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In this paper,  we introduce  a  concept  called 
algorithmic  prefetching, for exploiting some  of 
the  features  of the IBM RISC System/6000@’ 
computer.  Algorithmic  prefetching  denotes 
changing  algorithm  A to algorithm B, which 
contains  additional  steps to move  data from 
slower  levels  of  memory to faster  levels, with 
the aim that  algorithm B outperform  algorithm 
A.  The objective of algorithmic  prefetching is 
to minimize  any  penalty  due to cache  misses 
in the innermost loop of  an  algorithm.  This 
concept,  along  with  “cache  blocking,”  can  be 
exploited to improve  the  performance of linear 
algebra  algorithms for dense  matrices. We 
experimentally  demonstrated  the  impact  of 
prefetching on two dense-matrix  operations. 

For  one  operation,  the  performance  was 
improved  from 74% of  peak to 89% of  peak 
by  algorithmic  prefetching; for the  second 
operation, it was  improved from 73% to 87% 
of  the  peak  performance. 

Introduction 
To achieve good performance on  high-performance 
workstations, it is essential that the underlying algorithms 
be restructured to match the underlying architectures of 
the workstations. In this paper, we restrict our discussion 
to IBM RISC System/6000@  (RS/6000) workstations (note 
that we use RS/6000 to indicate IBM POWER models); 
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however, the ideas presented for enhancing the 
performance of numerically intensive computations (NIC)’ 
are general and can be applied to other workstations 
possessing similar hardware characteristics-for example, 
IBM P0WER2m models. These high-performance 
workstations are similar,  in some sense, to vector pipeline 
machines. It has been shown by Dongarra, Gustavson, and 
Karp [l] that it is possible to restructure linear algebra 
algorithms to match the architecture of vector pipeline 
machines. A major objective of restructuring is to reuse 
data (keep data in cache) and thereby reduce references 
to main memory. In [l], the focus was on Cray-1-type 
machines, which have a single level of memory.  With the 
advent of the IBM 3090 vector facility, Cray-2-type 
machines, and other similar machines, memory 
hierarchies, most featuring caches, became a very 
important consideration for overall NIC performance [2]. 
In January 1987, J. Dongarra hosted a meeting’ at the 
Argonne National Laboratory in which the Level3 basic 
linear algebra subroutines (BLAS) [3], a subroutine library 
usually incorporating features for efficient cache usage, 
were proposed to computer vendors and  numerical 
analysts, with the view that they, like the Level-1 and the 
Level-2 BLAS, become  an industry standard. The IBM 
Engineering and Scientific Subroutine Library (ESSL) [4] 
recognized at an early stage the importance of Level3 
BLAS and  included a version of the double-precision 
general matrix-multiply routine (DGEMM),  which takes 
advantage of memory-hierarchy features, even before the 
standard DGEMM was accepted. 

Agarwal and Gustavson [5] have developed high- 
performance, cache-based “blocking” algorithms for 
Level-3 BLAS. The key feature of these schemes is to 
bring a block of data into cache once and  use  it several 
times before replacing it with a new block. 

The architecture of the IBM 3090 machines with vector 
facility does not support chaining, a feature for overlapping 
phases of several vector operations. (For a complete 
description of chaining, see  [l].)  To overcome the absence 
of this feature, the 3090 vector facility introduced into its 
architecture two compound instructions that simulated the 
same performance as vector chaining, when data were in 
vector registers. These instructions are the vector multiply 
add (DAXPY) and vector multiply accumulate (dot 
product). A major  aim was to keep data in vector registers 
and to store the results only after many operations were 
computed on those data. 

Prefetching 
The termprefetching denotes accessing a memory word 
that is  not  in cache several cycles ahead of its usage. 

A list of the acronyms used in this paper can be found in the Appendix. 
Preliminary meeting on B U S  3 adoption, Argonne National Laboratory, 

Argonne, IL, January  27-29,  1987. 

The objective of prefetching is to hide memory-access 
latencies due to cache misses. There is a lot of interest in 
prefetching in the research area of architectural support for 
programming  languages, for example [6-91. Most of this 
effort  is directed toward the highly desirable goal of 
incorporating prefetching into the compiler, so that no 
changes are required in the user program. To implement 
prefetch instructions, this approach requires additional 
hardware which is  not currently available  on  commercial 
workstations. It will take some time, however, before such 
compilers, along  with the required architecturebardware 
support, are available. To this effect, Callahan, Kennedy, 
and Porterfield state in the conclusion of [6], ‘‘. . . it 
remains to be established in practice whether the advanced 
design of new high-performance microprocessors will 
reduce the prefetching overhead sufficiently to realize 
the potential gains.” References [6-91 demonstrate the 
potential gains due to prefetching. So far, however, all 
of their results are obtained from simulations in  which 
existing architectures are modified to support prefetching. 

judiciously-only  for those arrays that are likely to cause 
cache misses. The  use of prefetch instructions for all 
arrays may overwhelm the system and may actually 
degrade the overall performance, as was demonstrated by 
some of the simulations in  [6-91. In compiler-initiated 
prefetching (with or without special hardware), the 
compiler  must analyze the data-access pattern in the 
program. It also must know the dimensions of the various 
arrays and the repetition counts for the various loops.  By 
combining this information with the relevant cache-size 
parameters, the compiler  can estimate which data accesses 
are likely to result in cache misses. For simple programs, 
the compiler is  likely to do a reasonable job of prefetching, 
but for  more complex programs and when the array 
dimensions and loop-repetition counts are not known at 
compile  time,  it  may be very difficult for the compiler to 
judiciously insert prefetch instructions. 

To be  effective, the prefetch instructions should be used 

Algorithmic prefetching 
As an alternative to compiler prefetching, we propose and 
demonstrate the usefulness of a concept, which  we refer 
to as algorithmic prefetching, that can be implemented 
on existing workstations with standard compilers. In 
algorithmic prefetching, we transform a given  algorithm A 
to algorithm B, where B implements A yet has additional 
steps that move data from slower levels of memory to 
faster levels (e.g., cache, registers). We then present 
algorithm B to a compiler that need not have a prefetching 
capability. We have demonstrated that the additional 
source statements in algorithm B enhance the overall 
performance; i.e.,  algorithm B outperforms algorithm  A. 
(We have found, however, that the XLF compiler [lo] 
sometimes “gets confused” when trying to optimize 
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algorithm B and therefore produces code that performs 
poorly.) 

very well  and can visualize the data-access pattern; if 
necessary, he can modify the algorithm and the resulting 
data-access pattern to better match the memory  and cache 
parameters of the machine. It is unrealistic to expect 
this degree of sophistication from  today’s compilers. 
Algorithmic prefetching requires additional human  effort, 
and this is certainly worthwhile for heavily used library 
programs such as the B U S .  

In  algorithmic prefetching, the user anticipates cache 
misses that may occur in accessing an array and issues an 
ordinary load instruction for a single doubleword3 from 
the array, which  is  likely to result in a cache miss. This 
prefetch load is done sufficiently in advance of the actual 
use of data from the missing cache line. This brings the 
missing cache line into the cache before it is actually 
needed and hides (overlaps) the cache-miss penalty with 
some useful work. If the prefetch load does not result in a 
cache miss,  it is like an ordinary load instruction. In fact, 
if the user is accessing two arrays, and  only one of them 
(he  does not know which one) is likely to result in a cache 
miss,  he issues two loads, and only one of them results in 
a cache miss requiring servicing from the hardware. 

We  now  mention some specifics of algorithmic 
prefetching for the underlying architecture of the RS/6000 
family of workstations and the XLF FORTRAN  compiler 
[lo] for the RS/6000  family. This workstation architecture 
does not have a prefetching feature, nor does the XLF 
FORTRAN compiler support prefetching. We have been 
able to accomplish  algorithmic prefetching by writing code 
in FORTRAN and by using loop unrolling,  replacing inner- 
loop code code that is iterated n times with m replications 

An application program writer understands his  algorithm 

this may degrade performance slightly. Also, since the 
prefetched variable is  not used, an  optimizing  compiler 
might  eliminate that load  and therefore thwart the attempt 
to use  algorithmic prefetching. Since this situation 
occurred for the XLF compiler, we used a dummy 
computation involving the prefetched variable outside the 
loop so that the compiler would  not remove it. 

We now mention some fine points about algorithmic 
prefetching. For those loops in  which the loop 
performance is  limited by the number of loads and for 
which the data are actually in cache, performance is 
degraded slightly because of any extra prefetch load 
instruction. If the prefetched load actually results in a 
cache miss, however, the overall performance generally 
improves in spite of the additional load.  Our use of 
algorithmic prefetching is  implemented via ordinary load 
instructions. The final iteration(s) of the loop may have to 
be treated specially; otherwise, the inner loop involving 
such iteration(s) might attempt to access doublewords 
beyond the array boundary. This is easily accomplished by 
reducing the loop count by one (or more) and  doing the 
last iteration(s) outside the loop, without prefetching. 

The  algorithmic prefetching concept, in addition to 
cache blocking,  can be exploited to improve the 
performance of linear algebra  algorithms for dense 
matrices (matrices not specially treated as “sparse”). 
Alpern  and Carter applied a type of algorithmic prefetching 
to the DGEMM computation on the RS/6000 w~rkstation.~ 
For Level-3 BLAS, however, the use of cache blocking 
provides similar results. Algorithmic prefetching works 
best in the context of Level-2 computations, where cache 
blocking cannot help, since there is no reuse of data. As is 
shown later, on RS/6000 it is  possible to apply algorithmic 
prefetching for only those algorithms that have more 

of that inner-loop code, iterated nlm times. A scalar variable floating-point operations than load and store operations in 
is  assigned the value of an array doubleword that is likely 
to be out of cache; i.e., the assignment  will cause a cache 
miss. This scalar variable may be either actually employed 
for a useful computation or simply disregarded. If the 
variable is actually used in the loop, the number of loads 
in the loop remains the same, and there is no additional 
overhead forprefetching. As pointed out earlier, for the 
prefetching to be fully  effective, the load  must be done 
several cycles in advance, equal in time to the cache-miss 
latency. (For the RS/6000, this latency is 11-16 cycles.) 
Therefore, a large degree of unrolling  may be necessary 
in order to use the prefetched variable efficiently. Some 
partial benefit  from prefetching can be obtained, even 
when prefetching is  not done sufficiently  in advance to 
hide the entire cache-miss latency. If the prefetched 
variable is not used in the loop, the number of loads in the 
loop will be one more than necessary. In some situations, 

store a double-precision floating-point number) in this paper to signify a  data item. 
3 We use the  term doubleword (eight bytes, the amount of memory required to 

the innermost loop. 

9 Experimental results 
We have experimentally demonstrated the impact of 
algorithmic prefetching on two dense-matrix operations, 
multiplication of a matrix by two vectors, and 
multiplication of a complex matrix by a complex vector. 
The experiments were done on the RS/6000  Model 530. All 
coding was done in standard FORTRAN.  The performance 
of the first operation with  algorithmic prefetching improves 
from 74% (37 MFLOPS) to 89% (44.5 MFLOPS) of the 
peak performance; and  for the second operation, from 73% 
(36.5 MFLOPS) to 87% (43.5 MFLOPS) of the peak 
performance of the machine. 

section, we  briefly discuss the hardware features of the 
RS/6000 workstation. The following section discusses the 

The rest of the paper is organized as follows.  In the next 

4 Private communication, J. Lawrence Carter,  IBM Thomas J. Watson Research 
Center, January 1990. 267 
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general matrix vector (GEMV) computation and the 
general algorithmic prefetching concept. In the next 
section, we give details of two dense-matrix operations in 
which the algorithmic prefetching concept can be used. 
Experimental results are discussed in the following section. 
Finally, we  give some conclusions in the last section. 

RSl6000 architecture 
In this section, we  give a brief description of the RS/6000 
architecture. Key architectural features of the RS/6000 
computers that greatly influence their performance are 

A large set of registers, typically 32. 
A memory hierarchy. 
The parallel execution of the branch, fixed-point, and 

A pipelined  floating-point unit, which produces one 
floating-point functional units. 

multiply-add operation per cycle. 

For a detailed  review of the hardware features of the 
RS/6000 computer, one can refer to [11]. 

Data-cache unit 
We consider the RS/6000 systems that have four-way 
set-associative, 64KB caches. Each set has 16 KB of fast 
memory  and consists of 128 lines of  128 bytes each. In the 
following,  we summarize some features of the cache that 
have an impact  on the performance: 

A load instruction takes one cycle to execute if the word 
is in cache and  eight cycles if the word is  not  in cache 
and  all previous cache misses have been completely 
processed. 
Following the eight-cycle penalty, two consecutive 
doublewords in the same cache line can arrive in the 
cache during each following cycle. Thus, the 16 
doublewords in a line arrive in 15 cycles. 

cache line are brought from the main  memory  in the 
order d,,  d,,, , - *, drsire, d l ,   d , ,  ., d,-l,  where 
d l ,   d , ,   d , ,  * * e ,  d,,, is the order of the consecutive 
doublewords corresponding to a cache line in the 
main  memory and d, is the requested data item (not 
necessarily on the cache-line boundary). We refer to 
this order as the requested-word-first order. 

In case of a cache miss, doublewords of the appropriate 

Translation lookaside buffer 
The user program and data are located in a virtual address 
space, which is translated to a real address space. The 
translation lookaside buffer (TLB) contains the translation 
information for virtual pages  (4 KB each). The RS/6000 
TLB has 128 entries in a two-way set-associative table; 
i.e., at any time,  up to 128 virtual page addresses can be 
translated. If the translation information for a virtual page 
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is not in the TLB, a TLB miss occurs, and it  can take up 
to 40 cycles to bring the translation information into the 
TLB. Therefore, in addition to minimizing cache misses, 
it is imperative to block the problem  in order to minimize 
TLB misses. 

Superscalar features 
Some of the salient features that enable the RS/6000 to 
give very good  floating-point performance are summarized 
below: 

When data and instructions remain in cache and TLB,’ 
the RS/6000 is capable of simultaneously executing four 
instructions per machine  cycle: a branch, a condition- 
code-logic instruction, a fixed-point instruction, and a 
floating-point instruction. The  floating-point instruction 
can be a compound multiply-add instruction (FMA). 
All arithmetic is done between registers. There are 32 
fixed-point  and 32 floating-point registers. 
The FMA instruction is executed in a two-stage pipeline. 
The delay in each stage is one cycle; that is, after the 
first cycle, a second FMA instruction may start, 
provided that it does not  need the output of the first 
FMA instruction. 
A floating-point  load instruction is done by the fixed- 
point instruction unit, and can be done concurrently with 
a floating-point-arithmetic instruction that does not use 
the value being loaded. 

Level-2-like  computation 

G E M  Multiplication of a real  matrix  with a vector 
Suppose we  wish to perform a Level-2 computation, say 
GEMV: y = y + Ax, where vector y has dimension M 
vector x has dimension N ;  and the matrix A has dimension 
A4 X N .  Assume that A is so large that it does not  fit into 
the cache. (In this context, fitting x and y is a negligible 
problem.)  While a column of A is processed, for every 
sixteen doublewords of A (128 bytes), a cache miss of 
eight cycles occurs (a so-called “hiccup”) during  which 
processing stops. After the first doubleword arrives, 
the remaining  fifteen doublewords arrive at a rate of two 
doublewords per cycle, so that all sixteen doublewords 
arrive in cache in  15-16 cycles. Note that here and 
throughout our paper we assume FORTRAN-like storage 
for the arrays (see below for a description of how 
FORTRAN stores arrays). 

The innermost loops of the GEMV computation, which 
perform all necessary calculations for a submatrix of A, 
can be described by the pseudocode in  Figure 1. Vector y 
has dimension M; vector x has dimension N ;  and the 

5 By this, we mean that the data  and instructions remain  in the memory space 
associated with the 128 pages whose translation information currently resides in the 
TLB. 
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submatrix of A has dimension q X n ,  where q < M ,  
n 5 N .  The symbol fk  represents floating-point register k .  
After the first execution of the inner loop of Figure 1, 
the values of the first q y ( i )  are updated by adding 
?.Il a(i,j)xu). After  each successive iteration of the inner 
loop, q more of the y ( i )  values are similarly updated, until 
all  of the M values of y have  been updated. This completes 
the  multiplication of A by the first n elements of x. In order 
to complete the multiplication,  all of the code of Figure 1 
must be repeated for successive groups of n elements of x 
(and n columns of A) until all N elements of x have been 
multiplied. 

Note that q + 2 floating-point registers are required to 
compute q doublewords of y (registers fO  and f31 are used 
as working registers). Thus, q 5 30. We  wish to form a 
q X n submatrix of A that fits into cache and TLB. We 
call  this  submatrix a block of the matrix or, simply, a block 
(see ahead). When n is large, the q loads and stores of y in 
the outer loop of Figure 1 require much less time than the 
nq FMAs in the inner loop. The inner loop has q + 1 
loads and q FMAs. Since q of the loads are executed 
simultaneously with the q FMAs, the inner loop runs at 
q/(q + 1) times the peak performance if no cache miss 
occurs. If q 2 16, a cache miss occurs at least once every 
time the inner loop is reentered, since each new  column of 
A contains an untouched line.  (We  neglect cache misses 
caused by accessing x, because they are much less 
frequent.) In ESSL [4], we have chosen q to be ~ 2 0 .  

The location in  memory of matrix A is  significant. 
Typically,  we declare a two-dimensional array in 
FORTRAN asA(LDA, *) where LDA 2 M .  Here, LDA 
refers to the leading  dimension of the array A. In what 
follows, a matrix stored this way is called a dense matrix. 
If the (1, 1) doubleword of matrix A is stored in memory 
location a, the FORTRAN convention of storing A places 
the (i, j)th doubleword of A in memory location a + i - 
1 + ( j  - 1) X LDA. (We assume that this address and a 
are in units of doublewords.) It is important to realize that 
the value of LDA can influence  how  well blocks of A fit 
into cache and TLB. For LDA 2 512, each  column of A 
begins on a different  page. In order to avoid a TLB miss, 
n must  be chosen so that translation information for n 
pages fits comfortably into the TLB. We have determined 
experimentally that n = 80 is a good choice for the two- 
way set-associative TLB with 128 entries. Because q < 30 
(there are 32 floating-point registers), we have 2qn ~r 4800 
doublewords; this is  the number of doublewords needed to 
process two consecutive blocks of the matrix. We wish to 
keep two consecutive blocks in cache in order to keep all 
lines that span two blocks in cache until they are fully 
processed. To keep two consecutive blocks (for q 5 16, 
see the last paragraph of the subsection on DGEMV2, 
below) in cache, we may need to keep up to three cache 
lines per column of A in cache. These cache lines remain 
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FPL 1 
FPA 1 
FPL 2 
FPA 2 

FPL q 
FPA q 
FPA q+l 
FPA q+2 

FPA p 

... 

... 

FPL 1 
FPA 1 
FPL 2 
FPA 2 
e . .  

FPL q 
FPA q 
FPL 1 (for  the  next  iteration) 
FPA q+l 
FPA q+2 

FPA p 
... 

. __ . . 

Algorithmic prefetching 
As stated earlier, the idea of algorithmic prefetching is 
to hide the latency in accessing a doubleword that is 
not  in cache. For this to be fully  effective, at least eight 
instructions subsequent to the prefetch should not  be 
fixed-point or branching instructions. To understand this 
better, consider Figure 2, which shows the unmodified 
innermost loop of an  algorithm  with p floating-point 
arithmetic (FPA) instructions and q FPLs, wherep 2 q .  
We assume that the q loads are for consecutive words in 
the memory, and we load a different set of consecutive 
words in every iteration of the innermost loop. The q loads 
can be overlapped with the execution of the first q FPAs, 
as shown in Figure 2. Recall that an FPL can be done 
concurrently with  an  FPA. 

Because of our assumption that A does not fit  in cache, 
the first  load  will  most  likely  miss the cache; hence, there 
will  be a penalty of eight cycles in the innermost loop. To 
avoid this, we execute the first  floating-point  load of the 
(i + 1)th iteration during the ith iteration, immediately 
after the qth floating-point instruction, as is shown in 
Figure 3. This brings into cache all of the data necessary 
for the next iteration. Now the eight-cycle penalty due to 
this load is overlapped with the next p - q floating-point 
arithmetic instructions. For full overlapping, it is necessary 
thatp - q 2 8. 
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This basic idea of algorithmic prefetching must be 
refined for dense-matrix processing and also to take into 
account cache misses that occur for words which may 
not reside on the  cache line boundary. (In Figure 3, we 
assumed that the FPL 1 prefetch brought  in  all data 
necessary for iteration i + 1.) To understand this, 
consider processing a dense matrix A of size M X N .  The 
matrix is partitioned into horizontal blocks of size q X N ,  
as shown in Figure 4. The value of q is determined by the 
number of available floating-point registers and also by the 
nature of the underlying  algorithm. Here, we consider only 
horizontal blocking;  €or large N ,  it may also be necessary 
to do vertical blocking, as for the GEMV multiplication in 
Figure 1. The vertical-blocking parameter is based on TLB 
considerations. For our discussion below, we assume that 
1) two blocks can reside in cache simultaneously, and 2) in 
the innermost loop of the algorithm, a column of size q of 
a block is accessed andp floating-point operations are 
performed, wherep - q > 8. We  first consider the case 
in which the matrix is processed in natural order (block 1 
followed by block 2, and so on). 

Algorithmic prefetching with block processing in natural 
order 
We assume that when a block is processed, the columns 
are also accessed in natural order. The  algorithmic 
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I 
I -  

Block i + + 
l I  

lq 
lq 

Step i 

f Processing matrix A blocks in natural order. The horizontal and 
vertical arrows indicate the  order in which row and column ele- 
ments are processed. 

prefetching scheme in this environment is illustrated in 
Figure 5. The prefetched doubleword is indicated by X. 
Notice that while  working on a column of a block, we 
prefetch the last doubleword of the next column. We do 
not prefetch the first doubleword of the next column, as it 
is almost always already in cache, having been brought 
into cache during processing of the previous block. There 
is a problem with this algorithmic prefetching scheme, 
however, which arises because of the requested-word-first 
order in which doublewords corresponding to a cache 
line are brought into cache in case of a cache miss: 
If a cache miss occurs for the prefetched doubleword, the 
doublewords brought into the cache first are the ones that 
are not used in the processing of the current block; they 
belong to the next block. In other words, we are fetching 
doublewords into the cache that are not immediately 
required. This may stall the CPU for several cycles while 
waiting for the required doublewords in the current block. 
To overcome this problem, we prefetch with block 
processing in the reverse order. 

Algorithmic  prefetching  with  block processing in  reverse 
order 
In reverse-order processing, the last block of the matrix 
is accessed first, then the next-to-last block, and so on. 
The columns of a block are processed in natural order. 
Reverse-order processing generates output identical to that 
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U 
Current  block 

Line  brought 
-into cache 

while processing 
block i 

Line  brought 

while processing 
block i + 1 

Next block -into cache 

Prefetching  while  processing  matrix A blocks in natural  order. 1 X desi nates prefetched doubleword. 

Line  brought 
into cache 

block i - 1 
-while processing 

Next block i - 1 
-Line brought 

into cache 
while processing 
block i 

Current  block i 

I 

3 Algorithmic  prefetching,  processing  blocks  in  reverse  order; 
1 X designates mefetched doubleword. 

of natural-order processing. The algorithmic prefetching 
scheme in this environment is illustrated in Figure 6. 

While working on a column of a block, we prefetch the 
first doubleword of the next column, as opposed to the last 
doubleword. The reason for doing this is similar to that for 
the natural-order case. Observe that the doublewords of a 
cache line are now brought from the main memory in the 
desired order when access of the doubleword causes a 
cache miss. Thus, the doublewords that come into the 
cache first are the ones needed next. 271 
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FOR i = nb,l,-1 (nb:  number  of  blocks) 
load  q  doublewords  of y l  
load  q  doublewords of y2 
FOR j = 1, n 

execute q+l  FPLs concurrently  with q+l  FMAs 
execute  an FPL for the  first  doubleword of (j+l)th column  (prefetch) 
execute q- 1 FMAs 

END  FOR 
store q doublewords of y l  
store  q  doublewords of y2 

END FOR 

Dense-matrix  algorithms 
In this section, we  look at two of the dense-matrix 
algorithms in which the algorithmic prefetching concept 
developed in the previous section can be used  for 
improving performance on the RS/6000 workstation. The 
first  algorithm,  DGEMV2,  is for the multiplication of a 
dense real matrix by two real vectors. The  DGEMV2 
algorithm  is used in a number of applications, such as 
linear  programming and general matrix factorization. The 
second algorithm,  ZGEMV, is for the multiplication of a 
dense complex matrix by a vector. Algorithmic prefetching 
for both of these algorithms can be used for matrix A as 
well as AT; however, we describe the algorithm only for 
the normal case-for matrix A. 

D G E W 2 :  Multiplication of a matrix by two vectors 
Consider the following problem: 

Y1 = Y1+ Ax, 7 

Y2 = Y2 + Ax, 9 

where A is  an M X N matrix of real numbers, x1 and x2 
are two real vectors of size N ,  and yl and y2 are resultant 
vectors of size M .  We  now describe a cache-blocking 
algorithm  with  algorithmic prefetching to compute yl 
and y2. 

Partition matrix A into horizontal blocks of q X N 
elements. For simplicity of presentation, we again assume 
that three cache lines for each of the N columns can 
fit  in the cache, so no vertical blocking  is required. The 
algorithm processes a block at a time,  and  within a block it 
processes a column at a time. The doublewords of yl and 
y2 are loaded into registers in the outer loop. In the inner 

loop, the required doublewords of x1 and x2 and a column 
of the block of A being processed are loaded into registers. 
In the inner loop, the FMA  is used to  do a DAXPY 
operation; 2q FMAs  and q + 2 FPLs  are needed. 

Figure 7 gives a high-level description of the algorithm. 
As our idea is to highlight the algorithmic prefetching 
concept, we  go into only enough detail to describe it. Also, 
to keep the description clear, exceptional cases, such as 
the first and last column of a block, are not treated 
separately. In our description, the destination for a load  is 
a register, and a store refers to moving data from a register 
to a memory location. 

In the inner loop,  we  first have q + 1 FPLs: two are for 
the jth doubleword of x1 and x2, and the remaining q - 1 
are for thejth column of block i of the matrix A. These 
FPLs are executed concurrently with q + 1 FMAs, as in 
Figure 1. The next single FPL is the prefetch load. After 
this load, the remaining q - 1 FMAs are executed, during 
which  most of the doublewords in the cache line of the 
prefetched load arrive in cache. Recall that for prefetch 
to be fully effective, we should have 

- (q + 2) > 8, or q > 10. 

An upper constraint on the value of q is due to the number 
of available registers. A value of q = 11 was determined 
by numerical experimentation as a good value for the 
RS/6000, which has 32 floating-point registers. Another 
constraint is q I 16, in order that the column  length 
be no greater than the cache line size; otherwise, 
additional cache misses can occur in the middle  of a 
column. 
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FOR i = nb,l,-1 (nb:  number  of  blocks) 
execute 2q loads  for q elements (2q doublewords)  of y 
FOR j = 1, n 

execute 2q+l FPLs concurrently  with 2q+l FMAs 
execute  an FPL for  the  first real doubleword  of (j+l)th column  (prefetch) 
execute 2q-1 FMAs 

END FOR 
execute 2q stores  for q elements  of y 

END FOR 

Z G E W  Multiplication of a complex matrix by a 
complex vector 
Consider the following  problem: 

y = y + b ,  

where A is a complex M X N matrix, and x and y are 
complex vectors of size N and M ,  respectively. In 
FORTRAN, complex numbers are always stored as a 
contiguous pair of real numbers. We  now  give  an  informal 
description of the algorithm  with  algorithmic prefetching. 

Partition matrix A into horizontal blocks of q X N each. 
For simplicity of presentation, we  again assume that three 
cache lines for each of the N columns can fit  in the cache 
of the machine, so no vertical blocking  is required. The 
algorithm processes a block at a time,  and  within a block 
it processes a column at a time. The algorithm consists of 
two nested loops. In the outer loop, pairs of doublewords 
of y are loaded into a set of registers. In the inner 
loop, we load the required pair of doublewords of x, and 
a column of the block  being processed is loaded into 
registers. The computation in the inner loop is of the form 
y ( i )  = y ( i )  + a( i ,  j )  X x ( j ) .  A pair of doublewords of y, 
consisting of a real and an imaginary part, can be 
computed using three FMA instructions  and a floating-point 
multiply-subtract (FMS) instruction.  For  accounting 
purposes,  we  make  no  distinction  between  an  FMA  and  an 
FMS. Thus, to compute q pairs of doublewords of y, we 
need 4q FMAs. The  number of FPLs required in the inner 
loop is 2(q + 1). Of these, 2q loads are for  loading q pairs of 
doublewords of a column  of A, and 2 for  loading a 
pair of doublewords of x. Note  that a complex  pair of 
doublewords  occupies  two  floating-point  registers. 

Figure 8 gives a high-level description of the algorithm. 
Here also, to keep the description clear, exceptional cases 
are not treated. 

In the inner  loop,  we  first have 2(q + 1) FPLs, which 
are executed concurrently with 2(q + 1) FMAs, as 
outlined in the above subsection on algorithmic 
prefetching. The last single  load  is the prefetch step. For 
this problem,  we selected q = 7, which ensures that 

2 q - l > 8 .  

Note that there are more  FMAs  available to hide the cache 
penalty in this problem (2q - 1) than in  DGEMV2 (q - 1). 
For q = 7, the number of FMAs available to hide the 
cache latency (13) is sufficiently greater than 8 that the 
reverse processing of blocks (see the section on Level-2- 
like computation, above) is not necessary. 

Experimental results 
We have  implemented  two versions each of  DGEMV2 and 
ZGEMV on the RS/6000  Model 530, one with  algorithmic 
prefetching and the other without. All coding was done 
using standard FORTRAN 77. The performance of the two 
versions was compared for both of the problems. To be 
sure that none of the data were in cache, we flushed 
cache before executing the algorithm.  Our results are 
summarized in Figures 9 and 10. The performance is 
defined as the number of floating-point operations 
necessary to compute the answers (4mn for DGEMV2  and 
8mn for  ZGEMV)  divided by the total execution time in 
microseconds. Figures 9 and 10 show this performance as 
a function of the matrkdarray dimension M ,  with N 
constant (N = 140 for DGEMV2  and 120 for ZGEMV). 273 
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The Model 530 has a peak performance of 50 MFLOPS. 
We chose LDA = M for most of our data points, since 
this allowed us to use a larger value of N .  At one point  we 
observed a bad  LDA,  resulting in about 10% performance 
degradation. We restored the 10% performance loss for 
this LDA value by setting LDA = M + 1 for that point. 

In Figure 9, we plot the performance of  DGEMV2 with 
and without algorithmic prefetching. The performance 
without algorithmic prefetching saturates at 74% 
(37 MFLOPS) of the peak performance (despite the 
appearance of rising near M = 225), while the 
performance with  algorithmic prefetching goes up to 89% 
(44.5 MFLOPS) of the peak performance. Similar behavior 
can be observed for ZGEMV (see Figure 10). Both Figures 
9 and  10 are plotted for a discrete set of points. In two 
cases there are drops (dips) in the curves corresponding to 
bad LDA points. 

Conclusion 
In this paper, we have introduced a new concept, called 
algorithmic prefetching, which can be exploited to improve 
NIC performance. In particular, we have demonstrated 
that algorithmic prefetching can improve the performance 
of  DGEMV2 and  ZGEMV.  The  algorithmic prefetching 
concept is general, however, and can be applied to other 
dense-matrix operations on architectures similar to 
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Appendix:  Glossary of acronyms 

BLAS 
DAXPY 
DGEMM 

DGEMV 

DGEMV2 

ESSL 

FMA 
FMS 

FPA 
FPL 
GEMV 

LDA 
NIC 
TLB 
ZGEMV 

basic linear  algebra subroutines 
double-precision a * x + y (Level-1 BLAS) 
double-precision  general matrix multiply 
(Level-3 BLAS) 
double-precision  general matrix  vector 
(Level-2 BLAS) 

double-precision  general matrix  vector 2 
(Level-2  BLAS) 
Engineering and Scientific Subroutine 
Library 
floating-point multiply-add instruction 
floating-point multiply-subtract 
instruction 
floating-point arithmetic instruction 
floating-point load instruction 
general matrix  vector (generic  Level-2 
BLAS) 
leading dimension of array 
numerically  intensive computations 
translation  lookaside buffer 
double-precision complex general matrix 
vector (Level-2 B U S )  
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