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In this paper, we introduce a concept called For one operation, the performance was
algorithmic prefetching, for exploiting some of improved from 74% of peak to 89% of peak
the features of the IBM RISC System/6000® by algorithmic prefetching; for the second
computer. Algorithmic prefetching denotes operation, it was improved from 73% to 87%
changing algorithm A to algorithm B, which of the peak performance.

contains additional steps to move data from
slower levels of memory to faster levels, with
the aim that algorithm B outperform algorithm
A. The objective of algorithmic prefetching is
to minimize any penalty due to cache misses
in the innermost loop of an aigorithm. This
concept, along with “cache blocking,” can be
exploited to improve the performance of linear
algebra algorithms for dense matrices. We
experimentally demonstrated the impact of U — _ .

. . The work of M. Zubair was done while he was visiting the IBM Thomas J. Watson
prefetching on two dense-matrix operations. Research Center from Old Dominion University during the summer of 1992.

Introduction

To achieve good performance on high-performance
workstations, it is essential that the underlying algorithms
be restructured to match the underlying architectures of
the workstations. In this paper, we restrict our discussion
to IBM RISC System/6000® (RS/6000) workstations (note
that we use RS/6000 to indicate IBM POWER models);
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however, the ideas presented for enhancing the
performance of numerically intensive computations (NIC)'
are general and can be applied to other workstations
possessing similar hardware characteristics—for example,
IBM POWER2™ models. These high-performance
workstations are similar, in some sense, to vector pipeline
machines. It has been shown by Dongarra, Gustavson, and
Karp [1] that it is possible to restructure linear algebra
algorithms to match the architecture of vector pipeline
machines. A major objective of restructuring is to reuse
data (keep data in cache) and thereby reduce references
to main memory. In [1], the focus was on Cray-1-type
machines, which have a single level of memory. With the
advent of the IBM 3090 vector facility, Cray-2-type
machines, and other similar machines, memory
hierarchies, most featuring caches, became a very
important consideration for overall NIC performance [2].
In January 1987, J. Dongarra hosted a meeting” at the
Argonne National Laboratory in which the Level-3 basic
linear algebra subroutines (BLAS) [3], a subroutine library
usually incorporating features for efficient cache usage,
were proposed to computer vendors and numerical
analysts, with the view that they, like the Level-1 and the
Level-2 BLAS, become an industry standard. The IBM
Engineering and Scientific Subroutine Library (ESSL) [4]
recognized at an early stage the importance of Level-3
BLAS and included a version of the double-precision
general matrix-multiply routine (DGEMM), which takes
advantage of memory-hierarchy features, even before the
standard DGEMM was accepted.

Agarwal and Gustavson [5] have developed high-
performance, cache-based ‘“blocking”” algorithms for
Level-3 BLAS. The key feature of these schemes is to
bring a block of data into cache once and use it several
times before replacing it with a new block.

The architecture of the IBM 3090 machines with vector
facility does not support chaining, a feature for overlapping
phases of several vector operations. (For a complete
description of chaining, see [1].) To overcome the absence
of this feature, the 3090 vector facility introduced into its
architecture two compound instructions that simulated the
same performance as vector chaining, when data were in
vector registers. These instructions are the vector multiply
add (DAXPY) and vector multiply accumulate (dot
product). A major aim was to keep data in vector registers
and to store the results only after many operations were
computed on those data.

® Prefetching
The term prefetching denotes accessing a memory word
that is not in cache several cycles ahead of its usage.

1 A list of the acronyms used in this paper can be found in the Appendix.
2 Preliminary meeting on BLAS 3 adoption, Argonne National Laboratory,
Argonne, IL, January 27-29, 1987.
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The objective of prefetching is to hide memory-access
latencies due to cache misses. There is a lot of interest in
prefetching in the research area of architectural support for
programming languages, for example {6-9]. Most of this
effort is directed toward the highly desirable goal of
incorporating prefetching into the compiler, so that no
changes are required in the user program. To implement
prefetch instructions, this approach requires additional
hardware which is not currently available on commercial
workstations. It will take some time, however, before such
compilers, along with the required architecture/hardware
support, are available. To this effect, Callahan, Kennedy,
and Porterfield state in the conclusion of [6], ‘... it
remains to be established in practice whether the advanced
design of new high-performance microprocessors will
reduce the prefetching overhead sufficiently to realize
the potential gains.” References [6-9] demonstrate the
potential gains due to prefetching. So far, however, all
of their results are obtained from simulations in which
existing architectures are modified to support prefetching.
To be effective, the prefetch instructions should be used
judiciously—only for those arrays that are likely to cause
cache misses. The use of prefetch instructions for all
arrays may overwhelm the system and may actually
degrade the overall performance, as was demonstrated by
some of the simulations in [6-9]. In compiler-initiated
prefetching (with or without special hardware), the
compiler must analyze the data-access pattern in the
program, It also must know the dimensions of the various
arrays and the repetition counts for the various loops. By
combining this information with the relevant cache-size
parameters, the compiler can estimate which data accesses
are likely to result in cache misses. For simple programs,
the compiler is likely to do a reasonable job of prefetching,
but for more complex programs and when the array
dimensions and loop-repetition counts are not known at
compile time, it may be very difficult for the compiler to
judiciously insert prefetch instructions.

® Algorithmic prefetching

As an alternative to compiler prefetching, we propose and
demonstrate the usefulness of a concept, which we refer
to as algorithmic prefetching, that can be implemented

on existing workstations with standard compilers. In
algorithmic prefetching, we transform a given algorithm A
to algorithm B, where B implements A yet has additional
steps that move data from slower levels of memory to
faster levels (e.g., cache, registers). We then present
algorithm B to a compiler that need not have a prefetching
capability. We have demonstrated that the additional
source statements in algorithm B enhance the overall
performance; i.e., algorithm B outperforms algorithm A.
(We have found, however, that the XLF compiler [10]
sometimes ‘‘gets confused’” when trying to optimize
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algorithm B and therefore produces code that performs
poorly.)

An application program writer understands his algorithm
very well and can visualize the data-access pattern; if
necessary, he can modify the algorithm and the resulting
data-access pattern to better match the memory and cache
parameters of the machine. It is unrealistic to expect
this degree of sophistication from today’s compilers.
Algorithmic prefetching requires additional human effort,
and this is certainly worthwhile for heavily used library
programs such as the BLAS.

In algorithmic prefetching, the user anticipates cache
misses that may occur in accessing an array and issues an
ordinary load instruction for a single doubleword® from
the array, which is likely to result in a cache miss. This
prefetch load is done sufficiently in advance of the actual
use of data from the missing cache line. This brings the
missing cache line into the cache before it is actually
needed and hides (overlaps) the cache-miss penalty with
some useful work. If the prefetch load does not result in a
cache miss, it is like an ordinary load instruction. In fact,
if the user is accessing two arrays, and only one of them
(he does not know which one) is likely to result in a cache
miss, he issues two loads, and only one of them results in
a cache miss requiring setrvicing from the hardware.

We now mention some specifics of algorithmic
prefetching for the underlying architecture of the RS/6000
family of workstations and the XLF FORTRAN compiler
[10] for the RS/6000 family. This workstation architecture
does not have a prefetching feature, nor does the XLF
FORTRAN compiler support prefetching. We have been
able to accomplish algorithmic prefetching by writing code
in FORTRAN and by using loop unrolling, replacing inner-
loop code code that is iterated n times with m replications
of that inner-loop code, iterated n/m times. A scalar variable
is assigned the value of an array doubleword that is likely
to be out of cache; i.e., the assignment will cause a cache
miss. This scalar variable may be either actually employed
for a useful computation or simply disregarded. If the
variable is actually used in the loop, the number of loads
in the loop remains the same, and there is no additional
overhead for prefetching. As pointed out earlier, for the
prefetching to be fully effective, the load must be done
several cycles in advance, equal in time to the cache-miss
latency. (For the RS/6000, this latency is 11~16 cycles.)
Therefore, a large degree of unrolling may be necessary
in order to use the prefetched variable efficiently. Some
partial benefit from prefetching can be obtained, even
when prefetching is not done sufficiently in advance to
hide the entire cache-miss latency. If the prefetched
variable is not used in the loop, the number of loads in the
loop will be one more than necessary. In some situations,

3 We use the term doubleword (eight bytes, the amount of memory required to
store a double-precision floating-point number) in this paper to signify a data item.
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this may degrade performance slightly. Also, since the
prefetched variable is not used, an optimizing compiler
might eliminate that load and therefore thwart the attempt
to use algorithmic prefetching. Since this situation
occurred for the XLF compiler, we used a dummy
computation involving the prefetched variable outside the
loop so that the compiler would not remove it.

We now mention some fine points about algorithmic
prefetching. For those loops in which the loop
performance is limited by the number of loads and for
which the data are actually in cache, performance is
degraded slightly because of any extra prefetch load
instruction. If the prefetched load actually results in a
cache miss, however, the overall performance generally
improves in spite of the additional load. Our use of
algorithmic prefetching is implemented via ordinary load
instructions. The final iteration(s) of the loop may have to
be treated specially; otherwise, the inner loop involving
such iteration(s) might attempt to access doublewords
beyond the array boundary. This is easily accomplished by
reducing the loop count by one (or more) and doing the
last iteration(s) outside the loop, without prefetching.

The algorithmic prefetching concept, in addition to
cache blocking, can be exploited to improve the
performance of linear algebra algorithms for dense
matrices (matrices not specially treated as “‘sparse’).
Alpern and Carter applied a type of algorithmic prefetching
to the DGEMM computation on the RS/6000 workstation. *
For Level-3 BLAS, however, the use of cache blocking
provides similar results. Algorithmic prefetching works
best in the context of Level-2 computations, where cache
blocking cannot help, since there is no reuse of data. As is
shown later, on RS/6000 it is possible to apply algorithmic
prefetching for only those algorithms that have more
floating-point operations than load and store operations in
the innermost loop.

® Experimental results
We have experimentally demonstrated the impact of
algorithmic prefetching on two dense-matrix operations,
multiplication of a matrix by two vectors, and
multiplication of a complex matrix by a complex vector.
The experiments were done on the RS/6000 Mode! 530. All
coding was done in standard FORTRAN. The performance
of the first operation with algorithmic prefetching improves
from 74% (37 MFLOPS) to 89% (44.5 MFLOPS) of the
peak performance; and for the second operation, from 73%
(36.5 MFLOPS) to 87% (43.5 MFLOPS) of the peak
performance of the machine.

The rest of the paper is organized as follows. In the next
section, we briefly discuss the hardware features of the
RS/6000 workstation. The following section discusses the

4 Private communication, J. Lawrence Carter, IBM Thomas J. Watson Research
Center, January 1990.

R. C. AGARWAL, F. G. GUSTAVSON, AND M. ZUBAIR

267




268

general matrix vector (GEMV) computation and the
general algorithmic prefetching concept. In the next
section, we give details of two dense-matrix operations in
which the algorithmic prefetching concept can be used.

Experimental results are discussed in the following section.

Finally, we give some conclusions in the last section.

RS/6000 architecture

In this section, we give a brief description of the RS/6000
architecture. Key architectural features of the RS/6000
computers that greatly influence their performance are

e A large set of registers, typically 32.

¢ A memory hierarchy.

e The parallel execution of the branch, fixed-point, and
floating-point functional units.

e A pipelined floating-point unit, which produces one
multiply-add operation per cycle.

For a detailed review of the hardware features of the
RS/6000 computer, one can refer to [11].

® Data-cache unit

We consider the RS/6000 systems that have four-way
set-associative, 64KB caches. Each set has 16 KB of fast
memory and consists of 128 lines of 128 bytes each. In the
following, we summarize some features of the cache that
have an impact on the performance:

e A load instruction takes one cycle to execute if the word
is in cache and eight cycles if the word is not in cache
and all previous cache misses have been completely
processed.

Following the eight-cycle penalty, two consecutive

doublewords in the same cache line can arrive in the

cache during each following cycle. Thus, the 16

doublewords in a line arrive in 15 cycles.

e In case of a cache miss, doublewords of the appropriate
cache line are brought from the main memory in the
order dj,dj+1,- s ddy -,dj_l, where
d,d,,d,, - -.d,,. is the order of the consecutive
doublewords corresponding to a cache line in the
main memory and d; is the requested data item (not
necessarily on the cache-line boundary). We refer to
this order as the requested-word-first order.

® Translation lookaside buffer

The user program and data are located in a virtual address
space, which is translated to a real address space. The
translation lookaside buffer (TLB) contains the translation
information for virtual pages (4 KB each). The RS/6000
TLB has 128 entries in a two-way set-associative table;
i.e., at any time, up to 128 virtual page addresses can be
translated. If the translation information for a virtual page
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is not in the TLB, a TLB miss occurs, and it can take up
to 40 cycles to bring the translation information into the
TLB. Therefore, in addition to minimizing cache misses,
it is imperative to block the problem in order to minimize
TLB misses.

® Superscalar features

Some of the salient features that enable the RS/6000 to
give very good floating-point performance are summarized
below:

e When data and instructions remain in cache and TLB,’
the RS/6000 is capable of simultaneously executing four
instructions per machine cycle: a branch, a condition-
code-logic instruction, a fixed-point instruction, and a
floating-point instruction. The floating-point instruction
can be a compound multiply-add instruction (FMA).

¢ All arithmetic is done between registers. There are 32
fixed-point and 32 floating-point registers.

e The FMA instruction is executed in a two-stage pipeline.

The delay in each stage is one cycle; that is, after the

first cycle, a second FMA instruction may start,

provided that it does not need the output of the first

FMA instruction.

A floating-point load instruction is done by the fixed-

point instruction unit, and can be done concurrently with

a floating-point-arithmetic instruction that does not use

the value being loaded.

Level-2-like computation

® GEMV: Multiplication of a real matrix with a vector
Suppose we wish to perform a Level-2 computation, say
GEMV:y =y + Ax, where vector y has dimension M;
vector x has dimension N; and the matrix A has dimension
M x N. Assume that A is so large that it does not fit into
the cache. (In this context, fitting x and y is a negligible
problem.) While a column of A is processed, for every
sixteen doublewords of A (128 bytes), a cache miss of
eight cycles occurs (a so-called ““hiccup”’) during which
processing stops. After the first doubleword arrives,

the remaining fifteen doublewords arrive at a rate of two
doublewords per cycle, so that all sixteen doublewords
arrive in cache in 15-16 cycles. Note that here and
throughout our paper we assume FORTRAN-like storage
for the arrays (see below for a description of how
FORTRAN stores arrays).

The innermost loops of the GEMV computation, which
perform all necessary calculations for a submatrix of A,
can be described by the pseudocode in Figure 1. Vector y
has dimension M; vector x has dimension N; and the

S By this, we mean that the data and instructions remain in the memory space
associated with the 128 pages whose translation information currently resides in the
TLB.
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submatrix of A has dimension g X n, where ¢ < M,

n < N. The symbol fk represents floating-point register k.
After the first execution of the inner loop of Figure 1,

the values of the first g y(i) are updated by adding

E,-il a(i, jx(j). After each successive iteration of the inner
loop, g more of the y(i) values are similarly updated, until
all of the M values of y have been updated. This completes
the multiplication of A by the first # elements of x. In order
to complete the multiplication, all of the code of Figure 1
must be repeated for successive groups of n elements of x
(and r columns of A) until all N elements of x have been
multiplied.

Note that g + 2 floating-point registers are required to
compute g doublewords of y (registers f0 and f31 are used
as working registers). Thus, g < 30. We wish to form a
g X n submatrix of A that fits into cache and TLB. We
call this submatrix a block of the matrix or, simply, a block
(see ahead). When n is large, the g loads and stores of y in
the outer loop of Figure 1 require much less time than the
nqg FMAs in the inner loop. The inner loop has g + 1
loads and g FMAs. Since g of the loads are executed
simultaneously with the g FMAs, the inner loop runs at
q/(g + 1) times the peak performance if no cache miss
occurs. If g = 16, a cache miss occurs at least once every
time the inner loop is reentered, since each new column of
A contains an untouched line. (We neglect cache misses
caused by accessing x, because they are much less
frequent.) In ESSL [4], we have chosen g to be =20.

The location in memory of matrix A is significant.
Typically, we declare a two-dimensional array in
FORTRAN as A(LDA, %) where LDA = M. Here, LDA
refers to the leading dimension of the array A. In what
follows, a matrix stored this way is called a dense matrix.
If the (1, 1) doubleword of matrix A is stored in memory
location a, the FORTRAN convention of storing A places
the (i, j)th doubleword of A in memory location a + i —
1+ (j — 1) x LDA. (We assume that this address and o
are in units of doublewords.) It is important to realize that
the value of LDA can influence how well blocks of A fit
into cache and TLB. For LDA = 512, each column of A
begins on a different page. In order to avoid a TLB miss,
n must be chosen so that translation information for n
pages fits comfortably into the TLB. We have determined
experimentally that n = 80 is a good choice for the two-
way set-associative TLB with 128 entries. Because g < 30
(there are 32 floating-point registers), we have 2gn < 4800
doublewords; this is the number of doublewords needed to
process two consecutive blocks of the matrix. We wish to
keep two consecutive blocks in cache in order to keep all
lines that span two blocks in cache until they are fully
processed. To keep two consecutive blocks (for ¢ < 16,
see the last paragraph of the subsection on DGEMV2,
below) in cache, we may need to keep up to three cache
lines per column of A in cache. These cache lines remain
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DO i =
f1

1,M,q
y()

fq = y(i+q-1)
DO j=1n
31 = x(j)
f0 = a(i)
f1 f1 + fOxf31
f0 = a(i+1})
f2 = f2 + f0+f31

f0 = ai+q-1,)
fq = fq + f0+f31
END DO
yi) = f1

yli+q-1) = fq
END DO

Pseudocode for the innermost loops of GEMV: y =y + Ax, forthe
first n columns of A and first n components of x.

in cache for those matrices that do not have “bad’” LDA.*
Most LDA values are ““good.”

We cannot use the algorithmic prefetching concept for
the GEMV computation, because the inner loop requires
more floating-point load instructions (FPLs) than FMAs.

In order for algorithmic prefetching to work, the inner loop
must have sufficiently more FMAs than FPLs that a new
line can be loaded into cache while excess FMAs are being
executed. Thus, the GEMV computation must halt for
eight or more cycles whenever a new line is encountered.
Then, computing for the 16 doublewords in this line
proceeds at a near-peak rate. The ESSL double-precision
general matrix vector (DGEMYV) algorithm is based on the
algorithm described above; its computation rate on the
Model 530 computer was 25-28 MFLOPS (50-56% of
peak) for data in memory. For the DGEMV computation
on the Model 530, Dongarra, Mayes, and Radicati di
Brozolo [12] report 24 MFLOPS (48% of peak) for datain
cache and 12.3 MFLOPS (24.6% of peak) for data in
memory.

6—Inam:\anet-associaltiva cache, a particular line from memory can go into any
one of only four lines of cache. Usually, access patterns to memory are such that,
as the cache fills, the groups of four lines are filled roughly equally. However,

for data accessed with an LDA (difference between the address of successively
accessed data items) that is a factor of 16 KB or a multiple of 16 KB, the effective
cache size is reduced. For the worst case of an LDA of 16 KB or a multiple of

16 KB, the effective size of the cache is a mere four lines (512 bytes). The best
general advice is to avoid values of LDA (strides) that are powers of 2.
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FPL 1
FPA 1
FPL 2
FPA 2
FPL q
FPA q

FPA g+1
FPA g+2

FPA p

Unmodified inner loop of algorithm.

® Algorithmic prefetching

As stated earlier, the idea of algorithmic prefetching is

to hide the latency in accessing a doubleword that is

not in cache. For this to be fully effective, at least eight
instructions subsequent to the prefetch should not be
fixed-point or branching instructions. To understand this
better, consider Figure 2, which shows the unmodified
innermost loop of an algorithm with p floating-point
arithmetic (FPA) instructions and g FPLs, where p = g.
We assume that the g loads are for consecutive words in
the memory, and we load a different set of consecutive
words in every iteration of the innermost loop. The g loads
can be overlapped with the execution of the first ¢ FPAs,
as shown in Figure 2. Recall that an FPL can be done
concurrently with an FPA.

Because of our assumption that A does not fit in cache,
the first load will most likely miss the cache; hence, there
will be a penalty of eight cycles in the innermost loop. To
avoid this, we execute the first floating-point load of the
(i + 1)th iteration during the ith iteration, immediately
after the gth floating-point instruction, as is shown in
Figure 3. This brings into cache all of the data necessary
for the next iteration. Now the eight-cycle penalty due to
this load is overlapped with the next p — g floating-point
arithmetic instructions. For full overlapping, it is necessary
thatp — g = 8.
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FPL 1
FPA 1
FPL 2
FPA 2
FPL q
FPA q
FPL 1

FPA g+1
FPA g+2

(for the next iteration)

FPA p

Inner loop of algorithm modified by addition of prefetch instruction.

This basic idea of algorithmic prefetching must be
refined for dense-matrix processing and also to take into
account cache misses that occur for words which may
not reside on the cache line boundary. (In Figure 3, we
assumed that the FPL 1 prefetch brought in all data
necessary for iteration i + 1.) To understand this,
consider processing a dense matrix A of size M X N. The
matrix is partitioned into horizontal blocks of size ¢ X N,
as shown in Figure 4. The value of g is determined by the
number of available floating-point registers and also by the
nature of the underlying algorithm. Here, we consider only
horizontal blocking; for large N, it may also be necessary
to do vertical blocking, as for the GEMV multiplication in
Figure 1. The vertical-blocking parameter is based on TLB
considerations. For our discussion below, we assume that
1) two blocks can reside in cache simultaneously, and 2) in
the innermost loop of the algorithm, a column of size g of
a block is accessed and p floating-point operations are
performed, where p — g > 8. We first consider the case
in which the matrix is processed in natural order (block 1
followed by block 2, and so on).

® Algorithmic prefetching with block processing in natural
order

We assume that when a block is processed, the columns
are also accessed in natural order. The algorithmic
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Block i q

Block i + 1 q

M1 MN

Step i

Processing matrix A blocks in natural order. The horizontal and
vertical arrows indicate the order in which row and column ele-

i
;
. ments are processed.

prefetching scheme in this environment is illustrated in
Figure 5. The prefetched doubleword is indicated by X.
Notice that while working on a column of a block, we
prefetch the last doubleword of the next column. We do
not prefetch the first doubleword of the next column, as it
is almost always already in cache, having been brought
into cache during processing of the previous block. There
is a problem with this algorithmic prefetching scheme,
however, which arises because of the requested-word-first
order in which doublewords corresponding to a cache

line are brought into cache in case of a cache miss:

If a cache miss occurs for the prefetched doubleword, the
doublewords brought into the cache first are the ones that
are not used in the processing of the current block; they
belong to the next block. In other words, we are fetching
doublewords into the cache that are not immediately
required. This may stall the CPU for several cycles while
waiting for the required doublewords in the current block.
To overcome this problem, we prefetch with block
processing in the reverse order.

& Algorithmic prefetching with block processing in reverse
order

In reverse-order processing, the last block of the matrix

is accessed first, then the next-to-last block, and so on.
The columns of a block are processed in natural order.
Reverse-order processing generates output identical to that
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Line brought

Current block |— into cache
l /— while processing
block i
fo—
7 Line brought
Next block k- into cache
/ while processing
block i + 1
J

Prefetching while processing matrix A blocks in natural order.
X designates prefetched doubleword.

Line brought
Linto cache

while processing
block i — 1

r
Next block i — 1

|- Line brought
into cache

while processing
block i

Current block {

Algorithmic prefetching, processing blocks in reverse order;

X designates prefetched doubleword.

of natural-order processing. The algorithmic prefetching
scheme in this environment is illustrated in Figure 6.

While working on a column of a block, we prefetch the
first doubleword of the next column, as opposed to the last
doubleword. The reason for doing this is similar to that for
the natural-order case. Observe that the doublewords of a
cache line are now brought from the main memory in the
desired order when access of the doubleword causes a
cache miss. Thus, the doublewords that come into the
cache first are the ones needed next.

R. C. AGARWAL, F. G. GUSTAVSON, AND M. ZUBAIR

27




272

FOR i = nb,1,—1 (nb: number of blocks)

load q- doublewords of y1
load q doublewords of y2
FOR j=1,n

execute q+1 FPLs concurrently with q+1 FMAs
execute an FPL for the first doubleword of (j+1)th column  (prefetch)

execute g=1 FMAs
END FOR
store q doublewords of y1
store g doublewords of y2
END FOR

Cache-blocking DGEMV2 with prefetch.

Dense-matrix algorithms

In this section, we look at two of the dense-matrix
algorithms in which the algorithmic prefetching concept
developed in the previous section can be used for
improving performance on the RS/6000 workstation. The
first algorithm, DGEMV?2, is for the multiplication of a
dense real matrix by two real vectors. The DGEMV2
algorithm is used in a number of applications, such as
linear programming and general matrix factorization. The
second algorithm, ZGEMYV, is for the multiplication of a
dense complex matrix by a vector. Algorithmic prefetching
for both of these algorithms can be used for matrix A as
well as A"; however, we describe the algorithm only for
the normal case—for matrix A.

® DGEMV?2: Multiplication of a matrix by two vectors
Consider the following problem:

=y tAx,
.=y, tAx,,

where A is an M x N matrix of real numbers, x, and x,
are two real vectors of size N, and y, and y, are resultant
vectors of size M. We now describe a cache-blocking
algorithm with algorithmic prefetching to compute y,

and y,.

Partition matrix A into horizontal blocks of g x N
elements. For simplicity of presentation, we again assume
that three cache lines for each of the N columns can
fit in the cache, so no vertical blocking is required. The
algorithm processes a block at a time, and within a block it
processes a column at a time. The doublewords of y, and
y, are loaded into registers in the outer loop. In the inner
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loop, the required doublewords of x, and x, and a column
of the block of A being processed are loaded into registers.
In the inner loop, the FMA is used to do a DAXPY
operation; 2g FMAs and g + 2 FPLs are needed.

Figure 7 gives a high-level description of the algorithm.
As our idea is to highlight the algorithmic prefetching
concept, we go into only enough detail to describe it. Also,
to keep the description clear, exceptional cases, such as
the first and last column of a block, are not treated
separately. In our description, the destination for a load is
a register, and a store refers to moving data from a register
to a memory location.

In the inner loop, we first have g + 1 FPLs: two are for
the jth doubleword of x, and x,, and the remaining g — 1
are for the jth column of block i of the matrix A. These
FPLs are executed concurrently with g + 1 FMAs, as in
Figure 1. The next single FPL is the prefetch load. After
this load, the remaining ¢ — 1 FMAs are executed, during
which most of the doublewords in the cache line of the
prefetched load arrive in cache. Recall that for prefetch
to be fully effective, we should have

29 —{g +2)>8,0org>10.

An upper constraint on the value of g is due to the number
of available registers. A value of ¢ = 11 was determined
by numerical experimentation as a good value for the
RS/6000, which has 32 floating-point registers. Another
constraint is ¢ < 16, in order that the column length

be no greater than the cache line size; otherwise,
additional cache misses can occur in the middle of a
column.
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FOR i = nb,1,-1 (nb: number of blocks)
execute 2q loads for q elements (2q doublewords) of y

FORj=1,n

execute 2q+1 FPLs concurrently with 2q+1 FMAs
execute an FPL for the first real doubleword of (j+1)th column (prefetch)

execute 2q—1 FMAs
END FOR

execute 2q stores for q elements of y
END FOR

Cache-blocking ZGEMV with prefetch.

® ZGEMV: Multiplication of a complex matrix by a
complex vector
Consider the following problem:

y=Yy+Ax,

where A is a complex M X N matrix, and x and y are
complex vectors of size N and M, respectively. In
FORTRAN, complex numbers are always stored as a
contiguous pair of real numbers. We now give an informal
description of the algorithm with algorithmic prefetching.

Partition matrix A into horizontal blocks of g X N each.

For simplicity of presentation, we again assume that three
cache lines for each of the N columns can fit in the cache
of the machine, so no vertical blocking is required. The
algorithm processes a block at a time, and within a block
it processes a column at a time. The algorithm consists of
two nested loops. In the outer loop, pairs of doublewords
of y are loaded into a set of registers. In the inner

loop, we load the required pair of doublewords of x, and
a column of the block being processed is loaded into
registers. The computation in the inner loop is of the form
y(i) = y(@) + a(i, j) X x(j). A pair of doublewords of y,
consisting of a real and an imaginary part, can be
computed using three FMA instructions and a floating-point
multiply-subtract (FMS) instruction. For accounting
purposes, we make no distinction between an FMA and an
FMS. Thus, to compute g pairs of doublewords of y, we
need 4g FMAs. The number of FPLs required in the inner
loop is 2(g + 1). Of these, 2q loads are for loading g pairs of
doublewords of a column of A, and 2 for loading a

pair of doublewords of x. Note that a complex pair of
doublewords occupies two floating-point registers.
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Figure 8 gives a high-level description of the algorithm.
Here also, to keep the description clear, exceptional cases
are not treated.

In the inner loop, we first have 2(¢ + 1) FPLs, which
are executed concurrently with 2(g + 1) FMAs, as
outlined in the above subsection on algorithmic
prefetching. The last single load is the prefetch step. For
this problem, we selected g = 7, which ensures that

29 -1>8.

Note that there are more FMAs available to hide the cache
penalty in this problem (2g — 1) than in DGEMV2 (g — 1).
For g = 7, the number of FMAs available to hide the
cache latency (13) is sufficiently greater than 8 that the
reverse processing of blocks (see the section on Level-2-
like computation, above) is not necessary.

Experimental results

We have implemented two versions each of DGEMV2 and
ZGEMV on the RS/6000 Model 530, one with algorithmic
prefetching and the other without. All coding was done
using standard FORTRAN 77. The performance of the two
versions was compared for both of the problems. To be
sure that none of the data were in cache, we flushed

cache before executing the algorithm. Our results are
summarized in Figures 9 and 10. The performance is
defined as the number of floating-point operations
necessary to compute the answers (4mn for DGEMV2 and
8mn for ZGEMV) divided by the total execution time in
microseconds. Figures 9 and 10 show this performance as
a function of the matrix/array dimension M, with N
constant (N = 140 for DGEMV2 and 120 for ZGEMYV).
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Performance of DGEMV2 with and without algorithmic pre-
fetching (N = 140).

The Model 530 has a peak performance of 50 MFLOPS.
We chose LDA = M for most of our data points, since
this allowed us to use a larger value of N. At one point we
observed a bad LDA, resuiting in about 10% performance
degradation. We restored the 10% performance loss for
this LDA value by setting LDA = M + 1 for that point.
In Figure 9, we plot the performance of DGEMV2 with
and without algorithmic prefetching. The performance
without algorithmic prefetching saturates at 74%
(37 MFLOPS) of the peak performance (despite the
appearance of rising near M = 225), while the
performance with algorithmic prefetching goes up to 89%
(44.5 MFLOPS) of the peak performance. Similar behavior
can be observed for ZGEMYV (see Figure 10). Both Figures
9 and 10 are plotted for a discrete set of points. In two
cases there are drops (dips) in the curves corresponding to
bad LDA points.

Conclusion

In this paper, we have introduced a new concept, called
algorithmic prefetching, which can be exploited to improve
NIC performance. In particular, we have demonstrated
that algorithmic prefetching can improve the performance
of DGEMV2 and ZGEMV. The algorithmic prefetching
concept is general, however, and can be applied to other
dense-matrix operations on architectures similar to
RS/6000.
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Appendix: Glossary of acronyms

BLAS basic linear algebra subroutines

DAXPY double-precision a * x + y (Level-1 BLAS)

DGEMM double-precision general matrix multiply
(Level-3 BLAS)

DGEMV double-precision general matrix vector
(Level-2 BLAS)

DGEMV2  double-precision general matrix vector 2
(Level-2 BLAS)

ESSL Engineering and Scientific Subroutine
Library

FMA floating-point multiply-add instruction

FMS floating-point multiply-subtract
instruction

FPA floating-point arithmetic instruction

FPL floating-point load instruction

GEMV general matrix vector (generic Level-2
BLAS)

LDA leading dimension of array

NIC numerically intensive computations

TLB translation lookaside buffer

ZGEMV double-precision complex general matrix

vector (Level-2 BLAS)
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