an array block. 
Partitioning an array associated with a single  grid results in 
adjacent blocks. Figure 9 shows a two-dimensional array 
partitioned into three blocks in each dimension.  The blank 
boxes shown between pairs of adjacent large blocks and 
the arrows in that figure have the same meanings as in 
Figure 5. The  pair ( i ,  j )  at the center of each array block 
is the coordinate of that block (assuming the lower left 
corner as the origin). The DSK package can handle  higher- 
dimensional arrays and their partitioning along  multiple 
dimensions. 

The DSK package subroutine dskdef allows the user to 
define a distributed-array data structure by specifying its 
dimensions, partitioning parameters (e.g.,  number of 
partitions or size of each partition along each dimension), 
periodicity along any of the dimensions,  and the width of 
the overlaps (extensions may be more than one cell wide) 
between adjacent array blocks. This package then 
partitions the array into a number of blocks that depends 
upon parameters such as the size of the array, the number 
of processors available, the desired granularity of 
computation, and the type of data dependencies among the 
array elements. Since there are many choices, and users 
typically want to experiment with various possibilities for 
performance, the choice for the number of blocks into 
which  an array is to be divided  is  left up to the user. As 
noted earlier, load  balancing  among processors is easier 
when the number of blocks is  larger than the number of 
processors; however, this may result in significantly  higher 
communication and bookkeeping costs, as well as the costs 
of maintaining the overlaps associated with these blocks. 

In many applications, including those with  multiple, 
overlapping grids (see the example of the previous 
section), more than one array data structure may be 
involved. Moreover, the array dimensions may  be 
considerably different. Each array may be divided into a 
different  number of block arrays, and the block sizes may 
differ  from array to array. Such heterogeneous, multiple, 
distributed-array partitionings are managed by the DSK 
package  with  minimal user involvement. 

Mapping of array blocb to processors 
DSK automatically distributes the blocks from all  of the 
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arrays among the available processors so as to divide the 
total computational work as evenly as possible. For this, 
the total computational work associated with each block is 
first determined. With computational work considered as 
the weight,  all blocks are sorted in descending order of 
weight  and then mapped to processors according to a 
bin-packing algorithm. Entire blocks are assigned to 
processors; they are not further divided. Each processor 
may  be  assigned more than one block,  and the blocks 
assigned to a processor may  belong to one or more arrays. 
As in the case of array partitioning, the DSK package 
provides routines that facilitate mapping array blocks to 
processors. 

Update and copy operations 
The DSK package provides facilities for “get” and “put” 
types of communication operations. For example, with a 
get type of operation, it is possible to update values in an 
array block with values from the adjacent array blocks; 
with a put type of operation, the values in the neighboring 
blocks can be updated with the values in the array block. 
Both of these operations are handled by making a call to 
dskdsw. Similarly, a call to dskdcb allows the user to 
specify a copy operation between a local array (e.g., a 
temporary work array) and  an array managed by DSK. 

be needed  from  neighboring blocks prior to performing a 
computation on a block. In this case, a call  is  made to 
dskdsw, to update the boundary of the block, for locations 
where there is  an overlap with the adjacent blocks. 
Using the internally stored tables describing the block 
partitioning, the DSK package performs the update 
operation at all the boundary elements of a block. 
Similarly, after an array block is updated at the end of a 
Runge-Kutta stage or at the end of a time step, dskdsw 
can be called to update the boundaries of the adjacent 
blocks. Note that a call  to dskdsw is  made  both to update 
the boundaries of a block  with the values from adjacent 
blocks and to update the boundaries of adjacent blocks 
with the values from a specified block. We refer to the 
former type of update as the fan-in boundary update and 
to the latter type as the fan-out boundary update. The 
direction of update is  specified by flags passed to dskdsw. 
These flags can be used to stipulate a fan-in or a fan-out 
update, or even both types of updates. Furthermore, the 
updates on a block may be performed using values 
corresponding to the same block or from another block. 
We used a fan-out update in the model application. 

(1,2), (2, l), and (2,2) are needed for the computations to 
proceed on block (1,l). Similarly, values computed in 
block (1,l) are used to update the boundaries of blocks 
(2, l), (1,2), and (2,2). As mentioned earlier, the buffers 
shown between neighboring blocks in Figure 9 indicate 

For the model application described earlier, values may 

Figure 9 shows an  example  in  which values from blocks 
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extensions to the array blocks needed to hold values from 
the neighboring blocks, and the arrow tails indicate the 
array blocks from which the values are copied into the 
buffers. The DSK package maintains this information and 
performs the appropriate updates when dskdsw is invoked. 
This avoids explicit  copying of data or buffer  management 
by the user. Also, there is no need for explicit specification 
of which values are to be copied or communicated among 
processors. 

During the interpolation phase (steps 1 and 6) of the 
model application, a copy operation involving  two arrays is 
required. One  of the arrays may  be a local work array, and 
the other is  an array managed by the DSK package. This 
operation is accomplished by calling dskdcb. For example, 
Figure 6 shows the steps involved in interpolating the 
boundary values of an array associated with  grid 1 using 
the values from  an array associated with  grid 2. First the 
contributions from each block of the array of  grid 2 are 
accumulated in  local work arrays of the processors or 
assigned to handling the blocks. The contents of the local 
work arrays are then copied into the interpolation buffer 
arrays associated with the blocks of grid 1. This is 
accomplished by calling dskdcb. Note that the 
interpolation buffer  itself  may  be partitioned into blocks, 
as shown in Figure 6; however, the user need  not be 
concerned about the distributed nature of these arrays, 
since DSK handles the details of the copy operations 
transparently. 

Interprocessor  communication 
As described above, calls to dskdsw and dskdcb involve 
accessing one or more array blocks managed by the DSK 
package. If all  of these array blocks are mapped onto the 
same processor that calls dskdsw or dskdcb, DSK satisfies 
these requests by performing local memory-to-memory 
copy operations; i.e., communication messages are 
eliminated  when they are not necessary. If one or more 
blocks are stored on remote processors, interprocessor 
communication is required. The DSK handling of these 
communication steps is transparent to the user. In this 
case, a call to dskdsw or dskdcb returns control to the 
calling  program  only after the communication has been 
successfully completed. 

use of the tables that specify the mapping of blocks to 
processors. These tables are created during the setup 
phase and are maintained  by the DSK package  for  all 
blocks. From the definitions of the blocks, DSK can also 
determine the blocks from  which the boundary values 
are required, for any given block. If a remote block  is 
involved, a message is sent to the processor to which that 
block is assigned. Note that interprocessor communication 
may  be  involved  in  both the fan-in  and fan-out updates; in 
both cases the communication is handled  by DSK and is 

The interprocessor communication is handled through 
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transparent to the user program.  In the case of afan-in 
type of update involving a remote block, requests for 
information are sent to the appropriate processors, and 
the information is received in response to these explicit 
requests. In the case of afan-out type of update, the 
information  is sent out to the appropriate processors on 
the basis of a priori knowledge of the need at a remote 
block for the appropriate local information. With such a 
scheme, there is no need to issue explicit messages 
requesting specific information from other processors. 

Communication optimuation 
The above-described interprocessor communication 
in the calls to dskdsw and dskdcb may  involve extra 
communication and synchronization overheads. For 
instance, when a call  is made to dskdsw with a fan-in type 
of boundary update for a particular block and the update 
information  is  not available locally, messages requesting 
the necessary information are sent to the “owner” 
processors. We refer to such messages as request-type 
messages. Whenever a processor receives a request for 
data from another processor (by means of such a request- 
type message), it satisfies the request by sending back the 
requested data. This is carried out by the DSK system 
running  on the owner processor, which performs this task 
when the user transfers control of execution to DSK via 
one of the calls to the DSK package. (In other words, 
the requests do not generate interrupts.) Also, since the 
storage holding the data generated in one iteration is 
reused in the next iteration, it is necessary to ensure 
that all request-type messages are satisfied before the 
computation on the next iteration begins. A global 
synchronization at the end of a time step ensures that 
all requests are satisfied, even if these requests arrive 
asynchronously. Although the above-described procedure 
ensures correct execution, there are two major types of 
overhead that affect performance: the request messages 
that must  be issued for the needed data, and the global 
synchronization that must  be  performed whenever storage 
reuse results in loss of data that may be needed elsewhere. 
These costs considerably reduce the efficiency of parallel 
computation. In the worst case, they can render unscalable 
a perfectly scalable application. 

We  now describe certain optimization steps incorporated 
into the DSK package that minimize the effects of the 
above-mentioned overheads, without weakening any of the 
capabilities. These optimizations take advantage of the 
repetitive nature of the computations observed in the 
iterative solution of PDEs. 

For the class of problems we are considering (steady- 
state solution to PDEs), the interblock dependencies do 
not change from  time step to time step; therefore, one 
can reduce the overheads by collecting information on 
the data-request and data-delivery patterns among the 296 
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processors by inspecting the execution of the first  time 
step. This information can then be used in scheduling the 
messages. With such an arrangement, owner processors 
can send appropriate values to “consumer” processors in 
the most  efficient manner, without being prompted for 
those values. Thus, in subsequent time steps, no  global 
synchronization is needed. 

Broadly speaking, there are two ways in which a 
program can be monitored for recording communication 
requirements. One way is to perform a preprocessing 
step prior to commencing the numerical computations. 
At the end of the preprocessing step, the monitoring or 
inspection step is complete, and  all of the iterations in the 
computation can be executed using the schedules 
established in the preprocessing phase. This approach is 
used by the multiblock  PART1 library [7]. One advantage 
of this approach is that the schedules can be used  in  all 
iterations. A disadvantage is that an explicit preprocessing 
step must be introduced, adding some computation and 
communication overhead. 

information during the actual execution of the first  time 
step and create a schedule of communication based on 
these observations. The DSK package uses this approach. 
An advantage of this approach is that there is no need for 
an explicit preprocessing step. A second advantage is that 
the schedules can be tuned by taking the system behavior 
into account during the actual numerical computations of 
an iteration. The  only overhead associated with this 
approach is  in  keeping a record of the communication 
events in the first  time step. As is seen in the following 
section, this overhead is small  and is amortized over the 
rest of the time steps. The gains in each subsequent time 
step are substantial. 

To realize these optimizations, a call to dsksch must  be 
made at each schedule point in the user code. A schedule 
point  is a state in the program  at  which  all  pending 
messages must be processed, in order for the program to 
proceed with correct execution of the code. Note that 
global synchronization can be  used to accomplish this 
objective, by forcing  all processors into this state at the 
same time. This is an expensive and often nonscalable 
means of achieving the result. For that reason, we use 
such a global synchronization only at the end of the first 
time step. During that time step, at the very beginning of 
stage 1, a schedule point  is set by making a call to dsksch. 
This starts the process of recording the message  traffic 
on each processor. Another schedule point is set at the 
beginning of each subsequent stage of the first  time step. 
Finally, the end of the first  time step is marked by the last 
schedule point.  At this schedule point, all outstanding 
request-type messages are satisfied, the message  recording 
is terminated, and an explicit  global synchronization is 
performed to guarantee that all outstanding messages 

The second approach is to gather the necessary 
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are satisfied. The schedule sequence (consisting of  five 
schedule points) is repeated in subsequent iterations 
without the global synchronization at the end of each 
iteration. At each schedule point, on a processor, the DSK 
system waits until  all the messages posted at the previous 
schedule point are satisfied;  new messages are then posted 
for the next phase of computation. Note that there is 
no need to issue request messages in the subsequent 
iterations, since the DSK package maintains a log, created 
at the first  time step, of processors that need locally 
computed data. In other words, a tightly synchronous 
computation is transformed into loosely synchronous 
computation. 

Performance results 
In this section, we present performance results from two 
parallel systems at the IBM Thomas J. Watson Research 
Center: a 32-processor IBM  POWER Visualization 
SystemTM (PVS) and an eight-processor experimental 
system called Power Parallel Prototype (PPP). 

The PVS is a bus-based hierarchical-memory system. 
Each PVS processor is based on the i860TM microprocessor 
with 8IU3 data cache and  40-MHz clock speed. Each 
processor has 16  MB  of local memory, of which about 13.5 
MB is  available to the user. The code, data, and stack for 
each processor are kept  in its local  memory. In addition, 
the processors are connected to 256  MB  of global  memory 
via a high-speed bus and communicate with one another 
using that shared memory. 

The PPP is a distributed-memory system consisting of 
eight  IBM RISC System/6000@  (RS/6000)  Model 550 
processors, each with 64 KB of cache and  42.5-MHz clock 
speed. The processing element has 32  MB  of physical 
memory. Each processor supports the IBM proprietary 
AIX@ operating system and can function independently 
as a full-fledged workstation with virtual memory.  The 
processors are connected with one another by a high-speed 
switch based on the same high-performance switch 
technology as that of the switch used in the IBM Scalable 
POWERparallelTM 1 (SPl) system [12]. 

Both systems we consider are of multiple-instruction- 
multiple-data (MIMD) type parallel architectures, and for 
both, a separate copy of the code is loaded into the local 
memory of every processor. On both systems, we used a 
message-passing paradigm for implementing  the extended 
DSK package. At the lowest  level of DSK package 
implementation on the PVS,  we used the EUIm message- 
passing environment [13]. This environment emulates the 
IBM Extended User Interface (EUI) message-passing 
protocol [14],  using  the shared memory and semaphores 
provided by the PVS. On the PPP,  we  implemented 
the extended DSK package on top of the EUIH 
communication protocol, developed at the Watson 
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Research Center.* Note that some of the low-level 
implementation details differ  from system to system; 
however, the user program, such as our model application, 
remains the same. 

We coded our model application, discussed earlier 
in the model application section, in FORTRAN 77. The 
overlapping grid  used as an  example in these experiments 
consists of two component grids, one with dimensions 
144 X 144  (grid 1) and the other with  dimensions 360 X 240 
(grid  2).  We partitioned the first  grid into eight blocks, 
each with dimensions 36 X 72, by dividing the grid into 
four slices along one dimension  and two slices along the 
other dimension. We partitioned grid 2 into 24 blocks by 
making six slices along the longer  dimension  and four 
along the shorter dimension, so that the resulting blocks 
had dimensions 60 X 60.  While these partitioning 
parameters are somewhat arbitrary, they bring out the 
characteristics common to real-life applications in which 
the component grids have different sizes and the blocks, 
after partitioning, may  not have the same amounts of 
computational work. 

synchronous and asynchronous. Synchronous implies that 
no communication optimizations were performed; instead, 
a global synchronization was performed at the end of each 
time step. Asynchronous implies that during the first  time 
step, a record was made of the communication pattern and 
of the computation sequence. As described above, a global 
synchronization was performed at the end of the first  time 
step. In the subsequent time steps, information gathered 
from the first  time step was used to schedule messages 
sent and received. 

We performed the experiments in two modes: 

Table 1 shows the performance results obtained on the 
PVS. The average execution time, in seconds per time 
step, and the corresponding speedups in the synchronous 
mode are shown under the heading Synchronous. The 
execution times are averages over 50 time steps. We have 
shown results for 1, 2, 4, 8, 16,  and  32 processors. 
Although  not shown, other numbers of processors are 
possible. The performance of the asynchronous mode  is 
shown in the remaining columns. The execution times for 
the first step and for subsequent time steps are shown 
separately. For the latter, we have taken the average over 
time steps two through fifty. Notice that the first  time step 
under the asynchronous mode has an overhead of up to 
nine percent compared to an average time step in the 
synchronous mode; the overhead generally increases with 
the number of processors. However, the gains over the 
synchronous mode  for the subsequent time steps in the 
asynchronous mode, which we  define as (Synchronous 
time per time step - Asynchronous  time per time 
step)lSynchronous  time per time step, range  from 26% to 

*P. Hochschild, “EUIH: An Experimental EUI Implementation,” IBM  internal 
report, IBM Research Division, Yorktown Heights, NY, 1993. 
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Table 1 Performance  of PVS on  model  problem. 

Number of Synchronous 
processors 

Asynchronous 

Average First step Average 

Solution time Speedup Solution time Overhead Solution time Gain Speedup 
Per  Per (%I Per (%) 

(s) 
time step time step 

( 4  
time step 

( 4  

1 
2 
4 
8 

16 
32 

3.55 1 .oo 
2.78 1.28 2.85 2 2.06  26 
2.19 

1.72 
1.62 2.23 2 1.12 49  3.17 

1.26  2.82 1.29  2 0.66  48 
0.58 6.12 0.48 - 0.28  52  12.68 

5.38 

0.34  10.44 0.37  9  0.21  38 16.90 
~ ~~ ~ 

Table 2 Performance of PPP on model  problem. 

Number of Synchronous 
processors 

Asynchronous 

Average First step Average 

Solution time Speedup Solution time Overhead Solution time Gain Speedup 
Per  Per (%) Per ("/.I 
(4  

time step time step time step 
(SI (SI 

1 1.67 1 .oo 
2 1.30 1.28  1.34  3  0.91  30 
4 0.88 1.90  0.89 1 0.53  40 

1.82 

8 
3.13 

0.48 3.48  0.50 4 0.33 31 5.08 

52%. The gains of the asynchronous mode are relatively 
small  with two processors; however, with  more than two 
processors, the asynchronous mode results in substantial 
gains (about 50%), except with 32 processors, where the 
gains drop to 38%. At 32 processors, the computation per 
processor is relatively small,  and other overheads, such as 
those due to load imbalance, bookkeeping, and boundary 
overlap manipulations, tend to dominate. Thus, with 32 
processors, the effect of not  having to synchronize and 
issue request messages does not reduce the total execution 
by the same factor as that observed with smaller numbers 
of processors. Finally, we compare the speedups in Table 
1 for the synchronous and asynchronous modes. The 
speedup figure for p processors under the synchronous 
mode is the ratio of the execution time of an average time 
step o n p  processors to the execution time of  an average 
time step on one processor. The same is computed under 
the asynchronous mode, with the execution time of  an 
average time step not  including the first  time step. The 
rationale for this is that, in this type of computation, 
typically hundreds and even thousands of iterations or time 
steps are computed. As a result, the execution time 
averaged over all  time steps is  almost the same as the 
execution time averaged over all  time steps except for the 

first. The improvements in performance are clear from the 
speedup metric. 

Similar performance results for the PPP are shown in 
Table 2. The overhead in the first  time step is 1% to 4%, 
while the gain  in the subsequent time steps is in the 
range of 30% to 40%. As in  PVS,  with a larger  number of 
processors, the gain  in the total execution time  due to 
asynchronous communication drops off. The RS/6000 
processors are relatively more  powerful than the i860 
processors; as  a result, overheads other than those in 
global synchronization start becoming  dominant  even at 
eight processors. Note that we  solved the same problem 
on both systems, and the problem size we  used was small, 
as is evident from the total execution time.  The two 
speedup columns in Table 2 provide another measure for 
observing the advantages of the asynchronous mode  and 
its effect as the number of processors is increased. 

It is instructive to compare the performance of  PVS and 
PPP systems in order to see which system benefits more 
by the asynchronous communication strategy, which avoids 
global synchronization. Such a comparison is shown in 
Table 3. Since PPP has only  eight processors, we 
restrict our comparison to runs with  eight or fewer 
processors. 



Shown in the  second column of Table 3 are  ratios of the 
synchronous  execution times on PVS  to  those on PPP 
with  the  same  number of processors.  The  ratio  for  the 
single-processor case is an indicator of the relative speeds of 
the i860 and RS/6000 Model 550 processors.  Note  that  as 
the  number of processors is increased  from two to eight, 
the  ratio  increases, indicating that  the  PVS  becomes 
progressively  slower. In other  words, while the useful 
work  per  processor  remains  the  same,  the  overhead of 
parallel  implementation in the  synchronous  mode is higher 
on the PVS. The third  column in Table 3 compares  the 
performance of the first step of the  asynchronous  mode 
on  the two systems.  These  ratios  are similar to  those in 
second column,  indicating that  the  two  systems  behave 
relative  to  each  other in a similar manner  as in the 
synchronous  mode.  The  last column,  which  gives the 
ratios of the  execution times for time steps 2 and  onward, 
shows a completely different trend. Note  that  these ratios 
are all approximately  the  same  as  the  ratio  for  the  one- 
processor  case (approximately 2.1), indicating that  under 
the asynchronous mode, the  overheads of parallel 
implementation for both systems grow at a similar  rate. 
This  is  evident  when  we  compare  the  speedup  columns 
under  asynchronous mode in Tables 1 and 2. 

Conclusions 
For the  important  class of  irregularly  coupled  regular-mesh 
problems, the  complex  data  structures  and  dependencies 
make  the  task of manual  parallel  implementation on 
scalable architectures  very difficult. This is because  the 
communication  primitives  available on most scalable 
parallel systems  present a very low-level programming 
interface.  Parallel  implementation  using these low-level 
primitives tends  to  be  tedious  and  error-prone,  even  when 
the  data  dependencies  are  somewhat irregular. The  state 
of compiler  technology has  not  advanced sufficiently to 
handle  this class of problem. The  environment  made 
available by DSK helps in overcoming some of these 
difficulties. DSK provides a portable  parallel-programming 
environment, managing distributed  data  structures  and 
dependencies.  By hiding communication  details  from the 
user, the DSK environment allows the  user to focus on the 
problem to  be solved. Compared  to a compiler, a library 
package such  as DSK gives a higher  level of abstraction 
and  control  to  the  user  for performing  optimizations. 
Together  with  its  database  features,  this  makes DSK a 
powerful  tool for  the  class of applications considered here. 
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Table 3 A comparison of PVS performance with PPP 
performance. 

Number of Ratios of Ratios of asynchronous 
processors synchronous computation times 

~~~ 

computation 
times 

(tPVSlfPPP) 

(tpvsltppp) First step Subsequent 
steps 

1 2.13 
2 2.14 2.13  2.26 
4 2.49  2.51 2.11 
8 2.63  2.58  2.00 

- - 

POWER Visualization System and POWERparallel are 
trademarks, and R.ISC System/6000  and AIX are registered 
trademarks, of International Business Machines Corporation. 

C+ + is a registered trademark of  AT&T. 

i860 is a trademark of Intel Corporation. 
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